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Antibacterial nanoparticle - decorated carbon nanotube - reinforced calcium 

phosphate composites as bone implants 

Kiruthika Natesan 

Abstract  

Introduction 

Hydroxyapatite (HA) is a biologically active ceramic used in surgery to replace bone. 

While HA promotes bone growth, it suffers from weak mechanical properties and does 

not possess any antibacterial property. Multi walled carbon nanotubes (MWCNTs), as one 

of the strongest and stiffest materials, have the potential to strengthen and toughen HA, 

thus expanding the range of clinical uses for the material. Furthermore, Silver 

nanoparticles (Ag NPs) can be decorated to sidewalls of the MWCNTs which could be 

released over a period of time to prevent infection following surgery. This work sought to 

develop and characterise Ag NPs- MWCNTs – HA composites in four main areas: 1) 

production and characterisation of the composite, 2) evaluation of mechanical properties, 

3) investigation of antimicrobial property and 4) assessment of biological response to in 

vitro cell culture. 

Methods 

Pristine (p-MWCNTs) and acid treated MWCNTs (f-MWCNTs) were decorated with Ag 

NPs. In the presence of 0.5 wt % Ag NPs-MWCNTs, HA was precipitated by the  wet 

precipitation method in the presence of either poly vinyl alcohol (PVA) or Hexadecyl 

trimethyl ammonium bromide (HTAB) as the surfactant. Composites were characterised 

using various techniques and the diameteral tensile strength and compressive strength 

of the composites were measured.   The antibacterial effect of these composites was 

investigated against clinically relevant microbe, Staphylococcus aureus. To determine the 
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ability of the HOB cells to differentiate and mineralize in the presence of the composite, 

HOB cells were cultured on the composites for 21 days. Gene expression studies was 

performed along with the biochemical assays and scanning electron microscopy was used 

for qualitative analysis. Pure HA was used as control in all the studies. 

 Results  

The study revealed that both the MWCNTs and surfactants play a crucial role in the 

nucleation and growth of the HA.  XRD and FTIR characterisation revealed that HA was 

the primary phase in all the synthesised powders. Composites made with f-MWCNTs were 

found to have better dispersion and better interaction with the HA compared to 

composites with p-MWCNTs. Although mechanical strength was improved in all the 

composites, p-MWCNTs composites exhibiting maximum strength. Antibacterial studies 

showed 80% bacterial reduction in the treatment composites compared to pure HA. The 

biocompatibility study showed reduced activity of the HOB cells, however, no significant 

difference was observed between the control and the treatments.  

Conclusion 

This systematic study of the synthesis and properties of the Ag NPs- MWCNTs-HA 

composites has resulted in improved understanding of the production and processing of 

these materials and the effect of MWCNTs and silver nanoparticles on primary human 

osteoblast cells. Additionally, it has yielded interesting biocompatibility result favouring 

the use of MWCNTs in the development of implants.  There is potential to translate Ag 

NPs-MWCNTs-HA composites into clinically approved product.  
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The increasing proportion of older people in the population along with higher 

expectations of the quality of life has resulted in higher demand for better quality medical 

implants that are more durable, while remaining biocompatible and safe for the patient.  The 

development of such implants involves a great number of challenges in biomaterials 

research. For example, in the case of bone implants there are four basic criteria that need to 

be addressed:  

(i) Superior mechanical strength – bone is one of the strongest organs of the body 

and the implant material should be capable of functioning efficiently under 

mechanical stress;  

(ii) Biocompatibility and bioactivity – the implant material should allow and support 

the proliferation of the osteoblasts (bone cells);   

(iii) Minimal - reactivity – the implant material should not cause any adverse 

inflammatory response from the body; 

(iv) Regulatory requirements –any implant material intended for human use needs to 

be approved by the health agencies such as the European Medical Agency (EMA) 

in the E.U. and the Food and Drug Administration (FDA) in America. The implant 

material needs to satisfy and pass the safety specifications set out by these 

agencies for medical devices.  

 

The above mentioned are some of the minimalistic requirements that need to be 

achieved. With the evolution of antibiotic resistant microbes, meeting basic requirements is 

not sufficient and the material needs to be patient specific and loaded with antimicrobial 

agents/ drugs which will combat microbial infection. Several attempts have been made to 
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solve the current issue by developing composites/nanocomposites which are bioactive and 

mechanically strong with the ability of delivering antimicrobial agents. However, material 

synthesis is a highly complicated process. Slight variation in any parameter results either in 

a new material or in material that is not reproducible. Development of such materials is 

inefficient, as these materials will not satisfy the legal requirements outlined by the health 

agencies for the use of an implant material in patients such as: 

(i) Safer than an existing product; 

(ii) Demonstrate the ability to perform better than the existing product in market for 

the intended used; 

(iii) Limited or no adverse effects on health.  

 

A number of scientific articles are published every year on the various types of 

materials that could be used as bone implants but they vary significantly based on the type 

of material, production process and testing standards.  The scientific aim of this review is to 

provide a broad background pertaining to the evolution of implant materials over the years. 

Emphasis is given to ceramics, nanomaterials and composites while analysing the latest 

trends, achievements and shortcomings in this area. It is vital to elucidate the purpose for 

the development of these materials which makes it important to describe the bone structure 

and complexity involved in it.  The contents of the literature then focuses on the different 

bone replacement options that have been in use and analyses their pros and cons. A detailed 

yet concise study about nanomaterials and their applications in biomaterials is performed 

as nanomaterials are widely used in all areas of tissue engineering. Nanomaterials bring their 

own challenges due to their size and chemistry which still needs better understanding. The 
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focus then shifts to the use of ceramic composites and their advancement in this field. Finally, 

the hypothesis and scope of the project is summarised.  

1.1 Bone Formation, Structure and Properties  

The skeleton is constructed of a hard natural tissue called bone and cartilaginous 

material. Bone formation, also known as ossification, occurs in two different ways: 

endochondral ossification and intramembranous ossification. Endochondral ossification is 

the initial formation stage for most bones in the axial and appendicular skeleton (e.g., femur, 

tibia, humerus) and starts with a cartilage framework. The cartilage framework is formed 

from condensed mesenchymal cells which differentiate into chondrocytes and secrete a 

cartilage extracellular matrix. Once the cartilage framework is completed, it is invaded by a 

mixture of cells (blood vessels, proliferative, prehypertrophic and hypertrophic 

chondrocytes and osteoprogenitor cells) first at its centre and then at the ends in a process 

called primary and secondary ossification, respectively. During primary ossification, which 

occurs in the middle of the cartilage framework, the osteoprogenitor cells differentiate into 

osteoblasts which secrete osteoid. The chondrocytes start to secrete enzymes essential for 

mineral deposition. The hypertrophic chondrocytes secrete growth factors that induce blood 

vessel sprouting along the length of the cartilage framework (Kini and Nandeesh, 2012).  The 

blood vessels carry the osteoprogenitor, hemopoietic  cells and ions deeper into the cartilage 

framework. The osteoprogenitor cells differentiate into osteoblast cells and use the 

mineralised framework as a scaffold and begin to secrete osteoid which forms the trabeculae 

(Felix and Fleisch, 1976, Dereszewski and Howell, 1978, Anderson, 2003, Anderson et al., 

2005). The primary ossification occurs during foetal growth and about the time of birth, 
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secondary ossification happens at both the ends of the long bones. The mesenchymal cells 

and the blood vessels reach the ends of the bone and the same process is repeated. Postnatal 

growth continues until the cartilage in the bone is completely replaced reaching maturity. 

(Mackie et al., 2008). The above mentioned is the process that occurs during fracture healing 

often treated by cast immobilization.   

 

The other bone formation that occurs in the foetus is the intramembranous 

ossification where the mesenchymal stem cells differentiate into osteoblast cells without the 

need for the cartilage framework. Flat bones in the body such as the skull are made by this 

process. During the intramembranous formation, the ossification centres are formed at 

certain points. The mesenchymal stem cells proliferate and produce the osteoprogenitor 

cells which differentiate into osteoblasts. The osteoblasts produce osteoid and the bone 

matrix which gets surrounded by collagen fibers. The osteoid becomes mineralised and traps 

osteoblasts which become osteocytes which is then lined with active osteoblasts. The 

process of mineralisation continues forming the trabeculae leading to the formation of a 

woven bone which is eventually replaced by lamellar bone. (Kini and Nandeesh, 2012)  

 

The structure of bone can be organised on various levels (i) Macrostructure - 

cancellous and cortical bone, (ii) Microstructure - Haversian systems, osteons, single 

trabeculae (iii) Sub - microstructure- lamellae, (iv) Nanostructure - fibrillary collagen and 

embedded minerals, (v) Sub-nanostructure - molecular structure of constituent elements 

such as mineral, collagen, and non-collagenous organic proteins. Cortical bones are dense, 

solid and surrounded by marrow space whereas cancellous bones are composed of 
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honeycomb-like network of trabecular plates with rods interspaced in the bone marrow 

compartment (Kini and Nandeesh, 2012). The organic material of bone, namely, collagen 

forms 30% of the bone providing strength and flexibility. The collagen is stiffened by crystals 

of inorganic minerals which make up the remaining 70% of the bone. (Seeman and Delmas, 

2006). The inorganic minerals are  calcium phosphate, calcium carbonate, calcium fluoride, 

calcium hydroxide and citrate(Murugan and Ramakrishna, 2005). Although, the inorganic 

component is crystalline, it may also be present in amorphous forms. Details about the 

composition of bone and the various organic and inorganic phases is provided in Table1.1. 

These diverse arrangements of material structure work in harmony to perform various 

mechanical, biological, chemical functions such as structural support, protection, storage of 

healing cells, and mineral ion homeostasis (Rho et al., 1998). 

Table 1.1 Bone composition.  

Inorganic phase Weight % Organic phase Weight% 

    

Hydroxyapatite ≈ 60 Collagen ≈ 20 

Carbonate ≈ 4 Water ≈ 9 

Citrate ≈ 0.9 Non-collagenous 

proteins 

 

≈ 3 

Sodium ≈ 0.7 Primary bone cells: 

osteoblasts, 

osteocytes, 

osteoclasts 

 

Magnesium ≈0.5   

Other traces: 

Cl-, F-, K+, Sr2+, Pb2+, 

Zn2+, Cu2+, Fe2+ 

 Other traces:       

polysaccharides, lipids, 

cytokines 

 

Slightly varied from species to species and from bone to bone (Murugan and 

Ramakrishna, 2005) 
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Bone is the framework of the body and plays a vital role in providing the crucial 

mechanical support required to perform day-to-day activities. The mechanical requirements 

of bone varies at different parts of the body. Hence, the load bearing ability of the cortical 

and cancellous bones vary largely (Table 1.2).   

  

Table 1.2 Mechanical properties of bone (Murugan and Ramakrishna, 2005) 

 

Properties  

Measurements 

Cortical bone Cancellous bone 

Young’s modulus (GPa) 14-20 0.05-0.5 

Tensile Strength (MPa) 50-150 10-20 

Compressive strength (MPa) 170-193 7-10 

Fracture toughness (MPa m1/2) 2-12 0.1 

Strain to failure 1-3 5-7 

Density (g/cm3) 18-22 0.1-1.0 

Apparent density (g/cm3) 1.8-2.0 0.1-1.0 

Surface/ bone volume (mm2/mm3) 2.5 20 

Total bone volume (mm3) 1.4x106 0.35x106 

Total internal surface 

 

3.5x106 7.0x106 

The values mentioned in the table are a rough estimate as the values change 

depending on various factors such as age, health of the bone, method used to measure the 

mechanical properties.  
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In load bearing areas such as the hip and knee, cortical bones must be able to resist 

deformation but they must also be sufficiently light  to allow rapid movement. They must 

also be able to absorb the energy by deforming, to shorten and widen when compressed and 

to lengthen and narrow in tension without cracking (Seeman, 2007). If bone is too brittle 

(unable to deform), the energy imposed during loading will be released by structural failure. 

Initially this will be in the form of micro cracks, which give way to complete fracture. If bone 

is too flexible and deforms, it will also crack (Seeman, 2008). Hence, bone is prone to damage 

and requires suitable replacement/ healing options.  

1.2 Bone Replacement Options 

 

Limb transplantation was first described during the 5th century A.D. (Catanzariti and 

Karlock 1996). The integration of a bone graft is the process by which the donor bone is 

enveloped and fused with the recipient bone allowing new bone minerals to be deposited in 

it (Zipfel, Guiot and Fessler 2003). For a long time, autografts were considered as the gold 

standard as it uses the graft material from the same individual. The main disadvantage of 

using autografts is the need for surgery to harvest healthy bone from different part of the 

body. This causes additional discomfort to the patient who are already under chronic pain. 

Following autografts, allografts were introduced which involves obtaining a tissue or organ 

from a different member of the same species and grafted to a genetically dissimilar member 

of the same species. The main issue with allografts is the possibility of transmitting infection 

and the body may reject the graft and trigger an immune response. To overcome these 

disadvantages, the xenograft option was developed. The Xenograft approach is similar to 
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allograft bone replacement method. In this method, the bone graft is obtained from a 

different species usually from a bovine. The Dutch surgeon Job Van Meekren performed the 

first registered surgery using a bone xenograft (Hernigou and Homma, 2012). The only 

advantage is that large quantities of graft can be obtained .The disadvantages are similar to 

allografts and is not a popular practice as the graft is obtained from an animal usually from 

a bovine or swine which is unpopular among the patients. For a detailed undertaking of 

autografts, allografts and xenografts and the complications involved in it, readers are 

referred to (Arrington et al., 1996, Bauer and Muschler, 2000, Shibuya and Jupiter, 2015). 

These disadvantages combined with the growing population created the need for the 

development of better artificial/ synthetic bone grafts. 

 

The key focus for the development of synthetic bone grafts is the ability to blend 

engineering principles with the body’s natural response to tissue damage to attain rapid 

recovery. This idea coupled with a better understanding of cell signalling and subsequent 

functionality enables the development multifunctional bioactive scaffolds. A schematic 

illustration of the criteria for an ideal synthetic bone graft is provided in Figure 1.1.  An ideal 

bone graft should be biochemically stable and promote the growth of native tissues and 

should not elicit an inflammatory response. It should be capable of providing temporary 

mechanical support while being able to degrade in a controlled period to enable load transfer. 

They should not produce any toxic products while degrading and the body should be able to 

excrete the degrading products safely. The implant should be able to deliver 

drugs/antimicrobial agents to accelerate the healing process and reduce microbial infection.    
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Figure1.1 Illustration of key elements that constitute ideal synthetic bone graft 
material. 

 

Synthetic bone grafts can be classified into many types based on the nature of the 

material such as natural, synthetic or composite. Natural materials include biological 

polymers such as collagen, gelatine, polysaccharides (agarose, alginate, chitosan and 

hyaluronic acid) and fibrin as well as inorganic minerals such as calcium phosphates 

(hydroxyapatite and tricalcium phosphate). Synthetic materials are diverse as they can be 
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engineered from any type of material to exhibit the characteristics of ideal bone graft 

substitute (Chao Le Meng et al., 2013). However, the main types of synthetic materials 

currently used for bone implants are metals, ceramics, polymers and composites.  

Composites can be made by combining natural and synthetic material to produce a hybrid 

that will exhibit all the qualities of an ideal bone graft substitute.  

 

Naturally derived substitutes have the advantage over synthetic materials in being 

similar to the chemical composition and crystal structures found in the body. Due to their 

similarity with bone, naturally derived substitutes are biocompatible and may encourage 

tissue development by promoting cell adhesion and proliferation without causing adverse 

inflammatory reaction. When used as in vivo implants, the polymers are readily remodelled 

by natural bone cells to adapt to the internal local environment  (Chao Le Meng et al., 2013). 

For example, one of the commonly used natural polymers is collagen, which is present 

mainly in the extracellular bone matrix. Owing to the biocompatible properties of collagen, 

it has been employed in the development of implants.  Synthetic HA is usually applied as a 

reinforcement to overcome the disadvantages of collagen such as such as poor dimensional 

stability due to in vivo swelling, poor mechanical strength and low elasticity (Gorgieva and 

Kokol, 2011). Ryan et al (2015) produced HA-collagen composites by dispersing HA in the 

collagen aqueous suspension followed by freeze-drying. They have reported that the 

dispersion was not uniform and were often aggregated proving that there is no real 

interaction of HA with collagen fibres. Another method of developing HA-Collagen 

composites is to nucleate HA on the collagen matrix to improve the interaction. However, as 

noted by Lin et al (2004) and Yunoki et al (2007) the mechanical property of the composite 
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was inferior and was not reliable compared to the host bone (Lin et al., 2004, Yunoki et al., 

2007). This could partially be due to the difference in the biodegradation of HA and collagen. 

Another big practical problem with collagen is the cost involved and the poor commercial 

sources available for this material. For a detailed review of collagen the readers are referred 

to other reviews in this topic (Bunyaratavej and Wang, 2001, Geiger et al., 2003).  

 

Metals dominate the orthopaedic industry to date. They are non-resorbable and are 

used in the form of  plates, pins, rods and screws which provide rigid internal fixation for 

damaged bones (Daniels et al., 1990). Currently, titanium and its alloys, cobalt –chromium 

alloys and stainless steel are widely used as surgical implants. Titanium is chosen over other 

metals owing to its superior mechanical properties. Moreover, titanium is a reactive metal; 

it naturally forms an oxide layer on its surface which makes it biocompatible (Kasemo, 1983). 

In comparison with other alloys, titanium-based materials have low elasticity modulus, 

varying from 110 to 55 GPa  which is approaching the elastic modulus of natural bone (30 

GPa) (Vandrovcova and Bacakova, 2011). However, the osseointegrative bioactivity is still 

not sufficient to attain true adhesion between the implant and the bone, which may 

ultimately lead to mechanical instability and implant failure. Moreover, since titanium is a 

reactive metal, it is prone to corrosion (Olmedo et al., 2008). When used in patients as a long-

term implant, the metal may induce an inflammatory reaction leading to implant failure. 

Following titanium alloys, cobalt-chromium alloys are used as bone implants. Unlike 

titanium implants, cobalt-chromium is corrosion resistant which reduces the likelihood of 

implant rejection by the body. They are also mechanically strong making them the main 

choice of metal for hip arthroplasty. However, a study was led by Michel et al., (1991) on the 
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presence of trace elements in blood serum of patients who had cobalt-chromium implants 

for 18 years. They showed that compared to the normal levels, the concentration of cobalt 

and chromium was higher in the patients with the implants and they recorded even higher 

concentrations in the local area where the implant was placed. The increase in the 

concentration of these trace metals is due to wear debris which results in loosening the 

implant which could become toxic, causing adverse local reaction leading to implant failure 

(Jacobs, 1998, Vandrovcova and Bacakova, 2011). Furthermore, cobalt-chromium alloys 

have much higher elasticity modulus (240 GPa) which can lead to mechanical failure through 

loosening or fracture; as the load will not be transferred equally between the natural bone 

and the implant. 

 

Ceramics such as calcium phosphates, calcium sulphates are another types of 

materials that are used as bone implants and unlike metals, they are bioresorbable. They 

degrade over time and are replaced by natural tissue. In particular, synthetic calcium 

phosphate ceramics holds great promise as a biomaterial for bone implantation compared 

to the other types of ceramics due to its ability to bond with bone and their similarity to the 

inorganic phase of natural bone, which is hydroxyapatite (HA), a type of calcium phosphate.  

One of the first studies reporting the use of calcium phosphate for bone repair was 

performed by Albee and Morrison in 1920. They reported the use of “triple calcium 

phosphate” as a stimulus for bone growth. The results indicated that bone fractures, with 

bone loss, showed rapid bone growth when “triple calcium phosphate” was injected. (Albee, 

1920). In the 1970s, calcium phosphate ceramics were synthesized and characterized to be 

used as bone implants (Monroe et al., 1971, Rejda et al., 1977, Ferraro, 1979). While 
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bioresorbable material such as tricalcium phosphate (TCP) would seem like an ideal 

candidate, the degradation process can adversely affect the mechanical integrity of the 

material and the stability of the material-tissue interface. This compromises the implant-

bone system during the resorption and replacement process. It is also difficult to match the 

resorption rate of the synthetic biomaterial to the repair rate of the bone tissue. Bioactive 

materials, as intermediate between the two extremes, elicit a biological response at the 

material interface and bond with the surrounding tissue, yet avoid degradation. This is 

particularly useful in areas of load bearing as the implant is intended to remain intact for 

extended periods in the body without causing inflammation or toxic reactions. Hence, this 

class of synthetic replacement materials should produce promising results. Bioactive 

ceramics include bioactive glass®, bioactive glass-ceramic and HA, the matrix material of 

our choice for this study.  

  

Apart from metals and ceramics, polymers are also used in the development of bone 

implants. The idea behind this accession is their availability in a wide variety of composition, 

properties and forms that can be fabricated into complex shapes and structures.  However, 

polymers are almost always used in conjunction with ceramics such as HA and TCP as they 

tend to be too flexible and too weak to meet the mechanical demands of the implants. 

Synthetic polymers provide certain advantages over natural polymers which makes them an 

attractive choice for the development of bone implants. For example, synthetic polymers can 

be manipulated to improve properties such as predictable uniformity, freedom from 

immunogenicity concern and ability to mass-produce at low cost.  Many polymers such as 

polyetheretherketone (PEEK), polymethylmethacrylate (PMMA) and poly vinyl alcohol (PVA) 
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have been used in the development of composites (Ramakrishna et al., 2001, Sionkowska, 

2011, Baker et al., 2012, Razak et al., 2012).  

1.3 Role of Nanotechnology/Nanomaterials in Tissue Engineering  

 

 Over the past three decades, a new dimension of synthetic material has evolved by 

modifying metals, ceramics and polymers at their molecular and nanoscale level rather than 

manipulating their bulk form. Nanotechnology and nanoscience is the application and study 

of items smaller than 100nm (at the nanoscale level which is 10-9 of a meter) that can be 

applied in other fields of science such as chemistry, biology, physics, material science and 

engineering. The European commission states that ‘Nanotechnology is the study of 

phenomena and fine–tuning of materials at atomic, molecular and macromolecular scales, 

where properties differ significantly from those at a larger scale’ (Lioy et al., 2014).  

