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AN INVESTIGATION INTO THE DEVELOPMENT OF ENGINEERING*
STUDENTS’ CONCEPTUAL UNDERSTANDING OF MATHEMATICS

WENDY MARY MAULL

Following widespread concern over an apparent decline in the mathematical skills of
engineering students, this study employed survey and observation methods to investigate
the ways in which engineering students understand mathematical concepts, and to
compare these with the concepts held by students of mathematics.

It was found that the engineering students employ a different vocabulary from
mathematics students in discussing mathematics, and that their understanding of
mathematical concepts develops differently from mathemarics students both in response
to teaching (which appears to be a transitory effect) and as their experience gives
meaning to the ideas in life outside study. These findings are important in two ways.
We need to make the mathematics teachers of engineering students aware of the
language and concepts of their students so that the possibility of mutual
misunderstanding 1s reduced, and we as educators need to help engineering students to
make these connections in order to ground their mathematics in reality and to use
mathematics an instrument for understanding the world.

Compared with the classical mathematical modelling paradigm and the classical
empirical modelling paradigm, the method used by engineering students was found to be
a hybrid based on the identification of the type of problem and the application of a pre-
existing law.

Some misconceptions concerning the behaviour of beams in bending were found to be
widely held, by respondents with a range of levels of experience. Whereas the particular
misconceptions are not important in themselves, it is salutary to realisé that expertise in
one area of study does not necessarily inoculate one against misconceptions in a closely
related area.

A software package was written using the context of mathematical modelling to help
students relate concepts in calculus to physical situations. This package was found not
to engage the students sufficiently to provoke cognitive change, and suggests that a
higher degree of interactivity is needed.
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1. An investigation into engineering students’ conceptual

understanding of mathematics.

1.1 Initroduction: bistorical background

The proceedings of the first IMA conference on the Mathematical Education of
Eriginecrs in Loughborough in 1995 (Mustoe & Hibberd; eds, 1995) were Eubl.ished
with a chapter entitled “Conclusions after a decade of derjz_line” (O’Cﬁrrqll, 1995).
This conference was followed by the publication of 2 series of repor;s from
distinguished and interested bodies, having titles such as The Changing Mathematical
Background of Undergraduate Engineers (Sutherland and Pozzi, 1995), Tackling the
Mathematics Problem, (LMS/IMA/RSS, 1995), Mathematics Matters in Engineering,
(IChemE/ICE/IEE/IMC/IMechE/LMS/IMA, 1995) and A Mathematical
Foundation, (SEQ/EC/ SCS.ST, 1996). The overall opinion was that the
mathematical skills of undergraduate engineers had declined over the previous 10
years. ‘Sadly, there was no way of testing the hypothesis scientifically as the previous
generation of undergraduate engineers had evolved into practising engineers,
accountants, personnel managers, etc., and, in some cases, lecturers, and were not

availablé for direct comparison with the current cohort:

Instead, the opinions of current lecturers were canvassed (Sutherland and Pozzi,
1995). They felt that standards had declined, and that there were multiple causes forr
this decline. Overall, they felt that the standard of mathematics taught in schools was
lower. Secondly, as the number of university places in engineering subjects had
increased, the demand for those places had declined, and so the overall ability of
students entering engineering courses had been diluted. Thirdly, the proportion of
students entering with qualifications other than A level mathematics and physics had

increased as universities attempted to make up the shortfall in traditional entrants.




increased as universities attempted to make up the shortfall in traditional entrants.
The q_;uestion of the long-term stabili}:y of engineeriﬁg 1ecturer§’ per'ceptiqns-was
neither raised nor inves.tigated. (Crowther, 1997a, examines “the general opinion of
university lecturer... that standards in mathematics have dropped substantially in

recent years” and finds “very little empirical evidence in support of this allegation”.)

Different solutions were suggested. For some, a change in the philosophy of teaching
mathematics ;11 schools was the answer. For others, more regulatlon of school
mathematics and an insistence on the gold standard” of the A level was called for.
The Engineering Institutions proposed to set a strict entry requirement to
engineering degree courses (Engineering Council, Competence and Commitment,
1995, Engineering Council, SARTOR, 1990; IMarE, 1995), or else an externally set
examination at the end of the first year. A mathematical core for the European
Engineer was devised (Barry & Steele, 1992), building on an earlier proposal (OECD,
1966), and incorpcu;ating for the first time a summary of the mathemarics the

prospective student should have covered before embarking on undergraduate study.

An alternative strategy proposed by contributors to some of the reports was to accept
the changes in mathematical skills of the entrants to degrees and to alter the emphasis
in engineering degrees from mathematical skills to the appropriate use of computers,
and the development of communications skills and other competences felt to form
part of a new engineering core (for example, Challis & Gretton, 1997; Sutherland &
Pozzi, 1995 p7 paras 19&23). The question of the effects of computing on
engineering mathematics, both on its content and on teaching methods, was touched

on in almost all the reports mentioned above, including the OECD report of 1966.

The computer aided education of engineers was the subject of another conference,
(Eames & Johnson (eds), 1994) with delegates demonstrating their wares, or

describing the ways in which they were using CAL materials, with claims for

2




improvements in performance, or reduction of time needed to cover a given slice of

material. Because most engineering educators are engineers first and educators,

second, many brought a quasi-scientific approach to their research, while a few

researchers from a primarily education or psychological background used a more

phenomenological epistemology (for example, Brown, 1994) .

All this takes place against the background of a decline in the number of students

taking A level mathemiatics, a decline in the proportion of those taking mathematics

.

also taking physics, and a decline in the proportion of those gaining A level
mathematics who go on to study mathematics or technological subjects at university.

(Hirst, 1996)

Before leaving this section I would like to quote from another report.

“This report discusses the results of an enquiry into the mathematical
backgrounds and needs of engineering undergraduates and the methods
universities adopt to meet these needs... The students in the enquiry have
taken a large variety of A level mathematics syllabuses (61 identifiable ones)...
Several themes recurred in discussions with university teachers of
Mathematics or Engineering. The two major difficulties seemed to be (i) the
diversity of students’ mathematical backgrounds and attainments at the start
of the university course; (ii) the general lack of confidence and accuracy in the
routine processes of algebra, trigonometry and straightforward calculus...
10.6% of the students have Ordinary or Higher National Certificate or
Diploma qualifications... ‘The opinion at some universities was that the
academic weaknesses of these students (especially in mathematics} were on the
whole a handicap to them throughout their university courses. Others
thought they had advantages in more applied skills, in design, and in
awareness of the demands of the real world which compensated for these
deficiencies, provided that they survived the first year of university.”

The Universities referred to here were all “old” universities since the report was
written in 1978 when the changes anticipated were the results of the expansion of
comprehensive schooling (Heard, 1978). The quotation could easily have been taken

from any of the recent reports on the subject.




1.2 The study

In Plymouth, a small observation study appeared to indicaté 'tl;at engine;zrihg students
were using mathematics differently from students of mathemati;:s, particulatly in a
mathematical modelling context. One aspect of this difference was the vocabulary
employed by the two groups of students. This was felt to be particularly interesting
given that practising gngineers use mathematics almost exclusively in a modell‘ing
context. Given ‘that most of the lecturers who taught engineér‘ing I:nathematics were
mathematicians by origin, the question arose whether the students and the':ir Iecture;'s'

were literally speaking different languages when it came to mathematics.

A questionnaire was developed which was applied to a range of respondents at
different stages of an engineering career, and at different stages of a mathematics
degrée course. The responses showed up some patterns of ways of thinking about
mathematical objects, and the written comments revealed some of the respondents’

attitudes towards mathematics.

At the same time, the question of whether the use of computer software could be
helpful in teaching engineering mathematics, which was raised in many of the
reports, was addressed. It was quickly realised that writing computer courseware is
highly intensive in effort. The package which was finally produced was considerably

less ambitious than that which had at first been envisaged.

In the study a variety of research methods (participant observation, survey,
component analysis, content analysis and interviews) was employed. The methods
are described in the sections to which they apply. Finding research methods
appropriate to a variety of situations was interesting and challenging, and the process
of choosing appropriate methods helped to clarify the philosophical perspective of

this study.




1.3 Philosopbhical standpoint

Experience with teaching had led to the conviction that a small-scale experimental
procedure was unrealistic. No two groups of students are the same, and all groups of
students react differently to what is nominally the same learning experience. Thus

the scientific condition of repeatability is not fulfilled. At the same time the

_ experinienter is intimately involved in the préocedure, so the condition of -

independence of the observer is breached. It may be true that gver large numbers the
individual differences even one another out, and a scientific, experimental approach

may be justified, but in this study the numbers were chosen to be small.

Checkland et al (1983) point out that the assumptions underlying classic scientific
method include that the data should be independent of the observer, that the data and
the research process should be mutually independent and that experimental

conditions should always be controlled. The method becomes unsuitable when

e the processes in any one organisation are unique

e the facilities for controlled experimentation are unavailable

» the observer becomes an actor

e the causation is complex and interactive

e it is invalid to break down wholes into simple parts.

All these factors are present in the study of students’ experience of learning. In
addition, the students are human beings and are thus aware, as the apparatus of an
experiment in physics is not. In medical experiments the placebo effect is well
known. The technique of double blind trials, where neither the patient nor the local
experimenter knows who is receiving the control or experimental treatment, has been
evolved to take this into account. In other fields it is less easy to hide from subjects

that they are receiving experimental treatment.




Thus the scientific paradigm was inadequate for this study. For tl“;e engineer in me,
this was a serious blow. The det;rmiﬁism-of_the scientific paradigm, and the
reductionisrr; .possible. in dealing with the rational, phys.ical world, are part of the
‘underlying philosophical basis of engineering. Fortunately, another component of
the engineer’s philosophy is pragmatism: when one theory is inadequate, then
another approach may be more appropriate. Various authors (Hirst, 1972, Burrell
and Morgan, 1§79, Sokal,l‘ 19975 poinf out fhat different epistemologies are |
appropriate when dealing with the physical world and Witil the social 1;v0rld; that the
way we experience the social world is qualitatively different from the way in which

we experience the physical world.

The work of Perry (e.g., 1981, 1988) was also helpful in finding an epistemological
standpoint. He followed a group of students through their careers at Harvard,
interviewing them at intervals and extracting from the interviews indications of their
relationship to knowledge and the way it changed. On entry, many had a strongly
positivist epistemology, and believed that they would learn the truth because they
were going to be faught by the best experts there were. Gradually it dawned on
students that their teachers did not necessarily agree with one another or with
authority expressed in textbooks. This realisation caused the students to move
through a series of positions including complete multiplicity (that everyone had their
view and there was no way to decide what was right), via realising that some views
were more defensible than others to a position of commitment in the face of
ambiguity.

When an author (for example Laurillard, 1993, 43-46) describes this process in a
‘treatise on university education, we suspect that there is a dual purpose: not only to

open the mind of the reader to the processes of development in students, but also to

provoke reflection and epistemological change in the reader.




This thesis concerns the teaching of mathematics to engineering students, their
understanding of mathematical ideas,.and ways of modifying that understanding. For

this reason, epistemological questions arise at least three levels.

Firstly, the nature of mathematics itself. Is mathematics a pre-existing absolute entity,
there to be discovered, or is it an evolving social invention, the product of human

minds? A ‘subsidiary‘pc_)i;lt is the nature of engineering mathematics: are all kinds of
mathematics essenfially identical, or is engineering mgthem_aticsimpo:;tantly different-

in some ways?

At a second level, because we are dealing with Jearning mathematics, we must ask
how we believe individuals learn. Is knowledge accumulated by transmission:
osmosis from a higher to a lower concentration, or built by the individual on the
basis of accumulated interpreted experience, or is it formed by negotiation and
discussion between peers as a way of making sense of shared problems? At the same
time, we must also examine whether all individuals may be regarded as essentially

similar, or whether important individual differences intervene.

Finally, as a researcher, how have I approached the process of extracting empirical
material and organising it into a coherent thesis? Is that empirical data a reflection of
a single objective truth, independent of the obse;rver, and measurable with
instruments, or is it material which might be interpreted in many ways, but out of

which a consistent sense may be built?

These are the background questions which set the framework in which the research is
carried out. In the end, the “both-and” approach of hermeneutic philosophy seemed
to make more sense than an “either-or” strong objectivist or subjectivist pbsition.

| This approach emphasises the alternation between being part of the system studied

(subjective understanding) and seeing the system as a separate entity upon which one







may operate (objective explanation). Understanding and explanation are continually
evolving and-developing as one meets obstructions which were not accounted for by

"one’s former mental model. The model will never be a compléte match with reality,

but learning and experience refine the model arid improve the match (Brown, 1997).

1.4 Research question

The result is tﬁat aﬁ interpretivist p'afadigl;n has been Iadopted as -appropzii'ate for this
scﬁdy. The research question has become“‘ho% do enginee.ring students int.erpre-l':‘
mathematical entities?”, which has been translated into Vinner’s (1991) terms “what
are their concept images?” through the subsidiary questions “what is the 7z0de of the
image?” and “what is the depth of the image?”. This question is important because as
Arzarello et al (1995) point out “it may happen that the teacher and the student use
the same words which correspond to very different meanings in their heads; a
genuine comedy of errors is thus generated: the pupil and the teachers enter into a

vicious circle which is difficult to break”.

Vinner points out that concept images are not stable over time, indeed that learning
must involve changing images, so the next question is “how do the concept images of
engineering students develop?” and “is this development particular to engineering

students, or do, for example, students of mathematics, show the same development?”

Finally, we ask “what is the result of a particular intervention, the use of a specially
written computer program, on that development?”. Of course, all these questions are
asked in the spirit, not of finding the correct answer, but of finding an interpretation

consistent with experience, and on which future action may be based.




2. What is the nature of mathematics?

2.1 Introduction o ‘

In the-introduction, we saw that we needed to look at background questions in three
areas: the nature of mathematics, the process of learning ma{themat-:ics and the
approach to research. These questions frame the theoretical structure supporting the
specific r;eSearclhll questions. In this chapter, we address the nature of mathematics an_d
partic’ularly the nature of engineering mathematics, and the aspects of mathematics -
which are important to the engineer are underlined. These are-not identical to the

priorities of the mathematician.

Having examined some of these issues, we will be in a position to look more closely
at students using mathematics in mathematical modelling of physical systems in

chapter 3.

2.2 The nature of mathematics

I propose that mathematics, and particularly engineering mathematics, can be seen

from two broadly opposed viewpoints: behaviourist and cognitivist.

Behaviourists believe that as the workings of the mind cannot be directly known,
they cannot be meaningfully discussed. They frame learning as change in behaviour,
and concentrate on the acquisition of skills. Learning outcomes are stated as
sentences beginning with “The student shall...”, and continuing with a verb such as

recall, state, define (low level skills), apply, interpret, analyse (high level skills).

A behaviourist paradigm leads to the setting of specific learning objectives which may

be tested, a formal curriculum and syllabus which may be regarded as stable for all

time, the notion of standards and criterion referencing, and an absolute and Platonic




view of mathematics as pre-existing reality discovered by diligent investigation. This

attitude tends to resist the adoption of new techniques such as the use of technology

to aid in mathematical performance.

The cognitive paradigm proposes that although the mind may not directly be
observed, there is some meaning in framing models or metaphors for the ways in
which it works. As well as skill development, concept formation and the ways in
'Wﬂich things are under§tood ar;e interesting to the cognitivist. The title of this thesis,
con'taini'ng as it does the v;rords "‘conceptual understanding”, betrays thli;.t the author

has more sympathy with the cognitivist viewpoint.

From this point of view mathematics is complex in nature, similar to a language with
social and private aspects, constantly growing and changing, but stable enough for
shared concepts to have shared meaning at least for a time. Some of the important
skills are meta-mathematical skills: verbalising mathematics, convincing others,
problem solving. These will be of lifetime use, even when the mathematical content
alters. For the engineer, mathematical prostheses (devices which amplify the capacity
of the individual to perform tasks) such as calculators and computer algebra systems
may take over where the log tables and slide rules of earlier generations left off. Such

devices are similar to Connell’s (1997) notion of Intelligence Amplification (IA).

2.3 Product or process?

There is in many of the descriptions and definitions of mathematics a tension
between the view of mathematics as a collection of skills and practices, the product of
mathematical thought, and mathematics as a creative problem-solving activity, the
process of mathematical thought (Tall, 1991). Tall regrets that the former tends to be

taught, rather than the latter. The products of mdthematical thought, the body of
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mathematical knowledge appears to the student to be fixed and static, whereas a

process is by its nature dynamic.

The idea of mathematics as a competence, a set of skills which can be listed and ticked
off as they are mastered, belongs strongly to the behaviourist school of thought, but
still seems to prevail in much engineering mathematics education. Challis and.
Gretton (1997) challenge the idea that the engineering mathematics syllabus can be
presented as a.list of mathemat%cal topics to be mastered, and propose that b-roader
skills such as the formulation of a problem, choosing the épprol;fiate means to solve
it, and convincing onéself and others about the results, should be developed. Brown
(1997) argues that mathematics is intrinsically changing and developing, like a
language, and that the use of criterion referenced assessment in mathematics is an
attempt to freeze it into a static form based on a behaviourist paradigm which belies

the true nature of the subject.

2.4 Discovered or invented?

The Platonic or realist school of thought regards mathematics as pre-existing truth
which 1s there to be discovered (Godino and Batanero, 1996). On the other hand, a
pragmatic theory of meaning takes the view that mathematical objects arise from the
problem-solving activity of the community of mathematicians, and are thus

inventions of human activity.

We may ask whether i, the square root of -1, was discovered or invented. There was
a period when its existence was debated. It turned out to be useful, and to behave
according to a simple set of rules, anid so it became part of the accepted mathematical

structure.
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Even if 2 mathematical entity does not obey all the standard rules, it may be so useful
that new rules are invented to allow its existénce. For example, zero does not obey
the cancellation law (3x0=4x0, whilé 324) but it is so useful that a special rule (you" .

cannot divide through by zero) allows its continued existence.

If mathematics is pre-existing and discovered, then once found it is immutable and

infallible. If invented then it is open to negotiation, revision and change.

Mathematical learning can be compared to mathematical research in that the
participant in either activity is venturing out into unknown territory, and extending
their own personal boundaries of experience. The difference lies in the type of
terrain they encounter. For the researcher, it is truly terra incognita, where dragons
or treasure may be revealed behind the next obstacle to be overcome. For the
learner, there 1s the certainty that the land 1s well-trodden, and that signposted paths
will exist, should they not stray from the way indicated by their guides. For the
researcher, mathematics is there to be created: for the learner, it is already there and is

to be discovered.

2.5 Social or individual?

“Clearly the acceptance of a theorem by practising mathematicians is a social
process which 1s more a function of understanding and significance than of
rigorous proof.”

(Hanna, 1991, p58)

The importance of social acceptance of mathematical ideas may easily be

demonstrated.

In 1742 Goldbach conjectured that all even numbers may be expressed as the
sum of two primes (taking 1 as prime where necessary)... Goldbach also stated
that every odd number may be expressed as the sum of three primes. In the
form given it by Edward Waring (which excludes 1 as prime) this assertion
also remains an unproven conjecture.

(Mahoney, 1972)
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The definition of a prime number has changed fromi a number which is only divisible
by itself and unity (m which case 1 is a prime number) to a iumber which has exactly
two factors, itselfl énd unity (in Whiéh-case 1is no't‘a prime number). Th;-': effect of
this is to make the initial form of Goldbach’s Conjecture untenable, at a stroke as it
were. A hypothesis which may have be(;n true has suddenly become palpably untrue

by a social, mathematical decision.

The sc;cial nature of mathematics calls for the need for relarive stability in the way
mathematics is expresged, otherwise we would not bé able to use common symbols to
communicate meaning. However since mathematics is constantly being added to and
changed, the meanings of the symbols (the referents corresponding to the signs) shift
subtly over time and place, according to the context in which they are found. Thus
1+1=2 in integer arithmetic; 1+ 1=0 in modulus 2 arithmetic and 1+1=1 in logical
terms. (As Eddington, quoted in Rose, 1988, put it, “We used to think that if we
knew one, we knew two, because one and one are two. We are finding that we must
learn a great deal more about ‘and’ ».) Alternatively a single statement may be made
in different symbolic terms, (the signs corresponding to a single referent) again
depending on context, such as A+B=C, AUB=C, or AvB=C, and the same entity

may be exp;'essed as 4, 0.5, 2, or 50% depending on context.

Most statements in mathematics may be regarded as either true or false, andthis is
often seen as an intrinsic property of the statement itself. Ernest (e.g., 1991) argues
that the objectivity of a mathematical statement arises from its acceptance by the
community of mathematicians. This can only be so if the truth is not intrinsic
within the statement itself but depends on whether rules may be agreed which make

it either true or false. Thus a statement such as p=In(-1} will be true if rules are
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agreed which make it true, just as rules can be agreed which make 1+1=0true in

context.

‘On the individual side, it is clear that mathematics is an activity carried out by
individual humans. The questions they tackle may be either problems which are
agreed by the community to be interesting, for example Fermat’s last theorem, or
subjects which they have arrived at themselves: why did rougding‘ the last decimal
places in the ﬁeather data cause the calculation to diverge so .dramaticall_.y from the _
unrounded solution? Even in the mos-t individual cases., niathematicians drav;‘ from

the results of others and converse with others.

2.6 Hirst and Forms of knowledge

Hirst could probably be classified as a proponent of academic rationalism. He argues
(e.g., 1972) for a liberal education in which the learner learns to think like a
mathematician, a scientist, a moralist, etc., throuéh a prc:;cess of apprenticeship. This
equips the civilised person to understand that there are different ways of thinking
which are appropriate to the tackling of different types of question: that 2 moral

question cannot sensibly be approached in a scientific mode of enquiry.
For Hirst, mathematics is a form of knowledge. He defines a form of knowl;edge as

a distinct way in which our experience becomes structured round the use of
accepted public symbols. The symbols thus having public meaning, their use
is in some way testable against experience and there is the progressive
development of series of tested symbolic expressions.

The public meaning of the symbols acknowledges the social nature of knowledge; the
testing against experience its private nature and.the progressive development its

mutability.
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He describes certain distinguishing features which can be seen in:the various forms of

knowledge:

1. They each involve certain central concepts that are peculiar in character to
the form. For example, those of ... number, integral and matrix in
mathematics...

2. In a given form of knowledge these and other concepts that denote, if
perhaps in a very complex way, certain aspects of experience, form a
network of possible relationships in which expetience can be understood.
As a result the form has a.distinctive logical structure. For-example, the
terms and statements of mechanics can be meaningfully related in certain
strictly limited ways only...

3. The form, by virtue of its particular terms and logic, has expressions or
statements (possibly answering a distinctive type of question) that in some
way or other, however indirect it may be, are testable against experience....
in accordance with particular criteria that are peculiar to the form... The
sciences depend crucially upon empirical, experimental and observational
tests: mathematics depends upon deductive demonstrations from certain
sets of axioms...

4. The forms have developed particular techniques and skills for exploring
experience and testing their distinctive expressions... The result has been
the amassing of all the symbolically expressed knowledge that we now have
in the arts and the sciences.

He distinguishes the forms of knowledge from fields of knowledge which may draw
their content from different forms to inform a unifying subject matter. For example,
geography “the study of man in relation to his environment” would be an example of

a theoretical field of knowledge, and engineering a practical one.
In summary he proposes two types of classification of knowledge:

1. Distinct disciplines or forms of knowledge (subdivisible): mathematics,
physical sciences, human sciences, history, religion, literature and the fine
arts, philosophy, morals.

2. Fields of knowledge: theoretical, practical (these may or may not include
elements of moral knowledge).

Mathematics is thus a form of knowledge which has a high internal consistency, a
way of thinking and relating to experience. Moreover, because each form of
knowledge involves the use of symbols and the making of judgements in ways which

cannot be expressed in words and can only be learnt in a tradition, it must be learnt
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from a master on the job. Note that in (4) above, Hirst distinguishes between the
amassed body of symbolically expressed knowledge, which is the result of applying
the techniques for exploration and testing, and the form of knowledge, ﬁhich E
includes that amassed knowledge. This means that for instance, although a

knowledge of mathematics includes factual knowledge, the essence of the discipline is

not, for Hirst, contained therein.

Engneering will need to contain s;gme ml_athematical knowledge, but Hirst argues
that all students should study all the forms of knowledge, in order to know how and
when to apply an appropriate way of thinking in context, and that engineering would

be a field in which the forms of knowledge would be applied.

2.7 Postmodernist mathematics

Godino and Batanero (1996) take as a fundamental notion the type of problem that
different people are trying to solve. Mathematics has a “triple nature... as an activity
for solving socially shared problems, as a symbolic language, and as a logically

organised conceptual system”.
Another fundamental notion within their view is that of the institution.

“An 1nstitution is constituted by the people involved in similar problem-
situations. The mutual commitments with the same problems imply the _
carrying out of shared social practices which are also linked to the institution
whose characterisation is to be contributed.”

“We call people within society who are engaged in solving new mathematical
problems a mathematical institution. They are therefore the producers of
mathematical knowledge. Other institutions (macro-institutions) involved in
“mathematical situations” are the users of mathematical knowledge (applied
mathematicians, technicians, scientists and other professionals), teachers and
mathematics educators (teaching institutions).” (Authors” emphases)

(Godino and Batanero, 1996)

Mathematical activities are characterised by: “mathematical objects” (numbers,

operations); symbolic representations in the statement of the quéstion and in their
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carrying out; symbolising, formulating, validating and generalising, described by _
Freudenthal (1991) as “mathematizing”. These correspond to Hirst’s central
concepts, relationships and tests agﬁinst experience, and techniques and skills (see 2.6

above)

The institution agrees meanings for mathematical objects, which may evolve over
;ime, according to thieir usefulness in solving the mathematical problems on which
the mathematical institution is working. (See for exar‘nple the prime number,
discussed above.) Mathematical objects are attributed signsA, such as names or written
symbols, which may also vary with time or place. Individuals also assign personal
meanings to these signs, and may be said to understand the objects insofar as their
personal meanings match the institutional meanings. This set of relationships can be

mapped onto a classical semiological diagram. (Ogden and Richards, 1923):

A A: Sign: mathematical
symbol
B: Concept (reference):

personal meaning

C: Significatum (referent):
institutional meaning

B C

Figure 2-1: Relationship between sign, concept and referent, Ogden and

Richards, 1923.

The relationship between the sign and the referent: the institutional or agreed

meaning is moderated by a third entity: the concept or personal meaning.

For example, the plus sign + is a sign. Its full mathematical meaning, that is all the
things which the mathemarical community understand by the plus sign, in all
contexts, is the referent, and my own personal understanding of its meaning, which is

a subset of that full meaning, with dominant and subordinate images, is a2 concept. In

17




fact I hope that my concept is a subset of the full meaning. It may contain elements
which are not part of the referent,-which could then be d:e.scrib'ed as misconceptions.
Arzarello et al (1995) describe how an inadequate relationship between a syr-nbol
(sign) and its sense leads to a pupil and teacher using the same words corresponding to

different meanings “in their heads”

In addition, the institutional meaning of a given object in a teaching institution will
be a subset or a sample of the full institutional meaning, and care must be taken in
choosing the sample that the full institutional meaning is not distorted or lost in

teaching.

Learning may be conceived as the process of construction and appropriation
of viable conceptual networks by a progressive adjustment of a subject’s
cognitive structure to the structure of the institutional meanings.

(Arzarello et al, 1995)

The study of the teaching/learning processes in the mathematics classroom
corresponds to the study of the effects on the personal meanings of “shocks” of

didactic sequences carrying elements of meaning.

Within this analysis, “the centre of attention for didactic research should not be the
student’s mind, but the cultural and institutional contexts in which teaching takes

place”.

Brown (1997) (p70) suggests that “whilst there may be some over arching system of
mathematics understood collectively by the community of mathematicians, we can
never survey this holistically in a ngutral way... Meaning is only created as signs are
combined in stories that arise within the activities performed.” That is, each person
creates meaning according to the contexts in which they encounter signs and

interpret them according to their experiences and interpretation of those experiences.
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In the same way, he suggests, in language the relationship between mgmﬁer (word)

and signified (thing to which the Word refers) is unstable in the long term as both the
signifier and the signified can change. In order for words to be useful in
communicating meaning there has to be stability in the short term at least, so that the
meaning of 2 word may be inferred from its context. However the context Qf a word
is normally other words, each of which may be unstable. Like language, .p}athernatics :
exists in a tension between stability, so that statements may continue to have

meaiing, and instability; as new méanings, relationships and entities are forged.
Knowledge exists in the ten;siori between understanding, where we are embedded in
the experience, and explaining, where we are separate ourselves from the experience

in order to articulate that which we have understood.

In the field of literary criticism, Culler (1982) explains that “all readings are
misreadings™: that is that no reader can fully recapture the intended meaning of the
author but imposes on the reading a unique set of experiences and interpretations to
create a new meaning. Progress occurs when a “strong misreading” of an existing
“text” takes place. That is, an existing entity is “misunderstood” creatively, or
understood in a way not intended by the originator, such that a rich new reading is
created. So the hieroglyphic “alphabet” of the Egyptians was adopted as a phonetic
consonantal alphabet by the Phoenicians and Hebrews, and subsequently as a full
vowel and consonant alphabet by the Greeks. Each step was a “misuse” which

yielded greater functionality.
'This “creative misunderstanding” is important in mathematical creativity:
g p .

Ironically for a discipline touted as precise, the studént of mathematies has to
develop a tolerance for ambiguity... Sometimes distinctions are better left
blurred, e.g. the various roles of the minus sign and the use of f(x) as both the
function and the value of the function at x... At the same time, when there is
danger that genuine confusion might develop, the student must learn to
becorne conscious of looseness and to apply the necessary amount of rigour. It
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is this judgmental aspect of reasoning, so essential in mathematics education,
that must be communicated to students. . )

Hanna (1991, p 61)-

2.8 Summary

It was said of Gauss: he is like a fox who obliterates his tracks with his tail. He
presented his conclusions, complete and perfected, without a clue as to the struggle
which had led to them. This is how mathematics is often ‘pxl'ese_nted to the world in
its public face, ﬁithout ambiguity or uncertainty. Ambiguity however is a spring of

creativity, as is unsatisfied need.

In analogy with language, mathematics has both stability and flow, a social and a

private aspect.
2.9 Mathematics for the engineer

2.9.1 According to writers of reports: a tool, a language, a competence

The OECD Report Mathematical Education of Engineers” (OECD, 1966), states that:

Mathematics 1s very important in the training of engineers for the followmg

reasons:

i) It provides a training in rational thmkmg and justifies confidence in the
value of such thinking;

7z} Itisthe principal tool for the derivation of quantitative information
about natural systems;

iiz) It is the “second language” of human discourse and parallels natural
language by providing a means of comrunication for ideas, as evidenced
by the contents of technical papers;

iy} Tt facilitates the analysis of natural phénomena;

») It is important in assisting the engineer to generalise from experience;

vi) It trains the imagination and inquisitiveness of the student if properly
taught;

v1i) It is a training for adaptation to the future.

(OECD, 1966, p11-12)
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Barry and Steele (1992) reprint the list in a report for the Société Européenne pour la
Formation des Ingénieurs (SEFI) (with the substitution of “an education” for “a

tramning” in the last point) and add:

vitt) Mathematics prowdes the language for formulatmg a model for computer
analysis.

ix) Mathematics provides the means of understanding how a computer works
and the computing process itself, and the means of assessing the accuracy of
computer output. -

Items #7), iv), and wii) relate to the development of professmnal COMMIMICAtIoN and

computational skills appropriate to an engineer. The remaining items identify

mathematice as central to the intellectual formation process of the engineer.
(Barry and Steele, 1992, p15)

The SEFI analysis assembles the notions of “tool”, “language” and “training in
rigorous rational thought” which we see in the prefaces quoted below.

Hermeneutical views are characterised by a circular movement encompassing
a succession of alternative perspectives, for example between seeing language
as embedded in what I am doing and seeing it as a separate labelling device.

Differences in views of language held by such writers are essentially to do with

the way they choose their home base on this spectrum and how far they stray
from this base. Through seeing mathematics as functioning like a language,
such a home base can similarly characterise the view held of mathematics.

(Brown, 1997, pp 218-9)

Brown’s view of the implications of seeing mathematics as a language has been

discussed above.

Mathematics Matters iri Engineering (IMA, 1995) states that “mathematics forms a
key competence in engineering... One key area of competence required by most
engineers is mathematics, for it is difficult to be innovative in engineering without
such competence”. {pl) This recognises that engineering.is an innovative discipline,
but not that the mathemarics of innovation is sometimes itself innovative. In ordér
to innovate it may be more important for the engineer to be capable of learning and

applying new mathematics than to have acquired all the mathematical competences
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conceivably necessary for a career during the course of a degree. Cox et al (1995)

consider that the attitudes of engineers towards mathematics are at least as important

as the exact content of the engineering mathematics course, since there is simply not
time to teach undergraduate engineers all the mathematics they will need to know in

their careers.

2.9.2 According to writer of textbooks

Writers of mathematics textbooks sometimes ailow a glimpse of their ﬁnderlying
assumptions in the prefaces they write. Here are a few samples gleaned from the
prefaces of books written specifically for engineering users of mathematics. Without
exception, writers of textbooks over the period refer to the student as be, which is
defensible in a period when such students were overwhelmingly male, but jars a little

on modern ears.

We would like to suggest two particular areas of concern which we feel should
be reviewed from time to time by every analyst. The first is to maintain an
awareness of the limitations of any mathematical model resulting from the
various approximations imposed during the modelling process... Changes in
engineering curricula and... improvements in teaching mathematics at the high
school level... have increased the mathematical requirements for enginéering
students... [and] raised the level of mathematical rigor (sic). It was decided not
to trade off the valuable physical applications for increased rigor in this
edition.

(LA Pipes & LR Harvill, Applied Mathematics for Engineers and Physicists,
1970)
In a work of this nature, full vigorous proofs cannot be given, but the
assumptions made have been carefully stated and wherever the existence of 2
rigorous proof is assumed, some indication of this assumption is given.

(BH Chirgwin & C Plumpton, A Course of Mathematics for Engineers and
Scientists, 2™ edition, 1970)

A technologist who 1s taught mathematics purely as a series of techniques is
on firm ground only as long as those techniques remain relevant; in his
subsequent career he will encounter many quicksands where the new
techniques he needs are out of his reach. The answer, in our opinion, is to
stop treating the technologist as a second-class citizen, entitled to use
mathematics but never to understand; we must allow him, indeed expect him,
to come to terms with the fundamentals of the subject,

(M Bruckheimer et al, Mathematics for Technology: 2 New Approach, 1971)
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The typical student for whom this book is intended is likely to look upon
mathematics as a means to an end. We feel that it is neverthéless unfortunate
if, as all too often happens, his mathematical armoury consists merely of 2
collection of unrelated techniques which he uses under appropriate (and
possible inappropriate) circumstances.

(R] Goult et al, Applicable Mathematics: a Course for Scientists and
Engineers, 1973)

The emphasis is on the practical side of the subject and the more theoretical
aspects have been omitted.... Although mathematical rigour has not always
been emphasised in the programmes, they can serve as an introductory text for
students [of mathematics]... giving,... some idea of how mathematics is used 1n
other subjects. :

(AC Bajpai et al, Mathematics for Engineers and Scientists, 1973)

The text is primarily designed to assist engineering undergraduates and their
teachers, but we hope it may also prove of value to students of other
disciplines who use mathematics as a toof... We have tried to give equal
emphasis to both the analytical and the numerical aspects of engineering
mathematics, so that the reader is encouraged to make use of whatever
mathematical tool is best for the problem he has in hand.

(AJM Spencer et al, Engineering Mathematics Vol 1, 1977)

Mathematics is an essential 00! for the engineer and applied scientist and
mathematics is often up to one third of an engineering student’s curriculum in
the third year.

(JS Berry and P Wainwright, Foundation Mathematics for Engineers, 1991)

While formal proofs are included where necessary to promote understanding,
the emphasis throughout is on providing the student with sound mathematical
skills and with a working knowledge and appreciation of the concepts
involved.

(KA Stroud, Engineering Mathematics, 1995)
Mathematics is the language of engineering.

(A Croft et al, Introduction to Engineering Mathematics, 1995)
Mathematics 1s the language of engineering...

(L Mustoe, Engineering Maths (sic), 1997)
Many authors have not been quoted, as they have simply listed the scope of the

various chapters of the text in their preface, or stated the syllabuses to which the
contained material corresponds, but among those who do make mention of their

underlying approach, the ideas which emerge are the appropriate degree of

mathematical rigour and mathematics as a tool for the technologist.

When we examine engineering mathematics text books, we discover they vary in two

dimensions: those which are designed as an aid to learning, such as programmed texts,
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and those which are designed primarily as a reference: and those which treat the
mathematics by mathematical topic without reference to application versus those

which work through extended examples.

Programmed text Traditional Reference work
textbook
Through Berry, Northdliffe Noble
applications & Humble
“ With applications Mustoe’ Croft et al
~ Bajpai et al
‘James et al
Application free Stroud Weltner

Table 2-1: classified examples of text books

A telephone survey of universities offering degrees in mechanical or general
engineering was carried out in February 1996. Lecturers were asked what

mathematics text books were recommended to their first year students. The replies

are tabulated in Table 2-2. It will be seen that at the time Stroud and James et al
dominated the marker. These texts are instrumental in outlook, with Stroud

regarding engineering mathematics as a collection of skills to be acquired by drill and

practice.
University Title Author
Bath Engineering Mathematics Stroud (1995)
Birmingham Engineering Mathematics Stroud
‘ Introduction to Engineering Croft, Davison &
" | Mathematics Hargreaves (1995)
Brighton Engineering Mathematics Stroud
Bristol Modern Engineering James et al (1992)
‘Mathematics ,
Cambridge Advanced Engineering Kreyszig (1993)
Mathematics :
Modern Engineering James
Mathematics '
Advanced Modern Engineering | James et al (1993)
Mathematics ‘

Table 2-2: Texts recommended to first year mechanical engineering

undergraduates, February 1996
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Central England Engineering Mathematics Stroud
' ‘Modern Engineering ‘James
Mathematics . i
Introduction to-Engineering Croft et al
Mathematics
Central Lancashire Engineering Mathematics Stroud
City Advanced Calculus Spiegel (1974)

Mathematical Methods for
Science Students

G Stephenson 1973)

Engineering Mathematics Stroud
Engineering Mathematics Bajpat, Mustoe &
A - Walker (1989)
Coventry Introduction to Engineering Croftetal
_ . Mathematics )
Durham Advanced Mathematics for - Spiegel
Engineers & Scientists
Engineering Mathematics Stroud
Further Engineering Stroud (1990)
Mathematics
Greenwich Modern Engineering James
Mathemarics
Hertfordshire Learning Mathematics through | Berry, Graham &
DERIVE Watkins (1996)
Foundation Mathematics for Berry & Wainwright
Engineers (1991)
Modern Engineering James
Mathematics
Humberside Engineering Mathematics Stroud
Imperial Mathematical Methods for Stephenson
Science Students
| Mathematical Techniques Jordan & Smith.(1994)
Engineering Mathematics Stroud
Kingston Introduction to Engineering Croft et al
Mathematics
'Engineering Mathematics Stroud
Lancaster Modern Engineering James
Mathematics
Liverpool John Moores | Engineering Mathematics Stroud
Loughborough Engineering Mathematics Stroud
Mathematics for Engineers & | Weltner et al (1986)
Scientists
Modern Engineering James~
Mathematics
Luton BTEC National M2 & M3 Greer & Taylor (1989)
Mathematics for Technicians )
Manchester Modern Engineering James
Metropolitan Mathematics

Table 22 (Continued): Texts recommended to first year mechanical engineering

undergraduates, February 1996




Manchester Modern Engineering James
Mathematics ' Stroud
Engineering Mathematics “
UMIST Engineering Mathematics Stroud
Middlesex Engineering Mathematics Stroud
DERIVE Manual
Nottingham Modern Engineering James
Mathematics
Engineering Mathematics Evans (1992)
Ozford Brookes Engineering Mathematics Stroud
Oxford Advanced Engineering - Kreyszig
Mathematics
Mathematical Methods for Riley (1974)
Physical Science
Engineering Mathematics Spencer (1997)
Mathematical Methods for Stephenson
Science Students
Modern Engineering James
Mathematics
Mathematical Methods in Heading (1970)
Science & Engineering
Plymouth . Engineering Mathematics Stroud
Portsmouth . Engineering Mathematics Stroud
Sheffield Hallam Locally written material '
Foundation Mathematics Booth
Introduction to Engineering Croft et al
Mathematics
Sheffield Further Elementary Analysis Porter
Engineering Mathematics Stroud .
South Bank Mathematics for Technicians Greer & Taylor (1989)
Engineering Mathematics Stroud |
Southampton Mathematics for Engineers & | Weltner et al (1986)
Scientists ‘
(And for weak students) Stroud
Sussex Introduction to Engineering Croft et al
o Mathematics
Modern Engineering James
Mathematics
Engineering Mathematics Evans
Advanced Engineering Kreyszig
Mathematics
Engineering Mathematics Stroud
Further Engineering Stroud
. Mathematics _
Warwick Locally written material
Westminster Engineering Mathermatics Stroud
Calculus J Stewart (1988)

Table 2-2 (Continued): Texts recommended to first year mechanical engineering

undergraduates, February 1996
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2.9.3 Mathematics as sensemaking: the making of meaning

Tall (in Tall, ed, 1991, p256) states “The evidence is that students of a wide range of
abilities prosper when they can give meaning to ... ideas.” Matos and Carreira (1997.")
describe learning as “an activity where students give meaning to ideas, problems,

mathematical and non-mathematical concepts”.

Schoenfeld (1991, cited 1t Wilson et al, 1_993) proposes that school mathématics -
concerns highly unrealistic situations, and that the main preoccupation is that the
stl-.ldent solves the problem, rather than understanding it. Wilson’s co—authcsr Teslo_w
gives a personal account of his experience of mathematics as sensemaking in the
context of his engineering experience. This involves the application of mathematics
to real problems whose solutions have practical applications and whose

implementation will have ramifications in the real world.

In order to be useful in sensemaking, mathematics.must be a unified body of
knowledge, rather than neatly compartmentalised. It must be active and accesslible
rather than inert knowledge which can be recalled but is not applied. For the
engineer, mathematics is a tool, consisting of both algorithms (“a sure-fire method
that always leads to a solution of a particular problem”) and heuristics (“rules-of-
thumb that may solve a probler, but do not guarantee a solution”) of when to apply
the froper algorithm. Scho-enfeld found it easy to teach algorithms, but difficult to
teach th;: heuristics. It is possessing the appropriate heuristics which distinguishes the

expert from the novice (Wilson et al, 1993).

Lave (1996) suggested that learning should be examined from the perspective of
“becoming who we are going to be”, a form of socialisation. Engineering students
sometimes complain “I don’t see the relevance of this” (Appleby, 1995, Coxhead,

1997). They are studying engineering in order to become engineers. It is not always
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clear to them that the mathematics they study is relevant to being an engineer, as we

shall see from some of the comments in the questionnaires in chapter 6.

2.9.4 Precision and approximation

Within engineering practice, calculations are made from two quite different
methodological standpoints, and this is rarely made explicit to students. Engineering

precision and approximation are different from their mathematical namesakes.

In the domain of apl:;roximate calculations a safety factor will genérally Bé apialied, to
ensure the result falls on the desired side of a limit, either a maximum or a minimum.
Classically the strength of a structure and its deflection under load fall into this
category. The exact answer does not matter, since the whole structure will be over-

designed to allow for unforeseen misuse and deterioration.

In precision applications, the calculation must eliminate uncertainty as far as possible,
since either over- or under- estimate has undesirable consequences. Such calculations
often concern the fit of components, or accurate timing. In an axial compressor,
running at design speed, if there is a gap between the tips of the blades and the casing,
" air will leak through and the efficiency will be impaired. On the other hand, if the
tips of the blades rub on the casing then the ensuing friction causes overheating and
.possibly fire. The calculation of the change of dimensions of the rotor and casing

must be'as accurate as possible.

The requirements for accurate calculation do not always coincide with where
mathematics is exact. Numerical solutions are sometimes needed. In mathematical
modelling applications the assumptions made to allow for mathematical exactness
may be unjustified in the context of the application. In these cases, the aspirations of

the engineer and the mathematician do not coincide. Mathematics becomes a tool,
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rather than an end in itself, and the mathematical purist may wince at some of the

things the engineer does.

Story: a professor of engineering ran into a colleague of mathematics one day. “So
glad to see you, old chap,” said the engineer, “I've been using some new theory in
bridge design, and getting some really interesting results, but the maths is a bit
beyond me. Would you cast your eye over it for me?’; The_ mathematician frowned.
“Can’t p'ossibly work,” he mqttered, “Assﬁumptions all Wrc;ng”, and éway he shuffled..
A while later,.they met again. “Are you s;re about my new theory?” asked the
engineer plaintively, “I've been testing models, and they seem to hold up really well”.
“It’s no good,” growled the mathematician, “Only valid irn the trivial case where all

the variables are real and positive”.

An important difference between mathematics per se and an engineer’s mathematics is
that in pure mathematics it is normal and permissible to add x to x* while in
engineering mathematics adding (length) to (length’) is generally a sign.of an error.
The mathematics of the mathematician deals with dimensionless numbers or entities
which stand proxy for numbers, while the engineer manipulates values of physical
quantities with meaningful dimensions. There is thus a cultural problem for the
student; 1n mathemarics classes it is permissible to add x to x°, but elsewhere one may

only add Kx to x*, where K has the dimension of x.
2.10 Conclusions

2.10.1 On intellectual rigour

B

It appears that one of the principal characteristics of mathematics is its intellectual
rigour, and that in teaching mathematics to engineering students one of our aims is to

teach them to think clearly. On the other hand, one of the complaints about
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engineering students is that they lack feeling for mathematics and whether the
answers they produc:e are corréc;t or not. (Sutherland & Poz;i, 1995} We have to
;:Iecide whet:‘h&-:r v.;e rc;gard mathematics for the eﬁgineer as a mental discipline (Hirst,
1972) oras a tool (for example, OECD, 1é65, Barry & Steele, 1992, and others).
Given that engineering students sufferifrom crowded timetables, we have to be clear
about the aspects of mathematics we v,;ant to develop in our students. This may be

different from the mathematics we want to teach to mathematics students, and it will

be important to make that explicit, so our expectations are realistic:

We may have to sacrifice rigour in mathematics and develop clear thinking in
alternative ways, while attempting to enhance students’ feeling for mathematics
through the use of prostheses such as computer algebra and graphics calculators
(Challis and Gretton, 1997), and the use of modelling from an early stage. (Cross,

1983)

2.10.2 On the finality of mathematics

Mathematicians are in the business of building mathematics. They are contributing
to the growing and changing collection of mathematical structures. Mathematicians
need to have the sense that mathematics is incomplete and may be challenged in order
to motivate the making of new mathematics. I was told by a colleague that the most
memorable point of his engineering degree course was when his lecturer reached a
stage when he said “and that is as much as we know”, and he realised that beyond was

stall inviting exploration.

There is a sense in mathematics that it is not open to negotiation: that to a given
question there is one correct answer and any other is simply not right. That however
is largely due to the sort of questions which are asked in “mathematics”, and the rules

of the game that are set in the “mathiematics” which engineers are currently taught.
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In mathematical modelling of real complex situations the room for negotiation is

wide. It is more difficult to assess work in which there is not a correct answer.

Engineers are also driven by the motivition of satisfying incompleteness, to do
things, to make things work, even if the gap to be filled is the provision a part for a

machine rather than a new mathematical solution. (Shaw, 1989)




3. Observation of mathematical modelling in practice

3.1 Imtroduction .

Having discussed the nature of mathematics in chapter 2, and suggested that there is a
difference between engineering mathematics and that of mathematicians, we may now
turn to observe some novices using mathematics and reflect upon the way they. construct
a mathematical model. We shall also compare the approaches taken by some
mathematics and eng‘ineering students to the same problem, and conclude that there is
some difference in the ways in which they are “doing mathematics”. The students on
whom we shall concentrate are final year students who have been well acculturated into
their respective subject. In chapter 13 we shall examine two basic paradigms of
mathematical modelling, and a hybrid third approach which appears to be adopted by

engineering students.

3.2 What is observation?

Observation is a descriptive technique, that is, behaviour is observed and described. If
behaviours are counted and tflen analysed statistically, it becomes a quantitative
approach: if they are simply observed and described, it remains qualitative. In this case
the observation is qualitative, as the sample in terms of numbers and.of the time for
which they were observed is small. The advantage of using a small sample is that it is
possible to enter into greater depth and detail in the analysis, and this is gained at the

expense of loss of breadth.

3.2.1 Strengths of observational methods

Observation is the first step in any investigation: to establish that there is a phenomenon

to be investigated in the first place, and then to try to establish its nature. Before any
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rules of gravitational attraction can be considered, it must first be observed that an
object which is released will fall. Observation is first necessary to establish that theory

derives from reality rather than fantasy. It is the guarantee of empiricism in the

.,

scientific method. (Cohen and Mannion, 1994, p20)

Observation in the social sciences is based on the case study: rather than manipulating
variables to determine their causal significance in an experimental manner, the
investigator clabserves the characteristics of a single unit {Cohen and Mén‘m’on, 1994, .
p106). The picture gained in this manne; is richer than the measurements obtained from
an experimental study, and it is argued that experimentation, in order to reduce the
number of variables to a controllable level, impoverishes the study to something well

below the norm of human social experience.

3.2.2 Weaknesses of observational methods

In participant observation, there i; the danger that the observer becomes too immersed
in the. culture of the group being observed, and becomes “subjective, biased,
impressionistic, idiosyncratic and lacking in the precise quantifiable measures that are
the hallmark of survey research and experimentation”. (Cohen and Mannion, 1994,

p110)

There are questions of internal ;nd external validity. Internally, to what extent were the
observationis coloured by the researcher’s expectations? Externally, to what extent are
any observations applicable to other cases? Phenomenological techniques refer to the
epoché or bracketing of one’s prejudices and underste;nding as far as possible what the
subject says and does rather than what the observer expects that person to say and do,
(Cohen and Mannion, p29, p293} and also to the circle of understanding where a sense of
the whole (interview, case study, observation) informs the understanding of the parts,

and at the same time the sense of the whole is composed of the totality of the
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understanding of the parts. External validity may be checked by some form of
triangulation, for exa.‘méle by verification ag'ainst the more skeletal understan&ing gained

-

from surveys.

The recording of observations is time-consuming and relies on the memory of the
observer. If the observations are recorded on video or audio tape, they must still be

transcribed or otherwise annotated. -

3.3 Observation within this study

Two types of observation were used: non-participant observation, where the observer
obtrudes as little as possible into the behaviour of the subjects, and participant

observation, where the observer is a part of the behaviour observed.

Three sets of observation were carried out in this study: the first was of a class of
mathematics undergraduate students (mixed first and second years) modelling the
cooling of a cup of hot water, the second was a comparison of final year mathematics
and final year mechanical engineering students modelling the flow of water from a tank
under gravity, and the third was the testing of the courseware written as part of this

study. Iri this account, WMM is the author and researcher.

The testing of the courseware falls more conveniently into a later chapter, so I shall

describe here the observations in the early part of the study.

3.4 Cold tea

3.4.1 Introduction

As the class of 18 students observed here were taking part in a scheduled class,
observation was combined with some teaching, as the occasion arose. The technique

could thus be described as participant observation. The class split themselves into four
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groups, which I have labelled A, B, C and D, and interviews were carried out the
following week with two of the g'roﬁp‘s of students who took part in the modelling class.
The first session took place between 11am and 1 pm, Groups D and B participated in an

interview session the following week.

The problem was stated as shown in Figure 3-1.

Modelling - cold tea

Joe drinks China tea. The Chmese method of makmg tea is to pour
boiling water on tea leaves in a mug, either bone china or enamelled
steel if you can afford it, or-a jam jar if you can’t. (You learn the skill of
filtering out the tea leaves with your teeth.)

As you leave the tea to infuse, it cools down. Model the way the
temperature varies with time.

Chinese tea mugs have little lids (and so do jam jars - you can screw the
lid on and carry it around without spilling any). What difference does
having a lid on make to the way the tea cools?

Figure 3-1: the cold tea problem

3.4.2 Observations

In describing the modelling process, I have adopted the stages described in the Open
University Mathematical Modelling diagram, a structure which will appear at many

points in this thesis,

g ——— ————— e o e e, e —————

N # ~ Y
i 0 Specify 1 @ Setup ‘, H 0 Formulate
! the real b a model 1-m the mathematical 1
! problem 1 ! 1) problem ]
M l _____ J’ N e /’ Mo i _____ J’
pommmmbesmsen | ommm sy N eTTTTTEmEES .
{ @ Compare. | .’ © Interpret 1 7 {© Solvethe !
¢ with reality 11 the P! mathematical !
H r salution [ problem '
\ ;i P} !
~ # I A s

______________________

Figure 3-2: OU flowchart analysing the process of mathematical modelling,

(Tunnicliffe, 1981, p5)
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There was of course a lot that happened in the room that I did not see, and a lot that I

saw but did riot have time to note down. The notes aré therefore very selective.

3.4.2.1 Initial approach

Two different initial approaches were evident: three of the four groups (all first year
students) began by finding hot water, cups and thermometers and obtaining some
empirical data, whereas the group of second }}ear students .(Whopoint‘ed out to me that
they were second years) stated thavthey knew the answer, and wrote that they were
assuming that d7/dt=K(1-T,,) and that T,,=20°C (having estimated the room
temperature: they did not use a thermometer). Whereas the former groups may be
regarded as working down the right hand side of the MEI modelling diagram (see Figure
13.3 in chapter 13), the latter may be interpreted as a novice approach to problem

solving (Mestre, 1994), that is to “resort to formulaic approaches”.

3.4.2.2 Using technology

The data produced was plotted on graphics calculators. DERIVE and Omnigraph were
available on compurers in the room, and students also attempted to use these programs
to plot data, one group to the extent of using Omuigraph to plot spline curves of
temperature against time. Students from one group also played “Risk” on a nearby

computer.
Some problems associated with using graphics calculators to plot the data were:

o the graphic definition is low

o the screen is very; small

* theangle of view is narrow (so the straightness of a line cannot be judged by locking
along it), and a group of students cannot all see the screen at once

e straight lines with small slopes are plotted as staircases
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* students felt they were achieving something by performing regressions on the data
When; they did not i{ndw what it was fhey were doing. |

The calculator did prﬁve usefui when a group used it to obtain the intercept and sioi:)e of

a graph of In(7-T,,) against time, once they had established that that was what they

needed to do.

3.4.2.3 Making assuthtfons

In making assumptions, students did not appear to appreciate that making assumptions

had implications for the mathematics they would set up, thus:

(Group C) $1: We must assume all the diameters ave the same.
$2: It makes no odds. ,
$1: You can’t have millions of arbitrary constants floating about.

But there was no discussion of what difference a change in diameter would have made.

(Group A) Assume boiling water ponred into cold cups.

The model did not allow for a transient effect of the cup warming up.

It appeared more as though making assumptions were a part of the ritual of
mathematical modelling, and so they were arbitrarily making some, rather than
analysing the implicit assumptions they were making and how things may be changed if
they were otherwise. This may have been due to the students not taking time to

understand the problem, but instead diving into the experiment.

3.4.2.4 Set up mathematics : solve mathematics

Two possible models were considered by the students: linear and exponential.
“Ts 1t linear?” Groups A, Band D

The first impulse of the students was to assume that the relationship would be, at least to
a first approximation, linear. Some students were firmly wedded to the notion that
linear is best and were prepared to sacrifice some of the empirical data to achieve this.
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(Group B Time = 11.40) 53: The graph (on a graphic calculator) looks as thougb it
would be linear if you lose the ends. - ,

S4: You can’t just lose the ends.

S§5: Just do a graph and see what we get. -

(Time = 12.15) $4: It looks not linear.

§5: Could be a bit exponential.

“If it isn’t linear then it must be exponential.”

For group B these two possible models existed side by side for a while (see below). Since
an exponential model does fit the data quite well, that solution schema works on this
occasion. On reflection, it is possible that for sonie students a misconception may have

been reinforced by this experience.

Some students, once the notion of an exponential had been mooted, decided quickly on

appropriate steps to check the model.

(Group A Time = 11.40) §6: You can just about see the curve (on calculator scatter

plot)
S7: When shall we stop measuring?

(Group A Time = 12.00) S6: We think it isn’t linear.
87: It looks exponential.

WMM: How would you check to see if it’s exponential?
S6: We could draw a log graph.

§7: Log both- no, just temperature against time.

$6: Do we use base.e or 10¢

Some students, although they clearly knew about exponential relations in theory, used

inappropriate tools and needed more guidance towards checking their model.

(Group D Time = 12.12) §8: It cools faster without a lid.
WMM: What do you think about the shape of the graphs
88: This one looks exponential.

WM: How might you check if you think it’s exponential?
$9: A log plot.

§8: Can we use Omnigraph?

(Time = 12.35) Students plotting spline curve of temperature against time on
Omnigraph. They bad also calculated linear and exponential regressions on a
grapbics calculator.

WMM: What is the form of an exponential equation?

§9: y=¢"

WMM: What bappens if you take logs?

S9: Infy)=x
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So what should you plot to get a straight line if it’s an exponential?
§9: Natural log of y against x

WMM: What is your y¢

§9: Temperature

WMM: And your x2

S9: Time. So we plot log temperature against time.

3.4.2.5 Investigate implications

An inappropriate model gives rise to a prediction of unlikely behaviour. The students
are willing to be cha.llenged and to modify their model, but it was not until 12.15 that

they were ready to discuss how to see if data fitted an exponential model.

(Group B Time = 11.55} §3: Both (cooling curves for mugs with and without lids)
look linear.

WMM suggests looking along line to see if there is a curve. In fact this is difficult on
LCD display because of narrow angle of view.

WMM: What will happen at room temperature if it is linear?

84: It will go on getting cooler.

WMM: Does water do that?
§4: I don’t think so!
WMM: Do you think that “It looks linear over this range” is a good enough model?

3.4.2.6 Refining the model

This group might be regarded as having successfully produced a mathematical model for
the cooling of the mug of water. They have produced a first model which they refine

and from which they can now obtain numerical constants.

(Group A Time = 12.20) 57: The log thing looks nearly like a straight line.
56: We stopped too early,

WMM: What does the temperature tend towards?

S6: Room temperature.

§7: So we could take away room temperature.

(Time = 12.40) S7: The graph of log(I-T,,,) is straight. (data plotted on graphic
calculator)

WMM: Did you find the constants from it?

87: No -bere they are. Gradient is -0.0245. Intercept is 4.184. So temperature is
4.184-0.0245t.. No. In(T-T,,) = something minus something times time. (some
manipulation on paper) (T-T,)=Ke*** where K=¢*'*

However, the model they have arrived at is more useful for prediction than for
understanding, since they had not realised why it is important that the liquid is stirred,

for example, although this is stated in their assumptions.
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3.4.2.7 An alternative model

Group-C: we know the answer. This group was unwilling to let anybody see the way

they were working, but this seemed to be what they did.

11.10 Assuming that dT/dt=K(1-T,) and T,,=20C
I think that the students separated the variables and integrated the differential equation

to give In(7-T,,) = Kz, forgetting to add a constant. Taking antilogs then gave (7-7,,) =

¢, Rearranging would then give T = ¢ + T,

11.35 (T, measured as 24C.)
11,40 T=¢"""" 125

We conld plot it on DERIVE
No, I'll use my calculator

The constant X was obtained by putting corresponding values of T'and ¢ into the

equation. I do not know why 7,,1s now 25.

11.50 (loading experimental values into calculator) We'll work them all out and take
the average of the lot.

For each pair of values for T and ¢, a corresponding value o6f K was calculated. The idea
was to take the mean of all these values. The students were very resistant to a2 more

conventional way of proceeding. Clearly the values they obtained did not fall within a

narrow ra'nge.

11.55 We've got a duff model
But life isn’t exact.
The exponents don’t agree.

When the model was felt to be inadequate, the students blamed their assumptions.

12.05 We assume the room temperature was constant, but it wasn’t- I'm feeling
sweaty with all these people in bere.
Anyway the readings aren’t 100% accurate.

These, interestingly, were the students who had said early in the session:

We’re all second years. Second years have learnt to argue.

Finally, they tried a completely different approach.
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(Time = 12.50) I'm trying to do this by dimensional analysis, but I don’t seem to be
. gettinig anywhere. Could you show me how to do the last bit?

(Result obtained is dT/dt = T/t VA

Attempt to.discuss why there is a better way to tackle it-but they want to rush off (end- .
of lesson). ‘

3.4.3 Analysis a la Perry

The first year students may be compared to Perry’s (1981) early stages: looking for the
correct answer, responding positively to aﬁthbrity, whereas group C was showing signs
. of “oﬁlr way is as good as your way™ relativism. From this point of view their think'ing

has progressed, although it makes working with them more difficult.

3.4.4 Interviews

Sadly neither group A nor group C came for interview the following week. In my notes
on the session (31 May, after reflection) I have written “It will be interesting to see how
reflective different groups are prepared to be and how this is a function of their

perceived success in the exercise”. Group A seem to have made the most direct progress -
through the exercise, groups B and D had moderate success, and group C did not appear

to engage with it at all.

Both groups B and D stated that they had expected the curve to be exponential: students
in group D had seen a similar curve in A level physics, and some in groups B and D had

seen one in GCSE physics.

Both groups used a graphic calculator for logging the data and plotting a cooling curve,
and both groups suggested that they could have used DERIVE, when asked what other
resources they could have used. In group D’s case, this was part of a list of possibilities,

not all of which seemed realistic (e.g. Minitab).

Group D, when asked how they went about the modelling, assumed that I meant the

experiment, and both groups, when asked how they could improve the model, made
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comments on their experimental procedure. A student in group B, half joking, said
“The maths model was perfect”. There was thus some confusion between the idea of a.
mathematical model and tiae system it desc-_ribes.

An interesting final comment from group D, imﬂying that they, having studied physics,

“went right”.

You could try it with a group who haver’t learnt about it in Physics and see how they
g0 wrong.

3.5 The cascadeproblem |

A Cascade of Water Tanks
Tank A

- -~ ~| TankC

The diagram shows three tanks
Initially tank A is full of water and B and C are empty
In the final state tanks A and B are empty and C is full

At some intervening time the volume in B is at a maximum.

Construct a mathematical model to predict when this will

happen and what the maximum volume will be.

Figure 3-3: The cascade problem

The question was stated on paper (see Figure 3-3) and shown to 2 groups of students;
final year mathematics and final year mechanical engineering. The students were filmed
on video as they worked and the tapes transcribed. They showed striking differences of

approach. (The transcriptions are included in Appendix A)
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3.5.1 Use of written work to support discussion.

Both groups used their workings to-share and discuss, that is there was a social aspect to
the work in both groups and the documents they produced were used by both groups as
a support for discussion. However the mathematics group produced pages of equations,

while the engineering students produced pages of sketches of apparatus and curves. -

Another difference apparent betwéen the written notes érbduc‘ed is the use of numbérs.
The mathematics students descended into numbers only t-o record the data from the
experimental runs. The engineiering students produced, as well as the results of two
experimental runs, a page of numerical calculations to predict the time (or rather the

mass flow rate, hence the time) when the maximum volume in B would occur.