 

The term ‘nanoscale’ is defined as size range from approximately 1nm to 100nm 

(Potocni, 2011). According to the European Commission, a nanomaterial is “A natural, 

incidental or manufactured material containing particles, in an unbound state or as an 

aggregate or as an agglomerate and where, for 50% or more of the particles in the number 

size distribution, one or more external dimension is in the size range of 1-100nm. In specific 

cases and where warranted by concerns for the environment, health, safety or 

competitiveness the number size distribution threshold of 50% may be replaced by a 

threshold between 1 and 50%”. However, meeting the length scale criterion of 1-100 nm 

does not suffice the use of nanomaterials, rather, it is taking advantage of novel properties 
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such as physical, chemical, mechanical, electrical, optical, magnetic, etc. that results solely 

because of going to nanoscale from their bulk counterpart (Liu and Webster, 2007, Etheridge 

et al., 2013). In general, nanoparticles used in the field of biomedical applications range in 

particle size between 10 and 500 nm. Nanoparticles interact distinctively with bone cells and 

tissue, depending on their composition, size, and shape Figure 1.2 represents the overview 

of nanoparticle applications in bone.  

Figure 1.2 schematic representation of the application of nanomaterials related to 
bone cells.  

 

1.3.1 Carbon Nanotubes  

In the last decade the application of carbon based nanomaterials especially carbon 

nanotubes in tissue engineering has increased.  Carbon nanotubes are allotropes of carbon 

with a cylindrical nanostructure. The walls of CNTs have a hexagonal lattice structure like 

graphite sheets.  Since the start of the 21st century, there has been an increase in the number 
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of articles related to carbon nanotubes use in biomedical application with 2004 marking the 

beginning of applying carbon nanotubes in tissue engineering (Correa-Duarte et al., 2004, 

Harrison and Atala, 2007). Carbon nanotubes are applied in four areas of tissue engineering 

– cell tracking and labelling, sensing cellular behaviour, augmenting cell behaviour and 

enhancing tissue matrices which is the area of interest for this study.  

There are many different types of CNTs but they are normally categorized as either 

single walled (SWCNTs) or multi walled (MWCNTs). SWCNTs are made of only one layer of 

carbon atoms whereas MWCNTs are a collection of nested tubes of continuously increasing 

diameters. They can range from one outer tube and one inner tube to as many as 100 tubes 

or more. Each tube is held at a certain distance from either of its neighbouring tubes by 

interatomic forces.  

Important properties of CNTs are high surface area, superior mechanical strength but light 

weight, abundant electrical properties and excellent chemical and thermal stability (Ajayan, 

1999). The tensile strength of MWCNTs has been measured experimentally to be 11-63 GPa 

with no dependence on the outer wall diameter (Yu et al., 2000). The elastic modulus of CNTs 

is estimated to be greater than 1 TPa, based on the in-plane elastic modulus of graphite. This 

value has been confirmed experimentally by Demczyk et al.,( 2002). While CNTs have excellent 

mechanical properties, they can vary widely depending on the production method used to 

grow the nanotubes, the number of defects in the structure and whether the nanotubes are 

SWCNTs or MWCNTs. There are three techniques by which CNTs can be synthesized: carbon-

arc discharge, laser ablation and chemical vapor deposition (CVD) methods. The first two 

methods utilize solid-state carbon precursors to provide carbon sources needed for the 

nanotube growth and involves carbon vaporization at high temperatures (thousands of 
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degrees Celsius). These methods are well established in producing high-quality and nearly 

perfect nanotube structures, despite large amounts of by-products associated with them. 

The CVD method utilizes hydrocarbon gases as sources for carbon atoms and metal catalyst 

particles as “seeds” for nanotube growth that takes place at relatively lower temperatures 

(500-1000 °C)(Dai, 2002). CNTs are mostly produced using the CVD method, as it is relatively 

cheap compared to the other two methods and produces large quantities of CNTs. In the 

production process, transition-metal catalysts predominantly Fe, Co and Ni, are used. 

Although they are removed from the raw product, part of the metal is encased in the tubes 

and cannot be removed completely. When these metal impurities are exposed to the cells 

they can generate reactive oxygen species (ROS) causing toxicity to the cells (Allegri et al., 

2016). The mechanical behaviour of CNTs in composites is complicated as the transfer of 

strength and stiffness to the matrix depends on the interfacial bonding between the two phases. 

This is influenced by the wettability of CNTs and interfacial area. Full advantage of the interfacial 

area cannot be harnessed, as the CNTs tend to agglomerate due to the presence of strong van der 

waals force which facilitates them to remain twisted and curved in the matrix. Even if the full 

mechanical property of the CNTs cannot be drawn in due to the limitations, there is a possibility 

to still enhance the composite. 

Medical application of CNTs require knowledge about their bioactivity and toxicity. 

There are concerns that CNTs may pose a potential health risk due to their similarity to 

asbestos namely their biopersistance and structure. However, despite their similarities in 

certain aspects, asbestos and CNTs vary in many physicochemical features such as 

constituent element, stiffness of the fibres, length and diameter of the tubes and even surface 

properties. Therefore, the two types of fibres do not necessarily exert similar toxicological 
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effects. CNTs are durable and does not fragment; hence, their presence in composites could 

possibly enhance the bioactivity without causing any harmful effect.  

 

In vitro work has shown that several different cell types have been successfully grown 

on carbon nanotube composites. Zanello et al (2006) studied the osteoblast proliferation and 

bone formation on pristine and functionalized SWCNTs and MWCNTs. They have found that 

the cells grew best on pristine SWCNTs and neutrally charged polyethylene glycol-

functionalized SWCNTs followed by negatively charged oxidized SWCNTs and zwitterionic 

poly(aminobenzene sulfonic acid)-functionalized SWCNTs. Recently, Zancanela et al (2016) 

compared the effect of SWCNTs and MWCNTs on mineralization of osteoblasts. They have 

shown that osteoblast viability increased in both SWCNTs and MWCNTs at various days and 

at the end of 21 days, osteoblasts mineralized. They have reported that SWCNTs and 

MWCNTs are not toxic to osteoblasts at concentrations upto 5x10-5 and 1.3x10-2 mg/ml 

respectively. In vivo studies have also been performed by Usuai et al (2008) in which they 

implanted MWCNTs into mouse skull and tibia bones. They have reported that no 

inflammatory reaction occurred (Abarrategi et al., 2008, Usui et al., 2008).  

One of the most important factors governing the biocompatibility of fibrous materials, 

concerning the removal of foreign particles, is fibre length. Phagocytosis by macrophages is 

critical in the degradation and clearance of the foreign particles from the body. According to 

the world health organisation (WHO), asbestos fibres longer than 5µm are considered to be 

retained in the body and causes fibrosis and fibres shorter than 5µm are not taken into 

account(Boulanger et al., 2014). If that is the case, then it is suggested that shorter CNTs are 

biocompatible and nontoxic.  There, are still discrepancies in the toxicity report which a 
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recent review on CNT suggests that the dose, shape, surface chemistry, exposure route and 

purity all play a vital role in determining the biocompatibility of the CNTs (Zhang et al., 2014). 

Additionally, several in vitro and in vivo studies have shown that functionalisation of the 

CNTs improve their wettability which allows them to disperse even in aqueous solution 

which in turn improves their biocompatibility (Barrientos-Durán et al., 2014, Paiyz et al., 

2014, Tong et al., 2014). 

 Another concern is the toxicity induced by the presence of catalyst particles as a 

result of CNT production. One study has shown that ultra-sonicating CNTs for as short as 5 

minutes reduces the amount of impurities as the mechanical force promotes the release of 

impurities form the CNTs into the solution (Toh et al., 2012). Overall, there is a noticeable 

lack of studies reporting  the biological and toxicological properties of CNTs and there is high 

degree of variation in the methods undertaken to determine the bioactivity /toxicity of CNTs.  

While reports vary, the majority of research so far suggests that CNTs not only improve the 

mechanical properties of the composites but also induce bone regeneration and are nontoxic 

especially when they are functionalized.  

Although CNTs have the above mentioned advantages, they do not possess any 

antimicrobial property which is a key requirement for an implant material. Due to the nature 

of the CNTs, they can be used in drug delivery. Antimicrobial agents such as silver can be 

attached to the sidewalls of the CNTs and released in a slow steady manner to curb bacterial 

infection.  

1.3.2 Silver Nanoparticles (Ag NPs) 

Bone tissue can become susceptible to infection following injury, during surgical 

procedures and especially with major invasive surgery such as hip replacement. Two major 
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types of infection affecting bone are septic arthritis and osteomyelitis, which involves the 

inflammatory destruction of the joint and bone respectively (Goldenberg, 1998, Lew and 

Waldvogel, 2004). Staphylococci, in particular Staphylococcus aureus are one of the principal 

causative agents of such infections (Berendt and Byren, 2004). One of the main routes of 

infection for both osteomyelitis and septic arthritis is often following injury, surgery or 

implantation of a foreign body, such as joint replacement (Berendt and Byren, 2004). The 

survival of pathogenic microbes after surgery depends on a number of factors including 

health of the patient, location of the surgery and infection control in the operating theatre. 

However, for medical implants there are additional risks with the successful adhesion of 

microbes to the implant surfaces and their ability to develop into biofilms that can lead to a 

well-established infection.  

The local delivery of antibacterial agents is potentially an advantage over systemic 

drug administration (standard antibiotics that are supplied orally or intravenously). This is 

because drugs administered orally have unpredictable absorption due to degradation by 

stomach acid and enzymes while intravenous drug delivery is distressing to some patients 

and requires a functioning cannula which is prone to infection and may cause local adverse 

reaction. Local delivery of antimicrobial agents has the potential to achieve high and 

sustained local concentrations of the antimicrobial agents without large systemic doses, thus 

minimizing systemic toxicity, adverse reactions and development of resistant strains of 

bacteria.   

In spite of many advances in biomaterials, a substantial amount of implants become 

colonized by bacteria and becomes the focus of implant infection. Antibacterial property of 

silver is related to the quantity of available silver and the rate at which it is released. The 
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exact mechanism by which silver exhibits its antibacterial action is still not completely 

understood. Silver is inert in its metallic state but ionizes on contact with an aqueous 

environment yielding Ag+ which is believed to be the active antimicrobial agent. The ionized 

silver is highly reactive as it binds to the tissue proteins causing structural changes in the 

bacterial cell wall and nuclear membrane leading to cell distortion and death. In spite of its 

good antibacterial property, it is known that silver may also have adverse effects on human 

cells depending on many factors such as distance between cells and silver, exposure time 

and route.  The alternate to dissolved silver can be Ag NPs as they have good antibacterial 

activity and are less toxic to human cells when used in small amounts (Franci et al., 2015).   

Ag NPs have a high potential to solve the problem of multidrug –resistant bacteria as 

bacteria will be less able to develop resistance against silver compared to antibiotics (Rai et 

al., 2009).  Although, the antibacterial effect of Ag NPs has been extensively studied, the 

mechanism underlying their action has been poorly understood. Many hypotheses has been 

proposed.  One of them suggests that the bacterial cell wall comprises sulfur containing 

protein with which Ag NPs interact. Once they have entered the bacterial cell, they form a 

low molecular weight region in the bacteria to which the bacteria conglomerate trying to 

protect the bacterial DNA.  Ag NPs then react with phosphorous containing compounds in 

DNA (Rai et al., 2009). Further, Ag NPs attacks the respiratory chain, cell division and finally 

leads to cell death. The antibacterial effect of Ag NPs against gram positive and gram-

negative bacteria differ based on their concentration. Kim et al (2007) investigated the 

antimicrobial activity against E. coli and Staphylococcus aureus. The results showed that E. 

coli was inhibited at low concentration but it was less effective against S. aureus.  In addition, 

Ag NPs have also been proved to breach biofilm formation. Martinez-Gutierrez et al (2013) 
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studied the antimicrobial activity of Ag NPs against Gram negative (P. aeruginosa, 

Acinetobacter baumanni) and gram positive (S. aureus and S. mutants) bacteria. They showed 

that the Ag NPs killed the bacteria in biofilm however, higher concentrations of Ag NPs was 

necessary for both the gram types compared to bacteria outside biofilms. They also showed 

that the anti-biofilm activity of Ag NPs are less profound against the gram-positive bacterial 

biofilm. They suggest that this could be due to the difference in their cell wall structure 

(Martinez-Gutierrez et al., 2013). It is clear that Ag NPs have antibacterial activity and this 

could be exploited in the development of composites for bone implants. Bacterial infection, 

primarily after surgery could be curbed by the incorporation of Ag NPs as either coatings on 

metal implants or in composites and could favour the slow release of Ag NPs reducing the 

need for antibiotics.  

Toxicity of Ag NPs to human cells  

If Ag NPs are to be incorporated in the development of scaffolds for bone implants, 

evidence of their bioactivity and toxicity is essential. Depending on the dissolution rate of 

the Ag NPs from the scaffold, they could pose potential toxic effects to the human cells. 

A study led by Pauksch et al (2014) tested the response of primary human 

mesenchymal stem cells and osteoblasts to Ag NPs. They demonstrated that Ag NPs caused 

time and dose dependent impairment on both the cell types at concentration of 10µg/g. Ag 

NPs did not reduce the ability of the cells to differentiate but an increase in cell stress was 

observed. This suggests that Ag NPs below the concentration of 10µg/g can be used 

therapeutically but exceeding  this limit will be toxic to bone cells. It also means that even if 

Ag NPs are used at higher concentration the ability of the cells to differentiate is not affected 
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and in an in vivo situation, slow release of moderate concentration will not affect the healing 

process after surgery and the cells will be replenished over a period of time. 

It is unclear whether Ag NPs toxicity is mediated by the particles themselves or by 

particle dissolution and silver ion release.  Albers et al (3013) investigated the cytotoxicity 

of silver nanoparticles and microparticles on osteoblasts and osteoclasts. They found that Ag 

NPs exhibited strong cytotoxic effect and microparticles exhibited weak cytotoxic effect. 

However, they have concluded that the cytotoxic effect of silver nanoparticles is primarily 

mediated by ionic silver liberation form the nanoparticles (Albers et al., 2013). Only limited 

number of articles have studied the effect of Ag NPs specifically against bone cells. Overall, 

in principle, Ag NPs can be used in lower doses for prevention of initial and intermediate 

stage infection after surgery. Although, they cause some cytotoxicity, it can be reduced by 

controlling the Ag release rate to accomplish both long-term antibacterial ability and bio 

integration.  

1.4 Composites  

 

Single materials do not always provide all the properties necessary for bone grafting 

and are very far from the characteristics of a true autogenous bone graft. The ultimate aim is 

to develop a bone implant which is as close as possible to the mechanical and biological 

properties of natural bone. The term “composites” can be defined as a heterogeneous 

combination of two or more materials, differing in morphology or composition on a 

microscale, in other words microcomposites, which are combined with the aim to improve 

the mechanical and /or biological properties (Gasser, 2000, Murugan and Ramakrishna, 
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2005). According to their interaction with the host tissue, composites can be classified as 

nearly bioinert (Alumina coated biomaterials, carbon-carbon and carbon –PEEK), bioactive 

(HA-Collagen, HA-PE and HA- Ti-6Al-4V) and bioresorbable (TCP-collagen, TCP-PLA and 

TCP-PLC). Of particular interest is the development of ceramic composites (HA, TCP) as these 

mimic the inorganic natural bone component.  

1.4.1 Ceramic composites  

Ceramics are often preferred over other classes of materials in many applications due 

to their low density, high rigidity, hardness, and low susceptibility to corrosion. Their main 

drawback however, is brittleness. Cracks form and quickly propagate through the material 

in a direction parallel and perpendicular to the applied load, resulting in sudden material 

failure. In order to prevent the brittle fracture of ceramics and to improve the overall 

mechanical properties of the ceramics, crack generation and extension of the cracks must be 

blocked. This can be accomplished by reinforcing the ceramics with high strength and stiff 

fibrous material. A suitable candidate, CNTs provides both the toughness and tensile 

strength required by the ceramics to make them less brittle, allowing them to be employed 

in a wide range of applications including load-bearing areas such as hip and knee joints.  The 

choice of the reinforcing material is crucial in determining the overall success of the ceramic 

composites. The higher the aspect ratio of the reinforcing material the better the 

reinforcement. In addition to hindering the development of cracks through the matrix, the 

reinforcing material should also bear the applied load. The degree of the interfacial bond 

between the matrix and the fiber determines how well the stress is transmitted from the 

matrix to the fiber (Wagner et al., 1998). However, the bond between the matrix and 

reinforcement should not be too strong to hinder the slight flexibility that is required while 



26 
 

load is applied. Other factors to consider are the amount of reinforcement required to 

support the mechanical properties without eliciting a toxic reaction from the cells and the 

homogenous dispersion of the reinforcement in the matrix.   

In the last twenty years, a large number of publications on calcium phosphate 

materials, especially on ceramic composites, have appeared in the literature, reflecting a 

sharp increase in the interest aimed at developing better materials for a broader clinical use 

(Daculsi, 1998, Vallet-Regí and González-Calbet, 2004, Ambard and Mueninghoff, 2006, Best 

et al., 2008, Galea et al., 2013). By altering the calcium to phosphate ratio many types of 

synthetic calcium phosphates can be produced such as monocalcium phosphate (Ca/P - 0.5) , 

dicalcium phosphate (DCP, Ca/P – 1.0), octa-calcium phosphate (Ca/p – 1.33), triclacium 

phosphate (TCP, Ca/P – 1.5), hydroxyapatite(HA, Ca/P – 1.67), and tetra-calcium phosphate 

(Ca/P – 2.0) (Suzuki, 2013, Huang and Cao, 2016).  Of the different types of calcium 

phosphate, HA is greatly studied owing to its resemblance to the inorganic phase of natural 

bones (elaborated in Chapter 1, section 1.4). Following HA, α and β-tricalcium phosphates 

are preferred due to their resorbable nature .  

Although, a number of studies have been published to illustrate the biocompatibility 

of the different types of calcium phosphate, they are incomparable due to the difference in 

the mode of synthesis and characteristics of the material, and in vitro experimental design 

(type of cells, number of days, types of assays and criteria to determine 

biocompatibility)(Best et al., 2008, Haaparanta et al., 2010), (Xu and Simon, 2005, Zeng et al., 

2011).   Hence, it is essential to determine the biocompatibility extent of the three main types 

of calcium phosphates (HA, DCP and TCP) which are much utilized as bone substitutes.   
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HA is very similar in composition to the mineral phase of bone and is an excellent bone 

replacement material. Clinically, it has been used in dental and orthopaedic applications for 

more than 40 years in their bulk form as filler and as coatings. HA is a polycrystalline calcium 

phosphate ceramic with a hexagonal crystal structure and a stoichiometric Ca/P ratio of 1.67 

(Figure 1.3). It is part of the P63/m space group, characterized by a six-fold c-axis 

perpendicular to three equivalent a-axes at 120° angles to each other. Calcium cations (Ca2+) 

and phosphate anions (PO43-) are arranged around columns of monovalent hydroxyl anions 

(OH-) (Kay et al., 1964).  

 

 

 

 

 

 

 

 

 

Figure 1.3 Structure of Hydroxyapatite (Greeves, 2017) 

 

The stability of the HA structure is due to the presence of the phosphate group 

network which provides the skeletal framework.  The bioactivity of the ceramic is dependent 

on the Ca/P ratio as slight alteration produces other types of calcium phosphate such as 

monocalcium, dicalcium, tricalcium and octacalcium phosphate. Several methods have been 
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employed for synthesizing HA in the past few decades. Several methods are reported in the 

literature including solid state reactions, plasma techniques, hydrothermal conditions, and 

wet chemical methods including aqueous precipitation, hydrolysis and sol-gel processing for 

HA synthesis. (Koutsopoulos, 2002, Chen et al., 2004, Wang et al., 2006, Nayak, 2010, Sadat-

Shojai et al., 2013, Bigi et al., 2004).  

 

By far the most common and simplest method to synthesize large quantities of HA is  

the aqueous precipitation method. This method involves a wet chemical reaction between a 

calcium and phosphate precursor under controlled pH and temperature. Typical precursors 

include calcium hydroxide (Ca(OH)2) with orthophosphoric acid (H3PO4), calcium nitrate 

(Ca(NO3)2) or Calcium acetate (Ca(CH3COO)2 with diammonium hydrogen phosphate 

((NH4)2HPO4). The last reaction occurs as follows: 

 

5Ca (CH3COO) 2.H2O + 3(NH4)2H2PO4)            Ca5 (PO4)3(OH) + 3NH4 (CH3O2) + 7CH3CO2H 

 

To successfully synthesize stoichiometric HA, the relative amounts of reactants must 

be carefully measured to give a Ca/P ratio of 1.67. Synthesis conditions such as starting 

material, pH, reaction rate, synthesis temperature, aging time and sintering conditions can 

affect the Ca/P ratio and morphology of the crystals. Once a HA suspension is produced, it is 

filtered and the resulting slurry is processed. The most common way of approaching this is 

to dry and crush the powder. This powder is then subject to heat treatment to obtain the 

final HA powder. It has been shown that the final sintered product is dependent on the initial 

powder which in turn depends on the synthesis parameters.    
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Need for Improving HA  

Synthetic HA bonds with bone through a complex process of dissolution precipitation 

and ion exchange. After decades of research on HA, its preparation and properties (including 

physiochemical, mechanical and biological behavior) are well documented (Suchanek and 

Yoshimura, 1998, Koutsopoulos, 2002, Janaćkovića et al., 2007, Nayak, 2010, Sadat-Shojai et 

al., 2013). Although HA is highly bioactive, it does not find application in many areas due to 

its poor mechanical strength under load conditions. Dense HA has a compressive strength 

four times that of cortical bone, yet a significantly lower tensile strength and fracture 

toughness (White et al., 2007).   

Over the last thirty years, many materials have been studied as either a possible 

reinforcement for HA (Particles, fibres and whiskers) or vice versa (polymers such as 

collagen, gelatine). While mechanical properties of some of these composites increased, 

there was complication in the matrix – reinforcement reaction or mismatch in the transfer 

of stress from the reinforcement to the matrix. This section discusses a few HA composite 

studies in detail.  

To enhance the mechanical properties, HA is reinforced with bioinert particulates 

such as ZrO2, Al2O3, stainless steel, Ti and Mg.  Zirconia, as a biologically inert material is 

expected to improve the mechanical strength of HA without causing any toxic effect. Leong 

et al., (2013) has shown that HA-ZrO2 composites exhibit significantly higher mechanical 

properties compared to pure HA. However, the main issue that has pervaded is the reaction 

between the two phases. Zirconia affects the decomposition of HA which results in changes 

in the physical and chemical properties of HA which in turn affects the performance of the 

implant in vivo. Another issue is the formation of secondary phases which reduces the 
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mechanical properties of the implant. To overcome the problem, Salehi and Fathi, (2010) 

developed a sol-gel method to produce HA –Zr composite with yttria stabilized Zirconia. 

They have reported that the decomposition of HA was accelerated at temperatures above 

950°C. They have not reported mechanical or biological activity of the composite.  

Another area of highly documented HA composites uses Al2O3 and Ti as reinforcement 

to improve the mechanical strength. The use of the two metals limit the performance of the 

composite due to the interfacial reactions that produces secondary products that deteriorate 

the property of the composite. These secondary products influence densification, mechanical 

properties and even degrade the biological properties of the composite. A study led by Yang 

et al have showed that the interfacial reaction between HA and Ti results in the formation of 

Ca-P phases like α-TCP and a reaction product Ca2Ti2O5 (Yang et al., 2004). Another 

disadvantage of using Al2O3 is the lack of appropriate cellular response from the natural 

tissue (Ghazanfari and Zamanian, 2013). Finally, other composites have included synthetic 

polymers such as high-density polyethylene (HDPE), poly ethylene glycol (PEG), PVA and 

biological glasses. In the case of polyethylene –HA composite, the toughness and elastic 

modulus is higher than pure HA composites but the tensile strength is far inferior to bone. 

On the contrary, biological glass can improve the toughness and tensile strength of the 

composite but large quantities of fillers are required. 

 In recent years, PVA has gained popularity as a scaffold material as it improves the 

mechanical stability and flexibility of the scaffolds. PVA is used in the development of 

scaffolds due to its inherent non-toxicity, non-carcinogenicity, good biocompatilbity and 

desirable physical properties such as rubbery or elastic in nature and solubility in water at 

low temperatures (Mollazadeh et al., 2007, Asran et al., 2010). Most of the articles focus on 
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the use of PVA with collagen or gelatine reinforced nano-HA to improve the mechanical 

strength of the scaffold. Wang et al (2008) studied the in vivo compatibility of HA-PVA-

Gelatine composites. They reported that the composite had excellent water swelling 

behaviour and water absorption in SBF. This allowed the formation of apatite crystals on the 

composite walls  and pores walls while allowing the formation of fibrous tissue around the 

implant (Wang et al., 2008). In one study led by Zeng et al (2011), HA–PVA composite was 

developed using solvent casting method. They have demonstrated that the composite was 

biocompatible with osteogenic cells and the addition of HA in the PVA matrix has reduced 

the hydrophilicity of PVA. Mechanical results have shown that the interfacial bonding is good 

between the two materials as there is a reduction in the tensile strength and elongation rate 

but an increase in the Young’s modulus of the composite (Zeng et al., 2011). Since CNTs are 

known to have high tensile strength, adding CNTs will improve the overall mechanical 

property of the composite.  

1.4.2 HA Composites  

The first known publication on HA-CNT composites was in 2004 by Zhao et al. The 

authors functionalised MWCNTs using nitric acid and sodium dodecyl sulphate (SDS) and 

the composites were made by nucleating HA in the presence of the CNTs. The authors have 

reported an increment in the compressive strength of the material from 63MPa to 87MPa for 

SDS –functionalized MWCNTs and 102 MPa for nitric acid functionalised MWCNTs. (Zhao 

and Gao, 2004). 

There are only a few reports on the development of HA matrix reinforced with 

MWCNTs. These studies developed HA matrix reinforced with MWCNTs through various 

process such as sol-gel, spark plasma, ball mill and found that reinforcing HA with CNTs have 
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improved the mechanical strength of the composite. So far, according to the author’s 

knowledge, Kealley et al. (2006, 2008) is the only author to report a decrease in mechanical 

properties with the addition of CNTs in the literature. They have prepared composites by 

adding 2 wt% MWCNTs containing graphite impurities during the precipitation of HA. While 

the toughness of pure HA and HA-MWCNTs composites remain the same, the hardness of the 

HA-CNTs decreased compared to pure HA.  Kealley et al., (2008) have shown images with 

clumps of CNTs while in the 2006 paper the author reported homogenous distribution of 

CNTs. The authors have suggested that the decrease in the mechanical properties could be 

due to the presence of graphite clumps and removal of the impurities could improve the 

hardness of the material (Kealley et al., 2006, Kealley et al., 2008). Most studies have 

functionalised CNTs by oxidation/addition of –OH groups using strong acids (Venkatesan et 

al., 2011, Maho et al., 2012) or used surfactants that stick to the surface (Hooshmand et al., 

2014) to obtain a homogenous dispersion of the CNTs in the matrix but have not reported 

the effect of this on the growth of the HA crystals. 

Most of the HA-CNTs composites are synthesized following the wet precipitation 

technique as it is the most cost effective and efficient way to introduce CNTs while 

precipitating HA. A comprehensive literature survey of HA-CNTs bulk composites was 

undertaken from 2009 to 2017 and is reported in Table 1.3. HA - CNTs used as coatings to 

improve the performance of metals such as titanium are excluded from the survey.  



 

33 
 

Table 1.3 HA- CNTs bulk composites for bone implants  

Composite 
characteristics 

  
Aim 

Biocompatibility 
Treatment 

 
                                     Key results 

Author 

HA-CNTs  Mechanical Biological 

Sol-gel derived 
Carboxyl 
functionalised 
SWNTs with ε-
caprolactam (nylon) 
and HA composite. 
Samples with varying 
quantities of SWNTs 
were produced. 

To enhance 
mechanical 
properties of 
HA. 

None reported. Highest fracture 
toughness of 3.6 MPa 
was reported with 1% 
SWNTs. 

Not reported. (Khanal et 
al., 2016) 

Wet co-precipitation 
method was used to 
produce the HA-CNTs 
composite. 
Concentration of 5 
and 10% CNTs was 
used for the study. 

To determine 
the effect of 
CNTs on the 
structural and 
biological 
properties of 
human G-292 
osteoblast cell 
line. 

In vitro cell test 
was performed 
for up to 48 hours. 
MTT, Glutathione, 
Malondialdehyde 
and protein assay 
were performed. 

Not reported. Results show that toxicity 
occurrence was time and dose 
dependent. Low dose of CNTs 
did not reduce cell viability and 
induce oxidative stress after 2 
days.   

(Constanda 
et al., 2016) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

 
                                               Key results 

Author 

HA-CNTs Mechanical Biological 

Functionalised and 
raw MWNTs were 
used to produce the 
composites. HA 
powder was ball 
milled with both 
types of MWNTs 
using acetone 
medium. Composites 
were made 
containing 1 and 2 
wt.% of MWNTs. 

To study the 
effect of HA-
CNT 
composite 
on bone 
regeneration 
using animal 
model. 

In vivo studies 
were carried out 
in adult new 
Zealand rabbits 
by creating bony 
defects at the 
distal femur. Each 
treatment type 
had 4 animals. 
Observation was 
carried out for 4 
months post 
operation. 

Push out strength test was 
performed after removing 
the implants from the 
animals. After four months, 
composite with 1wt. % raw 
MWCNTs showed better 
strength at 22.45MPa 
followed by composite with 
2 wt. % of functionalised 
MWNTs which had 
strength of 24.56 MPa. Pure 
HA exhibited a strength of 
18.48 MPa.   

No serious inflammation was 
observed in any of the implant 
sites. There was no evidence of 
adverse local effect like 
hematoma or edema. All the 
composites showed 
considerable in vivo new bone 
formation during the four 
months. Toxicology studies of 
the liver and kidneys showed 
no adverse reaction or 
accumulation of any implant 
material. One of the 
functionalised CNT composite 
and raw CNT composite 
proved to be better than the 
others as well as the control.     

(Mukherjee 
et al., 2016) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

 
                                           Key results 

Author 

HA-CNTs Mechanical Biological 

HA-CNTs composite 
was produced 
through suspension 
and hot press 
method with varying 
quantities of CNTs 
(0.5, 1, 3 and 5 wt. 
%). 

To determine 
the mechanical 
strength of the 
composite using 
bending 
strength as a 
representative. 

Not reported. Bending strength results 
showed 70% increase in 
strength when 3% CNTs 
are added. 

Not reported. (Salahil, 
2016) 

3D-printed 
polycaprolactone, 
HA and MWNTs 
composites with 
varying quantities 
(1-10%) of MWCNTs 
was produced. 
Polymer solution 
and silicone-doped 
HA-CNTs suspension 
was mixed to 
produce slurry 
which was used for 
layer by layer 
process to build the 
3-D structure. 

As scaffolds to 
stimulate bone 
cell growth. 

MG63 osteoblast 
like cells were 
seeded on the 
scaffolds for 6 
days. 

Compressive yield stress 
results showed 6 MPa for 
scaffolds with 0-0.75% 
CNTs and 1MPa for 10% 
CNTs. 

SEM results showed 
significant cell adhesion on 
scaffold with 10% CNTs. 

(Gonçalves 
et al., 2015) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

 
                                 Key results 

Author  

HA-CNTs Mechanical Biological 

MWCNTs-HA 
powder was 
produced by in situ 
sol-gel process. No 
description on the 
quantity of CNTs 
provided. 

To assess the 
biocompatibility 
of HA-MWNTs 
composite with 
human 
osteoblast cells. 

Human osteoblast 
sarcoma cell line 
was used to test 
the powders. MTT 
assay was 
performed to 
determine cell 
viability. 

Not reported. The powders were not toxic 
to the cell line. No 
detrimental effect on the cell 
survival or mitochondrial 
activity  was observed. 

(Khalid et al., 
2015) 

Sol-gel production of 
HA-MWCNTs with 
varying amounts of 
MWCNTS (1 and 
6%) using SDS and 
ACUMMER 3100 as 
dispersant. 

Study the 
biocompatibility 
of the 
composites. 

In vitro studies 
with human bone 
marrow stromal 
cells (hBMSC) for 8 
days. 

Not reported. SEM results support 
biocompatibility of the 
materials. Cell have adhered 
and proliferated on the 
materials with MWCNTs. 

 (Hooshmand 
et al., 2014) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

 
                                    Key results 

Author  

HA-CNTs Mechanical Biological 

HA-CNTs-Ag NPs 
composite was 
produced by spark 
plasma sintering at 
950°C with a dwell 
time of 5 min under 
uniaxial pressure of 
30 MPa in vacuum. 
Various ratios of HA 
and Ag ranging 
between 100 – 86 
wt% HA, and 10-
1wt% of Ag was 
used.  

To study the 
antimicrobial, 
biocompatibility 
and mechanical 
properties.   

In vitro studies 
was performed 
with L292 
fibroblast cells for 
3 days.    

The hardness of the 
composite with CNTs 
showed 104% increase 
compared to pure HA as 
the hardness value for 
pure HA was 1.18 GPa 
and the composites with 
CNTs was 2.41GPa. The 
presence of silver had a 
huge impact on the 
mechanical properties. 

MTT assay results show that 
the presence of CNTs 
enhance the adhesion of cells 
and the presence of silver 
nanoparticles at low 
concentrations (1-2 wt%) did 
not reduce the cell viability. 

(Herkendell 
et al., 2014) 

HA-CNTs composite 
was prepared with 
varying quantities 
(0.5%, 1%, 2% and 
5%) using ball mill. 
Pellets were made 
using uniaxial press 
following which the 
samples were 
sintered at 700°C 
and 1250°C for 1 h. 

Improve the 
overall 
properties of 
synthetic HA. 

Hemocompatibility 
was verified using 
goat blood. 0.2 ml 
of goat blood was 
added to the 
samples in saline 
and this was 
incubated at 37° C 
for 60 min. The 
composites were 
also tested with 
SBF for a period of 
24 weeks.    

The composites with 
1% CNTs have the 
highest value of ~ 
1.9MPa m1/2 for 
hardness and fracture 
toughness whereas for 
flexural strength the 
composite with 5% 
CNTS had the highest 
value of ~35MPa which 
was 175% increase 
compared to pure HA. 

Hemocompatibility results 
reveled that hemolysis varied 
between 0.3 and 5.3 %.  
Increased apatite formation 
was reported for samples 
with 1% CNTs after24 weeks 
but samples with 2% and 5% 
CNTs showed increased 
apatie formation up to 12 
weeks after which 
dissolution occurred. 

(Mukherjee 
et al., 2014) 



 

38 
 

 

Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

 
                                 Key results 

Author  

HA-CNTs Mechanical Biological 

Polypropylene 
reinforced with CNF 
and HA fillers were 
produced by melt 
extrusion process. 
The final composite 
was injection –
molded into 
rectangular 
plaques. 

To test the 
mechanical 
strength and 
biocompatibility 
of the 
composite to be 
used as bone 
scaffold. 

Human 
osteoblast 
sarcoma cells 
were seeded on 
the scaffold (n=5) 
for 10 days. MTT 
assay was 
performed to 
determine cell 
viability. 

Sample with the 
highest % of CNF 
showed higher 
young’s modulus 
and tensile strength 
which is 2.5 and 33.0 
MPa respectively 
compared to 1.30, 
30.0MPa and 2.18 
kJm-2 for 
polypropylen. 

Compared to Polypropylene 
(control) there is 78% increase in 
cell viability in the composite 
sample. 

(Liao et al., 
2014) 

MWCNTs integrated 
with HA –
polymethyl 
methacrylate 
(PMMA) to form 
composite. 1% 
functionalised 
MWCNTs was 
mixed with 
homogenous 
mixture of PMMA 
and HA prepared by 
ball milling. This 
was dried by the 
freeze –granulation 
technique to obtain 
the final composite. 

In vivo studies 
of HA- CNTs 
composite with 
varying 
quantities of 
MWCNTs. 

MG63 cell line 
was used for in 
vitro studies 
which were 
performed for 14 
days. MTT assay 
and alkaline 
phosphatase 
assay was 
performed to 
measure cell 
viability. 
Adult sheep was 
used for in vivo 
implantation. 

Hardness and elastic 
modulus values have 
been measured. 
Composites 
containing 
functionalised CNTs 
exhibit high values 
of 3.5GPa and 69GPa 
for hardness and 
elastic modulus 
respectively. 

Cell culture studies showed slower 
growth rate and lower viable cell 
density which was decreased by 
4% for the treatment composites 
(n=3) compared to the control (no 
composites). However, it is 
reported that the composites are 
not toxic as high cell viability was 
achieved for longer periods. 
No negative reaction was observed 
after 12 weeks of implantation. No 
fibrous tissue or inflammation was 
observed in contact between the 
cement and bone. In areas of no 
direct contact, osteoclast like cells 
were observed. 

 (Singh et 
al., 2010) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

                                                 
                                              Key results 

Author  

HA-CNTs Mechanical Biological 

HA-gelatine slurry 
was prepared in the 
presence of 
MWCNTs. 
Composites with 1-
5% MWCNTs were 
prepared. The slurry 
was washed and 
centrifuged to obtain 
the final product. 

To improve 
the strength 
of HA –
gelatine 
composite 
by 
reinforcing 
MWCNTs. 

In vivo 
biocompatibility 
was analysed 
using mice. 
Different 
quantities of 
composites (0, 
1,2and 4%) was 
administered. The 
experiment was 
conducted for 30 
days. 

Flexural strength of the 
composite increased with 
the increase in CNTs but no 
improvement was observed 
when the concentration 
went above 4%. With 1% 
MWCNTs the flexural 
strength is 9 MPa whereas 
the elasticity is 2.1 GPa. 
With 4% MWCNTs the 
flexural strength is 14MPa 
but the elastic modulus is 
approximately 2GPa. 

In vivo analysis did not show 
any toxic effect except for the 
group with 4% MWCNTs 
after 30 days. The liver and 
kidneys showed slight 
alteration. 

(Yadav et 
al., 2010) 

HA-Al2O3-CNTs 
composite was 
prepared by spark 
plasma sintering 
technique. 
Composite 
composition was 
(spray dried HA 80 
wt. %, Al2O3 18.4 wt. 
% and CNTs 1.6 wt. 
%) and sintering 
temperature was 
1100°C. 

To improve 
fracture 
toughness 
by the 
addition of 
Al2O3 and 
CNTs in HA 
matrix and 
to study the 
cytocompati
blity of the 
material. 

In vitro test was 
performed with 
Mouse fibroblast 
(L929) cells. The 
experiment lasted 
for 5 days. MTT 
assay was 
performed at the 
end of 3rd and 5th 
day to analyse the 
viability of the 
cells. 

Vickers micro indentation 
showed that there was an 
increase from 4.0GPa for 
pure HA to 4.4GPa for the 
composites. There is a 2.3 
times increase in fracture 
toughness where it is 
1.18MPa m1/2 for HA and 
2.72 MPa m1/2 for the 
composite. 

After the 3 and 5 day test 
there was no significant 
difference in cell growth 
between pure HA and the 
composite. SEM observation 
has shown attached cells 
spreading columnar 
appendages from centre 
developing filopodia and 
connecting with 
neighbouring cells.    

 (Kalmodia 
et al., 2010) 
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Composite 
characteristics 
 

  
Aim 

Biocompatibility 
Treatment 

                                     Key results Author 

HA-CNTs Mechanical Biological 

HA-MWCNTs 
composite was 
prepared by mixing 
CNTs (2% vol.) with 
spray dried HA (98% 
vol.) in ethanol. 
Spark plasma 
sintering process 
was employed to 
produce the 
composites. 

To study the 
optimum 
sintering 
condition 
required to 
employ CNTs in 
the production 
of composites 
and to improve 
the mechanical 
strength  and 
assess the 
biocompatibility 
of the 
composite. 

An in vitro study 
was carried out 
with hFOB 1.19 
osteoblast like 
cells for 2 and 4 
days. Cells were 
counted in a 
haemocytometer. 

The authors have 
reported Youngs 
modulus value of 
131.1GPa and 
hardness value of 
6.86 GPa at a 
sintering 
temperature of 
1100°C which is a 
285% increase 
compared to the 
hardness value at 
sintering 
temperature at 
900°C. 

In vitro study has shown 
improved cell adhesion on 
composites with CNTs than 
with pure HA. Composites 
with CNTs have a two fold 
increase in cells after 4 days 
compared to pure HA.   

(Xu et al., 
2009) 
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Overall, the work on HA-CNT composites has been on fundamental research to develop a 

safe durable implant and hence different methods are used. Table 1.3 details the different 

types of HA–CNTs composites that have been synthesised to improve the mechanical and 

biocompatibility properties.  However, the author has not come across a composite that 

combines the advantages of HA, MWCNTs and PVA to improve the mechanical and 

biological property of the composites. Moreover, all the studies (Table 1.3) which have 

performed biochemical assays to confirm the microscopy images have done so only with 

the cell homogenate and have mostly discarded the conditioned media, which can 

provide vital clues on the health of the cells while they were still actively proliferating on 

the composites (Table 1.3).  

 

Similar to the HA- CNTs composites, a number of HA –Ag NPs studies have also 

been undertaken which are detailed in Table 1.4. Most of the work undertaken is to 

determine the optimal concentration of Ag NPs required for efficient antibacterial 

property. However, all the in vitro studies have used the standardised disk diffusion 

susceptibility method which might not be relevant in the clinical setting as the implants 

will be covered in blood plasma. The presence of aqueous media will change the silver 

dissolution rate compared to static method used by the studies mentioned in the Table 

1.4. In addition, some of the studies have not reported the biocompatibility of the 

composites with cells. Hence, there is an inconsistency in reporting the biocompatibility 

of the Ag NPs with the cells.  
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Table 1.4 HA-AgNPs composites and a review of their role in the development of bone implant composites 

 
HA-AgNPs composites 

 
Aim 

 
Experimental design 

Key results   
Reference  

Biocompatiblity 
with cells 

Antibacterial 
activity  

Ag NPs solution was 
produced from 16 ml of 10-2 
M AgNO3 and 14ml of 0.5M of 
glucose monohydroate as 
reducing agent. The mixture 
was heated in microwave for 
2 min and stirred for 20 min. 
HA was synthesized using 
the wet precipitation method 
and 50 ml of Ag NPs solution 
was introduced in the HA 
solution.  
 
 
 
 
 
 
 
 
 
 
 
 

Synthesise HA- 
Ag NPs 
composites as 
implant 
material with 
antibacterial 
properties.  

Antibacterial activity was 
tested against 
Staphylococcus aureus 
using the standardised 
disk diffusion 
susceptibility method. 
Disks containing 0.2gm   
HA-Ag NPs powder was 
made and 1x  10-6 CFU 
were used. Pure HA and 
pure Ag NPs were used as 
control. Test was 
performed for 24 h at 
37˚C. 

 
 
 
 
 

 
 

None reported. Inhibition of 
bacterial growth in 
the Ag NPs was 
observed whereas 
the same effect was 
not observed in the 
plates containing 
pure HA and HA-Ag 
NPs disks  due to the 
low concentration of 
Ag NPs in the 
composites. There is 
no mention of the 
dissolution of Ag NPs 
from the composites.  

(Charlena et 
al., 2017) 
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HA-AgNPs composites 

 
Aim 

 
Experimental design 

Key results   
Reference  

Biocompatiblity 
with cells 

Antibacterial 
activity  

HA powder was obtained by 
chemical precipitation and 
Ag NPs were synthesized in 
colloidal suspension in the 
presence of chitosan. The HA 
powder was immersed in as-
prepared Ag NPs colloids to 
produce HA-Ag NPs with 
theoretical silver proportion 
ranging from 0.016 to 
0.40 wt%.  

To develop a 
simple 
adsorption 
synthesis route 
for HA-Ag NPs.  

Antibacterial activity was 
tested against 
Staphylococcus aureus and 
E.coli based on the 
standardised disk 
diffusion susceptibility 
method. 1-2 x108 CFU was 
used. Test was performed 
for 24 h at 37˚C. 

None reported. The HA-Ag NPs 
composites, even 
with low silver 
proportions 
(0.024 wt%) were 
capable of producing 
inhibition zones for 
both S. aureus and E. 
coli. 

(Andrade et 
al., 2016) 

Ag NPs were formed by the 
interaction between tannic 
acid  and AgNO3 which was 
first attached to collagen 
molecule. The collagen 
incorporated tAg NPs were 
made to self-assemble in 
modified simulated body 
fluid and HA was allowed to 
mineralize on the tAg NPs 
incorporated collagen.  

To develop a 
process to 
incorporate Ag 
NPs onto 
collagen 
without a 
crosslinking 
agent and to 
mineralize HA.  