It is argued by Osborne (1983) that although number appears to be abstract, they appear,
in the minds of the pupils, to be tangible, or concrete. The use of numbers thus argues

that the engineering students are happier to stay in the concrete type of thought.

3.5.2 Early insights.

Both groups at an early stage had the insight about the volume in B being a maximum
when flow in = flow out, but while the engineering students linked this immediately to
“head”, the mathematics students did not mention that the height would be the same for
another 13 minutes. It ap;;ears that the idea of flow rate being dependent on height (as
opposed to being a function of height, a more abstract notion) is less firmly embedded in

the mathematics students.

Both groups then went on to discuss whether the maximum height in B would be half
the initial height in A, and then dismissed the idea, as during the time taken to reach the
maximum, liquid would have flowed out of B. Neither group, apparently, used this to

fix an upper bound for the value of the maximum volume in B.
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3.5.3 Focus

The engineering students remained focused throughout on the quantity théjr had béen
‘asked to find: the time and level of the maximum in the middle tank. This fixation
made it difficult for them to break the task into steps. Such a goal focus is characteristic

of a novice problem-solving technique (Mestre, 1994).

The mathematics students were more focused on the t:;sk of building 2 mathematical
~ model, which meant first modelling the flow in a simple system-with two tanksand
then extending the result, and although they did not finally build that model, they

seemed satisfied in the end that they could have done it, and left the session fairly happy.

The engineering students were dissatisfied that they had not completed the task to their

satisfaction, and the final comment caught on the tape was:

Adrian: Some of the others in our year wonldve sorted it.

3.5.4 Vocabulary and conéept set.

It is clear from the tapes that the mathematics students “spoke mathematics” far more
fluently than the engineering students. Their ability to read out mathematical
expressions and to follow what was being read out was striking. The engineering
students hardly spoke in mathematical terms and certainly not in mathematical

€Xpressions.

The mathematics students used the term “function of” freely, while the engineering
students preferred “depends on”. The engineering students used “head” and “mass flow
rate” which separated the ideas of depth of liquid and rate of change of depth. Both
groups seemed uncertain as to the propriety of regarding height, volume, and mass of

liquid as interchangeable variables (to within a multiplying constant).

The mathematics students generated a wide range of suggestions to describe the flow:
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Jason: Viscons, incompressible and irrotational. (laughter)

Ann: Weve got a Newtonian flow, bave we?

Jason: Yeb, I'm sure it doesn’t mattér. |

Ann: Of course it matters. We've got to have those things written down. -
Anthony: This is where we’ve got the Navier-Stokes equations.

Derek: Irrotational is it?

Anthony: Bernoulli’s equation

Derek: Newtonian flow

Jason: Assume negligible viscosity.

The engineering students plotted a graph to describe the ﬂow..

Jolyon: Should it be lmear? Because it’s proportzonal to v isn’t it? Dunno if that’s..
Ordinate scale is 'volume

After some silence:

WMM: What sort of relationship does it look like?

Adrian: There isn’t any shape showing clearly there. Ithought it tends to be linear.
WMM: What does the graph represent?
Jolyon: It relates the amount of volume to how long it’s been going.

WMM: So what does the slope of the graph represent?

Adrian: The rate of flow

WMM: So..

After some circular argument:

WMM: Well, do you think it’s- It’s clearly not independent of the beight, so you conld
write down an equation that says the flow rate is a function of the beight. And what
sort of function do you think that is¢ Do you think it might be?
Jolyon: Well, it’s obviously not linear, from those results.

WMM: No- yes- if it were a straight line it would be independent of height. So you
know it’s some sort of function of the height.

Adrian: We thought it might be some sort of square.

WMM: How would you test what the relationship between flow rate and beight is? If
you're suggesting it’s a guadratic, how would you test if it’s a quadratic?

Jolyon: Surely you'd bave that by seeing the results.

But we don’t really know what’s going on- we’re not really sure what’s happening’
between.. each container. So up to now we’ve only done experimental - and what
we’ve got there - doesn’t really show enough - doesn’t veally tell us enough about the

flow rate against the beight of the water.
Ironically, “some sort of square” is a good description of the shape of the graph,
although the engineering students do not test this. In the Bernoulli equation, v

represents velocity, which is proportional to flow rate, however that is measured.




The biggest difference was in the way students generated equations. The m_athematics
studé:its wrote down their basic assumptions in equation form and éqntinuéd_ from
there. The engineering si-:udents found th;air equations from a formula sheet br card, and
not by seeking to build new equations. for themselves, although they were willing to
manipulate and re-arrange the formulae thus obtained. In all the engineering students’
written material there was no differential coefficient, although 7 appeared asa variable.
Tt is not clear whether they had made a strong cor_;nection between 7z and dm/ d_t,ror any

differential coefficient.

In fact I think there is a basic difference here between the idea “is a function of”, begging
the question “what function?”, and “depends on” which does not so clearly lead to the

question “how?”.

The mathemarics students expressed the volumes in A and B as V7 and V7, and the rate
of change of volume in B as dV3/dt, which enabled them to see the problem in terms of

differential equations from the start. The engineering students used 7z to express mass
flow rate (which is standard engineering practice) and identified pgh as the appropriate
group to express pressure, so they measured the depth of the liquid. This choice of

variables and notation does not immediately suggest a solution strategy.

Taken together, the words chosen to describe the relationship and the variables chosen
by the two groups of students characterise their different approaches to the modelling

problem, i.e. “dV5/dt is a function of Vzand V5” and “7t depends on pgh” express

different ways of seeing the situation which lead to different ways of dealing with it.

3.5.5 Experimental technique.

There appeared to be unspoken agreement between the engineering students that the
initial conditions should be the same for each run. They were more experienced in

running experiments. When it was pointed out to them that the rubber tubes on the
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taps may have had an effect, they set up the whole apparatus to run without tubes. On
the other hand they did not seek to verif;} the mbdel_tl_i,ey were using (Bernoulli’s
equation) for the simple case of a single tank, but remained focused on the overall task of

predicting when the maximum would occur in the middle tank.

‘The mathematics students used the top two vessels, to verify the relationship beﬁeen b
and db/dt. They appeared to have more direction in that they had an %dea[ what they
wanted to measure. The engineering stﬁden_ts did not ;ppear confident of the
rela&onship between mass flow rate and db/d:. 'I-'heykwanted to séf up a.cons-tant head,
steady flow apparatus, so they could collect and measure the volume (thus mass) flowing
1n a given time. The mathematics students used the distance dropped by the liquid level
in equal time intervals as a proxy for flow rate, to plot against the mid-height in the

interval- 2 much more sophisticated approach.

3.5.6 Starting to run the apparatus.

At the start of the session, a bottle of pink colouring was pointed out to the students as
useful for making the liquid more visible. There was no water in the apparatus, so in
order for the dye to be useful, the students would have to fill it with water themselves.
It was felt that this would give implicit permission to the students to use the apparatus.
Although one mathematics student wanted to run the apparatus at the start, she was
strongly discouraged by her fellows, and they did not use the apparatus until they felt
capable of making predictions of what would happen. Even when they did run it, it was
at the insistence of this same student. The engineering students appeared to need explicit
permission to try the apparatus in the context of what they felt to be a mathematical

modelling exercise, but once having used it, they did so repeatedly (5 times).
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3.5.7 Physical modelling.

The mathematics students were much more uncertain of the underlying pilysicé than. the -
engineering students, despite having a wide repertoire.of possible ready-built models
(Bernoulli, Navier-Stokes, Newtonian). They suggested that 4 (height of liquid) should
be measured from the centre of the earth. They appeared to be using the concept of
potgntial energy in a vague way to describe the problem, and relat_ing this to the pressure
at a given depth. Like the stuc.lent‘s in the cold tea example above, the r'nathématics ‘
students made the assumptio:n there was a linear relsllt'ionship between the variables (m
this case volume and rate of change of volume) which led them to assume an exponential
relationship between time and volume. Although this led them to implications which
they could see were wrong, the students were not happy to challenge that initial
assumption. Jtseems that the ideas of linear and exponential relationships are deeply

ingrained in mathematics students.

The engineering students had the notion of “head”, which is again an energy concept,
but thought that the height should be measured from the minimum liquid level reached
in the carboy, so did not relate measuring the depth from the point at which liquid was

at atmospheric pressure.

In the diagram, the outlet is shown at the very bottom of the tank, so that the point at
which there is no flow because there is no water and the point at which there is no flow
because the pressure difference is zero coincide. In the apparatus, the flow stops because
the water flow is cut off by a lip. The mathematics students had a concept ready to fit

this (Heaviside), but did not incorporate it into their model.

3.5.8 Spotting discrepancies between theory and practice.

During the first session, with the mathematics students, the difficulty-arose that the

rubber tubes which had been to prevent splashing in fact effectively lowered the outlet
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of the tanks by some 20 cm, and introduced pipe friction losse§. This led to an
unexi)ectedly neat-lineat relationship l:;etw:'veen.ﬂ(mr rate and m'easﬁred height of liquid.
The engineering students saw straight av.-ray that this was not what they had expected,
but had to be led gently to resolving the discrepanc-y. The mathematics students did not
see the di-ffefence until they verified their assumptions about the relationship between
dV/dtand V. They needed some leading to decide to see what happened Wherl: the tube

“was removed, and I am not sure that they understood why it made the difference it did.

The mathematics students ran the‘apparatus fwice as given, looking to see the height of
the maximum.” They did not notice that the flow out of the top vessel was not a
“decreasing function”, as they had predicted. The engineering students noticed after the
first run that the flow rate was almost uniform, and not as they had expected. (This
shows that they had stronger expectations than the mathematics students of the way the 7
apparatus would behave) They were quick at this point to seek outside help (i.e. from _

me). This behaviour Ramsden and Entwistle (1981) would regard as syllabus-bound.

The mathematics students, having generated their own model, also checked out its
implications and so discovered they had made, amongst other things, algebraic errors
leading to nonsensical predictions. However they attributed all their nonsensical

predictions to algebraic errors, rather than to their original assumption.

3.5.9 Other apparatus.

Neither group used the DERIVE set up on a nearby PC for them. Each group used a
calculator; the mathematics students to caleulate the log values needed to plot a graph,
the engineering students to manipulate numbers to get a value out 6f a formula.
Although the engineeriﬁg students had a graphics calculator, they did not use its

graphics facility.

WMM: Did you use the graphics facility on your calculator?
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Adrian: No Ididn’t.. It’s a bit of a mystery.. It’s all vight when you've got the
equation to plot and you can pick off the minimums and maximums, but when
youvé got a set of results to put in I'm not too sure what to use.

3.5.10 Plotting results.

Neither group plotted graphs of results without prompting, although squared paper was
available to (and indeed written on by) both groups. (The squared paper was provided

as it could be used for ,_;;lotting eraphs, without m-'al-;ing it obvious that that Wa-s what ‘it
was for, and so prompting the behaviour.} This _Wgsi despitfz the nurne1;oiis sketch curves -
drawn by the engineering students. The mathematics students, despite their more
uncertain experimental technique practically, took scatter on a plot of results in their
stride, and joked about trying to fit a curve to all the points. The engineering students
plotted fewer points, and tried to draw curves which passed through all of them. They

seemed to regard plotting a graph as more of a calibration exercise.
3.6 Conclusions

3.6.1 On mathematical modelling

Two types of mathematical modelling were seen in the first modelling exercise (cold
tea). Most students used the empirical method, assuming they would fit the data to
either a linear or an exponential model. One group started from a theoretical position,
but did not manipulate the assumed relationship correctly or successfully match the

experimental data to their model.

3.6.2 On mathematics and engineering students

The ways in which the two groups of students tackled the cascade problem were
different enough to suggest it would be worth while designing and applying a

questionnaire to try to trace the development of differences between students on the two
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courses. In particular the differences in vocabulary suggested-that in mathematics the
engineering students might be speaking a ciifferent lan@agC'ffbm their lecturers, who are
in general matherxiaticiax;s. Arzarello et al (1995) suggest that students and teachers may
be using the same words which correspond to different meaniﬁgs in their respective
heads, and that the invented meanings often have their own justifications. In this case

we have different words being used to frame the same probl_em, which would compound

- the communication problem.

The engineering students’ approach to modelling seemed biased towardg-empirical
modelling, but slightly different, in that they relied on a ready-built model being
available (Bernoulli). This reliance on the availability of models also appeared in the
comments on the questionnaires, and Is apparent when students ask “what is the

formula?”,

The engineering students were far more aware of the physical side of the model. When
the apparatus did not behave as predicted, they were disturbed that something was
wrong. They took care to set up I':he same initial conditions for each run. They
suggested modifications to improve the apparatus, such as a height gauge and a flow

meter. The theoretical world appeared more real to most of the mathematics students.

Sadly, it seems that while the mathematics students had been taught mathematical

modelling, the engineering students had managed to avoid it.

Despite software (DERIVE and Excel) being available and running on computers next to
the experimental area, neither group used them. Neither group used advanced calculator
functions, such as graphing functions. The mathematics students were even a little wary
of using the clock function in MS Windows. Mathematical modelling and the use of

technology were not, in other words, synonymous for either group of students.
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3.6.3 On observation

- As a method of collecting empirical matetial, observation proved tc be rich if time-

consuming.

Participant observation combined with taking notes was difficult and stressful. As noted
in the chapter, much occurred which was not observed, and much was observed which_
was not recorded. The contemporafieous notes ;aﬁd sﬁbsec-lu;antly recorded reflections
are al] the evidence which remains of the observal_:ions: Another researcher will have to

" depend upon the record of events translated through the observation of a third party.

The use of video recording meant that watching the sessions again after a period of time
brought out new aspects, especially as the first session could be watched again from the
perspective of comparison with the second. It was hard as an observer at the time to set
aside one’s preconceptions, and easier to do so as one was separated from the immediacy
of the experience. However there is a cost in time, convenience and video tape in such

a recording.

The transcripts of the recordings are less rich than the recordings themselves, but will be
easter and quicker for another researcher to read than sitting through the recordings
themselves, as well as more easily reproduced, more transportable and more accessible.
As the transcripts have been word processed, they are available for such techniques as
frequency analysis, a more quantitative approach. Again these advantages have been

gained at the cost of the time taken in the processing,
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4. Research method: questionnaire design and administration

4.1 Introduction

In chapter 3 I have described how engineering and mathematics students were observed
carrytng out a mathematical modeliing task. I proposed that there was enough
difference in the ways they were “doing mathematics” to make it interésting to carfy out
a wider surve.y into the mathematical ideas of engineering students and mathematics
.students, .a.t.ld if pos-siblé to ;:ompa;re how those ideas differed- acros; subject studied and

with the level of experience.

In this chapter, the theoretical background is surveyed: the practical process of design
and administration, and the results are described and discussed in the subsequent
“chapters. Thisisa convenient point to review the third background issue mentioned in
the introduction: the overall epistemology of the research project. We shall then discuss
the dimensions of mathematical ideas which are addressed in the design of the
questionnaire, namely the depth and mode of representation, which when combined

make up the concept image (Vinner, 1991, 65-81)

4.2 Social science

Burrell and Morgan (1979) characterise two extreme positions of approach to social

science, summarised in Figure 4-1.

The objectivist approach regards social sciéhce as essentially the same as the natural
(physical) sciences, and holds that it is the task of the social scientist to determine the
underlying laws governing social behaviour. The subjectivist view' ts that the social
sciences are essentially different from the physical sciences, and that social reality is
constructed by individuals. Social science is thus concerned with understanding the

ways in which people explain the social world to themselves.
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The subjectivist The abjectivist
approach to social approach fo social
science ’ . sciehce -

|- l';lomi.uiialisr-n |<_ . on.lology _,li ﬁeéﬂsm'- - |

l Anti-positivism [..._ episternology _,l Positivism- l

Voluntarism human nature Determinism -
[ Vo [— — |
|_ ldiogrlaphic '4__ methodology _,_IiNomolljetic |

Figure 4-1: A scheme for analysing assumptions about the nature of social science

(Burrell and Morgan, 1979)

This difference naturally leads to differences in the ways in which investigators approach
research. For the objectivist, reality is hard and quantifiable. The researcher is an
observer, able to measure and determine positive relationships between real variables.
Human behaviour is determined by external circumstances. Research is concerned with
determining the circumstances which control human behaviour and the relationships

between them, and the laws which relate these. This is a nomothetic methodology.

From the subjectivist point of view, the social world consists of mental objects (words,
hence nomina'list), having no a;:cessible counterpart in external reality. Knowledge
about the social world is personal, so the researcher must be;come involved with the
subjects as more than an observer (the anti-positivist view). Human behaviour is
voluntary, and subject to the operation of free will, and research consists of

understanding and describing the behaviour of the individual (idiographic).

These are two extreme and somewhat caricatured views, and like most studies, the

present work adopts a stance somewhere between the two.

Thus an objectivist study would have been concerned with student behaviour, rather
than students’ mental constructs, and would have set up an experimental pre-test post-

test design with randomised control and experimental groups where possible, and would
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probably have been concentrated on the skills demonstrated by students in solving
problems. The observation phase would have been tharacierised by counting
manifestations of behaviours, and the statistical analysis of those behaviours would have

been regarded as of great importance.

A purely subjectivist study would have involved few subjects, and would have been
concerned with eliciting their construets of the target concepts, through observation,

interviews, and qualitative methods.

As mentioned in the introduction, the hermeneutic point of view as p;'omoted by, for
example, Brown (1997) allows for both of these sets of ideas to be considered in a “both-
and” attitude. In a social system, such as a learning environment, we must spend time
subjectively experiencing what it is like to be part of the system in order to understand
the system and how it works. To explain the system, we must view it objectively, and
see it as something separate from us on which we operate. A good example of this is
riding a bicycle. No amount of explanation of how to ride a bicycle can take the place
of actually riding the bicycle oneself in order to know what it feels like and how to do
it. However in order to put the experience in place, to learn to do it better, and to

connect it with other knowledge, such as reading road signs, one must get off the

bicycle, and read the Highway Code.

4.3 This study

Models are useful for description, prediction or understanding. At a first stage, our
model of engineering students’ mathematical understanding is descriptive. We may then
attempt to use this description to understand why engineering students differ from

mathematics students, and finally predict the implications of these differences.

The first stage of description started in the comparison of the two groups of students

carrying out the cascade exercise. That stage was purely qualitative. In order to
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qu@tify the differences to some extent, we now turn to the questionnaire. In terms of
the modéllingfﬂow chart,. the Q'bsefv;ationiv.- fell into the bo:i' “Understand problem”, and
the process of d&iéning the questionnaire is the “Simplify ;nd'make a:ssumptions;’. | In
the objectivist conception of social re.ality, (Cohen and Mannion, 1994, p10),
“abstraction of reality especially through mathematical models and quantitative analysis”
is the paradigm of methodology. If this c_on_ception were held to iq this study;, then the
next ‘stage's would:be 1o set up mathematics and solve mathematics. The aim of the-

' questionnaire would Ee to provide a sigatistically rigorous analysis of the differences

between the ideas of mathematics and engineering students and the way these develop.

In fact my basis for interpreting social reality is much more subjectivist: that the world
exists, but that different people construe it in very different ways, and that we are in
search of the ways which, overall, the different groups of students make sense of
mathematics in particular in the context of their studies, their overall experiences aﬁd

their aspirations.

Thus the questionnaire shows patterns of responses from different students. We may
use analytic techniques to simplify these patterns (for example, factor analysis, statistical

techniques), but in the end the reality is the students’ beliefs, and not the model.

. Haney (1984) is highly critical of the objectivist point of view in the context of
discovering how individuals think and reason. He points out that the most useful tests
were designed with a practical purpose in mind, rather than for generating statistics:
Binet’s “intelligence” test was originally intended to determine which pupilsina
Paristan nursery school would benefit from remedial teaching. Tests measure an
artefact of the process rather than the process itself. He suggests that for research
purposes it would be preferable to use a more subjectivist paradigm, and talk to

individuals about they way they solve given problems.

56




4.4 Surveys

Cohen and Manriion (1994) describe surveys as Rerhaias the most commonly used -
descriptive method in educational research. The data-gathering technique employed in

this case was self-completion and postal questionnaires, using a form of attitude scales.

The sampling was non-random, using captive groups of students where possible, to

maximise the return rate. The OBjeét Was to survey the whole -populaticén of'-stud'ents at
- the appropriate s:cage of their studies on given courses at Plymouth. No students from -

other types of university were surveyed, and this would form the basis of an extension

to the present project.

Surveys were carried out over groups of respondents, from mechanical engineering and
mathematics backgrounds, at various stages in their academic careers, at the beginning
and end of their first years, during their final years, and in the case of engineering,

during postgraduate studies and after some 20 years of engineering experience.

4.5 Aspects of experimental design in the questionnaire

The present study differs from a classic experiment in that it relates to students’
concepts, rather than their skills, or their attitudes. It was found during the observation
stage that engineering and mathematics students appeared to be consulting different
concepts to tackle the modelling task, which led to the questions of how these concepts
differed, whether the differences could be measured or demonstrated, and how. The
study did not allow for a complete cohort study to be carried out, particularly as many

engineering students spend a year in industry, leading to a four-year degree course.

Cohen and Mannion (1994) describe various types of experimental and quasi-
experimental design. The features of these research methods are the inclusion of pre-and

post-tests, and the use of control groups.
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The experimental approach in education reflects an objectivist paradigm which this
researcher finds Prqblematic. In.scigant'if.ic g:xperiments, the control is intended to be
identical to the experimental sample 1n all but the experimental variable. In educational
research, no two groups can be regarded as identical: each individual has a different
history and brings unique characteristics to the study. To make all the other conditions
identical, the two groups would be taking the same course at the sanje institution with: " -
the same tutors, It is impossible to prevent transfer of experience between the two . |
groups. Practice with one group would affectm the tutors’s treatmem; of the other group,
transferring practices which work with one group to the other group. Students talk to
each other and sometimes work together outside classes. Students have been known to
compare coursework, and to attend sessions they were not supposed to, if they perceive

some possible interest or benefit.

With these caveats in mind, the following construal may be made. The questionnaire
applied to the first year students may be regarded as 2 quasi-experimental design: the
mathematics students are a non-randomly selected control group and the questionnaix:e
is given as a pre-and post-test. The experimental treatment is thus the first year of an

engineering course, compared with the first year of 2 mathematics course.

The questions raised by this design concern internal validity and external validity.

(Cohen and Mannion, 170-171)

4.5.1 Threats to internal validity:

History: effects of external events. The use of a simultaneous control group is intended
to minimise the possibility of external events producing effects which may be mistaken
for the effects of the treatment. Since the control and experimental groups were not

randomly assigned, it is possible that external events would affect members of the two

groups differently.
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Maturation: the natural maturing of the students over the passage of time is an integral

" patt of the pheriomenon being studi'ed'.

Statistical regression: since the scores in the questionnaires are preferences not test scores,

regression is not an issue.

Testing: it is possible that the pretest sensitised the students to the issues raised by the
questionnaire, but it was such a small part of their.overall experience this was thought to
be unlikely. The students in the postgraduate group who had reached a more

introspective stage of development would be more likely to be influenced in this way.

Instrumentation: the questionnaire is a novel instrument, and part of the purpose of the

study was to test it.

Selection: the mathematics students may have been sufficiently different from the
engineering students to begin with not to act adequately as a control group. On the
other hand, since the aim of the study is to demonstrate to mathematicians who teach
mathematics to engineering students that 'erigineering students do have different ideas
about mathematics, then mathematics students do act as an appropriate comparison
group.

Experimental mortality: in both groups there were fewer respondents at the end of the
first year than at the beginning. However it is not claimed that the two groups were
randomly selected: in fact it is probably significant that the students do differ right from

the start of their courses.

4.5.2 Threats to external validity

Failure to describe independent variables explicitly: the independent variables to be
investigated were the mode and depth of students’ concept images of mathematical target

concepts, in the context of engineering mathematics applications.
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Lack of representativeness of available. and target populations: the students were sampled
by ava.il‘abi,litl:y. The results-of the quesFiqnnairé indicate tl;at the findings may .not b?‘-
applicabie to people who graduated from “old” universities some 20 years ago: A
further stage of the study would be to reapply the revised questionnaire across the

current population of students in Plymouth and at other universities.

Hawthorne effect: the questionnaire impinged very slightly on the studerits’ experience of
their studies. Ir'is unlikely that they were aware of being a group-under study, or that . .
any such awareness affected their attitude to their studies. Only the final year
engineering students expressed curiosity about the outcomes of the research to the |

researcher.

Inadequate operationalizing of dependent variables: there is always a question as to how
near responses to a questionnaire come to the actions of a respondent in a “live” context.
However the questions were desiéned to look like the context of engineering
mathematics problems, so that the images consulted by the students in answering the

questionnaire would be like those consulted in tackling such problems.

Sensitization to experimental conditions: the students were riot told that they would be
retested, and the tests were far enough apart that the students should not have
remembered their previous responses unless those responses were particularly vivid to

them for some reason.

Interaction effects of extraneous factors and experimental treatments: such extraneous
factors might include the staff of one school becoming involved in an IT initiative and
changing their teaching style accordingly, industrial action, external examinations,
epidemics, or extreme weather conditions. As far as we could ascertain, no events of

this sort took place during the period of the experiment.
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Overall it was felt that the threats to external validity were probably stronger than the

_ threats to internal validity, and particularly that should an appropriate opportunity

arise, once the questionnaire had been tested internally, groups of students from other

universities similar to and different from Plymouth should be tested.

4.6 Concept images and cognitive styles

In designing the questionnaire, the aim w;;.s..ito try to elicit from the r;aspondents the way
they .thinl.: of certain mathematical ideas to-themselves: their concept images.- The
concept image differs from a formal definition, in that it is that which is constructed by
the individual and may be held in the form of words, pictures, a set of rules or
procedures, or any other form in which an idea can be held. For example, if one were
stmply to ask “What is differentiation?”, the respondent may treat this as a test of
memory, and try to recall the learnt definition. It is proposed by Vinner (1991) that the
concept definition is rarely consulted when a concept is evoked in a cognitive process.

Some indirect way of accessing the concept image must be used.

As a person learns more about a subject, and practises the associated skills, their concept
images change and develop, and their cogritive skills mature. In particular, the
relationships between concepts become richer and differently organised, and the

concepts are understood at a deeper level.

The concept image may be held in a variety of modes, which may depend on the

cognitive style of the respondent. | It has been suggested by many researchers from Galton
(1883) onwards that individuals vary in the extent to which they visualise or verbalise in
their thinking. Tall (1991, pé) recounts his discovery of different r;nodes of thinking: “It
was some considerable time later that the realization dawned that not all students shared

the geometric point of view.”
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4.7 Concept definition and concept image

A concept name when seen or heard is a stimulus to our memory. Something is
evoked by the concept hiame in our memory. Usually, it is not the concept
definition, even in the case where the concept does have a definition. It is what
we call a “concept image”.

(Vinner, p68)

Vinner equates the acquisition of a concept with the formation of a concept image for it.
“To un&erstand, so we believe, means to };ave a concept irlnage; Certain meaning should"
be associated with t_he words.” (1991, p69) Everyday concepts such as cat, blue, table,
have meaning without being easy to define. “The concept image is somefhing nox-l-
verbal associated in our mind with the concept name. It can be a visual representation...
a collection of impressions or experiences. [These representations] can be translated into
verbal forms. But it is important to remember that these verbal forms were not the first

things evoked in our memories.” (1991, p68)

In the semiological terms of chapter 2, the concept name here corresponds to the sign,
the definition to the significatum or referent, that is the institutional meaning, and the

concept image to the concept or reference, the personal meaning.

The concept image is open to modification through experience, particularly when
conflict occurs and as a wider variety of cases is encountered. Vinner explored students’
concept images of “function”, “tangent” and “limit”, by asking them, for example, to
draw the tangent to a curve at a non-typical point. It became clear that there was a
conflict between the concept image and the concept definition which students had not

attempted to resolve, since the definition had not been consulted in answering the

questions. He proposes two didactic rules:

(1) to avoid unnecessary conflicts with students.

(2) to initiate cognitive conflicts with students when these conflicts are necessary
to enhance the students to a higher intellectual stage. (This should be done only
when the chance of reaching a higher intellectual stage is reasonably high.)




These rules presuppose that the teacher (or lecturér) is aware of (a) the concept image(s)
held by the students, and (b) that this may not coincide with his or her own. He states
“if ... the students are not candidates for higher mathematics then it is better to avoid the

-conflicts”.

An example of an unnecessary conflict was given in the context of children learning
multiplication. (Graham D, 1997) They had learnt that three boxes of two objéct:s,
making six objects, CO'I..Jld be written as 3(2)—6. Their teacher then went on to rewrite -
this as 3x2—6. One day the teacher was absent and the school head took the class. The
head developed 3(2)->6 as 2x3-—6 (that is, two objects times three boxes make six
objects). -The children were devastated. This conflict may be found examined in

Anghileri (1989).
4.8 Cognitive skill level discrimination: depth of representation

4.8.1 Encapsulation

The reasoning behind the design of the questionnaire was highly influenced by Royer et
al (1993): Techniques and procedures for assessing cognitive skills. In this p.aper the
development of a cognitive skill is described after Anderson (1982) as taking place in
three stages: a declarative stage, a knowledge compilation stage and a procedural stage. A
strong distinction is made between the behaviourist and cognitivist conceptions of a
cognitive skill. For the behaviourist, a cognitive skill is a packet of information which
may be acquired and demonstrated by performing a specified task. In contrast, the
cognitivist view sees a cognitive skill as a capability which undergoes qualitative and
quantitative change during its development. The novice may be able to demonstrate the
skill, but the way in which it is performed is quantitatively and qualitatively different

from the way in which an expert would work.

63







The decla_mti've stage is the state of knowledge of a novice who can answer questions
about the skill, and demonstrate it slowly, having to think 'consc‘iously about each step.
The novice uses fail-safe strategies, and transferable problem-solving techniques. A
novice may be able to perform to a high enough degree of accuracy to fulfil a mastery
learning criterion test, but the performance is inefficient, low in fluency, and requires a
high level of concentration. It is proposgd that the novice'stores declarative knowledge"
1n felativelf small chunks, which are retrieved f;on;‘ memory and interpreted to carry

out the task.

In the knowledge compilation stage, it is suggested that these chunks or steps are first
collapsed into a single larger step, where one step leads into the next without time being
needed for recall between each. This speeds up the performance and reduces the load on
the memory for its performance. Secondly, these steps are proceduralised: their
performance becomes automatic. The skill takes on the nature of a stimulus-response

performance, without conscious processing being needed.

The procedural stage takes the automatically performed pracedures and selects between
good and poor rules: good rules are strengthened and poor ones weaken and fade away.
The performance becomes fast, automatic, and efficient. This is the condition of the

expert, who performs apparently without effort.

The development has taken place in two dimensions: the relationships between the steps
of the skill and the structure of the skill have been internalised, and the whole skill has
thus been consolidated so that the declarative or verbalised knowledge is squeezed out.
The expert can imagine relationships between inputs and outputs to the system as a
whole, without having to make a conscious effort to follow the transformations within

the process.
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The notion of encapsulation is expressed in different ways by different authors to .
express the way knc')wled;ge is chu'nkeid as an expertise is developed: for example, Tall’s
procept (Tall, 1995 specifically refers to procepts as encapsulation), Anderson’s (1982)
knowledge compilation, and Schoenfeld’s (1985) beuristics and algorithms. Morgan (1990)
found that engineering students were competent at routine (algorithmic} mathematics

but weak at non-routine (heuristic) problem-solving.

4.8.2 Interconnectedness’

Another idea which is mooted in Royer et al is the change in knowledge organisation
and structure, and the depth of problem representation which occur as a skill is
mastered. A novice holds knowledge corresponding to a skill as a set of unrelated or
loosely related facts (at the information level). (Disessa, 1987, describes the nature of
naive beliefs in physics as scattered islands or a patchwork, rather than a coherent
theory.) As the skill is developed, these become highly interrelated (held as knowledge),
and strong and weak relationships are differentiated. An expert would detect deep
similarities between problems and reject superficial ones, while a novice would be
distracted by the surface structure. These changes in particular would, it was hoped, be
evidenced in the differences in responses between students at different stages in their

learning careers,

4.8.3 Personal meaning

As a mathematical concept matures, it not only gains in interconnectedness with other
mathemarical concepts, but also with non-mathematical ideas: that is it becomes part of
one’s toolkit for interpreting reality, in Hirst’s terims (Hirst, 1972). The mathematical
concept may be used in making sense of one’s world. This is referred to by Teslow (in

Wilson et al, 1993) as sensemaking.
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At the same time the real world interpretation makes sense of the mathematical concept.

(Schliemann, 1985, Lave, 1996)

Mathematics as sensemaking would predict the increasing use of the descriptions of

differentiation and integration.

4.8.4 Skills and concepts

Roﬁrer et ai deal both m;ith knowledge as exemplifiéci by skills, and as embodied in |
coﬁcepts. Skills are relatively accessible by asking people to perform tasks which -
employ the skills and observing (and even measuring} the outcomes. C;)ncepts on the
other hand remain very private and may only be deduced from the ways their use
informs an individual’s interpretation of the world. If asked directly what so-and-so
means the individual may (a) lie, either to try to please the questioner, or because the
private world is being invaded, (b) produce the definition as the learned response to that
question, while not consulting the definition in normal use of the CO;ICCPC, (c) be unable
t6 verbalise the concept, through lack of appropriate vocabulary or because the concept
is held in non-verbal form, or (d) answer accurately. It is difficult to tell from a response

what type it is.

Concepts are the objects on which skills operate, and skills may themselves become
collapsed into concepts, just as a mathematical function may become the object of
another operation such as integration or the variable in a differential equation. This
duality, and the mental versatility and tolerance for ambiguity it implies is explored in

the book Advanced Mathematical Thinking (Tall, ed, 1991} which is referred to in

several places in this chapter and chapter 2.
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4.9 Cognitive style discrimination: mode of representation

Three modes of representation were thought appropriate: visual, verbal and algebraic.
The verbal and visual representations correspond to the axes of a well-known research
instrument, the Verbaliser-Visualiser Questionnaire (VVQ). (See, for example, Kirby et

al, 198)

4.9.1 Visual imagery in mathematics

The usefulness of visual imagerj in mathematics is unresolved. Tall (1991, 1518) suggests

that:

Visual ideas without links to the sequential processes of computation and proof
are insights which lack mathematical fulfilment. On the other hand, logical
sequential processes without a vision of the total picture, are blinkered and
limiting. It is therefore a worthy goal to seek the fru1tful interaction of these
very different modes of thought.

We use the metaphor of vision to describe a holistic appreciation: “seeing the big

bLE (Y

picture”, “a snapshot view”, or an “overview” of a situation. Tall’s vocabulary in the

above quotation is very visual: “insights”, “vision”, “total picture”, “blinkered”, and even

“seek” represent a visual metaphor, that of the different modes of representation being

integrated in a holistic notion (view) of mathematics.

Poincaré (cited in Tall, ed, 1991, Chapter 1) suggested that there are two types of
mathematical minds: one kind preoccupied by logic, the other guided by intuition. He

observes the same differences in his students:

Some prefer to treat their problems ‘by analysis’, others ‘by geometry’. The first
are incapable of seeing in space, the others are quickly tired of long calculations
and become perplexed.

This distinction would be interpreted in the Jungian framework of the Myers-Briggs
analysis as the difference between the strictly logical Thinking style and the more
intuitive Feeling style. (see MacCaulley, 1976, and chapter 10 of this theésis)
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At the same time, Poincaré recognises that boj:h types of thinking are needed in solving
problems: in the Foundations of Sé:ienge (1924), he describes how mathematical
creativity for him consists often of a first perirlad of conscious effort, followed by an
unconscious stage in which the intuition works, then a second conscious time of work

in which the intuitive insight is cleaned, polished, verified and made presentable.

~ On numerical applications of visual imagery,_ Galton suggested that about 5% of people
have a mental image of a number line. Ernest (1983) found tha;; 65% of teacher training
college staff had an intérnalised image of a number line, but few h.ad non-straight line
patterns. These few, he speculated, were Galtgn’s 5% whose internal number lines were
spontaneously generated: the others had been taught to use such imagery by the use of

physical number lines in teaching,.

Presmeg (1986) found that visualisers were under-represented among high mathematical
achievers, and suggested that the vividness and particularity of a visual image affected

students’ ability to generalise mathematically. She quotes Galton as saying in 1880

An over-readiness to perceive clear mental pictures is antagonistic to the
acquirement of habits of highly generalised and abstract thought and if the
faculvy of producing them was ever possessed by men who think hard, it is apt to
be lost by disuse. The highest minds are probably those in which it is not lost,
but subordinated, and is ready for use on suitable occasions.

Thompson (1990) discusses visual imagery and the ways that individuals differ in the
extent to which they use such imagery. Even when learner and teacher both visualise
vividly, if they have different images for a given concept then the teacher’s use of visual
imagery in teaching may not help the learner. He raises the question whether strong
visualisers or verbalisers should be encouraged to stick to their strengths or whether all

students should be encouraged to become versatile in their use of thinking style.
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4.9.2 Need for versatility

Several writers suggest that it is necessary under certain. ¢ircumstances to challenge
learners’ preferred styles of thinking. The circumstances under which students’ ways of
thinking should be challenged may be regarded as similar to Vinner’s criteria for

challenging students’ concept images.

Perry (1981, 1988) finds that cognitive development tﬁrough t‘ertiary edudat.ion‘invo-llves
a shift in ways of thinking, often initiated through conflict, and Kolb (1981) also
emphasises the need to work in ways which may run against our preferences in order to
learn. Laurillard (1979) feels that students are versatile in their styles of learning, and
Hirst’s view of a liberal education (Hirst, 1972) is one in which the student learns to
think like a mathematician, a historian, a moralist, etc., in order to gain a rounded

perspective of knowledge.

4.9.3 Engineering and mathematics students

It was suggested by Crowther (1997b) that engineering students see themselves as visual
people, and the engineering and mathematics students in the mathematical modelling
exercise seemed to differ in the use of visual material, in the form of sketches, as a means
of communication. The engineering students made sketches, for example of the

- expected shape of the graph of height against time: the mathematics students also passed

around pieces of paper, but theirs had equations written on them.

It was thought probable that the engineering students would show a preference for
pictorial or diagrammatic representations over algebraic ones: it would be interesting to
see whether mathematics students would also show the same preferences, or whether

either would prefer word descriptions and explanations.
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4.10 Conclusz'ons

The aspects of the concept image which the questionnaire will be designed to investigate

will be

o preferred modes of representation (verbal, visual or algebraic);

» depth of representation (novice versus expert, through encapsulation,

interconnectedness and personal meaning);

o preferred representation in abstract “mathematical” context and applied “mechanics”

context.
The survey will investigate
* evolution of the concept image with experience

o differences between engineers’ and mathematicians’ concept images.
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5. The questionnaire: the practical process of design.

5.1 Introduction

The questionnaire was designed in stages, with each stage being tested. As the design
became elaborated, the testing became more extensive. The concepts described in the
previous chapter, that is depth and mode of representation were taken into account in
designing the questiox-ls and the options for response. In this chapter the. specific design
decisions are outlineci and conclusions on the process of questionnaire design and

administration are drawn.

5.2 Design of pilot questions

The first question to be written (Figure 5-1) involved a differential equation (DE), with
four responses being suggested, each of which bore a similarity to the target at a different
level. These were: appearance, method of approach (separable variables), simple
function of x on RHS, exponential resuIt.. The aim was to test the respondents’ depth of
problem representation. Respondents were asked to choose the most similar option to
the target. The question was tested on a number of colleagues and students, and as all
options were chosen, all were retained as feasible responses.

It was realised that by asking respondents to put the options in order rather than to
choose just one the question would yield four data points with three degrees of freedom
rather than just one. Some ambiguities in the question were also eliminated by altering
its wording and layout (Figure 5-2).

The first mechanics-type question to be written (Figure 5-3) concerned a mass bouncing
in damped harmonic motion. The aim here was to try to elicit the mode in which
respondents represented the motion to themselves: visual, verbal or algebraic; whether

an unfamiliar graphical representation would be acceptable, simply because it was visual,
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given that the engineering students in the modelling exercise had so used sketches to
communicate with one another; and how familiarity with the analysis of the problem

would change the acceptability of the algebraic respoﬁses as the engineering course

proceeded.
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Which of the equations in the right-hand column is most like the
differential equation in the box?

Why did you choose that one?

Figure 5-1:Original DE question
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Figure 5-2: DE question from pilot questionnaire




A mass suspended from a spring and dashpot is pulled
down from its equilibrium position and released. Which of
the following best describes to you what happens next?

Why did you choose that one?

. Damped harmonic response
F+kp+aiy=0
y=Ae™ cosar
The m-ass bo-tlmccs up and (:]own. going less far each time, until it settles back to its

original position,
Y

N Ao
\/\/

dy/dt

Figure 5-3: Original dynamics question

6 possible ways of representing the motion were offered: 2 diagrammatic, 2 algebraic and
2 verbal: and respondents were asked to rank them in order of preference. This gave the
advantage of increasing the number of data items per question, from one to a possible
maximum of five (because when the first five have been chosen the last one is fixed)
where all six options were put in order. As it will be seen, not all respondents did

always manage to put all the options in order.

This question was also tested on colleagues. Again, some constructive comments led to
modifications in the layout and wording of the question and the options, but overall the

concept of the question seemed successful, and it was adopted.
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5.3 Pilot questionnaire

Based: on these questions, fouf others were designed, to‘gi{re a total of thre-e-'on
“mathematical” topics: differential equat'ions (DEs), integration, and differentiation, and
three on “mechanies” topics: beam bending (a statics standard case, which shoﬁld be met
during the first year of a mechanical engineering degree), dampea oscillation (a standard
case in dynamics, normally met after the first year 111 a mechanical engi_nee‘ring_'degree),
and acceleration of a pinball (a non-standard case in dynamics, Wl_lich should however be . -

a familiar experience to most students).

Care was taken in framing the questions to try to avoid language which might suggest a
“correct” answ-er mode: e.g. visual metaphor, (“picture”, “envisage”, “show”) which
would perhaps prejudice students towards a pictorial representation; “describe” or “tell”
which suggest a verbal response, etc. This led to an impoverished vocabulary for setting
the questions and it was a challenge to try to find ways of setting the questions to
minimise repetitiveness but at the same time to ask respondents to carry out a very

similar task each time.

In setting out the responses, an attempt was made to-put the options suspected to be
most popular away froi middle positions which are those most apt to draw random

choices.

Pictorial and diagrammatic representations and word descriptions were used whenever
they could be used without violating the sense of the question, to increase the apparent
“friendliness” and accessibility to people who had not studied the subject, for example,
students in the early years of their course, and to accommodate those with a strong

preference for that mode of response.
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The rubric on the front page refers to the question posed on p46 of “Know your own

1Q” (Eysenck, 1962), which runs as follows: -

Underline the odd-man-out.

house igloo bungalow office hut
Ans: Office (People don’t live in an office.)

Although there is officially a correct answer to the question, each of the others could
defensibly be chosen, depending on the particular classification system privately adopted

by the respondent.

The questionnaire was laid out as a booklet of eight pages. The cover which contained
the personal details could be detached completely and stored separately from the

questions and responses.
The information requested about the student was:

Name: so that responses from the same student at the beginning and end of the
first year could be matched, without warning the students at the start of their

first year that a retest was planned.
Course: to distinguish between engineering and mathematics students.
Year: to distinguish between first and final year students

Date: to distinguish between the papers from the start of the first year and those

from the end.

The questions were printed so that only one was visible at a time, to prevent visual
comparisons between one set of options and the next, so that the response to one

question was not coloured by expectations from the pattern of responses to the last.

The pilot questionnaire was tested on various groups of students: second year Computer
Systems and Networks (CSN) degree students (n=4), final year mechanical engineering

students (n=13), Teaching Company Associates (TCAs) (engineering graduates working
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in local firms while studying for a higher degree at the University) (n=12), mathematics -
degree final year students (n=5), and anybody else who was willing to try it. =

These students were selected so as not to contaminate the sample for the main test, but

to be similar groups to the ones it was hoped to test.

5.3.1 Administration methods

Three methods of administration were used:

a) in class group, or at a gathering for an end-of-year photograph: the questionnaire was
given and collected in presence of experimenter. The response rate was high, as may

be expected, but the responses were poor in comments.

b) by mailshot. The:response rate was lower, but those returned were rich in
comments. The questionnaire had stated it was a pilot study and explicitly asked for
comments. As only well motivated students replied, they were less typical than the

first group.

¢) distributed to TCAs via the Teaching Company Centre. The response rate was high,

and the responses were richer in comments than the class groups.

From the responses to the pilot questionnaire, it was concluded that the respondents had
understood most of the questions, and that there were no other options which

respondents had seen as important but missing.

5.4 Main questionnaire

As a result of the responses to the pilot questionnaire, two changes were made. The

questionnaire is included as Appendix B of this thesis.
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Two options were added to the differential equation question so that it had the same
number as the others (i.e. six). This then meant that a first choice option was scored 5,

as in the other questions.

The questions were re-ordered to put the differential equation question last, as some
respondents had indicated that the question had put them off answering the rest. The
questions now alternate mechanics/mathematics, and increase in sophistication of the

concepts addressed.

It was planned to administer the questionnaire to a matrix of groups:

Mechanical engineering Mathematics

1a: start of Ist year

1b: end of 1st year

3: final year

4: staff

Table 5-1: Proposed questionnaire distribution

Ideally, one would follow a cohort of mathematics and engiﬁeering students through
their courses, seeing how each individual evolved in his or her views over time.
Unfortunately the length of a degree course is as much as, or even more than the length
of a PhD project, especially given that engineering students often spend a year working
on a project in industry, so this was not practical. Tt was possible to test the same group
at the beginning and the end of their first year, and other groups were used as a proxy

for the final year.

It was hoped to test the final year students in their final semester, but the course
structure made access to them difficult, and so it was decided that the best compromise

was to test as late as possible before Christmas in the final year.

Two other groups were also tested: Teaching Company Associates (TCAs), who are

gradudtes (principally engineering graduates) now working in industry but following a
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MSc course in Management of Technology, and a small number of second year
mathematics students who were studying a course module with a majority of third year
mathematics students. All of this latter group had also been surveyed at the start of their

first year, but not all at the end of their first year.

5.4.1 Administration methods

“Three administration methods ‘vs;ere again used: for first year s'tudei;ts E)f ‘both
mathematics and engineering, a class gr:oup was tested at the beginning and end of the
academic year, and for the final year students both mailshot and-clas-s group methods
were used. It would have been ideal to use the same administration method for all
groups, so as not to select for the most highly motivated group members by using a
mailshot. However the TCAs do not generally meet in class groups, they were again

contacted via the Teaching Company Centre.

Difficulties were encountered in finding an appropriate opportunity for administering
the questionnaire to a class group of final year ;tﬁdents: the modular system meant the
whole year group was together for very few sessions, and the workload of the final year
students was felt by their teaching staff to be too high to allow the researcher to

administer the questionnaire during one of these sessions.

As the response to a mailshot was poor, some teaching staff responsible for modules
taken by a subset of the mathematics and the mechanical engineering final year students

kindly gave access to their class groups.

Administering the questionnaire to a class group takes about 20 minutes, including an
explanation of what it is about. The introduction emphasises to the respondents that a)
while they may feel that one option is obviously best, others may find a different option
obviously best: b) it ts helpful to teachers to discover that students don’t all think the

same way they do.

78







5.4.2 Confidentiality

Students were asked to write _their names-on-tthe‘ cover, which was re:éloved and 'sto_red,"
separately from the.response's;--;"_.f'he booklets were numbered as they vs-rere returned in an
arbitrary, non-alphabetical, order. A code was used in which the last two digits referred
to an individual within a group, and the first one or two denoted the group. Where a
group of students was tested twice, the students re,'spon'd?ng twice were assigned the same
pair of final digits at each session, so questionnaires from the .s.ame ;‘e'spondent _cou'ld be

compared.

Again student names are on the cover which can be removed and stored separately. For
students seen more than once, the names need to be traceable. The 3-digit code then has
the appropriate 1st digit for the series with the last 2 digits the same on both occasions

for the student.

5.4.3 Design faults in questionnaire

Larger numbers of responses were now involved, and a design fault in the questionnaire
became evident: it was difficult to translate a list of letters in order into a numerical
ranking. In any future studies, it is recommended that the options be given Likert-style
scales for marking, with points ranging from “exactly matches my idea” to “not
remotely like my idea”. This would have the advantage of evoking scores for the
unpopular options in Question 6, for example, where many respondents chose one

response only.
Other design faults also revealed themselves:

a) The two new responses to DE question may be directly derived from the target

equation, leading students to make comments that these are “correct” and the others

are wrong,




b) The set of options to the pinball question is weak, as may be seen from the table in
section 5.6. The depth of '-repr_e's_entation i;‘hot-addre§sed éxplicitly and the choice of
modes of expression is not clear. The question could bé improved .by including, for
example, a velocity-time or velocity-displacement graph, and a velocity—timé or
velocity-displacement expression.

¢) The beam bending question may be made more accessible to mat;‘hgm‘atics students by
including an expression making it more explicitly a b_oundgry value problem n -
differential equations.

d} It may also be better to create diagrams in EXCEL which produces drawing objects,

which print more clearly than bitmapped images created in DERIVE.

5.4.4 Other comments

Most of the class groups tested gave few comments, as they had little time for reflection.

It was hoped that it would be possible to compare the overall responses of the
mathematics staff and the engi}leering staff with those of the students to pick up, in
particular, the match or mismatch between mathematics staff and engineering students.
Unfortunately the rate of staff response was very poor, and given that the group size was

small, useful comparisons could not be made.

5.5 Content of individual questions:

When the context allowed, a variety of modes of representation, verbal, diagrammatic

and algebraic, was presented. Options were also chosen to represent different depths of

representation, as described below.




5.5.1 Question 1

The question concerns the bending of a bea;1 (Figure 5-4). This is a standard case in‘the
mechanics of solids and is often used as an application to illustrate the use of end
conditions in the solution of differential equations. The mechanical analysis forms part
of the first year engineering syllabus. No indication of the process of arriving at the

shape of the bent beam was given.

(a) is a statement in words of what may be.expected to happen. It is completely non-

technical, and would be comprehensible to anyone who has never studied mechanics.

(b) is the slightly unexpected result of a calculation of the deflected shape. The point
under the load may be expected to be that with the greatest deflection: in fact it is the
point where the rate of change of slope, that is the curvature, is greatest. It would be

recognisable after an engineering analysis of beam bending.

(c) is a statement in algebraic terms that the bending moment at any point is
proportional to the curvature of the beam: the curvature however is expressed as the

second derivative of displacement.

(d) is again a statement in words, but it is the technical abstraction of the case, as it might

be described in a beam-bending problem.

(¢) contains two statements in integral form about the changes in shear force and
bending moment along the beam. They should also be recognisable after an

engineering analysis of the topic.

(B} is a diagram of the type students would draw in solving the idealised case.
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A plank 1.5 m long is placed on two bricks very near its ends. A bar of
gold is placed across it 0.5m from one end. Rank the following accordmg
‘10 how well they represent this to you.

(a)
The beam bends under the weight of the
gold bar,

{b} i)cﬂcctcd shape

| {0

d*y
Bendmg Momcnt M= sz—-'

(d)
A simply supported beam with a point load

at one-third span.

{c)
Shear Force S=J Fdx
Bending moment A =JS dx
¢))
¥ Load mg
1y J |
k Reaction 2mg ’ Reaction mg ‘,l
3 3

Figure 5-4: Question 1 from main questionnaire

5.5.2 Question 2

Differentiation is the lowest level of calculus concept, and the first to be taught. It is
hoped that if there is a maturing of the concepts it will be shown first in the ideas

connected with the dertvative.

However the notion of differentiation depends on the philosophically difficult idea of
the limit or infinitesimal which teachers themselves may have trouble in dealing with.

Hence the idea may be taught as the “slope of the tangent” and this, being a vivid image

couched in convincingly mathematical terms, may well be hard to shift.




%=f'(x>

All of (a)-(£) can be associated with the statement above. Please arrange -
themn in order of how closely they are linked to it ini your mind.

@
[ (x) is the slope of the tangent to a graph of
¥ against x.
b
¥
, M g ‘
~ - " .
- ~
(©)
dy/dx tells you how quickly something is changing.
(d)
£00)= limgeg - 5 0 221
X3 X
()

As you zoom in more and more closely to a small
section of the curve, it seems to straighten out. The
slope of the tiny straight section is dy/dx at that point.

®

Figure 5-5: Question 2 from main questionnaire

(2) is the expression in words of a common view of the meaning of the derivative,

avoiding the problem of the “vanishingly small”.

(b) is the idea of the derivative as the gradient of a locally straigh{: curve, expressed
pictorially. This is Tall’s (1990, cited by Robert and Schwartzenberger, in Tall (ed)
p136) archetypal example of a mathematical idea which is meaningful to students at
their current state of development yet contains the potential to grow into a fully

fledged mathematical concept.

(c) 1s a statement in words of the practical significance of the derivative. (depth of

problem representation)
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(d) is the derivative expressed as a limit in algebraic terms: it may be regarded as a
.mathematical definitiosn.;
(e) contains the same idea as (b) but expressed in words.

(f) contains the same idea as (a) but as a diagram.

5.5.3 Question 3

The second “mechanics” question cc'_Jncer-ned a standard case of a mass :bouncing ona
linear spring with iinear ;iiSCOUS dan_aping. This would be covered by second yeér—
mechanics teaching. Moreover, the problem represents a common application of the
harmonic form of differential equation, which should be familiar to students of
mathematics. The situation is commonly experienced in applications such as vehicle
suspensions, so should be accessible to non-engineers and non-mathematicians as well.
The phase plane diagram was included as an unusual example of a diagrammatic

representation which would not be appealing at a superficial level.
(2) is 2 non-technical, verbal description.

(b) 1s a standard description of the motion as a differential equation using dot notation,

which would be met in an engineering analysis of the case.

() is a phase plane diagram of the motion. It gives a vivid visual depiction of the motion
to one who can read it. Phase plane diagrams tend to be more familiar to electrical,
control and robotics engineers than mechanical engineering students. (unfamiliar

visual representation)

(d) is the solution to the differential equation in (b). It is the algebraic expression of the

curve plotted in (f}.

(e) 1s a general technical term for the class of cases of which this is a member.
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(D) is a graphical depiction of the posttion of the mass as it varies with time.

A mass suspended from a spring and dashpot is pulled down from its
equilibrium position and released. Which of the following do you think best
describes what happens next?

Please arrange the answers in order of how well you think they describe the
movement of the mass (best first, worst last).

(a) The mass bounces up and down,
going less far each time, until it settles
back to its original position.

|® . Frlgroty=0

() ’ .
Velaclty [dyfdy]

Displacement

) y= Ae "M cos ot
l(c) Damped harmonic response
4]

displacemeat {y]

AN
] \J Vv time 9

Figure 5-6: Question 3 from main questionnaire

5.5.4 Question 4

Integration is a higher level concept in calculus, and usually taught later than
differentiation. It was thought that mathematics students may have a more mature
image of the concept than engineering students, as it is used more intensively in

mathematics than in engineering courses.

Again the notion of the limit may be avoided by use of a graphical interpretation: that of
the area under the curve. In itself this is not unproblematic, because the area between
the x-axis and the function when its value falls below zero must be interpreted as a

negative area, a beast never encountered in nature. However this approach follows
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almost inevitably from describing the derivative as the slope of the tangent to the curve,
- and does have the advantage of being susceptible to a concrete interpretation in the sense
that it may be drawn on the black- (or white-) board, and gives rise to word problems of

the type “What is the area of a lay-by... ?”.

The options were intended to sort the responseé at two levels: firstly by giving the
choice of different modes of representation, and secondly by giving a variety of depths

of representationL.

q=dex
(a)-(f) may all be associated with this statement. Please arrange them in
order of how closely they fit the way you think of it.
(@)
g is the area under the curve y=x.
® X
x
== +C
73
©
q
q= _é +C
)
| x
d)
(=)
®
a_,
dx

Figure 5-7: Question 4 from main questionnaire

() is the expression in words of a commori view of the meaning of integration in

general. (verbal-visual preference)

(b} is the solution of the integration expressed algebraically. It suggests that integration

is a process to be performed.




(c} is the solution in (b) expressed graphically.
(d) is 2 statement in words of a practical significance of the infegral. (depth of problem
representation)

(e} is the graphical expression of the same idea as in (a) (verbal-visual preference)

(f) is an algebraic expression of the integral as the inverse of differentiation. (depth of

problem representation. Relatedness to differentiation)

5.5.5 Question 5

The question concerns an application of mechanics (dynamics) which, although it is not
a standard case, should be a familiar physical situation to most students. It was designed
to test whether there was any change in students’ views of the physical world with their
increased rnat_:hematical knowledge. In particular, it would be interesting to see if
engineering students interpreted the world in a different applied mathematical way to

mathematics students.
(a) is a statement about potential energy as an equation in words.
(b) is another energy statement using a well-known integral expression.

(c) 1s'a statement about energy in algebraic terms, supposed to be equivalent to
15mo® (that is kinetic energy) = % kx” (that is potential energy stored in the spring).
On further reflection, it became clear that the equation is meaningless,since the
instantaneous x in (dx/d#) is not the same as the instantaneous x in ¥4 kx’. As

questionnaire had already been administered it was left to stand.
{d) is a standard statement about the change in momentum, in form similar to (b).
(e) is a platitude in mechanics, expressed algebraically.

(@) is a non-technical statement in words expressing what should be 2 common

experience of pinball machines.




In a pinball game, a ball is fired by releasing a taut spring behind it,
propelling the ball out at speed. Arrange the following in order of how
well they describe this to you.
(@ _
Energy stored in spring = ¥4 Force x Extension
®
Energy imparted to ball = [ Fdx
{a \
Ln(&) Ly
2 \dt) 2
)
Change in momentum = Jth
O]
F=ma
0
The further you pull back the spring, the faster the
ball will go

Figure 5-8: Question 5 from main questionnaire -

5.5.6 Question 6

These options were designed to try to distinguish between respondents’ depths of

representation of a simple differential equation.

(a} is similarly solved by separating variables, and its solution is also an exponential

growth.
(b) is the next stage in solving the equation given: it is an equivalent statement.
(c) has a superficial similarity of appearance, but its solution is an exponential decay.

(d) like the given equation, has a linear function in x on the RHS.
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- Arrange the differential equations below according to how
similar you think they are to the one above.

@) :
2 Q: er

'ydx

)

©

@)

©

o

Figure 5-9: Question 6 from main questionnaire

(e) is the differential of the given equation; but has an identical RHS. Its solution will

have an extra arbitrary constant.

(f) looks unlike the given equation, but its solution is also an exponential growth.

5.6 Conclusions

The issues mentioned in the conclusions to chapter 4 are addressed in these questions as

follows. The depth of representation of the target concepts has been explored in various

ways according to the topic.







Option Mode of representation Depth of representation
la verbal novice '
ib visual .- output of expert mental model
le algebraic deeper than le
1d verbal encapsulated
le algebraic superficial
1f visual input to mental model
2a verbal novice
2b visual “scientific”
2c verbal personal meaning
2d algebraic “mathematical”
2e verbal “scientific”
2f visual novice
3a verbal novice
3b algebraic input of mental model
3c visual . deeper than 3f
3d algebraic output to mental model
3e verbal encapsulated
3f visual superficial
4a verbal novice
4b algebraic process (superficial)
4c visual process (superficial})
4d verbal personal meaning
4e visual novice
4f algebraic relatedness to differentiation
5a verbal formula/superficial
5b verbal/algebraic input to mental model
5¢ algebraic superficial
5d verbal/algbraic formula/irrelevant
Se algebraic novice
5f verbal novice
6a algebraic method and outcome (depth)
6b algebraic process
6c algebraic superficial (appearance)
6d algebraic structural (depth)
6e algebraic similar appearance
6f algebraic depth

Table 5-2: Classification of questionnaire options







6. The Questionnaire: responses and interpretation

6.1 Introduction

Having examined the theory behind the design of the questionnaire-and the practical
pracess of designing and administering it, in this chapter the responses to each question
are summarised and compared according to the subject studied by the ;espondenfs and
their level of experience. As well as the numerical data of the scores accorded to each |
option, we have the comments of the re.spondehts to help in interpreting the ideas which

are being expressed, and some themes which emerge from those comments are explored.

The responses to the first two questions in particular are examined in some detail as they

produced some interesting and unexpected results.

6.2 Interpretation of the responses

This questionnaire cannot be regarded as a precise instrument determining a scientific
truth: although the analysis appears quantitative, asking respondents to rank the options
in order of preference is more qualitative in spirit. As Vinner points out, concept image
is context-dependent and changing. The results of the questionnairé must be regarded as
indicative. Ideally, the same group of people should have been followed in a cohort
study, but by surveying different groups at different stages of their careers a range of
experience was sampled. Some of the changes in preferences must be attributed to the

non-matching of the groups of respondents.

The results show some evolution of ideas over a period of learning, some of which are
relatively slow and seem to relate to a maturing process, and others which are more
rapid and may be related directly to teaching. An unexpected result was that some
misconceptions concerning the bending of beams were revealed, which raise some

interesting questions about the effect of holding misconceptions in general,
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In general the ordered responses give an indication of the relative popularity of the

options, and the comments reveal more about why respondents made those choices.

Although there are many interesting comments which may be made about the responses
of the mathematics students, in this chapter as in others I shall restrict remarks on them
to a comparison with engineering students, given that the reason for including them in

this study was as a comparison group.

The comments made by respondents have been quoted where they illustrate or
illuminate a point. In some cases common themes emerge in the comments, either on a

particular question or on the questionnaire overall,

6.3 Rewvealing misconceptions

The questionnaire was not designed with the object of revealing misconceptions (or
mental models which do not match the institutionally accepted version), but assuming
that most respondents’ concept images would lie within the range of essentially

acceptable, but naive to more sophisticated options given.

These models may be revealed when people make statements which do not coincide

with the predictions of the accepted or institutional meaning of the concept.

It was not expected that any of the questions would arouse particularly strong feelings in
respondents. The rubric to the questionnaire explicitly stated that there were no trick
questions, but some respondents still objected so strongly to two of the given choices in

the question on bending that they wrote comments about them.,

6.3.1 The beam will not bend at all, or whether it bends depends on its

thickness

Option (a) stated “The beam bends under the weight of the gold bar”. This was

included particularly so that respondents who had never seen an analysis of the case

92







would not feel that the questionnaire was dealing with matters above their heads, and it

-was thought it would be popular with first year students at the start of their first year.
Some respondents made comments such as the following.

(@ Nobody says it actually bends, so automatically assume rigidity. (final year maths
student)

(b) Not a- cos depends on thickness of plank (mathematics student, start of first year)

(¢) It depends on how thick the plank is (a). (mechanical engineering student, start of
first year)

(d) How thick is the plank? How heavy is the bar of gold? (second year computer
systems engineet, pilot study)

(e) Ifeel abit uncomfortable not knowing the weight of the gold or the thickness &
width of the plank. (engineering lecturer)

(f) Iassume the deflection is minimal. (practising engineer)

(g ‘@’ may not be very valid- The deflection may be so small as to be negligible.
(practising engineer)

There is a graduation from assuming absolute rigidity to wondering whether the

assumption is valid under the circumstances.