Antibacterial activity was 
tested against 
Staphylococcus aureus and 
E.coli based on the 
standardised disk 
diffusion susceptibility 
method and quantitative 
method. Test was 
performed for 24 h at 
37˚C. Biocompatiblity was 
evaluated with MG63 cells 
at 1,3 and 7days and was 
measured using Alamar 
blue and microscope 
observation.  

Alamar blue 
assay results 
showed greater 
than 80% cell 
viability for all 
the composites. 

The growth 
inhibition of up to 
31% and 40% were 
observed against S. 
aureus and E. 
coli respectively.  

(Socrates et 
al., 2015) 
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HA-AgNPs composites 

 
 
Aim 

 
 
Experimental design 

 
Key results  
 

 
 
Reference 

Biocompatiblity 
with cells 

Antibacterial 
activity  

HA powder was obtained by 
wet precipitation method 
and 1-30 wt% Ag NPs were 
added to the HA and mixed 
using mortar and pestle. The 
resultant powder was 
calcined at a temperature 
range of 800-1200 ˚C  

To study the 
effect of Ag 
addition on 
phase stability 
of HA–Ag 
composite with 
respect to 
calcination 
temperatures.  

Antibacterial activity was 
tested against 
Staphylococcus aureus 
based on the standardised 
disk diffusion 
susceptibility method. 
Test was performed for 24 
h at 37˚C for composites 
containing 1, 3 and 5 wt% 
Ag NPs. Biocompatibility 
was tested with mouse 
fibroblast cells for 
composites containing 10 
wt% Ag NPs. MTT assay 
was performed after 48 h.  

The MTT assay 
showed that the 
composites 
containing 10 wt 
% Ag NPs were 
biocompatible 
and cell viability 
was more than 
80%.  

3wt% concentration 
of Ag NPs was 
sufficient to kill the 
surrounding 
bacteria.  

(Rajendran 
et al., 2014) 
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Furthermore, only Herkendell et al (2014) have so far produced HA-CNTs-Ag NPs 

composite and tested the mechanical, antimicrobial and biocompatible properties. They 

have not performed in-depth biocompatible analysis as they have tested the composites 

against L929 fibroblast cells only for 3 days and performed MTT assay (Herkendell et al., 

2014). Another study led by Afzal et al  (2013) has developed two different types of 

composites containing HA- 5 wt% Ag NPs and CNTs-5wt% Ag NPs using the spark plasma 

technique at two temperatures (1700 and 950 °C) under a pressure of 30 MPa with a 

dwell time of 5 minutes. They have reported that the hardness of the HA- Ag NPs 

composite has increased compared to pure HA where as in the case of CNTs , pure CNTs 

showed better hardness. They have reported similar results for the elastic modulus. Their 

antibacterial results coincide with Herkendell et al’s (2014) antibacterial results. Both 

studies have shown that CNTs promote E.coli growth but the presence of Ag NPs reduce 

the same. They have shown that Ag NPs has a better effect against gram-positive bacteria. 

However, Afzal et al., (2013) has not tested the biocompatibility of composites and have 

proclaimed that they can be used for bone substitutes (Afzal et al., 2013).  

1.5 Hypothesis and Project design  

 

The main hypothesis being tested in this study is that composite made of HA 

matrix reinforced with Ag NPs decorated CNTs will serve as bone/ maxillofacial implant, 

which is biocompatible with antibacterial properties and superior mechanical properties. 

The HA matrix will be biocompatible with the bone cells and will not elicit any adverse 

reaction as they will be similar to the inorganic component of natural bone whereas it is 

expected that the carbon nanotubes will reinforce the composite making it mechanically 

strong. The carbon nanotubes will form bridges in the cracks and transfer the load 
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between the tubes and the HA matrix while the silver nanoparticles will provide the 

antibacterial property to the composites without causing toxicity to the human bone cells. 

The Ag NPs can achieve the antibacterial property either through the release of consistent 

small amounts of silver ions or by direct contact with the microbes and inhibit their 

growth in suspension and prevent the adhesion of bacteria to the surface of the composite. 

The biocompatibility of the composites was tested with human osteoblast cells and the 

antibacterial activity was tested against Staphylococcus aureus as it plays a crucial role in 

causing infection following surgery. The mechanical properties of the composite were 

determined by the testing the tensile and compressive strength of the composites.  

 

The specific objectives were to: 

1. Investigate the biocompatibility of HA and compare it with different types calcium 

phosphate such as dicalcium phosphate and β-tricalcium phosphate;  

2. Synthesise Ag NPs-MWCNTs-HA composites (with pristine and functionalised 

MWCNTs and surfactants) and characterize them using various techniques; 

3. Demonstrate the mechanical properties of the composites by performing the diametral 

tensile strength test and compressive strength test; 

4. Determine the biocompatibility of the MWCNTS- HA composites without the presence 

of Ag NPs in vitro by testing the viability and cytotoxic response to the cells to the 

composites; 

5. Demonstrate the antibacterial activity of the Ag NPs- MWCNTs-HA composites against 

Streptococcus aureus and select the composites with good antibacterial property for 

further study; 

6. Investigate the biocompatibility of the Ag NPs- MWCNTs-HA composites with the 

human osteoblast cells by allowing the cells to differentiate and mineralize in the 
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presence of the composites and study the viability of the cells by analysing gene 

expression and cytotoxic response to the composites. 
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2. Pilot study- Comparison of the 

biocompatibility of three main types of calcium 

phosphate used in bone implants  
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2.1 Introduction 

 

A variety of artificial materials (metals, ceramics, polymers and composites) have 

been tried over the decades to fill bone defects. Ceramics made from calcium phosphates, 

calcium sulphates and Bio glass® are of high interest, as they do not tend to induce 

adverse reaction in patients when used as bone implants. The aim of this study was to 

compare the biocompatibility of the three phases of calcium phosphate namely 

hydroxyapatite (HA), dicalcium phosphate (DCP) and β- tricalcium phosphate (β-TCP). 

The biocompatibility was measured both quantitatively and qualitatively.  Based on the 

results, the most promising composite was chosen to be further enhanced to make it 

stronger and antibacterial without compromising biocompatibility. All the composites 

were prepared using the sol-gel technique and characterised to determine the phase 

purity, shape and size of the crystals. The degree of biocompatibility was measured 

qualitatively and a simple quantitative method was designed to determine significant 

biocompatibility differences between the different types of composites.  

 2.2 Materials and Methods  

 

To compare the biocompatibility of the various phases of calcium phosphate HA, 

DCP and β-TCP powders were produced in house using the sol-gel technique as explained 

below. The powders were then mixed with PVA to produce the final composites.  

 

2.2.1 Preparation of the powders  

To produce the different mineral powders of calcium phosphate, calcium acetate and 

ammonium phosphate were mixed in the following molar ratios for: 
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1. Hydroxyapatite (HA) – 0.1 M calcium acetate and 0.06 M ammonium phosphate  

2. Dicalcium phosphate (DCP) - 0.1 calcium acetate and 0.1 M ammonium phosphate  

3. β-Tri calcium phosphate (β-TCP) – 0.3 M calcium acetate and 0.2 M ammonium 

phosphate 

 

These molar concentration were fixed to obtain the appropriate Ca:P ratio which 

is 1.67 for HA, 1.0 for DCP and 1.50 for β-TCP. Figure 2.1 represents the sol-gel technique 

used to synthesis the powders for the composites.  In a typical experiment, to make 10g 

of the powders, 200 ml of the appropriate concentration of calcium acetate and 200 ml of 

ammonium phosphate was added simultaneously into the glass beaker (Figure 2.1). The 

resulting solutions were stirred at a constant rate of 400 rpm using a magnetic stirrer 

(dial setting 9, Hotplate/stirrer, RCT basic, IKA Oxford, UK). While stirring, the pH of the 

solutions was checked periodically and the appropriate pH (HA – 9.5-10, DCP- 7, β-TCP- 

9.5-10) was maintained by the addition of 6M sodium hydroxide solution (Figure 2.1). 

The solution was stirred for 1h at 40 °C and left to mature for 24 h at 40 °C. The resulting 

dispersions containing the HA, DCP and β-TCP precipitates were then filtered through 

Whatman® filter paper (WHA1001070, Sigma Aldrich, Irvine, UK) with pore size of 11 

µm. The precipitates were washed with ultrapure water and subsequently dried under a 

vacuum at 60 °C for 24 h respectively (Figure 2.1). The dry precipitate was manually 

crushed with a glass mortar and pestle to make a fine powder and sintered.  Sintering is 

the process of using high temperature thermal treatment during which phenomena such 

as consolidation and densification of the dried powders occur leading to the change in the 

particle shape and size. The dried powders were sintered at various temperatures (HA- 

100 °C for 8 h; DCP- 300 °C for 2 h; β-TCP - 1000 °C for 8 h) (Figure2.1)(Wang and Chaki, 

1992 , Kivrak and Tas, 1998).  
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Figure 2.1 Schematic representation of the sol-gel technique used for the synthesis 
of the different phases of calcium phosphate.  

 

2.2.2 Composite preparation   

Before the composite preparation, 20% PVA was prepared and stored at room 

temperature for later use. Briefly, to make 50 ml of 20 % PVA, 10 g of PVA was added to 

50 ml of deionised water which was stirred constantly at 90 ° C until all the PVA was 

dissolved.  To determine the workability of the composite, different ratio combinations 

+ + + 

Phase of calcium 

phosphate 

HA DC

P 

β-TCP 

0.1 M 
calcium 
acetate  

0.06M 
ammonium 
phosphate  

HA 

Sol 

0.1 M 
calcium 
acetate  

0.3 M 
calcium 
acetate  

0.1M 
ammonium 
phosphate  

0.2M 
ammonium 
phosphate  

DCP 

Sol 

β-TCP 

Sol 

Stirring - 40 ° C; 
 RPM - 900-1000; 

Aging -24 h at 40 ° C 
 

Stirring - 40 ° C; 
 RPM - 900-1000; 

Aging -24 h at 40 ° C 
 

Stirring - 40 ° C; 
 RPM - 900-1000; 

Aging -24 h at 40 ° C 
 

Dried – 60 °C (24h) 
Sintered – 100 ° C (8 h) 

Dried – 60 °C (24 h) 
Sintered – 300 ° C (2 h) 

Dried – 60 °C (24 h) 
Sintered – 1000 ° C (8 h) 

pH – 9.5 -10 pH – 7 pH – 9.5 -10 
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were tried by adding 0.5, 0.8 and 1 mL PVA to 1 g of the powders. The best workable ratio 

was 1ml and hence 1:1 PVA to calcium phosphate powder ratio was used for all the 

sample preparation. The composites were hand mixed using a spatula and then inserted 

and packed into a cylindrical mould with the dimensions of 15x 5 (diameter x height) mm, 

whose ends were blocked with short cylinders. Pressure was applied on top of the 

cylinders using a mechanical mini pellet press (Product code: GS03940, Specac, UK) 

which in turn, compressed the sample inside the mould. The pressure applied on each 

sample was equivalent to 26 MPa which was held for 1 minute after which, the aluminium 

cylinders were removed from the moulds. The samples were then placed in an oven at 

40 °C for 48 h to dry the composite. Afterwards, the samples were carefully removed from 

the moulds and stored at room temperature until required for biocompatibility studies. 

 

2.2.3 Composite material characterisation 

Physico-chemical characterisation of the produced powders and the final 

composite was performed to ensure that the intended mineral phases of calcium 

phosphate were produced. The materials were examined by electron microscopy 

(Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM)) to 

study the difference in the morphology of the three phases of calcium phosphate. X-ray 

diffraction (XRD) is the most common technique to determine crystal structures and 

atomic spacing and was used to identify the phase purity of the produced powders and 

Fourier transform infrared spectroscopy (FTIR) analysis was performed to detect the 

functional groups and characterize covalent bonding information. 

2.2.3.1 TEM and SEM analysis of the powders and composites  

The powders were examined by TEM and the final composites were analysed by 

SEM. Briefly, for TEM analysis, approximately 0.05 g of the powders to be analysed (HA, 
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DCP and β-TCP powders) were dispersed separately in distilled water by sonication for 5 

min which was used as the stock solution. All electron microscope observations were 

made on three sub-samples of each stock. A drop of the relevant dispersion was placed 

on the copper grid and air dried and subsequently observed at an accelerating voltage of 

120 kV using a high resolution TEM (JEOL 1400, JEOL ltd, Japan). The shape of the crystals 

were observed and the size of the crystals (n=100 crystals) was measured randomly 

using image J software (Schneider et al., 2012).  Care was taken to identify and measure 

single crystals that were not aggregated.  To analyse the final composites by SEM, three 

separate samples were made from each composite powder and were mounted on 

conducting carbon stubs and coated with gold in a sputter coater (EMITECH K550, 

Quorum Technologies, UK). SEM (JEOL JSM -5600LV, JEOL ltd, Japan) images were taken 

to show the presence of the crystals and PVA in the composites. Images were collected 

using a 15 kV accelerating voltage.  

  

2.2.3.2 X-Ray Diffraction (XRD) analysis  

A crystal consists of a periodic arrangement of the unit cell into a lattice. A unit cell 

can contain a single atom or atoms in a fixed arrangement.  Slight changes in the Ca:P 

ratio of the reaction mixture and/or sintering temperature during the production of 

powders can yield other types of calcium phosphates due to the changes in the atomic 

arrangement of the unit cell.  Hence, the phase purity of the sintered powders was 

determined by XRD. The atomic planes of a crystal causes the reflections of the incident 

beam of X-rays to interfere with one another as they leave the crystal. This phenomenon 

is called X-ray diffraction. XRD analysis was performed by colleagues in Nottingham Trent 

University, UK, using an automated Philips powder diffractometer. Briefly, each specimen 

was irradiated using copper anode K (alpha) X-ray (CuKα, wavelength 1.5418 Å) 
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generated by 45 kV and 40mA of current in the cathode-ray source.  All data were 

collected in a 2ϴ scan mode in the range of 20-40 ° using a step width of 0.03 Å and a 1 

sec count time (see (Klug and Alexander, 1954) for discussion of XRD parameters).  

 

2.2.3.3 Fourier transform infrared spectroscopy (FTIR) Analysis  

The quality of the materials was also examined by FTIR. Briefly, FTIR involves 

shining a beam of light that contains many frequencies at the specimen, and then 

determining which frequencies are absorbed by the specimen. The pattern of the 

absorbed frequencies is characteristic of the molecular structure of the specimen (review, 

(Berthomieu and Hienerwadel, 2009). FTIR was used to especially determine the 

functional groups in the powders and the final composites, which was measured for every 

new batch that was produced. A Bruker αP FTIR spectrometer (Bruker, UK) was used for 

the measurements in attenuated total reflection (ATR) mode with an ATR accessory 

utilizing diamond prism. Spectra were recorded using small amount (approximately 2-5 

mg) of each sample (powder and composite), enough to cover the prism. The powders 

did not require further processing whereas the final composites were ground again in a 

glass mortar and pestle to obtain a fine powder. Each spectrum was the result of 16 

accumulated scans at 4 cm-1 resolutions on the same sample.  

 

2.2.3 Experimental design and preparation of the in vitro study  

The biocompatibility of the composites was tested with Chinese Hamster ovary 

(CHO) cells. The cells (supplied by the School of Biomedical Sciences, Plymouth 

University) were grown in Ham’s F-12 medium supplemented with 2mM L-Glutamine 

(10235122; Thermo Fisher scientific, Loughborough, UK) and 10% foetal bovine serum 

(11563397; Thermo Fisher scientific, Loughborough, UK), referred to hereafter as “Ham’s 
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F-12”. Cells were incubated at 37 °C in a 100% relative humidified atmosphere of air. 

Stock cultures of CHO cells were grown in 25-cm2 plastic flasks at 1 - 2 x 106 cells/ml of 

medium with sub culturing carried out every 3 to 4 days until the required amount 

(3.6x103 cells/well) was available. 

 

The experimental design involved exposing the CHO cells to the composites.  

Before exposing the cells, the composites (d = 15mm x 5mm thickness) were sterilized 

using 99 % absolute ethanol.  The composites were immersed in ethanol for 30 min and 

placed in sterile petri dishes and dried at 80 °C for 2 h. Using sterile forceps, the 

composites were carefully placed at the bottom of 24 well plate (flat bottom sterile, tissue 

culture treated polystyrene microplate; 662160, Greiner bio-one, Stonehouse, UK). The 

cell culture plate containing all the composites (HA, DCP and β-TCP) was a unit of 

replication. A total of 6 replicates for two time points (24 h and 7days, n = 3 per time point) 

were conducted. Each well was seeded with 50 μl of cell culture from the 3rd passage of 

the stock cell culture and 550 µl of Ham’s F-12 was added. The microplates were then 

incubated for 24 h and 7 days respectively at 37 °C in atmospheric air to allow the cells 

to grow. For 7-day replicates, the Ham’s F-12 media was changed every 48 h to ensure 

the culture conditions were not limiting. The end points in the experimental design 

involved measuring the growth of the cells using SEM after 24 h and 7 days and 

comparing it quantitatively.  

 

2.2.3.1 Cell Morphology 

Morphology (shape and appearance) of the cells was regularly observed by light 

microscope to determine the health of the cells. At the end of the experiment, the 

presence and health of the cells were determined using SEM. After the media was 
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removed, the composites with the cells were washed twice with phosphate buffered 

saline (PBS) and fixed using 2.5% glutaraldehyde in 0.05 M cacodylate buffer at pH 7.4 

for 2h. Fixed samples were dehydrated through a graded series of ethanol and then 

critical point dried.  Samples were mounted on conducting carbon stubs and coated with 

gold in a sputter coater (EMITECH K550, Quorum Technologies, UK).  SEM images were 

collected using a 15 kV accelerating voltage. The observations were conducted 

systematically, starting at a lower magnification (X30) to examine the distribution of the 

cells on the composites, and then at a higher magnification (X1000) to observe the 

morphology of the cell membrane as well as to determine the attachment of cells on the 

composites.   

 

For the quantitative analysis, four random areas was selected from a grid. Another 

grid with 100 coordinates was created and 20 coordinates were chosen at random and 

images taken at the 800x magnification was used to analyse the cell coverage. This was 

performed on all the four coordinates that were randomly selected previously. The 

results were then averaged to differentiate the cell growth between the different samples. 

All the images were process using Image J software (Schneider et al., 2012) 

 

2.2.4 Statistics  

All data are presented as mean ± standard error and were analysed using 

statgraphics software for windows (version XVI.I). After descriptive statistics to 

determine normality, skewness or kurtosis, parametric data were analysed by one way- 

ANOVA followed by a post-hoc LSD test and variance check (Levene’s test). The non- 

parametric data were analysed by a Kruskal-Wallis test. All statistical analysis used a 95% 

confidence limit, so the p values < 0.05 were considered statistically significant. 
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2.3Results  

 

2.3.1 Characterisation of the composite powders  

Figure 2.2 represents the TEM observations of the powders. It is clearly noticed 

that the crystal structure varied between the three phases of calcium phosphate. HA 

crystals appear to be short nano-rods (Figure 2.2A) and the average length (n=25) of the 

crystals was  64.6 ± 26.4 nm. TEM analysis (Figure 2.2B) of DCP shows that they were 

slightly different to HA crystals; being longer than the HA, average mean length (n=25) of 

274.73±75.18nm. They were also wide and flat compared to HA. Figure 2.2C represents 

β-TCP and the crystals appear to be globular with irregular shape. Their size is in the 

micrometre scale and the measurements (n=25) were taken between the widest points 

in the crystal and the average size was 2.5 ± 0.7 µm. 
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A B 

C 

Figure 2.2 TEM images of the three phases of 
calcium phosphate powders synthesised by the 
sol-gel technique. (A)HA crystals forming an 
aggregate (B) DCP crystals are bigger than the 
HA crystals and did not form  aggregates like 
HA crystals (C) β-TCP crystals are in the µm 
scale as they are sintered at high temperature.  
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XRD analysis was performed to determine the crystal structure and phase purity 

of the HA, DCP and β-TCP powders.  XRD patterns of the as synthesized powders are given 

in Figure 2.3. HA and DCP exhibit broad diffraction peaks whereas in β-TCP powder the 

peaks are sharp and narrow. The shift in the peaks between the three composites 

correspond with their respective phases. In HA, a few peaks corresponding to Tricalcium 

phosphate was observed where as in β-TCP presence of α-TCP was observed.  

 

 

 

 

Figure 2.3 XRD analysis of the three phases of calcium phosphate. Different symbols 
represent the peaks corresponding to the different phases in each spectrum.  
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FT-IR spectroscopy is an effective tool for structural and functional group 

investigation at the molecular level. Figure 2.4 (A and B) represents the FTIR absorption 

peaks of the composite powders. All the major characteristic bands of the respective 

powders are observed. FTIR spectrum of HA powder shows the presence of most 

characteristic chemical groups OH- and PO43-, CO32- as well as HPO42- groups that 

characterize non-stoichiometric HA (Figure 2.4 B). It is of interest to note that the 

transmittance peak associated with P2O7 molecules distinctly appeared at 719 cm-1 and 

727 cm-1 in the spectrum of DCP and β-TCP powders. Presence of DCP is confirmed by the 

P-O stretching modes between 900- 1200cm-1. PO43- groups which are characteristic to 

β-TCP are observed in β-TCP powders. In HA IR spectrum, OH- group peaks are observed 

at 600 and 3361 cm-1, but there are no such peaks in the IR spectrum of β-TCP, which 

confirms the complete dissolution of HA phase to β-TCP phase in the powder. 
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Figure 2.4 FTIR spectra for HA, DCP and β-TCP powders. (A) shows the water absorption 
band in HA between 3500 to 2700 cm-1. (B) magnified spectra of (A) depicting all the 
important transmittance peaks from 1600 – 400wavenumber in the three (HA, DCP and β-
TCP) powders.  

 

 

B 

A 



 

62 
 

2.3.2 Characterisation of the final composites 

SEM observation (Figure 2.5) of the final composites show they were porous 

structures. The difference in the crystal structure between the three composites is also 

visible. No PVA clumps were observed in the three composites confirming that the PVA 

had completely dissolved. Different crystal shapes and sizes were observed in β-TCP 

composite similar to the TEM images.   

 

 

  

Figure 2.5 SEM images at various magnifications 
of the composites (A) HA composite, (B) DCP 

composite, (C) -TCP composite. The difference in 
the morphology of the composites (n= 3 
/composite) can be seen with a coating of PVA 
(arrow). SEM images were collected at various 
magnifications to depict the different sizes of the 
composite crystal. 
 

A B 

C 



 

63 
 

FTIR analysis of the final composites (figure 2.6) show that all the peaks present 

in the powders (Figure 2.4) exist in the composites. Two important peaks were verified 

at 2907 cm-1 which attributes to the stretching of CH2 and 1141 cm-1 that is assigned to 

the crystallinity of the PVA. The peaks present in PVA can also be observed in all the 

composites.  

 

Figure 2.6 FTIR spectrum of the final composites. The spectrums shows the 
presence of the PVA in composite, as the peak for OH- at 3200 cm-1 is prominent in all the 
composites.  

 

 

 
2.3.3 Growth and Morphology of cultured cells  

Quantitative analysis (Figure 2.7) of the samples after 24 h and 7 days revealed 

that cell growth on all the three types of PVA-composites (HA, DCP and β-TCP)  were 
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significantly different (one way ANOVA, P ≤0.05) to each other. No statistical difference 

was observed between 24 h and day 7-cell growth within the three different calcium 

phosphate phases. 

 

HA DCP ß-TCP 

C
o

m
p

a
ri

ti
ve

 c
o

ve
ra

g
e

 (
%

)

0

20

40

60

80

100

24 h 

7 days 

a a

b

b

c

c

 

Figure 2.7 Quantitative analysis of the cell growth on the three different types of 
calcium phosphate-containing PVA composites at the two time points, 24h and day 
7.  

 

Initial light microscopy examination of the CHO cells seeded on the 24 well plates 

after 24h revealed no visible signs of cell death due to toxicity or infection. The Ham’s F-

12 media appeared normal (no loss of the pH indicator or excessive cell debris). Light 

microscopy observations showed no signs of deterioration such as necrosis, detachment 

of cells from the substrate, granularity around the nucleus or obvious disruption of the 

cell membrane (i.e., no membrane blebs or cell swelling). A closer observation in the SEM 

(Figure 2.8) after 24 h showed the presence of a monolayer of CHO cells on all of the 

composites. However, the appearance of the cells was different on each composite. The 
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cells on the HA-PVA composite samples were healthy in the size range between 12-14 µm 

with numerous pseudopods and well-defined margins. The cells were flat, had intact 

homogenous cytoplasm, and were flattened on the substrate surface whereas the cells on 

DCP-PVA composites appeared to be rounded and did not have healthy pseudopods as 

seen on HA-PVA composites. The least amount of cells were observed in the β-TCP-PVA 

composites and they did not appear to have a homogenous cytoplasm. However, at the 

end of day 7 it can be seen (Figure 2.8 D and E) that the growth of the cells on the DCP-

PVP is comparable to those on the HA material, with the presence of a multilayer of cells 

whereas the cell growth on β-TCP sample is still limited (Figure 2.8 F).  
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Figure2.8 SEM observation of the CHO cells after 24 h and 7 days. 2.9 A, B and C represents the growth of CHO cells on HA, DCP and β-
TCP after 24 h respectively. D, E and F represents the growth of CHO cells on HA, DCP and β-TCP after 7 days respectively. The images 
are taken in x1000 magnification. The arrows point to the CHO cells on the composites and the difference in the shape of the cells. 

A B C 

D E F 
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2.4 Discussion  

 

The pilot study was undertaken to determine the difference in the 

biocompatibility of the different phases of calcium phosphate and to elucidate the factors 

contributing to the biocompatibility of the material. Three phases of calcium phosphate 

powders (HA, DCP and β-TCP) were synthesized using the wet sol-gel technique and the 

final composites were produced by mixing the powders with PVA in an equal ratio. The 

biocompatibility of the composites was tested with CHO cells for 24 h and 7days, at the 

end of which the composites with the cells were observed under SEM and quantitatively 

analysed. The main findings of this study was that  HA  was the most biocompatible phase 

of calcium phosphate and the sintering temperature plays a crucial role in determining 

the morphology of the crystals, which in turn affects the biocompatibility properties of 

the final composite. 

  

2.4.1 Characterisation of the calcium phosphate powders and composites  

The need to characterize the calcium phosphate powders and composites prior to 

any in vitro study is crucial, especially due to the potential unintentional synthesis of 

other phases of calcium phosphates. The powders were analysed using XRD, FTIR and 

observed by TEM (Figures 2.3 2.4 and 2.2) and the final composites were examined by 

SEM and FTIR (Figures 2.5 and 2.6).   

 

The XRD patterns of HA and DCP (Figure 2.3) exhibits broad diffraction peaks 

indicating low crystallinity or more likely nanocrystalline, whereas, high intense peaks 

were observed in β-TCP powder. This is in accordance with Okazaki et al. (Okazaki et al., 

1981), who have stated that the XRD patterns becomes intense with increasing sintering 
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temperature which means that the crystallinity of the synthesized powders increases 

with temperature. However, no reference material was analysed and the peaks were only 

compared against published data.  XRD is a semi quantitative method as it uses the height 

of the individual 2ϴ peaks in relation to each other to determine the approximate 

minerals in the powders whereas FTIR spectroscopy is a physical process, which is based 

on the interaction of the infrared radiation with the material. Functional groups such as 

CO32-, OH- , PO43- groups have a specific absorption ranges in the FTIR Spectroscopy 

method. By combining XRD and FTIR it is possible to determine the true composition of 

the materials and also to correlate them with the chemical composition. Comparison of 

the FTIR analysis of the HA powder and composite (HA-PVA) shows the presence of most 

characteristic chemical groups that characterize non-stoichiometric HA (Figure 2.4 and 

2.6).  Additional peaks can be seen at 1086cm-1 in the HA composite which can be 

attributed to the interaction with PVA. These spectra also demonstrate low crystallinity 

degree, which resonates with the TEM observation and XRD analysis. The band shape, 

width and intensity differ between the powders and composites due to the bonding 

between the PVA and the respective powders. Similarly, the characteristic peaks of the 

DCP and β-TCP composites were also observed confirming the desired phases of calcium 

phosphate were produced.  

 

2.4.2 Biocompatibility effect of the composites  

When implanted in the human body, bone implants should provide cell anchorage 

sites and structural guidance to form a new bone.  The viability of the cells were evaluated 

qualitatively and quantitatively using SEM microscopy (Figure 2.7 and 2.8). Many 

fibroblasts were easily visible on all the specimens. However, their appearance was 

different on each material suggesting that some composites were better for cell growth 
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and that the different phases of calcium phosphate may elicit toxic reaction from the cells. 

The results (Figure 2.7 and 2.8) show that HA has better biocompatibility compared to 

DCP and β-TCP. There could be two possible explanations to this, whilst it is known that 

the shape and size of the particles contribute to the bioactivity of the materials, the 

chemical composition and presence of functional groups also play a vital role(Galea et al., 

2013). Natural HA has a hydroxyl ion channel which runs straight through the centre of 

the basal plane of its hexagonal lattice and parallel to its c-axis which is responsible for 

its extraordinary characteristics (Uskoković, 2015). Synthetic HA has an additional OH 

group which is not present in the other two types of the calcium phosphates. The 

presence of the additional OH- is thought to enhance the adhesion and proliferation of 

the CHO cells (Barrère et al., 2006). Another possibility is the similarity with the non-

stoichiometric HA which occurs naturally in bone. A healthy cell should be flat with 

extending pseudopods which is not observed in the morphology of the cells grown on 

DCP composite suggesting that the cells are under stress which could be due to higher 

phosphoric content in the composite compared to the HA.  Of all the materials studied, β-

TCP exhibited the least compatibility (Figures 2.7 and 2.8). It is possible that the size of 

the crystals may have affected the cell growth. This is in accordance with (Coathup et al., 

2013) who suggests that adhesion and proliferation of osteoblast cells increases when 

the crystal size is decreased.  

2.5 Conclusion  

The pilot study was undertaken to observe cell response to the various phases of 

Ca-P. HA-PVA composites showed better biocompatibility with the composites from 24 h 

whereas DCP was comparable to HA only by day 7. Based on the results, HA composite 
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was chosen to be improved further by reinforcing it with carbon nanotubes and to make 

it antibacterial with the addition of silver nanoparticles.  
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3. Synthesis and characterization of silver 

nanoparticle decorated carbon nanotube- 

hydroxyapatite nanocomposites   
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3.1 Introduction 

Since bone is a typical example of a nanocomposite, designing bone graft in the 

form of nanocomposite is perceived to be beneficial over single phase and 

microcomposite materials. Nanocomposites are usually made of at least two components; 

the basic matrix and the reinforcement. In bone implants, the reinforcement serves to 

improve the strength of the nanocomposite by blocking the growth of cracks in them. This 

can be achieved by employing a material which has a high aspect ratio: since the higher 

the aspect ratio, the better the reinforcement(Li et al., 2005). It is because of this reason 

long thin fibres reinforce better than particulates. In addition to impeding the growth of 

cracks, the reinforcement should also bear most of the applied load. One such 

reinforcement is carbon nanotubes (CNTs). Apart from reinforcement, CNTs have the 

potential to be used in targeted drug delivery (Liu et al., 2010). Therefore, in the case of 

HA-CNTs nanocomposites, synthetic HA matrix reinforced with CNTs can be anticipated 

to not only be bioactive and strong, but also be able to deliver drugs and antimicrobial 

agents.  

Silver ions and silver based compounds are highly toxic to microorganisms. Silver 

nanoparticles (Ag NPs) can be synthesised by chemical reduction using organic or 

inorganic reducing agents and can be attached to the sidewalls of the MWCNTs. The slow 

release of silver from the composites over a long period will reduce / prevent infection 

following surgery.  So far, only one study led by Herkendell et al (2014) has been 

published relating to the development of Ag NPs-MWNCTs-HA composites that are also 

antimicrobial (See chapter 1, section 1.4). This chapter details the synthesis of the Ag NPs-

MWNCTs-HA nanocomposites, their characterisation, mechanical properties and their 

behaviour in aqueous media.    



 

73 
 

3.2 Materials and methods  

In order to study the effect of Ag NPs decorated MWCNTs in synthetic HA 

nanocomposites, 4 different types of nanocomposite powders were produced using 

pristine (as produced) and functionalised (oxidised with nitric acid) MWCNTs with two 

types of surfactants - Poly Vinyl Alcohol (PVA) and Hexadecyl trimethyl ammonium 

bromide (HTAB) as follows: 

 1.  Ag NPs-p-MWCNTs-PVA – (HA +Ag NPs-Pristine MWCNTs + PVA)  

2. Ag NPs-f-MWCNTs-PVA – (HA + Ag NPs -Functionalized MWCNTs + PVA)  

3. Ag NPs -p-MWCNTs-HTAB – (HA + Ag NPs -Pristine MWCNTs + HTAB)  

4. Ag NPs-f-MWCNTs-HTAB – (HA +Ag NPs- Functionalized MWCNTs + HTAB) 

5. Pure HA composites (control) 

The nanocomposite powders were then mixed with PVA to produce the final 

composites. Analytical grade reagents from Sigma Aldrich were used throughout the 

production process. 

 

3.2.1 Functionalization of MWCNTs   

Pristine MWCNTs are insoluble in water and most solvents owing to their 

tendency to agglomerate due to their high aspect ratio and high surface energy. CNTs that 

have been chemically functionalised by oxidation are more soluble than pristine 

nanotubes, and are more easily incorporated into nanocomposites.  Commercially 

supplied MWCNTs (shenzen Nanotech port, China) with a diameter of 10 -30 nm, length 

5 -15 μm and ≥ 95% purity (manufacturer’s information) were functionalised in house 

using concentrated nitric acid (Sigma Aldrich,Dorset, UK)  following an established  

protocol (Datsyuk et al., 2008). Briefly, 0.3 g of the as-received MWCNTs was mixed with 

25 ml of 14.5M concentrated nitric acid and refluxed at room temperature for 48 h.  The 
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resulting dispersion was then filtered through a Whatman® glass microfiber filter paper 

(WHA1827070, Sigma Aldrich, Irvine, UK) with pore size 1.5 µm and washed in deionised 

water until neutral pH was achieved.  The sample was then dried in a vacuum at 40 °C for 

24 h.  

 

3.2.2 Decoration of Ag NPs onto pristine/ functionalized MWCNTs  

The decoration of Ag NPs onto the surface of MWCNTs was carried out according 

to the protocol by Xin et al (2011) with some modifications.  Silver Nitrate (AgNO3) was 

reduced to Ag NPs using N,N-Dimethylformamide (DMF) (437573, Sigma Aldrich, Dorset, 

UK) as a reductant as shown in equation below 

 

HCON (CH3)2 + 2Ag+ + H20    2Ag + (CH3)2NCOOH+2H+ 

 

Briefly, 0.5 g of pristine / functionalized MWCNTs and 0.2 g of PVA (MW- 85,000-

124,000, 363146, Sigma Aldrich, Dorset, UK) or HTAB (36932, Sigma Aldrich, Dorset, UK) 

was added to 260 ml of DMF and the mixture was subjected to ultasonication for 1h. The 

pH value was adjusted to 6.0 using nitric acid (a few drops of 0.1 mol/l HNO3). To achieve 

the optimal decoration of the MWCNTs with silver nanoparticles, 60 ml of 10 mmol/l 

AgNO3  solution was added dropwise to the mixture and was stirred vigorously for 1 h at 

60 - 62 °C. Following this, the solution was kept aside without stirring at room 

temperature for 48 h for the silver to deposit on the MWCNTs. The final product was 

obtained by filtration using  Whatman® filter paper (WHA1001070, Sigma Aldrich, Irvine, 

UK) with pore size of 11 µm and washed with ethanol, water, acetone and left to dry in a 

vacuum chamber at 90 °C for 48 h.  
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3.2.3 Preparation of HA-Ag NPs-MWCNTs powder (precipitation of HA on Ag-

MWCNTs)  

In order to obtain maximum mechanical strength, nanocomposites containing 0.5 % 

weight percentages of Ag NPs-MWCNTs were produced using the sol-gel technique 

(Figure 3.1). The amount of MWCNTs needed for each batch was calculated relative to the 

expected amount of HA. For example, 0.05 g of MWCNTs was used for a batch expected 

to produce 10 g of HA with 0.5 wt.% of MWCNTs so the total mass of the powders would 

be 10.05 g. Figure 3.1 is a schematic representation of the sol-gel process used to produce 

the powders.  

  

Figure 3.1 Schematic representation of the sol-gel technique used for the synthesis 
of pure HA (control) and the four different types of composites containing Ag NPs 
and MWCNTs.   

 

To produce the nanocomposite powders, HA must be nucleated on the walls of the 

Ag NPs -MWCNTs in the presence of the surfactant. In a typical experiment, to produce 
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10 g of the nanocomposite powder, 0.005 g of PVA (MW- 70,000-100,000, Sigma Aldrich, 

UK) or 0.005 g of HTAB (Sigma Aldrich, UK) was added to 100 ml ultrapure water. 0.05 g 

(0.5 wt. %) of pristine or functionalized Ag NPs - MWCNTs were added to the mixture 

which was sonicated at 50-60 Hz (Metason 120T, Struers, UK) for 30 min at room 

temperature until all the Ag NPs - MWCNTs were dispersed. Then, HA was nucleated in 

to the dispersion by the addition of 200 ml of 0.1 M calcium acetate and 0.06 M of 

ammonium phosphate to obtain a final calcium: phosphate ratio of 10:6, normally 

expressed as 1.67. The solution was stirred at the rate of 900-1000 rpm using a magnetic 

stirrer (dial setting 9, Hotplate/stirrer, RCT basic, IKA Oxford, UK). While stirring, the pH 

of the solution was checked periodically and maintained at 9.5-10 by the addition of 6M 

sodium hydroxide solution. The solution was stirred for 1h and left to mature for 24 h at 

40 °C. The resulting dispersion containing the HA nucleated on the MWCNTs was then 

filtered through Whatman® filter paper (WHA1001070, Sigma Aldrich, Irvine, UK) with 

pore size of 11 µm and the precipitate was washed with ultrapure water which was 

subsequently dried under a vacuum at 60 °C for 24 h. The dry precipitate was manually 

crushed with a glass mortar and pestle to make a fine powder and was then sintered at 

100 °C for 8h.  

 

In order to obtain pure HA powders, the process above was conducted exactly the 

same, but without the addition of the MWCNTs. A pilot study was conducted for the 

synthesis of the pure HA with the addition of PVA and HTAB to determine its effect on the 

crystal growth. Based on the results obtained, 0.5 wt% of PVA was added during the sol-

gel synthesis of pure HA to obtain the crystal structure that is similar to natural bone.  
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3.2.4  HA-Ag NPs- MWCNTs composite 

The nanocomposite powders obtained from the above method was used to 

prepare the final composites which were produced following established protocols in 

Plymouth University laboratory (Natesan et al., 2015). Briefly, 1 g of the calcined 

nanocomposite powder was mixed with 1 ml of 20 % PVA at room temperature. The 

mixture was inserted and packed in a cylindrical mould whose ends were blocked with 

short cylinders. Different size of composites  were produced for mechanical and 

biocompatibility tests . This was done to comply with the international testing standards 

(see below) for mechanical tests and to ensure that the composites fits in a 24 well plate 

(each well = 15 mm diameter) for biocompatibility and antibacterial tests. Pressure was 

applied on top of the cylinders using mechanical mini pellet press (GS03940, Specac, Kent, 

UK) which in turn, compressed the sample inside the mould. The pressure applied on 

each sample was equivalent to 26 MPa which was held for 1 minute after which, the 

aluminium cylinders were removed from the moulds. The samples were placed in an oven 

at 40 °C for 48 h to dry.  Afterwards, the samples were carefully removed from the moulds 

and stored at room temperature, until required for mechanical testing and 

biocompatibility studies.  

 3.3 Characterisation of the composite materials 

Physico-chemical characterisation was performed at several steps in the synthesis 

of the composites including the original materials and their functionalised forms in 

dispersions and the resulting powers that were compressed into pellets to make the final 

composite. In addition to the manufacturer’s information, the MWCNTs were examined 

by electron microscopy for their appearance and primary size. XRD is the most common 

technique to determine crystal structures and atomic spacing and was used to identify 
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the phase purity of the produced nanocomposite powders and FTIR analysis was 

performed to detect the functional groups and characterise covalent bonding information. 

The protocols used for the XRD and FTIR measurements is previously described in 

Chapter 2 (sections 2.2.3.2 and 2.2.3.3)  

 

3.3.1 SEM and TEM analysis  

To confirm the primary dimensions (length, tube diameter) and morphology (stiff 

or flexible tubes that form bundles) the MWCNTs as supplied by the manufacture were 

examined by transmission electron microscopy. Batches of the functionalized MWCNTs 

prior to making the nanocomposite powder were also examined followed by examining 

the nanocomposite powders to analyse the morphology of the HA crystal. Briefly, in a 

separate run, approximately 0.05 g of the material to be analysed (pristine MWCNTs, 

functionalised MWCNTs and nanocomposite powders) were dispersed separately in 

distilled water and sonicated for 5 min which was used as the stock solution. All electron 

microscope observations were made on 3 sub-samples of each stock. A drop of the 

relevant dispersion was placed on the copper grid and air dried and subsequently 

observed at an accelerating voltage of 120 kV using a high resolution TEM (JEOL 1400, 

JEOL ltd, Japan). On each specimen, 30 random images were collected for quantification 

of dimensions of the materials.  The images were processed using image J software 

(Windows version) to measure the length and diameter of the tubes. The same process 

was used to analyse the shape, size and growth of the HA crystals around MWCNTs 

powder.   

 

Due to their carbonic nature and presence of Van der Waals force, the tubes are 

hydrophobic and exhibit low dispersibility in water and other organic solvents. To 
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observe the wettability of the MWCNTs and to determine the effect of the surfactants on 

the MWCNTs, pristine and functionalised MWCNTs were dispersed in 5ml of deionised 

water along with PVA and HTAB.  In a clean glass bottle, 0.05 g of pristine and 

functionalised MWCNTs were added to 5 ml deionised water. To this 0.005g of PVA and 

HTAB was added. A separate glass bottle containing only pristine and functionalised 

MWCNTs was taken as control.  Images were taken immediately and then sonicated for 

30 min. Following sonication, the images were taken again and the bottles were left 

undisturbed for 1 week. Images were taken again and compared to day 1 images.     

 

3.3.2 Dialysis Experiment 

Ag NPs may release Ag+ ions by dissolution and in order to enable interpretation 

of the Ag NPs response to the bacteria and osteoblast cells  in this study, a dialysis 

experiment was done to measure the dissolution rate of the Ag NPs in simulated body 

fluid  (SBF). The degradation (if any) of the composites in SBF was also studied by 

measuring the concentration of the electrolytes Na+, K+, Ca2+, Mg2+, and P.  Table 3.1 

details the ion concentration of SBF (Kokubo et al., 1990) compared with  human blood 

plasma.  
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Table 3.1 Comparison of the ion concentration of the prepared SBF and  human blood 

plasma.  

Ion Simulated body fluid 
(mmol/l) 

Human blood plasma 
(mmol/l) 

Na+ 142.0 142.0 

K+ 5.0 5.0 

Mg2+ 7.5 7.5 

Ca2+ 2.5 2.5 

Cl- 147.8 147.8 

HCO3
- 4.2 4.2 

HPO4
2- 1.0 1.0 

SO4
2- 0.5 0.5 

 

The appropriate ion concentration of SBF was obtained by adding appropriate 

amount of salts listed in Table 3.2 in 1l of deionised (Milli-Q) water. The pH was adjusted 

to 7.25 using a few drops of sodium hydroxide (2 M) 

 

Table 3.2 Concentration of each salt added to 1l of Milli-Q water.  