6.3.2 The point of greatest deflection must be under the load

Option (b) was a diagram of the deflected shape.

{a) b looks like the bar would be in the middle. (engineering student, start of first
year)
(b) biswrong (final year mechanical engineering student)

(9 Iwould rather havea drawmg but (b) looks wrong. (final year mechanical
engineéring student)

(d) notkeen on (a) (too simplistic} and (b) (wrong?) (mathematics student, start of
first year)

(€ bisuseless! (mathematics student, end of first year)

() b isn’t quite right, but 've assumed poetic license with the artist! (practising
engineer)

(g} b (shightly changed) (see Figure 6-1) (experienced mathematics and mechanics
teacher)

() Idon’t recognise any of the equations and (b) doesn’t look quite like what I'd
expect! (postgraduate, A level maths, degree in Business Administration)

(1) My first thought is ‘how can I get the gold bar’! My second is that the diagram at b
1$ not drawn correctly. (practising engineer)
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b) ﬁéﬁcctcd shape

Figure 6-1: Modified diagram of shape of beam

6.3.3 Why do people think these things? Mental models of physical
fproblcms

These ideas do not come out of thin air, but are based on the mental models that the
respondents hold. These models are not directly accessible to investigators, but the
comments that have been given are predictions these-resl:»ondents have made of the
behaviour of the system according to their mental models. Given the predictions, it is
possible to deduce the nature of the models. Anzai and Yokoyama (cited in Royer et al,
1993) classify models as experiential, correct scientific or false scientific. Experiential
models, which are derived directly from experience, do not have any technical or
scientific content. The statement “The beam bends...” was intended to appeal to this
type of model. A correct scientific mode] is a set of scientific concepts and relations that
are correct and sufficient to capture problem information. Such a model would
characterise the bending in terms of bending moment and shear force, loads and
reactions, displacements, stresses and strains. False scientific models are those which
contain scientific concepts and relations, but incorrectly characterise the problem. It is

this type of model which is shown in the comments quoted above.

6.3.4 Planks are, or may be, rigid.

The first set of comments represent the view of rigidity as the natural state of a beam,
given that this is a frequently made assumption in statics problems. This is sometimes

held at the same time as the concept that the deflection of a2 beam does depend on its
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dimensions, its loading, and, not specificatllly mentioned by our respondents, the material
stiffness (Young’s modulus) of the beam, Which we see in 6.3.1 {b)-(e) above. It is
perfectly possible to hold two opposite views on a physical phenomenon as long as they
are not brought into direct conflict. The point is that these quantities do not affect
whether a beam will bend, but how much it will bend: as comment 6.3.1 (f) points out,

the bending may be negligible, but negligibie 15 still not the same as non-existent.

Perkins & Simmons (1988) regard this as a defect of priority among concepts: the novice
treats “rigidity” as a more important concept than “springiness”, while the expert sees

“springiness” as the more powerful explanatory tool.

6.3.5 The deflection must be greatest under the load

This idea may come from one of several sources:
(@) Weightless strings and point masses
(b) The lowest point is the lowest (potential) energy position

{(¢) Shear dominated deflection

6.3.5.1 Point masses versus solid bodies

The first stage of modelling that students encounter in mechanics is of the idealised
world of point masses, weightless strings and infinite bodies of infinite stiffness. In such
a world, the nearest approximation to our weight on a beam is a weight hung on a loose
horizontal string, one-third of the way between its points of suspension. For horizontal
equilibrium, the weight would have to fall so that both parts of the string are under

tension, pulling the string into an asymmetrical V-shape.

6.3.5.2 Potential energy

The powerful idea of potential energy being minimised would seem to mean that the
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weight must be at the lowest possible point, which must be the lowest part of the beam.

The lowest part of the beam must thus be under the weight.

0.3.5.3 Shear dominated deflection

When beams are designed to use material to perform as efficiently as possible in bending,
the notion of putting as much as possible into top and bottom flanges connected by a
thin web emerges, and wé have an I-beam. The stiffness of the I-beam m benéling is
greatly enhanced, but its stiffness in shealr is related simply to the cross=sectional area. In
extreme cases, the deflection due to shear, normally negligible, can dominate, so that the
load is close to the lowest point of the beam. This would not happen in the case of 2

plank lying between two bricks.

It would be speculative to suggest which of these is the principal source of error, but it is
suspected from experience that for the students at least the notion of weightless strings

and point masses is the most important.

6.3.6 Discussion

The questionnaire was not designed to pick up incorrect mental models, but rather to
tease out how people were holding mental representations of some engineering and
mathematical concepts. Nevertheless it appears to have brought out into the open some

alternative representations which we may not have discovered in teaching or discussion.

We should ask ourselves how important these misconceptions are in the scheme of
things. To most people they are probably never going to matter. To those to whom
they will make a difference, they will probably discover in time that they have been
mistaken. However, particularly for those people who objected to the shape drawn in

(b), the revelation comes as a shock. A comfortable assumption has been shaken, and it

is unpleasant.
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These results were presented at a conference (Mathematical Education of Engineers,
Loughborough, 1997, see Maull & Berry, 1997). One delegate commented that aero
modelling with balsa developed an intuitive understanding of this type of bending. It
was also pointed out that in most cases the objective in engineering 1s to reduce

deflections to the negligible.

6.4 Preferences

Every option in every question was placed first by at least one 'respondént. This reflects
(2) the diversity of the responses and (b) either that every option proposed was a possible

first preference or that some people were answering at random.

An individual response to a single question consisted of a list of up to six letters, each
representing an option, in order of decreasing preference. These lists were converted
into scores, with the first being given a score of 5, the second 4, and so on, with the sixth
choice and any unchosen options being given a score of zero. For a group of
respondents, the scores for each option for each question were summed and normalised
so that a score of 5 would mean that every respondent in a group had put a given option
first, and zero would mean that everyone in that group had either put that option last or

nor placed it.

These results were then summarised as shown in the accompanying charts. From these
we can see the relative popularity of each option in any group, and the ways these

- change as people progress through their course or through life. ‘The results were also
tested using one-way ANOVA, to find the significance of the differences at different
experience levels within each subject group and between the subjec't groups as a whole.
For each group the mean score for each option is shown with the standard deviation in

parentheses. Many of the options tested inconclusively, but those which yield results at

a confidence of better than 5% are remarked upon. For a variable to distinguish
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significantly between two groups, the difference between the means has to be large
compared to the variance within theé groups. Because the spread of popularity of each
option is wide, even when the means shown on the charts are different, the statistical

significance may be low.

As Hair et al (1984) point out, statistical and practical significance are not the same
thing. In a class of nine pupils, four may be boys, and there is no statistical significance.
If in a class of thirty the same is true the fact is statistically significant. However the

practical significance is the same when it comes to making up a boys’ football team.

6.4.1 Question 1

eng eng eng eng prac i " mat mat mat
1a 1b 3 grads eng ia 1b 3

Figure 6-2: Responses to question 1

The most interesting aspect of Question 1 was the misconceptions which it uncovered,
which are discussed in the first part of this chapter. The changing popularity of some of

the options may reveal a response to teaching.
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1a ib Ic - id ‘e 1if
Thebeam | Deflected Bending Simply Shear force Loading
bends shape moment supported | =,BM = diagram
Mean Rank equation beam
Engineering 1.95 3.18 - 120 298 0.85 4.05
atentry (1.65) (1.65) (1.16) (1.37) (1.10) (1.36)
Engineering 1.91 3.39 1.70 2.17 1.39 3N
end of 1st year (1.98) (1.27) (1.61} {1.56) (1.34) (1.38)
Engineering 175 3.25 1.10 3.90 0.90 3.15
final year (1.77) (1.94) (1.07) (1.21) 0.97) (1.38)
Engineering 1.67 3.73 1.73 2.67 093 - 360
postgrads (1.80) (1.53) (1.28) (1.72) (1.03) {1.40)
Practising 213 3.87 Q.53 340 0.93 ‘ 420
engineers {0.99) 125y | (092 (0.74) (0.96) (1.08)
Engineers 1.89 3.40 1.27 . 2.99 0.99 3.82
overall (1.67) (1.57) (1.27) (1.46) (1.11) (1.36)
Significance 9433 5618 .0386 0014 4277 1040
within engineers
Mathematics | 2.35 295 1.24 T 320 1.12 331
at entry (1.75) (1.74) (1.26) (1.66) (1.44) (1.51)
Mathematics 2.81 3.26 . 1.41 2.44 1.04 3.56
end of 1st year (1.82) (1.58) (1.37) (1.67) (1.26) {1.45)
Mathematics 2.14 279 0.86 2.27 0.79 3.79
final year (1.88) (1.93) (1.03) (2.02) (1.25) (1.48)
Mathematicians 2.45 3.01 1.23 2.85 1.05 3.45
overall (1.78) (1.71) (1.26) (1.75) (1.36) (1.49)
Significance 4241 .6458 4189 0760 7047 5152
within
mathematicians
Significance 0215 .0892 8368 5377 7209 0587
between subject . :
groups

Table 6-1: Responses to question 1

Overall, options 1a (The beam bends..) was preferred significantly more by the
mathematicians than by the engineers as a group. Options 1c (Bending moment
equation) and 1d (A simply supported beam...) distinguish between the levels of
experience of the engineers, with the practising engineers rejecting option 1c more than
other engineers and the final year engineers having a stronger preference for option 1d

than any other group.

6.4.1.1 Responses to teaching

In the responses from the engineering students in particular, some options show jumps
in popularity, either up or down, during the course of the undergraduate degree. These

jumps coincide with intervals in which teaching on particular subjects occurs, and these
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jumps may be interpreted as evidence of responses to teaching. Thus in Q1, option (d),
“A simply supported beam with a point load at one-third span” represents technical
language with which the students would have become familiar between the end of the

first and the early part of the final year.
We find comments on Question 1 such as:

The equations in ¢ and e mean nothing to me-as I have not studied them yet.
{engineering student, start of first year)

o ..the mathematical definitions are starting to make more sense. (engineering student,
start of first year) '

e We've only just started. Ask again in a few weeks! (engineering student, start of first
year)

¢ No idea, may be true, tell ya later. (engineering student, start of first year)

¢ b, f & d are the only ones that mean anything to me as I've not come across the
others yet. (engineering student, start of first year)

and after studying simple bending:

¢ Due to the intensity of learning mechanics during the first year (engineering student,
end of first year) '

Other examples are: 3(b), the differential equation j + ky+ ©*y = 0, which also -

increases in popularity over the course of the second year of teaching, and 6(b) which

changes place with 6(e) as the students gain in confidence in integration.

6.4.2 Question 2

In general, the mathematics students prefer the statement about the tangent at all three

stages, and their next favourite option is the corresponding diagram.

For the mathematics students, the third favourite option is the statement about “things
changing”, whereas for the engineering students, the “things changing” statement
overtakes the other two. Although the last set of responses (practising engineers) seems
to contradict this trend, the respondents in this group were different in a2 number of

ways from the respondents in the first four: they were all from old universities and had
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been trained by the Ministry of Defence, and they were considerably older than the rest

of the respondents, so their education had been conducted under a different regime.

mean 5 | te-o--23] mean --2a ]
- score & I"G"Zb score -2b i
for " I for i
oplion 3 |- 20 option i ¢
: ! x--2d| Losge2d ]
2 % 2ef Loz
1 [0- 2| Q26
0 + 1
eng eng eng eng prac mat mat
1a 1b 3 grads eng ib 3
Figure 6-3: Responses to question 2
Mean Rank 2a 2b 2 2d 2e 2f
Slope of Zoom in How Limit Asyou Tangent
tangent diagram quickly expression zoom in diagram
changing
Engineering 3.50 2.13 2.40 0.93 2.25 3.03
at entry (1.66) (1.26) (1.86) (1.42) (1.63) (1.67)
Engineering 4.13 2.13 2.43 0.52 2.30 3.43
end of 1st year (1.10) (1.55) (1.56) (1.08) (1.06) (1.47)
Engineering 3.90 2.15 3.05 0.80 2.15 3.00
final year (1.25) (1.46) (1.70) (1.32) (1.42) (1.45)
Engineering 3.06 2.47 3.47 0.73 1.40 3.20
postgrads (1.91) (1.51) (1.81) (1.10) (1.24) (1.32)
Practising 3.26 2.20 3.00 - 1.00 2.27 3.20
_engineers (1.79) {1.86) (1.46) {1.51) {1.49 (1.32)
" Engineers 3.61 2.19 2.74 0.81 2.13 3.15
overall (1.57) (1.46) (1.74) (1.30) (1.43) (1.49)
Significance 2033 9562 2111 7765 3256 8561
within engineers
Mathematics 4.36 1.51 2.56 2.00 1.45 3.05
at entry (1.01) (1.45) (1.58) (1.59). (1.23) (1.46)
Mathematics 341 1.89 2.96 207 1.44 3.22
end of 1st year (1.47) (1.53) (1.51) (2.04) (1.48) (1.28)
Mathematics 3.86 1.79 2.64 1.93 1.29 3.29
final year {1.66) (1.25) (1.91) (1.59) (1.38) (1.43)
Mathematicians 4,02 1.66 2.69 2.01 1.43 3.15
overall (1.31) (1.44) (1.60) (1.71) (1.31) (1.40)
Significance L0062 5045 5721 9655 9105 .8015
within
mathematicians
Signiﬁcance 0437 0091 3106 L0000 0003 5405
between subject
groups

Table 6-2: Responses to question 2

The engineers prefer options 2b (Zoom in diagram) and 2e (As you zoom in... ) more

strongly than the mathematicians and dislike options 2a (The slope of the tangent...) and
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2d (Limit expression) considerably more than the mathematicians do. No options

distinguish significantly between the different levels of experience of the engineers. On

Option 2b (Zoom in diagram) the differences between the engineering groups are small

enough to say that they their preference is the same to p > 95%.
Some interesting comments were made in response to this question:

e An engineering graduate commented that he had really only understood the idea of
the differential as the rate of change in his “year out” in industry.

s My extra learning has taught me that dy/dx= gradient which I now understand asa
rate of change in bus[iness] environment. (Engineering postgraduate)

The above comments tend to confirm that the greater popularity of option 2c among
engineering final year and postgraduate students is a matter of development and

maturing, and not a statistical quirk of the group of students responding,

o Iseem to use both (c) and (f) as models for dy/dx. I see them as 2 equally closely
associated but quite different ideas. (Engineering postgraduate)

As Vinner points out, the concept image depends on context. This respondent shows he

recognises two of the options as equally closely related to the target coneept.

¢ Words first to get an idea of the problem. Then a “diagram”. Then some maths =
Greek! (Engineering postgraduate)

* Asan engineer I tend to represent problems like this first verbally, then graphically,
and as a last resort mathematically... This is because my mathematics skills are not
brilliant and I need to reference (sic) back to old notes for these types of problems.
(Engineering postgraduate)

Engineering students told Crowther (1997b) that they like to visualise. This

questionnaire showed all the groups of students surveyed preferred diagrammatic

representation in the “mechanics” questions, but in general they preferred verbal

representations in the “mathematics” questions.

The theme of needing to or being able to refer back to notes or a textbook for

mathematics is also one which recurs in the comments of engineering students, and is

discussed in the chapter on mathematical modelling.







In the integration question, there is a corresponding option to the “things changing”
statement, which is “The integral tells you how things build up”. This remains the least
popular option, but grows steadily across the first four groups of engineering

respondents.

6.4.3 Question 3

mean 3 - |-o--3a}

score ~ g e T --g--3b

for ARG CEE S A--3C

option 37 l 3d
PEELAREE S P, ><. '

eng eng eng eng prac mat mat mat
1a 1b 3 grads eng ‘ 1a 16 3

Figure 6-4: Responses to question 3

Options 3a (The mass bounces..) and 3¢ (Phase plane diagram) are preferred by the
mathematicians as a group significantly more than by the engineers. Options 3e
(Damped harmonic response), and 3f (Displacement diagram) are preferred significantly
more by the engineers. Option 3b (Differential equation) is preferred very significantly

more by final year engineers than by first year and practising engineers.

Option 3b shows a “learning jump” between the end of the first and the final year in the
engineering students. This is particularly interesting given that the differential equation
looks very mathematical, and students in their final year often claim to be out of touch
with mathematics. 1am beginning to suspect, given this and some comments quoted
later in this chapter, that engineers cease to regard something as mathematics once they

have incorporated it into their “engineering” knowledge.
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Mean Rank 3a 3b 3¢ 3d Je 3
The mass | Differential | Phase plane | Solution Damped |Displacement
bounces equation diagram equation harmonic diagram
) response
Engincering |, 3.38 0.58 170 1.05 | 3.0 463
at entry (1.51) 0.71) (1.09) (1.01) (1.32) (0.49)
Engineering 3.17 0.65 1.48 1.52 3.52 4.39
end of 1st year (1.53) 083 [ (1249 {1.56) {0.50) (0.66)
Engineering 3.25 2.35 0.95 1.40 2.65 4.20
final year (1.74) (1.50) (1.00) (1.70) (1.23) (0.95)
Engineering 2.27 1.77 1.07 1.53 3.53 4.20
postgrads (1.87) (1.33) (1.16) (1.53) (1.51) (0.94)
Practising engineers 3.53 0.60 1.53 1.47 3.40 4.33
, 136) | (112 19) | -(1.30) (0.83) (0.82)
Engineers 3.19 1.06 1.42 1.33 3.20 4.41
overall | (161) (1.26) (1.15) (1.37) (1.22) (0.74)
Significance within .1843 "~ .0000 1156 6216 1106 1720
engineers T
Mathematics 4,20 0.87 2.18 1.20 1.96 4.13
at entry ©(139) (0.98) (1.20) (1.30) (1.50) (0.70)
Mathematics 3.56 1.07 2.26 1.74 2.04 4.26
end of 1st year (1.87) (1.24) (1.19) (1.38) (1.53) (0.81)
Mathematics 3.29 1.21 1.93 2.00 2.64 3.86
final year (1.94) (1.58) (1.21) (1.61) (1.74) 0.86)
Mathematicians 3.89 0.98 217 1.47 2.08 4.13
overall {1.65) _ (1.15) (1.17) (1.39) {1.55) (0.76)
Significance within 0833 5436 L6876 0759 .3389 2752
mathematicians
Significance 0022 .6223 0000 4607 -0000 0071
between subject
groups

Table 6-3: Responses to question 3

6.4.4 Question 4

mean 5 [-o--4a] mean 3 |---<>- 4a|
S 4 e B B -G 4b|
option 3 .- .:::-.:-_‘ ' tbeded option 3 G l---A--- 4c|
. v 4d ‘;;;:::;:,;-:Eé"“ """"" {-e- 4d;
2 |- -de | 2 f- - del
1% L&i I S -0 4]
0" 0
eng eng eng eng prac mat mat mat
1a 1b 3 grads eng 1a 1b 3

Figure 6-5: Responses to question 4
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Mean Rank 4a 4b 4c 4d 4e 4f
Areaunder | Integration | Integration | How things | Areaunder | Opposite of
curve done done diagram| buildup |curve diagram|differentiation
Engineering 398 2.40 . 220 0.80 2.58 1.98
atentry | (1.53) (1.66) as52) - | ©949. | @7 (1.72)
Engineering | 437 3.00 2.48 0.65 2.70 1.74
end of ist year (1.11) {1.68) (1.34) (0.88) (1.58) (1.63)
"Engineering 3.25 270 2.00 1.40 2.60 2.05
final year (1.62) (1.89) (1.56) (1.57) (1.60) (1.70)
Engineering 4.00 2.00 1.60 1.53 2.53 2.67
postgrads (1.36) (1.77) (1.55) (1.68) (1.77) (1.50)
Practising engineers 4.30 2.40 1.80 1.80 2.87 1.27
(0.56) (1.30) (1.32) (1.42) (1.46) (1.53)
Engineers 4.00 252 1 2.09 T 111 2.64 1.94
overall (1.40) (1.68) (1.47) (1.29) " (1.62) {1.66)
Significance within 0239 4358 3926 0142 9779 .2161
engineers oo ‘
Mathematics 3.53 4.25 1.09 0.85 2.25 1.98
at entry (1.15) (1.28) (1.47) (1.08) (1.54) (1.47)
Mathemarics 3.63 i 2.33 0.93 2.48 2.52
end of 1st year " {1.45) (1.78) (1.52) (1.21) (1.65) (1.50)
Mathematics 3.86 3.21 271 0.43 2.21 2.43
final year (1.03) (1.67) (1.82) (0.65) (1.22) (1.65)
Mathematicians 3.60 3.78 2.15 0.81 2.3 2.20
overall (1.22) (1.58) (1.55) (1.07) (1.51) (1.51)
Significance within 6634 0023 .1688 3375 7908 .2666
mathematicians )
Significance .0320 .0000 7845 0780 1372 2415
between subject
groups

Table 6-4: Responses to question 4

The engineers as a group prefer option 4a (The area under the curve..) significantly more
than the mathematicians, and 4b (Integration carried out) significantly less. The growth
in popularity of option 4e (How things build up) among engineers is statistically
significant, but on option 4f (Area under the curve diagram) the preferences of the

engineers at different stages are significantly identical.

As mentioned above, option 4d (The integral tells you how things build up) increases
slowly but steadily across all the levels of expérience of the engineering respondents,
including the practising engineers. Option 4f, that integration is the opposite of
differentiation, has a similar popularity profile to option 2c (how things build up), with
growth across the first four sets of engineers, and a drop in the practising engineers.
These two options were intended to indicate (4f) an increase in the inter-relatedness of

concepts with maturity, and (4d) an increase in the meaning of concepts with maturity.
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The profiles of option 4b (integration done) is rather different in the two sets of
respondents. “There is an interesting diffié:rence of phase between engineering and
mathematics students. Most of the mathematics students eéntered university fresh from
their A level studies, having recently been introduced to integration. Its high popularity
with the first group of mathematics students reflects this. The greatest popularity of this
option with engineers falls at the end of their first year, reﬂecting that many engineering
students are first acquaintéd or are reacéuainted with integration over the course of that

 year.

6.4.5 Question 5

mean S i--o--Sa! mean 3
score !
- o 1. J--5b i score 4
for ""::'-:‘-g:'-q xo ! for
wpien 3 S e
P Qroraggem i--3¢--5d |
TR ] xese
1 Q8 Sk monst
0" — 0
eng eng eng eng prac mat mat mat
1a 1ib 3 grads eng 1a 1b 3

Figure 6-6: Responses to question 5

On reflection, it was felt that questions 5 and 6 were not well designed and that the

responses to these questions were not in general very revealing.

Option 5S¢ distinguishes significantly statistically between the levels of experience of the
engineers. The popularity of this option rise in the first three groups.then falls again.

The shape of this polygon locks a little like a learning peak, but it is difficult to see the

practical significance.







Mean Rank 5a 5b I 5¢ 5d Se 5f
Energy Energy | K.E. =PE.| Changein F=ma The further |
stored imparted to | equation | momentum | you pull
equation | ball =Fdx w[Fds back...
Engineering 3.38 1.48 0.58 1.85 3.30 3.8
ar entry (1.46) (1.15) (1.20) (1.27) (1.45) (1.52)
Engineering 322 178 1.00 1.70 36l 3.48
end of 1st year (1.09) (1.41) (1.24) (1.49) (1.78) (1.62)
Engineering 2.90 2.20 1.60 1.50 3.75 2,60
final year (1.52) (1.15) (1.57) (1.44) (1.59) (2.09)
Engineering 2.87 200 1.07 1.97 2.93 3.40
postgrads (1.19) (1.36) (1.58) (1.55) (1.94) (2.20)
Practising 3.40 227 0.40 1.07 3.00 3.87
engineers (1.76) (1.33) (1.30) {0.80) (1.56) (1.36)
Engineers- 3.20 1.84 0.89 1.73 3.35 3.49
. overall (1.41) (1.28) (1.38) (.39 (1.63) (1.76)
Significance 6207 1456 0436 3513 A819 1185
within engineers
Mathematics 2.89 1.6364 0.60 1.84 3.82 3.65
at entry (1.37) (1.28) (101) (1.42) (1.33) (1.61
Mathematics 3.37 2.22 1.22 2.33 2.96 2.74
end of 1st year (1.44) (1.22) (1.53) (1.41) (1.74) 2.19)
Mathematics 2.79 1.64 1.57 257 3.50 271
final year (1.19) (1.15) (1.91) (1.45) {1.83) (2.20)
Mathematicians 3.01 1.8 0.92 2.08 3.53 3.26
overall (1.37) (1.26) (1.37) (1.44) (1.56) (1.92)
Significance 2685 1243 0216 .1330 .0647 0639
within
mathematicians
Significance 3411 .8269 .8681 .0651 4247 3745
between subject
groups
Table 6-5: Responses to question 5
6.4.6 Question 6
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Figure 6-7: Responses to question 6

This question was the most closely related to those used by Chi et al (1981, cited by

Royer et al, 1993) in their investigations of the differences between expert and novice
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coricepts. Apart from the rich crop of comments it evoked from respondents the

- question did not appear to produce very useful results.

Mean Rank 6a éb 6¢ - 6d - be 6f
Y= |Jdy=ld | d=¢ |[H=mxtc| dy=¢ 4 = my
. dr dx dx dxt dx
Engineering 1.50 - 270 2.10 1.03 3.65 0.88
at entry (1.36) (1.90) (1.89) (1.42) (1.92) (1.14)
Engineering 1.83 3.87 2.52 1.70 3.13 1.61
end of 1st year (1.59) (1.39) (1.8%) (1.33) (1.82) ((1.53)
Engineering 1.65 3.80 2.35 1.05 2.50 1.05
final year . (132) (1.91) (1.81) (1.67) (1.85) (1.23)
Engineering 1.60 3.80 187 1.93 2.93 1.07
postgrads (1.80) (1.74) (1.60) (1.62) (1.94) (1.16)
Practising 1.33 3.87 1.20 1.20 2.13 0.87
engineers (1.54) (2.03) (1.32) (1.26) (2.20) (1.51)
Engineers 1.58 3.43 2.08 1.31 3.04 1.08
overall (1.46) (1.86) 1.77) (1.48) (1.97) (1.30)
Significance 8732 .0426 2145 1679 0687 2704
within engineers
Mathematics 2.00 3.18 2.51 1.35 3.53 1.25
at entry (1.36) (1.63) (1.87) (1.43) (1.90) (1.28)
Mathematics 137 4.00 1.96 1.59 3.52 1.78
end of 1st year (1.39) (1.24) (1.60) (1.50) (1.63) (1.63)
Mathematics 1.50 4.86 1.07 1.43 3.36 179
final year (1.51) (0.36) (1.27) (1.16) (1.60) (1.72)
Mathematicians 1.75 3.66 2.15 1.43 3.50 1.48
overall (1.41) (1.53) (1.78) (1.40) (1.77) (1.46)
Significance 1256 _.0003 .0201 7595 9489 2185
within _
mathematicians
Significance 4053 3502 7888 .5589 0824 0378
between subject
groups

Table 6-6: Response to question 6

The engineers at entry prefer option 6b significantly less than the other engineers, and

the engineers as a group dislike option 6f more than the mathematicians.

The twé options (b and e) which were added to this question to bring the number of
options up to six like the other questions proved to be the most popular with all groups
of respondents. Because they were obtainable from the target expression some
respondents felt that the other options were “incorrect”, despite the strong statement in
the rubric, and in the introductory talk, that there were no wrong answers and that the

questionnaire was not a test of any kind.
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Apart from the strength of some of the comments, it is notable that there is not
complete consistency in the options felt to be “Ct;rrect”. This is a good example of
where a group of students ma}-r be holding concept im'age; different from one another
and from their lecturer, and for communication to be affected by the different meanings

ascribed by the various parties to supposedly public symbels.

e (a,c,d,f) areall wrong. (Practising engineer).

e This one I found most difficult- only b seemed “right” (Practising engineer)
e beyond e, no obvious similarity. (Practising engineer)

o b s sol. of example, f has got right form, ¢ is wrong (I think!), e is next derivative, d
& a are probably wrong as well. (Practising engineer)

¢ b = ok. f-> impossible. (Final year engineering student)
o Thelast 3 [d, f, c] have nothing to do with it. (Final year engineering student)
o Latter ones [f, d, e, ¢, a] are not related (Final year engineering student)

* a, cand d are not ranked- they’re all very different to the given equation. (Final year
mathematics student)

* e, d, c have no relationship with the original, although as pictures it is possible to see
a likeness. (Final year mathematics student)

o b, e-restfalse! (engineering lecturer)

o ¢, b. Rest don’t figure (in my eyes) (mathematics lecturer)

e Only b looks good. All the others look equally wrong. (Engineering postgraduate)
e f,b. Only thosel (mathematics student, start of first year)

o fiswrong, surely? (a) opposite to above question. (mathematics student, start of first
year)
e e. Don’t like the others. (mathematics student, start of first year)

e e. Ican’timmediately see any similarity in any of the others. (engineering student,
start of first year)

o [first preference c] No real link in many cases (engineering student, start of first year)
e d is rubbish. rest are nothing like above. (mathematics student, start of first year)
¢ b isthe only correct one. (engineering student, start of first year)

* ¢, bare the only true ones. The others don’t even rank. (engineering student, start of
first year)

* ¢, b. Both true statements. [implies that the other options, unlisted, are untrue]
(engineering student, start of first year)

* e first as it is a true statement. [implies that the other options, unlisted, are untrue]
(engineering student, start of first year)







Some respondents did not distinguish between “wrong” and “right” answers- all the

responses were “wrong” for them.

e None are similar. (Final year engineering student)

o Don’t really understand the question as all the answers are different from the sample.
(Final year engineering student)

o All dissimilar {Engineering postgraduate)

¢ nonereally (mathematics student, start of first year)

* None of them look like the top one. Théy have all gbt a similar amount o’_f
dissimilarity. (final year engineering student, pilot study)

¢ None equivalent. (mathematics postgraduate, pilot study)

Some respondents found the word ‘similar’ (or ‘like’ in the pilot study) problematic.

» Nasty one- what do you mean by similar?! (Mathematics lecturer)
» Not a particularly clear one this- what does ‘similar’ mean? (Engineering lecturer)

s This question doesr’t make much sense to me... I guess that ‘similar’ is not well
defined, but perhaps that’s the point! (Engineering lecturer)

¢ What do you mean by simildr, the same result, played with, what? (engineering
student, start of first year)

¢ By ‘like’ do you mean form or value? (Engineering postgraduate, pilot study)

e Asan engineer, I find the word ‘like’ in the question confuses the issue. (Engineering
postgraduate, pilot study)

o ‘Like’ what is that, is it exactly the same relationship i.e. the same equation or does it
mean the same order of differential equation. Confusing. (final year engineering
student, pilot study}

Some students early in their careers are tentative, but seem to look forward to learning
more. The engineering students at the start of their first year were the only group to
prefer option ée over 6b overall. The change is probably because the first year of the

degree is the first time some students encounter differential equations.

slightly beyond me; only sure about e. (mathematics student, start of first year)

e after e, all the rest are guesses. (mathematics student, start of first year)

¢ Not familiar with logs etc so mainly guess. (engineering student, start of first year)
» efirst. can’t really say about the others yet. (éngineering student, start of first year)

o only just started differentiation so do not fully understand it. {engineering student,
start of first year)

Some engineering respondents were reminded of how much mathematics they had

forgotten, or how little they had used. This point was also made in the OECD report

110







(1966) where most of the respondents reported using nothing more than simple algebra

in their engineering careers.

¢ This makes me realise how long ago I did my engineering maths course and how little
Pve used it sincelll (Engineering postgraduate) : '

e I can not remember much about my degree only 1% years ago. I can remember most
of the chatty explanation or lab work. (Engineering postgraduate)

* [can’t remember how differentiation works so I have guessed based on what I can
remember. (Engineering postgraduate)

¢ Ithink I've forgotten everything! This is sadly honest but I hope it helps. (Final year
engineering student) .

* I have managed to forget differential equations for the past 40 years with great
success! (Practising engineer)

e Having not used calculus for 18 years, I'm guessing here. (Practising engineer)
¢ b,? Iwould be guessing the remainder. (Practising engineer)

o It’s not.easy to admit it but it’s so long since I even locked at simple equations such as
this there is no rationale behind my list. (Mathematics lecturer)

 Differential Equations for engineers are on a need to know basis. For exams I needed
to know: now I don’t. (Engineering postgraduate, pilot study).

* I've not done anything like this since my first year, hence I’ve forgotten it all. (final
year engineering student, pilot study)

T

6.5 Mode of representation

R

Crowther (1997b), after interviewing some eighty engineering students, found them to
feel that they learn best from visual or previously understood concrete mathematical
examples. The preferences expressed by the students in this investigation tend to agree
with this. Diagrams such as 1b, 1f, 2f and 3f were consistently popular choices with

both engineers and mathematicians. Comments such as :

* Pictures represent a thousand formulae! (physics graduate, pilot study),
* Representation is preferably visual for me (practising engineer),

¢ Iprefer to visualise the effect and then calculate the how and why. (engineering
graduate, pilot study)

» (pinball question) I used f to visualise the problem. Once the problem was sorted in
my mind I then put the mathemarics around the picture in my mind. (engineering
graduate, pilot study)

¢ (Q1) I can understand (number crunch) e & c, but I prefer to visualise d & 1.
(engineering graduate).

* (Q1) b, fis how I think about the problem, visualise. (engineering graduate)

111







» graphical representation shows response and allows v1sua1 comparison agalnst others.
(engineering graduate) '

o Ialways havea graph in my mind flrst then I really think about the problem.
(engmeermg graduate) : .

o I would rather have a drawing... (fmal year engineering student)
» Visible representation important (fmal year engineering student)

show the respondents thinking of themselves as visual people.
Some diagrammatic options, however, were not popular.

In qtlzestion-z option (a), the statement “f"(x) is the slope of the tangent to,a graph ofy
against x” was the most popular with 4ll students and in-question 4 the most popular
response was (a), the statement “g is the area under the curve y=x" although diagrams

were available as options.

In question 3 the phase plane diagram was among the least popular, although a
respondent on the pilot study commented “Never seen ¢ before. It’s good if that is a
valid representation of the prob1e1.n” (final year er.lgineering student, pilot study). In
question 4 options (c) and (¢) were less popular than option (a) quoted above and in

question 2 option (b) remained in the middle of the field.

In other words, although the respondents declare themselves to be visual people in
general, options such as 2(a) and 4(2) which are sentences which are virtually drilled into
learners of mathematics at an early stage are hard to dislodge as the correct and
automatic response, and an unfamiliar graphical representation is not generally:

acceptable, for example:

o -¢ shows nothing unless you specifically studied the subject. (final year engineering
‘'student)

e b, cand d do not convey the meaning at all well unless you have 2 detailed
understanding. (final year engineering student)

» Unfamiliar with c (engineering graduate)
o I have never come across answer c. (engineering postgraduate, pilot study).
¢ ¢, d, b don’t mean much to me. (engineering postgraduate, pilot study)

* ¢ means nothing to me (engineering postgraduate, pilot study)
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* I have never come across a representation of this type of question as shown in figure
c. {final year mechanical engineering student, pilot study) '

but on the other hand, the répresénl:ation is valued by those to whom it is famaliar:

* cdefines/represents both velocity and displacement whereas f represents only y with
time. (engineering postgraduate, pilot study)

* f perfectly describes for me 2 damped osc. c is what I would use next because it gives
more better (sic) information. (first year computer systems engineering student, pilot
study)

and also by some who, though not having seen the representation, can see it has_
possibilities: -

o Never seen ‘c’ before. It’s good if that is a vahd representamon of the question. (final
" year engineering student, pilot study)

We also find comments such as:

e Words first to get an idea of the problem. Then a ‘diagram’. Then some maths =
Greek! (engineering graduate, not a Greek student)

e asan engineer I tend to represent problems like this first verbally, then graphically,
and as a last resort mathematically. {engineering graduate)

* Written and graphical solutions seem easier (final year engineering student)

which show the respondents representing themselves primarily as verbal, then as visual

thinkers.

6.6 Attitude to mathematics

In addition to the above comments on their feelings about mathematics, some
respondents made some more trenchant observations on the relation of mathematics to

the engineer.

» Having not used calculus for 18 years, I’'m guessing here (practising engineer)

¢ I have managed to forget differential equations for the last 40 years with great success!
(practising engineer)

e Ican’t remember how differentiation works (so I've guessed) (engineering graduate)

* Pve never really seen a link between the maths and the results of engineering and
understanding. (engineering graduate)

» Not mathematically inclined (engineering graduate)

¢ (Q6) This makes me realise how long ago I did my engineering maths course and how
little Pve used it since!l! (engineering graduate)

» [ was never very good at integration. Couldn’t learn the tricks. (engineering lecturer,
pilot study)

113







» Differential equations for engineers are on a need to know basis. For exams [ needed
to know, how I don’t! (engineering graduate, pilot study)

o (differential equations question) I may be an engineer but to be qulte honest, formulas
lilke that are a complete waste of.time and energy. (final year engmeenng student,
pilot study)

¢ [ am more practical than academic and I hate maths! (engineering graduare, pilot
study)

e [ don’t know much about maths. All T know is about big bits of metal, Chevy V8s
and Holley carburettors. The only maths I can do is what the magic calculator can
do (fmal year éngineering student, pilot study) . :

It is worth bearing in mmd that all the engmeemng graduates surveyed are enrolled on a
course of Postgraduate study, either MPhil, MSc or MBA, so they cannot be. regarded as

study-phobic.

Almost identical statements come from a student who was interviewed in the evaluation

of the courseware as reported in chapter 15.

e Well, given a reference, I'm happy enough with understanding the caleulus- P've
forgotten all the transforms myself.
When you use them a lot you know them, you just click them in, but I've forgotten

all that.

* My maths is very rusty- I haven’t been using it for a year and I haven’t had to use it
so far this year.

¢ I haven’t been using any maths for the last year being on placement so my maths is
Very rusty.

* D’m trying to avoid mathematics this year.

These comments may. be summarised as:

* Mathematics is found in books,

* Real engineers don’t use mathematics in their jobs,

* Mathematics is something you learn for exams and then forget.

These comments are reflected in the overall low popularity of algebraic forms of

options: 1(c) and (e), 2(d), 3(b) and (d), 4(f}, 5(c), and the short lists in the responses to
Q6.

Another aspect of the attitude to mathematics is that the engineering respondents regard

themselves quite strongly as practical, applied people. In addition to the last two
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comments quoted from the questionnaires above, we have remarks such as the

following, showing a feelifig that engineering knowledge is apliliecl knowledge.
» Only t.hel old Fashioried mechies are likely to know what a dashpot is. And anyone
who has worked on a Stromberg carburettor. {engineering lecturer, pilot study,
response to mass-spring-damper question)

e When you hit a big bump at 80 mph in your 5.0 litre V8 Landrover, it goes ‘bang’
and it launches to the moon. When it lands it goes ‘bang’ again. (final year
engineering student, pilot study, response to mass-spring-damper question)

e Derivative of y is what? Derivative of x is'what? Are they voltages, decibels, time,

frequency or APPLES? (final year engineering student, pilot study, in response to
differentiation question, in which the word ‘derivative’ does not appear)

6.7 Depth of representation

Changes may occur as a direct response to teaching, or else as a result of use and
familiarisation, resulting in the maturing of concepts. This would be characterised by a
greater meaningfulness of concepts, a greater richness of associations between concepts

and an encapsulation of the concepts.

6.7.1 Growth in meaning

In Q2, option (¢) states that dy/dx tells you how quickly something is changing. This
option gains steadily in popularity after the first year in the engineering groups, but not
in the mathematics groups. An engineering graduate commented, having completed the
questionnaire, that he learned to understand the differential as a rate of change during
his year of industrial experience, and that was when the idea gained meaning for him.

Other comments from the questionnaires on this option are:

My extra learning has taught me that dy/dx = gradient which I now understand as a
rate of change in a business environment. (engineering graduate)

e cisthe overriding image in my mind. {engineering graduate, pilot study)
¢ cis how I subvocalised the question. (engineering graduate, pilot study)

In the engineering graduates, (c) is the most popular option, but in the practising

engineer group it has just been overtaken again by (a), the slope of the tangent.







The corresponding option in Q4, “The integral tells you how things build up”
(option(d)) 1s the leasf; popular option with both engineering and Ipa.thematics

" undergraduates, but whereas its popu-lgrity decreases ffo;il the first to final year
mathematics students, among the engineering groups its popularity increases steadily.
This could be interpreted as a steady increase in the meaningfulness of the concept in
engineering applications, and its lag compared with the corresponding option 2(c) may
be éxplained by the way integration-depends as a c;_)nc:ept' on that of differentiation.
Understanding of integration follows that of differentiation: i;ldividual n;akin-g of

meaning in integration also seems to {ollow that in differentiation.

6.7.2 Richness of association

Changes in popularity across the first four groups of engineers tested and across all three
groups of mathematicians can more confidently be attributed to development, since
their experiences of higher education have all been comparatively recent, and similar.

" Comparisons with the practising professional enginc;.ers are more problematic as these
latter graduated in general in 1978, and from old universities, so their experience of
higher education was different from the younger groups. Where we see a trend across
the first groups not continuing into the last group, we cannot predict whether the

)

present engineering graduates are likely to show the same characteristics in, say 15 years

time.

An example of this sort of trend is option 4(f), the integral interpreted as the inverse of
differentiation. There is a steady increase in popularity across the first four groups
which I would like to interpret as.an increase in the depth of representation as the

concept of integration becoimes more related to that of differentiation.
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6.7.3 Encapsulation

It seems that one of the ways in which knowledge changes as e}.cpert-‘i'se-is developed is:
that the concepts become more richly related, and that groups of related concepts are
chunked together within a group. The richness of association has been discussed above;
the chunking together or encapsulation follows from that stage. Several authors refer to
this process in different wa};s, so for instance we have Tall’s procept (Tall specifically
refers to procepts as encapsulation in Ta'l-l, 1995}, Andersan’; knowledge compilation -
(1982, see Royer et al, 1993), Schoenfelélfs heuristics and czlgorftbms (1‘585), and Bandura’s
schema co}zstm.ction (1977). The interest in concept images in this case is to discover the
indexical image: that is the image which is used by the individual as a label which evokes
the schema as a whole. In semiological terms, we are looking for the most powerful

signifier for the concept.

We also see that respondents may be aware of having more than one evocative image,

depending upon context.

In the responses to the questionnaire, the options which appear to relate to
encapsulation are 1d (“A simply supported beam...”) and 3e (“Damped harmonic
response”), where the given case is expressed as a particular instance of a class whose

general solution is known.
6.8 Conclusions

6.8.1 On the analysis of the results.

The questionnaire yielded two types of empirical materials. The data on preferences was
basically quantitative, although quantitative data about a qualitative subject (such as
preferences) is a problematic entity. Some statistical analysis on this data was possible,

and some more will be examined in the chapter on component analysis, but the small
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size of some of the groups (particularly after the first year groups) meant that interesting

fesults were not statistically significant enough to make strong statements about them.

One reason why it was difficult to obtain large numbers of responses from the final year
students is that it was difficult to locate groups being taught together, as they tended to
have opted for different module choices in the final year. In the first year it was much
easier to find large groups of students being taught together. The decline in numbers of |
responses from the first tol the final year is thus not solely due to dréi:out from the_

degree courses.

The analysis of the themes brought out by the comments is basically qualitative,
although it is possible to perform quantitative analysis such as comparison of the -
frequency with which themes are mentioned. Again there are not really enough

responses here to justify such an undertaking.

.6.8.2 On the mathematical representations of engineering students.

The engineéring students, although in general they appear to regard themselves as visual
people, seem to prefer verbal representations of mathematical concepts. This may be
because they truly do prefer verbal representations, or may be because ;cheir inclividua.l
visualisations are idiosyncratic and do not coincide with the diagrams presented to them.
In “mechanics” questions the diagrammatic representations are the preferred option. As
Presmeg (1986) and Tall (in Tall, ed., 1991) point out, visualisation is not generally
encouraged in tackling mathematics problems, and so there are few standard
mathematical diagrammatic representations. Mathematical pictorial representations are

private,

In mechanics problems, in contrast, drawing a diagram 1s the first stage of the standard
solution procedure. A well as being “approved by authority”, mechanics diagrams have

standard, public forms which are easily recognised by students and reproduced by the

118







designers of questionnaires.

In all the questions, there was a scatter of preferred options.’ Although we can generalise
about a group having a preferred option, very rarely was that option preferred by the
whole group. In some cases, an option which was preferred by some members of a

group was strongly rejected by others.

6.8.3 On the questionnaire.

Different questions yielded different types of results.

Question 1 revealed two unexpected sets of misconceptions. The rigidity ﬁiscouception
is well known, but the wrongly estimated shape of the bent beam is not well
documented. The practical importance of the misconception is probably slight, given
that the people who hold it have presumably never had an experience which would
cause _them to change their minds. It is also a reminder that misconceptions are a part of

the mental luggage of most of us.

Questions 1, 4 and 6 also showed changes in responses as a result of teaching. This is an
encouraging result, in that such changes could be seen at all. New learning can be seen
as a sharp peak in the popularity of an option, shortly after its acquisition, which falls

off afterwards.

Question 2, and to some extent question 4, showed changes in the engineering students’
responses as a result of experience. Learning through experience is shown as a gradual

rise in the popularity of an option, without there necessarily being a drop afterwards.

These changes (in response to teaching and to experience) did not appear in the same
way in mathematics students’ responses, so it may be concluded that they were
particular to the engineering students and not part of the general process of maturation

through a university degree course. It is not suggested that there are no changes in

119




mathematics students’ mathematical ideas: the target concepts used in this study were
. chosen to be particularly appropriate to engineering students rather than to mathematics

students.

Question 3 showed strongly polarised realction.s toa graph-ical representation, the phase
plane diagram. Among those who were familiar with it, and perhaps some who were ‘
not, it was a popular option. Amongst most of those who had studied thé topic of
damped harmonic motion without using the representation it was strong-ly reje_ctet;l.
One of the themes e;nerging from the comments was the increased confidence with

which options were rejected by those who had studied a subject.

Question 6 produced comments from students which revealed some attitudes to
mathematics: that mathematics has correct and incorrect answers, that most
mathematics s not really relevant to engineers and that mathematics can be found by

looking in the appropriate texts.
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7. Component and factor analysis

7.1 Introduction i ' .

The interpretation of the responses in the previous chapter depended on considering the
set of responses to each question as a separate entity. In order to look for patterns in
responses from quest;ion to question, we may turn to qomponent.apalysis. This is an
analysis of the cc;rreiatiom between variables: it does not ¢laim to address ca;.lsal
relationships but rather seeks to ider.ltify patterns in the relationships between variables.
In this chapter we will review the theory and process of component and factor analysis,

and in the next chapter we will examine the results of component analysis on the

responses to the questionnaire.

7.2 Factors in statistics

The idea of factors enters into statistics in two distinct ways. In the first, the factors are
already known, and their interaction is the object of interest: for example in the
treatment of crops, the factors may be irrigation and use of fertilisers, or in mathematics
teaching, the use of an explorational approach and the employment of graphic
calculavors. Experiments are designed such that the factors are applied and controlled
for separately and in combination, and then the results from the different treatments are
compared. It would be possible to divide the students who responded to the
questionnaire into (a) mathematicians and engineers, and (b) first years {early and end)
and final years, and regard those as treatment factors, and devise a criterion for

examining their within-group and between-group variances.

On the other hand, it may be impossible to carry out such controlled experiments, but
nevertheless it may be felt that the patterns of correlation of experimental variables are

showing that some underlying factors are operating. Under such conditions one may
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try to induce the nature and relative importance of such factors through techniques
known as faétqr or component analysis. It is in this second sense that we are interested

in factors here.

7.3 Objectives of component and factor analysis.

As stated in the introduction, when it is suspected or hoped that underlying a number of

variables there exists some simpler structure, component or factor analysis can berused

* to induce what those components may be.

Component analysis may also be used to identify variables in a set of data which are
essentially measuring the same thing, and which may give undue weight to that
component when the variables are being used to group cases, as they may be in market
research. For example, if out of a set of ten variables, two cases matched exactly on
seven, but were different on three, it would be tempting to say that the two cases were
very similar. If however component analysis revealed that these seven variables all
loaded heavily on a single component, but that the other three were unrelated, then the
two cases would in fact be identical on one variable out of four, and their percetved

similarity would be much lower.

A central aim of factor analysis is the “orderly simplification”, to use Burt’s
phrase, of a number of interrelated measures.

. (Child, 1970, p1)

The main purpose of PCA [principal component analysis] (or FA [factor
analysis]) is to reduce a system of correlated variables to a smaller number of new
variables which, one way or another, will be of use in dealing with a multivariate
problem. '

" Jackson, 1991, p424)
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Factor analysis techniques can meet any of three objectives:
. 1. Identify the structure of relationships among either variables or respondents...

2. Identify repiesentative variables from a much larger set of variables for use in
subsequent multivariate analysis.

3. Create an entirely new set of variables, much smaller in number, to partially
or completely replace the original set of variables for use in subsequent
techniques.

(Hair et al, 1984, pp 368-371)

It is always tempting to seek to ?implify to fihd structure an& order in dai;a and it is one
of the criticisms of component analysis that it may show 1;p- spurious relationships
which are a mere coincidence. On the other hand, if variables which have no apparent
reason for loading on the same component turn out to do so, there may be a reason for
it. For exa‘mple, if shoe size, longevity and IQ load significantly on the same
component, this may be a statistical vagary, or may reflect some other phenomenon
such as early nutrition. The analysis itself will not distinguish between the possible

explanations.

7.4 What is component analysis?

Component analysis is 2 method of treating data to reduce its complexity in an orderly

and reproducible mariner, in order to extract some meaning and pattern.

- Factor analysis is a generic name given to a class of multivariate statistical
methods whose primary purpose is to define the underlying structure in a data
matrix. Broadly speaking, it addresses the problem of analyzing the structure of
the interrelationships (correlations) among a large number of variables by
defining a set of underlying dimensions, known as factors.

(Hair et al, p366)

The underlying idea is described graphically by Alt (1990) and by Child (1970) in similar
terms. A set of cases is characterised by the scores of each measured on a set of variables.
The correlations between the variables may be presented in a matrix. The terms in this

matrix lie in the range -1<r<1. If these values are regarded as the cosines of angles,
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then the variables may be portrayed by vectors whose spatial relationship is defined by
the cosines of the angles between them. These vectors lie in'a space of.up top
dimensions, where p is the number of variables. (If any three vectors happen to be

coplanar, the number of dimensions needed is reduced.
pl , th ber of d ded duced

The “trick” in component analysis is to define a set of axes in,this space which better
describes the space than the set of vectors arranged within it, and then to interpret what

the axes, that is the factors or components, represent.

The axes defined in a component analysis also correspond to the eigenvectors of the
matrix under consideration. The largest eigenvalﬁe corresponds to the first axis to be
extracted, which is in the direction of the resultant of the vector variables. When all the
(geometrical} components in this direction are subtracted from the variable vectors, the

next axis is determined as the longest axis of the residuals, and so on.

The size of the eigenvalue indicates the amount of the total variance which is accounted
for by tHe component. The sum of the values of the ,eigenvallue-s 1s the same as the
number of variables, and the number of components. However, certain criteria may be
’ used to disregard the sméller eigenvalues, and thus to reduce the effective number of
variables. The correlation between a variable and a component (the cosine of the angle
between the variable vector and the axis) is known as the loading of the variable on the

factor or component.

The analysis thus far will extract what are known as the principal factors or
components. The next stage is to “rotate” the axes to try to optimise the loadings of the
variables on the factors or components. Various techniques exist which seek to optimise
the rotation according to different criteria but the most commonly used appears to be

VARIMAX, which attempts to aligh the axes so the sum of the squares of the loadings

of the variables on the axes is maximised, subject to the axes remaining orthogonal. This
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is then used to identify clusters of variables which appear to vary together, and use them

to deduce the existence of the component which underlies and affects them all.

If instead of the self-correlations on the diagonal of the correlation matrix, an estimate of
the “communality” of the variable is used, the axes are called factors. If the self-
correlation is used, the axes are called components. The distinction between factor and

component analysis is discussed in 7.6 below. .
7.5 How it works: practical considerations

7.5.1 How many variables?

Hair et al (p373) recommend that the number of variables should be minimised while
keeping five or more variables per proposed component if a given model is being tested.
Component analysis is of most use in finding patterns of correlated variables, and a

component consisting of a single variable will not show up strongly.

7.5.2 Sample size

A sample size of less than 50 is not recommended, and at least 100 is preferable. In
general the sample should have at least five times as many observations as variables, and
a ten-to-one ratio is more acceptable. Hair et al (p373) point out that with 30 variables
there are 435 correlations in the component analysis. At a .05 significance level some 20
of these may be deemed significant and appear in the component analysis by chance.

Increasing the cases-per-variable ratio should minimise the chances of over-fitting the

data.
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7.5.3 Suitability of data.

Given the above consideratié_n, the dara cOrre'lation. matrix must hawﬂfe. encugh signific.ant
correlations to justify using component analysis. Hair et al (p374) recommend that

component analysis should only be used if a “substantial number” of correlations greater
than .30 can be found in the matrix. Alt (1990, pé6) also recommends the use of .30 as a

cut-off value, This represents a significance. of better than .01 for a sample size of 100.

Other tests which the data should satisfy are the Bartlett test of sphericity and the

Measure of Sampling Adequacy (MSA).

The Bartlett test calculates the statistical probability that the correlation matrix has
significant correlations among at least some of the variables (see also Jackson p33 for the
procedure of the test). The hypothesis is that the last (p-£) eigenvalues are equal, where p
is the number of variables and £ is the number of components to be retained. As the
sample size is increased, the test becomes more sensitive to detecting correlations among

-

the variables.

The MSA is another measure used to. quantify the degree of intercorrelations amongst
the variables and the appropriateness of component analysis. The index ranges from

zero to one and may be interpreted as follows:

.90 or above, marvelous; .80 or above, meritorious; .70 or above, middling; .60 or
above, mediocre; .50 or above, miserable; and below .50, unacceptable.

(Hair et al, p374)

Changes which cause the MSA to6 increase are: increased sample size, higher average
correlations, increased number of variables and smaller number of components

extracted.

Individual MSAs may be calculated for each variable, and any which fall in the

unacceptable range should be discarded before component analysis is carried out. In
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their illustrative example, however (p393), Hair et al discard only enoughi low-scoring
variables to bring the Syerall MSA above 50, while retai’nir;g-two others whose
individual scores are below .50. They regard the data set as acceptable because thc:
overall MSA is over .50 and over half the correlations off the diagonal are significant at

the .01 level.

Jackson (p41) refers to Hotelling’s “sand and cobblestone” theories 6f the mind, with
rege;.xfd to test batteries. A “cobblestone” situation is where a few components fairly well
chars;cterisé the data. “Sand” means that there are many low correl.ationé and the major
resultant components are small with some possibly indistinguishable. A “sand” situation

1s probably not suitable for this type of analysis.

7.5.4 Correlations translated into angles between vectors.

The variables may be regarded as vectors and the correlations berween them as the
cosines of the angle made by any two vectors. Thus if the correlation is 1, the vectors
are parallel and in the same direction, a correlation of -1 means the vectors are parallel
but opposite, and zero means the vectors are at right angles. A correlation of 0.707 puts

the vectors at 45°,

The next stage in component analysis is to create a set of vectors whose directions are
determined by the angles between them. It would be unusual for the angles to allow

three vectors to lie in one plane, and in general we have as many dimensions as variables.

In addition to the set of vectors, the analysis needs to define a set of axes by which to

orient them.
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7.5.5 How many components?

Once the eigenvalues of the variable correlation matrix have been extracted, the decision
must be taken as to how many of them are significant. There are several tests which-
may be used to determine this. They include the Scree test, the eigenvalue size test and

proportion of variance explained.

The Scree test is a graphical technique due to Cattell. The values of the eigenvalues
(roots) are plotted against their corresponding root number. The term scree refers to the
pile of rubble at the base of a cliff. The retained roots will correspond to the cliff and
the rejected ones the rubble. The last few roots are much smaller than the first ones and
are nearly equal in value. The scree test criterion is that the components up to and
including the first of these should be accepted. The problem with the scree test is that
the break between the cliff and the scree is not always well-defined, and in some
applications there may be several breaks. This then means that personal judgement is

needed to decide where to draw the line.

Another criterion is that eigenvalues less than unity should be rejected. This
corresponds to the mean root size for component analysis, and the argument is that any
component rejected by this criterion will have a smallér root than the contribution of
the average variable. Jackson (p47) describes this criterion as being widely used in the

fields of psychology and education.

Extracting components up to a given proportion of variance explained is not
recommended by Jackson (p44), as “there is nothing sacred about any fixed
proportion”, Hair et al (p378) give the values for this criterion as varying between 95%

in the natural sciences and up to 60% in the social sciences. )

Other reasons for choosing a given number of roots include the suspicion for extrinsic

reasons that it is appropriate, or that the smaller roots consist of uncontrollable inherent
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variability. There is no single accepted criterion for selecting the number of roots to

“extract..

Hair et al (p378) point out that the first components will be those which are
homogenous throughout the whole sample. Variables that are better discriminators
between the subgroups in an inhomogenous sample will load on later components,

which may not be selected according to.the above criteria. If the analyst is interested in

identifying the components which discriminate between the subgroups, then extra.
components should be extracted, which may be rejected in a later rerun of the solution if

they do not prové useful.

7.5.6 Interpreting the components

The first step in identifying what a component represents is to see which variables load
signiﬁcantly on it. Hair et al (p385) give a table (Table 7-1) by which to select the

significant component loadings based on sample size.

Component loadih'gr Sample size needed
for significance at .05

level
30 350
35 250
40 -200
45 150
.50 120
55 100
.60 85
.65 70
70 ) 60
75 50

Table 7-1: Dependence of significance on sample size (Hair et al, 1984)

However, they state that researchers often use a rule of thumb and work on practical
rather than statistical significance. In this case component loadings less than +.30 are

ignored, and loadings of +.50 are considered practically significant. As the loading is the
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correlation between the variable and the component, the square of the loading is the
amount of the variance of the variable accounted for by the component. Thus a loading
of .5 means that the component accounts for a quarter of the variance of the variable,

Loadings of the order of .80 are not typical and of are great practical significance.

Some of the variables whicli load significantly on a component will be positive and some

negative.

7.5.7 From principal components to factors.

The analysis has in fact been a principal components analysis. The axes we have found
were defined by the eigenvectors of the correlation matrix, and were the principal axes
of the space defined by the variables. These axes are unique, defined by the correlation
matrix, and two researchers analysing the same data would arrive at the same set of axes.
For this reason they are preferred by some researchers, as they are independent of the
analyst, and so may be regarded as objective. Other researchers prefer to use factor
analysis proper, which requires some subjective judgement, to define axes which may be
more meaningful. For a discussion in depth of the differences and similarities between

the methods, see Jackson Chapter 17 (pp 388-424) “What is factor analysis anyhow?”.

7.6 Relationship between factor analysis and principal components
analysis.

There are two basic models which can be adopted in factor solutions. They are
known as the factor analysis and the component analysis models. Without being
too technical, the distinction is that in factor analysis some account is taken of
the presence of unique variance whereas in component analysis the intrusion of
unique variance is ignored. In a component analysis the unique variance becomes
merged with the common variance to give hybrid “common” factors containing
small amounts of unique variance; but not enough in the first few important
factors, according to some authorities, for us to be worried about the overall
picture obtained from the analysis.

(Child, p36)
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The ‘names’ principal components analysis and factor analysis are frequently
used in a fairly loose fashion in survey research to the éxtent.that when
researchers have actually carried out a.principal components analysis they often
report that they have carried out a factor analysis. The reason for this is that the
two procedures are quite similar, or, put another way, the differences between
them are not immediately obvious.

(Alt, p48)

In most applications, both component analysis and common factor analysis
arrive at essentially identical results if the number of variables exceeds 30 or the
communalities exceed .60 for most variables.

(Hair et al, p367)

The method of principal components is primarily a data-analytic technique that
obtains linear transformations of a group of correlated variables such that certain
optimal conditions are achieved. The most important of these is that the
transformed variables are uncorrelated.

(Jackson, p1)

PCA explains variability, FA explains structure or correlations. PCA is trying to
reduce the diagonals of S [the sample covariance matrix], while FA is reducing
the off-diagonals.

(Jackson, p391)

The term “factor analysis” is commonly used to describe any data analysis technique
which seeks to distil a reduced number of variables to replace the experimental variables.
Principal components analysis is however a computationally simple method which

yields a unique solution. This makes it easier to use than factor analysis proper.

Factor analysts requires that the self-correlations be replaced by communalities, which
have first to be estimated, a_nd then a solution iterated towards. The communalities are
estimates of the shared or common variance among the variables. The difference
between the value of the communality and unity is an estimate of the error and the
variance specific to that variable. The estimating of the communalities may lead to
problems; as the iteration may lead to a value less than zero or greater than one, which is

not allowed, and the iteration process itself may not converge after an acceptable







number of repeats. The first estimate of communality is often the largest value in each

row of a correlation matrix {éxcept of course the unity value on the diagonal).

Another distinction lies in that in factor analysis the number of factors extracted affects
the value of the estimated communalities, which in turn alters the matrix whose roots
are being extracted. Thus the first root of a two factor solution will be different from
the first root of a three solution, and so on. In.component analysis the matrix is not
affected by the number of roots_extracted, and so subsequent components sirﬂply
supplement the[existi‘ng ones. The sum of the squares of the 'communalities equals the
total proportion of the variance accounted for by the factors extracted. Various factor

analysis methods are available in SPSS. They are described in Jackson pp 398-405.
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8. Component analysis of the questionnaire data

8.1 Introduction

In chapter 7, the process of component analysis was described. The process was
applied to the responses to the questionnaire to investigate the Patterns of responses,
particularly between responses to different questions. The responses to a qgestion
consisted of ordering tl-le SIX optioﬁs, which means that a ;:1egree of correlation
b'et\;.reen the options for any one qﬁestion is forced. It would not be surprising if the
analysis threw up components consisting of responses to one question. Components
showing correlations between options from different questions will be more

interesting and more practically significant.

The components derived frorﬁ the analysis are then examined to find a possible
interpretation of what each may represent, and the scores on each component for
each group of respondents are found.‘ Finally the component scores are used to
determine canonical discriminant functions to see how far these scores can be used to

sort the respondents back into their original groups.

It 1s recognised that the questicnnaire was not designed with component analysis in
mind and this leads to the components being difficult to interpret. This analysis leads

to a redesign of the questionnaire which is proposed in the next chapter.

8.2 Typology and taxonomy

It has been suggested that classification systems can be divided into typologies and
taxonomies {e.g. Meyer, Tsui and Hinings, 1993). Typologies sl;art with theoretical
considerations, predicting the groups into which individuals should be expected to
fall, based on the known or expected available possibilities: for example, age groups,

gender and previous education may be criteria according to which a theoretical
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typology of students might be built up. A taxonomy is a more empirical system
ba,se;i on 6b§ewation and experience: _t.he ind_ividlials are groﬁped :il-ccorc;lingto
characteristics which appear upon observation. A particular group of students may
be characterised, for example, by whether they ask ma1:1y or few questions in class, or
none at all. Either method of classification may yield similar groupings of

individuals, while being methodologically very different.