Salt g/mol g/l 

Ammonium dihydrogen phosphate 115.03 0.115 

Calcium nitrate 236.15 0.59 

Magnesium Chloride Hexahydrate 203.3 0.305 

Sodium Chloride 58.4 8.39 

Ammonium Sulfate 131.14 0.066 

Ammonium Hydrogen Carbonate 79.06 0.332 

Potassium Chloride 74.55 0.373 
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The dialysis method was based on Handy et al (1989) with modifications for 

composites. Briefly, the composites, identical to those used for the biocompatibility and 

antibacterial studies were prepared as mentioned above. All glassware and dialysis 

tubing had been acid washed (5% nitric acid) and triple rinsed in deionised (Milli-Q) 

water. Before the start of the experiment, the dialysis tubing ( D9777, cellulose 

membrane with molecular weight cut off at 12,000 Da, Sigma Aldrich, Dorset, UK) with 

an approximate exclusion size of 2.5 nm was used to make 70 mm long x 25 mm wide 

dialysis bags  and were soaked in deionised (Milli-Q) water for 10 mins. Following that, 

the appropriate composites were placed inside the tube and filled with 8 ml of SBF 

ensuring that the composites were immersed in SBF.  The ends of the bags were secured 

with mediclips to prevent leaking which were also previously acid washed. The filled 

dialysis bags were then placed immediately in a beaker containing 492 ml of SBF 

(bringing the total volume to 500 ml). Care was taken to use beakers of identical 

shape/size for the experiment (n = 3 per treatment and control).  Three beakers were 

also set up for reference control containing only SBF without the presence of any 

composites. The solutions in the beakers were gently agitated with a multipoint magnetic 

stirrer (RO 15P power, IKa-Werke GmbH & Co. KG, Staufen, Germany) for 24 h at room 

temperature. Samples of the external SBF (4.5ml) from each beaker was taken at 0, 30 

min, 1, 2, 3, 4, 6, 8, 12, and 24 h. At the end of the experiment, the remaining contents of 

the dialysis bags were also collected. Total concentrations of Ag, Na+, K+, Ca2+, Mg2+, and 

P were measured by  Inductively coupled plasma mass spectrometry (ICP-MS) and 

Inductively coupled plasma optical emission spectrometry (ICP-OES, Varian 725-ES, 

Melbourne, Australia fitted with v-groove nebuliser and Sturman-Masters spray 

chamber). The pH of the samples and the temperature of the media in the beakers was 

also measured during the experiment.  



 

82 
 

3.4 Mechanical testing 

Mechanical tests were performed to determine the tensile and compressive 

strength (CS) of the produced composites. 

3.4.1 Tensile strength  

To determine the tensile strength, the diameteral tensile strength (DTS) method 

was used (Bresciani et al., 2004). For each material, ten replicates of the final composites 

were prepared as explained in section 3.2.4 (HA-Ag NPs- MWCNTs composite). The 

dimensions of the composites were 6.0 mm diameter x 3.0 mm height for the DTS test. 

The specimens were tested under compressive load in a universal testing machine (3300 

single column Instron, Wycombe, UK) at a crosshead speed of 0.5 mm/min.  Load was 

applied vertically on the lateral portion of the cylinder, producing tensile stress 

perpendicular to the vertical plane passing through the centre of the specimen (Della 

Bona et al., 2008). The DTS was calculated as follows:  

𝐷𝑇𝑆 = 2𝐹/𝜋𝑑ℎ 

Where, F is the load applied; d is the diameter of the composite; h is the height of the 

composite; π = 3.14 (constant) 

 

3.4.2 Compressive strength  

Similar to the tensile strength five replicates of each final composite were 

produced and the dimensions of the composites were 6.0 mm diameter x 12.0 mm height. 

The specimens were placed in a vertical position, with the force incident on the long axis 

of the specimen. The specimens were tested under compressive load in a universal testing 

machine (3300 single column Instron, Wycombe, UK) at a crosshead speed of 1.0 

mm/min for compressive strength.  
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3.5 Material Characterisation results  

3.5.1 Carbon nanotube characterisation  

Morphology and quality of the MWCNTs was studied using TEM. Figure 3.2 shows 

that both, pristine and functionalized MWCNTs demonstrate a high aspect ratio. On closer 

observation (Figure 3.2 C and D), the central hollow portion was clearly visible in both 

the pristine and functionalised MWCNTs which confirms that they are hollow 1D 

structures.  The pristine MWCNTs appeared entangled due to the presence of strong Van 

der Waals force whereas functionalization with strong acid made the bundles exfoliate 

and curl. The average length and diameter of the tubes are presented in Table 3.3. While 

the diameters of the MWCNTs was easily be measured by Image J software from the TEM 

images, measuring the length of the MWCNTs was not as straightforward. This is because 

the MWCNTs were long and entwined making  it difficult to identify entire individual 

strands. Care was taken to measure only the length of individual tubes which were 

separate at the edge of the clusters. It is likely that this is the lower estimate of the length, 

as within the clusters, no MWCNTs of similar lengths could be found, despite it being 

possible to follow along the length of many CNTs through the visible part of the image.  
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Figure 3.2 TEM micrographs of MWCNTs (A) as received Pristine MWCNTs depicting the 
clusters, (B) oxidised MWCNTs following functionalization with strong nitric acid, (C) higher 
magnification of pristine MWCNTs depicting the hollow tubes, (D) higher magnification of 
functionalised MWCNTs .  

Table 3.3 Average diameter and length of Pristine and functionalised MWCNTs 

MWCNTs Average Diameter (nm) Average Length (µm) 

Pristine 27.8 ± 12  2 ± 2.13 

Functionalised  23.7 ± 10.7 1.10 ± 1.21 

The data represents the average diameter and length of the MWCNTs. Data are 
mean ± S.D (n = 100 measurements). TEM images were processed through Image J 
software to obtain the measurements.  

A B 

C D 
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 The homogeneity of the composites depended on the wettability and 

dispersability of the MWCNTs in the matrix. This was observed by dispersing MWCNTs 

in water and observing the difference in the wettability and dispersion of the MWCNTs 

in the presence of the surfactants. Figure 3.3 and 3.4 shows the dispersion of the pristine 

and functionalised MWCNTs in Milli-Q water with and without the surfactants. Three 

elements affected the dispersability of the MWCNTs: 1) whether the MWCNTs were 

functionalised or pristine; 2) the presence or absence of surfactants and 3) the type of 

surfactant used (PVA or HTAB). Functionalisation of the MWCNTs with strong nitric acid 

adds functional bonds to the sidewalls and tips of the MWCNTs, which was intended to 

improve the wettability and dispersion of the MWCNTs in water. This was demonstrated 

in Figure 3.4 B.  The figures 3.3 and 3.4 shows that pristine and functionalised MWCNTs 

without the addition of surfactants will result in heterogeneous dispersion. After 1 week, 

no real difference was observed in the dispersion of the functionalised MWCNTs with and 

without the presence of PVA or HTAB (Figure 3.4). The dispersion of pristine MWCNTs 

without the surfactants exhibits hydrophobicity and they are adhered to the walls of the 

bottle (Figure 3.3). 
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Figure 3.3 Comparison of the wettability and disperability of the pristine MWCNTs. From 
left to right –p- MWCNTs Control, without the presence of surfactants, p- MWCNTs with 
HTAB, p- MWCNTs with PVA. (A) Dispersion of MWCNTs immediately after adding it to 
water, (B) dispersion of MWCNTs after sonicating for 30 min, (C) dispersion of MWCNTs after 
1 week.  

 

 

 

 

 

Figure 3.4 Comparison of the wettability and disperability of the functionalised  
MWCNTs. From left to right –f- MWCNTs Control, without the presence of surfactants, f- 
MWCNTs with HTAB, f- MWCNTs with PVA. (A) Dispersion of functionalised MWCNTs 
immediately after adding it to water, (B) dispersion of MWCNTs after sonicating for 30 min, 
(C) dispersion of MWCNTs after 1 week

A B 

C 

A B 

C 
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3.5.2  Ag NPs-MWCNTs  Characterisation 

The interaction between the Ag NPs and MWCNTs is crucial to obtain the optimal 

silver release over a period of time for the composites to prevent bacterial colonisation. 

Figure 3.5 shows the presence of Ag NPs and their interaction with the pristine and 

functionalised MWCNTs.  

  

Figure 3.5 TEM images of Ag NPs-MWCNTs (A and B) shows Ag NPs-p-MWCNTs (C and D) 
shows Ag NPs-f-MWCNTs .Arrows point to the Ag NPs.   

 

A B 

C D 

Ag NPs 

Ag NPs 
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Figure 3.5 D shows  silver nanaoparticles decorating the sidewalls of f-MWCNTs. 

Compared to the interaction between the Ag NPs and f-MWCNTs, the interaction between 

the Ag NPs and p-MWCNTs (Figure 3.5 A and B) was low.  

 

3.5.3 HA-Ag NPs-MWCNTs powders characterisation  

The mechanical properties and biocompatibility of the final composites were 

determined by the morphology and physico-chemical characteristics of the 

nanocomposite powders. The powders were analysed by TEM, XRD and FTIR. TEM 

analysis (Figure 3.6) of the nanocomposite powders shows the presence of nano HA in all 

the samples. The effect of the surfactants on the morphology of the crystals is shown 

(Figure 3.6). The HA crystals exhibited the typical needle-like-shape morphology similar 

to natural HA in pure HA, p-MWCNTs-PVA and f-MWCNTs-PVA (Figure 3.6 A, B, C) 

nanocomposite powders.  The crystals in p-MWCNTs-HTAB and f-MWCNTs-HTAB 

nanocomposite powders exhibited short nano-rod morphology. The difference in length 

is detailed in Table 3.4 with the pure HA powder exhibiting maximum size and the 

powders containing HTAB surfactant exhibiting the least size. The degree of interaction 

between the HA and the MWCNTs can also be observed in the images. Figure 3.6 B shows 

a cluster of MWCNTs which is not completely surrounded by HA. This shows the weak 

interaction between the HA and p-MWCNTs whereas the interaction between HA and f-

MWCNTs is comparatively higher which is due to the presence of functional groups. 

Functionalisation tends to break open the ends of the MWCNTs which is also visible in 

Figure 3.6 C.  
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Table 3. 4 Average HA crystal size of the nanocomposite powders  

Composite powder Average HA crystal size 
(nm) 

HA (Control) 130.12 ± 127.4 

Ag NPs-p-MWCNTs-PVA 87.16 ± 36 

Ag NPs-f-MWCNTs-PVA 80.6 ± 22.4 

Ag NPs-p-MWCNTs-HTAB 62.6 ± 18.3 

Ag NPs-f-MWCNTs-HTAB 52.4 ± 13 

The data represents mean ± S.D (n = 20 measurements per composite powder). TEM 
images were processed through Image J software to obtain the measurements. 
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C D 

Figure 3.6 TEM images of composite 
powders (A) Pure HA crystals with the 
appearance of needle shape; (B) p-MWCNTs-
PVA shows clusters of long nanotubes with 
needle like HA; (c) f-MWCNTs-PVA shows the 
growth of HA crystal around the CNTs; (D) p-
MWCNTs-HTAB shows that the crystals have 
not obtained the needle structure but have a 
rod shape (on closer observation); (E) f-
MWCNTs-HTAB indicates that CNTS are not 
clustered and also no presence of needle like 
HA crystals.  
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3.5.3.1 XRD analysis  

XRD analysis was performed to determine the crystal structure and phase purity 

of the HA present in the nanocomposite powders. The XRD spectra of the sintered 

powders are shown in Figure 3.7. The data obtained from XRD compliments the TEM 

images which indicates that HA phase was produced in all the samples. Broad diffraction 

peaks are observed in all the nanocomposite powders indicating presence of 

nanocrystals. However, no peaks corresponding to the presence of Ag NPs and the 

graphite in MWCNTs  were detected suggesting that either the sensitivity limit of the XRD 

does not allow the detection of the small volume fraction of MWCNTs or MWCNTs have 

reacted completely with HA. Thus, other methods were employed to confirm the presence 

of residual Ag NPs-MWCNTs in the composites.  
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Figure 3.7 XRD analysis of the nanocomposite powders. (A) XRD peaks data for HA from 

ICDD ref: 9-432(Shahabi et al., 2014)(B) XRD analysis of the powders (i) Pure HA –control ;(ii) 

p-MWCNTs-PVA ; (iii) f-MWCNTs-PVA; (iv) p-MWCNTs-HTAB ; (v) f-MWCNTs-HTAB. The 

peaks observed in the powders correspond to reference from ICDD.   

A 
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3.5.3.2 FTIR  analysis  

The FT-IR spectroscopy is more sensitive than XRD and is an effective tool for 

structural investigation and to study the hydroxylation of HA after heat treatment. The 

FTIR data are represented in the Figure 3.8 and was performed for each batch of material. 

The expected peaks and observed peaks are presented in Table 3.5.  All the peaks were 

present in the expected location. Additionally, a peak at 2917 cm-1  was observed in all 

the powders except the pure HA . This is due to C-H bond in which is expected from the 

presence of MWCNTs. The intensity of the peaks suggest chemisorption nature of the 

bond. 

Table 3.5 FTIR peak assignment of HA 

Wave number 
expected (cm-1)  

Wave number 
observed (cm-1)  

Assignment  

3572 3567 Stretching of OH 

3450;1640 3343;1567 Stretching and bending mode of H2O  

1460;875 1454;875 Impurities (CO32-) 

962 962 stretching of HPO42- 

1046;1087 1021 Symmetric stretching of PO43- 

565;606 560;600 Symmetric stretching of PO43- 
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Figure 3.8 FTIR spectra of  composite powders .(I) Pure HA, (II) HA-Ag NPs-p-MWCNTs-
PVA, (III) HA-Ag NPs-f-MWCNTs-PVA, (IV) Ag NPs-p-MWCNTs-HTAB, (V) Ag NPs-f -MWCNTs-
HTAB powders. Note the presence of C-H bond in all the powders except Pure HA due to the 
presence of MWCNTs. The arrows point to the absorbance peaks for the functional groups 
present in the powders. 

3.5.4 HA-Ag NPs-MWCNTs composites characterisation  

3.5.4.1 SEM and FTIR analysis of the final composites 

The interaction between the HA, MWCNTs and PVA in the final composite is crucial 

in determining the mechanical strength of the composites. The interaction was 

investigated using SEM and FTIR analysis, while the degradation or dissolution of the 

composites in aqueous medium was analysed by performing the dialysis experiment in 

SBF. Figure 3.9 represents the SEM images of the final composites. The composites were 

examined following the mechanical test to study the interaction of the HA, MWCNTs and 

PVA within the composites. Figure 3.9A shows that the pure HA crystals were densely 
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A B 

C D 

E 
Figure 3.9 SEM observation of the 
composites (A) Pure HA crystals, (B) Ag NPs-p-
MWCNTs-PVA, (C) Ag NPs-f-MWCNTs-PVA, (D) 
Ag NPs-p-MWCNTs-HTAB, (E) Ag NPs-f-
MWCNTs-HTAB. Arrows point to the bridges 
formed by the MWCNTs in areas of crack 
formation. 

packed and with no clumps of PVA visible in any of the composites. It can be seen that 

MWCNTS were forming bridges between the dense HA crystals where a crack has been 

formed in all the composites but no HA or Ag NPs are observed around the exposed parts 

of the MWCNTs.  
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FTIR analysis of the final composites were performed to determine the bonding 

between the powders and the PVA. Figure 3.10 represents the FTIR spectra for the 

composites and the reference peak for PVA.  Similar to the powders, all the important 

peaks corresponding to HA were present in the expected positions. The peak 

corresponding to the MWCNTs was not visible. However, the peaks corresponding to PVA 

was observed in all the composites.  

 

Figure 3.10 FTIR spectra of final composites.  (I) pure HA composite, (II) Ag NPs-p-
MWCNTs-PVA, (III)Ag NPs-f-MWCNTs-PVA, (IV)Ag NPs-p-MWCNTs-HTAB, (V) Ag NPs-f-
MWCNTs-HTAB,  (VI)PVA (reference). The arrows point to the absorbance peaks for the 
functional groups present in PVA . 
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3.5.4.2 Dissolution of silver from the composite materials  

The dialysis experiment was conducted to determine the release of silver from the 

composites and the possible degradation of the composites in SBF. The results of the 

dialysis experiment showed that the total Ag release was high from composites 

containing p-MWCNTs. Overall, the maximum total dissolution from the composites was 

around 6 ug/l or less (Figure 3.11A).  The concentration of Ag in the beaker was 3.3, 0.2, 

2.2, 0.6 µg/l from p-MWCNTs-PVA, f-MWCNTs-PVA, p-MWCNTs-HTAB, f-MWCNTs-HTAB, 

respectively at the end of the first hour of the experiment.  The saturation point for Ag 

release from the composites containing p-MWCNTs was reached by the sixth hour 

whereas the concentration of Ag in the beaker had not levelled out even after 24 h in the 

composites containing f-MWCNTs. 

To investigate the effect of the composites on electrolytes and to determine the 

degradation of the composites, the concentration of electrolytes (Calcium, potassium, 

magnesium and phosphorus) were also measured over 24 h (Figure 3.11). The results 

show a reduction in the concentration of calcium in the SBF from the beaker for all the 

composites (Figure 3.11 B) whereas no major changes in the concentration of 

phosphorus was observed (Figure 3.11 D). Similar to calcium, the concentration of 

magnesium  decreased over time whereas potassium stabilized after 4h (Figure 3.11 C 

and E). 
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Figure 3.11  Dialysis curve showing the total release of (A) silver (µg/l), (B) Calcium (mg/l), 
(C) Magnesium (mg/l), (D) Phosphorus (mg/l), (E) Potassium (mg/l) from the different 
composites through dialysis tubing into the external SBF of the beakers. Data expressed as 
mean ± S.E.M (n= 3 per treatment). Curves were fitted to the mean data points shown using 
a single rectangular hyperbola function in SigmaPlot version 13. 

3.6 Mechanical strength results   

 

The tensile and compressive strength test results of pure HA nanocomposites 

(control) and all the treatments (Ag NPs-p-MWCNTs-PVA, Ag NPs-f-MWCNTs-PVA, Ag 

NPs-p-MWCNTs-HTAB, Ag NPs-f-MWCNTs-HTAB) after 48 h curing are presented in 

Figure 3.12. The tensile strength of all the composites were significantly higher than the 

pure HA composites. There was a significant difference in the tensile strength between 

all the composites. The maximum tensile strength was observed in the composite made 

of p-MWCNTS-PVA which was an increase of 215 % compared to the pure HA composite. 

The least tensile strength among the composites containing MWCNTs was observed in 

the p-MWCNTs-HTAB which was 49 % less than the p-MWCNTS-PVA composite.  

E 
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However, the maximum compressive strength was observed from the composite made of 

f-MWCNTs-PVA, which was significantly higher than the other composites. This was an 

increase of 100% compared to the pure HA composite. Unlike tensile strength, no 

significant difference in compressive strength was observed between the composites 

containing HTAB surfactant but they were significantly lower compared to the 

composites containing PVA. 
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Figure 3.12 Mechanical strength of the composites. (A) tensile strength of the 
composites after curing for 48 h. (B) Compressive strength of the composites after 
curing for 48 h (n= 5 per composite for each test). * statistically different from the 
control (pure HA composite). Within each test, different letters represent statistical 
difference between the composites. 
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3.7 Discussion  

 

This chapter focuses on the synthesis of the Ag NPs-MWCNTs-HA composites, 

their characterisation and their mechanical properties. The Ag NPs were doped onto the 

MWCNTs which was then dispersed in the presence of PVA or HTAB as a surfactant 

during the synthesis of the HA. The powders were produced by the wet sol-gel technique 

and the final composites were made by mixing 20% PVA with the powders in a 1:1 ratio 

and cured at 40 ° C for 48 h.  Overall, the results show that HA was the primary constituent 

of the powders. The reinforcement of the MWCNTs in the HA matrix improved the 

mechanical properties of the composites.  

 

3.7.1 Interaction between Ag NPs and MWCNTs  

The difference in the interaction between the p-MWCNTs and f-MWCNTs can be 

observed in the TEM images (Figure 3.5). On the surface of the f-MWNTs the Ag NPs were 

uniformly distributed without agglomeration and their sizes were also uniform. The 

oxidation process adds the oxygen containing functional groups such as OH, COOH on the 

surface of the MWCNTs. The functional groups along with the surfactant enables the 

dispersion of the MWCNTs in aqueous media with high stability due to charge repulsion 

and colloidal dispersion. The functional groups introduce more anchoring sites for the 

silver ions. During the reduction process of AgNO3, the Ag NPs anchor to these site 

resulting in their uniform distribution on the outer walls of the MWCNTs. In the case of 

p-MWCNTs, many clumps of Ag NPs were randomly distributed  hence it is possible that 

no uniform bonding between the Ag NPs and MWCNTs existed. Although DMF has an 

oxidation property, the effect was not sufficient to anchor the Ag NPs on the sidewalls of 

the MWCNTs and achieve a uniform distribution. Some Ag NPs were also found inside the 
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MWCNTs which must have formed by the diffusion of the Ag ions into the tubes forming 

silver particles.  

3.7.2 Effect of the surfactants in the dispersion of the MWCNTs and its effect on 

the growth of HA crystals  

Observation by eye were made of the MWCNTs dispersion in water (Figure 3.3 

and 3.4). The f-MWCNTs-HTAB had the most homogeneous dispersion whereas p-

MWCNTs without the addition of surfactants showed the least dispersion. This is because, 

even if the MWCNTs solution was subjected to sonication, the dispersion is unstable and 

the nanotubes rebundled quickly. With the presence of surfactants, when individual 

nanotubes are cleaved from the bundle through the force induced by sonication, the 

surfactant acts on the entire length of the tube in an unzipping mechanism until full 

separation of the tube occurs (Fernandes et al., 2015). The solution then becomes a 

kinetically stabilized colloidal dispersion which is stable due to the presence of steric 

repulsion (Fernandes et al., 2015). The presence of the functional groups on the sidewalls 

of the oxidised MWCNTs aids this process by increasing the wettability of the nanotubes. 

However, the exact mechanism by which the surfactant absorbs on the entire length of 

the MWCNTs is still not clearly understood.  

 

The presence of PVA or HTAB in the Ag NPs-MWCNTs powders cannot be verified 

using XRD and FTIR due to the miniscule amount being used during the synthesis process. 

Furthermore, during the filtration process the surfactants would have been filtered out.   

However, the TEM images (Figure 3.6) show that the surfactants also play a role in 

determining the morphology of the nucleating HA. Surfactants can stabilize the 

nucleating HA and reduce the agglomeration (Zhang and Dong, 2015). The adsorption 

property of the surfactants forms a layer of molecular resistance on the solid liquid 
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interface to stop the collision between the growing grains. Another way to look at this is 

that surfactants lower the surface tension at the interface between the particles.  PVA is 

a non-ionic, polar, water-soluble polymer with -CH, -CH2, and -OH as side groups and 

HTAB is a cationic surfactant with -CH3, -CH2, and -Br. When the calcium source (calcium 

acetate) is added to the solution in the presence of dissolved PVA, the Ca2+ ions attach to 

the OH- group in the PVA and when phosphate source (ammonium phosphate) is added, 

PO43- ions bind to the –OH-Ca2+ group. The PVA then regulates the growth of the HA 

crystals along the c-axis giving the crystals the needle structure (Mollazadeh et al., 2007, 

Rajkumar et al., 2010). In our study, 0.05 wt% of PVA was added to disperse the MWCNTs 

in the solution. This low concentration of PVA has created a positive effect on the 

nucleating HA. However, Rajkumar et al. (Rajkumar et al., 2010) has reported that if the 

concentration of PVA in the solution is increased by 2.5 wt %  it results in the formation 

of crystals with irregular structures combined with a reduction of the crystal size, so high 

concentrations of PVA should be avoided. 

 

Conversely, HTAB is an organic cationic surfactant, which has the same charge 

sign as the nucleating HA which causes a coulombic repulsion (Shiba et al., 2016). 

Coulombic repulsion is the force between like charges as described by Coulomb’s law. 

Hence, the interaction of the surfactant and HA is weaker compared to that of PVA. The 

HTAB molecules are mainly absorbed with their positively charged head group directed 

towards the HA surface. According to Chen et al. (Chen et al., 2004) the absorption density 

of HTAB is higher compared to anionic surfactants. Owing to the higher absorption 

density and the presence of coulombic repulsion, the small HA particles are much more 

stable in the presence of HTAB. 
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3.7.3 Factors contributing to the mechanical properties of the composites 

The main intention of reinforcing HA with MWCNTs was to improve the 

mechanical strength of synthetic HA and to serve as anchorage points for the Ag NPs.  

Significant increase in both the tensile and compressive strength was observed in all the 

composites containing MWCNTs and the maximum tensile strength was observed in the 

composite containing p-MWCNTs. The SEM images (Figure 3.9) of the composites shows 

that the MWCNTs were forming bridges between the cracks.  One main factor that 

contributes to improve the strength of the composite is the interfacial bonding between 

the matrix and MWCNTs (Shin et al., 2011, Khalid et al., 2015).  

 

In biomedical applications, functionalised MWCNTs are preferred since pristine 

MWCNTs tend to agglomerate due to the presence of Van der Waals force (Rosca et al., 

2005, Datsyuk et al., 2008). This reduces the uniform dispersion of CNTs in a composite, 

which in turn might affect the mechanical strength of the composite as the interfacial 

bonding will be affected ultimately affecting the load transfer between the HA and CNTs. 

Furthermore, based on the synthesis technique, pristine CNTs are sometimes covered in 

toxic catalytic metals which were used during the synthesis process. These impurities 

induce the formation of reactive oxygen species in-vitro and causes oxidative damage 

(Chłopek et al., 2006). To purify, breakdown the bundles of CNTs to individual tubes and 

to introduce functional groups on the sidewalls that increase the surface area, CNTs are 

chemically functionalized using strong acids. However, the acidic oxidative treatment 

causes major alteration to the structural properties of the carbon rings. Acid treatment 

introduces structural carbon defects and atomic vacancies that degrade the mechanical 

strength of CNTs by an average value of 15% (Garg and Sinnott, 1998). This effect can be 

observed in the tensile strength of the composite (Figure 3.12). (Rosca et al., 2005) 
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suggest that concentrated acids not only generates functional groups, but also 

amorphous carbon by shortening and thinning of the MWCNTs. These processes cause a 

continuous increase of the defective sites. Thus, most of the short thin MWCNTs in 

pristine MWCTs will be lost during the functionalization process and the long thin 

MWCNTs will be reduced to short thin MWCNTs which affects the mechanical properties 

of the composites.  

 

 Nevertheless, the mechanical behaviour of MWCNTs in composites is much more 

intricate. Various other factors play a crucial role in determining the overall mechanical 

properties of the composite such as the crystal structure of the nucleating HA, the effect 

of surfactants on the nucleating HA , the aging time which includes dissolution of smaller 

crystals to favour recrystallization of the larger ones and the interfacial bonding between 

the HA and the MWCNTs. The results obtained in this study establishes that pristine 

MWCNTs with PVA as surfactant have superior mechanical properties compared to the 

composites with functionalised MWCNTs. It is hypothesised that the presence of PVA as 

a surfactant combined with the longer MWCNTs are contributing factors to the improved 

mechanical strength (since all the other parameters were the same during the composite 

preparation). 

 

3.7.4 Behaviour of the composites in aqueous media  

Since the intended application of the composites is in the human body, it is 

essential to know the behaviour of the composites in aqueous media. Hence, the dialysis 

experiment was conducted by immersing the composites in SBF over a period of 24 h. 

The results shows that maximum release of Ag NPs was observed in the composites 

containing p-MWCNTs (Figure 3.11). This could be because the Ag NPs were not anchored 
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to the sidewalls of the nanotubes resulting in the release within the dialysis tubing. The 

higher presence of Ag NPs in the tube containing p-MWCNTs composites results  in high 

concentration of dissolved Ag ions leaking to the SBF in the beaker.  The Ag NPs could 

easily escape through the pores in the composite which is specifically beneficial as it wold 

immediately prevent the attachment of bacteria following surgery and reduce the 

possibility of infection.  There is a constant decrease in the concentration of calcium over 

the 24 h. This could be either due to the precipitation of HA, since SBF contains calcium 

and phosphorus, it is expected that precipitation of HA would have commenced. Lu and 

Leng (2005) has shown that HA can precipitate in SBF and is stable compared to the other 

phases of calcium phosphate. The other possible explanation is the adsorption of calcium 

into the composites. Since the same effect is seen in magnesium and phosphorus, the 

latter might be true as the composites are porous. There is an initial fluctuation in the 

concentration of the electrolytes but they seem to stabilize after a few hours. This could 

be due to the porous nature of the material where the SBF inside the dialysis tubing could 

enter the composites and be trapped enabling the movement of the electrolytes from 

outside the bag to maintain equilibrium.   
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3.8 Conclusion 

 

The aim of the study was to develop a composite which is mechanically strong, 

biocompatible to allow the proliferation of cells and provide bacterial resistance 

following surgery. The sol-gel technique was used to synthesise the Ag NPs- MWCNTs- 

HA composites. The overall characterisation of the synthesised powders and final 

composites show that HA was the primary phase of calcium phosphate. The Ag NPs had 

better interaction with the f-MWCNTs due to the presence of functional groups, which 

served as anchoring points compared to Ag NPs anchorage to p-MWCNTs. The surfactant 

played a role in determining the morphology of the HA crystals. The overall strength of 

the composites containing MWCNTs was significantly higher than the pure HA 

composites.   
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4. Investigation of the biocompatibility of the 

HA-MWCNTs composites with human 

osteoblast cells 
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4.1 Introduction  

 

Biocompatibility is one of the prerequisites for the safety and efficacy of 

biomaterials that are used as bone implants since the material will be in intimate contact 

with the bone and connective tissues for a long period. Most of the composites that are 

used as implants will eventually undergo some form of degradation. Initially, degradation 

would be due to the sheer force during implant insertion whereas the long term factors 

which affect the degradation of the  composites could be due to dissolution, pore size, 

porosity, and degree of crystallinity of the HA. This will lead to release of the 

reinforcement which in this case will be CNTs. Hence, attention should be paid to the 

biocompatibility of the composites and particularly the reinforcement (CNTs) on specific 

human cells because the toxicity of the material differs from one cell type to another. 

Hence, most of the studies that investigate the biocompatibility of the implant use bone 

or bone like cells such as primary human osteoblasts, osteoclasts and sarcoma cells (Saos-

2) (Chlopek et al., 2006, Dawei et al., 2007,  Coathup et al., 2013)  

  

The aim of this study was to investigate the biocompatibility of the HA-CNTs 

composites on human cells. For this purpose, primary human osteoblast cells were used, 

since the composites will be in direct contact with the osteoblast cells in a real patient 

receiving a bone implant. The cell viability and metabolic activity of the osteoblasts were 

determined by performing biochemical assays such as lactate dehydrogenase activity, 

protein assays and alkaline phosphatase (ALP) assay to evaluate the biocompatibility of 

the composites. ALP is commonly used as a biomarker to evaluate the metabolic activity 

of the osteoblast cells as it plays an important role in the mineral formation by increasing 

the local concentration of inorganic phosphate (mineralization promoter) and by 
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decreasing the extracellular pyro phosphate (mineralization inhibitor) (Golub and 

Boesze-Battaglia, 2007). Moreover, the dissolution of the HA composite was also 

measured by measuring the concentration of the Ca2+ and PO43- in the external media and 

cell homogenate. The concentration of the K+, Na+ and Mg2+ was also measured to 

investigate changes in the presence of the electrolytes in the presence of the composites.  

4.2 Methodology  

 

To determine the biocompatibility of the HA-MWCNTs composites they were 

produced without the addition of silver nanoparticles. The same synthesis process as 

described in section 3.2.3 and 3.2.4 was used to produce the following composites: 

i. p-MWCNTs-PVA – (HA + Pristine MWCNTs + PVA)  

ii. f-MWCNTs-PVA – (HA + Functionalized MWCNTs + PVA)  

iii. p-MWCNTs-HTAB – (HA + Pristine MWCNTs + HTAB)  

iv. f-MWCNTs-HTAB – (HA + Functionalized MWCNTs + HTAB) 

v. HA - Pure HA composites (control) 

 

4.2.1 Cell culture  

Human osteoblast (HOB) cells (2nd passage) were obtained from Sigma Aldrich, 

Dorset, UK (Product code: 406-05A). The cells were thawed and grown in Dulbecco’s 

modified eagle medium (DMEM, Product code: 11530596, Fisher Scientific, 

Loughborough, UK) supplemented with 10% fetal bovine serum (FBS, Product Code: 

11563397, Fisher Scientific, Loughborough, UK) and 1% Antibiotic-antimycotic (contains 

penicillin, streptomycin and Gibco Amphotericin B; Product code: 11580486, Fisher 

Scientific, Loughborough, UK) referred to hereafter as “DMEM”. Cells were cultured at the 
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density 1x104/cm2 in 75 cm2 flasks (Product code : CLS3290, Corning® CellBIND® Surface 

cell culture flasks, Sigma Aldrich, Dorset, UK) containing 15 ml of DMEM. The media was 

routinely changed every 3 days and the cells were sub-cultured when confluence reached 

80-85%. To subculture, the cells were washed twice with phosphate buffer saline, D-PBS, 

(without added calcium and magnesium, Fisher scientific, 10708144) then tryptinized (2 

ml of 0.1% trypsin and 1 mM EDTA, Fisher Scientific, 11560626) and suspended in fresh 

media, and then counted using a haemocytometer. The cells were grown in a humidified 

incubator at 37C with 5% CO2 and 95% air. The cells of passage 9 and 10 were used for 

the experiment below.  

 

4.2.2 Experimental design 

The experimental design involved exposing the osteoblast cells to the composites 

(Figure 4.1). Before exposing the cells, the composites were sterilized using Gamma 

radiation (dosage: 36.42-40.72 kGy, BD Biosciences, Plymouth, UK). Then, using sterile 

forceps, the composites (diameter of15 mm) were each carefully placed at the bottom of 

a 24 well plate (flat bottom sterile, tissue culture treated polystyrene microplate; 662160, 

Greiner bio-one, Stonehouse, UK). The cell culture plate containing all the controls and 

treatments was a unit of replication in the experimental design. Composites made of pure 

HA served as a positive control, while HOB cells grown in wells without the presence of 

any composites served as reference controls on each cell culture plate. The treatments 

were p-MWCNTs-PVA, f-MWCNTs-PVA, p-MWCNTs-HTAB, f-MWCNTs-HTAB. Each plate 

also had a well containing only DMEM without the presence of any cells to measure 

changes in pH. A total of 9 replicates (plates) were conducted on at least three separate 

days (i.e., triplicate runs of plates). Each well was cultivated with 600 μl of cell culture (2 

x104 cells/ml) from the 9th and 10th passage of the stock cell culture and additional 400 
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µl of DMEM was added. The microplates were then incubated for seven days at 37°C 

under 5% CO2 in atmospheric air to allow the cells to grow. The DMEM media was 

changed at 24 and 96 h to ensure the culture conditions were not limiting. Changes in pH, 

electrolytes (Na+, K+, Ca2+, P  and Mg2+) and the presence of lactate dehydrogenase activity 

(LDH) were measured from the collected media at the two time points (24 and 96 h). Six 

of the replicates were used for biochemistry and 3 for microscope observation (see 

below). 

 

For biochemistry, cell homogenates were prepared in hypo-osmotic buffer at the 

end of the experiment according to Gitrowski et al. (2014). Briefly, cells were carefully 

washed twice with 2 ml of isosmotic sucrose buffer (300mmol l-1 sucrose, 0.1 mmol l-1 

ethylenediaminetetraacetic acid (EDTA), 20mmol l-1 4-(2-hydroxyethyle)-1-

piperazineethanesulfonic acid (HEPES), buffered to pH 7.4 with a few drop of 2 molar 

Trizma base). The cells attached to each composite were then treated with 1 ml of a lysis 

buffer (hypo-osmotic version of the buffer above consisting of 30mmol l-1 of sucrose) for 

5 min and then pipetted vigorously several times to remove the cells.  The lysis buffer 

containing the cell homogenate was sonicated in a bath for 30 s to ensure the homogenate 

was well mixed and that any remaining cells were lysed prior to storage at -80 ˚ C.
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Figure 4.1 Schematic representation of the experimental design. The different treatments and control were placed in the 24 well plates (n=9 
plates). The media was changed on day 1, 4 and 7 of which six repeats were used to measure pH, electrolytes, LDH. The cell homogenate was 
obtained at the end of the experiment on day 7 which was used to measure the electrolytes, LDH, ALP and protein content. Three repeats were 
used for SEM analysis.  
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Fresh aliquots of the cell homogenate were used for the assessment of LDH activity, 

ALP activity, protein content and the electrolyte composition (total Na+, K+, Ca2+, P and 

Mg2+) of the cells. 

 

4.2.3 Lactate Dehydrogenase activity 

The presence of lactate dehydrogenase activity in the external media (DMEM) was 

used to assess the general health of the cells (i.e., membrane leak of this normally 

cytosolic enzyme).  In addition, the LDH activity in the cell homogenates was also 

measured. Briefly, LDH activity was measured according to (Campbell et al., 1999) with 

minor modification. The collected DMEM and cell homogenates were gently centrifuged 

for 1 min at approx. 13,000x g (Heraeus pico 17 centrifuge, Product code: 75002401,  

Thermo electron crop, Paisley, UK) to remove debris. Then, 100 μl of the supernatant 

from each sample was added to 2.9 ml of a reaction mixture consisting of 2800 μl of 6mM 

pyruvate in 50mM of phosphate buffer (pH 7.4) and 100 μl of 6mM nicotinamide adenine 

dinucleotide (Product code: B3012, Melford Laboratories Ltd, Suffolk, UK), directly in a 3 

ml cuvette. The change in absorbance was measured immediately over 2 min at 340 nm 

(Helios β Spectrophotometer, Product code: 14-2982046, Fisher Scientific, 

Loughborough, UK). LDH activity was calculated using the extinction coefficient of NADH 

at 340 nm of 6.3 mM and a 1 cm path length. The cell homogenate LDH was normalized 

with the homogenate protein content.  

 

4.2.4 Alkaline phosphatase activity 

Alkaline phosphatase is involved in the calcification of bone and is therefore of 

functional significance to osteoblasts as developing bone cells. The activity of alkaline 

phosphatase enzyme was measured using a colorimetric assay based on the hydrolysis 
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of para-nitrophenylphosphate (pNPP) to p-nitrophenol (PNP), a yellow-coloured 

substrate. Briefly, 65 μl of the cell homogenate was added to 595 μl of the reagent assay 

(265 μl of 0.1 M glycine buffer + 330 μl of 0.5 mmol l-1 pNPP in glycine buffer). The 

appearance of p-nitrophenol was measured spectrophotometrically at 405 nm (Helios β 

Spectrophotometer, Thermo scientific, England). ALP activity was calculated using an 

extinction coefficient of 18.3 mM for a path length of 1 cm. The cell homogenate ALP 

activity was normalized with cell protein content as above. 

 

4.2.5 Acid digestion for electrolyte concentration analysis  

The ion concentration in the external media and the cell homogenate was 

measured by following the protocol by (Gitrowski et al., 2014). Briefly, 500 l of the 

external media and cell homogenate was transferred to 15 ml test tubes (Product code: 

10262861, Fisher scientific, Loughborough, UK) to which 1 ml of concentrated nitric acid 

(70%) was added at 70 C in a water bath for 4 h. The test tubes were allowed to cool 

overnight before opening them. The resulting acid digested samples were used to 

measure the electrolytes in the external media and the cell homogenate by inductively 

coupled plasma optical emission spectrophotometry (ICP-MS).  

 

4.2.6 Protein Assay  

The total protein content in cell homogenates was measured using the Pierce BCA 

protein assay kit (Product number: 23227, Thermo Fisher scientific, Loughborough UK). 

The assay was performed according to the manufacturer’s instructions. Briefly, a working 

reagent was prepared by mixing reagents A and B in a 50:1 ratio. Twenty μl of the cell 

homogenate (in triplicate) was transferred to a 96-well microplate, to which 200 μl of the 

working reagent was added and carefully mixed. Plates were covered and incubated at 
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37°C for 30 min and absorbances were read at 562 nm on microplate reader (OptiMax 

Tunable microplate reader, Molecular devices, UK). A series of bovine serum albumin 

standards (2000, 1500, 1000,750, 500, 250, 125, 25, 0=blank mg/l) was used for 

calibration. Protein assay was used to normalise the biochemical assays (LDH and ALP) 

data and electrolytes from the cell homogenate.   

 

4.2.7 Cell morphology  

Morphology (shape and appearance) of the cells was regularly observed by light 

microscope to determine the health of the cells. The DMEM media appeared normal (no 

loss of the pH indicator or excessive cell debris). Light microscopy observations showed 

no signs of deterioration such as necrosis, detachment of cells from the substrate, 

granularity around the nucleus or obvious disruption of the cell membrane (i.e., no 

membrane blebs or cell swelling). At the end of the experiment, the presence and health 

of the cells were determined using a scanning electron microscope (SEM) (JEOL JSM -

5600LV, JEOL ltd, Japan). A separate run (n = 3) replicates were done for SEM work. After 

the media was removed, samples were washed twice with phosphate buffered saline 

(PBS) and fixed using 2.5% glutaraldehyde in 0.05 M cacodylate buffer at pH 7.4 for 2h. 

Fixed samples were dehydrated through a series of ethanols and then critical point dried.  

Samples were mounted on conducting carbon stubs and coated with gold in a sputter 

coater (EMITECH K550, Quorum Technologies, UK).  SEM images were collected using a 

15 kV accelerating voltage. The observations were conducted systematically, starting at 

a lower magnification (X30) to examine the distribution of the cells on the composites, 

and then at a higher magnification (X1000) to observe the morphology of the cell 

membrane, organelles and nucleus as well as to determine the attachment of cells on the 

composites.   
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4.2.8 Statistics  

All data are presented as mean ±  standard error and were analysed using 

statgraphics software for windows (version XVI.I). After descriptive statistics to 

determine normality, skewness or kurotosis, parametric data were analysed by ANOVA 

following a variance check (Levene’s test) and non- parametric data analysed by Kruskal-

Wallis. The differences between the treatments and controls at each time point, and time 

effects within treatment were evaluated using one-way analysis of variance (ANOVA). For 

treatment x time effects, a two-way ANOVA was also applied to the data. All statistical 

analysis used a 95% confidence limit, so the p values <0.05 were considered statistically 

significant.    

4.3 Results 

 

4.3.1 Growth and morphology of cultured cells 

Initial light microscopy examination of the cells seeded on the 24 well plate after 

the seeding stage (24h) revealed no signs of cell death due to toxicity or infection. To 

determine the structural integrity and presence of any infection, cells were observed with 

naked eye and under light microscope throughout the experiment and the cell 

membranes were intact. A closer observation in SEM after seven days (Figure 4.2), 

displayed a typical osteoblast morphology with regular cell structure in the controls and 

the treatments. No major morphological differences were observed between the cells 

maintained under the various treatments. The cells had intact homogenous cytoplasm 

and were attached and flattened on the substrate surface. In all the treatments, the cells 

spread to cover essentially all available regions of the disk. Since the treatments had areas 

of uneven surfaces, the cells were often seen to form bridges between the gaps.  
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Figure 4.2 SEM images of the osteoblasts at various magnifications. (A) Control cells grown on the plastic plate; (B) cells grown on 
pure HA control, it can be seen that the cells have infiltrated into the pores (arrow); (C) shows cells grown on p-MWCNTs-PVA (arrow); 
(D) shows cells on f-MWCNTs-PVA, note that the cells are flat and extending to cover large surfaces of the substratum; (E) shows cells on  
p-MWCNTs-HTAB; (F)shows cells on  f-MWCNTs-HTAB.  

A B C 

D E  
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4.3.2 pH and ion concentrations  in media and cell homogenates  

The pH measurements of both the controls (reference and HA composites) and 

treatments were assessed and the values were compared against the reference DMEM.  A 

drop in pH was observed in the media of the +ve control (pure HA composites), and all 

the treatments (Table 4.1) on all the days. This was significantly different (p < 0.05) to 

the values of reference control (HOB cells) and reference media (DMEM). No statistically 

significant difference in pH  was observed between the reference control (HOB cells) with 

reference DMEM value. At the end of day 1, the pH value of the media for the pure HA and 

p -MWCNTs-PVA was found to be statistically more acidic (6.84±0.08; 6.76 ± 0.17) than 

the other treatments (all above pH 7). However, by the end of the experiment, recovery 

had commenced and the pH value of all the treatments was above 7.2. The value of 

negative control was at 7.9 which is slightly more alkaline than normal pH. 

 

Table 4.1 pH measurements of the DMEM media exposed to the composites.  