A typological classification of the respondents may be made by dividing respondents
into engineers and rnathematicians, and by experience. The component aﬁalysis of
the questionnaire results may however be regarded as resembling a taxonomy, as it
may be used to classify the respondents according to observed features. We may then

compare the results of the two types of classification.

8.3 The analysis: in brief ;

The questionnaire was not designed for component analysis, and the number of
variables is rather lower than the ideal five per component expected. These
components were expected to correspond to the three modes of representation:
verbal, visudl and algebraic, to depth of representation, and to whether the question

was a “mathematics” or “mechanics” question.

At the same time the options were not designed to fall neatly into groups to
correspond with expected components, with at least one option per expected
componerit per question. However there was felt to be enough resemblance betweer
some of the options to attempt 2 component analysis to see if any s'ex-lse'cou'ld be
made out of it, with the caveat that one should beware of over-interpreting the

Components.

Questions five and six were omitted from the analysis, on the grounds that they were

felt to be unsatisfactory questions, and that they had no graphical options. This lefc
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24 variables, anc_l with 209 respondents the requirement of at least five respondents
per variable was well fulfilled. Unlike many types of statistical analysis, ;:or‘nponent
analysis copes well with a non-homogenous sampl,e.. Thé components which
aistinguish between clusters in the sample tend to have smaller eigenvalues than

components which are common to all clusters.

The analysis was carried out u;ing SPSS. The Bartletr Test of Sphericity yielded 2
value of 1301.2, significant at P < .(.30001., but the Measure lof Sampling Adgquacy
(MSA) was only .23845 which falls short of the 0.5 \-ralue recommended by;'Hair et al
(1984). This was an indication that the correlations between the options were not
high in general, and that the data was not ideally suited to component analysis.
However the solution recommended, that is to eliminate the variables with the
lowest MSA values, would result in an unacceptably small number of variables
considered, so the analysis was continued, but the results would be regarded with

SOIme caution.

The scree test criterion indicated that a break pcﬁnt came at the tenth eigenvalue,
accounting for 67.3% of the variance. The components were rotated using
VARIMAX to give ten components. At this level, none of the components was
represented by less than two variables with a load.ing of 0.4 or greater, which was felt
tobea satisfactory result. The “eigenvalues greater than 1” criterion also indicated

that 10 factors should be extracted.

The “sign” of the components has been left as SPSS designated, although some of the
components would be more easily described with their polarity.reversed. This is

mentioned at the appropriate points in the chapter.
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Companent Scree Plot
35

Eigenvalue
3.0 §

2.5 .
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Figure 8-1: Component Scree Plot

- Component| 1 2 3 4 5 6 7 8 9 10
2>
Option¥

3d | 78248
3b  |63327 _
32 |.62050 48014
2d  |s55223
2e  |-45074

le 81308
1c 79398
1la - 47404 47143

4b -.72814
4e 69476

3f -66201 | .
4a 54664 - 44838

2c ..85996
2f .60372
4d -.52471

3c -75997
3e 61661

2a 77162
2b -.63377

4f 79630
4c 67916

if ..77005

1b ' 79043
1d _ ‘ 40077 |-.59284

Table 18-1: Loadings of options on components
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84 What do these components represent?

The components were investigated to see (a) what they might represent and (b) how
well they separated the respondents into either engineers and mathematicians or more
and less mature practitioners. Options which load negatively on a component are

shown in brackets.

8.4.1 Component 1

Option ' Loading
3d y=ae ™ cosot 78248
3b . F+kp+oely=0 63327
(32) The mass bounces up and down,  -62050

going less far each time, unuil it
settles back to its original position.

2d , . Y= .55223
f (x) = llm(xz—xl)—)o

X — %

(2e) As you zoom in more and more  -45074
closely to a small section of the
curve, it seems to straighten out.
The slope of the tiny straight
section 1s dy/dx at that point.

Table 8-2: Loadings on component 1

This component would be better described with its polarity reversed. It loads
positively on unpopular options and negatively on more popular options. It is one of
the more significant components because it brings together options from more than
one question. It is also interesting that the options are from a “mathematics™ question

(Q2) and a “mechanics” question (Q3).

The two most “wordy” options on the questionnaire are opposed to the.most
“algebraic” in the questions being analysed.” A positive score on this component
would indicate comfort with algebra and dislike of informal verbal description. The
mathematicians score more highly on this option as their level of experience

increases, and the engineers seem to become more comfortable with the algebraic
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notation as they progress, having preferred the verbal descriptions throughout their
tirst year. However the practising englineers are Ifess-happy with the algebra, and
score similarly to the first year engineer.s. This phenomenon (the practising engineers
resembling the first year students) recurs in this analysis, for example in components

2,5,6,7 and 8.

Mean score for
Component 1

+1 standard’ s ' _

deviation

— Subject studied

-1 N

Mathematicians

Oon

aH

Engineers

N= 55 40 27 T 23 14 20 T 15 T 15
At entry Final year Praclising engineers
End of 1st year MSc students

Level of experience

Figure 8-2: Scores on component 1

8.4.2 Component 2

Option Loading
le Shear force § = | Fdx 81308
Bending Moment M = | § dx

Tc _ 4y 79398
Bending Moment M = k;

2
(1a)  The beam bends under the weight of ~ -47404
the gold bar.

Table 8-3: Loadings on component 2

This option contains the two expressions which the engineers would meet for the
first time in the course of their first year of study, and which mathematicians would
probably not meet. Thus the score for the engineers jumps up over the course of the

first year and then subsides to what might be regarded as its natural level. The
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“jump” in postgraduate engineers is less easy to explain, but again the practising
engineers resemble the first year engineers. All the variations are fairly small
compared with those for component 6, for example. The component contains

options from one question only.

20

Mean score for 15
Component2 ——

+1 standard . . _
deviation ¢ | 1
5o 1 ——
o [34]
0.0 | [ b
[n] 1]
g Q
-5 . .
1 Subject studied
1.0 o aE e P § Mathematicians
-1.5 ,1;,‘- Engineers
N= 55 40 27 T 23 14 "20 Ti5 T15
Atentry Final year Practlising engineers
End of st year MSc students
Level of experience
Figure 8-3: Scores on component 2
8.4.3 Component 3
Option Loading
(4b) xz -72814
g=—+C
2

(integration carried out)

4e 69476

(area under curve diagram)

Table 8-4: Loadings on component 3

This component contains options from question 4 only. It loads oppositely on two

options which are different both in mode and in underlying concept.
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The “integration carried out” option was most popular with the mathematicians on
entry, and is different both in mode and in embodied concept f;'o_m the “area -undex-'
curve” diagram. At all levels of experience the engineers seem to prefer the diagram,
particularly the postgraduates and practising engineers. The tendeqcy to the negative
among the undergraduate engineers may be due to sustained practice in integration

during the degree course, with a positive trend afterwards as less is done.

2.5
Mean score for 29 |
Component 3 ——
+1 standard 15
deviation < } —_
10 | — ]
5 - & @
—_ &
73
0.0 ® &
[2:] ——
-5 4 I Subject studied
. T .
4.0 —— -1 o Mathematicians
R E— r -
-15 - _ _ o Engineers
N= 55 " 40 27 T 23 14 20 15 "5
At entry Final year Practising engineers
End of 1st year MSc students

Level of experience

Figure 8-4: Scores on component 3







8.4.4 Component 4

Option ‘ : Loading
3a The mass bounces up and down, 48014
going less far each time, until it
settles back to its original position.

1a The beam bends under the weight A7143
of the gold bar.
(3{) displacement () - . 66201

hpa

v Vv C o time()

(displacement-time diagram)
4a q is the area under the curve y = x. 54664

Table 8-5: Loadings on component 4

This component contains options from three questions: “mechanics” questions 1 and

3, and “mathematics” question 4.

It loads positively on verbal options and negatively on a diagrammatic option. It
appears to be a verbal-versus-visual component for mechanics questions, and also a
shallow-versus-depth component, as the options on which it loads positively all
decrease with level of experience. For the mathematicians the component scores are
almost constant with level of experience: for the engineers the scores rise almost
steadily with a slight drop between the end of the first year and the final year of the
degree. This drop may be due to a “new learning” peak (see conclusions to chapter 6)
in that the damped harmonic motion graph would be relatively new material to

engineering students in their final year. This option loads negatively on this

component.
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[

I

15

Mean score for 1.0 T - T _
Component4 ' ] N E—
1 standard - T
deviation 5
&5
(1]
0.0 i b )
1 LY
0] —_—
-5
1.0 4 L — Subject studied
——— i —_ I -
-1.8 o Mathematicians
-2.0 . ] cr,_ Engineers
- N= 55 ~40 27 T 23 14 T20 T15 745
At entry Finhal year Practising engineers
End of 1st year MSc students
Level of experience
Figure 8-5: Scores on component 4
8.4.5 Component 5
Option Loading
(29) dy/dx tells you how quickly — -.85996
something is changing, _
2f ' by . 60372
S)
—-/
X
(tangent diagram)
(4d) The integral tells you how ~52471

things build up.

Table 8-6: Loadings on component 5

This companent brings together the two “sensemaking” options from the

“mathematics” questions and opposes them to an option which is different both in

mode (diagram as opposed to verbal) and content (graphical interpretation as opposed

to sensemaking). Given the orientation of the component (sensemaking is negative) it

is not surprising that the engineering respondents tend to show a decreasing score on

this component. The peak for engineering students at the end of their first year looks
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like a “new learning” peak, but unless the diagram is met for the first time by the

students during their first year, which seems unlikely, it is difficult to say what has

caused it.

1.5
Mean score for 10 B ’
Gomponents - -
+1 standard —_— - o
deviation 5 4 e
[+1] &
1]
0.0 H :
¥
¢ [
-5 e 1]
10, Subject studied
— T I L)
1.5 o Mathematicians
T I .
-2.0 _ _ o Engineers
N= 55 40 27 T 23 14 "20 T15 “15
At entry Final year Practising engineers
End of 1st year MSe students
Level of experience
Figure 8-6: Scores on component 5
8.4.6 Component 6
Option Loading
(3 C) Velocity (dyfdx) -75997
K@\\
Qy Displacement
o)
(phase plane diagram)
3e Damped harmonic response 61661

Table 8-7: Loadings on component 6

This is another option in which the practising engineers resemble the first year

engineers more than they do the postgraduate engineers. There is a clear trend across

the first four groups of engineers away from the phase plane diagram and towards the

concise verbal option. Some of the practising engineers and the postgraduates have
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met the phase plane diagram in their studies, which could account for their not
rejecting it as strongly as the undergraduates. .

2.0

Mean score for 1.5 —_ -1
Component 6
1 standard

deviation

‘-1.0 [ | Subject studied

-1.5 o . ﬂ,: Mathematicians

2.0 éf Engineers
N= 55 40 27 " 23 14 "20 15 T 15
Al entry Final year Practising engineers
End of 1st year MSc students

Level of experience

Figure 8-7: Scores on component 6

8.4.7 Component 7

Option - Loading
2a  f'(x) is the slope of the tangent toa 77162
graph of y against x.

(2b) 3 -63377

\w/“"’/ﬁ\ -/“"Z /

X

~ (zoom in diagram)

Table 8-8: Loadings on component 7

The two options which load on this component are radically different
representations of the derivative, one of which (2a) is commonly taught and the other
(2b) is taught in, for example, SMP A level. The two options are also in different

modes of representation.

The greatest difference between the engineers and the mathematicians is-at entry,

where the mathematicians prefer the “slope of the tangent” option quite strongly.
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Mezn score for o
Component 7 1
+1 standard R G _ —_
deviation o —_
g
h
G s ! & it
ar
i q o
S —_ | T
i Subject studied
-2 4
- . a Mathematicians
I .
-3 o Engineers
55 40 27 " 23 14 " 20 T 15 EE
Final year Practising engineers
MSc students

N=
At entry
End of 1st year

Level of experience

Figure 8-8: Scores on component 7

(
: 8.4.8 Component 8
Option Loading
-.79630
@ a_
- dx
(integration is the reverse of
differentiation) )
e ' 67916
g= x?-i-(.

(integration carried out diagram)

Table 8-9: Loadings on component 8
Both these options come from- question 4, and show both different underlying

concepts and different modes of representation. It is not possible to say which is

more significant. It is possible that the peak in this component in engineering

students at the end of their first years is a “new learning” peak associated with

teaching about integration over the course of the first year. The practising engineers

are very like the end of first year engineers in this component.

145

AT







B

2.0

Mean score for 15 | —— | ——
Componhent 8 - —_—
+1 standard 10
deviation = i -
5 4 | T !
0.0 q @
] & &
o
-5 .
-1.0 4 —— Subject studied
— I x .
1.5 o  — o Mathematicians
2.0 é. Engineers
N= 55 ~ 40 27 723 42 - 15 T1s
At entry Final year Practising engineers
End of 1st year MSc students
Level of experience
Figure 8-9: Scores on component 8
8.4.9 Component 9
Option Loading
(4a) g is the area under the curvey = x.  -44838
(If) Load ing ‘ - 77005
i Rcagliun:.ir%m Reaction;%g [
(loads diagram)
1d A simply supported beam witha 40077

point load at one-third span.

Table 8-10: Loadings on component 9

This component does not seem to represent a diagrammatic-verbal opposition, but it

does contrast naive and more mature concepts.

I suspect that the low scores in this component for the engineers in their first year are
a “new learning” peak, representing covering integration (end of first year) and beam
bending (beginning of first year). It is difficult to say why the postgraduate and

practising engineers drift back towards the first year level.
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2.0
Mean score for 1.5 | —
Component9 ~ -1
+1 standard 1.0 1
deviation ST —_
R ___ &
5 o -1 —_—
1]
0.0 B ¥
-
..5 J o @ m
-1.0 o — Subject studied
o —— T —— | = .
15 a Mathematicians
20 | : § Engineers
- N= 55 T 40 27 " 23 14 20 T15 T15
At enfry Final year Practising engineers
End of 1st year MSe students
Level of experience
Figure 8-10: Scores on component 9
8.4.10 Component 10
Option Loading
]_b Deflected shape ' 79043
L A

——

Deflected shape
(1d) A simply supported beam witha =~ -.59284
point load at one-third span.

Table 8-11: Loadings on component 10

This component opposes two options from question 1. The options are different in
both mode and-concept. Option 1d was intended to be a form of encapsulation: the
summary of the target concept as a member of a class of standard solutions. The

deflected shape is somewhat unexpected, and may be mare acceptable to more

experienced engineering students.







2.0

Mean score for 1.5 4 N
Component 10 —_
+1 standard 1.0 o
deviation Ay [ . S
S5 & c:)
0.0 { 1 w )
P [
R [it] e
-5
4.0 4 N i _1 |subject studied
N I : .
1.5 . o Mathematicians
3 '
2.0 _ _ g Engineers
N= 55 40 27 23 14 20 15 15
At entry ‘ Final year Practising engineers
End of 1st year MSc students

Level of experience

Figure 8-11: Scores on component 10
8.5 Discussion

8.5.1 Canonical discriminant functions

Given that the data is classified already according to the typology of subject studied

and level of experience, the values obtained for the component scores for each

respondent may be used to test how good a match the taxonomy of the component

analysis is to the typology.

A form of regression analysis is used to obtain coefficients for linear equations in the
component scores which best classify the cases back into their actual groups. Cases
which are wrongly classified indicate overlap of the groups which cannot be resolved

using the given variables.

When such an analysis of the respondents was performed with SPSS using the

component scores as the variables, the reclassification shown in Table 8-12 was

obtained.
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Predicted Group Membership .
Actual |No. of | maths maths maths eng eng  eng  post-  prac
Group | Cases | entry end1st final entry end1st final grad eng
yr. yr. eng :
maths | 55 | 43 5 0 3 3 0 1 0
entry 782% 9.1% 55%  5.5% 1.8%
maths 27 10 10 0 3 1 1 2 0
end 1st _ 37.0% 37.0% 11.1% 37% 7.4%
maths 14 3 1 8 1 0 0 1 0
final 214% 7.1% 471% 7.1% . 7.1%
eng | 40 | 5 1 0 24 2 2 1 5
entry 12.5%  2.5% 60% 5% 5% 25% 12.5%
eng 23 1 o 0 9 12 0 0 1
end Ist 43% 39.1% 52.2% ] 4.3%
eng 20 1 0 0 3 3 11 1 1
final 5.0% 15.0% 15.0% 2.0% 7.0% 6.7%
postgrad| 15 2 0 1 2 0 2 7 1
eng 13.3% 6.7% 13.3% 13.3% 46.7% 6.7%
prac 15 2 0 0 3 2 0 1 7
eng 13.3% 20.0% 13.3% 6.7% 46.7%

Table 8-12: Comparison of predicted with actual group membership

Each row shows the number and pecentage of the members of an actual group
classified in each predicted group. A perfect classification would be a diagonal array

with 100% in each diagonal cell (shown in bold).

The percentage of "grouped" cases correctly classified is 58.37%, that is 122 cases; the
number of cases where la mistaken for 1b, or vice versa, in the correct subject is 26.
Thus 148 or 70.8% of cases were almost co;‘rectly classified. This indicates that the
overlaps between the groups are small. Although the components do not
individually distinguish well between types of respondent, it appears that in

combination they do.

Of particular interest is that 5 of the engineering students at the beginning of their
studies were classified with the practising engineers, and five of the practising
engineers were classified with the first year engineers. This seems to indicate either
that the practising engineers regress to mathematical ideas of the type they held at the

start of their studies ( See the comments in chapter 6 from practising enginéers on
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trying to avoid mathematics) or that this group was originally so different from the

Plymouth students that any comparison is invalid.
Another interesting point is the overlap between the first year mathematics and

engineering students. Of the first year mathematics responses, ten are mis-classifie-d as

first year engineering responses, and of the first year engineering responses, seven are
mis-classified as first year mathematics responses. This overlap indicates tl}at the two
groups are not completely disparate, but that there is a degree of similarity between

them. Either they have not been socialised into their subject groups, or those

students who have chosen the “wrong” subject have not yet dropped out.

Clumping the groups together by subject studied gives Table 8-13.

Predicted Group Membership
Mathematics Engineering '
Actual | Mathematics 80 (44.1) 16 (51.9)
groups Engineering 13 {(51.9) 100 (61.1)
Table 8-13: Comparison of predicted with actual groups: (subject studied only)

(Figures in brackets show expected random redistribution)
The proportion of cases wrongly classified by subject studied was 13.9%. The value
of * for this distribution is close to 108, and the value needed for significance at the
0.1% level for three degrees of freedom is only 16.27. Hence the reclassification could
be regarded as successful. Testing the significance at a finer level is problematic as the

expected class sizes drop below five, at which point the calculation of % is invalid.

¥ 8.5.2 The components
The component analysis produced components which were intéresting in two

different ways: those which could be interpreted easily and those which distinguished

1

significantly between groups. Component 5 fulfils both these criteria: it seems to.

represent an assignment of meaning to calculus ideas and it distinguishes significantly
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between final year engineers and mathematicians in particular. It was satisfying that
the two verbal options which load significantly on this component were associated by

the analysis, and gave some confidence in the analysis.

Six of the components loaded on options from one question only. These were
components 2 and 10 which loaded on question 1, component 7 which loads on
question 2, component 6 on question 3 and-components 3 and 8 on question 4. These
all oppose different modes of representation, either algebraic and verbal {component
2), algebraic and diagrammatic (Components 3 and 8), or diagrammatic and verbal
(components 6, 7 ar;d 10). These components were particulariy difficult to interpret

when they loaded on only two options (components 3, 6, 7, 8 and 10).

In components 1, 2, 5, 6, 7 and 8 the practising engineers’ scores seemed to revert to
being like the first year engineering students’. This phenomenon would explain the
way that the canonical discriminant function analysis failed to distinguish between
these groups. Why the groups are similar is a2 question which requires further

investigation to answer sensibly.
8.6 Conclusions

8.6.1 On the analysis

Component analysis brought out some interesting features from the questionnaire
results. In some ways the engineers and mathematicians appeared to be similar, in
others they started different and became more similar, and others they started similar

and diverged.

The canonical discriminant function separated the groups of respondents with a fair
degree of success, apart from the practising engineers and the engineering students at

the start of the course. This result indicates that it would be useful to survey some
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University of Plymouth engineering graduates some 5-10 years into their careers to

- see if they also “regress” .

Some of the components were easy to identify as meaningful: others, particularly
those which loaded significantly on only two options, were difficult to interpret.
This shows up the importance of having enough variables per component in the

analysis.

8.6.2 On the suitability of the data

The results were not strictly suitable for component analysis, so the features
identified must be regarded with caution. In particular the Measure of Sampling
Adequacy (MSA) for the sample as a whole and for all the options except those to

Question 1 was below the recommended level of 0.5.

The number of components chosen was a compromise between accounting for
enough of the variance of the sample (more components) and having enough options
per component to identify th'e component (fewer components). As Hair et al (1984)
point out, this is a matter of judgement, and ten components coincided with a break
point on the scree plot, accounted for more than 50% of the variance and did not
create any single—variable components. In addition, the rotation using SPSS
converged within 25 iterations, and thus it was possible to perform the analysis with

this mumber of factors.

8.6.3 On the questionnaire

The analysis has shown another way in which the questionnaire may be improved,
namely by increasing the number of questions and by more consciously aiming the
options towards particular components. This will be taken into account when

redesigning Questions 5 and 6 in particular.
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9. Revised questionnaire

9.1 Introduction

The component analysis described in the last chapter and the experience of
administering the questionnaire described in chapter 5 showed that there were
shortcomings in the questionnaire. On the basis of those results, and of the theory
described in the previous chapter, the questionnaire was re-examined critically, and each
question revised to follow a common format. In this chapter a set of six revised

questions'is proposed.

Questions 1-4 are largely as before, with minor adjustments, except that the invited
response is in tﬁe form of a 5-point Likert scale for each option. This has two benefits:
it should make data input easier and it makes the six scores for the options for a given
question independent. Thé diagrams have also been redrawn to improve the quality of

the lines.

It was felt that the use of a Likert-type scale would reduce the number of extreme ratings
(as respondents tend to avoid the extreme ends of such a scale) and so with a smaller
number of values for each variable, the internal correlations would be higher and the

number of factors would be reduced.

There are now 36 variables which it is hoped will be suitable for component analysis.
This would allow for up to 7 components at a rate of 5 variables per component. The
components which are anticipated are: mechanics/ mathematics type question, depth of
concept, algebraic mode, verbal mode and diagrammatic mode: that is five probable

components.

The space for comments has been retained as some of the comments returned by

respondents have been so illuminating at various stages of the research.




The adjustments are as follows.

9.2 Question 1: beam bendz‘ng (statics)

| Option 1b, the deflected shape diagram: the load arrow now touches the line of the
beam. A colleague suggested that he found this easier to understand. The consistently
unpopular option le, two expressions giving the relationshiP between shear force,
be-ndi-ng moment and applied loads in an integral format, is replaced by a pair of

equations for the deflection of the beam, analogous to-option 3d.

9.3 Question 2: differentiation

Option 2e, the “As you zoom in...” statement was an unpopular option which gave the
question three verbal options with only one algebraic. It was replaced with a simple
algebraic option expressing the idea that integration is the reverse of differentiation,

analogous to 3f.

9.4 Question 3: mass/spring/damper system (dynamics)

Option 3¢, the phase plane diagram was again an unpopular option. It was replaced
with a diagram of the mass, spring and damper, which gave a simple diagrammatic
representation, of the type which one might draw in beginning to solve the case, and

analogous to option 1f.

9.5 Question 4: integration

Option 4b, the solved integral has been replaced with a statement of the integral as a

limit, analogous with 2d.
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9.6 Question 5: pinball (unfamiliar kinematics)

The options to question 5 were completely revised. Option 5b, a diagram of the forces
acting on the ball while in contact with the spring, was given as analogous with options
1f and 3c. Option 5¢ is a statement about the motion of the ball using some technical
language, analogous to options 1d and 3e. Option 5d is a differéntial equation describing
the motion of the ball while in contact with the spring, analogous to 1c and 3b. Opticn
5e is a displacement-time diagram analogous with optiops 1b and 3f. Option 5fisa

simple statement in non-technical language about the behaviour of the system analogous

with 1a and 3a.

9.7 Question 6: differential equation: exponential growth

Question 6 was also completely revised. Instead of six algebraic options there are now
two algebraic, two diagrammatic and two verbal options, to match all the other

questions. They have also been designed to match the options in questions 2 and 4.

9.8 Rewvised questions

The complete set of revised questions appears on the following pages.
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9.8.1 Question 1

A plank 1.5m long is placed on two bricks Very near its ends. A bar of gold
is placed across it 0.5m from one end. Score the following according to how
' well they represent this to you.

@) The beam bends under the
weight of the gold bar. Nothing Exactly
like it right
g a a ga . Aa
)] Deflected shape .
L__._.-/ - Nothing’ Exactly
5 ' I like it right
a o  a G
() d’x
Bending Moment M= kT Nothing Exactly
8 7 like it right

a a Q a aQ

@ A simply supported beam with a .
point load at one-third span Nothing Exactly
like it right
~ | O O o QaaQ

(&)

x<fy==EI"E (31

— Nothing Exactly
§<x<l;y=—Ef'n;_g(%lj—é%lzx+!x2—§x’) like it right
= = s = s

— 43 ll.oad mg
: Nothing Exactly
T Reaction;ggg Reaclion,l%g [ like it T lght
— o o a a u

{Comments

| *
g
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9.8.2 Question 2

Y_rw
All the below may be associated with the statement above. Please score them
according to how closely they are linked to it in your mind.

@  f(x) is the slope of the tangent to Nothing Exactly

a graph of y against x. likeit right
O O 0 0 A
(b) »
Nothing Exactly
N 4 like it right
L NN / O Qoo o Q
© dy/dx tells you how quickly Nothing Exactly

like it right

something is changing. _
a o a a a

(d) Y=Y Nothing Exactly

S =lim, _ . . % like it , right
Q 0O O a 4d
© y=1fe) dx

Nothing Exactly
like it right
Q QO Q QO QO

® by ,
&) : Nothing Exactly

like it right
ad O o a 4d







9.8.3 Question 3

A mass suspended from a sprihg and dashfaot 1s pulled down from its
equilibrium position and released. Please score the following according to
how they best match this for you.

@  The mass bounces up and down, Nothing Exactly

going less far each time, until it like it right

settles back to its original N e
position. | | :

® J+lg=wly=0 _ Nothing Exactly

- likeit right

Q o 0o a o

©
Nothing Exactly
like it right
o oo o o Q

like it  right
O Q Q QO Q

© Damped harmonic response Nothing Exactly
like it right
Q Q O QO Q4

¢3; displacement ()
Nothing Exactly
/\ N A like it right
/\/\/V“’ e O O 0o o Qa

ng;umgn;g |







9.8.4 Question 4

g= |xdx

(a) - (f) below may all be associated with this statement. Please score them
according to how closely they fit the way you think of it.

(@) g is the area under the curve Nothing Exactly
o QQ 4O Q a
(b) g =lim Z xOx Nothing Exactly
like it . right

QO O Qa QO @

©
Nothing Exactly
like it right
Q a a Q Qo

@  The integral tells you how things Nothing Exactly
build up. like it right
a Qo o a Q

Nothing Exactly
like it right
g ad a  Q

Nothing Exactly
like it right
O o o Q o
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9.8.5 Question 5

In a pinball game, a ball is fired by _r.eleasing a taut spring behind it, |
propelling the ball out at speed. Score the following according to how well
they represent this to you.

® y < ¥, cosinusoidal motion I\.IOth-ing Exa.cﬂy
y > yo; pal'abOIiC motion. like it nght

.0 0O QO 0O Q

® N “k(yoy)

Nothing . - Exactly
like it _ right
a o o a 34

© The ball is accelerated against
gravity by the spring until the Nothing Exactly
spring reaches its equilibrium fike 1t right
position, then rolis up and down e
the slope under gravity.

@ ‘ my = k(y, — y)—mgsinb Nothing Exactly

while in contact with the spring. likeit right
: O 00 aQa D

© ‘Displaccmcn;
Nothing Exactly
yeye like it right
“otngy _ QO a o Q@ Qo
®. The further you pull back the :
spring, the faster the ball will go. Nothing Exactly
like it right

O Qg Q a a
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9.8.6 Question 6

dx

dt

Score the options below according to how closely they resemble the way you
think about this equation.

@ &
@ C Nothing Exactly
like it © right
O a g a a
®) Exponential growth Nothing Exactly
like it right
O Qa 0O QO gd
© dr
o« . - Nothing Exactly
d fike it right
/1 i O O O a 4
CY .t Nothing Exactly
x=ke like it right
g a o o a
© * x=ké "
Nothing Exactly
like it right

O O g a d

®  The quantity x is snowballing at

an ever-growing rate. Nothing Exactly

like it right
g O a a a4

Qommentg
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10. Engineering Students

10.1 Introduction

In the previous chapters, it has been shown that there do appear to be differences
between the engineering and mathematics students studied. In the past, other
researchers have looked at different aspects of differences between engi.neering
students and other groups to see what makes them special. This choice has been

motivated by vartous reasons.

Engineering students are perceived as being “different”. Engineering is an.applied
discipline, and engineering students want to “be engineers” rather than to “study
engineering”. It is also, despite Finniston (1980), predominantly seen as masculine.

(See Galbraith, 1992; Wilson et al, 1993; Ethington, 1988; Hackett et al, 1992).

Most universities have engineering students, and in some places (Cambridge, for
example) this 1s the largest single group of students in the university. Thus
engineering students are accessible to many investigators, whereas students of say,
Sanskrit, are harder to come by. These two reasons make engineering students a

popular control group to compare with other disciplines. (e.g., Mikellides, 1989;

Galbraith, 1992)

Engineering as a discipline is perceived by some as important for the social and

economic welfare of the nation, in maintaining and improving the physical
infrastructure and the health and innovation of manufacturing industry. The
Finniston report pointed out a possible future shortfall in engineering graduates in
the UK, and despite an expansion in the mimber of university places for engineering
students, in autumn 1995, 11.3% of employers were having problems recruiting

engineering graduates (Careers Research and Advisory Service, CRAC, 1996, p82).
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10.2 The engineering student

Students of engineering have something of a reputation for being an extreme type, or
a breed apart. Numerous studies seem to confirm this stereotype, for example by
using engineering students as a comparison group (see for example, comparison with
elementary teaching students (Galbraith, 1992), architectural students (Mikellides,
1989}, commerce and soctal science students (Guimond and Palmer, 1990)). In her
study of “the young worker at college” Venables (1967) found that engineering

students even differed physically from the run of students.

The young engineers were predominantly muscular in body build: many more
people who were either long and thin, or fat, turn up in the University
population (p53)... Most students in mechanical engineering expressed a
preference for a muscular build and those who were only marginally in this
category tended to see themselves as more muscular than they actually were

(p161).
Venables (1967)

Where personality is concerned, Crowther (1997b) describes the majority of
engineering students as “phlegmatic, practical people” who “consequently... show

steady, reliable and extremely practical characteristics”.

10.3 Learning style.

It is the general experience of teachers that students respond differently to the same
lessons. Students are individuals, and apart from any differences in ability, they bring
their own history, and their ow-n preferences to learning. These preferences are
broadly summarised as personality types or styles, and when they affect the way

students learn or approach learning, they may be called learning styles.

In this section are described three different measures of personality types portraying
engineers as an extreme type when compared to students of other subjects. The

measures are independent and do not come from the same family tree.







10.3.1 Kolb’s Experiential Learning Model

Kolb (1981) devised 2 model of experiential learning in which learning is conceived as |

a four-stage cycle. Concrete experience (concrete stage) is the basis for observation
and reflection (reflective stage) from which an idea or theory is formed (abstract
stage). The implications of the theory can be tested (active stage), leading to new

concrete experiences (concrete stage again).

- Concrete
/’ . Experience \
Active Reflective
Experimentation Observation

\ Abstract /

Conceptualisation

Figure 10-1: Kolb’s Experiential Learning Model

Effective learners need to develop skills in all four_ areas, but as two pairs of polar

opposites of capabilities are needed (concrete-abstract and active-reflective) learners
will tend to be better at one part of each pair than the other. These characteristics
can be regarded as lying on a pair of orthogonal axes, and individuals characterised

according to the quadrant into which they fall.

The instrument devised by Kolb for measuring learning style differences along the
two basic dimensions is a self-descriptive inventory called the Learning Styles
Inventory (LSI). The earlier form of LSI consisted of groups of four adjectives.
Respondents were asked to rank these in the group according to how accurately they
felt the acijectives described them. A later revision consisted of sentences starting in
such ways as “I learn best when...” with respondents ranking the four alternative

endings for each sentence.

Thus he describes four types of learners. (Table 10-1)
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Preferred styles Key strengths Preférences
Conwergers active Concrete application of ideas. | Prefer to solve problems
experimentarion ' which have a single right
and abstract answer and to deal with
conceptualisation things rather than people
Divergers concrete experience | Viewing a concrete situation | Interested in people and tend
and reflective from many perspectives, and | to be imaginative
observation generating ideas
Assimilators abstract Producing theoretical models | Less interested in people than
conceptualisation ideas, and less interested in
and reflective practical applications than in
observation the soundness of theories
Accommodators | concrete experience | Carrying out plans and Doers:"when the theory does

and active
experimentation

experiments: more at home

-with taking risks than people

with the other three learning
styles

not match the evidence, they
will tend to discard the
theory

Table 10-1: Kolb’s classification of learning styles

Kolb administered his Learning Styles Inventory to a sample of 800 practising

managers and undergraduate students in management, and related their learning styles

to their undergraduate major subject. He found that although they shared a common

occupation, their learning styles were strongly associated to their undergraduate

educational experience. He found that only two groups of managers fell into the

abstract/active convergers quadrant: nurses and engineers. Business majors appeared

as concrete/active accommodators, human scientists as concrete/reflective divergers,

and mathematicians, physical scientists and economists as abstract/reflective

assimilators. He then turned to data produced in other studies.

Biglan (1973) had administered questionnaires to faculty members in the University

of Illinois, asking them to group together subject areas on the basis of similarity,

without any labelling of the groupings. Biglan identified dimensions to account for

the similarity groupings. He found that the dimensions accounting for the greatest

variance in the data could be described as hard-soft and pure-applied. Kolb identifies

these with his abstract-concrete and reflective-active axes, and finds striking

similarities between the distribution of Biglan’s subject areas and his college majors of

managers on these axes. For example, engineering falls into the hard/applied
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quadrant, accounting and finance (reckoned as equivalent to business) into

soft/applied, human sciences in the soft/pure quadrant, and mathematics and physical

sciences in the hard/pure area.

Finally Kolb analysed the results of the data collected by the Carnegie Commission
on Higher Education in their 1969 study of representative American colleges and
universities. Some 32,963 questionnaires from graduate students in 158 institutions
and 60,028 from faculty members in 303 ins;".itutions had been tabuiated, and he
found proxies for his axes in the degree of consulting wotk carried out By the faculty
(active/reflective axis) and the importance of mathematics or humanities as
prerequisites for students in their faculty (abstract/concrete axis). When faculties
were plotted against these axes, he found, once again, that engineering fell in the
abstract/active quadrant, human sciences in the concrete/reflective area, and
mathematics and natural sciences in the abstract/reflective quadrant. Subjects in the

concrete/active area included law, medicine, education and architecture, not covered

in his original survey.

He concluded that different faculties do indeed have different cultures, and that what
constitutes knowledge in fact varies widely from one to another. From his analysis,
engineering stands as an extreme group, removed from mathematics and natural
sciences, in its dominant philosophy, theory of truth, inquiry strategy, typical
inquiry method, how knowledge is portrayed, and basic units of knowledge.
Correspondingly, it is studied by students with differerit priorities, skills and
personalities. Above all, students with preferred learning styles which do not match

those of their faculty become unhappy, alienated, and likely to drop out.

Brown and Hayden (1989), in a study on two different types of higher education
institutions, administered Kolb’s Learning Style Inventory to 222 students of arts

(liberal arts, fine or applied arts), science {mostly computer science or mathematics),

167







and business, plus 16 engineering students from one of the institutions. They found
that, in Kolb’s classification, 0% of the engineering students were accommodators
(compared with 39% of science students), 31% divergers (39% in scfence), 25% - |
assimilators (14% in science), and 44% convergers (7% in science). (The distribution
of the engineering students is not significantly different from an even distribution at
the 5% level, using a ¢ test.) The other subject group most closely resembling the
engineerji-ng studenF§ Were" business students at the same Institute of Technology,
Wh-ere the view of education was narrow, seeking to prepare students for careers. The
authors comment that the group of engineering students particularly well supported
Kolb’s theory. Overall, convergers were the smallest group at either institution, so
engineering students differed as a group not only from the science (computer science

and mathematics) students but from the student body taken as 2 whole.

10.3.2 Myers-Briggs Type Indicator

McCaulley (1976) used the Myers-Briggs Type Indic.ator (MBTTI), based on Jung’s
analysis of personality types, to ascribe classifications to 3362 students across 17 fields
of study at the University of Florida. She found that on almost all the criteria within
the indicator, engineering students occupied extreme positions, and that the results
were statistically significant at the 1% level or better. For example, 63% of
engineering students preferred introversion to extroversion, compared to 48% of the
total student sample, and exceeded only by pharmacy, where 69% preferred
mtroversion. Of physical sciences students, 51% preéferred introversion.
Extroversion is that attitude where attention flows out to the objects and people of
the environment, and introversion is where “energy flows from the object back to the

subject”. In the population in general 25% prefer introversion.
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On the perceiving (sensing/intuition) axis, engineering students occupied a moderate
position, 51% preferring intuition, compared to 53% of the total sample, and 66% of_
physical science students. This was the only ax:s on which engineering students did
not differ widely from the whole sample. Sensing and intuition are two different
ways of perceiving. Sensing is perceiving through observation, and grounded in what
is observable and real. Intuition depends on the “mind’s eye”, through which one
sees also relationships between events, and also imaginatively. The general

population is evenly divided in its preferences on this axis.

The judgement axis in Jung’s theory is divided into thinking and feeling. Thinking is
the application of rules of cause-and-effect and objective analysis, and feeling is a way
of prioritising which takes into account the human side of problems, and their
solution. Of the engineering students, 53% preferred thinking, compared with 55%
of physical science students who preferred feeling, and 63% of the whole sample who

preferred feeling. No other group of students had a2 majority of thinkers.

The final preference in the typography is between perceiving and judging. Ina
judging attitude, we take in just enough information to make a decision. Ina
perceiving attitude, we are in no hurry to decide, but take in all there is to know
about a situation. Engineering leads the field with 63% of students preferring
judgement, while the whole sample is evenly balanced, and 58% of physical science

students prefer judgement.

As a whole, engineering students can be characterised as thinking judging (T7) types,
described by McCaulley as.the most tough-minded of the types, although, as she
points out, there are people of every type studying engineering. They also differ

" from physical science students, who are markedly more intuitive, less introverted,
more inclined to feeling, and less judging. Unfortunately, mathematics students, with

whom engineering students are often compared, did not feature in this survey.
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10.3.3 Approaches to Studying

Ramsden and Entwistle (1981) carried out a survey of 2208 students from 66
departments of Engineering, Physics, English, History, Psychology a;nd Economics int
British higher education institutions. They investigated student attitudes to learning
and their perceptions of their departments. Their study is thus one of attitudes rather
than an underlying style. The results for elngineering students (as compared with

students of the other five disciplines in the sfudy) were as shown in Table 10-2.

APPROACHES TO STUDYING

Meaning Orientation

Deep approach Active questioning in learning low

Inter-relating ideas Relating to other parts of the course low

Use of Evidence Relating evidence to conclusions highest

Intrinsic Motivation Interest in learning for learning’s sake low

Reproducing Orientation

Surface Approach Preoccupation with memorisation moderate

Syllabus-boundedness Relying on staff to define learning tasks highest

Fear of Failure Pessimism and anxiety about academic outcomes highest

Extrinsic Motivation Interest in courses for the qualifications they offer highest

Achieving Orientation

Strategic Approach Awareness of implications of academic demands made by~ high
staff .

Disorganised Study Unable to work regularly and effectively high

Methods

Negative Attitudes to Lack of interest and application . moderate

Studying

Achievement Motivation ~ Competitive and confident highest

Styles and Pathologies

Comprehension Learning  Readiness to map out subject area and think divergently low

Globetrotting Over-ready to jump to conclusions moderate

Operation Learning Emphasis on facts and logical analysis highest

Improvidence Over-cautious reliance-on details high

PERCEPTIONS OF COURSE

Formal Teaching methods Lectures and classes more important than individual study  highest
Clear Goals and Standards ~ Assessment standards and ends of studying clearly defined  highest

Workload Heavy pressures to fulfil task requirements highest
Vocational relevance Perceived relevance of course to careers highest
Good Teaching Well-prepared helpful committed teachers lowest
Freedom in Learning Discretion of students to choose and organise own work  lowest
Openness to Students Friendly staff attitudes and preparedness to adapt to moderate
B students’ needs
Good Sacial Climate Quality of academic and social relationships hetween moderate
students

Table 10-2: Engineering students’ attitudes to studying (Ramsden & Entwistle,

1981)

Engineering students, according to this analysis, were motivated to study by the

desire to gain the qualification offered. (This agrees with Crowther’s 1997b finding
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that engineering students are motivated by short-term goals.) Since this was their
aim, they followed the rules in a rarional manner, dep_ending on the staff to set tar.gets
and standards and to define the material to be learnt. Peers are more important as
competition than as a social group, and staff are the taskmasters rather than sharers in
a community of learners. Knowledge is important as a means to the end qf becoming

an engineer.

10.4 Socialisation

It may profitably be asked how much of the difference is due to the type of teaching
and the taught material the students have encountered during their degree course, and
how much is due to the personality differences between the types of students who
choose mathematics or engineering degrees in the first place. McCaulley (1976)
argues that the initial differences between students in different de?artments are
emphasised as they continue through the course. She points out the importance of

. peer socialisation, and there is also the effect of adopting the tone and attitudes they
associate with members of their chosen professional group, namely the staff, and in
the case of engineering students, professionals they have met in their work experience

year.

Guimond and Palmer (1990) found evidence of socialisation when they explored the
ways that students in commerce, engineering and social science attributed the causes
for poverty and unemployment. First year students in the three groups were
indistinguishable in their beliefs: in the third and fourth years they had diverged
strongly, with social science students blaming “the system” mo;e, commerce students
less, and engineering students the same as in the first year. They argue that the

differences among upper year students are a result of differences in the socialisation of

students in the subject groups.
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White (1972) points out that Durkheim’s insight (1956) was that education must be
socialisation. The knowledge and culture handed on in education falls into two
categories: that which all members of the given society should posséss, and that which
is specifically suited to the individual’s place in the society, or their future occupation.
Whereas White argues that this second category 1s of dubious morality in the teaching
of children, in the context of the education of a young adult who may be deemed to
have chosen a prof;zssion, by virtue-of having chosen a vocationa.ﬂy tit'ied degree
course, this objecti;)n d.isappeafs. Indeed one may say thaf it is proper for an
engineering student to be taught not only the subject matter of engineering, but also

the manner of being an engineer.

Clark (1994) suggests that acculturation to the profession is an integral part of

professional preparation, through appropriate mentorship.

Cooper and Millar (1991) investigated the personality types of faculty and students in
a business school, and found the intuitive style to predominate among faculty and the
sensing style among students. That is, the students preferred a concrete approach,
and the faculty an abstract approach. McDermott (1991) suggests a similar mismatch
occurs in physics: that lecturers in physics tend to teach in an abstract way, to save
students the effort of making their own generalisations, forgetting that they had
learnt from the particular to the general, the concrete to the abstract, and indeed

gained intrinsic motivation therefrom.

Brown and Cross (1992), using the Gough and Heilbrun (1980) adjective checklist
(ACL) found differences between the engineering students they tested and the
previously measured norm for engineers in the population. The students were more
sociable and outgoing than their practising counterparts, and had a more global

approach to problem-solving. They suggest that the population of engineering
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students may have changed, but other explanations could be that not 21l engineering
students enter the profession, those unsuited by personality moving elsewhere, or
that there is an overall evolution of personality, perception and cognition as observed

by Perry (e.g. 1988)

10.5 Conclusions

Overall, we can probably conclude that engiﬁeering students do have a different
personality profile from mathematics or physical science students, and that this will
be reflected in their preferred learning style. It would be wise to respect this
difference when trying to teach the mathematics and physical science which form an
important part of the engineering syllabus. In particular they differ from the
lecturers who teach them in these subjects, particularly in their motivation, and
lecturers should bear in mind Vinner’s criteria (see Chapter 5): that a student’s mental
constructs should be confronted if in doing so a valid educational purpose is served,

and otherwise that the teacher should teach in accordance with those constructs.







11. Epistemological orientations, paradigms of curriculum, and

learning theories.

11.1 Introduction

The study described so far has concentrated on characterising engineering students
and the ways in which they think of and do mathematics, particularly in comparison
with mathematics students. As was stated in the Introduction (chapter 1), alongside
the concern expressed i;l the various reports for the standard of mathematics skills of
engineering students was a hope that the use of computer courseware would be
helpful in improving the situation. It was proposed therefore that a piece of
courseware should be written to help engineering students reinforce their

mathematical concepts through the use of a mathematical modelling framework.

In chapters 12 and 13 the research relating to mathematical modelling and the design
of computer courseware will be discussed, but at this point it is apposite to summarise

some of the underlying theories which inform the design of any teaching materials.

11.2 Epistemological orientations, paradigms of curriculum, and
learning theories

What is education? how do we learn? and what do we believe about learning? These
are closely linked but not identical questions. The reasons for teaching mathematics
and indeed the definition of what mathematics is will vary with the curriculum
paradigm adopted. The way it is taught will depend on the learning theory held by

the teacher, and the expectations held by the learner will depend on their theory of

learning and their epistemological orientation.







In addition, these internal structures will affect our view of the nature of
mathematics, and the reasons why anybody, and specifically engineering students,

should need (or want) to learn mathematics.

We must remember though that the internal world of the learner is not directly
knowable (the behaviourists’ main argument), so that everything we say about the
learning process is a description of a model of that pr-o;:ess, and that no-model can
contain ali truth. Somietimes one model will be more useful, sometimes anoth_er, and
sometimes aspects of several may be combined to suit a particular purpose. In
particular as the learner becomes more mature and graduates from novice to expert in

a given field the learning process may change, and different models are needed.

11.3 Epistemological orientations

What is the nature of knowledge itself? How is it acquired, and who decides what is

knowledge?

Three basic epistemological orientations are outlined in Table 11-1.

11.3.1 Transmission model

My name it is Benjamin Jowett:

I’'m Master of Bailliol College.

If a thing is knowledge I know it,

And what I don’t know isn’t knowledge.

: {anon, 19¢)

This Clerihew shows a particular attitude to the possession of knowledge: that
Authority has the right to define knowledge. Thus it is possible in this orientation to
define a canon of works in literature, music, and the fine arts which are Important; a
definitive history curriculum based on, for instance, battles and dates, which any
child may be expected to quote; and a mathematics curriculum consisting of 2 list of

topics which one should master at given ages. It is typified by questions of the type

“what is the main export of Ceylon?” (answer, tea).
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Model Knowledge Learning Sense of authority | Corresponding
: learning theory,
curriculum
_ ) . paradigms
Transmission Static and objective. | Transmitted from  |Teacher-centred. | Behaviourism,
Knowing is closed, |teacher ortextto  |Teaching is Information
linear paradigms.  |student. A linear |emphasised and the |processing
Quantity and and simple action. |learner dependent
breadth and Can be tested on the teacher. Curriculum as
mastery of the through Teacher is technology
content is achievement tests | responsible for
emphasised deciding the
learning outcomes
and the design of
the learning
environment
Transaction Dynamic and alive. |Through the Student-centred. Pask’s
Knowing is based  |interaction between |Learners are conversational
on learning the learner and responsible with the | learning
strategies. Quality hlS/. her teacher fOI" their Situated learning
of learning environment. own learning.
emphasised Co-operative Teacher has control |Social learning
activities, problem | of the situation but . Experienti
. . . . periential
solving and higher |is not authoritarian.
order thinking.
Transformation [Dynamic and Construction of Community of Post-modernism
changing, knowledge by the [learners.
contextual: a learner. Visible authority | Curriculum for

construction of the
community of
learners

does not exist.
Teacher uses the
power of the
environment when
new knowledge is
created:
transformed.
Complexity,
openness and
creativity are
emphasised.

personal relevance

Table 11-1: Epistemological orientations (from Brody, 1991, in Berry and

Sahlberg)

Since knowledge is defined by the establishment, that which is known by groups

outside-the establishment (such as folklore, scientific theories which diverge from the

accepted view, or alternative interpretations of history) is not knowledge.

Knowledge is monolithic and not open to discussion or interpretation. Knowledge is

possessed by the learned, and may be passed from them to the unlearned. This view

of knowledge, however, is static, and does not allow for changes such as the

emergence of new branches of science or mathematics, or discoveries in history or

biclogy. As Cox et al (1995) put it : “twenty years ago it was just possible to provide
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a fair proportion of the class with both the fundamental concepts [of engineering

mathematics] aﬁd the most useful methodology. It is now qtiestionable whetfler one
can do either with even 1;hose topics taught twenty years ago, not to mention the new
topics now required.”

Where the matter to be learned is a skill which can be built up through drill and
practise, which will be tested by performing the skill to a given degree of speed and
precision and especially where the skill can be broken do-wn into a set of subskills
which can be learnt separately and then combined, then this model is higlﬂy

appropriate.

According to Perry (1981), the naive learner looks to authority to “tell me what I
need to know”, and moving to a more mature model of learning is 2 painful process
involving the loss of old certainties. To this extent the learning of skills through the
transmission method may provide the cognitive equivalent of comfort eating: a
temporary flight from complexity into.certair;ty where wori{ing diligently and
following the rules brings rewards. However in the large part of tertiary education
we are seeking to make the student an independent learner and they should not rely

on this form of learning.

11.3.2 Transaction model

The emphasis moves from teaching to learning, but the teacher is still in charge,
setting the agenda. The teacher’s model of reality is the one which the student seeks
to acquire. This is predicated on the greater experience and deeper understanding of

the teacher. Experts teach novices to become like them.’

Cox et al (1995, cited above) argue for the teaching of prototype methods within
engineering mathematics, so that engineers will be able to understand the concept of

transforming variables and functions by reference to Laplace transforms as a
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prototype, or operator methods by reference to the D-operator. They conclude “it is
suggested that we,.move away from the contents-based n-letl_'lodology for curriculum
design and instead base it around the interweaving of engineering objectives and the
reasons for which mathematics is included.” This is a strategic view of mathematics
learning for the engineer, where the concepts of, for example, “transform” or
“operator method” are built through learning particular skills, 50 that the student will

recognise what is happening when analogous methods are performed by a computer.

Conceptual understanding is a construct of the transaction modei, whereas the
transmission model emphasises declﬁrative and procedural knowledge. The student
builds understanding of concepts through relating one concept to others. A well
understood concept leads the student to make predictions which match those the
teacher would make, and to be able to use and apply the concept as the teacher would
define appropriately. The teacher can conclude that the student’s mental model of

the concept matches the model generally accepted as correct.

In the conversational model, (Pask, advocated by Laurillard, 1993) the student and
the teacher exchange predictions about behaviour of a system according to their
mental models of the system. When the student’s predictions convince the teacher
that the two models match well enough, the teacher concludes that the student has
“anderstood” the system. This process depends on the teacher understanding the
system and the possible variations of models well enough to predict where differences
may occur, in order to explore the student’s predictions in those sensitive areas. The
system may be anything from a physical system to a mathemati'cal process to a

language to a set of social circumstances.

Vinner (1991) defines understanding as the possession of a concept image. When the
concept is mentioned, some image is evoked in the student’s mind, and the concept

means something to the student. The image need not be the same as that which the
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teacher has, and indeed if the student’s image does not overlap with the teacher’s then

the student’s understanding may be said to be faulty.

According to Perry’s (1981) analysis, most university students should be able to cope
with being respoﬁsible for their own learning under the direction of the teachers.
Questions and protests about the relevance of material (espectally mathematics in
engineering, see Cox et al, 1995; Coxhead, 1997) are characteristic of Perry’s

Oppositional students.

In this model, the reacher defines the space which the learner explores, and sets the

rules which bound the student’s freedom.

11.3.3 Transformation model

The transformation model is a more radically “democratic” view, in that learning is a

process shared by the community of learners.

This model may be regarded as particularly appropriate in the context of research in
Higher Education, where learning’ is. a shared process. Perry (1988) describes a
mature relationship of the learner to knowledge as when Authority becomes
“resource, mentor and potentially colleague in the consensual estimation of the

interpretation of reality”.

The model may also apply well to situations of mutual tutoring where students work
together to make sense of coursework, laboratory work (see Brown, 1994), lecture
notes or reading. Under these conditions the students will normally be operating
within each other’s zones of proximal development, and in an ideal position to help
one another. Clark (1994) also hypothesises that since the knowledge of the expert is
different in kind from that of the novice, and not just in degree, someone who 1s

closer developmentally to the learner “may serve as a better touchstone for the

student’s own reflection”.







Authority is no longer a potential colleague, a‘ut'hority has become a colleague.
Accorciihg to Perry (1981), if the learner is not mature enough in position then being -
confronted with a teacher who presents this model Wili bfing pain, incomprehension
and rage. The learner must have developed beyond an “anything goes” multiplicity
in order to cope with the ambiguities of this model.

Perry points out that there may be a disjuncture between a learner’s position in

<

different areas of development, as well as a transfer (“décalage”) of maturity. A
mature student who has accepted commitment (in the face of ambiguity) in settling

down, finding a spouse, choosing a home, may still seek for the old certainties in

learning mathematics.

In this model the attitude of the learner to mathematics is not that mathematics is a
reflection of absolute truth, but that it is an activity with rules by which one agrees to

abide. This attitude is well beyond the grasp of most engineering students.

11.4 Learning theories
Some learning theories which have currency at present are summarised in Table 11-2.

As with epistemological orientations, many teachers and designers of learning

materials are not consciously aware of the learning theory to which they subscribe.

I have related these learning theories to the three epistemological orientations
discussed above. Epistemological orientations are instrumentalised through learning
theories: that is, given what we believe about knowledge, learning theories tell us
how we might go about sharing the knowledge we have with others. Again, given
that different epistemological orientations may be useful for different purposes, so we

can see that different learning theories may also be useful in different applications.
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| The mind | Knowledge " | Learning | Teaching
Transfer models
Behaviourism black box behaviour training, control of the
(Skinner) ' reinforcement learning
environment
Information compurer object to be acquisition of mapping expert’s
processing transferred rules, concepts cognitive map
(Gagne) and pracedures onto learner
Transaction models
Constructivism inner residing in the internal negotiated
(Piaget, Skemp, | representation of | individual mind | construction of | comstruction of
Ausubel, et al) outer reality meaning meaning
Experiential acycleof guiding learner
(Kolb) experience,
observation,
hypothesis -
formation, and
hypothesis testing
Social learning scripts and observation and | modelling: the
| (Bandura) behaviour rehearsal, significant other
patterns apprenticeship.
acquiring
characteristics of
admired others
Situated learning develops from enculturation, guide students’
{Collins, Brown the complex perceptual attention to the
& Newman...) interaction of attunement: invariant features
{also known as students with social which are
cognitive technology, construction of meaningful across
apprenticeship) people and the knowledge a class of
other through discourse | situations:
information planning the
available in a assistance
situation students will need
Connectionism brain (mind/ pre-symbolic, inseparable from | providing
{(Papert) body dualism pre- performance: examples and
eliminated): a representational: | acquisition of experiences from
material machine | socially and meaningful which patterns
environmentally | patterns may be abstracted

Transformation models

distributed

Post-modernism

being-in-the-

interpretation of

the interpretive

being another

(Hlynka, world: the text whichis | process member of the
Faulconer) interactions and | life: not a one- to- social group
relationships are | one
the starting point | representation
for understanding | corresponding to
the human an external
condition. reality.

Table 11-2: Learning theories {elaborated from Wilson et al, 1993)

In the context of being an engineering student, several processes may be occurring at

once. A lecturer may model to a student (social learning) how to behave while giving

drill-and-practice exercises (behaviourist) while the student learns how to recognise

different problem types (connectionist).
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A naive view of postmodernism relates it to Perry’s (1988) Multiplicity where
anything goes because we have no way of choosing between interpretations. A more
sophisticated view would be related to his Relativism and Commitment, where it is

recognised that different interpretations-are possible, but some are more defensible

(and useful) than others.

11.5 Paradigms of curriculum

What we teach and how we teach it is influenced strongly by our beliefs about what .
education is and what it is for. These questions affect the way we choose our
intended learning outcomes and the way we assess what has been learnt. They affect

how we allocate marks in assessing student work: giving credit for effort, originality,

suitable method of working or correct answer.

These beliefs and values are rarely tested, and seem to be taken for granted, but
individuals having different views on the meaning of education may run into conflict
and fail to work together with catastrophic consequences. This applies particularly
when the individuals are in a learner-teacher relationship. If the expectations on
mark allocations differ, the teacher may be seen as an unfair marker, and then if
negotiations do not explore why the marking scheme is as it is, the teacher is seen as
imposing a decision in a power relationship. Another possible result of such a clash is
that the learner decides he or she is learning nothing, or not what he or she wants to
learn, or that he or she is very uncomfortable in-a particular class. At least the

teacher should be aware of this possible source of conflict, so as to decide whether to

confront it, or avoid it.

One way of classifying the different systems of belief about the purposes of education

(curriculum paradigms) has been proposed by Eisner (1974, cited in Helsel, 1987).
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Helsel recommends this classification as comprehensive, succinct and dividing

curricular orientations into distinct and mutually exclusive categories..

These can be characterised as in Table 11-3.

Curriculum Education Learning The student Paradigms of
paradigm learning theory
development of The human mind  |Learning is the An active, Constructivist
cognitive processes |organises reality via | raising of cognitive |purposive )

cognitive structures to higher |individual in his or

structures. levels of her own learning

Education isthe  |functioning by the |and development

development of development of

higher levels of metacognition.

structure
curriculum as Prescribed skills Learning is A passive being to  |Behaviourist,
technology and knowledge are |measured by the | be conditionedto  |Information

to be instilled into

achieving of

respond with

processing, mastery

the student. prescribed desired behaviours |learning
measurable to stimulus- '
behaviours on the |response patterns
part of the student.

curriculum for
personal relevance

To develop a
human’s higher
needs, motives and
capacities.

Learning is
becoming a better,
more fully
developed person.

A unique
individual with a
singular perspective
that should serve as
the basis for his or
her interpretation
of the curriculum

Upper levels of
Maslow’s hierarchy

curriculum for
social relevance-
social adaptation

A mechanism for
meeting the critical
needs of society.

Learning is
acculeuration and
socialisation.

A passive reciplent
who is schooled 1o
take a place in the
existing social order

Social learning

curriculum for
social relevance-
social

To emancipate
people from
oppressive sacial

Learning is
politicisation.

An individual
commitred to
involvement in

Social learning

reconstruction conditions such as constructive social
economic redirection and
structures, renewal
linguistic biases or
political:
inequalitics
academic The fullest possible {Learning is A rational being  |Liberal education
rationalism. evolution of the  |becoming a learned [who is expected to
learner’s mental and cultured command essential
capacities. person. facts and skills that
undergird the
intellectual
disciplines of
Western cultire.
(Eisner) (Maull) (Helsel) {Maull)

Table 11-3: Paradigms of curriculum (elaborated from Helsel, 1987)
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11.6 Applicability of the paradigms to engineering education

11.6.1 .development of cognitive processes

This paradigm probably should form the dominant motivation in engineering
education. We ask the students to be active, to take responsibility for learning, as
they will have to take responsibility for their actions in future life. However the
students, at least to begin with, tlend to adopt an rattitud.e mo?q in line with skills

acquisition {curriculum as technology) and socialisation {curriculum for social

, relevance- social adaptation). As Ramsden and Entwistle (1981) point out,

engineering students tend to adopt a passive attitude to their learning.

11.6.2 curriculum as technology

Where teaching takes the form of training with drill-and-practice exercises, tests
which closely resemble exercises performed during the course and examinations
which ask students to reproduce learnt material, we see evidence for this paradigm. It
is held by many students in their early studies and if we define the syllabus through

learning outcomes and competences this again reflects that paradigm.

11.6.3 curriculum for personal relevance

The development of the self is rarely emphasised in engineering education.

11.6.4 curriculum for social relevance- social adaptation

As engineering studies are regarded by many students as a preparation for a career in
engineering, a social relevance curriculum paradigm is implied from the student point
of view: the student expects to be equipped to play his or her part in society as an

engineer. 'The student asks “what use is this?”, meaning not “to me as a human adult”
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but “to me as an engineer”. The question of socialisation of engineering students was

discussed in chapter 10.

P

11.6.5 curriculum for social relevance- social reconstruction

‘This is probably applicable in a context such as “green engineering”, where the aim is
to empower the students to take part in the enterprise of changing the face of
engineering. In mainstream engineering education the aim is more to produce a

socialised individual who will be.a productive employee.

11,6.6 academic rationalism.

On the whole, this paradigm is probably foreign to engineering education. Although
the engineer would accept the notion of being a rational being, the rest of the
paradigm would be unacceptable on two counts. Firstly: that the engineer is
pragmatic rather than academic and secondly: that the intellectual disciplines of
Western culture, whereas they profit from the great engineering achievements of the
past 200 years (For example, roads, railways, gas, electricity and water supplies)

consistently undervalue these achievements in contrast with those of artists and

“intellectuals”.

11.7 Endnote

A contrasting view is that taken by Perkins & Simmons (1988): their “first order
theory of instruction” states that “people learn much of what they have direct
opportunity and some motivation to learn, and little else”. This is not quite as
permissive as it may seem: although they proclaim that instructional style is
subordinate to opportunity and motivation (which makes learning sound like a
criminal activity), they insist that the instruction should address all their four frames
or dimensions of knowledge (content, problem-solving, epistemic and inquiry)
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11.8 Conclusions

Different learning theories and so on have useful i.d'eas to offer, depending on the
material to be taught, the prior knowledge of the stu'dents and their co.grliti-ve‘
development, and the context in which they are learning. Whereas none of the
theories mentioned above should be dismissed out of hand, none of them is complex
enough to contain a model of an entire human beirg. _Ron'%iszowski*s"(1986)_ model
(mentioned in chapter 12) on the other hand, which attémpts to unify many of these

theories, has become too complex to be immediately useful.







12. Computer aided learning (CAL) and computer aided instruction

(CAD)

12.1 Introduction

In the last chapter it was pointed out that there are many ways of framing how
students learn. In the field of designing courseware this is typified by the tension
between the terms CAL and CAL From the semantic-point of view it is meaningless
to speak of instruction without co_nsi'dering' whether learning is taking place, and so
from this point of view, as well as from a general philosophical bias towards
considering the experience of the student as the most important part of the education
process, I prefer the term CAL. This implies that the evaluation of the product
should be carried out from the students’ point of view rather than as an artefact in

itself.

12.2 Medium and message

In 1983, Clark proposed that media should be regarded as mere “vehicles” in which
knowledge was “delivered” to learners, and that discussion of the effects of media on
learning should be suspended. Kozma (1991) replied that this analysis regarded the
learner as the passive recipient of knowledge, rather than actively collaborating with
the medium to construct knowledge. Different media of delivery meant that students
learnt the same materials in different ways. The question of whether the computer
delivers vo a passive recipient or helps an active learner is the philosophical difference
between the use of the terms computer aided instruction (CAI) ;and computer aided
learning (CAL), although advocates of the CAL paradigm may use terms such as CAI

and CBI (computer based instruction).
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12,3 Competing models: CAL and CAI

Instructional design is a term used for the design of teaching materials and teaching
strategies. Romiszowski (1986, p59) defines instruction as “ éf;al-directed teaching
process which is pre-planned”. Although Laurillard (e.g., 1987) argues for the
adoption of a less didactic model of the teaching-learning model, in general the
concern is mainly with the accurate transmission of accepted knowledge from the
teacher to thelearner: in other words the term “instructional design” embodies a
transmission model of learning although not all practitioners accept the model. For
example, Plowman (1989) states “Learning theories are embedded in the design of
interactive video whether the designer has incorporated them intentionally or not...
Most destgns seem to rest on the belief that the student’s mind is a tabuiz rasa and the
knowledge in the program exists in a vacuum which is to be transferred straight from
screen to mind without any other mediation than the occasional input via the
keyboard... Most design manuals tend towards instruction based on drill and practice

3

and simple branching designs.” Reviewing users of computers in schools, Kurland
and Kurland (1987) found there was an ideological struggle between Skinner-based

behaviourist CAT advocates and Piagetian-developmentalist LOGO advocates.

Despite Wildman’s (1981) contention that the 1970s had been the era of development
of cognitive theory, which had supplanted the previous dominance of the
behaviourists, Hannafin and Carney (1991) found that instructional practice was still
dominated by behavioural strategies focusing on imposed methods which elicit the
desired response. They suggested that cognitive psycholc—)gy based strategies,
presumed to increase the depth of processing, would improve the quality of encoded
knowledge. They conclude that “it is the learner, not the designer, who mediates the

possibilities of lesson strategies and activities”. Hennessy and O’Shea (1993) also

189







found that students attribute their own meanings to simulations and that thiey may
refuse- to accept the challenges thrown by the simulation. Smith (1988) points out
that it is a commonly accepted view in semiotics that the interpretation of a text is
handed from the author to the reader, and that any text is open to other readings than
those intended by the author. For example, in a lesson where the teacher was using a
program intended to teach the hidden complexities of simple conversations, the
children thought they were being taught to use the computer. Burton (1997)
describes learning as a “process of meaning making by learners not of being l;landed
meaning by their teachers” which means that any “new piece of information is

encountered and understood” heterogeneously by members of a class.

Julie (1991) also argues for the use of the computer in helping the student form semi-
concrete concepts, at a level between concrete and abstract, for example by the use of
images. The computer may thus be used as an introductory device rather than for

drill on concepts already taught.

Clark (1994) considers instructional design in the context of professional education.
He contrasts the instructional view of professional education as accumulation of
competencies with the perception of a four-fold nature of that education:
“acculturation to the profession, development of associated competencies, thinking

about the competencies and thinking about thinking about the competencies”.

From the above, I conclude that many designers of CAL material tend towards a
didactic and transfer model of learning, although there is a.stream of criticism of this
model. This may be because people who are interested in writing programs use a

private metaphor of computer programming for human learning,







12.4 Lessons from Interactive Video

Much work on instructional design is based on interactive video (IV), which fa.illed to '
have the impact that was expected in schools or universities. (see Nortis et al, 1990)
Other work assumes much lower computer capabilities, such as displays and
processing speeds, than are now available. However the conclusions which have been
reached are sometimes applicable to the new generation of computer-aided learning
(CAL) packages. For example, Plowman (1988) points out that IV has the authority
of the TV (It must be reall}, and the illusion of control over the disk, although users
cannot really add their ow:n contributions. She cautions against the use of multiple
choice questions with the implication that the only questions worth asking are those

with a correct answer.

Megarry (1988) speculated that the future of CD technology would be different from

the “false dawn” of videodisk, giveﬁ the commitment of Phillips and Sony to work

from a common standard, the fallout benefits from CD audio technology, such as
cheaper pressing and mass-production of CD readers in the audio context, the small

physical size of CDs, and their all-digital format.

The advice in the literature tends to fall into two categories: that based on a
""" developed learning theory, which is prescriptive (e.g. Romiszowski, Laurillard) and
that which is based on avoiding hindrance, such as “do not make writing so small it is
illegible”, and more sophisticated equivalents. A smaller third stream is led by
Malone (1981) who looked for intrinsic motivation factors in computer games and
sought to apply the principles of challenge, fantasy and curiosit}; to CAIL (see for
example Middleton, 1995)

Most research into the effectiveness of CAL/CAI takes the form of a classical

experiment. Brown (1994), however, argues that it is impossible to control for
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learning in this way, particularly since each piece of courseware has-involved
innumerable design decisions, some of which will be helpful and others of which will
hinder use, and that learning results from a rich variety of interactions between
individuals and their environment. He proposes that evaluation should be carried out

by observing users in action and by debriefing and discussion.

Dick (1981), with some foresight, warned that althqugh the videodisk combined with
the computer was being hailed by some as the “ultimate teaching machine”, the'
experience of the 1970s should show that there was always another development

coming down the road.

12.5 Freedom to roam

An important aspect in the design of courseware is the order in which material is
presented, and who decides that order. The material in a film or television -
programme is accessed in strict sequential order: material on tape or disk may be
skipped, fast-forwarded, paused or rewound. Material on a computer may be
accessed in random order to be decided by the program or the user, or by a

combination of the two.

Bartolomé (1992) proposed a scale of measuring the degree of interactivity of a

system: (Table 12-1)

The level chosen depends on the instructional paradigm (levels 1 and zero are linked

by the authors to behaviourism), the sophistication and the age of the students, and

the nature of the material taught.







Level zero ~ Computer completely in control
0.0 No motor activity called for
0.1 Motor activity called for: e.g. press the return button
Level 1 System chooses the next information given as a result of the learner’s
previous responses
Level 2 Learner chooses next information given
2.1 From a menu
22 Some help given in choice
2.3 Directed choice
Level 3 Learner chooses what is shown next and how it is shown
Level 4 Learner also chooses source of information

Table 12-1: Bartolomé’s classification of degrees of interactivity (1992)

Gagné (e.g. 1981) specified that instrucL:ion should foilow a prescribed order of events:
orientation, presen-tation, sequence, encoding and retrieval, and he gives a
comprehensive guide in tabular form of appropriate strategies for each stage according
to the type of learning outcome. The order of presentation is to be strictly controlled
by the author. Bartolomé (ibid.} warns that this can cause frustration. At the
opposite pole, designers of hypertext systems impose a very loose ordering on the
material. Users are free to follow or ignore links, and to find their own -path through
the material. This looser structure is felt to reflect better the relational structure of
human knowledge, but the freedom of “hyperspace” can bring a feeling of

disorientation (Frau et al, 1992).

12.6 Learning theory-based research.

Laurillard (1987) has elaborated Pask’s conversational model of learning as applied to
courseware design. She has compared different methods of teaching with ideal

computer-assisted learning environments and summarised the results in a table (Table

12-2).
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Table 12-2: Media comparison chart (Laurillard, 1993)

This may be contrasted with the view taken by, fo-1:' example, Romiszowski (1986) in
“Developing Auto-Instructional Materials”. (Romiszowski attempts to integrate most
theories of learning up to the present day in an overarching theory ’which looks
rather like Kolb’s, whom he does not reference, which takes 13 pages of dense tables
to expound.) It may be seen from Romiszowski ‘s diagram (Figure 12-2) that his

model is not a simple one.
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Figure 12-1: Kolb’s cyclical learning model (see Kolb, 1981)
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Figure 12-2: Romiszowski’s learning model (see Romiszowski, 1986)

Both these models owe much to hermeneutical ideas; and in particular Ricoeur’s (for
example 1981) hermeneutic circle. Ricoeur (quoted by Brown, 1997) suggests that the
individual switches between seeing the world as something of which he is a part and
something which he can objectify and act on (that is between active experimentation

and passive reflection, in Kolb’s terms).

Instructional design tends to be linked with ideas such as mastery learning, where the
student is expected to develop a high degree of mastery of the material in a unit of
instruction (that is, to be able to answér, say 90% of questions on the material
correctly in a post-test) before proceeding to the next stage. The terms “Stimulus”
and “Response” also tend to appear in Instructional Design literature. Romiszowski

states that in instructional design there should be three types of communication
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channel between learner and instructor: these may be labelled stimulus, response and

reinforcement or feedback. (p89)

Instructional design is driven by learning objectives which may be stated and verified,
and tends to be reductionist, in that it is easier to test sub-units and low-level skills
such as recall facts or reproduce a given performance than higher level ones such as
synthesis or evaluation. Thus instructional design tends to be accompanied by
quantitative research, with pre-tests to check that the subjects have the prerequisite
knowledge and not the knowledge to be transmitted before exposure to the
instruction, and post-tests to determine to what extent the requisite knowledge has
been transmitted. This research then determines the effectiveness of the material in
achieving the stated aims of the instruction. Again it is more difficult to quantify the

acquisition of higher level skills, so the research tends to concentrate on lower-level

skills.

Gagné’s theory of instruction states that instructional design should comprehend five
phases, namely orientation, presentation, sequence, encoding and retrieval.
Romiszowski is heavily influenced by Gagné in his le;sbn planning in this respect.
Much of the research in the “avoiding impediments” falls into the presentation aspect

of design.

Gotz (1991) concludes that

“Interactive learning programs often break down as a result of an inaccessible
didactic construction whose media potential is only partially exhausted. Rigid
user and limited interaction possibilities lead to the assumption that the
foundation of learning programs lies more in informatics than it does in
didactics. A stronger reliance on pedagogical aspects appears to us to be more
desirable.”







12.7 Awoiding impediments to learning-

Merrill (1988) suggests guidelines for good instructional design under three headings:

instructional design, screen design, and human factors.

12.7.1 instructional design

Avoid merely putting text on the screen: avoid mere page turning.

Avoid generility rich but example poor presentations. Each idea should be
presented by a generality, examples and practice. '

Avoid remember only practice.

Use attention focusing devices to relate examples to generalities and to point
out critical characteristics of the illustrative material.

Promote active mental processing by asking rhetorical questions and engaging
the student in a conversation which requires constructed (as oppose to
multiple choice) responses to which we do not provide right-wrong feedback
but rather an anticipation of a reasonable reaction.

Provide expository examples as well as practice

Merrill (1988)
12.7.2 screen design

No scrolling for educational programs.

The student should control text output. Never erase critical information until
the student indicates readiness to proceed OR provide a way for the student to
repeat dynamically presented information.

Use dynamic displays in which timing of text output, inverse text, flashing
and animation are used for stress and emphasis.

Dark letters on a light screen will appear less confined and more natural to the
student

Leave plenty of white space and erase information when it is no longer
needed.

Use short lines and separate natural phrases or ideas on each line..
Do not full justify text on the screen.
Do not present information in all upper case except for émphasis.

Use a variety of text styles to indicate different kinds of messages.
‘Merrill (1988)







12.7.3 human factors

Provide a way for the student to skip to the major sections of the program in
order to preview, review or repeat portions of the material.

Provide some kind of location indicdtor so that the student knows where he
or she is in the total program.

Allow the student to “turn” the pages by going back to the last page, repeating
the current page or going forward to the next page.

Minimise unnecessary typing by using a pointing device wherever possible.

Monitor the student’s activity and provide advice when potentially
decremental action is taken. In most cases, provide a méchanism for the
student to override the advice.

Allow the student to select how many examples they need to study.

Provide optional help, do not force every student through the most detailed
presentation.

Provide a means of escape from any lengthy activity but advise the student
about the COHSEquenCES Of Such an escape.

Provide adequate directions, including all the options available to the student.
If possible, list the available options on the screen or make them accessible
with the press of the [7] key. Use the most natural procedure.

Plan disk access to avoid long waits while the computer retrieves information.
Merrill (1988)
Dahl (1990) gives the following rules of thumb for writers of CAL packages..

Be consistent. The same user action should always lead to the same result.
The user should be in control. The user should choose his/her actions.
Give feedback. |

Let the user re-enter erroneous input.

Cope with inputs like dividing by zero.

Allow experienced users to use shortcuts.

Keep displays simple. Do not put too much on screen at once.

Allow the user to cancel terminal actions (that is, to decide against quitting).

Dahl (1990)
12.7.4 Screen design

These guidelines are reinforced by Sweeters (1985), Madge et al (1986) and Sandals

(1987) who also emphasise the importance of using space freely, consistent use of







screen areas, the use of overlays to add bits of information at a time, and the need to

choose colours carefully.

12.7.5 Graphics

Perhaps one of the most significant points to come from the research is the
overuse of graphics. Graphics which are not instructional or which seek to
clarify an already clear process should be avoided... Unnecessary graphics can
impede the course of learning by slowing the pace of the course and
distracting the student.

Use graphics to clarify difficult concepts.

Use a2 combination of different kinds of graphics: flowcharts, graphs, maps,
realistic pictures and analogical pictures.

(Madge et 2], 1986)

Present blocks in this order: graphics (so they don’t distract from the text);
text; directions...

Consider using a graphic on each display. Consider employing all the
following types of graphics: realistic (portrays an instance or example of a
concept. A realistic graphic); analogic (relates a concept to more familiar,
similar things. A more far-fetched but personal graphic); logical (2 highly
schematised visual such as a flow-chart, graph or map. An abstract but logical
representation).

(Sweeters, 1985)

The origin of the classification of graphics into representational, analogical and logical

appears to be Knowlton (1966).

Clarke (1992) surveyed the use of graphics in CBL packages, and found the
distribution shown in Table 12-3. He found these results to be in agreement with an
American study (Alesandrini, 1985), and suggested that graphics were used by

designers as optional extras and that most graphic screens consisted of a small image

with supporting text.

199







Industrial Commercial  Basic Training Overall

training training  education  teachers
Packages surveyed 10 13 5 & 34
Amount of text (%) 45 67 70 67.5 64
Amount of graphics (toral) (%) 55 33 30 32,5 36
Representational graphics (%) 33 15 16 22.5 22
Analogical graphics (%) 2 3 1 2.5 2
Logical graphics (%) 20 15 13 7.5 12

Table 12-3: Use of graphics in CBL packages (Clarke, 1992)

Kozma (1991) in a review of the learning effects of different media, finds a consensus

that pictures have positive effects under certain circumstances.

The use of pictures with text increases recall, particularly for poor readers, if
the pictures illustrate information central to the text, when they represent
new content that is important to the overall message, or when they depict
structural relationships mentioned within the texe.

Kozma (1991)

He suggests that the combination of text with pictures presents the learner with two
symbol systems (verbal and pictorial) and “facilitates the construction of the t':extbase
[a collection of summary-like statements which represent the gist of the text] and the
mapping of it onto the mental model of the situation.” Likewise Spencer (1991)
suggests that illustrations convert information from uni-modal to bi-modal form.
Media which combine both modal forms and both storage systems will be most
effective. Dwyer and Dwyer (1987) stress the importance of the time during which
the learner interacts with the material and rehearses information. If the time is short,
there will be 1o rehearsal and the information is not elaborated upon and transferred
to long-term memory. If the time is adequate; and the rehearsal requires some form
of action, such as taking notes or writing an answer, then the elaboration has time to
take place, and the material will be remembered. Translation from a visual mode of
presentation to a verbal mode for storage can also provide the time and réhearsal

needed for transfer to long-term memory.
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Sweller et al (1990) on the other hand suggest that “instructional material that
requires learners to mentally integrate disparate sources of mutually referring matérial
(e.g., text and diagramsj... interferes with learning by misdirecting attention and
imposing a heavy cogpitive load”. They propose that text and diagrams should be

_ presented as a united entity, and that text should be added to diagrams at the point at
which new entities are added to the diagram, in order to reduce the load of switching

between diagram and text.

Goldenberg (1988) suggested that students could find some visual representations
confusing, for example the interpretation of whether a straight line had been moved
up or to the right depended on the slope of the line and the shape of the window.
Demonstrating the effects of changing the value of a parameter before having firmly
established the difference betwéen a parameter and a variable had the effect of making

the notion of the variable very hazy.

12.7.6 Animations and sounds

It 1s tempting to exploit the possibilities of the medium by using animations and
sounds to enliven the courseware. However various researchers warn against this, as
students find inappropriate sounds and animations distracting. (see for example,

Sandals, op cit, Malone, op cit)

Millheim (1993), for example, suggested the following guidelines for the use of

animation in CAL material.

Develop simpler animations rather than complicated ones.
Design animation so that important information can easily be perceived.

Include options for varying the speed of an animated presentation to provide
emphasis at various points during the sequence.

Use animation that relates directly to important objectives or features within
an instructional lesson.

Use animation when the instruction includes the use of motion or trajectory.
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Use animation when the instruction requires v1suahsat10n particularly with
spatially-oriented information.

Use animation sequences to show otherwise invisible events.

Use coaching techniques that assist the learner in interpreting the simulation
as well as free time before of after an animation sequence to allow for better
understanding.

Use interactive, dynamic graphics.
Use animation to gain a learner’s attention or increase motivation.
Avoid overuse of animation since it can-be distracting to learners.

Avoid use of animation with novices who may be Iess able to attend to
relevant details or cues within the sequence.

Millheim (1993)
12.7.7 Use of video

Graham (1991) suggests that video footage can overcome the difficulty of bringing
“real” problems into the classroom and is more engaging than computer simulation.
The footage however should be shot under the direction of a scientist since panning,
zooming and cutting make it difficult if not impossible to take meaningful
reasurements from the film. Applications such as weightlifting (as an example of

sports science), motorcycle racing and cell division are suggested as appropriate.

Gautreau et al (1987) add that film of cars colliding with a wall and rebounding and
two cars crashing (of the sort shot for vehicle safety tests}) may be analysed and
conclusions drawn about force and momentum. Measurements of the acceleration
due to gravity on the moon can be made from a video sequence, their overall |

conclusion being that the use of video adds reality to a standard exercise.

12.8 Matching instruction to learner

Dick (1981) predicted that if the increased complexity available in teaching
technology were to be used effectively “it will require instructional design models

which emphasise detailed alternative strategies of instruction for different types of
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learner”. Plowman (1989) describes such a system, and a possible means of picking
one’s strategy according to preferred learning style, but points out that even sorting
learners according to two dimensions would require four different scripts. One
difficulty with matching the instruction to the learner is that there are so many ways
of categorising learners. The evidence that a prescriptive technique exists for

successfully matching learner to material is at best sketchy.

Several authors have explored the effects of matching or mismatching the instruction
with the learner in various ways. Carlson (1991), for example, found that students
with a deductive style had difficulties when clear instructions were not given:
students with an inductive style were thought to prefer creating their own concepts
after considering many examples but did not have as much difficulty as mismatched
deductive students. No significant difference was found in the content learnt, but the

sample size was relatively small (53 students).

Using the Myers-Briggs Type Indicator (MBTI, see Chapter 10} to categorise
students, Matta and Kern (1991) found that sensing and introverted individuals
tended to learn Lotus 123 better in an IV context than in a classroom, but their
results were inconclusive. They eliminated individuals with significant prior
experience of IV, programming and Lotus 123 which may have removed some
personality types preferentially. Conwell et al (-1987) postulated that Intuitive
Thinking (NT) types would like a teaching style -emphasising theory and logic, and
Sensing Feeling (SF) learners would prefer factual knowledge and subjective
experience. They found no significant differences in the change of scores on the pre-
and post-tests between learners who were matched to the teaching style and those

who were mismatched. Cooper and Millar (1991) found that in a college of business
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the teaching staff tended to be Intuitive types and the students were predominantly

Sensing types, and proposed that this clash of styles could be source of dissatisfaction.

The field-dependent (FD) field-independent (FI) dimension of cognitive style is
supposed to measure whether individuals rely primarily upon an external frame of
reference (FD) or an internal frame (FI) in processing information. FI students are
thought to use a more hypothesis—test:ing apptoach to probleﬁ solvilng,. and FD
-stude.nts to prefer observation to gather information. Garlinger and Frank (1986)
conducted a meta-analysis and review of studies on the effects of matching and
mismatching teacher and student styles on this dimension, and found the overall
effects were minimal. MacGregor et al (1988) studied 59 students in a remedial
algebra class. Of these students, 44 were found to have an FD style, 14 intermediate
and only one a field-independent style. They found CAI to be of more benefit to FD
students than to those having an intermediate style: however the largest effect was
that of the instructor. Abouserie et al (1992) found that FD university students had a
more positive attitude to CAL in physiology than FI students, but that neither style
nor attitude correlated significantly with achievement in the subject. The CAL type
used was very structured, and the research begged the question whether a more

bypertextual style would have appealed to FI types.

The Gregorc Style Delineator, which has two axes, concrete-abstract and sequential-
random, was used by Lundstrom and Martin (1986) to determine the style of 132
psychology students. The effect of the teacher’s preferred style was then investigated
on the students’ learning. They found no significant effects, and suggested that

students were able to use their non-preferred style when the situation demanded 1.

Riding and Douglas (1993) suggest that whereas cognitive style is stable, and may be

described on two dimensions, verbaliser/imager and wholist/analytic, cognitive







strategies are flexible and depend on circumstances. They found that even verbalisers
recall material better when pic'.:tures are included in the text, and imagers recall _much'
better when tl';ey have pictures to recall. Even when students are able to form
mental visual images, Presmeg (1986) found that these images were discarded when

the student was habituated to a procedure: that visualisation was used as a mnemonic

aid.

Not all authors used cognitive or learning styles as a way of categorising learners.
Malone (1981) found that girls did not like the fantasy of throwing darts at balloons
to indicate their answers while boys did. He suggested that in such a context students

should be allowed to chose their own fantasy.

Prosser (1987) suggested that prior subject knowledge was as important as study style
in determining how students learnt. Students with prior knowledge in the general
area of the new knowledge already had a framework into which to incorporate new
learning. Students without prior knowledge had to depend on rote learning. Moran
(1991) went further, suggesting that the student’s prior knowledge in a domain and
metacognitive skill were the predominant factors in learning and that the self-analysis
provoked by learning styles research, leading to metacognition, was probably its most

valuable result.

Jones (1993) suggests that full-time students find IV gave an interesting variation in
delivery, whereas people in full-time employment tended to regard IV as television,

and took a more relaxed attitude to material delivered through it.

Taking a developmental view of the young adult student, Perry- (1988) describes the
transformation of the relationship of the learner to knowledge. Authority, from
having been the source of all knowledge becomes a resource, mentor and potential

colleague in the consensual interpretation of reality. Students at different positions in
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their journey will react differently to different styles of courseware, and the passage
between positions in this development of meaning do not occur simultanecusly in all

the students in a classroom.

12.9 The role of the teacher/instructor/tutor

As mentioned above, MacGrego; et al (1988) found the most important factor in
determining the success of students was the instructor in whose group they found
themselves. In other studies, for the sake of repeatability, the role of the tutor was
deliberately minimised for the expefiment. More recent authors have started to
explore the importance of the teacher in learning with CAI/CAL materials, as the

dream of the “perfect teaching machine” has faded.

Kurland and Kurland (1987) in the conclusion to their review paper, state that “The
teacher remains the single most important instructional agent in the classroom,
therefore students must respect and listen to their teacher.” For Gétz (1991),
however, whose vision is that of a drop-in independent learning centre, the role of

the instructor has disappeared entirely.

The general consensus is that the teacher’s role is to assess the individual student’s
weaknesses and misunderstandings (Mackie 1992), to assess the knowledge and the
needs of the individual and whether the system can meet them, to choose appropriate
topics for the user, to decide the appropriate level of depth and channel for
information, to provide connective tissue to join topics (Midoro et al, 1988) to guide
the student’s attention to features of the situation that are invariant and therefore
meaningful across a class of situations, to plan the assistance students will need
(Young 1995). In other words, the instructor is the best interface to match the

individual student to appropriate instruction.
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According to Jones (1993), the lmajor key to the success of IV is the commitment of
the tutor. This paragon should be familiar with contel;lgs and means of del_ij\rery,

decide best; f(l)f%;l‘a:t for de'l-ivery,..;ie;i'de what su-ppofting stru::turé is needed and dec.ide:- :
how to evaluate effectiveness of learnip_g._

" For Laridon (1990 a, b), the instructor must have the same learning paradigm as the

courseware, and that paradigm will determine the role.as it has done historically.

12.10 Computers in engineerz’n;g edncation

Computers have been used as teaching aids for mathematics for engineers in a number

of ways (see Maull et al, 1995). These include the following,

a) the computer as a dumb tutor in a drill and practice session, providing a stream of
questions and responding right or wrong as appropriate. The student is fed
examples until he/she demonstrates an ability to perform which satisfies a pre-set

criterion. This is often seen in the context of a mastery learning didactic paradigm.

(e.g. Rae, 1993)

b) intelligent tutoring where the program attempts to diagnose the particular
misconceptions held by the student and difficulties held by the student according
to his/her responses to mathematical questions. This is still in its infancy, but see,

for example, Laurillard 1987, Khasawneh, 1994.

c) programming, where the student designs and writes programs to solve particular
classes of mathematical problem. The argument is that the student thereby .
develops a deeper understanding of the process involved by analysing it logically

and reproducing it in terms of code. (e.g. Adams & Stephens, 1991)

d) the application of in-house produced software which solve particular classes of

mathematical problems, to enable students to check their solutions against the
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computer’s, and facilitate self-marking of exercises. (e.g. Coull & Simmonds,

1985)

e) the use of commercially available software to scaffold the student’s exploration of
mathematics by showing the solution to problems the student is not yet able to
tackle by hand and demonstrate their relationship to maths already known. See,
for example, Kutzler, 1994. Lawson (1995) points out that the;re are competing
learnin'g objectives in this context: using the package.an.d understanding the

mathematical contents of the worksheet.

f) the use of software to perform tedious calculation so that results can quickly be
obtained and generalised. For example, the plotting of a family of curves to

explore the effect of varying parameters. (e.g. Watkins, 1993)

g) the use of spreadsheets to perform tterative calculations and to find approximate

numerical solutions in a manner transparent to the student. See for example, Lee

et al 1987, Arganbright, 1993, or Fraser & Thorpe, 1994.

h) microworlds and simulations where hypotheses can be explored and tested by the
student in a mutually safe (unthreatening and unbreakable) environment. See for

example, DeCorte, 1994, Abel, 1990, Whitelock et al, 1993, Lindstrom et al, 1993.

1) use of a simulation language such.as STELLA to allow students to create their own
simulations. The assumptions made in the simulation are made explicit, and the
students can check the behaviour of their models against their experience of

reality.

j) use of the computer to drive recorded teaching material, for example on interactive

video or CD.
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k) hypertext or hypermedia environments to be explored by the student.in pursuit of

information.

m)live production of audio-visual material in the course of and in support of lectures.

{e.g. Marshman & Ponzo, 1987)

Smith {1992) surveyed the use of computers across 72 departments of engineering and
classified the use according to'18 categories. 16000 students in the survey used the
computers for an average of about 20 hours each per year. The overall use in student
hours for some of the categories is shown below. The difference between
“instructional” type software and software tools puts the arguments about this

software firmly in context. In the study of engineering, computers were used as tools

for doing, not tools for learning,

Category ~ Student-hours
Hypermedia 180
v 300
CAD/CAM 36632
Spreadsheers 43405
Word processing 52806

Table 12-4: Use of computers by engineering students (Smith, 1992)

On the other hand, as Smith points out, “the prospect of being able to replace the
drudgery of supervising tutorial examples classes must be highly attractive to most

academics”.

12.11 Choice of authoring package

Serious thought was given to the package which would be used to author the package,

and of those available the best contenders were Authorware, Visual Basic and

Director.







Authorware is.specifically- intended for tl}e'authoring of courseware and is
recommended by Beevers et al (1992) as a package for authoring mathematical CAL
materials. The design process consists of the building of a flowchart which imposes a
sequence on the contents. The fl-owchart may be made to branch according to the
student’s responses to questions: either feedback to right/wrong answers, or
according to the student’s preferences. The courseware.is intendec'i. to be interactive
to the extent thai': the computer’s re'-sponses at each stage depend on.those
programmed to anticipate the stuc‘lent’s input. The student, however, has no control
over the path through the material: the sequence is determined by the program. This

corresponds to either an imposed sequence, or a limited adaptive design. (Hannafin &

Phillips, 1987)

Visual Basic is a sophisticated general-purpose package for designing packages to run
in a Windows environment. The screen design has a very Windows “feel” in that the
objects created and manipulated by the package such as buttons, scroll bars and
windows have a similar appearance to those encountered in familiar Windows
packages such as Word, Excel, etc. Programs are event-based, in that the objects on-
screen react to events such as clicking on buttons or scrqllbars, or typingina
response in 2 box. The mathematical facilit.ies of Basic mean that it can be used to
generate drill and practice examples and to calculate correct answers, and it can also
be programmed to take into account previous right/wrong answers when generating
subsequent questions. The package may be used to write adaptive programs, sensitive
to learner differences, or indeed programs with an imposed sequence or with total

student freedom. (Hannafin & Phillips, 1987)

Macromind Director is an authoring package for animation, presentation and

interactive multimedia. It can be used to build either linear, sequential or branching
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packages or programs allowing random access at any point through an %ndexing
mécﬁaﬁism, or indeed a mixture of the two. It can inéorporat‘e different media into
presentations: sound, ima.ges, movies or animations, and can also be scripted to allow
for interactivity. It has no inbuilt facility for such things as collecting a student’s
scores in tests, or drawing graphs, but these could be written. Buttons and other
control features within a Director movie have to be designed by the author from.
scratch, giving great freedom, but more work than Visual Basic. Its particuiar

| strength from our point of view lies in designing “hot” .areas of the screen which can

be scripted in various ways to control the flow of the program.

The final package considered was Hypercard, which runs on Macintosh computers
only, and only in black and white. It is extremely flexible, and has been used to write
successful hypertextual multimedia packages. In the end the availability of Director
and a suitable PC on which to run it, together with the colour facility of Director
and the author’s greater familiarity with the PC led to the choice of Director as

authoring package.

12.12 Conclusions.

From the wealth of literature, the following overall conclusions were drawn.

What is learnt depends largely on the individual student. Important factors are the
student’s prior knowledge and metacognitive skills, and the meaning attributed to the

package by the student.

Whereas drill and practice exercises are regarded as an efficient means for the
development of skills, particularly simple skills, it was felt that in the context of

enriching concepts a more hypertextual format was appropriate.







There is little evidence that any measured factor is a good predictor of how well 2
given student will learn with a given package, and it is probably better to allow the
student leeway in deciding how to proceed through the package, while ensuring that

there is enough structure to ensure the student does not feel lost.

The working of the package should be transparent to the student, that is the student
should not be expected to understand how it works éxCetpt as a metaphor.

Appropriate gréphics will include realistic illustrations to allow the s;udent_ to orient .
the new learning within egisting knowledge and symbolic illustrations to structure

the new learning. Animation and sound will be used sparingly.
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13. Mathematical modelling

13.1 Imtroduction

We have seen in chépter 2 how mathematics has been construed and interpreted by
different authors. In the present chapter, we concentrate on one aspect: the
gpplication of mathematics through mathematical modelling. Modelling is the
conte;{t in t;rhich most engineers use mathematics in their working lives, and it ﬁras
found from the .results of the questionnaire {see chapter 6) that the greatest maturing
of engineering students’ mathematical concepts occurred when they were seen in the
context of their applications. Since the aim of the courseware was to promote such a
maturing of concepts, it was felt that presenting Fhem in the context of mathematical
modelling might achieve that aim. The engineering students who were observed
carrying out a modelling exercise (reported in chapter 3) did not appear to be making
a connection between setting up and solving mathematics and modelling a physical
system. The way that the modelling structure was presented and used in the
courseware will be des;:ribed in the next chapter.

The particular relevance to most engineers is in the modelling of physical systems

although statistical modelling is of increasing importance in production engineering.

13.2 What is mathematical modellings?

It may fairl.y be said that every mathematical formulation of 2 general law is a
mathematical model, whether it is a physical law such as Hooite’s law, an economic
law or a population law. Each of these models has beentobtained by- a modelling
process. Even when individual values for some property or quantity (number of fish

in a tank, extension at a given load) may be measured, the process of interpolation to







give intermediate values is itself a modelling process, involving the making of
assumptions about the situation.

Mathematical modélling is distinguished from pure mathematics in that the questions
it addresses are based in some way in the real world (see Figure 13-1, McLone, 1984).
It differs from classical applied mathematics in that the modeller has to build the
connection between the real world and the mathematical world w,itHout .necgssarily
the blueprint of an existing law as a guide. It is the activity of the authors of laws.

(Whether the laws were invented or discovered is too big a question to argue here.)

Classical Applied
Mathematics ‘-
Applicable
Mathematics

Figure 13-1: McLone, 1984

Rest of the
World

13.3 Matbematical modelling and engineering

It is generally agreed that mathematical modelling is important for the engineer. This
reflects the idea that mathematics is a tool for the engineer, and a language for the
description of real or potentially real entities (for example stresses in bridges, flow in

pipes, traffic flows) in abstract terms.

Modelling and engineering applications

There is a cornerstone requirement for engineers to model and to be able to
solve modelled problems. Most writers agree that mathematical modelling is
perhaps the most constricted psychological bottleneck in the entire
mathematical learning process and that the debate upon how to teach it is likely
to continue and may never be resolved. Opinions among educators are not
surprisingly divided between those who favour a top-down approach followed
by skill learning to those who feel that skills are paramount and that the
teaching of modelling is vague and wasteful. ... Many forms of modelling are

essential to erigineer formation.
SEFI, 1992, pp 20-21
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To engmeers, mathematics is a way of expressing physics and engineering
precisely. It is rare that one needs mathematics pure and simple. One finds
then that in looking for examples where mathematics is needed one is
frequently encountering the simultaneous need for physical understanding,

IChemE/ICE/IEE/IMC/IMechE/LMS/IMA, 1995, p13
In the particular context of engineering education, mathematical modelling has at
least four important aspects: modelling is the way that practising engineers use
mathematics, so engineering students need to be able to do it;.and seeing mathematics
used in context enables s;tudents to see its relevance, which is a strong motivating
factor-to help them overcome reluctance to tackle a subject seen as difficule. A third
aspect is that if the subject matter is seen as relevant, the mathematics lecturer is then
seen as someone who teaches useful mathematics, an attitude which spills over into
other parts of the mathematics syllabus. Finally, as Shaw (1989) points out, the
building of a satisfactory mathematical model may be the source of great satisfaction,

the creative “eureka” experience.

13.4 The process of mathematical modelling

The process of mathematical modelling is normally described in terms of stages.
Authors vary in the way they divide the stages, and in the extent to which they
include formulation and verification stages.

Mathematical models

The application of mathematics to physical problems involves three stages:

a) Idealization of a physical situation and formulation in mathematical terms
b) Manipulation of the mathematical symbolism

c) Interpretation of the results in physical terms.

In a particular pilot questionnaire which we sent to about 100 engineers we
asked which of these three stages they found most difficult, and 70 per cent said
the formulation of the problem. A contributory reason may be that much
mathematics teaching stresses the manipulative aspect (b) above at the expense
of the model building aspect (a) and in addition fails to relate different models

to each other.
OECD, 1966, p33

Mathematical models...
There are three essential steps in the solution of a problem in applied
mathematics. In the first step the problem is stated in mathematical terms. This
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means that the relevant variables are identified and that mathematical
relationships are identified berween them, either by usifg physical laws or
empirical evidence, or by hypothesis. The second step consists of the solution
of the mathematical relationships, either by standard mathematical techniques,
or, if these prove intractable, by numerical methods with the aid of a computer.
Finally, in the third step, the solution is expressed in.a form which enables one
to interpret it and draw physical conclusions from it.

Jaeger & Starfield, 1974, p1

More recent publications tend to describe the process in diagrammatic form. Some
follow flow chart conventions with aét_'ivil.:ies in boxes joined by arrows, Whiie others
put nouns in boxes and label the arrows with-verbs to describe the process by which
one moves from one state to another. Whatever the convention, the diagrams have a

strong family resemblance, as can be seen from the following sections.

Extract the essential
. ;o Formulate the
Specify the ' characteristics, and . mathematical problem

real problem state the assumptions
made
Re?:'. :2: ;::anr;odel interpret the Sol\_re the
mo dif)}ing the -—4— sotutlevriuiﬁr;:;’otmpare —{— mathematical problem
assumplions v

Y

Write a report.
Use the model to
explain, describe

or predict

Figure 13-2: Hart & Croft, 1988

13.5 Modelling paradigms

There may be said to be two types of models: those intended to predict behaviour
and those intended to lead to understanding behaviour. For the first type, an
acceptable degree of precision over the field considered is more important than
describing the general shape of the behaviour, whereas for the second, it is the general

shape which allows one to describe the phenomenon and the processes underlying it,
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although the model may need parameters to be determined before.it is useful for
prediction.

To some extent corresponding to these two motivations for modelling, there are two
dominant paradigms of mathematical modelling, shown by the two sides of the MEI

mathematical modelling flowchart. (Figure 13-3) (MEI, 1994).

A PROBLEM

Y
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MAKE SIMPLIFYING

ASUMPTIONS TO ALLOW
Y WORK TO BEGIN 4
M 8 3E
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IN MATHEMATICAL EXPERIMENT
FORM
Y ‘ Y
4M SOLVE THE 4E
MATHEMATICAL CONDUCT AN
PROBLEM TO PRODUCE THE THE EXPERIMENT AND
THEORETICAL MODELLING EXPERIMENTAL DERIVE PRACTICAL
RESULTS CYCLE CYCLE RESULTS
SM SELECT NO 5E
INFORMATION FROM GIVEA
EXPERIENCE, i THEORETICAL
EXPERIMENT INTERPRETATION
OR OBSERVATION OF RESULTS
} : v
6M 1S THE 0
COMPARE SOLUTION DETERMINE
WITH THEORETICAL OF THE PROBLEM ACCURACY OF
RESULTS SATISEACTORY. SOLUTION OF
PROBLEM

END

Figure 13-3: MEI mathematical modelling flowchart (MEI, 1994)
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The right-hand path (3E-6E) represents the empirical paradigm, which suggests that
data is collected, and its form is studied. A curve fitting exercise dllows the modeller
to suggest the law obeyed by thé data, and the; thoughtful modeller may then suggest
the origins of the parameters. The weakness of this paradigm is that a real
phenomenon has to exist and to be observed in order for data to be collected before it
is firted. Its strength lies in the motivation of having observed the phenomenon and
seen what It really does, allowingthe mathematics to be seen as relevant a“nd
meaningful. Empirical models are often employed for prediction rather than
understanding since they do not probe the underlying relationships of the

phenomenon observed.

The other (represented by the left-hand path, boxes 3M-6M) is the theoretical
paradigm, which suggests that the processes underlying the phenomenon be studied,
appropriate laws suggested, and the laws compared with the data obtained. This
paradigm is also analogous to classic sciéntific method, where 2 hypothesis is stated,
and its implications considered, then a crucial experiment is devised and carried out

to test whether the implied consequences come to pass.

It 1s suggested (e.g., Tunnicliffe, 1981, p11) that the latter paradigm is appropriate
where the model is intended to enhance understanding of a physical situation, and
this is the paradigm that is used in the case studies described in the package and in this

thesis.

However it is important to remember that the bases of physical science were
descriptive, that for instance our understanding of, for example, gravity is empirical,
and all our models of gravitational attraction derive from observation rather than an

understanding of the physical processes at work. The same has been true of many
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other areas where the technology (this is how the thing behaves, so we can use it) has

led the science (this is why the thing behaves this way).

The two paradigms may also be compared with Kolb’s (1981) learning cycle. The
empirical paradigm may be said to begin with concrete experience, and the theoretical
with abstract conceptualisation. Ideally, as in the MFEI diagram, the whole circuit
should be completed, but often the students are kept on one side or other of the

laboratory/classroom bouﬁdary (my addition to diagram).

Concrete .
Experience
Laboratory .-
Active Reflective
Experimentation Observation
© Classroom
Abstract

Conceptualisation

Figure 13-4: Kolb's experiential learning diagram (Kolb, 1981)

13.6 The theoretical paradigm

The whole structure of the courseware in this project is based on the Open
University (OU) mathematical modelling flowchart. (Berry & Houston, 1995,
Tunnicliffe, 1981, possibly derived from Penrose, 1978) This flowchart employs the
theoretical paradigm, but as we shall see, it is not sufficient to look at the flowchart to

know what paradigm is being used.
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Figure 13-5: OU flowchart analysing the process of mathematical modelling,

(Tunnicliffe, 1981, p5)

In the OU unit on animal populations, Tunnicliffe introduces data at the start to
demonstrate how animal populations may change over time, as many students may
not be familiar with the phenomenon. This introduction of data then leads to a
discussion of an empirical, curve-fitting model, before theoretical models are

introduced. This can lead to confusion in the students’ minds as to what is being

described in the flowchart.

13.6.1 Two worlds

Galbraith and Haines (1997) modify the OU flowchart, promoting “Refining model”
to a box of its(own, and putting all the mathematics in the same box. They divide the
universe into the real world and the mathematical world, where “i:'ormulating
model” and “Evaluating solution” lie on the interface between the worlds. This
notion of the modelling cycle moving between the real world and the world of
theory, then back again, is a useful one, but their interest is in the mathematical part
of the cycle, which means that they consider neither the way that mathematics is

extracted from the real world, nor how the model is evaluated.
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Real World -« » Mathematical World
Real World Formulating N Sélving
Problem > Model - Mathematics
Refining ' » Evaluating Interpreting
Model Solution [ Qutcomes

Report

Figure 13-6: Galbraith and Haines, 1997, after ou flowchart

13.6.2 States and stages

Ikeda (1997), after Burghes and others, proposes a different diagram, showing five
states (1n the boxes) and four stages in the process. The real problem is recognised as
outside the modelling loop, but affecting it at the level of the classroom model and
the “Real solution”. The “states” in this model correspond to the arrows in the OU
tlowchart, and the “stages” to the boxes. There may be a slight difficulty with
language in this diagram: “real solution” implies that the solution is unique, and “real-

world solution” would probably be a better term.

(1) To mathematise
* to clarify a real problem
* to generate variables
* to select variable
* 1o set up conditions

Real «— | Classroom » [ Mathematical
Problem Model / \ Model
g?dT; :ﬁgate * to look back " 2) To solve
Y mathematically
Real » Mathematical
Solution Solution

(3) To interpret
Figure 13-7: Ikeda, 1997, after Burghes ét al
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When the diagram is transformed, by turning the boxes into arrows and vice versa, it
looks more familiar: The arrow for “real problem™ is awkw;vard, but Tkeda does not

label the arrows on his diagram showing the relationship between the “real problem”,
the “classroom model” and the “real solution”. On the other hand the activities in the

boxes clearly correspond to the boxes in the corresponding positions in the OU

flowchart.
(1} Mathemalise * Generate variables
* Clarify a re:':I problem * Select varizbles * Set up conditions
Classroom mode! . Mathematical model!
Real Mathematfical
{4) solution (3) sofution @2
Validate and modify Interpret solution Solve mathematics

Real problem

Figure 13-8: Ikeda diagram transformed for comparison with OU diagram

13.6.3 Iteration

Moscardini et al (1984) emphasise the iterative nature of the process, but make the
process appear more linear than the OU flowchart. The “advancement of
understanding” arrow implies that if an iteration loop means that the modeller moves
back to the left to adjust the model, understanding is thereby retarded. They also de-

emphasise the validation stage by implication, since its box is both smaller and less

full of detail than the other stages.
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\ nu’:nerics state
Aim Concepts Concepls Relations o . | Technigue Sensitivity
\ ¥ ir}:saig;flls Special \ analysis
\ E/ Mathematical e cages )
Purpos representations Non-dimensionalisation Internal validation

Validation of

UNSUCCESSFUL model

SUCCESSFUL
IMPLEMENTATION OF

SOLUTION 7O
QRIGINAL PROBLEM

Figure 13-9: Moscardini et al, 1984

13.6.4 Eight-box diagram

Reality Interpretation Abstraction Mathematics
0. . | 2. 3.
Reality i | Understand |{}; Simpiifyand |: Set up
| problem 7] make | mathematics
{| assumptions
(7.) 6. | 5, 4.
Write report | | Comparewith [i| Investigate |: Solve
1 reality 7] implications 7] mathematics

Figure 13-10: Modified mathematical modelling flowchart

This is the diagram on which the structure of the programme is based. It is virtually
-identical to the classic OU diagram, except that box 0 acknowledges that reality is
outside the mind of the modeller, and that the modelling starts with something
slightly different, that is the modeller’s-understanding of the problem. This box may
validly be criticised as its contents are a noun, rather than a verb. No suitable verb

presented itself during the writing of the programme.







13.7 Empirical modelling

In studying Figure 13-11 we see the fémiliar—sounding stages of Simplificatioﬁ -
(simplify and make assumptions), Mathematization (set up mathematics),
Transformations (solve mathematics), Interpretation (investigate implications) and
Validation (compare with reality). (Oddly, both the verbs which label their arrows

and most of the nouns in the boxes take “-ation” forms which leads to some

ambiguity.)
REAL ABSTRACT
WORLD WORLD
@ World Solution
Pr oblem within the
Situation / i
F
Interpretation .
Simplification Validation ‘ Transformations
/ Problem Mathematical model

Formulation . ™ (Equations, graphs,
v Mathematization etc)

Figure 13-11: The NCTM Standards' (1989) characterisation of mathematical

modelling (after Hodgson and Harpster, 1997)

However, reading of Hodgson and Harpster’s article makes it clear that the
Mathematization stage consists for them of collecting data and finding a graph of an
equation which fits the data. Thus although the diagram appears to describe
theoretical mathematical modelling, just as the Open University diagram does, in fact

the empirical paradigm is being expressed.

The difference between the two paradigms is blurred by the need for students who

are not familiar with a certain application to watch it happening in order to work out

224







- what are the underlying mechanisms or processes before attempting to make a
theoretical ﬁodel. The major difference is that this is a watching without measuring:
no data should be collected at this stage and the observation slllould be qualitative
rather than quantitative. Unfortunately resources may determine that only one visit
to the phenomenon can be made, and data collection and observation must be
combined. In that case it should be made clear to. students that the data should not be

used until the stage of “compare with reality”.

The empirical modelling paradigm is rarely explicitly expressed, except in the MEI
flowchart in Figure 13-5. However, observation of engineering students has shown
that the way they try to deal with mathematical modelling is to believe in the

empirical paradigm.

13.8 Modelling bebaviour of engineering students

When asked how they would find the flow rate of the water in the cascade exercise,

the engineering students said:

Adrian: What you'd do is to set it up with a variable input into it and we'd have to
maintain the water in litves for the flow rate. Maintain it at say five litres and
measture the water coming out the bottom in a given time.

When it was suggested that marking the height of the water on the side of the tank at
regular time intervals might be a reasonable approach the reply from the students was

1ot encouraging,

Jolyon: Very bard to achieve I suppose.

The way in which they seek to mathematise is to find a ready-made model. The data
can be compared with the results recorded by a previous engineer in the form of an

empirical relationship. This can be found by looking in the appropriate place, either

a textbook or notes.

225







Jolyon: Well I expected perbaps to go into the same equations for steady flow theory,
that sort of thing which I know we’ve done - in previous years - without our notes and
that sort of thing. Engineers don’t remember equations. We go and look them up in
books. We don’t derive things from first principles and - we tend to anyway - just to
take it from the vantage of theory, and then applying it.

WMM: So did you find it bard that you were actually being asked 'to create the
eguations?

Adrian: Well, yes, if you like
Jolyon: Though we could probably do it with a book in front of us.
WHMM: Is it something you were asked to do ever in the courses

Adrian: Well I'd say if we ever did bave this we'd have more of a formula to start
- with.

Jolyon: Well we generally work through the theory which they tend to like, make us -
the teachers - try to understand it, and then like - apply the results. It’s very rare that
we do anything from first principles like this.

I remember that we did in HITECC.. - we did a mathematical model and the
particular one I did was the optimal speed of rotation of a tumble drier and that
worked well and we actually took that from equations and then Tony sort of
encouraged us to do it and we sort of bad it - centrifugal force against centripetal force
and acting against gravity - sort of worked out from there, vather than doing it
practically. So Iwould perbaps have expected to go on to some equations - but just

doing it practically shows what hﬂppens but you can’t always do things practically like
building a bridge..

Adrian: You can build models though.
And

Jobyon: I felt that the matbs side of it lets us down a bit on what we’ve done in the
course.

Adrian: Unless it’s like what a lecturer said if you can sort of feel you can remember
what he did in the second year it’s quite easy but everyone just sort of forgets it. You
know you can do it and you know you can look it up how to do it.

For engineering respondents to the questionnaire a similar message came through:

¢ My mathematics skills are not brilliant and I need reference back to old notes.
(Engineering graduate)’

o IfIsaw these in real life, I have a good book I can look thmgs up in.
(Engineering lecturer, pilot study)

o Iwould probably only get as far as (f ) before I looked in a book. (Engineering
graduate, pilot study, beam bending question)

For these students the process appeared to be as shown in Figure 13-12.

226







6 Identify th‘e_\. (g Find the \. @3 Eﬁminate\,
] typeof  Lml  appropriate - }-m unneccessary !
T terms

\- prablem k theory Y, \_
(@.Evaluate tha GFeed the dat:\u (-9 Setup anx:
{ parameters |4  back into the :-q—i experiment |

\ oM o Y,

I P2 ™
1@  Write a report !

Figure 13-12: The engineers' modelling cycle

(1) Identify the type of problem

Jolyon: We’ve done a similar thing as an exercise.. Practical.. Quasi-static flow which
was based totally around this, How long it takes a container of water to empty into
anotber one- And if we knew that for each container- over a period of time- and
compared the times- then (Sketching) the whole thing is we would probably get a graph
where the two coincide - where the two would be a maximum.

Jolyon:(Pointing to taps) We have to assume that the flow rate through here is going to
be the same as the flow rate through bere. There’s roughly the same difference in head,
diameter of tube.

Adrian: As the pressure varies, the flow is going to be changing.
Jolyon: Inside the tubes a steady flow job is developed...... It’s a maximum

Adrian:Drawing) What we’re intevested in is in.. maximum volume in B is this one
here.

(2) Find the appropriate theory
Adrian: Trying to go back to basic principles bere
Jolyon:(Studying tanks) What if we apply Bernoulli to the area between each tank?
Both p1 vl is going to be equal.

Jolyon: (Takes out calculator and from it a formula card) Cause I've got Bernoullt’s
law on bere.

(3} Eliminate unnecessary terms

Adrian:(Taking calculator card again) Looking to see what I can get rid of

Adrian: This thing actually cancels out. doesn’t it, because you take that away from
each side and divide through

Jolyon: You want this squared and then
Adrian: Yes it’s just rearranged , isn’t it.
(4) Set up an experiment

WMM: How conld we test your intuitions?
Jolyon: Fill it up: we'd just do it.
WMM: Well why not?

Jolyon: I thought the idea was to get a mathematical model of it vather than just sovt of
medsure it.

WMM: It might be helpful to test your intuitions.
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Jolyon: Yeb
Adrian: Come on then, let’s fill it “p.
(5) Feed the data back into the theory

Adrian reading data and plotting. Sketches in line

Jolyon: Should it be linear? Because it’s proportional to v2 isn’t 1t? Dunno if that’s..
Ordinate scale is volume,

Adrian: The volume’s the same. It’s the time that’s changing.

Jolyon: You change the volume as well. You lose it out the tap. As time goes on, you're
losing volume and pressure.

Adrian: Well? S
Jolyon: The top doesn’t vary but it does vary here (indicates tap) becanse of the head.

Jolyon: If that’s the case, what comes ont of the bottom bas gained by the top one.
You'd also lose the bottom one at a linear rate.

Adrian: Any tips?

WMM: What sort of relationship does it look like?

Adrian: There isn’t any shape showing clearly theve. I'thought it tends ro be linear.
WMM: What does the graph represent?

Jolyon: It relates the amount of volume to how long it’s been going.

WAMM: So what does the slope of the graph represent?

Adrian: The rate of flow

WMAM: So..

Adrian: So when the slope is nought there’s no volume in...

WAMM: Casuse you've still got about 20 mm of drop there: when it’s empty - in inverted
commas - you ve still got about 20 mm of drop there. So - and so can you deduce some
sort of relationship between the flow rate and the height of the water? ‘

Adrian: The higher the water the greater the flow rate

WMM: That sounds reasonable. So you’ve got that there is a relationship between flow
rate and the beight of water. What do you think that relationship mighe be.

Adrian: Well, the slope of the line.

WMM: Well, do you think it’s- It’s clearly not independent of the height, so you could
write down an equation that says the flow rate is a function of the height. And what
sovt of function do you think that is? Do you think it might be?

Jolyon: Well, it’s obviously not linear, from those vesults.

WMM: No- yes- if it were a straight line it would be independent of beight. So you
know it’s some sort of function of the height.

Adrian: We thought it might be some sort of square.

WMM: How would you test what the relationship between flow rate and height is? If
you’'re suggesting it’s a quadratic, how would you test if it’s a quadratic?

Jolyon: Surely you'd have that by seeing the results.

But we don’t really know what’s going on- we’re not really sure what’s bappening
between.. each container. So up to now we’ve only done experimental - and what
we've got there - doesn’t really show enough - doesn’t really tell us enough about the
flow rate against the beight of the water.

(6) Evaluate the parameters

Adrian using calculator.







Adrian: This could be some big pig.. Which kids us, The maths bother me. Imake it
point three three.. nought point three three. Ab bere it is..” The max..

Adrian: That’s the maximum innit.. The maximum level.. So when point nought
three mass flow rate occurs .. what time that occurs.. is the time when it hits the
maximum,

Jolyon: So we could... if we bad an equation for that line, we conld differentiate that
and find a maximum, conldn’t we? :

Adrian: Yes, but it’s..
Jolyon: Which is what we’re after.
Adrian: Mmm. . .
" Jolyon: But it still doesn’t explain why it stays at that level.
Adrian: How long does it take to get to that point theve, then it stays theres -
Jolyon: Not particularly.. Take the.. Determine half empty..

Adrian: It’s not so bad. (Writing on a paper be doesn’t seem to have left with me)
Four and a balf, that occurs.. (Using calculator) Two and a balf, will occur..

Adrian: one and a balf.

Jolyon: So?

Adrian: The time that occurs. The time that occurs... So we’re saying that our
maximum height be reached.. How high was it do you reckon?

Jolyon: (looking at carboy) Two - twoish

Adrian: Two point two. (using calculator) Point three o five.. so..
Jolyon: Between those two values

Jolyon: You're saying after 69 seconds that makes that a maximum.
Adrian : Yep that is my prediction.

Jolyon: It’s incredibly dodgy I reckon.

Although in the early stages one student suggested they should consider the tanks
separately, as the session progressed, they remained fixed on the question asked: that
1s, when the water level would be maximum in the second tank. In contrast the
mathematics students had realised that in order to understand the flow with input
and output in the second tank they had to understand the simpler case of the top tar;k

first, and spent a considerable time working on that.

Crowther’s (1997b) finding that engineering students like to be taught mathematics

using familiar, understood applications reflects an empirical modelling attitude; the
g familiar, und d applicat flect pirical modelling attitude: th

data has been found, now we can fit some mathematics to it.







A different group of final year Manufacturing Systems Engineers, discussing,
mathematical modelling, reflect the same views: that you choose the appropriate
model from a relatively narrow selection, and plug in the parameters. (Martin is a

German student, and his Englisﬁ is good but not perfect.)

Martin: Usually fi ndmg the formula is never really a big problem. You choose out of
the seven, tick one that must be right, and then you bave the problem that ..

John: Good old engineering guess (langhter)

Martin: It is the only one which has all the variables I know or any of those must be the
one. But where we get all the factors from if there is no letter

John: You can look them up
Martin: Then we can find them or how to guess them.
I found that sometimes that is a big problem.

And so usually you get told by a lectuver the wall bas a T of 20 or something, and then
You get your..

Jobn: Yeb, the data that’s stored you can get that out of reference books .
You get all different k values and C values and you can..

Martin: When you are starting to find those it can be quite a long wait. Might be even
longer than finding the right equations and solutions. You get from simple
mathematics into a high mathematics problem in finding them.

John: No, you look them up.

Martin: But the conductivity of this wall [gestures] is not written down in a book. You
have to..

Jobn: But you know what the wall is made of, you know how thick it is, so you can go
and look that information up in tables.

Martin: It goes quite a few steps back.

One student does wonder about where the models come from before they appear in
the reference books, but does not seem to have a clear grasp of the mathematical
modelling cycle. A model reflects the assumptions on which it 1s founded, and a
static strength model will not predict dynamic behaviour such as resonance.
“Compare with Reality” does not imply that we have to build the real bridge, but
that we can check the implications of the model against the behaviour of other real

structures,

Gareth: What if the model is such a situation that we can’t actually get and physical
data from it? Like it basn’t been created, building a bridge?

John: Then you have to measure it.







Gareth: How?

John: Seems obvious. From what Martin was talking about, conductivity values, you
can measure those.

Gareth: If it’s for an unknown.

Jobn: I mean if it’s for an unknown thing, if the material hasn’t been invented yet then
fair enough you can’t look it up but you can’t measure it either, but what are you
modelling on something that’s not known?

Gareth: You might be doing a feasibility study or sometbing.
Jobn: But then you'd know the properties of the material you’re looking at or you'd be

looking at specific properties. You'd be working from the back end to try to identify
what specific properties you’re looking for from the material, wouldn’t yous -

Gareth: It’s just that this step bere where it says “compare with reality”, you may not be
able to do that. : |

I'mean I'm sure that when they built that bridge in America which destroyed itself
when it reached resonance. (The Tacoma Narrows Bridge)

Jobn: It begins with a T doesn’t it?

Martin: The swinging bridge.

Gareth: They conldn’t compare with reality until they’d built it. You could do all
your modelling- that’s wheve I'm saying the assumptions are very..

Jobn: The assumptions are theve, aven’t they. They are assumptions.

These things don’t actually happen just the same as you think. The only way is you can
simplify it so that at this level you can solve the mathematics.

13.9 Conclusions

Various authors, for example Mustoe (1992), SEFI (1992), IChemE et al (1995), have
argued for the importance of teaching mathematical modelling explicitly to
enginf;ering students, although they differ in how and when it should be done.
However, in most engineering courses most of the elements of the modelling cycle
are taught, but in isolation. In structures, mechanics, fluids and thermodynamics, for
example, general physical laws are taught, assuming that the phenomena to which
they apply are familiar to students. In mathematics, techniques which are useful for
manipulating the algebraic expressions are taught, without generally referring to the
Jaws themselves. Mathematics appears to be external to the stu(;[ent: it comes from a

formula sheet. In chapter 6, particularly in the comments made by engineering

respondents, we see this idea manifested strongly. In the practical side of the course,

|
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the laws are again quoted, experiments are carried out and their results compared

with the theoretical predictions, but it is often a case of calibrating apparatus or
trying to make one’s results agree as closely as possible with theory rather than

checking the validity of the theory.

In other words, if in an experiment {or a deméﬁstration, because it is intended that
the results will be what the designers expect) the results disagree with theory thisis a
matter of sloppy technique, not faulty theory, and the real world is less valid than the
theoretical world. Engineers, though, believe in the real world, which means that

experiments join mathematics in the fantasy world of academic study.

What is not often taught is how to recognise when theory is not valid, and how to
refine or reformulate the model to cope with that, nor how to set up mathematics for

a variant on a familiar situation.

A case in point is that there are two expressions generally in use to calculate the
effects of gravity on a body. F = mg, the “linear law” is valid close to the earth’s
surface where the acceleration due to gravity may be regarded as a constant. F =
GMm/7, the “inverse square law” applies when variations in the distances between
the bodies vary significantly. The linear law is a special case of the inverse square law
where M and r are sensibly constant. However it is normally taught as a fact that the

linear law is true, and not that it is a model.

Finally, we should point out that since any given situation may be modelled in
different ways (such as the linear law and the inverse square law of gravitational
attraction), students may take different approaches to a probleﬁ and arrive at similar
conclusions (Graham E, 1997). A model which is simple to use and gives accurate

predictions is 2 useful model, whatever the modelling approach taken.

232







14. Design of the courseware

14.1 Imtroduction

The specific design of this software involved decisions about style and about content.
The literature concerning principles of style has been reviewed in chapter 12, and
chapter 13 explores the mathematical modelling principles which have informed the
structure of the package. In this chapter the de;'::qils of the design of the package aré

discussed.

14.2 Owerall principles

Given that the engineering students responding to the questionnaire showed a
preference for verbal explanation when tackling mathematical subjects, it was decided
to include plenty of verbal explanation. Despite the students’ dislike of algebra,
mathematical ideas would have to be expressed in algebraic form, but diagrams and
graphs would be used to reinforce or support the mathematical ideas wherever _

possible.

Some of the conclusions from Chapter 12 concerning package design are reiterated

below.

» Whereas drill and practice exercises are regarded as an efficient means for the
development of skills, particularly simple skills, it was felt that in the context of

enriching concepts a more hypertextual format was appropriate.

¢ There is little evidence that any measured factor is a good predictor of how well a
given student will learn with a given package, and it is probably better to allow the
student leeway in deciding how to proceed through the package, while ensuring

that there is enough structure to ensure the student does not feel lost.







» The working of the package should be transparent to the studént, that is the

student should not be expected to understand how it works except as a metaphor.

s Appropriate graphics will include realistic illustrations to allow the student to
orient the new learning within existing knowledge and symbolic illustrations to

structure the new learning.
¢ Animation and sound will be used sparingly.

This courseware is still a prototype, and aspects of the ciesign which did not work are

naturally open for negotiation.

14.3 Structure and embedded metaphor

The whole structure of the courseware is based on the Open University mathematical

modelling diagram. (see, e.g., Tunnicliffe B, 1981)

- LY s by ' N
'Q Specify V(@ Setup ! | © Formulate !}
| the real :_,.: a model |-} the mathematical !
! prohlem 1 Pt problem 1
Mo l _____ /’ | /' Moo i _____ /’
el N T e ——— N gl -
1@ Compare 1 [© terpret {1 | O Solvethe !}
Vo owithreallty ! the | g mathematical !
! 1| solution [ problem 1
! P rod ;
N ) . 7’ A 4

gooTTrETET e m e ™
h»{ @  Write a report !
\ t

Figure 14-1: A flowchart analysing the process of mathematical modelling,

(Tunnicliffe, p5)

The diagram is slightly modified as shown in Figure 14-2 to an eight-box diagram. As
the modeller moves from left to right in the first part of the cycle, the model becomes
progressively more abstracted from reality. In the second part, the modeller moves

back from mathematics through interpretation to the real world where the report

exists.
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Reality Interpretation Abstraction Mathematics

0. o 1. = 2. 3.
Reality :| Understand |i{ Simplifyand | Set up
1 problem {7 make | mathematics
: i | assumptions |i
(7.) 6. 5. 4,
Write report Compare with .aJ Investigate Solve
reality T implications [} mathematics

Figure 14-2: Modified mathematical modelling flowchart

These boxes are treated as rooms in 2 multi-storey building, where the ground floor is
an introduction to modelling, and the successive floors are mathematical models of
increasing mathematical and modelling subtlety. The user moves from room to room
around the building. Any room can be accessed from the home page, which shows
the diagram and a panel analogous to a lift panel in which a modelling example (or
floor nurﬁber) may be chosen. Rooms are also accessed from the previous room by

proceeding through the model {(around the floor).

14.4 Navigation -

The home ‘page 1s accessible from any point in the package via a single mouse click on
the appropriate button. This was felt to be an important orientation feature, so the
user would always be able to “get home” easily. The exit button is always available,
in the same way, but in that case there is a check screen to ensure the user really
intends to quit, rather than terminating the program as a result of an accidental
mouse click in the wrong place. The navigation buttons are arranged along the

bottom of the screen. Buttons for functions which are not available are greyed out.
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Figure 14-3: Home page

14.5 Contents

The contents of the package are an introduction to modelling, explaining briefly what

happens in each stage, and a series of six case studies in which a physical situation is

subjected to the mathematical modelling proc

€55,

For simplicity a single feedback loop has been shown on the diagram, but in real

modelling there may be many, as mentioned below.

14.5.1 Box 0. Reality

Reality cannot be put onto a monitor screen, so any attempt to put it there is

somewhat artificial. In our case it was felt that the best compromise was to use a

photograph of the object, and then move on swiftly to the next section.

—







14.5.2 Box 1. Understand problem

This is the point at which the modeller makes contact with the réal problem. It is
stated whiat the problem is and what physical processes are understood to be
involved. The real problem becomes conceptualised by the modeller, so passing from

the real world into the world of ideas.

14.5.3 Box 2. Simplify and make assuniptions

The physical processes which are being considered generally obey laws which require
some aspects of reality to be ignored. The physical conditions cannot be completely
modelled, or even known, so assumptions will have to be made. The conceptualised

problem is idealised.

. The assumptions are simply presented as a list, because the order in which they are

made is not strictly relevant.

14.5.4 Box 3. Set up mathematics

The physical laws which are assumed to pertain to the problem are expressed in
algebraic form, and the quantities involved are classified as known or unknown;
constants, variables or parameters. From the idealisation is abstracted an expression
or set of expressions which is purely algebraic in form, and which is amenable to
mathematical manipulation. At this stage it may be found that more assumptions
have to be made, for example about the relationships between the quantities

considered.

14.5.5 Box 4. Solve mathematics

The mathematical system obtained in the previous phase (in these case studies, a first

order differential equation) is solved. There is no reference needed to the physical or
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other significance of what is going on: now we are in the purely mathematical world.
The end result of the phase is another mathematical expression or set of expressions,
but this time they are ready to be interpreted in physical terms. It may be found that
the physical situation leads to a mathematically indeterminate or insoluble situation.
Then either more assumptions may need to be made, or a different ph;rsical model

(understanding the problem) adopted, or the mathematics framed differently (set up

mathematics).

14.5.6 Box 5. Investigate implications

The next phase consists of looking at the mathematical model produced in the
previous phase and seeing what it predicts. What sort of relationship between the
variables does it imply? What are the effects of varying the parameters? What are the
relative sizes of the effects? Do these seem reasonable? At this stage we are moving
from the abstract mathematics back to our mental model of reality.‘ If the
implications are not reasonable, then we need to look back through the previous
stages 10 detf':rmine at what point things need to be altered. It may be that the model

is valid only over a limived range, if a constant value was assumed for a parameter.

14.5.7 Box 6. Compare with reality

Here the model is compared with real data. The program contains real data for each
model to be measured against, either in the form of photographs or measurements
taken in a real experiment. How well do the two match? Is the overall shape of the
model consistent with real data? How confident do we feel in extrapolating from tirxe
known into the untested? In this phase the conceptual model moves back into

contact with the real world.
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14.5.8 Box 7. Write report

It is suggested that the report should be written for a variety of reasons. These
include recording the process for oneself and othérs to follow in fu;:ure, clarifying for
oneself what has been done, and helping oneself to remember by the act of verbalising
the process. The report exists now as an entity independent of the modeller, and the
circle back into the real world has been completed. Because it is real it cannot exist in
the software any more than the reality which is being modelled, so the title is in

brackets.

14.6 Case studies

The contents of the different levels are summarised below. All the cases are
applications of first order differential equations. This decision led to the exclusion of
some visually appealing material,.such as resonance, but it was felt that for reasons of
consistency and simplicity it was better to limit the scope of the program. As will be
seen, even first order equations required some algebraic subtlety in the higher level

examples. (e.g. numbers 4 and 6)

14.6.1 Level zero: introduction to modelling

The stages above are described in the context of a hypothetical model of a roller-

coaster ride.

14.6.2 Level 1: the suspension bridge

Assuming that the weight per unit length of the decking is uniferm, the analysis

predicts that the shape of the chain will be a parabola.

A selection of photographs, both suspension and arch, are included so the model can

be checked against reality. The user is asked why the analysis should be applicable to
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a lightweight compression arch bridge. An over-the-deck arch is included so that the

transition between the two types is smoothed.

This model does quite accurately match reality, so there is no need to adjust it.

14.6.3 Level 2: the cup of coffee

Rather than simply stating Newton’s exponential law, the problem is treated as a
conduction problem, a special case of diffusion through a membrane, with the
thermal energy of the coffee as a reservoir. This leads to assumptions such as the

liquid being stirred to keep it at constant temperature throughout.

The classic Newtonian expression T = T (1+ Ce™) is obtained, and compared with
the results of an experiment carried out with a real cup of hot water. The results are
found to agree fairly well, but a better agreement emerges when the value of room
temperature is adjusted upwards. An explanation, that there is a boundary layer

effect, is suggested.

14.6.4 Level 3: the water tank

This is the first of a set of three circuits around the cycle. The way in which water
flows out of a tank with a hole in the bottom is found to follow a parabolic law, and
this agrees well with results from an experiment. However it is suggestéd that this
does not match the normal way in which water is drawn from a tank, which is
through a pipe. The program then leads the user onto the second circuit in modelling

example 5, the tank with a pipe.

14.6.5 Level 4: the freely hanging chain

The modelling of the catenary is less straightforward than that of the suspension

bridge, as the weight per unit span of the chain varies along its length. Solving the
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differential equation is-algebraically subtle, though not mathematically difficult. The

expansion of sinh{x) is compared with the equation for a parabola, catenary curves

with different values of the parameter may be compared with parabolae, and

photographs of freely hanging chains may be measured to conipare with the predicted

shape.

14.6.6 Level 5: the tank with a pipe

As a first step, the pipe is treated as an extra depth of water, which leads to another
parabolic model. However, this does not compare well with experimental results,

and another circuit is proposed. (Level 6)

14.6.7 Level 6: the tank with pipe losses

The losses in the pipe are assumed to be proportional to the speed of the water in the
pipe. This leads to an expression which is a quadratic in (dy/dt). This type of
differential equation is not often covered in engineering mathematics courses. A
solution in terms of a parameter which happens to be the same as dy/dt at any given
moment is proposed. The predictions for the flow. out of the tank depend on which
term in the expression for y predominates. If there is negligible pipe loss, the same
parabolic solution as in the previous loop is found. If the pipe loss term
predominates then the solution is an exponential decay. This latter is found to match

the experimental results, and so it is accepted as a valid solution.

14.7 Form: bow the advantages of the medium were employed

Transitions berween sections are shown as passing from one “room” to another

through a screen suggesting a pair of doors. This makes more explicit the progress
through the modelling cycle, and also confirms to the user who has arrived at the

section from the “home” screen that they have arrived at the expected point.
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Figure 14-4; Transition page

In all the levels, tex is built up in sections, allowing the user to progress at an
appropriate pace. The new text is shown in black, and previous text in dark grey, so
it is clearly visible, but it is obvious what is new and what old. All the text on the
screen at one timé is related. When a page is full, important equations are kept visible
by scrolling them from the position in which they originally appear on the screen up

to the top. This emphasises the continuity of the algebra.
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Figure 14-5: Page with text and diagram

At many stages in the design process, animated sequences were discarded as being
possibly distracting and adding nothing in terms of helping understanding. A few
animated features were included where it was felt that they enhanced understanding.
One example is the black line PQ in-the figure above which is drawn from P through

Q as an animation.

14.7.1 Level zero

No “special effects” were used in this level.

14,7.2 Level 1: the suspension bridge

One of the major advantages of software over plain text is that it makes it possible to
build diagrams progressively, showing the sequence of drawing them, which may be

done on a board or overhead projector, but not in 2 traditional text. This technique
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is employed to portray the successive abstraction from a profile of a suspension
bridge to a diagram from which it may be deduced that the gradient at a point is

. proportional to half the distance from. the gerltrelihe. See Figure 14-5 above.

A collection of photographs of bridges is included and each photograph may be

overlaid with a grid so the user can take measurements of the shape of the bridge.
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Figure 14-6: Photograph with measuring grid overlaid

14.7.3 Level 2: the cup of coffee

Animation 1s used to depict the different ways in which heat is lost from the cup, and

that the coffee is stirred.
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Figure 14-7: Animated screen

The graph showing the effects of changing the initial temperature is animated to show

that the effect of starting at 2 lower excess temperature is to move the curve to the

left.

14.7.4 Level 3: the water tank

The diagram of the water emprying from the tank is animated.

In the “set up mathematics” section, some of the terms are coloured red. Running the
cursor over these térms causes 2 window to open with an explanation of the terms.
This allows a faster user to run through without interruption, but a slower user will

be able to stop and see the explanations.
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Figure 14-8: "Hot words" help facility

14.7.5 Level 4: the freely hanging chain

A graph showing the shape of the freely hanging chain compared with a parabola has
a set of radar buttons which allow the catenary parameter to be set at different-values

and the differences between the curves to be compared. At small values of the

parameter, the two curves the difference is minimal.
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Figure 14-9: Comparison of parabola and catenary

Photographs of freely hanging chains with the suspension points at a range of

distances apart can be overlaid with 2 measuring grid to obtain data to compare with

the model’s predictions.

14,7.6 Level 5: the tank with a pipe

No “special effects” were used at this level.

14.7.7 Level 6: the tank with pipe losses

As the equarions were built up in the “set up mathematics” section, 2 box on the
right-hand side of the screen was used as a window to explain and comment on the
progress in the left-hand column. The idea was to allow slower users to read the
right-hand column, to help them understand what was going on, while faster users

could skip through if they were able to follow the left-hand column.
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Figure;-14.-10: Commentary-in right-hand column

14.8 Conclusion

As part of the research conducted Intermedia was used to provide access to
information for two undergraduate courses. The results were inconclusive for
the students but there was clear evidence that those responsible for authoring
underwent significant changes in thinking style. (Begoray, 1990)

One of the most powerful parts of the expérience of authoring the package in this
project was the manipulation of equations as bitmapped objects, and the metaphorical
cutting and pasting operations involved. Rearranging the mathematical objects on
screen and substituting terms became very meaningful. It would have been good to
have found a way to allow students to share that experience. Again, building the
mathematical models included in the package was an opporturﬁty to understand the

processes involved and make them explicit.
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15. Evaluation of the courseware

15.1 Introduction

Rigorous evaluation procedures are available and have been described by, for example
Cronbach, 1988; Alkm, 1988 and Laurillard, 1988. By this stage in the project,
however, we had come to feel that mathematlcal modelhng skﬂls were best learnt by
car_rying out mathematical model‘ling, and tha; the concepts of mat_hetné.tical
:'modellin-g were also probably best developed in the context of reflection on those
skills, and in discussion with peers and teachers. The best that could be hoped for is
that the courseware might provide 2 useful introduction to the subject, especially as it

tries to establish 2 mathematical rather than an empirical pattern for modelling.

The software described in Chapter 14 was therefore evaluated by asking some final

year engineering students to come and use it, and to comment upon it afterwards.

They were video recorded, in the case of one group of students, operating the

courseware, and in both cases being interviewed.

Jed, a final year mechanical engineering student, used the package by himself, and
went conscientiously through all the models. He was interviewed by himself

immediately after using the package.

]oim and Gareth, mature students in the final year of the Manufacturing Systems
Engineering (MSE) degree, looked at three models together with Martin, who is a
German student also following this final year course. The UK students had taken a
common first and second year course with the mechanical engineering students. The

group of three was then interviewed together over a buffet lunch.

The video recordings were transcribed and the complete transcription may be found

in appendix C







15.2 Style

Some aspects of the package were viewed positively by the students.

15.2.1 Overall impressions

The students were generally positive about the program overall. Gareth appreciated
the sense of reality giveh by the incélusioﬁ of photographs. Jed compared the package
favourably to a lecture.

WMM: What did you feel about it aesthetically, about the look of the program?
Gareth: I thought it was guite good, yeb, with the imported graphics, like the
picture of the bridge. It was nice to see something in reality, that you’re actually
modelling from, so that picture just sets the scene, doesn’t ite- You can see the
bridge, see the cable, everything,

Jed: It’s a lot more intevesting -, it’s easier to grasp than standing in front of
someone who’s telling you about it.

15.2.2 Commentary

In general the students felt that the level of commentary was terse but adequate.

C WMM: What about the level of the commentary- of the explanation that was going
_ onf
Jed: I thought that was quite good.
WMM: Did you feel it was too high a level, too low a level?
Jed: I felt it was about right.

- Jobn: Well it was the beauty of that was the explanations were very short and

= simple. In a lot of books they’re so verbose about what they’re trying to talk about,
when you analyse it, figure out what they’re saying they could have said it in about

- Sfour words: “This does not work”.

15.2.3 Navigation: the home page structure

The students understood the underlying structure well, although they had some
Criticisms,

WMM: The bome page worked as a way of navigating?

Jed: Yep. You can base yourself from there. That worked quite well.

- Jed: Perbaps on some of the longer modules, for instance investigate implications or
¢ compare with reality I thought it could perbaps do with a page numbering system
- or some sort of scrolling system. For instance I got about balfway through, I
wanted to pop back and look at this page but you have to go right back and go
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through it again. ' .
I felt some sot of scrolling system perbaps would be useful.

WMM: Did you find using the bome page easy to operate?

John: It was the same as doing it on the Internet. Might be nice if you put a
bookmark in it, so you could bookmark where you are in it so if you if were
disturbed in the flow of concentration, you could bookmark. You could then go
back exactly to that point.

The criticisms seem to centre around the difficulty of going directly to a page in the
middle of a section. The suggestion made to Jed, of “tabs” along the sides of the pages

would seem to answer the problem. -

Jed also had some detailed suggestions to improve the navigation: that the arrow keys
on the keyboard could also be used for moving through the program, and that the
“skip” and “back” buttons could be switched to imatch the “next” and “prev.”

buttons.

15.2.4 Pace

The two groups had different interpretations of “pace”. Jed understood it to mean
the rate at which the mathematics was explained; John, the rate at which the page was

turned.

Jed: It went through too quickly for me because I haven’t been using it but I think
if I'd just come out of the maths modules that would be fine,

Jobn: It went as fast as you wanted to click the button.
15.2.5 Help

Red “hot” words were the preferred help style.

Martin: Click on the red word and then it comes up as the easiest way, like
Internet. If you have to go to a help menu on the right hand side, click down
several points, keep going, it would..

Jed: I quite liked the red word although the danger of that is people might be lazy
and just not do it, seeing they ought to be able to fignre it out and skip past it.
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15.2.6 Specific points

.Jed appreciated the way the new text on each screen wasshown in black while the

existing text faded to dark grey.

Jed: I like the way the text changes between the active and the inactive. It keeps in
focus else it ends up being just a big screen of words.

15.3 Content

15341 The case studies’

Were the case studies appropriate? Gareth and John felt that if the package was given

to second year students they might find the applications unsophisticated.

Gareth: In the second year is where you do guite a lot of thermodynamics work.
although the coffee cup was there it’s not really at the level of a second year degree
student. .

John: Yeh, I thought something about most of that.

Gareth: You're going into gas turbines and steam plants and things like that so
that kind of work was done a long time ago, i.e. foundation year, first year, so if
you’re pitching it at second years I think that you should be looking at an example
of say, a gas turbine engine would be more appropriate.

Gareth: Just trying to think what wonld be more apt, really. Trying to think of
examples we did last year. Can I think of one?

Jobn: Water flowing through a tank? There was a very basic case study- the tank
was straight, constant cross sectional area equal all through, then you could bhave
another one with changing volume, a changing cross-sectional area vather.

Jed, however, felt that the case studies were suitable.

WMM: What did you feel about the context? Did you feel the case studies were
relevant?
Jed: Yes I thought they were quite useful : the case studies. They were suitably
practical. _

WMM: You didn’t think they were.. Did you feel your intelligence was being
insulted by any of them?
Jed: Not really, no. Ibaven’t been using any matbs for the last year being on
placement so my maths is very rusty. _

WMM: Is there anything you've come across in your course that you feel would
make a good case study?
Jed: A good model, mmm.

Nothing that springs to mind , but I think those are good choices, the way they cross
over to the water tank with the hose and the bose with losses.
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15.3.2 Level of mathematics.

John atid Gareth felt that the level of mathematics was appropriate for students early
in their engineering courses. They had not looked at the later models, however, in

which such unappetising items as a quadratic in (dy/dt) appear.

John: I'think it should be aimed at first year because they've already That’s more
of an introduction.. Theyve already done a lot of the stuff that’s in that book -
before they get into the second year. It would be like, regressive, if you like. It
would be better if that were introduced earlier rather than later on.

Gareth: I mean even to the point where'on the foundation year, you're doing
differentiation at that stage and I think it’s a key point to get across that this is a
tool used by engineers to model situations which they are trying to overcome.
Cause you can get lost in the maths without seeing the relevance to the real world
in which we’re living. Whereas that’s quite good with the explanations like the
coffee cup and the bridge and things like that, why we actually use differentiation.

Jed did not seem to have engaged with the mathematics content. Dwyer and Dwyer’s
(1987) research, as described below, appears to be relevant here as well. Because the
interactivity is low, Jed has not spent enough time in contact with the information,

either in transforming it or in some psycho-motor activity, to elaborate it, and it has

just washed over the surface.

WMM: The level of the maths varies quite a lot from the first one through it.
Whereabouts do you feel happiest?

Jed: Well, given a reference, 'm bappy enough with understanding the calculus-
Tve forgotten all the transforms myself. When you use them a lot you know them,
you just click them in, but Pve forgotten all that. My maths is very rusty- I haven’t
been using it for a year and I haven’t had to use it so far this year.

Jed: I sort of tended to follow what was going on without actually examining the
maths. I understood what was happening without doing the sums as it were in my

head.

15.4 Discussion

15.4.1 Learning processes

Although the details are different, both John’s and Gareth’s strategies for learning
incorporate a transformative element: translation into John’s own words,
transformation into Gareth’s pictorial form. This elaboration reflects Dwyer and
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Dwyer’s (1987) findings on the depth of information processing'_ and the effect on
students’ ability to acquire and-_retri;.ve- information. They found that when stud;ants '
converted information from the visual to the verbal mode, and performed such
physical activity as taking notes or writing an answer down, the interaction between
the learner and the information was extended long enough for in-depth information
processing to take place, which would make jch_e student more likely to be able to

" recall the information in the long term.

Jobn: I learn by writing things down. I can write everything down in my own
words. In my notes you have to translate.. But then you know that because you
had all my notes. I can write them up in my own words.

Gareth: 1 know if 'm studying for an exam Ill just get one big sheet of paper and
put like what it is in the middle and then just draw it an all around do various

shapes, like somebody’s goals then Ill draw a set of goals and then when I try to
remember it...

Jed also liked the idea of a suggestion for spending time on a model, because he

implies that in general lectures are too rushed to have time to think.

Jed: I liked particularly - There was particularly in that section, the bridge I think
it was, there were suggestions for something to think about that sort of came over-
further investigations you can do. I particularly liked that because often when
you’re being tanght the lecturer’s desperate to get through the subject so they don’t
have time to stop and talk about that. That’s quite useful - keep people thinking

bopefully.
15.4.2 On the effects of using the package

What happened to the students as they were using the package?

The most encouraging aspect was that the MSE students were provoked into a

spontaneous discussion of the nature of modeliing. This discussion seemed to start
~ with a semi-audible comment by Gareth that the model of the coffee cup predicted
that the coffee would never reach room temperature, but that of course it would in
reality. At that level he had engaged enough with the program to test it against his

internal model and to begin a conversation with it.
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Jed was conversing with the program in that he wanted to go back and see what had
gone on ealier, because he- vfa;nted;an eas;ier W_%\y of going i:ac_k.l:"han provided by the
buttons. On the ofher hand, he did not engage with the n{athematics, as he says: “I
sort of tended to follow what was going on without actually examining the maths. I
uncierstood what was happening without doing the sums as it were in my head.” I
suspect that the MSE students did not engage with the mathematics either, since.they
_ dismissed that aspect as simple, and suggested ways of forcin.g users to work through

by including multiple choice questions-at that point.

The idea of using such a stratagem raises other points. The part of the modelling
process which is the most challenging for engineers is the transition between the real
world and mathematics, that is simplifying and abstracting the mathematical problem
(OECD, 1966, as quoted in chapter 12). This is the part of the cycle in which it is
most important for users to engage. It is also the part in which correct answers are
most difficult to define (see Graham E, 1997). If some form of what appears to be
assessment s included, then students will concentrate on the part that is assessed

(Hargreaves, 1997).

In the package as it stands, there was some engagement with the “investigate
implications” shown by Gareth’s comment. This was an intrinsic engagement, as no
extrinsic provocation such as self-testing was present. If such a provocation is
included elsewhere in the package, in order to force engagement in parts with less
intrinsic interest, it will down-play the perceived importance of the parts which do
have intrinsic interest. It would be difficult to include self—testil_ig of a simple multiple
choice type in the most important and difficult part of the cycle, that is the
simplification and abstraction stages. We have seen in chapters 3 and 12 that these are

the stages that engineering students find the most difficult.
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In summary, as Connell (1997) observes:

Typically what is done is to model expert performance, which does not
include all the muck and.mess which the expert went through to develop it..
The learner in such a system is presented with what represents the end-level
trace of an incredibly complex act of meaning construction. It is little wonder
that so many students tune out of [integrated learning system] programs.

15.5 Conclusions

15.5.1_ On the package

One of the rules of instructionl design is that the author should know who the

package is aimed at. In this case the target was “engineering students”. This proved

to be far too vague: the students did not feel that it was addressing their needs,

although we saw in chapter 3 that their analogues had been unable to produce a

model of the cascade problem.

The interactivity suggested by John reflects a behaviourist paradigm, verging on
mastery learning, where the aim is to find the correct answer. The stage at which he
suggests it should be used: “can you perform this integration?” is probably not the
most critical point of the cycle, a-nd the object of the program is to build up a concept
of the modelling cycle through repetition, showing how the same stages apply
although the model may change and refinement may be necessary at different stages.

This is what Jed identifies as “the homogeny of the principles bebind modelling., The

principles bebind it.”

It is recognised that the package needs more interactivity built into it, and that this
should be made more obviously available. The group of students did not look at the
bridge pictures, because the button leading to those pictures was not in the same place
as the “next” button. A better approach to interactivity may be to interleave a page
asking the student to score the package on how well the student feels they have

understood it so far, which they cannot pass until they have completed it. The
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student would be asked to reflect on their understanding but the context would be

that it was the package anid not the stiudent under test.

On reflection, the place for this sort of package is probably in the context of a

teacher-led course, and not in isolation. This reflects the findings of various
researchers. Heard’s (1978) engineering student respondents wanted more teacher
contact, Brown (1994) found that the role of the teacher was very important to
eng'in,e;ering students in thf& context of a compute‘r supported mechanical engineering i

course, Ramsden and Entwistle (1981) found that engineering students were

dependent on teachers to direct them what to do and Crowther (1997b) su;ggests that

engineering students gain motivation from teacher-centred instruction rather than

working independently.

15.5.2 On engineering students

The subject of mathematical modelling appears not to have been taught explicitly in
the engineering degree course. The students seem to have incompatible ideas on what
mathematical modelling is. Martin, althougl'; he has followed the German rather
than the English education system up until now, reflects the pattern suggested in
chapter 13 quite strongly. He suggests that there are about seven basic formulae,
from which you choose the appropriate on by deciding the variables you have and
the ones you need, and then the most difficult part for him is determining the
parameters. John has more of a grasp that setting up the equations-is involved, but
when he describes how a report should be written he makes reference to using ready-
made models (Bernoulli, specific gravity). Jed also felt that he would have problems
locating the variables, though he would know where to go to for modelling. This
suggests a similar view to Martin’s except that Martin may keep the formulae he

needs in his memory. Jed’s attitudes to mathematics shown by this interview are that
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he would Iikf_: to avoid mathematics, he has not used mathematics during his year in
industry; and that he would ]:;e able to look up what he needs. These reﬂec,t‘the

attitudes found in the comments on the questionnaire in chapter 6.

Neither group were able to suggest applications which would make good case studies
(the water tank was effectively dealt with in model 3), although Gareth felt that
second year students would be looking at gas turbines. This also suggests that none of
the students héd been ‘in.cox-ltact with mat}éematical modelli;lg during their degree

course (since the foundation year).

Both groups pointed out that students (particularly engineering students) would not
go out of their way to use such a package, unless (John felt) they felt that it
specifically addressed a model they might need for an assignment. This reflects

Ramsden and Entwistle’s (1981) view of engineering students as syllabus-bound.

15.5.3 On a possible redesign

It would be possible to redesign the package on a more open plan, showing a
representation of the thing to be modelled and then making suggestions for possible
modelling strategies. However, as Graham (E, 1997) points out, students will
approac_h the same problem in different Wﬁys and the diagnostics required Wo_uld be
highly sophisticated. We conclude that the best use of the package would be a5 an
introduction to mbdelling, but that the level of the mathematit;s, if not of the algebra

involved, is probably too high for many first year engineering students.
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16. Conclusions and suggestions for further study

16.1 Introduction.

The important cutcomes of this study include the design and use of an instrument to
investigate the concept images of engineering students; the subsequent mapping of
these concept images and the description of the engineers’ mathematical modelling
cycle. Previous researc'h on.concept Images has nr-a-t addre;ssecl the mode in which the
concept imsilges are held,-(see for instance Vinper, 1991). Resg'arch on the -
mathematics of engineering students has concentrated either on their mathematica%
skills and declarative knowledge (see for example Sutherland & Pozzi, 1995;

Crowther, 1997a) or on their attitude to mathematics (see for example Shaw & Shaw,

1995, 1997; Crowther, 1997b).

16.2 Concept images: mode and depth

The responses to our questionnaire provide some evidence that the engineering
students did hold different concept images from the mathematics students and that
there was a development in their concept images which was not detected in the

mathematics students. These differences are described in the sections below.

It 1s not implied that mathematics students’ concept images do not develop, but
rather that the research was designed to concentrate on concepts more central to
engineers than to mathematicians. These results are an original contribution to ou
understanding of the development of engineers’ concept images in that published

research has concentrated on the mathematical skills and declarative knowledge of

engineering students.
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16.2.1 Mode of image

AItho_tlgh many engineering émdents would describe themselves as visual p'eople‘
(Crowther, 1997D), the diagrammatic options on the questionnaire were only popular
with them in a “mechanics” context. In a “mathematics” context, respondents
preferred verbal options where these were available. This could have one of several
causes. It may be because they their visual representations were private and did not
coincide with the given options, since drawing a di.agrarn is not a standard step in
tackling mathematics questions. It may be that they havé not' engaged enough with
the mathematical concepts to form visual images, or it may be that the ver.bal mode is
their preferred mode in conceptualising mathematics. The distance in iconicity
between an abstract mathematical idea and a slightly less abstract representation in

words is less than that between the mathematical idea and 2 visual representation.

16.2.2 Depth of image .

The change between a novice’s and an expert’s concept system can be characterised
on three dimensions by (a) an increased perception of the concepts as meaningful, (b)
an increased linkage and richness of relationships between concepts and () an
encapsulation or clumping of concepts (Royer et al, 1993). These aspects are

discussed below.

We found evidence of two different ways in which engineering students’ concept
images appeared to mature and deepen. The first was a response to teaching, where
the pattern of preferences changed after a topic had been taught, but reverted to the
“baseline” pattern after a time. The second type of change was a response to

experience, where the change was more gradual, but the pattern did not seem to

revert.
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The practising engineers proved a difficult group to account for, because in many
ways their concept images were more sinilar to those of fir§t year en;gineei'i_ng
students than fhose of postgraduate engineers. Possible ‘::xplé.néti-ons might be that -
because of their age they had undergone a different school and university experience
from current students, being older than the current students; or that they were
intrinsically dissimilar peqple, having been a group of Ministry of Defence sponsored
students who had all"’attelnded “old” universities and who were no*:;v working largely

as managers.

16.2.3 Growth in meaning

One aspect of maturing of a concept was shown by the growth in popularity among
engineering students of the options where 2 mathematical concept was expressed as a
sentence describing what “it tells you”. Growth in meaning may be seen as
proceeding in two directions: making a relationship between the mathematical
concept and the outside world, so the world is interpreted through mathematics (see
Wilson et al, 1993), and seeing h-ow that concept had meaning particuiarly ina work

situation (see for example, Lave, 1996), so mathematics is interpreted in terms of the

everyday world.

16.2.4 Richness of association

Some small evidence of an increasing richness of association between mathematics -
concepts was found in the engineering students, in that an option which portrays
integration as the reverse of differentiation gained in popularity. This was not an
aspect which the questionnaire was designed to explore so it was interesting to find it.
Although the process of integration is taught as being the reverse of the process of

differentiation, the students in the early part of their studies did not identify the
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relationship in the same way that they readily chose the description of integration as
“the area under a curve”. This development may. be related to the'application of

integration in areas such as hydraulics and stress analysis where a total force may be

equated to the sum of the stresses across an area.

16.2.5 Encapsulation’

There was some small evidence tha-t the -én‘g'iﬁeéring 'studeﬁts’ mechanics concepts .
were becoming encapsulatedlacross the course. This was shown when options which
used a general heading under which the particular case might be classified increased in
popularity. The statement describing the beam as simply supported with a load at
one-third span, and the description of the mass-spring-damper system as performing
damped harmonic motion both increased in popularity over time among the

engineering students.

16.2.6 Comparison with mathematics students

We believe from the results of this study that the mathematical development of
engineering students is different from that of mathematics students, particularly in
the way in which they give engineering meaning to certain mathematical concepts.
At entry, there were strong similarities between the mathematics and engineering
students’ patterns of responses but by the final year the groups had diverged. This
confirmed the differences observed between the mathematics and engineerir;g

students carrying out the cascade modelling exercise.

There is evidence in the literature that engineering students are socialised into ways of
thinking and behaving, and we may ask whether the difference found stems from
socialisation, from the interactions between students and their peers, lecturers and

other professional contacts, or whether there is also 2 second acculturation process
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through their discovery of what is useful in the context of their study and work.

16.2.7 Summary

We believe that the study has for the first time shown changes in engineering
students’ mathematical concepts as they progress through their studies. These
changes are not shown in mathematics students, the virtual control group, so they
may be thought of as specifically engineering changes. It was unexpected that the

engineering students seemed to have verbal concept images in mathematics, but

pictorial ones in a mechanics context.

16.3 Implications for teaching

An important element of engineering mathematics which we have demonstrated is
the growth of meaning of mathematical concepts in external terms. This creates gains
in three fields: the students have more attachment points for their concepts, the
students have intrinsic motivation to develop their understanding since it relates to

their chosen studies and the students are able.to apply their mathematical knowledge

in the engineering fields to which they are appropriate.

If this growth in meaning is seen as both a valuable and intrinsic part of engineering
mathematics, then its development should be encouraged as early as possible in the
engineering mathemarics curriculum. As present it appears to occur mainly during
the students’” “year out” while they are in contact with mathematics as it is embedded
in engineering experience. In order to accelerate its development then mathematics
should be experienced as embedded within engineering at an early stage of the degree
course, and this implies that mathematical modelling should be used as a context for

the use of mathematics at an early stage 1n the course.
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16.4 Engineering students’ attitudes to mathematics

Artitudes to mathematics form another aspect of the internal mathematical world of
engineering students and some were expressed by engineering students in the
questionnaire responses, the modelling exercise and the courseware evaluation

interviews. Théy may be summarised as follows.
1. Matht?maticsis found in books: it is external to an engineer,
2. Mathematics is not really relevant to engineers,
3. M;althematics is something you learn for exams and then forget,-
4. Matflema;:ics has right and wrong answers.

Of these attitudes, the first two seem to refer to mathematics in general, and the

second two to mathematics as a part of the university syllabus.

16.4.1 Mathematics as external

Engineering students appear to regard mathematics as something external to them,
which they would find in books or notes. When mathematical skills and concepts
become internalised as part of other processes and conceptual structures, we suspect
that they are no longer regarded as being mathematics. O’Kane (1995) makes the
claim that “all fundamental concepts in engineering science have been given their
most precise expression by mathematicians working in Rational Mechanics”, and that

engineers do not recognise the mathematical content of their everyday concepts.

Engineers find meaning in mathematics when it meets their experience: for example,
the derivative as a rate of change, which has more meaning to an engineer than the
more abstract notion of the slope of the tangent. There is a development in the
extent to which such concepts become meaningful to engiﬁeers, but this appears to

relapse while they are in practice. This aspect would be worth further research.
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16.4.2 Mathematics as not relevant to engineers

The engineering students observed were not using mathematics as a way of describing

or interpreting experience (cf. Hirst, 1972). They say they do not use mathematics

when they are working in industry. They even claim to try to avoid mathematics.
These claims should be seen in the light of the proposal that once something 1s seen as

useful to the engineer it ceases to be regarded as mathematics.

Separation from mathematics is probably a disadvantage in the practice of engineering

and may also rob the engineer of a source of satisfaction: successful matherﬁatic:;ﬂ
modelling (Shaw, 1989). Although mathematical modelling is now a recommended
part of the engineering core (IChemE et al, 1995) it is as a short course which we feel
does not capture the essence of the subject: I recommend that it should be integrated

into the mathematics of the engineering course from early on, as Cross (1983) does

for most mathematics courses.

16.4.3 Mathematics as something you learn for exams and then forget

Engineering mathematics has been variously described as a tool, a language and a
competence. We feel that to regard mathematics as a competence implies that it is a
skill which may be acquired in order to pass a test of competence, and then ignored.
A language is a better metaphor for engineering mathematics, as it implies a living
entity which is used to communicate content about something else, and which is
subjéct to change as usefulness dictates. A tool is 2 metaphor of mixed usefulness.
On the one hand a tool is external to the user rather than internal like a language.

On the other it implies usefulness, and being a means to an end.

Even some authors who insist on rigour in engineering mathematics defend thisas a
way of teaching intellectual rigour to engineering students (implying that intellectual

rigour is not present in their other subjects, which implies that without mathematics
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engineering would have no intellectual rigour) and not as an intrinsic part of the

mathematics needed.

We have sympathy with the authors (Cox et al, 1995) who recommend that sample
transformation and operator methods, for example, be taught to engineering students,
and that students should become proficient with symbolic algebra systems since there

is simply not time in the engineering mathematics course to teach all the mathematics

an engineer may require.

On the thorny questic-m of relevance, there is an argument which says “if you can’t
find an engineering application for this piece of mathematics, so you can teach it in
the context of that application, why are you teaching it to engineering students?”.
The counter-argument is that learning a new application and new mathematics
simultaneousl'y is too hard: in general it is easier to teach the mathemarics first and
then to teach an application which will use the mathematics later. Crowther (1997b)
suggests that any three-dim-ensional, practical or easily visualised application would

help engineering students to give meaning to mathematical concepts.

16.4.4 Mathematics has right and wrong answers.

This opinion is dangerous in engineering students as it causes a false expectation of
mathematical modelling. The ability to construct and use mathematical models is a
vital piece of engineering knowledge. It is the way that engineers use mathematics in
their professional lives, and it allows engineering students to give content and
meaning to mathematical concepts. However mathematical modelling is an
intrinsically messy process, and the eritical property of 2 model is not its correctness
but 1ts usefulness (or “fruitfulness”; see Gilbert et al, 1998). Again I suspect that a

process which produces messy answers is regarded by engineers as not mathematics.
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The model used in this study for mathematical modelling has been a modification of

the Open University flow chart (F:igure 16-1).

Reality i Interpretation Abstraction Mathematics
0. 1, 2. 3.
Reality Understand |i| Simplifyand | Setup
| problem |7 make | mathematics
:| assumptions |
(7) 6. 5. 4.
Write report | i | Compare with | : Investigate 31 Solve
] reality ] implications  [7] mathematics

Figure 16-1: Modification of OU modelling flowchart

The mathematics taught to the engineering students in this study does not appear to
be directed towards making them proactive mathematical modellers, but more to
allowing them to follow the mathematical arguments used by others in constructing
well-known physical laws (or “formulae”), and to manipulating the formulae once
given. .These formulae then become the basis for the engineer’s modelling process,
which appears to be different from both classical mathematical modelling and classical

empirical modelling. The process is described in Figure 16-1, a new model,

reproduced from chapter 13.

{© lentifythe : {@® Findthe : (@ Efiminate

type of == appropriate -M  unneccessary :
_ problem | ¢ theory FS lerms
e ianssecigmnnnnnnT - e s - -'---.n.‘|.|.||||..-"'
e N T R, S
‘@Evauatethe | |OFeedthedata ; (O Setupan |
i paramelers - backintothe < experment
; theory

Figure 16-1: The engineering modelling process
I would argue that the critical part of mathematical modelling lies in the central part
of the OU diagram: in the “interpretation” and “abstraction” streams, where the

possibility for individual variation is the greatest (Graham E, 1997). This was
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intended to be the focus of the courseware: extracting the mathematics from the real

world situation and interpreting the model in terms of how well it matched reality.

It is all too easy to show students a polished model of reality, but the engineering
student needs to be aware of the process of building the model and then of
interpreting it in terms of the real world. Part of the problem is the desire of the
teacher or the professional to present the learner or other audience with the final
product of their reasoning, without showing any of the scaffolding: with which it was
built (see, for exampl;e, McDermott, 1991; éauss”s habit of destroying his working-
notes), which is related to the absolutist view of mathematics, in which the struggle of
the mathematician to produce the final knowledge is of no interest. This is analogous
to mathematics being regarded as a theatrical performance in which only the final
event is of interest, or a building which stands after the scaffolding has been removed.
However if mathematics is regarded as an endeavour, the process of building 1s
important, so that it may be replicated with variations to arrive at an extension of the
edifice. On the other hand, slavis;hly following the same process will not lead to any

growth in knowledge: the message is not “this is the way mathematics is done” but

“this is the way we did this bit of mathematics”.

16.5 The courseware

The courseware failed to engage the students, by presenting a picture of how the
model had been built rather than allowing them to take part in the building process.

The interactivity proposed by the students suggested that they were expecting a right-

wrong type of answer, because to them mathematics has right and wrong answers.

Writing the courseware was an experience which produced cognitive change in the
author. When it was tested it proved to have been too loosely aimed. Although the

case studies are the practical or easily visualised type of applications recommended by
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Crowther (see above), and the mathematics is deceptively simple, some of the
manipulation, for example in the catenary and in the tank with pipe losses, is

probably more subtle than many engineering students would appreciate.

The main shortcoming with the courseware is that it did not engage the students in
the modelling process, and this is probably due to its book-like appearance, that it
presented the process in too polished a guise, and that did not allow students to
participate In the decisions taken. It is probably an indication of the lack of
engagement of the students with the courseware that tiqey did not recognise the

subtlety of the manipulation.

I see such courseware as being useful at two points in the engineering mathematies
course: as an introduction using the simpler cases in the first year and as a recap to
refresh the memories of final year students coming back from a year away from
study. The courseware will need some modification before it is practically useful, to

invite more engagement in the simplification and abstraction sections.

16.6 Research methods

Several research methods were used 1n this study: observation, survey, content
analysis, factor analysis and interview. This spread of methods allowed a degree of
triangulation in the study, although all were approached qualitatively, rather than
quantitatively. The study was overall narrow and in depth rather than broad and
shallow in scope, which is an approach which gives a rich qualitative picture in

general.

16.7 Misconceptions we all may bave

One of the questions in the questionnaire provoked strong comments from

respondents of all levels of experience. These responses gave evidence of two
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widespread misconceptions, one of which is the well-known case of rigidity given
‘priority over stiffness, and the other of which, described for the first time, appears to

be the priority of the behaviour of a string over the bending behaviour of a beam.

The conclusion I draw from these misconceptions and their widespread distriburion
is that they probably represent a widespread distribution of other misconceptions
which most of us are carrying about with us, which are presently causing very little
harm,- and which would be dispelled if we were to run into the phé:llo_menon in

- practice. However it 1s a useful memento mori, as it were, to remember that we may

all be fallible, as well as mortal.

16.8 Questions arising from the research
Three new questions are now begging to be answered.

The first is whether the effects I have observed in this study, of the changing concept
images of engineering students and the increasing difference between engineering and
mathematics students, may be found in other universities and whether they may be

found again at Plymouth. This is a question of confirming the findings for other

groups of students, and broadening the scope of the study.

Given that the effects are confirmed, the question arises why the practising engineers
appear to have reverted to a similar state to students at entry. This would be a matter
of tracing engineers at different stages of their professional lives and trying to

document the process of regression if it indeed happens.

Finally, I mentioned in chapter 6 the suspicion that engineers cease to consider
concepts mathematical as they find them useful or comprehensible. This process is a
topic which would be appropriate to investigate through a questionnaire which could

be designed while applying the lessons learnt during this study.
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APPENDIX A: TRANSCRIPTIONS OF RECORDINGS OF
STUDENTS PERFORMING CASCADE MODELLING PROBLEM

30 June 1994. Two final year mechanical engineering students. 3 vessel problem
Students have the apparatus set up with tubes but no water on a table in the window of 1
Rowe St. The camera is operated by a student from Media lab arts degree.

Tape 1

Note: there are inaudible passages on the tape where the students are muttering to
themselves or to one another, but there are also long periods of silence as they study

pieces of paper or the apparatus.
Time on Speaker
tape
00:12 WMM  The situation today is-that I’ve asked you to come and do a mathematical
modelling problem to help me in my research into teaching maths to
engineering students.
The problem is this: you have three vessels as described on the sheet. Tank
1(sic) emptying into tank B and tank B into tank C. Clearly the fevel of fluid in
each tank will vary. So the question is to determine.. To predict when the level
of fluid in the middle tank is greatest and what that greatest volume is. So...
Are you happy with that?
Adrian I think so, yes.

01:00 WMM  So what I intend to be doing is to be taking notes, really, of the things you are
doing, to watch you doing this and infervene if necessary. I hope not to
intervene at all,

Thé pink little bottle has got some pink fluid in it which you can dye the water
to make it a bit more visible. And it’s got phenolphthaleine in it which is
laxative so please don’t drink it. (laughter) OK, thank you

Early stages

02:07 Adrian  Right. {Students settle down to look at sheet)

OK So how does the water go to exit

03:11 Jolyon  There’s a certain amount before it actually goes in there, so we’ve only got so
much head.

03:54 Adrian sketching diagram.

04:22 Jolyon  (Pointing to taps) We have to assume that the flow rate through here is going to
be the same as the flow rate through here. There’s roughly the same difference
in head, diameter of tube.

Adrian  As the pressure varies, the flow is going to be changing,
Jolyon  Inside the tubes a steady flow job is developed...... It’s a maximum
Adrian  (Drawing) What we’re interested in is in.. maximum volume in B is this one

here.
05:37 Adrian  Shall we go home?'(Laughter)
05:41 Adrian A wild guess

Jolyon  (Sketching) Well I°d have thought the answer is something like- do that Do it
experimentally. start with that :

06:21 Adrian  (Drawing vertical arrow on sketch) See that distance
. Jolyon  The pressure on there is mgh
06:55 Adrian  We could do with the air really
Jolyon  That could give us some help because we obviously need ...
08:10 Jolyon = What if we split it up so we’ve got the initial tank of water. We need to know

how long it’s going to take for each litre of period of water.. So you can take..

The formula card appears
08:54 Adrian  Trying to go back to basic principles here
Jolyon  (Studying tanks) What if we apply Bernoulli to the area between each tank?
Both pl vl is going to be equal.
Jolyon  {Takes out calculator and from it a formula card) Cause I’ve got Bernoulli’s law
on here )
Adrian  Ha Smari!

10:20
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10:50
11:10
11:34

Jolyon

Adrian
Jolyon

Use this equation just to see

(Adrian picks up card and studies it)
Quite a smart formula

Yeh

Jolyon reaches a physical understanding and makes a prediction in general terms

11:58

12:28

13:02

13:22

13:50

14:11

Jolyon
Jolyon

Adrian
Jolyon

Adrian
Adrian
Jolyon
Adrian

Adrian
Jolyon

Adrian
Jolyon

Adrian
Jolyon
Adrian
Jolyon

See we just don’t want mass flow rate, we want to (believe) the formula as well
(Sketching) cause somewhere on the line we’re going to have to plot this ..
Time

It’s a matter of differentiation then I suppose.

We’ve got - say volume over here. Initially very small and it’s going to rise
quite quickly initially because nothing’s coming out the bottom.

Yeh but if you look at this diagram you're assuming that the exits are at the
bottom.

So it appears for me you're going to have a high flow rate which soon moves
off dunnit? )

There will come a point when the level in the top.. The two flow rates are going
to be equal when we've got the same head in it after which it will start going
down

Yeh, yes right

The time it takes for this to half empty, these two will have the same volume
No because some will be coming out at the same time. When that’s half empty
you’ll still have.,

(Point to tap in tank B) Yeh. I'd say we were assuming this was level. Not the
initial volume at the bottom.

Yeh.. You’ll see what's there. When that’s half empty that isn’t going to be
half full.

No they’re the same size.

Yeh, but it’ll be flowing out of them as well.

Yeh

You'll get a point when they are at the same level but not when that’s half
empty. Probably some time after that.

Some attempts to manipulate the formula

15:16
15:36

16:10

17:11

18:37
19:30

Refocusing
21:50

23:30

Adrian
Jolyon

Adrian

Jolyon
Jolyon
Adrian

Adrian

Jolyon
Adrian
Jolyon
Adrian

Adrian
Jolyon
Adrian
Jolyon
Adrian
Adrian
Jolyon

Got some stuff over here

You've got the other here which is () you don’t have to ( ) the maths while
we do this

No that’s going to vary as time goes on, isn’tit. ( ) wit respect to time but
actually..

Yes

I’'m just trying to get the flow rate coming out of the bottom then we can use it.
Yep

We're going to have to assume the losses. There will be because of the
coefficient of viscous.. Velocity is going to be zero. pl is going to be zero
h2 is zero. hl will be...

We need pressure to...

(Pointing) That’s zero

(Taking calculator card again) Looking to see what I can get rid of

Where is this taking us? What are we trying to get out of this?

Flow rates for varying heights of water '

Then that will be the same at the bottom as well

Like I said, what’s coming out of the bottom is the same as the top one.
(Writing) We know g

Did you do that plot with steady flow?

{Laughing) Two years ago

More manipulation: capitulation

24:15

Adrian

This thing actually cancels out. doesn’t it, because you take that away from
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26:00

26:23

27:10

27:52
28:50

30:00

32:28

Jolyon
Adrian
Jolyon

WMM
Jolyon

WMM
Jolyon
WMM
Jolyon

WMM
Jolyon
Adrian

Filling the tanks

Adrian
Adrian
Jolyon
Adrian
Jolyon

Adrian

Jolyon
Adrian
Jolyon
Adrian
Jolyon

WMM

Jalyon
WMM
Adrian
WMM
Adrian

Jolyon
WMM

Adrian
WMM

Jolyon
WM

each side and divide through
You want this squared and then

Yes it’s just rearranged , isn’t it.
Well do you fancy giving us any pomters then, because we're not getting
anywhere. .

Intervention 1: permission to play

Have you got any intuitions about what you think might happen?

We’ve dong a similar thing as an exercise.. Praciical.. Quasi-static flow which
was based totally around this. How long it takes a container of water to empty
into another one- And if we knew that for each container- over a period of time-
and compared the times- then (sketching) the whole thing is we would probably
get a graph where the two coingide - where the two would be a maximum,

How could we test your intuitions?

Fill it up: we’d just do it.

" Well why not?

I thought the idea was to get a mathematical model of it rather than just sost of
measure it.

It might be helpful to test your infuitions.

Yeh

Come on then, let’s fill it up.

(Pointing at tap level of tank B) We want to fill this one up so it..
If you just fill it up to the five litre mark.

That’s spot on, mate.

When it’s empty it’s still got all that

Shall we fill this one (tank B) to there? To this line first?

A gap inrecording. The students are now sitting looking puzzled and unhappy

The liquid is leaving the top container at a uniform mass flow rate . Of what
volume.

So?

So

No different pressure either. [’m not so sure about this formula anyway

That must be it most likely. The time that..

All'1 can say is it seemed to reach a maximum near the first taking water, albeit
very slowly.

Intervention 2: How did the apparatus differ from the thing you are trying to model?
WMM attempts a Socratic dialogue.

Can I come in here?

You found that it didn’t do what you expected it to do. And you found that it
emptied at virtually a uniform raté.

Well, yeh it did

which was not what you were expecting. Why do you think it did that?

The difference in height was causing pressure difference

Yep

But it isn’t enough to vary- say if the thing was 10 metres high then you
would’ve got enough pressure difference to matter.

1t would have been more visible, wouldn’t it?

What I'm questioning really is: what the height is. What are you measuring the
height from?

From the top. From the level it it’s at now to the level it was beforehand.
Well, that’s the change in height- but what’s the significance of zero height in
the physical significance of heighi?

Well we were taking the height from the floor to each one.

What’s the sig, um, what is it about hO that’s , I mean I’m asking really what’s
the physical significance of h.
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Another tack
33:12 WMM

Adrian

WMM

Jolyon
Adrian
WMM

Adrian
WMM

Jolyon
WMM
Adrian
WMM
Jolyon
WMM

Jolyon
WMM

36:14 Adrian
Jolyon

Adrian
WM
Adrian
Jolyon
37:06 Adrian
Jolyon

37:41 Jolyon

Does the apparatus match the diagram?
{Looking at diagram) Um- no apparatus will exactly match the diagram but you
can assume it’s being just by putting the bottom amount of water in the vessels.

.So you’ve gota little lip, but what else is the difference between the apparatus

and the diagram.

Well nothing apart from what’s left in the bottom of the container.

Water is forced down into here instead of horizontally

So it’s got no horizontal velocity. What about., What is it that’s affected by h
apart from the flow rate?

The pressure

The pressure, yup. hO is the place where the pressure is equal to atmospheric
pressure, So here is it apart from at the surface of the liquid that water’s at

. atmospheric pressure?

It's at atmospheric pressure when it leaves this tube.

Exactly, yes.

So pressure at éntrance and exits to the tube is the same then.

Is it?

At the water surface it is.

Well it’s the same at the water surface and at the point-where it leaves, cause
that’s what's driving the flow.

Yes but where the water’s higher the pressure’s getting to be different there
than

Yes. 8o could you adjust the apparatus to make it more similar to the diagram..
so it matches better?

By taking the rubber..

We could take the rubber off but I mean then I don’t see any difference. Cause
you still.. whether atmospheric pressure’s going- to be here or there (indicating
top and bottom of tube) but the restriction..

I’m not sure it’s going to make any difference

Do you think that taking the pipes off will make a significant difference?
Some difference, yes, but not...

You haven’t got any losses in the tube then, have you.

So you increase the flow rate leaving the tap

I suppose the pressure’s less because you’ve got the head of water from the tap
io the bottom of the tube.

(Removing rubber tubes) One way to find out.

We set up the apparatus again

Jolyon
WMM

Jolyon
Adrian

Adrian

Adrian

Jolyon

" Adrian

Jolyon

43:45 Jolyon
44:00 Adrian
Jolyon

Students empty tank C into tank A.

We don’t need to do that (As Adrian drains tank B)

May 1 suggest you sit it on something- the middie carboy.. I think you’ll also
need to sit the bottom carboy on something,.

That won’t affect the top one?

No

(Middle carboy sitting on spool)

You hold it (the bottom carboy)

{Jolyon trying to spot when the level in B hits a maximum, holding bottom
carboy, Level in top carboy starts at 5 litres))

Ready

Yes

Keep your eye on that. Three two one go

1t"s taking longer. A lot longer

It’s constant. It’s staying that way

Right then that’s a lot better

Doesn’t significantly change the result of this but it’s changed the top one. This
one’s still at a maximum- well from about then on

A dialogue: how much have things changed or improved?

45:45 Adrian

Right. That performed more as we expected: The first litre at 21, the second 24,
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46:30

47:44

48:04

48:48

49:20

50:26

53:11
53:35

Tape 2
Time on tape
00:01

00:29

00:45

01:35

01:47

02:50

Jolyoﬂ
Adrian

Jolyon
Adrian
Jolyon
Jolyon

Adrian
Jolyon
Adrian

Jolyon

Jolyon
Adrian

Jolyon
Adrian

Jolyon

Adrian

Jolyon

Speaker
Adrian
Jolyon

Adrian

WMM
Adrian
WMM

Jolyon
WMM

Jolyon
WMM

Adrian

the third 31 and the fourth 41. That was more how we expected it to go, wasn’t
it?

* So what did you say initially it was?

Initially it was virtually constant for a time: first litretoo 22, the second 24, the
third 31 and the fourth 41. So that was more how we expected it to go, wasn’t
it? From the top.

I suppose so.

Initially it was virtually constant time really. First litre took 22, second 24,
third 31 and the fourth 41, so that was more what we expected, yes?

(Pointing at tank B) Cause the difference with the tube was less.

I seem to remember that somewhere: the thing we did was vary the length of
that tube.

It has changed it a lot, hasn’t it?

The thing is still reaching a maximum with the amount of water at the top.

So when you said it was a maximum, yep, was it a noticeable maximum or did
it sit at that level for a long time?

It went up to just over 2 then hovered around there- couldn’t really notice
anything until the last little bit when it started dropping again.

That’s assuming the sizes of these are the same.

Yes. They are the same, aren’t they

The difference between this and the previous to compare- the pressure
differences between there and there- and this one between there and there.

I"d say the maximum is an interesting point where it starts losing more than it’s
gaining.

Well I would have thought it's obviously {mu) that’s wrong and it’s starting
losing more than gaining at this level (B) is the level in there (A) i.e. over
halfway down.

I expect the level in there (BQ got up to there too soon and only the last bit (A)
will start dropping.

1f it was the same out of here and out of here this level (B) wouldn’t change at
all.

Adrian looks at papers. Jolyon looks at apparatus,

Jolyon takes a sheet of paper

End of tape.

So the maximum is going to occur on that when it starts emptying more than
it’s paining - yeh- first of all its gaining water more than it’s emptying, and it
rises.

[ mean if that's the case - if you’re saying that - then why is it stillat a
maximum when that’s nearly empty?

There's not much in it. It's not reaily visible. I would agree that should be the
case

Intervention 3: Plot a graph? -

Can [ intervene?

You certainly can

May I make a suggestion? Have you used all the information that you've
actually got? .

I think so '

Well it appears {0 me you could try plotting the er the figures you got from the
top one emptying and that might lead you down an interesting road.

Shall we make a note of each..

You've got the times it took to go past each little mark in the top one. That
may lead you down an interesting road.

Shall we plot the time?

Adrian draws

Jolyon takes paper and sketches
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Break in film

Is there a linear relationship?

04:41
: Jolyon

Adrian
Jolyon

Adrian
Jolyon
06:20 Jolyon

Adrian reading data and plotting. Sketches in line

Should it be linear? Because it’s proportional to v* isn’t it? Dunno if that’s..
Ordinate scale is volume.

The volume’s the same. It’s the time that’s changing.

You change the volume as well. You lose it out the tap. As time goes on,
you’re losing volume and pressure.

Well?

The top doesn’t vary but it does vary here (indicates tap) because of the head.

If that’s the case, what comes out of the bottom has gained by the top one.
You’d also lose the bottom one at a linear rate.

' Intervention 4: What’s the relationship between height and flow rate?

08:00 Adrian
WMM
Adrian
WMM
Jolyon
WMM
Adrian
WMM
Adrian
WMM

Adrian
WMM

10:15 Adrian
WMM

10:47 Jolyon
WMM

Adrian
WMM

12:23 Jolyon

Any tipg?

What sort of relationship does it look like?

There isn’t any shape showing clearly there. I thought it tends to be linear.
What does the graph represent?

It relates the amount of volume to how long it’s been going.

So what does the slope of the graph represent?

The rate of flow )

So.. .

so when the slope is nought there’s no volume in

Cause you’ve still got about 20 mm of drop there: when it’s empty - in
inverted commas- you've still got about 20 mm of drap there. So - and so

can you deduce some sort of relationship between the flow rate and the height
of the water?

The higher the water the greater the flow rate
That sounds reasonable. So you’ve got that there is a relationship between

flow rate and the height of water. What do you think that relationship might
be. ’

Well, the slope of the line.

Well, do you think it’s- It’s clearly not independent of the height, so you
could write down an equation that says the flow rate is a function of the
height. And what sort of function do you think that is? Do you think it might
be?

Well, it’s obviously not linear, from those results.

No- yes- if it were a straight line it would be independent of height. So you
know it’s some sort of function of the height.

We thought it might be some sort of square.

How would you test what the relationship between flow rate and height is? If
you're suggesting it’s a quadratic, how would you test if it’s a quadratic?
Surely you'd have that by seeing the results.

But we don’t really know what's going on- we’re not really sure what’s
happening between.. each container. So up to now we’ve only done
experimental - and what we’ve got there - doesn’t really show enough -

doesn’t really tell us enough about the flow rate against the height of the
water.

You can only measure flow rate under steady flow conditions.

13:07 WMM
13:40 Adrian

*
14:18 Jolyon
WMM

WMM

So you carried out an experiment to.. How would you try an experitnent that
would give you a sort of .. the relationship between height and flow rate?
What you’d do is to set it up wit a variable input into it and we’d have to
maintain the height in litres for the flow rate. Maintain it at say five litres and
measure the water coming out the bottom in a given time.

Do the same for four, three, two and one litre which would probably give us a
more accurate result.

Could you not do something simpler than that? (Laughter)

Well, as the water’s running out, it’s actually, successively, at every height
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15:15
16:08

16:08

17:44

18:23

-Adrian

Jolyon
WMM
Jolyon
WMM

Adrian
Jolyon

WMM

Jolyon
Adrian

that you’ve got there. So, um, if you can work out a way of er estimating or
um..

You-want to get the flow rate for each thing of water.. each..

Yeh - that’s what the volume is .. Water in .. how much it is,

So what would help you then? rather than just measuring each litre..

Well, just maintain the lieight of the er water in the top.

What if you were, for example, to er time the time it took to go from 5.2 to 4 3
litres?

We haven’t got enough calibration on the..

it'd give you a rough guide ] suppose

Students study papers.

Another approach might be to mark - to put a scale on the side of the carboy
and mark at regular time intervals. So you get slightly more points in there,
Very hard to achieve [ suppose.

I thought we could keep the head the same.

A relationship between flow rate and height in litres,

19:00

19:55

*

20:43

Jolyon
Adrian

Jolyon
Adrian
Jolyon
Adrian

Jolyon

Adrian sketching and jotting. Jolyon looking at the tanks

Adrian uses calculator

That’s not constant is it?

No, it’s not constant is it.

The first could be the height for ranges.

So if we say that was between four and five, then we assume that that occurs
at four and a half.

What are those for?

(pointing) between the scales - the graduation - yep

Oh I see, OK.

If we say it takes ( ) seconds to empty that, then the average between the two
is going to be what comes up on our screen. So now we know the mass flow
rates at various levels

So what will that give us? So..

Adrian doing some more writing and I cannot find a sheet looking like the one
he was working on.

Trying to come to terms with tank B
23:30

Adrian

Jolyon
Adrian
Jolyon
Adrian
Jolyon

Adrian
Jolyon
Adrian

Jolyon

Jolyon

Adrian

So we know that this has got to be less than that. What we want is the volume
in terms of the heijght - yeh?

Then the volume is turning up - yup. So is the height.

Just writing the two to make a table.

Although effectively you’ve got to take a line.,

If we see this reasonably.. It staris gaining

It’s also losing.

It's losing..

It's not losing at the rate it comes out of here otherwise it wouldn’t gain..
So the rate it’s gaining is overtaken by the..

You'd think they were equal here

Yeh..

Adrian drawing the graph of mass flow rate against height.

Turning there.. flowing in at that rate. That’s what’s coming in the water.. if
it takes that form.. flowing less volume as time goes on.. right?

Coming out.. at the bottom one.. but it’s happening slower because we
assume there’s already water in here in fact that might even vary sometimes,
So if you can those two that’s why it seems to reach that height and stay there
till it’s almost empty.

Perhaps we’re going to get a simple output.

Jolyon sketching graph,

Outstanding - guestimation.
Jolyon Does it prove anything?
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32:12

Adrian
Jolyon

Adrian

Jelyon
Adrian
Adrian
Jolyon

We can specify the mass flow rate at any height

We need to know that in terms of h though. Cause what’s going to happen
here {points at tap level) if h is going to go up.

It’s going to - some height and mass flow rate. So in the lower container it’s
gaining at this rate but it's losing at that rate until we get to a point..

But as it carries on it doesn’t seem to reverse.

No

It gets me up that these. That the two nozzles that aren’t...

I"’m sure you’d notice it because it limits and just stays there until it’s going to
be empty.

Struggling to come to terms with the implications of water flowing in and out at

different rates.
32:30 Adrian
33:20 Adrian
33:28 Adrian
33:50 Jolyon
Adrian
Jolyon
Adrian
Jolyon
34:45 Adrian
Jolyon
Adrian
36:2b Adrian
36:30 Jolyon
Adrian
Jolyon
Adrian
38:20 Jolyon
39:30 Jolyon
Adrian
Jolyon
Adrian
Jolyon
Adrian
40:15 Adrian
40:30 Adrian
Jolyon

It comes in at this flow tate. 1t goes out at that flow rate.

Adrian using calculator.

This could be some big pig.. Which kids us. The maths bother me.

I make it point three three.. nought point three three..

Ah here itis.. The max..

That’s the maximum innit.. The maximum level.. So when point nought three
mass flow rate occurs .. what time that occurs.. is the time when it hits the
maximum.

So we could... if we had an equation for that line, we could differentiate that
and find a maximum, couldn’t we?

Yes, but it's..

Which is what we’re after.

Mmm.

But it still doesn’t explain why it stays at that level.

How long does it take to get to that point there, then it stays there?
Not particularly.. Take the.. Determine half empty..
It’s not so bad. (Writing on a paper he doesn’t seem to have left with me)

Four and a half, that occurs.. { Using calculator) Two and a half, will occur..
one and a half..

So?

The time that occurs. The time that occurs... So we’re saying that cur
maximum height be reached.. How high was it do you reckon?
(looking at carboy) Two - twoish

Two point two. (using calculator) Point three o five.. so..

Between those two values

You're saying after 69 seconds that makes that a maximum.

Yep that is my prediction.

It’s incredibly dodgy 1 reckon.

Well, Iet’s do it again then, try it,

But going by that, that doesn’t say it’s going to stay a maximum height, does
it?
No.
Unless we calculate what the volume is
You trying it?
[ suppose we are - can at least

A frustrating experimental run. Adrian sees the behaviour of tank B for the first time,
and is not impressed. Adrian interprets in terms of improving the apparatus.

41:00

41:30

Adrian
Adrian
Jolyon
WMM
Jolyon
WMM

Students set up apparatus again. Jolyon pours fluid from tank C into A and
holds tank C in his lap. They adjust the starting levels of fluid. It seems to be
less pink than it had previously been.

It’s on five litres,

Do you want to mark it every so often?

I'd say we’re not fussed about it this morning.

If you want to mark it every so often I can give you some stuff to do that.
Yeh, we could

Do you want to mark it every so often?
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Adrian  Yeh
42:30 Adrian puts transparent tape on middle carboy

WMM  You might want to mark some sort of register on there, then take it off and er..
Adrian puts marks at tap level, and sits next to Jolyon.

Jolyon  So you're saying sod the top one then.

Adrian  Hm?

Jolyon Just let the top one go.

Adrian Well, yeh. That’s going to be the same as last time, innit?

Jolyon Yeh

Adrian  OK

Jolyon Ready, steady, go.
Adrian marks level on middle carboy at intervals.

43:45 Adrian  We’ll mark at one and a half and then..
44:14 Jolyon  Thirty
44:30 Jolyon  About two and a half now.. That's stopped dead at the maximum innit Still
going up though..-
44:38 Jolyon  Three and a quarter
44:47 Jolyon The max.
Adrian Constant at.. No..
45:08 Jolyon See, it’s still got something..
45:20 Adrian  Three and a quarter

Jolyon It’s going a bit now thank goodness
Adrian What we could do with is something up front here that stands out and shows
that .. [ don’t know how we can do that..
Jolyon Take it off the kettle through there.
45:37 Adrian Yeh

Adrian insists on a change in experimental procedure.
46:15 Adrian  How about we try to mark it, say every ten seconds or something - and see
how long it takes to reach that maximum, yeh?
Jolyon But you can’t tell when it gets to the maximurm, because..
Adrian Well, yeh, I think that’s the best thing, innit?
Jolyon Shall I fiil it up again then?
46:40 Adrian  Yeh

Adrian feels his estimate is vindicated.
Students fill up the apparatus as before

47:36 Adrian  Yeh so if you just call out every ten seconds, then I'll put a mark on it.
4751 WMM Do you want ancther piece of tape?
Adrian  No

Jolyon It’1] be all right.
Adrian Every ten seconds
48:02 Jolyon  That’s all right
Adrian You're going to go by your watch, right?
Jolyon If you like
Adrian  You say when

48:37 Adrian five, four, three, two, one - here we go..
Can’t get it {the tap on the top tank will not open)
48:50 Adrian five, four, three, two, one - go.. Here we are

Jolyon call out the time at ten second intervals: Adrian marks on the tape on
tank B. After “sixty” Adrian does not mark the tape
50:25 Adrian (Pointing at the marks) Ten, twenty, thirty, forty, fifty, sixty seconds.
Jolyon So 69 is.. justa lucky guess only.
Adrian  Ah! (Stands up) Proofl

Adrian attempts to improve technique further.

50:55 Adrian  (Putting metre ruler into tank B) Get this thing wet.

Run the water down that we’ll have a far better level: not going to be
splashing as much is it? Try it-one more time?
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Jolyon So we’ll get a maximum height, you reckon?

Adrian  Well yes canse if we do it every ten seconds )

Jolyon.  you can see the end where the water starts dropping back from where it’s
went. . .

Adrian  No, why [ want to put that in there is to stop the water splashing so much so
we've got a more.. Yeh?

51:55 Adrian Pouring onto the ruler, should run down a bit smoother..
52:40 Jolyon Is this the fifth time?- )
Adrian  Something like that
53:20 Jolyon (Holding tape against tank B) Stick it by the side, d’you reckon?
53:37 Tape ends
Tape 3
Another experimental run.
00:08 Adrian Five, four, three, two, one, go.
. Jolyon calling out at 10 second intervals: Adrian marking level on tank B.
01:40 Jolyon So all we’ve got to do is draw a line up to your curve.

Adrian Yeh, when it dips - it’s max over two now.
Jolyon We do the line up about two point two.
Adrian It’s about two really is the max you’ve got there.
Jolyon Right - your answer’s 69 seconds.
Adrian Well more or less - we’tl rework it a bit.

03:00 Adrian uses calculator again.

04:08 Adrian About 76 - 76 seconds.

Jolyon Same time.

Adrian Well, there we go. So that’s how we estimated the time.

What will the maximum volume be?

04:45 Jolyon We don’t need to know that, do we?

Adrian  (Reading from sheet) What will the maximum volume be?

Jolyon The thing is, doing it practically, we know what the maximum volume is..
05:17 Adrian  Two point two litres

Jolyon It wasabit over that...

Adrian What else do we know?

We debrief.
05:58 Adrian How’s that?
WMM Fine
Do you mind if we have a bit of a debrief?
Adrian Sure .
Jolyon  We can’t prove anything though
06:14 WMM  The.. youseem to have gone about it in a very pragmatic way.

Adrian Yep

WMM  There's nothing wrang with that :

Adrian  That’s what I thought because you said like to mathematically model it but
then to use the experimental results

Jolyon It’s a bit dodgy

Adrian  what was getting back to the point of mathematically modelling things..

WMM  Right....
The idea was that we gave the identical question to some maths students to -
some maths, just graduated students so it was faii to give them an identical
question.
What I’ve been really interested to see is the way - the different way you’ve
tackled it. -Completely different way you’ve tackled it
They didn’t touch the apparatus until an hour in - so it was completely
different - and they went in and they set up equations - making assumptions
about the function that the flow rate was a function of height - making
assumptions about that- working it through - going about the whole thing
mathematically - in fact they made the assumption that dh/dt is proportional to
h and if you go into it and carry out the experiment you find out it’s
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Adrian
WMM

Jolyon
Adrian
WMM

Jolyon

WMM

Adrian
Jolyon
WMM
Adrian

Jolyon

Jolyon

Adrian
WMM

Adrian
Jolyon

WMM
Jolyon

Adrian
WMM

proportional to the square root of h 50 you can then set up a differential
equation which will -er- which will predict the shapes of the curves . You get
that dh/dt is a constant times the square root of h: you shuffle it around and
integrate both sides and you get functions out which you can check by doing
log plots - and that was one of the things I was inviting you to do when [ was .
asking you - could you check if this was a quadratic - did you suggest it was a
quadratic? -

Yep .

So that was what [ was inviting you to do - so I found it very interesting - [
found it extremely interesting that you tackled this in a completely different
way

Didn’t expect to tackle it this way, though.,

I mean like obviously there was a minimum and a maximum in the reaims of
differentiation or like, but its so long since we’ve done it-in maths, a year ago.
Really? What was Jolyon going to say about not expecting to tackle it this
way?

Well I expected perhaps to go into the same equations for steady flow theory, -
that sort of thing which 1 know we've done - in previous years - without our
notes and that sort of thing. Engineers don’t remember equations. We go and
look them up in books. We don’t derive things from first principles and - we
tend to anyway - just to take it from the vantage of theory, and then applying
it,

So did you find it hard that you were actually being asked to create the
equations?

Weli, yes, if you like

Though we could probably do it with a book in front of us.

Is it something you were asked to do ever in the course?

Well I'd say if we ever did have this we’d have more of a formula to start
with.

Well we generally work through the theory which they tend to like, make us -
the teachers - try to understand it, and then like - apply the results. It’s very
rare that we do anything from first principles like this.

I remember that we did in HITECC - we did a mathematical mode! and the
particular one I did was the optimal speed of rotation of a tumble drier and
that worked well and we actually took that from equations and then Tony sort
of encouraged us to do it and we sort of had it - centrifugal force against
centripetal force and acting against gravity - sort of worked out from there,
rather than deing it practically. So I would perhaps have expected to go on to
some equations - but just deing it practically shows what happens but you
can’t always do things practically like building a bridge..

You can build models though. .

Was it-a surprise to you when the first time you ran it you got a practically
constant flow rate out of there?

Yeh

Yeh [ didn’t realise about that - about coming out of the tube which I could
relate to because the steady flow stuff we did we had a tube which ran down
and e had to find the time it takes to empty a basin full of water and that was
dependent on the hill.. But to-derive tat from the equations I probably
couldn’t do

Did it give you any insight into questioning the apparatus?

I think it’s all right for what it is. Basic shape is the same. You have to make
some assumptions that these are the same. Probably no loss..

Did you put those rubber tubes on there on purpdse?

I’Il explain the history of those rubber tubes. I put them on there for the maths
students without thinking about it. to give you a nice steady flow and stop
them splashing about all over the place and also to try to reduce the splash in
the carboys and the maths students did an experiment with just the top one
marking off the levels at intervals and the levels at intervals were - practically
constant intervals and it was at that point I realised that there was a problem
with the apparatus and I thought - I thought about giving you the apparatus. _
without the tubes but I thought it was probably better to give it to.you with the
tubes because it was the same starting position
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13:55 Adrian The same

WMM  Also because I thought it was a really interesting - two really interesting
things. One is that you can’t always rely on the apparatus reflécting the same

reality as the picture. ’

14:12 Jolyon.  We should have been able to work that out-if we went throngh a series, of

N y ’ equations because that would have been a difference of head there. We’d

: - THave picked itup.

14:25 WMM  and the physical significance of h: that it’s from free surface to free surface,
and also that the pipe losses are tnore than compensated by the change in h.

I’d guess if anything that the pipe would slow the flow down.

15:20 Adrian It would do - yes theoretically there’d be a loss but with the additional height

Jolyon It would be the same head.

WMM So my intuition was the pipe would slow it down but in fact the extra head

. provided was a bigger influence.

Adrian  Yep '

15:30 WMM ° Than the pipe losses. I found that quite exciting. Have you any got other
comments about it? : '

Jolyon I felt that the maths side of it lets us down a bit on what we’ve done in the
course. '

Adrian  Unless it’s like what a leciurer said if you can sort of feel you can remember
what he did in the second year it’s quite easy but everyone just sort of forgets
it. You know you can do it and you know you can look it up how to do it,

WMM Were there any other resources you’d have liked? Apart from your text books
or your notes with if in

Jolyon Well I would have done it mathematically but [ mean you could get more
accurate results with that - put flow meters on, that sort of thing.

16:30 WMM So there wasn’t anything like graphics packages-- cause I left DERIVE on
there in case you wanted it..

Jolyon Right well we needed to set up the equations to put something into it.

16:49 WMM . Did you use the graphics facility on your calculator?

Adrian N Ididn’t.. It’s s bit of a mystery.. It’s all right when you’ve got the
equation to plot and you can pick off the minitnums and maximums, but when
you’ve got a set of results to put in Im not too sure what to use.

Jolyon Silly really - we did better than this on HITECC and now it’s four years later.

WMM Can I just say you absolutely confirm my prejudice about what engineers are:
stereotype engineers: that you're happy measuring things and carrying out
tests and..

17:40 Adrian  Yeh but the thing about doing it that way is like you say is if we’d done it
purely theoretically and then used that equipment as it was first set up we’d
have thought it was miles out and we’ have thought it was the theory that was
wrong.

Whereas we know
We had to assume so much.

Jolyon Doing this practically was only applicable to this. We do itin a reservoir:
totally different. So that’s where the theory wouid probably hold.

18:18 Adrian  If you can get your hands on a model you can test it.

We say goodbye and thank you.

18:29 WMM It’s very kind of you
Can you leave all your bits - all your paper here because they are very
interesting.

Adrian If yon can read them, yes.

WMM | Ithink so, that’s great. Thank you very much indeed

13:58 WMM Your watch has got zeros on it

Adrian It must be midnight.

WMM A bit worrying..

19:10 WMM  That’s been very helpful, thank you .

19:10 Adrian  Some of the athers in our year would’ve sorted it..

Tape ends
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on tape
00:30 WMM

Ann
RKP

Ann
Others
01:34 RKP

03:16 Ann
RKP

Jason

Mathematical modelling with five final year maths students
Single long tape: recorded in 1 Rowe St by cameraman from Hoe Centre studio.
Note. There are unintelligible passages here students are all talking together, Or are
talking very quietly, but less silence than on the engmeermg students tape.

WMM is the author, RKP is a colleague .

Time Speaker -

This solution, by the way, is slightly laxative (laughter) So please
don’t get it on your fingers and lick it. It’s just to colour the water.
Oh, right

Well, goad afternoon, everybody and thank you very much for
coming to take part in this.

The problem which you’ve got in front.of you is you've got three
tanks of water, one draining into another and that’s draining into a
third one. You start with the top one full and both of he other two
empty and you set it draining. At some point - um - the water -um-
there’s water in the middie tank - and then ultimately all the water
will be in the bottom tank and the top two will be empty. The
question is really when is the top tank at maximum volume and
what will that maximum volume be. Now we’ve got some - there’s
some equipment there to let you do experiments. (faughter)

You mean the bottom one.

The middle tank (laughter)

Let me say that again..

In the initial state the top tank is full and the other twao are empty.
In the final state all the water has gone through into the bottom tank
and the middle tank and the top one are empty. Sometime in the
middle, the middle tank will have a maximum volume. the question
is to produce a mathematical model which will describe when it is
and how much of the volume is actually at the greatest in the middle
tank. We’ve set up - put- arranged some equipment so you can do
some experiments on this. The little medicine boitle there has got
some pink liquid in it which can be diluted up to the requisite
volume of water - with water and it will then give you a nice pink
solution: which we would prefer not to be spread over our nice green
carpet. (laughter).

There are two purposes for this thing this afternoon: and for both of
which it’s being videoed. We - from my point of view I'm hoping
that we shall get out of it a video on how people attack 2 problem
like this which can be used for teacher training - for inservice
training courses for teachers. And we would hope that your
afternoon could be condensed into fifteen - twenty minutes of the
key points of when you have moments of inspiration when you're
stuck and whatever.

So you’ll just video out some bits.

You shouldn’t - don’t feel nervous about it. If you make a whatsit
just like 1 did then we’il just edit out.

Not so fun {0 watch at the end then (Laughter).

The other purpose which is closely related is that Wendy’s PhD
research is in how students learn differential equations and she will
be sitting also taking notes and seeing actually the processes you go
through in sotving this problem. You can talk as much as you like
among yourselves of course. If you are stuck I shall be working
over there and you are welcome to come and ask me to give you
help. Wendy will be there taking notes and you are welcome to ask
her for help. But initially give yourselves a reasonable amount of
time to get into the problem before asking for help. But then if you
find you’re getting nowhere, for goodness sake do ask, and we will
of course do what we can to direct you. ’

Well, good luck!
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We begin our deliberations.

04:28 Ann Where do we start?
Jason It doesn’t matter. I've got the formula. The flow rate is a function
of the volume in that. .
Ann The only thing that can affect that is the diameter of - I presume
it’s linear..

. Jason No, the height - I mean the height - the volume of - cause that
affects the pressure at the tap.

Derek Since I think you’ve got the taps the same in both [ mean that will
not really come into it so [ think it’s just some function of volume
in both botties like, shouldn’t it,

Ann You don’t think the size of that the water’s flowing out..

Derek Yes but all the other things being the same, that won’t change

through the run-of it.

Ann No - it’s just a constant,
Derek No - 50 its the rate throughout is going to change as the volume in
both bottles change.
Anmn Due to the change in pressure or gravity or?
Derek Yes I think it’s got to be the volume cause obviously when you-
' start off the rate of flow in has got to be bigger than the flow out
and that’s

Jason What even with that’s with the volume but like with the height
Derek Not unconnected - Yeh. Well no the height’s going to come in
Anthony  So it’s the point of gravity then?

Ann Yes it's gravity what’s..
Anthony  So we can think of a differential equation for each one or
something?
Vicky Doesn’t seem enough liquid for it to..

Ann makes her first bid to try it out, while an expression relating flow rate and volume

is proposed. .
06:12 Ann We could always put the liquid in and do it and see.
Anthony  No
Ann You don’t think you need to do it? Just sit there and look at it

and..

Vicky You could actually put the pink liguid in and actually test it to see
what the fits will be.

Anthony  If dvi/dt=kv1 then that gets smaller..

Derek But if that is going to increase then it will increase and
Vicky because it’s otherwise then you’ll need to
Ann No you fill it up with water and put a bit of that in to turn it pink.
07:10 Derek In the first instance then, for example, dv1/dt= -kv}
Vicky oh, couldn’t you do it for each tank? and then..
Derek dv2/dt
Vicky yes

Complications emerge in the proposed model. The volume in the second tank is
affected by a flow in and a flow out,

Ann Surely once it’s going it’s what’s going in.
Anthony  You’ve got two lots flowing.
Derek That’s the point
Ann You've got so much flowing into here until it gefs up to this level
and anything comes out.
07:26 Anthony  So what are you going to write for the second one because you’ve
got stuff coming in and still going out?
Derek Well I've written down to start off dv2/dt =kv1 which is the
amount flowing in minus kv2 which is what’s going out.

Ann Yup
Derek And that’s
Ann But initially nothing’s going to come out there is it?
Derek Well that’s.. that’.. that’s.. not part of the model. I mean, look at
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Ann
Derek

Ann

those diagrams there ( indicates sheet) You assume that to simplify
it anything that any water that goes in there will..

Any going in’s going out.

In other words the opening’s right at the bottom. I mean [ think
we could refine that model.. )
Okay, yep, mm

The flow rates vary both with time and with the volume in the tank they are leaving.

Derek
Ann

08:36 Derek

Ann
Derek

09:08 Vicky
Jason

Derek

But if we’re going to start thinking about it to start with.. You may
as well start with the diagram you’ve got there.. Assume that any
water’s going to affect the outflow.
So if you're going to make the assumption that what’s going in
there’s coming out, then you’re never going to have anything more
in there, are you?
No, only if the rate of flow out is always going to be the same as
what’s flowing in. And if it’s, say, proportional to the volume,
which is my first suggestion might be, then when you start off
you’re going to have a smaller volume in the second bottle, so
your rate of outflow is going to be less, and that’s why the volume
increases up to some point, and then when there’s more in that than
in that, then the rate of flow out will be greater than the rate of
flow in, so you..
Yeh
Buf um.. If we assume that this is going to be a decent model and
solve it, then how are we going to test it?
Fill it up
But it’s still going to be more than just those two equations there
(takes paper from Derek)
Well obviously

The volume in the bottom tank is immaterial.

Vicky
Jason

09:26 Anthony

Jason
Derek
Ann
Jason
Anthony
Jason
10:01 Anthony

Well, haven’t you got one for the boftom one?
Well, what you want is the maximum volume in there which is
totally independent of the volume in the botiom one.

Do you want to start with the bottom one. What happens in the
bottom one?

We don’t need the bottom one

Not much -

The bottom one’s just going to collect the water

So it won’t go on the carpet (Taughter)

The volume in that’s just related to the volume above,

Yeh but that is also a function of that (laughter)

{Passes notes to Ann} Well have & look at my notes and see what
you think, {There are about 3 line on the page)

Anthony is unhappy that the mode] does not include any physical reasoning.

10;10 Anthony
Derek
Ann
Anthony

Derek
Jason

Vicky
Anthony
Ann
Anthony

Derek

I don’t know how I’'m going to tie in v and v2 to gravity

Well, that’s probably a function of g, a constant.

Are v] and v2 your rates of flow in and out?

We want to work out the force. It’ll be from here.. from the
outflow

So that will be related to the max. .

Under very high pressure it’il come out all the way out and go psst
(describes parabola with his hand ) (laughter)

But it couldn’t do on this (pointing at tube)

If we write down the force

That’s why there’s the tubing.

listen, listen. If we write down the force for each amount of liquid
for each time won’t that be the same as the flow rate er
differential?

You might be going too far back on that one.
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11:04 Anthony Mmm
Ann It's mgh

Trying to solve the equations.

11:08 Jason So v2 is irrelevant for that one.
Derek V2 won't matter
Jason So you just want to solve these two?
Derek Yeh we could I suppose.
Ann (Indicating top tank) That’s just the change in..
Derek I mean yeh like do we want to find the slope in one
so that

- Let'sassumev=¢"
Anthony  You're stating what? You're starting with the second one.

Derek That’s the rate of change of volume of the second one equals um
the rate of flow in which is dv/dt the rate there multiplied by the”
flow.

Anthony So what’s v2?
Derek That’s the volume in the second bottle,

Anthony  Noit’s not. You can’t say it’s v2 is this, like that, with a minus
sign, can’t be right, can it, canse you’ve got two flows. You’ve
got the one going out and the one coming in.

12:05 Jason That is minus dv1/dt.
Anthony  There’s got to be two of these.
Derek Yeh. That’s the other one.
Jason That’s this one and dv2 is here.
Anthony [ hadn’t thought of that.
12:21 Anthony  Um.

12:29 Vicky So you’ve got something you can sub back in there. s that what
you want?
Derek [ can use vl as a .. no.. A maximum there just as..

Investigating the implications.

Ann So your flow from the top one is a decreasing function. It’s a
maximum to start off with.
Derek I'm staying when you start off the flow is a maximum out of there
and it’s just going to decay.
Ann Yeh,
Vicky It'it be an exponential.
Derek Basically my assumption is that it’s minus kv1. That’ll give you

an exponential.
Vicky Yes, right

13:24 Ann Presumably this cne (tank B) is going to be the opposite what-do-
you-call-it.
Vicky I don’t know cause it’s losing at the same time. But then it won’t
until it hits the stage where it’s ( indicates lip). Hmm, it’s not easy.
Anmn I imagine that the assumption is that it starts at the bottom.
Vicky In which case it won’t actually do it. It’s not going to be.. Oh, no
all right.

A prediction of when the maximum in the middle tank will occur, in terms of flow rates

in and out.
: Ann See the rate of flow out of that’s (top tank) going to be a maximum
initially and the rate of flow out of this ene {(middle) is going to be
a minimum.
Derek Yeh
Ann And there’s going to be some point where they’re equal.
Derek Yeh but .
Ann And that will presumably be when it’s at its maximum value.

Derek That’s when they’re the same
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14:24
14:40

Ann
Derek
Derek

Derek
Jason
Ann
Vicky

Derek

That’s when you have your maximum

You get the maximum

Yeh, I guess that makes sense, because, when the rate of flow in
that (top tank) than the rate of flow out, it's increasing, and when
the rate of flow out becomes greater than the rate of flow in, that’s
when it’s going to start decreasing, so that will be the maximum.
Meaning what?

Yeh, like, if you put that in there, it’s going to be vt =¢".

You’ve got your time.

What you want is your time at t, and then when you integrate out
you'll want it.

1 suppose we have to, like, practically solve this, yeh? So it's
going to be when..

An exponential will not allow the tank to empty in finite time.

15:10

Vicky
Derek
Jason

Derek
Ann

Derek
Ann

Haven’t we done something like this before?
"Thing is..

Well, with that function, we won’t be going to reach zero until
infinity. That won’t be empty in finite time.

" Can you construct a simple mathematical function which will
actually do that? That’s going to have something in to start with
and is going to fall to zero? And actually be zero there?

Cause it’s gotto be a
Yeh, cause it’s got to be a function of..
Well [ don’t know if it’s

Is it a function of the volume or the depth.. or what?

15:55

16:10

17:03

Derek
Ann

Jason

Derek
Jason

Ann
Derek

Ann

Vicky
Ann
Jason

Derek

Vicky

Derek
Jason
Vicky
Jason
Derek.
Vicky
Ann
Derek
Vicky
Derek
Jason
Ann
Jason

It’s got to be some function of the volume itself, hasn’t it?

Is it a function of the volume or a function of the height of the
water? .
The height of the water is directly linked to the volume anyway,
isn’t it?

Yeh, you mean the level. The height would mean..

mm. If you had the bottles a bit higher than the tube it’s not going
to make much difference.

Well, 1 wasn’t thinking of changing it.
Yeh, well, if we rerun this a few times, I think what you're saying
is the only thing we’ll change is the volume in the two bottles, isn’t
it?
Instead of considering it as a volume, can’t we consider it as a
height?
As in the depth of water,
I mean..
Youmean multiply by diameter?
Because diameter is going to remain constant anyway, to a decent
approximation, so the height of the level is going to be equivalent
to the volume.
So surely it’s even simpler to work in terms of height, rather than
volume )
Well yeh, that makes sense, yeh.
So instead of v we have h then.
Well, yeh (laughter)
But v’s easier to write than h.
Yes cause you've got two lines and..
But no, measuring-wise height is easier to work with.
Yeh, brilliant
Yeh, fair enough
Anthony’s braiitstorming over there.
What's the force then?
tho --er - something like that then probably

It’s pgh, isn’t it, the pressure of the water?
Foul but
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Anthony  Thank you
17:42 Vicky You must have to take into account gravity somewhere
Ann Yes, that’s what
Vicky = But rather than this (paper with exponentials on)
18:00 Derek I think the volume would give you the pressure which with the
gravity would give you the rate of outflow and so this is all

probably.. Ithink it will be.. I think it’s going to.. It’ll come

across..
Jason What, the pressure?
Derek I think your concerns about g on that side..
Ann Yeh but if you're assuming that everything is constant you’re not
going to get any change, are you?
Derek No I'm assuming the outflow is not constant and the main thing

that’s not constant is the volume in there. The rate of flow’s
proportional to the volume isn’t it? The rate of outflow.
18:46 Vicky As in the volume of the water.
Derek The volume of the water is directly linked to the mass of the water
which is directly linked to the pressure.

Ann Yeh, that’s what ’m saying. 1 know we keep talking about
volume but the rate at which height is changing is the rate at which
pressure’s changing. Pressure is pgh. Rho’s a constant, gravity’s
constant so the only thing that’s changing in that is the height, if
you see what I mean.

19:16 Jason And as the height changes, the volume changes because the
diameter and the pipe are constants so

Discussion about dimensions.

Anthony  Well the diameter is constant, and we’ve got time over here so we
must have t somewhere.

Jason Well no because no because K will have dimensions of one over t.
Derek Who brought him anyway?
Ann Say that again?
Derek We've written down dv/dt.
Jason Yeh so the constant has units of one over time. What about those

other things we did? The wave equation where we got ¢’. That’s
got dimensions of length over time squared.
Derek mdv/dt=kv?

An interesting idea which is not followed up.

Vieky Could we do it in terms of energy? Potential up there and then
: kinetic energy. Cause that’s pgh, isn’tit? Potential energy, mgh,
that’s what I mean. And then kinetic will be the rate it’s going
through it, anyway.
Well, no, then you’re going to know it’s the same down here as it
was up there. You're going to lose the saine amount as was up
there initially.

An interesting fallacy, and an interpretation of its physical significance. A hint that it
may not be correct.

2(:33 Jason Thing is you said it was going to be at its maximum when that
equals that. That’s not true basically.
Derek That’s interesting, go on
Jason Which would mean 2kvi=kv2
Derek That’s an interesting point, isn’t it.
21:00 Jason That would give me v2=2vl.
Amn That flowing into there is going to be greater than that flowing out
with the pressure difference so it flows in faster than it’s flowing
out.

Derek That’s something to check, isn’t it? At some point the rate of flow
out of this one is going to be equal to the rate of flow into this one
and that’s going to be ..
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21:29

21:55

22:41

22:56

Vicky
Ann
Jason

Derek.

Jason
Derek
Ann

Derek
Jason
Ann

Jason
Ann

Vicky
Ann

Vicky
Ann

Vicky
Ann
Vicky
Ann

Vicky
Ann

Derek
Jason
Derek

When they're the same.

When the height in that is the same as that on

But it can’t be, can it?

Yesyoucan.

But that would lead to us -oh-at that time. So itisn’t.. .

So what you get is .. the maximum you’ve got in that is..

At the start of it that is Tower. than that one anyway. So you’ve got
to have more in there (middle tank) than in that one (top tank) for
it to be balanced anyway.

That’s an interesting result, isn’t it?

So that’s equal then.

You get to a point where the rate flowing into this one is the same
as the rate of flow out in which case it’s going to get 1o a constant.
Well, let’s try something out.

That that dv2.. V2... + Aviskvl...

The rate of flow in is equal to the rate of flow out until there’s no
more flow in and then i’l[ start decreasing.

Except the very last bit.

The rate of flow in - to start with - is more than it is out. At some
point it’s going to be equal. The rate of flow in is going to equal
the rate of flow out but it’s going to be when there’s more in this
one because that ones higher anyway.

So if you're increasing height, are you saying it’s in terms of, well
with respect to the ground or..?

Yeh, if you can take zero h as the floor that one’s already got more
height to start off with, haven’t you?

Yeh, but the..

S0 any

So you’ve got to measure the water then?

If they’re both half full, that one’s still got more pressure by virtue
of where it is, yeh?

Yeh

Yeh So let’s for the sake of argument say it’s two-thirds or
something there’s got to be a point where more water in here than
you have in there but the rates of flow are the same and it's going
to continue the same untii that one’s empty, and once that ane’s
empty then this one will go down.

Have you got some rough paper 5o [ can trace this out?

So v2 is that.

So that means that that can’t be right, can it? That’s just a decay
which means that it starts at a maximum.

At last we agree to fill it up and see.

23:24

23:38

24:01

Vicky
Ann
Derek
Ann
Authony
Derek

Ann

Anthony
Ann

I'm just wondering whether it would be easier to fill it up and have
a look.

Well, that’s what [ said.

Can we mn this thing and see what it does?

Yeh, why not

Cause [ predict that it’s going to do.. It's going to get to some
point, stop, remain ievel until that one’s empty and then start
draining into the bottom.

{(Looking at lip) Actually this isn’t the same as what we’ve got
because..

So it’s not at a maximum.. It’s gomg to havea level maximum
rather than a..

And it’s gomg to remain at that point for.. until that one’s empty.
It’s going to come into here and go out of there at different rates
until you get to a-point when.the flow in is equal to the flow out,
and it will remain at that point until that one’s empty, and then it
will go on draining into the bottom,

The hole’s here.

Can we see if that’s-what it does?
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Derek expounds the

24:20

25:10

25:20

26:55

27:17

27:33

27:55

Jason
Vicky

Derek

Ann

Derek
Jason

Derek
Jason

Anthony

Ann

Derek

Anthony

Derek
Ann
Derek
Ann

- Vicky

Derek
Jason
Ann

Jason
Derek

Jason
Ann

Derek

Anmn
Jason
Ann

Ann
Anthony
Jason

Ann

Jason

I'll get the water.
No but if you fill it up anyway it isn’t going to matter. It’s not
going to affect it that much. It'll only affect it when it’s really low.

fallacious argument.

Jason suggested this. You know I said that dvi/dt=- kv1, yes?
dv2/dt =kvl - kv2, yes? Now Jason says that at - um - the time
that's a maximum, those two are the same.

8o if we equal those we get - kvl =kvl - kv2, and otherwise,

v2 =2v]l. Now this is only for one t so it won't be for any other
point but what you’re going to find is when iwo thirds of that are
in there, that’s when there’s twice the amount in there as in there,
that’s. when the maximum will be.

Well, as for two thirds, I couldn’t have prédicted what it would be.
I just guessed the two thirds like for argument. (faughter)

But I believe it’s going to.. it's going to be a smooth curve.

We want a volume in here that’s.. shall we do something decent in
here like a three?

Yes you do but..

Shall I drain it down to three then?

Well, the tap’s at one so really want about four, don’t we?

Do you want to get this (middle tank} so it's level.. So it’s at the
point where it’s ready to flow out so we’ve actually physically got
what we’ve got in the drawing. ,
Yeh, fill it up so it’s.. This tap is open is it all the time? {middle
tank)

Dunno- don’t know where open is.

Just make sure that this one’s in first (tucks tube into bottom tank)
As soon as it starts to.,

No, that's closed.. ;

Unscrew the top.. Take the lid off. (applause as the water starts to
flow)

Here it comes out

As soon as that starts coming out close that tap.

Right, are we going to start, are we?

Yeh.

Having filled the apparatus, we discuss some more.

Right, so what are we going to say is happening?

So that’s on one then, (middle tank) so we say that on one is equal
to zero.. .

Right, so one is equal to zero

This is gradually going to fill up but the rate going out is going to

be less than the rate going in. Then it will stay constant until that

one’s empty, and then it will start draining into the bottom one.

Mathematical versus descriptive solutions, while the apparatus is running.

The problem ['ve got with that, Ann, is it’s got to be modelled by
some differential equation and so we’ve got to have.. It’s got to be
some functions..

I mean [ might be wrong. I’m just saying..

We’ll just do like.. a Heaviside.. (laughter)

Yeh, well.. just see what happens.

Jason opens tap.

Unless at that particular point the rate of flow out becomes greater
than the rate of flow in.

Do you want to open that (middle tap) cause it's

It’s going to be maximum where these two volumes are the same.
But is it going to remain at that or just goitig to be an instantaneous
maximum?

It’s going to be when the two are the same then that’s going to go
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up and that’s going to go down, and then that’s going to (scratches
up and down on middle tank). As soon as they’re the same, that
one’s on two point two.

Ann Are they going to be the same for an instant.. Aren’tthe..
So what does happen?

Jason Yeh - only for an instant. That one’s at one point nine - that one’s
at one peint eight. Right, They’re both the'same now. They won’t
stop like because..

Ann That one’s slightly higher anyway.

Jason Now that one’s lower and that one’s still about the same.

28:30 Ann Is it - no - it’s still increasing?

Jason It’s not increasing.

Ann Yes it is.

Jason You look at the scale. It's not increasing.

Vicky 1 can’t see the scale,

Ann So it is staying the same.

Jason It's staying the same. No I think it’s coming down now.

28:42 Ann 1t's coming down again now.

Derek If we were to run this a couple of times, trying some
characteristics, we're going to have to start with the same initial
conditions.

Ann Yeh .

Derek So what was it like? You started off, Jason. (laughter)

Ann Yeh

28:58 Jason Qooh, about three point two, three point three..

Derek Threeish, right then, bout that. Why don’t you fill it up to four to
start with then and keep it?

Jason Well | did fill it up to four but we drained half of it.

Derek Well you should have filled it up again, shouldn’t you?

Jason Well, I know that now.

And how shall we interpret it?

Anmn

Jason
Derek
Ann
Jason
Ann
29:28 Jason

Derck
Jason

Anthony
Jason
30:01 Derek

1 think we’re agreed that it's at its maximum at the point when the
flow in equals the flow out.

It’s at its maximum where they’re both the same.

Cause what’s wrong with this in that case..

What’s the same?

The velumes.

The volumes are the same?

But then that would be the same as the flow rate because we've
done them both.

If the constants are different for each bottle..

Yeh, We've assumed both constants. If that constant - like- all it
depends on are that hole.

Is that (top) running now?
Yeh, they're both unning now?
The constants., The two taps.

While we refill the apparatus and put the pink dye in. Getting the same initial
conditions is important.

Jason
Anthony
30:27 Jason
Ann
Derek
Ann
3112 Jason
Ann
Derek
Jason

Right. I"li pour this up to the top bottle.
Right, so that’s about one litre. Don’t drop it.
I don’t reckon this is a good idea, actually.
Let’s take it over the sink.

Cowards. (laughter):

Shall we put the pink dye in?

Wili it help?

Yes, please.

So, Jason, will you dye the water?

So what did you want it on, Derek?
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Derek Four.

Jason adds more water.
31:50 Ann Although it’s slightly higher, that’s not a factor.
. Vicky Oh no, not with respect with the bottom one.
Ann But.. ’
Vicky That is a maximum when that is the same as that you see.
Ann So when the height is equal to that height it’s going to be...
3z2:.02 Jason If you want the pink dye in it’s going to be more, (Iaughter)
Ann Well put it in and drain it off.

Derek It’s a bit low anyway.
Vicky If you put it in when-you’re at the sink then..

Ann I don’t know how much of that you'll need. You might only need
a little bit. you don’t know how pink it is.
Derek Is it poisonous,. Jasan?
Jason Drink it and 1’1l find out tomorrow. (Iaughter)
- Have a curry tonight
Ann 1 don’t think you’ll need to with that.

Derek Drink it and then check it.
Vicky Oh look, it’s going pink - - ish.

32:50 Jason It’s not very good, is it?
Derek Oh, chuck the lot in
Jason So what do we think is going to happen in this tank?
Vicky I think the pink’s going to get diluted.
Jason Shall we start?
Vicky What did you do that again for?
Jason Yeh, well, I know we’re going to do it again.
Vicky Shall we test our theory while we’ve actually got a theory?
Jason But do we know what our theory is?

33:30 Vicky When we've got a theory.,
Derek Who's got a theory - Ann?

Ann We know it’s a maximum when they’re the same,
Vicky Yeh, the-top and the middle on
Derek And that makes sense, doesn’t it?

Ann Yeh.

33:49 Vicky It’s dripping. (Looks at top tap} Well, we’ve got one drip.

Is there a problem with the model?
34:10 Anthony  1don’t Iike these constants.

Jason No? I reckon they’re great but..
Anthony  It’s different constants.
Amn Why is it different constants?

Derek if k is proportional to g..
Anthony  It’s going to be density over.. |

Jason (Smiling)-Cause the further you get from the centre of the earth,
the less gravity is, and that one’s (indicates difference in height of
top two bottles, and laughs).

Ann Yeh, that’s what 1 was saying but I think you've got to take that as
being negligible.

34:28 Tape stops

We list our assumptions,
34:40 Anthony  One: hole in the bottom,

Jason Viscous, incompressible and irrotational. (laughter) )
Ann We've got a Newtonian flow, have we?
Jason Yeh, I'm sure it doesn’t matter.
34:56 Ann Of course it matters. We've got to have those things written. down.
Anthony  This is where we’ve got the Navier-Stokes equations.
Derek Irrotational is it?
Aathony  Bemnoulli’s equation
Derek Newtonian flow

Jason Assume negligible viscosity.
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And revise the original basis of our analysis.
35:18 Ann’ We’ve come to the conclusion that it’s a maximum at the point

where the flow. in equals the flow out:

Jason Mmm. No

Ann No? Well, it’s maximum when the volume of water in here is

equal to the volume of water in there.

Derek Yep

Jason Yep

Derek As soon as there’s more in there than there is in there then the flow
out will be more than the flow in.

Jason So it’s got to have the maximum.. the maximum has got to be
when the two volumes..

Ann When the two volumes are equal.

Jasow  (writing) vi=v2.

36:08 Derek Yep. So what we want to do then is to watch at that one closely
and see when you reckon it starts coming down and then if he calls
out see what the two volumes are then and if they’re the same.
we’re satisfied it makes sense.

We discuss the apparatus again, and make a tentative prediction of the maximum
volume in the middle tank.

Ann I think they were but we can run it again and see. Does that sound
sensible to you, Anthony? You’re looking so..
Anthony It sounds very sensible,
Derek We want a quantum fluid. {laughter)

Jason So what are we locking for then?
36:30 Ann The point at which it’s steady.

Derek The second bottle.

Jason ~ Right. The top one’s at four point one.

Anthony  Idon’t know if it’s useful we write down four point one.
Derek Hang on - is that tap open then?
Anthony  Itisn’t right on one, is it? (the middle tank)
Jason I mean those taps could easily affect the flow rates. We should
change these around in a tinute.
Anthony  That’s on point seven.

Jason No, that’s not on one,

Derek Those bottles look pretty much the same to me.

Jason That one’s on nought point seven. That one’s on four point one.
So when they’re the same what are they both gomg to be on?
Midway between the two,

Derek Two eight won’t they?

3725 Jason They should be on two point four, right? (turns on tap)

Derek So Jason, watch the top bottle and see when you think is the
maximum and put your fi nger on that point. If you could call out
as well.

Ann We could turn it off when it gets to that.

Derek No, you can’t check it’s right then can you, cause it will be ata
level.. Cheat!

3740 Ann I thought you could tum both taps off.

Derek What I suppose it’s best 1o do is to follow it up there and when it
gets below that to register where it is.

- We realise the prediction was based on a false assumption.

Jason No, it’s not going to get to two point four anyway.
Ann What did you think?
Vicky What numbers did you have?

Jason Two point four’s rubbish. Cause it’s going out, isn’t it.
Derek Course it is.

Jason Complete rubbish, that.

3811 Derek So keep your eye ori that. When you think it drops, mark that and
shout out and watch that and..
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Jason
Derek
Jason
Anthony
Jason
Derek

What, and see when that's a maximum?
And keep an eye on that.

I'think I might call it out actually.

I think that’s about nine

It’s-falling now

No

And that something else is wrong,

38:42

39:03°

39:31

40:11

Vicky
Jason
Vicky
Ann
Vicky
Ann
Jason
Derek
Jason

Derek

Jason
Derek
Jason
Vicky
Jason
Vicky
Jason
Ann
Jason
Derek

Ann
Vicky
Ann
Derek

Ann
Jason
Ann
Derek

Ann
Derek
Jason
Vicky

I'm sure it’s not gone as high as it was before.

Yes, I reckon it was there.

Oh Crunchy!

It has, hasn’t it?

1t hasn't hit

It went higher than that last time. -

That’s the peak diameter: it’s less viscous. (laughter)

Did you have the same leve] of water in the top. To start..

Yeh, :about.

No, we had 2 lot more, we had a lot mare.

That’s interesting because you’d expect if there was more in that
you'd expect that level to be higher at its maximum.

Yeh

Interesting, isn’t it.

I mean it didn’t get half as high that time.

Yeh

It got to one point seven last time.

Why was that?

And cnly got to about one point two

They wouldn’t be.. The taps were both open the same..

Yeh, but they won’t be different.

You have to assume that makes no difference otherwise you’re
never going to work out..

Yeh, but we need some consistency.

Why did it go higher last time?

In our experiments?

So we have to assume that much (twisting gesture as if turning tap)
doesn’t make a lot of difference,

Why did it reach a higher level the last time we did it?

Cause no two things are ever exactly the same. (laughter)
Significantly higher level fast time.

Heisenberg’s principle. Cause when we were watching it
something different happened. (laughter)

Yeh, oh

Forget the experiments.

Try something different.

But did we conclude from that one that it was when that one as the
same height as that one. No, we weren’t watching, were we?
(laughter),

So what was wrong with the model? Was it the mathematical assumption?

41:21

Jason
Dergk
Vicky
Jason

Derek

Vicky
Ann
Vicky
Jason
Vicky

Well, I don’t see there’s anything wrong with that.

I think we should run this again.

If anything it’s just..

Whatever we’re saying is it doesn’t get there in a finite time which
is true, eh? because that will never get empty in a finite time.
(Points to volume below tap in top tank) That’s a Heaviside
function, isn’t it though?

That will never get empty with the thing at that height anyway, so..
But we’re modelling it as though it would.

I’m just arguing their exponential thingummy.

I mean what we want is a linear function really, or a quadratic.
The other thing’s if you have two differently shaped things. That’s
why it’s all working;
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42:40

43_: 10

43:50

45:00

45:21

45:50

Ann
Vicky

Jason
Jason
Derek

Derek
Jason
Derek

Jason

Derek
Derek
Jason
Derék
Jason.

Derek

Anthony
Derek
Anthony
Derek
Anmn

Vicky
Jason
Derek
Jason

Perek
Jason
Ann

Vicky
Ann

Yeh, | know but
Cause we’re saying if we just had two rectangular, it’d be easier to

measure.
can we use that model...

" Now we’ve got to think about it.

What happened to the piece of paper I started wrltmg on and other :
people have taken and sort of worked on? (Jason passes paper)
Thank you.

It’s got to be something more than dv/dt = -kvl.

Yeh, [ mean you can solve it quite simply and get an answer.
Mmm

Well it’s probably an exponential because it’s got to be something
decreasing, isn’t it?

Yeh. . .

Yeh, but I mean that doesn’t have to be as such.-

You see there’s something wrong in that, [ mean that’s right.

You reckon v is that simple.

I reckon the top one is that simple, but when you say that, that’s
obviously not true, because it’s got to' go up and then sort of down.
If you start with these, if you'll pardon me questioning your sort
of.. Why should we assume that k in these two is both the same?
Cause they are the same.

Same bottie, same taps, yes?

That’s a good point actually because that’s bigger than that.

This is the third one. Why are we bothering with that?

The things that affect the rate of flow out of that are exactly the
same as the things that affect the raie of flow out of that.

Yeh, unless..

They’re solved all right, aren’t they, Detek?

Yeh.

And the rate of change of the volume of this one (middle tank) is
what’s going out, which is what’s coming in.. what's coming in is
dvl, so I can’t see how it can be any different.

Yeh

But the.. But.. minus k2v2.

But the maximum height is the instant the rate of change equals the
others.

That’s the middle one.

Mmm.

Was it the assumption about the conditions for a maximum?

| 46:24

Ann
Vicky
Ann
Vicky
Ann
Vicky
Ann

Vicky

Vicky

Jason
Ann

The rate of change of that one’s the same as the rate of change of
that one.

Yeh, the rate of change. But you’ve got to remember that one’s
also coming out as well.

Yeh.

So you've got.,

So that’s dv1 and that’s dv2.

No if you - no, because you’ve got the volume, that's dv1, as that’s
changing, and that’s dv2.

But that doesn’t really matter, because what you're interested in is
what’s in here, aren’t you.

But if you say dv2 equals something, you’ve got to say
something’s coming out, and you’ve got to take into account that
something. '

But the problem is, we don’t really.. You should be able to rewrite
that in terms of v2 say, because you shouldn’t need the volume in
the third one. You shouldn’t bother to look at that, should you.-
don’t think you do - all you need to know is- what it’s losing there.
So in effect we're looking at the change..

Do you reckon they're different constants or not?

I can’t see how they can be,
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Jason It doesn’t matter then.

48:00 Ann Because the only things that are affecting them
' Derek The only thing that might make a d:fference ig gravity and ! thmk
: . it’s.negligible. .
Amn  ° It’s not sufficiently dxfferent helght to make any ¢ difference,
Derek The two bottles are the same. 1 think we should assume the two
" taps are the same as we would..
Ann Yes we’re assuming all those things are constant.
Derek So the rate of outflow is only dependent on the volume in there.

Ann Yeh. Mmm

Jason has found a solution but does not find it convineing.

48:42 Jason (showing paper) I mean it’s that but that i Is still going to decrease
at all times. .
Vicky Let’s have a look. You’ve got an exponential again, haven’t you? -

. Jason, Unless k is a.. No. Unless k changes between them two. Butk
; can’t affect it that much.

49:34 Derek  Jason, have you done-it?
Jason Yes, I know.. I’'ve done it right though.
Derek You agree with me, yeh?
Jason But still unless k is at some time negative.

Derek But no, k is constant, isn’t it? But this is still.. You’ve got two
decaying exponentials. That’s no good.
49:55 Jason The only thing is, if k1 is different.

Derek If B is negative or something, then you’ll get something like that.
Jason Mmm, yeh.
50:12 Derek Whl(.‘.h is what you want, I think. I'm expectmg that somehow,

Jason ® is always positive though, isn’t it? So if you've gotaplusanda
minus it's always going to be decaying, isn’t it? Do you agree?

Derek Yeh but what if B or A, one of the constants is negative?

Jason Yeh, but that’s going to be positive, the e, that’s going to be
positive so whatever there’s plus or minus it’s going to get smaller,
isn’t it?

More discussion about constants

50:58 Derek What are you suggesting? Is it anything in particular?
Ann You see what you're saying your constant is..
Jason k
Ann Yeh, but it's
Derek Don’t push it, whatever you do.

Ann Yeh, but what is it? A box of eggs? What?
Anthony  It’s a constant, like in maths.
Jason It's a function of mark, time passed, protons, neutrons, electrons,
viscosity, incompressibility, inviscid,
Ann Gravity.. (laughter)

51:30 Jason. I thought you two (Ann and Vicky) did a maths modelling project
anyway. :
Ann Yeh, but..
Jason Didn’t you do this one?
52:12 Derek Yeh because this is the total volume which is v1 at t equals nought.
. The initial volume.
Jason The initial volume v1 at nought. i
Derek So that’s what A is therefore. v1 at nought )
Jason Yeh

Anthony  Yeh
Vicky So that’s your model.
Derek v2 at t equals nought is going to be zero. Which is therefore going
to be.. Therefore this is going to be the initial volume and B plus
this is zero which gives you the initial point.

Ann In which one?
Jason What? In what way?
Derek

52:50 v2 of t is v2 minus kt. So A equals minus 2kt. If B is negative and
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53:20

53:46

Ann
Derek
Jason

Vicky
Derek
Jason
Derek
Jason
Derek
Jason
Vicky

equal in size to A then..

How can B be negative?

It is C

Cause v2 at nouglit is nought and therefore you’ve.got A plus B is
nought, and A is v1 at nought so B is v1 at minus nought.

Well no because it's minus 2kt

& is smaller in mod than €™, isn’t it?

etothe.. Yesitis.

Which means therefore that v2 will go negative,

Mmm, well yeh.. perhaps we got all our things the wrong way.
Which is absolute rubbish.

Unless you do the.. Because you’ve got..

Yeh, it sounds surprising, doesn’t it?

Another interesting éuggestion is.ignored.

" 54:30 .

55:04

56:17

57:07

5722

ST:50

Jason
Vicky
Derek

Vicky
Jason
Vicky

Derek
Vicky

Deregk
Vicky
Jason
Vicky
Derek
Vicky

Derek
Jason
Derek
Jason
Jason

Derek
Ann
Ann

Derek

" Viecky

Ann,

Vicky
Ann

Jason

Vicky

Jason
Derek
Jason
Jason
Derek
WMM
Jason
Anthony
Jason
Anthony
Jason

Make it a quadratic function.
That’s.. I'm not convinced.. : -
No, this has got to be wrong. I’'m just writing down why this is
wrong.
Why
Cause Derek did it.
Well the other thing is that we’re saying at some point v2 equals
v1.. v2 equals nought. Just by looking at this (apparatus) Atthe
maximum.. Which doesn’t make sense.
What are you saying?
Well from what you’ve got here, you’re saying that at some point
v2 is vl when vi is at the maximum..
Yeh, so..
So for v2 to equal v1, you've got v1 equals this (points to paper).
No, well I didn’t think that was true anyway at the same time.
That equals that
Yeh, I see what you’re saying
You’'re going to have B equals nought, which is a different
solution from B equals..
Yeh, you know what I'm saying is something’s wrong here:
Yeh, there must be something wrong in your equations.
What if the k’s were different then?
Well if the k’s were different you’d get v2 is Be 1At e
Well, yes mate, So ifk1 and k2 were opposite sign, which they're
not..
No it can’t be. it’s a simple physical relationship. (laughter)
You didn’t say that
Pass me that,
Get your own for God’s sake!
No - you’ve scribbled on this one.
Don’t look at mine! Your writing is very tidy today, Derek.
It's very large today, Derek.
What are you doing? .
It’s not his paper. He writes small to save money. (laughter)
They've done something wrong here - or it’s wrong, or it’s total
rubbish.
The equation must be wrong.
Can I have a look at those equations.
I think they’re right.
The solution is right as well.
Right, well, 1 don’t know. I'm just writing it down.
Roger’s the man to ask if you're floundering,
Shall we ask for help?
No way. Ng, no.
Ask his opinion
No, we don’t want help. We’ve got two hours to do it in.
Two hours!
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Vicky

58:20 Derek

Anthony

Yeh, it’s seven o’clock now.
This is just me gobsmacked to see how we’ve all approached it
differently. If we’d had to think we d have all gone to the library
for similar questions.

1 think we"d have photocopied them (laughter)

Yet another interesting suggestion not followed up.

59:20 Jason
Anthony
Jason
Derek
Jason
Derek
Jason

" Derek ]

- Anthoﬁy
Jason.

Ann
Jason

Why don’t we look at pressure?

No, you don’t need to worry about pressure?

Cause then you’ve got pressure is what pgh?

Oh, that’s far to technical.

And pressure is force over area..

Oh dear, area..

And force is mass times acceleration. .

Force is mgh, yeh? Area is the same and h.is what changes and so
therefore you can.. .
But then you can measure that dlrectly

Acceleration.. acceleration.. acceleration is what? Acceleration..
acceleration, and then you get a second degree equation, and you
get two integrations..

mgh is potential energy.

The boundary conditions are exciting..

Time for a break, but we are unwilling to stop. We discuss textbooks and TV.

1:00:22 Ann
RKP
Derek

RKP

1:00:45 Ann
Derek
Ann
Derek
Vicky
Jason
Vicky
Anthony
Vicky
Ann

Jason
Ann
Derek
Anthony
Derek

Jason

I’'ll go and find you a book, Anthony.

At this point you should have a cup of coffee.

Hope there’s some nice biscuits as well.

Are you happy to take a break for a few minutes and have a cup
of coffee? You've worked hard and I think we need a bit of time
to let things mull over in your minds.

(to Anthony) Have a book.

Cheat

It's a differential equations book. (Jaughter)

How to solve differential equations.

Page 63.. Page 63. It’s got some interesting things on it.
Bostock and Charles. It’s a useless book that is

Ch no, that’s a good book that is.

A useless twelve quid’s worth

That’s what got me here.

I know a lot of people say the only thing that’s good for is
propping up your bedroom table.

At school they refused to use it.

Really? .

It’s brilliant

We used it.

You know, Jason, (unintelligible) Did you ever see that on
television? It's obscene now.

That’s a personal gpinion. It’s brilliant.

We return to the matter in hand. Derek checks his maths.

1:01:46

Derek
Jason
Derek
Jasoh

Derek
Jason
Derek

Jason

Show us your maths again.

Which one? The separate ones?

Yep, integral that, yeh

Yep, 1 did two k’s on that. kvldt. No, I did it.. Yeh, like you’ve
done. No, hang on, what have you got there? Yeh, but v1, you
know what v1 is. It's Be*" .

Yeh

And so you get your.. the Be™, yeh.

We’ve got a constant A though. We can work it out in terms of
A because we know what it is.

It’s not a B there, it’s.. Yeh, and..

818
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Derek And you’ve got A there and you take it across.. And you get
v2dt,

Jason = What, 1s that with a sepdrate kl and k2 or not'?

Derek Um.. It’s.not actually.

Ann - I don’t see how they can be different k.

Jason All right then, it makes no difference.

1:02:50 Ann Is that what you've just done, worked it out?

Jason I mean if they’re the same.,

Derek That isn’t the point.

Jason If they’re the same you still get two exponential functions, you
Just get smaller and smaller.

Berek I can’t see any deductive step in there that’s wrong, but this
answer clearly doesn’t work.

Jason suggests that if the maths are correct and still make a wrong prediction, then the .
assumptions.must be wrong. Derek suggests and discards an alternative.

1:03:06 Jason So our assumptions are-wrong to begin with?
Derek So I wanted to see if I made a mistake in the maths. It seems that
[ was all right,
Ann We're saying we aren’t changing anything but-the volume
flowing in and the volume flowing out.
Derek Yes, obviously.
Jason But apart from that..
Derek Some function of that and if it’s just kv, I mean if it's kv® or
something,
Ann Yeh
Derek That makes it more complicated.

An interruption about coffee follows. Then we return to the subject.

1:05:25 Derek Ann, can | have my piece of paper?
Ann (returning paper) Yeh
Derek [ think I'll mark that with a big red pen. {draws ring on paper)
Vicky What was that?
Derek What do you make of that?
Ann That is one of my favourite tricks.
Derek It probably happened when I gave it to you. Just materialised
when you handled it.

Ann Yeh, I've just done that for you. (laughter)
Vicky You’ve got nought equals b minus a?
Anthony  That means A equals B.
Jason A equals B, which means?
Vicky We’ve done something wrong somewhere,
Ann How can 2 equal B?
Jason Well, let’s have a look at your Navier-Stokes equation. That’s z,

so that’s like vz

Anthony has been writing on the folded paper. He has a solution but does not like it.

1:06:50 Anthony  well, I've got a solution but I think it’s wrong.
Jason Oh, yeh?
Ann Come on then, show it to us, Anthony..
Anthony  No, cause it’s..
Jason (reading) zlpha e to the quarter t equals alpha over two..
Derek That doesn’t go negative, does it?
Anthony o, of course it doesn’t
Ann No, that doesn’t

a

Derek has a solution which looks promising,

1:07:25 Derek (reading from a different piece of paper)When t is nearly zero,
that’s about one, and that’s oné so that means it starts off at A,
which is rubbish, cause that’s zero, isn’t it, and that decreases.
That’s zero, this bracket starts at zero and goes up to one, and
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this starts at one and goes down to zero, so that product is going
to be something at a max, so this looks quite good, )

Ann Yes, that does, dogsn’t it.
RKP brings coffee.
1:07:43 Vicky No, yeh, that looks good. .. . . R R
. Ann So what was your brainstorm there Derek? '
" Vicky Something we said?
Ann Did it in a different format?
Derek No, I did it again and just sort of kept my signs consistent.
An Not introduce a negative when you didn’t want one.

Vicky So if you diff it, and take it equal to zero, that should be where
the maximum is, at that time.

Derek Yeh

Ann Go on then, try it. :
Derek ~ dv2/dt equals minus kBe™ plus two kAe™
Vicky Hey, where have you got your B from?
Ann The B equals A anyway.
Anthony - Bis minus A -

Derek B is the constant youn get when you integrate the second..

Jason So it’s just minus A, isn’t it, so you might as well just put minus
A.

Vicky Why don’t you just put one.. Cause..

Derek So why don’t | just write one? Okay.

Vicky Oh, I see what you’re doing. You’re working on the premise this
is easier to differentiate than that. (There are two different forms
of the expression for v an the paper.)

Derek I was just starting by differentiating that because I imagine I
could have written that with one of those things with a bar across
it but.. (laughter)

Shall I carry on or is it too exciting?

Vicky Diiferentiating

1:09:36 Break in film.

Derek explains the thinking.

1:09:40 RKP Okay, so what is your initial assumption about how your rate of
flow.. how your water, your liquid, flows out?

Derek Well, we started working with the theory that the rate of flow is
some constant times the volume in there which would lead us to,
you know, work via some points that, as the water decreases so
the flow out’s going to decrease-so, so that in the second bottle
the rate of flow out’s going to be quite small because there isn’t
much water.

It’s going to be coming through at a greater rate than it’s going
out, so that the level will rige. '
Um, at some point there will be as much water in the second
bottle as there is in the first; so that the ratés of flow in and out
will be the same, as there is then, is then less water in the first,
that rate of flow will decrease and this will be higher as there
increases the level of water, and of course that will then start
dropping. i
So we worked on a differential equation that dv1/dt equals minus
kvl, and it doesn’t seem like that gives us a workable answer
though the equations can be solved, so we don’t think it like does
the job

1:11:11 RKP Why do you think it doesn’t do the job?

Well, actually we worked out we got for the first part as [ just

mentioned dv1/dt équals minus kvl. In the second, dv2/dt equals

kvl minuos kv2. We assume the same constant in both, though

that may not be correct. Working that out, we’ve actually got an

answer for t, but

Anthony  For the maximum

For the maximum, but that gives an answer which doesn’t depend
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Derek

on the initial volume, so it can’t be right. .

Yes, [ suspect that your problem there is that if yon work out, if
you write out your algebra carefully you’ll find there’s that
you’ve got a fault-there probably more than in the modeiling.
Of course theére is.. Just.. um (writing) ’
Perhaps, becanse that should certainly give you an answer.
Whether it’s an answer that’s actually physically right or not, you
should certainly.. Those assumptions should lead you fo a
matheratical answer.

The question I would ask you is, is it really true that um the rate
of flow is proportional to the volume that’s already there?
That’s a good point, um cause we just made our assumptions
about what we could see and started trying to work it out and we
didn’t really list our.assumptions in-any way.

How can you test your.assumptions? We struggle towards describing a simple

experiment
1:12:42 RKP
Derek

Ann
Derek

RKP
1:13:03 Ann
Jason
Derek

. Ann
1:13:27 Jason

Derek
RKP

Jason

1:14:02 Ann
RKP

Derek

Ann
Derek
1:18:03 Ann

How can you test your assumptions?

Umm

We need to time it.

Well, we didn’t even think at all about measuring rate of flow
depending on how much volume we’ve got, and that’s something
we could and probably should have done, yep.

What experiment actually would you do to determine that?

Put half the amount of water in there, and see how long it took to
flow out, and then put once in there and see how long it took to
flow out.

You could time how long it took for like a litre to flow from there
to there or something.
What we should do is simply empty one boitle into anather and
forget about the middle cne. Just that’ll make it much simpler
and we can measure our assumptions to start with.
Mmimn
Yeh, you could see how it depends on.. I mean you could do it
both from four to three and from three to two and see if one’s
quicker than the other,
Yeh, and that would work..
You can do it better than that, actually, can’t you? You could..
You can give yourselves a bit of a scale there, you’ll have to put -
make a scaie on it and just read the volure that’s in it against the
time and graph it, and see if that’s consistent with the model
you've.. .
Well, we could mark on there nought seconds, thirty seconds, a
minute, and mark on it the time it’s gone..
Yeh, just see what’s
And you're assuming it depends on the pipe, which it may or
may not do
The height of water in.there and the volume, they’re pretty
closely linked?
Ch yes, that’s supposed to be straight-sided.
So it’s a constant, sort of, area.
Yes, cause it’s the height above the tap, isn’t it?
We made that assumption.
We noticed the drawings have the water flowing from the very
bottom, which is a simplification of the true problem.
I think that if you work through what you’ve done, carefully,
you’ll get, you know, just make sure that the maths is right.
You'll get an answer. The answer will depend on that initial

assumption. You ought to be challenging that now.
Okay, well.. '

Fine
I’'ve got a second hand on mine.
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Vicky
Anmn
Jason

E:15:33

1:16:02
I:16:19 Jason
Ann
Jason

1:17:04 Anthony
: Jason

Derek
Jason
Derek
Jason
Anthony

Ann
i Anthony
Derek
Ann
Derek
Anthony
Ann
Derek
Jason
Antheny
Jason
Vicky
Ann
Jason
Derek

1:17:45 Jason
Vicky
Ann
Jason
Ann
Jason
Ann

© A glitch in timing.

1:18:38 Vicky
Jason

Vicky
Jason

Vicky
Anthony
Derek
Jason

Vicky
Jason
Vicky

- Anthony

Yeh, so have I

I don’t actually have a stop watch or anything.

Well, we don’t want to stop it. We'll just write on the container
and

RKP repeats question for video.

The first test to test the assumptions.

Jason sticks vertical strip of tape on top tank.
Shalil [ fill it up again?

Yep

Come on Ann (they carry jars to sink for refilling)
Break in tape

When it’s stopped moving around.

Just at the end:

Is it ready to go then?

That’s not a maximum, is it. Just the rate of flow.
The top one isn’t:

So if you..,

What about the meniscus?

Why don’t you lower it down to four? Why don’t you lower it

-down to four and measure it from there?

Yes, measure it from..

Let it go to four. Let it go to four.

It doesn’t matter.

We're just looking at the difference in heights.
It doesn’t matter

we don’t want to fiddle with funny numbers.
The numbers don’t matter. You’re just looking at a physical..
Just mark it every ten.

Whe's looking at their watch?

Is this one open? (middle tap)

Tell meto mark it on the minute.

When it’s convenient.

You want it every ten seconds.

Weil call it and if it's too close I can’t mark it.
Well, if it’s too close we’ll run it again, but try it for the moment
shall we?

Well, I’ll do it every other ten if it’s too quick.
We’{l start with ten seconds.

Okay it’s coming up to the minute. Right..
Now?

Mmm

Right, call out ten,

Ten, ten, ten, ten

Do you want to siop because I'm sure you went ten too close.
Yeh, something’s gane wrong here. We’ve got two tens far too
close.

You did two tens too close together.

They were about an inch apart and then we’ve got two about that
far apart. '

[’1l do it on mine.

Why don’t you use the stopwatch? -

[ haven’t got a stopwatch,

Something went wrong even if it’s not a stopwatch. They sort of
went evenly and then we got.. (removes tape from tank)

It sounded like it was sort of five seconds, and then like..

It did, yeh.

Its cause you’ve got no numbers on yours, that’s why.

(Jason puts new strip of tape on bottle)
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Derek
Anthony
Jason
Vicky

Jason -

Excuses made up.

Are you going to fill it to the top‘?
" What?
" You’ll have to fili'it.

Better than emptying it. -

Filling the apparatus again to rerun the test.

1:19:34
Derek
Vicky
Derek
Jason
Vicky
Derek
1:20:10 - Anthony
Vicky
. Jason
Anthony
Derek
Anthony
Derek

Vicky
Jason
Anthony
Vicky
Derek
Vicky
1:20:38 Jason
Derek
Jason
Vicky
Derek
Jason
Derek
Anthony
Jason
Derek
Jason
Derek
Jason
Derek
1:22:08 Jason
Ann
Jason
Derek

Derek closes middle tap
Bottle filling procedure again.
It’s open, isn’t it?
Mo, ! just closed it.
I shall do it here. (fill the bottle, as opposed to over the sink)
Yeh
Yeh, be darmg
(points at computer) We could _|ust Iook at the computer and..
I can’t see it from here.
What clock?
There’s a clock on the computer..
Yeh, I can call that.
We’ll just count the seconds down and you can mark it off.
Or what we can do, Jason, is open it when you feel like it and
when it starts running call out and I'll call out the tens from there.
Oh no, do it from a reasonable sequence.
Yeh
Yeh, when you hear a little bit of a trickle.
Well he can do it and look at it.
Yeh, T will.
No, he can.
1 can’t see the clock from here.
When you feel! like it, Jason. Just call and U1l tell you when.
Yeh, hang on.
He can’t even see it. He's too close to it.
Zero, is it?
Yeh
Ten
No, forget it. This one’s not open. (middle tap)
It doesn’t matter, we're not marking that one.
Mark.
Exactly even at the moment.
Mark.. mark..
It’s slowing down
Mark.. mark..
We missed one there, didn’t we?
No, he didn’t,
There's a bit of a gap.
Mark

A surprising result: the marks seem to indicate a steady flow rate.

Anthony
Jason
Derek
Jasen

Derek
Ann
Vicky
Jason

Ann
Jason

I don’t think the apparatus is very useful.

Well I think what we can say from that is it’s & constant,

You should have ten marks there. 7

{counting marks) One, two, three, four, five, six, seven, eight,
nine, ten. )

So..

So if you break the flow it's not proportional. -
1t does look constant. 7

It does lock.. I mean these ones are a bit.. For the first it does
definitely. Up to probably where it’s going to be a maximum.
It will come out totally different.

Well it’s the slope we need.

Break in tape,

Close-up. Film of Jason marking tank as water runs out.
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1:24:22 Break in tape. Back to assembled group
Derek Can you help us please.
Ann It doesn’t make that dlff‘erence :

Interventlon Where do you measurc the depth of ; Water from, 'if the flow rate is
* proportional to helght‘?

WMM Can [ ask you a question about one of your assumptions?
Derek Not another one. (laughter)

Ann The assumption
WMM You’ve assumed the pressure is equal to pgh, yeh?
Ann Yeh
WMM And what I'd like to ask you is where you’re measuring h from.
Amn Well, we're taking zero as the floor level, if that’s what you
- mean. S '
Derek (off camera) No, zero is here.

Anthony  Centre of the earth.
WMM Why is zero there?
Anthony  No it’s the centre of the earth we’re taling as zero h.
Jason No.
Anthony Mo, itis
Derek No, He’s right, because.,
Jason No, like anything there (top bottle) is like just a waste of space.
Ann The diagram is that it’s flowing from the boftom, isn’t it? So
you’ve taken the level where it starts flowing out the tap. You
measure from there to the top where the water would be the
height in that can, won’t it?
WMM What I'm trying to get at is where a better place to measure zero
from might be, What in fact in your pgh does h stand for?

Ann The height of the water in the can.

WMM Does it equal.. Is it equal to the height of water in the can?
Derek Yeh

WMM What about the height of the water is it?

Jason The height of where it's flowing from.

WMM The height of where it’s flowing from. Where is it flowing from?
Derek There

WMM Is it? Is that actually where it’s flowing from?

Derek Umm.. Ummm..

Jason Well, it’s flowing out from the hole in the bottom.
WMM It’s flowing through the hole, and then what happens to it?
Jason Goes down the pipe (points along tube with pen)

Is there anything special about the place you measure the depth of water from? What is
a pomt time or space? :

WMM What’s the magic about h equals zero? What is it that you're
assuming happens at h equals zero?
Ann There’s no flow..
Jason No flow.
WMM Well, no, sorry. At the position where the er level is zero. I’'m
expressing myself very badly.

Ann There’s no flow.
WMM Umm.. What is it about umm .
Ann There’s no change in the amount of water that’s in the can.

Derek has an explanation which does not seem to involve pressure, potential energy, or
anything.

Derek The reason we’re measuring the height is because the volume’s

directly proportional to the height, and we think the volume is
what forces the water out. So we're..

We assumed the flow would change,

So we're just measuring the height of the liquid as one of the
dimensions of the volurne. We aren’t really trying to equate it to
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its pressure at a particular area, or potential energy, or anythmg
WMM I thought you.. A shame.

Derek Because if it was pgh
WMM Yes.
Derek Relative to the centre of the earth we discounted that because

they are virtuaily the same relative to the céntre of the earth. I
think that’s what you’re trying to ask..

We establish that we have a constant flow rate, which is not what we expected.
However this may be because we are not measuring accurately enough..

WMM No, it’s not. That’s not what I’'m trying to ask. I’m trying to
challenge basically why you think you’ve got very little
. difference in the size of your steps.
Derek Er.. Jason’s got a steady hand.

- WMM rd
Jason You mean they’re almost all the same.

“WMM  They’re almost all the same, yes. :
Jason That means it must be a constant flow rate, then.

WMM And why.. What is it about your measurement of h that might
lead you to have a more steady flow rate than you might think
you’d have, and what can you change to have a flow rate that
varies more.

Derek Ah! The centre of mass of it, because that doesn’t rise that.. No,
that wouldn’t make any difference, would it? That would just be
half all the time.

Ann What I think you're trying to get at is if you’re trying to measure
it to the nearest tenth of a centimetre then they’re identical but if
you’re trying to measure to something more accurate then they’re
not all the same.

WMM Clearly I am asking the wrong questions here.

Derek No, don’t say that, just.. (laughter)

Let’s talk about pressure..

WMM I must see if I can find a more constructive question.
Would you agree that at the position from which you measure the
height, the pressure in the water is equal to atmospheric pressure?
yeh?

Jason Yeh

WMM Okay, you like that one?
QOkay, so at what point in your top bottle and its bits and bobs
attached is the er pressure in the water equal to atmospheric

pressure?
Derek At the top
Jason On the surface
WMM It is at the surface and where else?
Jason Here at the tap.

WMM Why at the tap?
Derek Cause it’s got..
Jason Well it’s
Derek Actually it’s here
1:29:50 WMM (claps) Yes, yes, yes, it is. At that point where it leaves the hole
it should be equal to..

Am Oh,
WMM So
Vicky So we should be looking at the height from the bottom of the
tube.
WMM Yes

And we are not at all convinced we should.

Derek It’s the same amount of fluid,
WMM You could try that. : .
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1:30:32

1;31:25

Ann
_Jason

Anmn
WMM

Jason
WMM
Derek
WMM
Derek

Vicky

Jason

Jason
WMM
Jason
Derek

I can’t see what difference that would make.
Yes, but if it’s the height from there, from the bottom of’ the tube;
it’s still commg down equally, isn’t it?

- I was going to say, it’s still going to drop at those mtervals

Well, how aboit making.. doing an experiment to see whether he -
length of the tubes makes any difference?

Like take the tube off

Could you?

We’ve only got two tubes the same length.

Yep, that sounds reasonable.

How do we adapt the model, then? How will that help us out
with the maths?

Is that tube actually longer than that one?

Mmm, yep. Oh, we could change-then over. No, try it wnhout '
the tube first, see what'happens then.

You can’t get the tubes back on

If you get them'wet they go.. -

That’s closed now, isn’t it? (top tap)

Hope so.

We try, although we get a bit wet and have to modify the apparatus a little.

1:32:10

1:32:37

1:33:21

1:34:05

Jason
Jason

Ann
Jason

Ann
Jason
Perek

Ann

Anthony
Jason
Ann

RKP
Derek
Anthony
Jason

Derek

Jason

Derek _

Ann
Anthony
Jason
RKP

Jason
Derek
Jason
Derek
Anthony
Derek
Jason
Derek
Jason
Vicky

So it’s like.. P’ll hold it. (fills top tank from bottom one in situ)
So what’s this written on the side of this? Right, leave this one
(middle tap) shut.

Leave this one shut. And.. I'll hold it (middle carboy) until I see
where the flow’s going.

No, no, no. As soon as it starts to come out properly we do this.
Because we’re going to mark it again. (removes previous tape)
We’re going to mark it again.

Ten seconds

Um, I’m just wondering if here’s a-funnel, though.

I’m just wondering if it’s actually going to go in there without..
1 don’t think it’]] make a difference,

No, you don’t want the tube on.

No, I know you don’t, but I just want to make sure the water’s
gonna..

(offers phone directory) Here, that may help it stop splashing a
bit.

(Anthony puts directory under middle bottle.)

You don’t have a funnel, do you?

I was just wondering- That’s all I'm making sure of

Right, who’s going to do the timing then? Who's watching the
clock then?

"1l do it with my watch then?

WMM revives clock on windows.

I’ll start it on ten seconds

As you wish

Oh crickey (water splashes from tap)

Forget it.

Right. "l need a few. more books.

(Bottle now sitting on empty wire spool, putting a book under
spool) We’ll get it right up there.

Clock. It’s coming up to a minute, isn’t it?

Seven, nine, zero.

Shout it out

Ten, mark, mark.

Is it getting smaller at all.

Mark, mark, mark, mark, mark..

Mmm, { think they’re-getting smaller, you know.

Mark

But they did last time we got towards the bottom.

But is that significantly smaller, or..
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Derek
-Jason
Derek

Anthony

Jason
Derek
Ann

Derek
Anthony
Jason
Ann
Jason
Ann’
Perek
Ann

Mark

We’ll make this one the last one, Ah, no you want to carry on.
Mark, mark -

Wasn’t so many marks last time.-

No, it’s taking a longer time for some reason

Mark

If it’s flowing slower, you’ve got a shorter height. You notice
the difference more, don’t you.

Mark

What did that prove?

Proves that it's

It is proportional, isn’t it? Flowmg through that pipe,

seerned to change it

- Is speeding up the flow, didn’t it, because that took:a lot Icnger

Why is that?
So it’s slowing flower and you notice the difference a lot more.
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APPENDIX B: MAIN QUESTIONNAIRE
Rubric . : o

Pleasé read this page first.

Read the following question:

Which is the odd one out?
house office
igloo flat

Some people will choose Aouse, because it has more than one storey.
Some will choose office, because people don’t live there.

Some will choose igloo, because it is made of ige.

Some will choose flat, because it doesn’t have an ‘0’ in it.

There is no wrong or right choice here, but the way you answer gives a clue to the way you
think.

The six examples that follow are rather like this question. They are not intended to trick you
into giving a wrong answer, but rather to see which of a choice of answers you prefer.

For each example there is a list of six options. Please choose the one you think is the best fit,
~ and then rank the rest from best to'worst. If none of the answers seems to you to fit, then
please put a better one in the comments box. Otherwise please use the comments box to
-explain your order of choice, or for any other comments on the question.

Please fill in the following details. I would like to know who you are for possible follow-up
- research, and nothing you write in this questionnaire will end up in your student records!

— Thank you for helping me with my research into
the mathematical ideas of engineering students.

Wendy Maull
Centre for Teaching Mathematics

athematics Learning Questionnaire, September 1995
endy Maull, Centre for Teaching Mathematics
niversity of Plymouth
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Question 1

A plank 1.5 m long is pldaced on two bricks very near its ends. A bar of -
gold is placed across it 0.5m from one end. Rank the following according
to how well they represent this to you.

i

(a) .
The beam bends under the weight of the
gold bar.

(b) Deflected shaﬁc

B |

...........................................

(©)

d*y
Bending Moment M=k—

2

(d) _ '
A simply supported beam with a point load
at one-third span.

(e) - :
Shear Force S=dex
Bending moment szScix
6]
* Load mg
| 7 —
A Reaction 2mg Reaction mg 4
3 3

Answer

Comments:

Beam bending question
Wendy Maull, Centre for Teaching Mathematics, 10 November 1994
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Question 2

dy | IR
-_—= X)-
| ~=f'(x) |
All of (a)-(f) can be associated with the statement above. Please arrange
them in order of how closely they are linked to it in your mind.

o

ll

(a)
f (x) is the slope of the tangent to a graph of
: y againstx.

®

Y

=

— — | ®

(©
dy/dx tells you how guickly something is changing.
(d) ‘
f(x)=lime, -x)-o0 Y2 — 0
Xy — X
()

As you zoom in more and more closely to a small
section of the curve, it seems to straighten out. The |
slope of the tiny straight section is dy/dx at that point.

(6

b

Ir'

Answer:

Comments:
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Question 3

A mass suspended from a. sprmg and dashpot is pulled down from 1ts
equilibrium position and released. Which of the following do you think best
describes what happens next?

Please arrange the answers in order of how well you think they describe the
movement of the mass (best first, worst last).

e

(a) The mass bounces up and down,
_ going less far each time, until it settles
back to its orlgmal position.

(b) ' y+ky+(0 y=0

(©
Yelocity [dy}di)

Displacement

v]

(d) y=Ae "M cos ot
©  Damped harmonic response
(f)

displacement {y]

N A o
(VN

time {t)

Answer:

Commenls:
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Question 4

g= f xdx
(a)-(f) may all be associated with this statement. Please arrange them in
order of how closely they fit the way you think of it.

(a)
q is the area under the curve y=x.
(b)
x2
g=— +C
q 5 .
(c).
q
g= X 4C
2
X
(d)
The integral tells you how things build up.
©
D y=x
o .
d
_.Q'. =X
dx

Answer;

Comments:
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Question 5

Ina p'inbal'l game, aball is fired by releasing ataut spring behind it,
propelling the ball out at speed. Arrange the following in order of how
well they describe this to you.

(a)
Energy stored in spring = % Force X Extension
: 1
(b) : -
Energy imparted to ball = _[F dx
© ‘
2
| lm(ﬁ] =Lex
2 \dat 2
(d)
Change in momentum = f Fdt
(&
F=ma
()
_The further you pull back the spring, the faster the
ball will go
Answer:
Commenis:

313







Question 6

dy_ e*
dx

Arrange the differential equations below according to how
similar you think they are to the one above.

————————
——

@

2dy‘ X
Yok
Vi
Idy=jexdx
&_,
dx
gx:mx+c
dx

2
AV _ o
dx*
G_

314







APPENDIX C: TRANSCRIPTION OF INTERVIEWS WITH
'STUDENTS TO EVALUATE THE COURSEWARE PACKAGE.

First evaluation intérview with final year mechanical engineering student; recorded
by video in CTM, 2 Kirkby Place R101, directly after using the package by himself,

November 1997
Jed It's nice to use
WMM  Soyou like...
Jed It’s interesting enough to stand examination, which is nice

I think perhaps keyboard alternatives, such as the two arrow keys for previous and next

Indistinct

Microphone and camera adjusted.

Whar did you feel about the navigation? Did you fmd it easy to navigate round

I thought it was pretty good.

Perhaps on some of the longer modules, for instance investigate implications or compare

with reality I thought it could perhaps do with a page numbering system or some sort of

scrolling system. For instance I got about halfway through, I wanted to pop back and

look at this page but you have to go right back and go through it again.

I felt some sort of scrolling system perhaps would be useful.

That’s something to think about.

The home page worked as 2 way of navigating?

Yep. You can base yourself from there. That worked quite well.

Do you have any comments: did you have any glitches: did anything go wrong?

Nothing went wrong. Well I think one of the pictures is inverse, is in negative

Is it? do you remember which one?

Intro to modelling: reality

Ah! It’s just bad colour. Thanks

One thing I thought about the navigation was there are different numbers here. They

don’t really co-ordinate, moving from reality to understanding. I thought perhaps

rather than have a whole page dedicated to just that if it just flashed up and fades into

the next page perhaps.

Right

Rather than have to click again that just fades into the next.

What did you think about the introduction. The bit before you get to the home page?

Righr, telling you how to navigate. Yes, that’s clear. It just gives you everything there.

Perhaps if these two {buttons] were swapped around to match those two..

What did you feel about the context? Did you feel the case studies were relevant?

Yes I thought they were quite usefu] : the case studies. They were suitably practical.

You didn’t think they were.. Did you feel your intelligence was being insulted by any of

them?

Not really, no. I haven’t been using any maths for the last year being on placement so

my maths is very rusty.

What about the level of the maths?

What is the package aimed for?

It’s aired for giving concepts of differential equations in the context of mathematical

modelling. So either you have looked at.. So you can either use it for introducing

mathematical modelling to people who have done differential equations, yes, calculus, or

for introducing caleulus, differential equations to people who have done mathematical

modelling.

Right- it seemed quite useful for that. It’s a lot more interesting -, it’s easier to grasp

than standing in front of someone who's telling you about it.

The level of the maths varies quite a lot from the first one through it. Whereabouts do
* you feel happiest? -

Well, given a reference, I'm happy enough with understanding the calculus- I've

forgotten all the transforms myself.

When you use them a lot you know them, you just click them in, but I've forgotten all

that.

My maths is very rusty- I haven’t been using it for a year and I haven’t had to use it so

far this year.

What about the level of the commentary- of the explanation that was going on?

I thought that was quite good '
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Did you feel it was too high 2 level, too low a level?

I felt it was about right,

What about- did you feel that the mathemaucs was put in context or that there was a
sort of break?

No- it seemed to go- to flow quite well really.

What about the pace- that it went oo quickly or that it took you through at a snail’s
pace?

It went through too quickly for me because I haven’t been using it but I think if I had
just come out of the maths modulus that would be fine.

I had at one point thought of building in another layer in which the maths went a lot
more slowly so you could switch from one layer to another

Yes you could do that or even clickons for each page - just sort of little maths subpages
come up- it could be- I think for people from maths modules that’s probably enough.
Ithink it’s more aimed at somebody like you who’s been out to try to encourage you to
think mathematically:

Yes, mm, I see what you mean. Isort of tended 1o follow what was going on without
actually examining the maths. :

T understood what was happening without doing the sums as it were in my head.

So were there any particular spots where you thought it was going really too fast.

No

Or conversely really too slow

No in general I liked the pace very much throughout.

‘There were different help styles used in one or two places where I was testing them out.
One of them was where you had 2 red word..

Yes, I noticed that, I quite liked that

Another was where I put - used a split screen - put a lot of commentary down the right
hand side.

Did you prefer either of those?

I quite liked the red word although the danger of that is people mlght be lazy and just
not do it, seeing they ought to be able to figure it out and skip pat it.

S0 you haven’t done any maths... Have you done any mathematical modelling in your -
course, ever?

Well, we did some basic stuff..

Specifically as mathematical modelling?

Yes, it tended to be in the mechanics modules, Did we do some in the maths modules...
I don’t really remember. It was such a Jong time ago

Do you feel that you've learnt anything in using it?

Perhaps in the actual.. In each particular application. Learnt what you would use to do
a coffee mug. But on the other hand I felt I was aware of the homogeny of the
principles behind modelling.. The principles behind it.

I would know where to go for modelling and what I would want to be looking ar, just
be inadequate in locating the actual variables.

Do you think you would find it useful to have something like that available?

Ithink it would be, really, yep. Just-Idon’t know, you mean like on the network or
something?

I think it would, certainly to go and enlighten oneself as to what is possible

Do you think anybody else would use it?

Well, it’s the same old thing, being a student, nobody’s going to use it, but, I mean it
might be if there’s a tutorial session as part of 2 module, you know, go through this. It’s
relatively... it’s not... Nobody’s going to be turned off by it so it would be all right.
Would you like a copy?

Iwon’t, Thank you, no: Thanks for the offer. I'm trying to avoid mathematics this
year.

It has been suggested that there are two ways we might encourage people to try it out
and test it. One way would be to invite people to have a go at it and then have some
lunch, or another way would be to put it on disks so thar people could rake it away and
have a play with it at home, and just give a quick fill-in questionnaire. What do you
think of either of those two?

I think either would really be useful. I mean it’s cheaper for you to send it away on
disks. I guess everyone could go through it at their own pace.

What is nice, sometimes when you get people using something together is that you get -
them talking to one another.

Any other comments you would like to make?
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1liked particularly.. There was particularly in that section the bridge I think it was,
there were suggestions for something to think about that sort of came over- further
investigations you can-do, I particularly liked that because often when you’re being
taught the lecturer’s desperate to get through the subject so they. don’t have time to stop
and talk about that. That’s quite useful ... keep-péople thinking hopefully .

On the one about the water tank when you're comparing it with reality it suggests you
compare it with example five and it goes straight into it when you click “next”. I don™
know if that was intended but it doesn’t seem to finish it.

Yes the implication was that we’d modelled something but you can go round the cycle
again in fact you can go round the cycle twice more.

Mmm, right. Ilike the way the text change between the active and the inactive. Tt
keeps in focus else it ends up being just a big screen of words.

Do you feel the colours are easy or tiring or :mything>

Generally I've heard yellow is supposed to be a tiring colour but I didn’t find it to.be so.
Anything you pamcularly liked? '
The presentation- a nice package generally- I like it alt really

Or anything you particularly didn’t like?

No not really. Ididn’t like having to click through so many pages 6n some of them
when you went back a few .

It’s just that some of the modules, I don’t know how many pages, perhaps 10 pages, if
you’re in the middle it takes quite a while just to work your way back, but that’s
because I was skipping about a lot.

Well, that’s fair enough beécause part of the idea is that you should be able to skip about.
I'm not excesstvely keen on scroll bars,

No, they’re difficult to apply.

I mean certainly the type of scroll bar you get on a lot of Microsoft stuff are horrible.
Perhaps you see better screll bars on the Apple, like sort of sound editing. It’s got that
sort of scroll bar where you move 1t.. (draws horizontal line).

I wonder if I could.. because it’s pages rather than scrolling up an down, put tabs up
each side..

You mean like a Filofax?

Yes, exactly, if that would be helpful?

Yes, good idea. Yep it would just allow you to pick out pages and turn back. Alsoasa
reference:

Which tell you how far you are through a section, whether it’s a big one or a small one,
yes that’s a good idea.

Is there anything you’ve come across in your course that you feel would make a good
case study?

A good model, mmm.

Nothing that springs to mind , bue I think those are good choices, the way they cross
over to the water tank with the hose and the hose with losses.

Because I was a bit concerned that there were only three basic applications in there.
There’s cooling, the water flow and the chain and the fact that there are three modelling
cycles doesn’t cover the fact that there are only three applications.

Perhaps but I mean it’s a broad field and they are pretty typical examples, really...
applications.

Do you think it would be helpful to put in something that said something more about
the particular mathematics up front in the title?

In the title, you mean like thermal consideration?

Like exponential decay, non-exponential decay.

Yep, something like that you could grab if you're looking for something in particular.
Righe..

Well, thank you very much.
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Three final year Manufacturing Systems Engineering students (first two years in
common with mechanical engineéring students), at CTM in Kirkby Place. Martin is

a German student with good if not perfect English. Gareth and John are mature
students

After the students have used the package together we discuss it over lunch.

While using the package the students’ only conversation is a spontaneous discussion

of the nature of mathematical modelling.

Gareth  (inaudible) according to this the temperature will never be zero, that is room
temperature. In actual real life it would at some time.

Martin  In a theoretical model we have to have some factors for the heat transfer and so on.
Usually finding the formula is never really a big problem. You choase out of the seven,
tick one that must be right, and then you have the problem that ..

John  Good old enginecring guess (laughrer)
Martin It is the only one which has all the variables I know or any of those must be the one.
~ But where we get all the factors from if there is no letter
John  You can look them up
Martin ~ Then we can find them or how 1o guess them.
I found that sometimes that is a big problem.
And so usually you get told by a lecturer the wall has a T of 20 or something, and then
you get your..
John  Yeh, the data that's stored you can get that out of reference books
You get all different k values and C values and you can..

Martin =~ When you are starting to find those it can be quite a long wait. Might be even longer
than finding the right equations and solutions. You get from simple mathematics into a
high mathematics problem in finding them.

John  No, you look them up.

Martin  But the conductivity of this wall [gestures] is not written down in a book. You have to..

John  But you know what the wall is made of, you know how thick it is, so you can go and

look that information up in tables.

Martin It goes quite a few steps back.

Gareth  What if the model is such a situation that we can’t actually get and physical data from it?
Like it hasn’t been created, building a bridge?

John  Then you have to measure it.

Gareth How?

John  Seems obvious. From what Martin was talking about, conductivity values, you can
measure those.

Gareth  If it’s for an unknown.

John  Imean if it’s for an unknown thing, if the material hasn’t been invented yet then fair
enough you can’t look it up but you can’t-measure it either, but what are you modelling
on something that’s not known?

Gareth  You might be doing a feasibility study or something.

John  Butthen you'd know the properties of the material you're looking at or you'd be
looking at specific properties. You’d be working from the back end to try to identify
what specific properties you're looking for from the material, wouldn’t you?

Gareth  It’s just that this step here where it says “compare with reality”, you may not be able to
do that.
I mean I'm sure that when they built: that bridge in America which destroyed itself
when it reached resonance.

John It begins witha T doesn’t it?

Martin  The swinging bridge.
Gareth  They couldn’t compare with reality until they’d built it. You could do all your
modelling- that’s where I’'m saying the assumptions are very..
John  The assumptions are there, aren’t they. They are assumptions.
These things don’t actually happen just the same as you think. The only way you can
simplify it so that at this level you can solve the mathematics.
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The students returned to silence and to perusing the package.
We discuss the package over lunch.
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John

Martin

CanTask’ you please.. Do you have any general comments about using the package?’
What level is it aimed at?

" Probably second year engineering students.
I think it should be aimed at first year because they’ve already... That’s more of an
introduction.. They've already done a lot of the stuff that’s in that book before they get
into the second year., It would be like, regressive, if you like. It would be better if that
were introduced earlier rather than later on.
I mean even to the point where on the foundation year, you’re doing differentiation at
that stage and I think it’s a key point to get across that this is a tool used by engineers to
model sitvations which they are trying to overcome.
Cause you can get lost in the maths without seeing the relevance to the real world in
. which we're living, Whereas that’s quite good with the explanations.like the coffee cup
and the bridge and things like that, why we actually use differentiation.
Would it have helped you at any point to have had access to something like that?
Not as a solely teaching aid. Certainly as a backup to go there when you’re not sure of 2
point 1o go and go over something again because you can see it clearly on a point.
You still need the lecturer interface but as a backup to that to give the student extra
individual tuition, that’s an excellent aid.
What about the fact that it’s done very much in the context of mathematical modelling?
You did HITECC, didn’t you So you have been explicitly taught mathematical
modelling. How about either of the other two?
1did HITECC too.
[to Martin] So have you seen specific mathematical modelling during your engineering
course?
I have done the same with problems like in that program but whenever I got a bit
confused, a bit lost after the introduction. There was mathematics all over the place and
in the end I could not see what I have reaily done.
I knew about perhaps the bridge and that is how it must be but when I have done it
was lost, and this gives a bit of an overview of the mathematics. It was not the first time
I saw the modelling stages and the comparison with reality.
It was a good thing. I really liked it.
What did you feel about how easy it was to use and the structure of it? Was that
helpful?
Very simple to use, very clear instructions.
Is there a possibility that people are going to be looking for certain areas? Say they were
given an assignment. Are they going to use that to find out how to do, so are they going
to narrow the search into one area? Is that’s why it’s there, as an id to helping people to
understand certain problems or just overall?
It was a set of examples for setting mathematics in the context of mathematical
modelling. .
Yeh, what I mean is what I was trying to say is, say someone was set an assignment and
it was a shell being fired from a gun and its motion through the air. Are they going to
look on there and not find it and go on and look somewhere else, rather than getting the
feeling of why the program is there, not just to help people in specific problems but to
understand a greater range of instances? (laughter) I know what I'm trying to say.
I think what you're saying is there could be a tendency for students to leap to that to see
if there is an example where the maths has already been done for them to save them

“ work rather than them to sit down and actually work through the maths. A lot of

students will say Ool, it’s on there.

If you are doing usually you will not get the same example like a computer program,
just for an example what could be the [inaudible} of the same problem, you are going
through the examples to see what you have to do then you are following the steps with
your specific... '

But you know as well as I do, Martin, that there are enough students out there who
look to find exactly the example they are looking for.. Hey presto, that’s my work
done, solved.

But it doesn’t say the equation steps are explained a bit, but in an assignment you have

' HITECC: Higher Introductory Technology and Engineering Conversion Course, now known as the
Engineering Foundation Year
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1o do more I would say. You have to do it with your speciﬁc numbers, at least. It’s like
the statistics at the'moment, you have to do the whole assignment with your numbers
but at Jeast you have done it once even if you ;ust copied your numbers.

John  I'mnot saymg you shouldn’t. What I'm saying is there are students out there who will

ogo, that’s it and all I have to do is bung my" ‘numbers in and there’s an answer, which
isn’t what it should be about.
Martin ~ But at Jeast you have to follow the steps to make it your assignment with your numbers.

John  Yeh, but all they’d be doing is putting their numbers in.

Gareth  They wouldn’t be getting an understanding of the maths they were doing they would
just say I put my numbers in.

John  It's learning by rote.

Gareth  Rather than actually learning how to differentiare the equations.
Martin  You can do it in every subject this way.

John  What I think you could do with it.is possibly is when you're doing some of the
mathematics, give options for them to choose, say is it this, or this, or this, a, b or ¢, and
you press a, wrong, press b, wrong. At least it gives them an opportunity to see if they
can do the differentiation themselve52

Gareth  Make it a bit more interactive, rather than just following the steps. You may lapse into
next, next, next, very interesting, what’s next.

John  We were beginning to get into that mode after doing three. If you’ve got the interaction
in there it would go somewhere to solving thar.

WMM  What did you feel about it aesthetically, about the look of the program?

Gareth  Ithought it was quite good, yeh, with the imported graphics, like the picture of the
bridge.
It was nice to see something in reality, that you’re actually modelling from, so that
picture just sets the scene, doesn’t it? You can see the bridge, see the cable, everything,

John  Tdon’t know if you’ve been to the Business School and looked at any of the CAL things
over there?

WMM  Thaven’, no

John  Well they do.. Not only have you a similar sort of thing, it’s not really any more
interactive, you have the same options- there’s also a couple of little tests at the end of
each module to see if you’ve learnt what’s going on. Not only that it’s sound as well, so
you put on a pair of headphones so you’ve got someone talking through the course so
although you have it written down in black and white if you like on the computer
screen you also have an overview sound so it’s a discussion of what’s going on as well.
So that would be something you might consider introducing as well.

WMM  Did you find the sound helpful?

John.  Sometimes, yes. It’s not that it reads off all the words that are written on the screen.
It’s related., if you like, talks around the words that are written on the screen, rather
than just saying the words that are on the screen. You can sit and listen and take notes
from the words on the screen and listen to the general description of the tool as well. It
takes a bit longer to go through because you tend to listen to the description then take
the notes, because it’s based on the same sort of thing.

Gareth  Well it’s a well-known fact, isn’t it that people learn in different ways. Some people are
) visual learners and so maybe that just having a visual learning aid may appeal to some
people whereas to others who don’t learn visually it won’t have the same impact on
them. So if you had an audio as well, you know, that way it won’t narrow the focus of
people which are going to learn from it.

John  You are also giving them the option of taking the earphones off. You don’t have to
listen to it.

Gareth  There is quite an extensive piece of work into how people learn and other things and
visual is only one part of them.
WMM  Did you find using the home page easy to operate?

John It was the same as doing it on the Internet. Might be nice if you put a bookmark in it,
so you could bookmark where you are in it so if you if were disturbed in the flow of
concentration, you could bookmark. You could then go back exactly to that point.

WMM  Actually if you go “home” and then you click next you should normally go back to that
place where you were, .
John  Right
WMM  Which should normally actas a bookmark.

* The manipulation in.the program was algebra and integration, no differentiation
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You did find a glitch.. Ithought I'd got rid of all of them, but there we go..

Did you have any comments about the content? We've. talked about the level of the
mathematics. :

On your report writing, you haven’t said you should write anything abour the theory
of the mathematics behind it, which when I"was taught reports we were told we should
do as well. So if you were working on something like spet::lfic gravity you should do’
some specimen calculations on the calculation of specific gravity and then do your
calculations beside it as well so you say for.... Ican’t think of an example.

Well, normally what you have to do is to do the theory behind the mathematics,
usually, rather than just doing mathematics you have to put the theory behind that level
of mathematics- where has this mathematics come from. Is it something you've
invented yourself or is it something which someone else has come across, say
Bernoulli’s. Like the theory of Bernoulli’s equation, and then you can relate in your
discussion or in your mathematics where you’ve obtained these things from, these
specimen calculations, but you haven’t mentioned the need to put that theory stage in.
He lost me there.

What did you think about the particular case studies. Were they appropriate?

You're pitching this at mechanical éngineers? .

Yes

Just trying to think what would be more apt, really. Trying to think of examples we
did last year. CanIthink of one?

Water flowing through a tank? There was a very basic case study- the tank was straight,
constant cross sectional area equal all through, then you could have another one with
changing volume, a changing cross-sectional area rather.

If you go on up to number.. Numbers 3, 5 and 6 are linked. 3 is just a straight rank and
5 is a first circle through putting on a tube

Yes, we did that one.

And 6 rakes you into pipe loses, so that was how that one was developed.

Yeh. In the second year is where you do quite 2 lot of thermodynamics work. although
the coffee cup was there it’s not really at the level of a second year degree student,

Yeh, I thought something about most of that.

You're going into gas turbines and steam plants and things like that so that kind of work
was done a long time agg, i.e. foundation year, first year, so if you’re pitching it at
second years I think that you should be looking at an example of say a gas turbine
engine would be more appropriate.

What it would be nice to have is say a module on that early on that early on in the first
year where you do your levelling up mathematics course. Stick that on at the same time
as that..

Would you run that in one session, two sessions, three sessions?

There’s a lot of scope in there, isn’t there, to either go bigger or smaller, if you see what
I mean. To go down to the foundation level and then that’s the first introduction to it
and then in the first year they have a second go and in the third year - it gets
progressively more in depth.

Iwas restricting myself to first order differential equations. In fact when you get up 1o
the last one it actually gets pretty hairy, it starts out looking simple but..

Is this supposed to be used as a training- as an aid, isn’t it? An educational aid.

Yes

I think it should be introduced earlier on. The mathematics you are showing in that is
covered in the first or second semester of the first year.

Certainly if it’s an educational aid I think you should have more interaction from the
actual user, so rather than just reading through cause you can do that from a book.
Why have a computer program when you can just read from a book?

I agree about the amount of interactivity. The things that were there tat can’t be put on
are the animations, the built up diagrams, the overlays..

Why can’t you do that?

You mean in a book

No

That’s what I've done that you can’t put in a beok.

What about the pace. Did you feel it went too fast, too slow, about right?

It went as fast as you wanted to click the button.

Yeh, again, a little more interaction through the stages. Instead of just giving the
answer, give a possible two or three answers would slow it down and then maybe chat
you would take a bit more of that in, would make you instead as John says you get to a
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stage where you are just clicking the button, seen that, seen that...

And have a little test at the end of each module to see if you’ve got the main concept of
that module. Why not have a test, going back to this thing, it’s only because I've been
working on this CAL which is very similar to what you’ve been setting, .

Those test are held centrally and you can see how you’ve progressed through . If you do
particularly badly on a test you can do it again: you can take it up ¢ four times. Ithink
it’s based on there are 10 questions in an end of section test, an end of section, end of
paragraph test if you like. It will randomly select five of those but when you finish the
whole chapter you then have another test that records how you've done on fifteen out
of thu—ty quesmms or ten out of thirty possible questions and so you’re being tested all
the time how you’ve done and that can identify to you “I didn’t understand, I'd better
go back and do that module again” which might be something you were well into.

Yeh, and highlight to the actual users the areas they didn’t really grasp the meaning of.
Cause you might think “oh yeh, I got oné or two questions wrong” but where you seea
tally at the end and you think “oh, I didn’t understand that as well as T thought I did”.
Going back to the actual mathematical modelling itself which is something you did in
HITECC. Isit actually explicitly covered anywhere in your degree- apart from
HITECC? '

Not explicitly, no

No, but then at first year degree level you're supposed to have covered the basics and
have a concept of what mathematical modelling is about, surely, so do you need to?
Not in most A levels

Depends if you do pure or applied. If you do applied you do maths modelling.

Shows how long since I was at school, and I never did A level maths either.

Would something like that be useful in the introduction of mathematical modeiling?
Most definitely

Yes, to give a feeling of what mathematical modelling is, rather than., Why thereisa
need to do mathematical modelling,

“You were talking about how you could go and look the formula up in a book.

Yeh! Well we weren’t actually talking about looking the formula up, we were talking
about..

Assumptions made -

Looking up variables, so you could determine the specific capacity of whatever
substance it is you were working with. Now that’s something you could look up ina
textbook, which is what we were getting into discussion with Martin.

I was thinking about for example the heat capacity of a wall is something I can read out
of a book but how much capacity or what is the energy of the fire to the wall, how can I
calculate this? So finding the data for the example to make it like reality I had a candle
and a small fire, how long will it take? How much power has the candle light? The
wall and everything is described somewhere in a book. Finding altogether so you can
apply your formula, that’s what I found always quite difficult, not setting up the
equation.

Perhaps if you had at the end of each section, right, a reference section to show people
where different information is available, where they could find some of the informarion
for it to be useable, so they could if they had an assignment go and look to that to give
them a guide. It’s not going to tell them look on page 13 of book 33a in the library on
the second floor, but it will say these are the terms you should be considering. That
might be useful perhaps.

There were at different point different sorts of “help™ I don’t know if you noticed... At
one point there were things in red and if you ran the pointer over the thmg inredit.

At another point there was a column on the left hand side..

Don't think we saw that one... (laughter) .

Okay, What sort of help styles did you find useful or most useful, or...

Click on the red word and then it comes up as the easiest way, like Internet. If you have
to go to a help menu on the right hand side, click down several points, keep going, it
would..

Again it may be how you learn things. If you are a visual learner if you have a show me
key and you press that and then you have an option “how do I model 2 bullet”, or
something like that and then you press it and then it goes it shows you rather than
having to read text and text and text sometimes.

Well it was the beauty of that was the explanations were very short and simple. Inalot
of books, They’re so verbose about what they’re trying to talk about, when you
analyse it, figure out what they’re saying they could have said it in about four words:
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“This does not work”.

If you can’t work it out, buy a bigger caleulator,

50 you think you would have found that of use in your first year.

Yep

Yep- round at the levelling up period as weH so that everybody then had an
understanding of what mathematics modelling- so far as the engineering world was
about.

So again before you started tackling things like turbine engines.

Yes, definitely

Should be done in the first year, beginning of the first year, or as soon as the mechanical
side of it and the mathematical side of it is .. No we did integration and differentiation
first level at foundation, didn’t we? So you should be au fait with that.

Yeh, right at the beginning.

You did some differentiation.. some differential equations in HITECG, didn’t you?
Yeh, we had to do some mathematical modellmg I had to do one with a chain that was
being dragged along the ground for a project in maths. Oh look- hangmg chain- how
usefu] that would have been.

Iseem to remember somebody not far away actually, who took me for a few lessons.
There’s a theory in mathematical modelling that ether the mathematics or the
application should be at least a year old.

Run that one over again.

There is a theory that either the mathematics or the application should be at least a year
old . So you shouldn't have new mathematics and a new application.

This is useful -

So either you are familiar with the mathematics or with the application.

That’s all very well and good but in the first year you're having to do some
mathematical modelling in mechanics. That would be ideal if you were an A level
student and you’d done caleulus at a level , if you were a foundation student, you’d done
calculus on HITECC so you’d done calculus that is a year old.

So your mathematics is a year old so that could be brought forward to the first year and
done at the beginning at the first year to give people a chance of going through, rather
than getting hung up trying to do...

And that's all you... The only mathematics involved there is calculus.

I don’t know about you guys but when I was trying to set up and solve my first
differential equations I was getting some mammoth things like T mean totally out of
proportion because you weren’t sure what it was you were actually looking for.
Something like that would have identified the key points to point the way to what you
were looking for and it would have been a help but the mathematics would have been a
year old. '

Definitely, definitely.

Have a word with Mansel’. (laughter)

Have you had much feedback from lecturers and things?

I haven’t. You would be the second group of people who ve tried it out.

Are you going to try it out on lecrurers?

That would be interesting I think.

You may get a totally different perspective from the other side of the fence so to speak.
The lecturer side is very much more guarded.

Students tend to want to find the easiest way round things, where lecturers want to
make it look as complicated as possible. (laughter) My perception anyway.

Well, we’re not going to get into that one, I don’t think.

I did a questionnaire which I gave out to students and to lecturers at various stages, and I
got back the questionnaires from students with a reasonable rate of return but with the
lecturers it was.. They didn’t want to... Idon’t know.. The lecturers were very much
more guarded about returning the questionnaires. '

TI've been (inaudible) for my project. The company are also doing questionnaires for
Investors in People. talking to the personnel manager up there, she said she only got
20% reply rate from the questionnatre she sent out, and she said this was standard.
When I was doing my sample interviews, I was asking all the operatives, had they filled
in these questionnaires, purely for my own benefit. About 95% said they had.

 However about 92% said they still had them in their bags and they couldn’t be bothered

* The mathematics lecturer who teaches the first year mechanical engineering students,
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to hand them in.
The way I got the best return was going to a class and saying “Please fill these in pow”,
but what I didn’t get back then was some of the very percipient comments I got back
when people held on to them a while.
But one of the things that seemed to come out was thar ] gave various options of “what
do you think differentiation is- what do you think differentiation tells you?” and maths
and engineering students when they came in at the beginning of their first year said “it’s
the slope of the tangent”. .
I think we had this. Ithink we were one of your people
Yeh, absolutely
At the end of the first year it was still the slope of the tangent. Mathematicians in their
final year it was still the slope of the tangenr.
Engineers in their final year tend much more and then onto TCAs, Teaching Company
Associates it was very much more “it tells you-how something is changing”. So there
had been a sort of changeover in understanding. But I put in plenty of diagrams, and in
some cases the diagrams were well chosen, people chose them a lot, and in other cases
they went for verbal explanations which is very odd, because a researcher called Kim
Crowther went and interviewed about 85 prospective engineering students and they said
they predominantly saw themselves as visual people. So there is a difference between
how peaple see themselves and perhaps the way they answer things when they are not
asked explicitly.
I know I have very much a visual brain and only recently have I found that out but just
by changing the way that you actually learn about something can increase how much
you understand about it.
Ilearn by writing things down. I can write everything down in my own words. In my
notes you have to translate.. But then you know that because you had all my notes. I
can write them up in my own words.
1 know if I'm studying for an exam T'll just get one big sheet of paper and put like what
it is in the middle and then just draw it an all around do various shapes, like somebody’s
goals then I'll draw a set of goals and then when I try to remember it...
It was actually my girlfriend whos a reacher pointed this out and she showed me how 1o
learn in this kind of way. She said she can see my eyes wandering around the sheet of
paper as she asks me questions. I mean the piece of paper is not there, I'm just seeing it
in my mind. she says it’s quite amazing how people learn differently and then once you
learn how you learn you can go on and learn even more, build on that.
There’s a slight danger in locking too firmly into one way of thinking in that you get
growth by challenging the way you tend to think and things where it makes your head
hurt, are really causing you to grow and to come onto a different level, rather than just..
So there is a sort of dilemma whether you concentrate on reaching people the way
which they find it easiest to learn or whether you sometimes confront people and move
then out of that particular pattern, in order to force them onto another Jevel,
You may also force them away though
You have to do it deliberately.
We had a lecturer at college and he walked in one day, said “Hmm, assignment time”.
He threw a con rod down on the table, said “analyse that” and walked out.
What could we do with thae?
This had thrown us because we hadn’t been told what we had to do, we were just told
“analyse that”. A lot of people really took offence about it. I'was student rep and it was
the end of the course. They bitterly complained about this. It was absolutely... T'm not
making any complaints about that because it wasn’t about that...
But he was effective in what he did because he mad you think. He wasn’t... He didn’t
tell you how to do something . You had to figure it out what you were after. Then he
came back the next day and started determining the centre of gravity, things like that.
But you start.. “oh, what do I do here?”
We have to shoot now because we have a lectuire,
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TEACHING ENGINEERING MATHEMATICS THROUGH COMPUTER
.TECHNOLOGY.
Wendy Maull John Berry and Colin Stockel
Umversxty of Plymouth, Plymouth PL4 8A A, UK: Fax (0)1752 232772

ABSTRACT: In a recent report to the Engineering Council of the United Kingdom, “The
Mathematical Background of Engineering Undergraduate Students™ the authors point out
that engineering students perceive that mathematics is difficult and irrelevant. This is a
major barrier to any mathematical learning they may need, and it is suggested that it is a
cause of reducing the mathematical content of some engineering degrees.

INTRODUCTION

The perceptlon that engineering students have of mathematics as a difficult and 1rrelevant

subject is not new and much has been done over recent years to alleviate the problem. The

approach we propose in this paper is two-pronged;

s the relevance by setting mathematics within 2 modelling context, which situates it
firmly in reality, and

s the difficulty issue is addressed by the use of computer algebra in a supportive
environment.

The importance of showing the relevance of mathematics within realistic engineering

applications may seem obvious since the engineer does not use mathematics in isolation of

applications. However it is surprising that in some courses mathematics is still taught

without showing its relevance’. Mustoe * points out that useful and relevant applications

can be shown, which is motivating and gives a context for situated cognition. Two kinds of

scaffolding are thus available to the students: the mathematical scaffolding provided by the

algebra package, and the familiarity of the setiing.

In addition, we need to be aware that some engineering students view and do mathematics

in a slightly different way from students of mathematics. They have

s possibly different concept images,

o different symbol sets,

* different attitudes to graphs.

Furthermore there is a dichotomy between the ‘ball-park/back of an envelope type'

calculations and precision calculations, both needed and used by engineers.

THE CURRICULUM

An important question when designing the engineering curriculum is "What mathematics do
engineering students really need? Most of the work that has been done in this field® covers
the scope of the mathematical skills and techniques which may or may not be exercised in
the pursuit of engineering studies and career. Mathematics, however, is more than a
collectlon of named skills and techniques.

Dreyfus argues that advanced mathematical thinking includes the ability to switch fluently
between modes of representation. This means switching between graphical, parametric,
standard form, etc. This is what we expect of mathematicians. It may be that teachers who
are mathematicians have had so much practice in this switching that they forget that it was
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an acquired skill. Do we really need to train non-mathematicians in this sort of skill? Or
do we need to recognise they do not yet have it and do not need to be taught it?

The implication is that it would be useful to determine the form in which these
mathematical concepts (concept images} are held by engineering students in order to access
them most effectively. As part of our research a series of questionnaires is being designed
in an attempt to induce students and staff to tell us how they best represent physical
situations. It sometimes surprises people to discover that the way they think of situations is
not the only way but sometimes not even the most common way. This relates to notions of
cognitive learning theory such as connecting new knowledge to existing knowledge. We
do not always know what we do know, if it is not accessed properly through our own
particular index system.

For instance, a particular example is that a graphical representation of a physical situation

is not thought of as being mathematically rigorous, and so may be scorned by pure
mathematicians, but may nevertheless prove to be a highiy effective way of communicating
mathematics to engineering students. This is shown by the way engineering students .
sketch graphs to show their expected solutions, and use these sketches to communicate with
one another. Visualisation is not a skill which is much encouraged in mathematics
students”.

TECHNOLOGY IN LEARNING

Computers have been used as teaching aids for mathematics for engineers in a number of

ways. These include

+ the computer as a dumb tutor in a dritl and practice séssion, providing a stream of
questions and responding right or wrong as appropriate. The student is fed examples
until he/she demonstrates an ability to perform which satisfies a pre-set criterion. This
is often seen in the context of a mastery learning didactic paradigm®.

» intelligent tutoring where the program attempts to diagnose the particular
misconceptions held by the student and difficulties held by the student according to
his/her responses to mathematical questions. This is still in its infancy’.

s programming, where the student designs and writes programs to solve particular classes
of mathematical problem. The argument is that the student thereby develops a deeper
understanding of the process involved by analysing it logically and reproducing it in
terms of code’.

s the application of in-house produced sofiware which solve particular ¢lasses of
mathematical prablems, to enable students to check their solutions against the
computer’s, and facilitate self-marking of exercises’.

« the use of commercially availabie software to scaffold the student’s exploration of
mathematics by showing the solution to problems the student is not yet able to tackle by
hand and demonstrate their relationship to mathematics already known'®.

+ the use of software to perform tedious calculations so that results can quickly be
obtained and generalised. For example, the plotting of a family of curves to explore the
effect of varying parameters'".

» the use of spreadsheets to perform iterative calculations and to find approximate
numerical solutions in a manner transparent to the student ',
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microworlds and simuiations where hypotheses can be explored and tested by the
student in a mutually safe (unthreatening and unbreakabie) environment*.

use of a simulation Janguage such as STELLA to allow students to create their own
simulations. The assumptions made in the simulation are made explicit, and the
students can check the behaviour of their models against their experience of reality.
use of the computer to drive recorded teaching material, for example on interactive
video or CD.

* hypertext or hypermedia environments to be explored by the student in pursuit of
information.

live production of audio-visual material in the course of and in support of lectures'®,

The philosophies and models of learning employed in these different techniques are

disparate, and the simple existence of computer use says nothing about the way the subject

or the material are assumed to be seen by the student.

The authors will discuss appropriate applications of some of these learning aids in teachmg
mathematics to engineering students.
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Modelling the Mathematical Ideas of Engmeermg

Students

W.M. Maull and J.S. Berry
Centre for Teaching Mathematics, University of Plymouth, Devon

. Abstract: A questionnaire designed to elicit from undergraduate engineers the
way they thought about selected concepts in mechanics and calculus (their
concept images) revealed some strongly held misconceptions about simple
bending. Possible origins are described and some implications are discussed.

1. Imtroduction

Observation of final year mathematics and engmeermg students working ona

mathematical modelling problem revealed differences in the way the problem was _

approached by the two groups. It appeared that not only did they have different levels

of mathematical modelling skills, but that they understood and represented key

mathematical concepts, particularly in the area of calculus, to themselves in different

ways.

A questionnaire was developed to elicit from students their mathematical concept

images, in calculus and in some mechanics applications of calculus. After a pilot study,

the questionnaire was applied to mathematics and mechanical engineering students at

the beginning and end of their first year of study, to mathematics and mechanical

engineering students in their final year of study, to students preparing for an MSc in

Management of Technology, and to practising engineers.

The results of the project suggest that the ways that students hold such concepts are

related to their mathematical skills, and that they do change and develop over the course

of a degree programme. It is also suggested that engineering students should explicitly

be taught mathematical modelling skills using applications where the mathematical

content is familiar from an early stage in their degree course so that:

» the skills which they will need are well established by the time the students enter
engineering practice;

+ mathematics applications are seen and understood by the students as relevant to
engineering studies;

* mathematics concepts are developed by engineering students in ways that will be
useful to them.

In this paper we propose to explore one of the issues which has emerged from the
responses to the questionnaire.

2. Concept images

The major premise of this research is that people hold concepts in different ways: they
have different concept images [1] attached to the same concepts. These concept images
may differ in mode, in sophistication, and in content.

These concept images may be revealed when people make statements which do not
coincide with the predictions of the accepted or institutional meaning of the concept.

2.1 Mode of representation

It was suggested that engineering students may tend to think more pictorially than
mathematics students, and so in the questionnaire the options proposed included
diagrams, verbal descriptions and algebraic expressions, some of which expressed
equivalent representations, to test whether this was indeed so. The implications for
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teaching would be that:

o for easy teaching and learning one should appeal to the students’ existing
representations of concepts,

e when it is necessary to make students change or extend their concept images, time
and effort must be allowed for the process to take place.

The idea of cognitive style is a construct of learning theory. It was first proposed by
Galton [2] that individuals vary in their tendency to use visual or verbal representations
of reality and of problems. This has led to such instruments as the Verbalizer-Visualizer
Questionnaire (VVQ)[3] which seek to analyse an individual’s preferences and to
generalise from those preferences fo-make statements about the way that person relates
to the world around. The whole notion of cognitive style has been criticised by various
authors [4,5] but it seems that from earliest times philosophers have held different views
as to whether one can think with or without merital pictures [6]. Mathematicians, too,

differ in the way they construe problems before the final solution is presented to the
world. (Poincaré, cited in [7])

2.2 Depth of representation

The second aspect we wished to explore 'was whether students’ concept images became
more sophisticated as they proceeded through their courses. It is suggested by Royer et
al [8] that as a cognitive skill is acquired by a learner, the depth of problem
representation increases. Novices attend to surface features whereas experts tend to
identify inferences and principles that subsume the surface features. The implication is
that experts represent information as chunks by labelling (for example) a chess position
in terms of familiar games or positions. This takes place after the cognitive skill is
acquired at the level where students can explain what they are doing or answer
examination questions on a topic.

A partially understood concept cannot be used as fully as a deeply understood one. Ata
naive level, concepts tend to be simple, isolated, and fragmented. As mastery of a
subject is developed, the concepts become richer, and more highly linked. For example,
the concept image of the derivative as the gradient of the tangent does not easily adapt
to the derivative as a term in a differential equation, the derivative of a function as a
function in its own right, the derivative telling one how something is changing. A rich
image is full of possible meanings.

In particular, advanced mathematical thinking requires the ability to switch between
representations [9,10] in order to work both intuitively and deductively on a problem.
The implication for teaching is that students at an early stage will not be able to
recognise the underlying structure of problems, but through practice their expertise. will
develop, and this continues to happen after they have acquired the basis of the skill.

2.3 Content of representation

The content of a concept may vary both in quality and quantity. A concept may be
susceptible to improvement if it is

¢ correct as far as it goes but incomplete;

e partly correct and partly in error;

e framed in non-technical terms.

According to Vinner, a concept is acquired when a concept image is formed.
Engineering and mathematics are not democratic subjects, where each person’s concept
image is as valid as any other. Using a slightly different framework[11], a concept is
understood when an individual’s private meaning matches the institutional meaning.
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Students need to develop the correct contents to their concepts, and we need to know
their current position in order to move them to where we would like them to be.
Thie questionnaire was not, however, demgned with revealmg incorrect images in mind.

3. The bending of beams.

Simple bending is part of the basic tool kit of the engineer. The equation ! _M_E

y I r
has been engraved on many hearts (with its more or less rude mnemonics), and the topic

is part of the first year engineering syllabus, so a question on simple bending was
included in the questionnaire to detect the effects of teaching on responses of
engineering students. (Figure 1) .

For the mathematics student, the bending of beams is sometimes used as an application
of end conditions in the solution of differential equations, and the analysis underlies the
whole concept of the spline curve. This made the question relevant to mathematics
students in a slightly different way. In any case, it should not have come as a shock to
any but those coming in at the start of their first year.

A plank 1.5 m long is placed on two bricks very nearits eads. A barof
gold is placed across it 0.5m from one end. Rank the following according
to how well they represent this to you.

(2)
The beam bends under the weight of the
gold bar.

) Deflecsed shape )

(c}

. a'y
Bending Moment M=kF
X

)
A simply supponed beam with a point load
at onc-third span.

(e) ,
Shear Force S=IFdl‘

Bending mament Af:JSd;: h

0] .
i'l.mdmg

— o |

*H.ndiau @ Reactiea g 1,
3 3

Figure 1. Beam bending question

4. Strong responses

It was not expected that any of the questions would arouse particularly strong feelings in
respondents. The rubric to the questionnaire explicitly stated that there were no trick
questions, but some respondents still objected so strongly to two of the given choices in
the question on bending that they wrote comments about them.

4.1 The beam will not bend at all, or whether it bends depends on its thickness
Option (a) stated “The beam bends under the weight of the gold bar”. This was
included particularly so that respondents who had never seen an analysis of the case
would not feel that the questionnaire was dealing with matters above their heads, and it
was thought it would be popular with first year students at the start of their first year.
Some respondents made comments such as:
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1) “Nobody says it actually bends, so automatlcally assume rigidity.”(Final year maths
student)

2) “Not(a)- cos depends on thickness of plank” (First year mathematics student, start of
first year)

3) “It depends on how thick the plank is (a).” (First year mechanical engineering
student, start of first year)

4) “How thick is the plank? How heavy i is the bar of gold?” (Second year computer
systems engineer, pilot study)

5) “I feel a bit uncomfortable not knowing the weight of the gold or the thickness &
width of the plank.” (Manufacturing engineering lecturer)

6) “ ‘a’ may not be very valid- The deflection may be so small as to be negligible.”
(Practising professional engineer)

There is a graduation from assuming absolute rigidity to wondering whether the
assumption is valid under the circumstances:

4.2 The point of greatest deflection must be under the load

Option (b} was a diagram of the deflected shape,

1) “(b) looks like the bar would be in the middle.” (engineering student, start of first
year)

2) “(b) is wrong” (final year mechanical engineering student)

3) “I would rather have a drawing but (b) looks wrong™ (final year mechanical
engineering student)

4) “not keen on (a) (too simplistic) and (b) (wrong?)” (maths student, start of first year)
5) “b is useless!™ (maths student, end of first year)

6) “b isn’t quite right, but I’ve assumed poetic license with the artist!” (practising
engineer, graduated 1979)

7) “b (slightly changed)” (see Figure 2) (experienced maths and mechanics teacher)
8) “I don’t recognise any of the equations and (b) doesn’t look quite like what I"d
expect!” (postgraduate, degree in Business Administration, A level maths)

{b) Dcflccted shape
Y e

Figure 2. Modified diagram of deformed shape of beam.

5. Why do people think these things? Mental models of physical problems

These ideas do not come out of thin air, but are based on the mental models that the
respondents hold. These models are not directly accessible to investigators, but the
comments that have been given are predictions these respondents have made of the
behaviour of the system according to their mental models. Given the predictions, it is
possible to deduce the nature of the models. Anzai and Yokohama (cited in [9]) classify
models as experiential, correct scientific or false scientific. Experiential models, which
are derived directly from experience, do not have any technical or scientific content.
The statement “The beam bends...” was intended to appeal to this type of model. A
correct scientific model is a set of scientific concepts and relations that are correct and
sufficient to capture problem information. Such a model would characterise the bending,
i terms of bending moment and shear force, loads and reactions, displacements,

3,
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stresses and strains. Incorrect scientific models are those which contain scientific
concepts and relations, but incorrectly characterise the problem. It is this type of model
which is shown in the comments quoted above.

5.1 Planks are, or may be, rigid.

The first set of comments represent the view of rigidity as the natural state of a beam,
given that this is a frequently made assumption in statics problems. This is sometimes
held at the same time as the concept that the deflection of a beam does depend on its
dimensions, its loading, and, not specifically mentioned by our respondents, the material
stiffness (Young’s modulus) of the beam, which we see in 5.1 (b)-(e) above. Itis
perfectly possible to hold two opposite views on a physical phenomenon as long as they
are not brought into direct conflict. The point is that these quantities do not affect
whether a beam will bend, but sow much it will bend: as comment 5.1 (f) points out, the
bending may be negligible, but negligible is still not the same as non-existent.

5.2 The deflection must be greatest under the load

This idea may come from one of several sources:

1) Weightless strings and point masses

2) The lowest point is the lowest (potential) energy position
3) Shear dominated deflection

5.2.1 Point masses versus solid bodies

The first stage of modelling that students encounter in mechanics is of the idealised
world of point masses, weightless strings and infinite bodies of infinite stiffness. In
such a world, the nearest approximation to our weight on a beam is a weight hung on a
loose horizontal string, one-third of the way between its points of suspension. For
horizontal equilibrium, the weight would have to fall so that both parts of the string are
under tension, pulling the string into an asymmetrical V-shape.

5.2.2 Potential energy

The powerful idea of potential energy being minimised would seem to mean that the
weight must be at the lowest possible point, which must be the lowest part of the beam.
The lowest part of the beam must thus be under the weight.

5.2.3 Shear dominated deflection

When beams are designed to use material to perform as efficiently as possible in
bending, the notion of putting as much as possible into top and bottom flanges
connected by a thin web emerges, and we have an I-beam. The stiffness of the I-beam
in bending is greatly enhanced, but its stiffness in shear is related simply to the cross-
sectional area. In extreme cases, the deflection due to shear, normally negligible, can
dominate, so that the load is close to the lowest point of the beam. This would not
happen in the case of a plank lying between two bricks.

It would be specilative to suggest which of these is the principal source of error, but it
is suspected that for the students at least 5.2.1 above is the most important.

6. Discussion )
The questionnaire was not designed to pick up incorrect mental models, but rather to
tease out how people were holding mental representations of some engineering and
mathematical concepts. Nevertheless it appears to have brought out into the open some
alternative representations which we may not have discovered in teaching or discussion.
We should ask ourselves how important these misconceptions are in the scheme of
things. To most people they are probably never going to matter. To those to whom
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they will. make a difference, they will probably discover in time that they have been
mistaken. However, particularly for those people who objected to the shape drawn in
(b), the revelation cones as a shock. A comfortable assumptlon has been shaken, and it
is unpleasant. .

Given that it has been shown that people do have chfferent concept images attached to
the same concept, it is germane to ask the following question.

7. What is engineering mathematics?

It appears that one of the principal characteristics of mathematics is its intellectual
rigour, and that in teaching mathematics to engineering students one of our aims is to
teach them to think clearly [12,13]. On the other hand, one of the complaints about
éngineering students is that they lack feeling for mathematics and for whether the
answers they produce are correct or not {14]. We have to decide whether we regard
mathematics for the engineer as a mental discipline or as a tool. Given that engineering
students suffer from crowded timetables, we have to be clear about the aspects of
mathematics we want to develop in our students. We may have to sacrifice rigour and
develop clear thinking in alternative ways, while attempting to enhance students’ feeling
for mathematics through the use of prostheses such as computer algebra and graphics
calculators, and the use of modelling from an early stage.
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