Material Day 1 Day 4 Day 7 

Media (no cells) 7.77 ± 0.02a  7.73 ± 0.01a 7.75 ± 0.04a 
Blank (cells in DMEM) 7.75 ± 0.03a 7.74 ± 0.03a 7.91 ± 0.02a  
HA  6.84 ± 0.08b 7.24 ± 0.04b 7.51 ± 0.02b 
p-MWCNTs-PVA 6.76 ± 0.17b 7.20 ± 0.12bc 7.40± 0.09bc 
f-MWCNTs-PVA 7.16 ± 0.06c 7.33 ± 0.04bcd 7.54 ± 0.08b 
p-MWCNTs-HTAB 7.24 ± 0.03c 7.37 ± 0.03bd 7.62 ± 0.02b 
f-MWCNTs-HTAB 7.18 ± 0.04c 7.26 ± 0.02bcd 7.59 ± 0.03b 

Data expressed as means ±S.E.M (n=6 for each treatment). Different letters are 
statistically different from each other within the column (one-way ANOVA, p<0.05) 

 

The electrolytes Na+, K+, Ca2+, Mg2+ and P were measured in the external media on 

days 1,4 and 7 and from the cell homogenate (Table 4.2). The electrolyte composition of 

the media is as expected. The concentration of calcium and phosphorus in the treatments 

is significantly lower on days 4 and 7 compared to the reference control whereas in the 

cell homogenate it is significantly higher. Similarly, the concentration of the electrolytes 
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are higher in the treatments than the reference control (HOB cells) in cell homogenate 

(Table 4.2)  
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Table 4.2 The total concentration of the electrolytes, Na+, K+, Ca2+, Mg2+, and P (mg/l) in the media after exposing the osteoblasts to the 

composites for 7 days and from the cell homogenates (mmol/mg cell protein). 

  Treatment Day 1 (mg/l) Day 4(mg/l) Day 7(mg/l) Cell homogenate 
(mmol/mg cell 
protein) 

 
 
 
Sodium 

Blank 259.6 ± 224.6  439.5 ± 476.5 395.5 ± 704.6 0.6 ± 0.1 

HA 413.4 ± 454.7*a 407.3 ± 600.2a  284.8 ± 270.3 16.1 ± 12.0* 

p-MWCNTs-PVA 238.8 ± 109.5b  318.6 ± 706.5ab 237.2 ± 283.1* 16.3 ± 13.8 * 

f-MWCNTs-PVA 281.1 ± 131.6b  241.5 ± 361.0*b 303.3 ± 350.5 20.3 ± 45.5* 

p-MWCNTs-HTAB 254.6 ± 83.3b 391.6 ± 551.7ab 278.6 ± 271.6 16.8 ± 7.2* 

f-MWCNTs-HTAB 238.6 ± 140.0b  327.8 ± 336.3ab 310.5 ± 413.2 17.3 ± 15.3* 

 
 
 
Potassium 

Blank 29.7 ± 25.6  49.7 ± 53.5 32.2 ± 58.2 0.2 ± 0.1 

HA 27.6 ± 39.4 38 ± 48.9ab 21.8 ± 20.5* 2.4 ± 0.7*a 

p-MWCNTs-PVA 25.3 ± 11.5 35.3 ± 77.6 ab 20 ± 29.3* 3.7 ± 1.2*ab 

f-MWCNTs-PVA 29.9 ± 11.2  26.3 ± 38.0*a 25 ± 30.5 6.2 ± 2.2*b 

p-MWCNTs-HTAB 25.1 ± 12.8 43.2 ± 63.6b 23 ± 24.1 4.3 ± 0.6*ab 

f-MWCNTs-HTAB 26.1 ± 17.6 38.8 ± 33.1ab 26.8 ± 33.8 5.4 ± 1.6*ab 

 
 
 
Calcium 

Blank 39.3 ± 3.3 67.7 ± 7.3 53.4 ± 9.4 0.6 ± 0.1 

HA 32.2 ± 6.7ab 34 ± 4.8*a 5.2 ± 1.9*a 1.3 ± 0.2 ac 

p-MWCNTs-PVA 19.8 ± 3.7*a 6.3 ± 2.3*b 12.8  ± 6.5*ab 1.5 ± 0.4*ac 

f-MWCNTs-PVA 38.2 ± 7.3b   9.3 ± 2.9*b 13.1 ± 2.8 *ab 1.8 ± 0.2*ac 

p-MWCNTs-HTAB 22.7 ± 5.5*ab 9.8 ± 1.5*b 24.5 ± 6.5*b 2.1 ± 0.3*b 

f-MWCNTs-HTAB 29.4 ± 4.5ab 3.1 ± 1.1*b 2.3 ± 0.3*a   1.2 ± 0.1ac 
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 Treatment Day 1 (mg/l) Day 4(mg/l) Day 7(mg/l) Cell homogenate 
(mmol/mg cell 
protein) 

 
 
 
Phosphorus 

 
 
Blank 

 
 
122.1 ± 10.2   

 
 
179.5 ± 20.9 

 
 
142.3 ± 26.3 

 
 
0.7 ± 0.2 

HA 202.7 ± 19.9 * a 180.5 ± 32.0a 90.6 ± 10.7ab 9 ± 19.1*a 

p-MWCNTs-PVA 125.6 ± 23.1b 120.5 ± 28.4*b 171.3 ± 43.0a 4 ± 14.1*b  

f-MWCNTs-PVA 90.7 ± 16.4b 46.5 ± 4.8*c 97.7 ± 36.8ab 6 ± 1.3*c 

p-MWCNTs-HTAB 107 ± 34.4b 50 ± 9.2*c 80.6 ± 19.3b 7.2 ± 1.5c* 

f-MWCNTs-HTAB 119.2 ± 20.3b 73.3 ± 9.7*bc 101.3 ± 28.8ab 2.6 ± 2.0b 

 
 
 
Magnesium 

Blank 22.2 ± 1.9 37.9 ± 4.1 30.6 ± 5.4 0.03 ± 0.0 

HA 1.2 ± 0.2* 1.3 ± 0.2* 0.4 ± 0.1* 0.06 ± 0.0a 

p-MWCNTs-PVA 1.1 ± 0.1* 1 ± 0.2* 0.8 ± 0.3* 0.1 ± 0.0*ad 

f-MWCNTs-PVA 1.5 ± 0.2* 0.8 ± 0.1* 0.7 ± 0.2* 0.1 ± 0.0*b  

p-MWCNTs-HTAB 1.1 ± 0.2* 1.3 ± 0.3* 0.6 ± 0.1* 0.1 ± 0.0*cb 

f-MWCNTs-HTAB 2 ± 0.3* 0.1 ± 0.0* 0.4 ± 0.1* 0.08 ± 0.0 *ad 

Data expressed as means ±S.E.M (n=6 for each treatment). Different letters are statistically different form each other within the 

column. * indicate significant difference from the control within each column (one-way ANOVA or Kruskal –Wallis test, p<0.05).
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4.3.3 Total protein concentration in cell homogenate 

At the end of the experiment, the protein concentration in the cells was stable and 

higher in the positive control (pure HA composites) and the treatments compared to the 

reference control (HOB cells) grown directly on the culture plates (Figure 4.3).  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Total protein concentration from the cell homogenate after 7 days of 
proliferation on culture plate (blank, reference control), positive control (Pure HA 
composites), treatments (p-MWCNTs-PVA, f-MWCNTs-PVA, p-MWNTs-HTAB, f-
MWCNTs-HTAB). Data are mean ± S.E.M (n=6), * indicates statistical difference 
(p=0.00) between the blank (reference control) and the composites.  There were no 
differences between the composites. 

 

4.3.4 Lactate Dehydrogenase 

The LDH release to the media is one of the parameters that indicate cell injury. 

Table 4.3 shows the specific activity of LDH in the external media after 1, 4 and 7 days.  

Overall, the result shows that the treatments had higher LDH activity on day 1and the 

least on day 7, in contrast to the reference control (HOB cells). At day one, there was  

significant differences between f- MWCNT treatment compared to reference control 

Blank HA

p- M
W

CNTs-P
VA

f- 
M

W
CNTs-P

VA

p-M
W

CNTs-H
TAB

f- 
M

W
CNTs-H

TAB

m
g

/m
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

*



 

126 
 

(HOB cells), whereas by day 4 and 7  there was no significant difference in the LDH 

activity between the treatments and the reference control (HOB cells) .  

 

The activity of LDH was also measured in the cell homogenate to investigate the 

viability of the cells after 7 days incubation. The pure HA composite (positive control) did 

not show a statistical difference with the reference control (HOB cells). There was a 

significant difference in LDH activity of all the composite treatments compared to the 

blank with cells alone. No statistical difference was observed between the HA (Control) 

and p-MWCNTs–PVA treatments. Within the CNT treatments, statistical difference was 

observed between pristine and functionalised MWCNTs.  

Table 4.3 Lactate Dehydrogenase activity in the external media (IU/ml of media) during 

exposure of the osteoblast cells to the HA composites reinforced with MWCNTs over 7 days.  

Material Day 1 Day 4 Day 7 Cumulative 
release  

Control (HOB 
cells) 

0.0063 ± 
0.002 

0.0119 ± 
0.002 

0.0127 ± 
0.006  

0.0310 ± 
0.01 

HA 0.0111 ± 
0.003 

0.0095 ± 
0.003 

0.0024 ± 
0.001 

0.0230 ± 
0.008 

p-MWCNTs-
PVA 

0.0135 ± 
0.003 

0.0063 ± 
0.004 

0.0024 ± 
0.001 

0.0222 ± 
0.009 

f-MWCNTs-
PVA 

0.0254 ± 
0.008* 

0.0119 ± 
0.003 

0.0048 ± 
0.002 

0.0421 ± 
0.01  

p-MWCNTs-
HTAB 

0.0190 ± 
0.004 

0.0056 ± 
0.003 

0.0127 ± 
0.006 

0.0373 ± 
0.01 

f-MWCNTs-
HTAB 

0.0262 ± 
0.008* 

0.0048 ± 
0.001# 

0.0048 ± 
0.001 

0.0357 ± 
0.01 

The data are presented as mean ± S.E.M (n=6); different letters within columns 
indicate significant difference, and absence of the letters means there is no 
significant difference. * Statistical significant difference from reference control 
within column. # statistically different from previous time point within row (one 
way ANOVA, p<0.05) 
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Figure 4.4. Comparison of the LDH activity from cell homogenate after 7 days of growth in 
DMEM on culture plate (Control, HOB cells), pure HA composite (positive control), p-
MWCNTS-PVA, f-MWCNTS-PVA, p-MWCNTS-HTAB, f-MWCNTs-HTAB.  Data are mean ±S.E.M 
(n=6), bars with different letter indicate statistical difference from each other (one way 
ANOVA, P<0.05)  

 

 

4.3.5 Alkaline phosphatase activity 

The presence of alkaline phosphatase activity in the cell homogenate was used as 

a measure of metabolically active osteoblast cells. Figure 4.5 shows the ALP activity 

(µmol/min/mg protein) in the cell homogenate after 7 days incubationtt. No significant 

difference was observed between the controls (Blank and HA composite). Significant 

differences were observed between p-MWCNTs-PVA, f-MWCNTs–PVA and f-MWCNTs-

HTAB and the blank. However, no significant difference was observed between the 

MWCNT treatments.  
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Figure 4.5 Alkaline phosphatase activity (ALP) from cell homogenates of osteoblasts after 
7 days growth in DMEM on culture plate (reference, HOB cells), pure HA composite (positive 
control), p-MWCNTS-PVA, f-MWCNTS-PVA, p-MWCNTS-HTAB, f-MWCNTs-HTAB. Data are 
mean ± S.E.M (n=6), bars with different letters are statistically different from each other (one-
way ANOVA, P<0.05).  
 

4.4 Discussion  

The aim of the study was to evaluate the biocompatibility of the MWCNTs 

reinforced HA composites with human osteoblast cells. The main findings of this study 

was that the presence of MWCNTs did not adversely affect the growth of the osteoblast 

cells; and healthy-looking cells were observed on all the composites. Another finding was 

that no major difference in cell growth on the composites containing pristine and 

functionalised MWCNTs was observed, but the biochemical activity of the cells were 

different.  
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4.4.1 Effects of composites on DMEM media and evidence of dissolution 

pH and electrolytes were measured in the external media since calcium phosphate 

based biomaterials can interact with their ionic environment in many ways including 

crystal growth, degradation and ion exchange (substitution). The overall pH and 

electrolyte measurements (Table 4.1 and 4.2) of the external media showed that the 

composites did not produce major changes in composition of the DMEM except for 

transient pH changes. Although, the physiological pH of the human body is approximately 

7.4, it has been shown that local pH at wound site does not remain at physiological range 

and fluctuates between 5.45 to 8.65 at the various wound healing stages (Percival et al., 

2014). Hence, from the clinical perspective, it is advantageous that the cells can survive 

in the transient acidity, as the implant will be introduced through surgery which would 

be similar to the wound environment.    

 

The concentration of sodium and potassium in the external media is in the normal 

range (Table 4.2). Since sodium makes most of the osmotic content of the media, huge 

variation of this salt will result in cell death. However, that effect is not observed 

suggesting that the cells were healthy. Similar effect is also observed in the concentration 

of potassium which does not show significant difference between the control. However, 

the concentration of calcium in the media is significantly lower than the control 

confirming there was no dissolution of the composite. Calcium and  phosphate from the 

DMEM was absorbed by the composite for apatite nucleation and crystal growth. Kokubo 

et al have shown apatite nucleation and growth of HA  in SBF at physiologic temperature 

and pH (Kokubo et al., 1990). There are only trace amounts of calcium present inside the 

cells. If there is a membrane damage, the calcium could be released to the external media 

but no such effect is observed in cell homogenate of the osteoblasts grown on the 
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composites (Table 4.2). Similar to calcium, significantly higher quantities of phosphorus 

are observed in the cell homogenate of the composites suggesting that the osteoblasts 

were reserving calcium and phosphorus for the mineralization process. This result 

correlates with the reduction of phosphorus in the external media.  

 

4.4.2 Effect of the composites on human osteoblast cells 

Total protein content measurements from the cell homogenate (Figure 4.3) 

indicates cell growth.  The higher protein content in the composites could be due to the 

adsorption of the proteins from the media to the composites. This could have been 

released into the lysis buffer during the vigorous pipetting used to lyse the cells while 

collecting the cell homogenate.  Another possibility is that it could be an indication of the 

biocompatibility of the composites, as it is known that the surface topography of the 

composites plays a role in determining the adhesion and proliferation of the osteoblast 

cells. Studies led by (Yamashita et al., 2009, Zareidoost et al., 2012) have shown that cell 

attachment and proliferation on rougher titanium surfaces were significantly greater 

than smooth surfaces. Since the culture plate on which the reference control (HOB cells) 

were grown was smooth while the composites were rough uneven porous surfaces, it is 

possible that the adhesion and proliferation of cells were better. However, the other 

biochemical assays results (LDH and ALP) suggests that the former is more likely.    

 

The LDH assay was used to measure the cytotoxicity of the composites on 

osteoblast cells due to cell membrane damage (Fotakis and Timbrell, 2006).  The result 

of the LDH in the external media shows that the composites had no toxic effect on the 

cells because the concentration of the LDH in the external media from the treatments is 

not significantly different to the reference control (Table 4.3). One possible explanation 
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for the non-toxicity of the MWCNTs could be that when HA is  nucleated in the presence 

of MWCNTs, the side walls of the tubes are covered with calcium phosphate and the cells 

do not come into direct contact with the MWCNTs. This can be seen in the TEM images 

from chapter 3, Figure 3.5 which shows that the MWCNTs are surrounded by HA particles.  

 

Compared to the LDH activity in the external media, high amount of LDH activity 

was detected in the cell homogenate, which indicates that the cells were viable until the 

end of the experiment on day 7. However, compared to the blank (control), significantly 

high amounts of LDH activity was detected in the cell homogenate of the composites 

(Figure 4.4). There are two possible explanations for this. Since the composites are 

porous, it allows the cells to infiltrate into the composites providing higher surface area 

for the cells to proliferate.   Osteoblasts adhere and proliferate well on rough and porous 

material, especially materials with pores size of 100µm magnitude (Boyan et al., 2002, 

Gough et al., 2004). The high LDH release could mean that the cell growth was higher in 

the composites compared to the control resulting in higher LDH activity. The other 

possible explanation is that the cells grown on the composites were damaged as a result 

of oxidative stress leading to the immediate release of the cell contents during the 

pipetting process.  

 

The specific activity of ALP was measured as it increases the local concentration 

of the inorganic phosphate (Golub and Boesze-Battaglia, 2007). Hence, it is considered as 

an important biomarker to evaluate the activity of the bone cells; however, the exact 

mechanism by which ALP functions in hard tissues is still not clearly understood. The 

activity of this enzyme means the osteoblast cells are active and have the ability to 

differentiate and mineralize. The results showed that the activity of alkaline phosphatase 
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was decreased by the presence of the composites (Figure 4.5) which means that there is 

some impairment on the metabolic activity of the cells.  

 

SEM analysis (Figure 4.2) of the cells grown on the composites shows that the cells 

are proliferating and covering the surface of the composites. Cells can also be seen 

infiltrating the pores and proliferating within the composites suggesting  that favourable 

conditions for cell proliferation exists within the composites. However, a correlation 

exists between the LDH and the ALP results suggesting that although the human 

osteoblast cells grew and proliferated on the composites, they might be under stress 

resulting in reduced metabolic functions.  

4.5 Conclusion  

 

The intention of the current study was to determine the biocompatibility of the 

MWCNTs composites with human osteoblast cells. Overall results suggest that although 

cells proliferated on the treatment composites suggesting that they were biocompatible 

there was a decrease in the ALP activity suggesting that the mineralization ability of the 

cells could be compromised. Since the results are contradicting, further in vitro analysis 

needs to be performed for a longer period to analyse further changes in the LDH and ALP 

activity as ALP is a marker to determine the differentiation and mineralization ability of 

the osteoblast cells. Nevertheless, it can be concluded that MWCNTs when entrapped in 

a composite do not reduce cell viability.  
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5. Investigation of the antibacterial activity of 

the silver nanoparticle-multiwall carbon 

nanotube-hydroxyapatite composites against 

Staphylococcus aureus 
  



 

134 
 

5.1 Introduction  

 

Among the most promising nanomaterials with antimicrobial properties are silver 

nanoparticles (Ag NPs). Ag NPs have been incorporated mainly into metal based implants 

as coatings to improve their antimicrobial properties (Juan et al., 2010, Zhao et al., 2011). 

However, the use of Ag NPs in the development of composites with other nanomaterials 

or micron scale biomaterials has not been adequately explored. Assuming that the 

antibacterial properties of any Ag-coated implant are derived from Ag ion toxicity, it is 

the stable controlled release of Ag ions from the composite that is one of the essential 

criteria that is difficult to obtain as most of the composites contain varying pore sizes and 

composition and will act differently when they come into contact with body fluids. In 

addition, the hazards of toxic metal particles in the systemic circulation are not fully 

understood, and so from a medical safety perspective it is desirable to ensure the Ag NPs 

remained fixed on the structure of the implant.  

 

The aim of this study was to determine the antibacterial activity of the Ag NPs 

decorated MWCNTs–HA composites. This was done by exposing the composites to S. 

aureus for 24 h and determining the viability of the microbial cells both quantitatively 

and qualitatively. 

5.2 Methodology 

 

The methodology and experimental design was based on the work published by 

(Besinis et al., 2014) with some modifications. S. aureus as the major cause of implant 

related infection was chosen as the organism of study. The NCTC 6571 strain of S. aureus 
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was obtained from National Collection of Type Cultures, Public Health England and grown 

in Brain Heart Infusion broth (BHI, Product code: LAB049, LAB A Neogen company, 

Lancashire, UK) and incubated at 37°C in a shaker incubator overnight. A bacterial 

suspension having an optical density (OD, Helios Epsilon, UNICAM, Cambridge, UK) of 

0.19 turbidity units containing approximately 10 7 CFU/ml was used for the experiments. 

An optimisation study was undertake prior to the main experiment to determine the 

appropriate optical density and to determine the incubation period for S. aureus. 

 

5.2.1 Optimisation Study  

The optimisation study involved using OD as a means to determine turbidity 

measurements which were used to calculate the number of CFU. Briefly, 100 µl of broth 

containing microbes were transferred to a sterile tube containing 10 ml of fresh sterile 

broth and mixed. 1 ml of this was transferred to a cuvette (Product code: 11954395, 

Fisher scientific, Loughborough, UK) and the OD was measured immediately. Additional 

broth containing microbes were transferred to the 10 ml broth and OD was measured 

until the value of 0.1 was achieved which is approximately 1 x107 CFU/ml. To optimise 

the correct OD, the same procedure was repeated with varying OD values (0.25, 0.2, 0.15, 

0.1 and 0.05). The varying concentrations were used to make serial dilution to reduce the 

dense culture of cells to a more manageable CFU which is in the range of 10-200 

individual CFU. Serial dilutions were made up to 10-7 and 100 µl from 10-4, 10-5, and 10-6 

dilutions were used to make spread plates. The plates were incubated overnight at 37 °C 

and the plates with countable colonies were counted. A graph was obtained (Figure 5.1) 

based on which the OD required for the study was determined.  
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Figure 5.1 Representation of the CFU at the various OD values following 
incubation at 37 °C overnight. The optimal OD value for the study was chosen based 
on this optimisation study.   

To determine the bacterial attachment to the composites following the initial 24 h 

incubation, the bacteria adhered to the composites were removed and incubated (see 

below). A growth curve study was undertaken to determine the optimum incubation 

period, which was based on the time (hours) it took for the bacteria to be in the log phase 

of growth. To determine the growth curve, 100 µl of broth containing mocrobes with an 

initial OD value of 0.01 was introduced into a flask containing 100 ml of fresh sterile broth 

which was then incubated at 37 °C on a shake table (MaxQTM 4450, Benchtop Orbital 

Shaker, ThermoFisher Scientific, Paisley, UK) for 24 h. The turbidity was measured every 

hour  and the OD values were recorded. The growth curve was plotted based on the value 

obtained (Figure 5.2).
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Figure 5.2 Growth curve of S. aureus over 24 h. The initial OD value was 0.009 and 
the values were read every hour for 24 h. Lag phase was observed for the first 3 hours 
following which log phase was observed for 4 hours. The microbes entered the 
stationary phase at the 8th hour. 

5.2.2 Experimental design  

 The experimental design involved exposing S. aureus to the composites 

containing Ag NPs for 24 h in 24 well microplates (flat bottom sterile, tissue culture 

treated polystyrene microplate, Product code: 662160, Greiner bio-one, Stonehouse, UK) 

and compare it to its equivalent metal salt, AgNO3 as a positive control. A pure HA 

composite was used as a negative control and the treatment composites were : 

1. Ag NPs-p-MWCNTs-PVA – (HA +Ag NPs-Pristine MWCNTs + PVA)  

2. Ag NPs-f-MWCNTs-PVA – (HA + Ag NPs -Functionalized MWCNTs + PVA)  

3. Ag NPs -p-MWCNTs-HTAB – (HA + Ag NPs -Pristine MWCNTs + HTAB)  

4. Ag NPs-f-MWCNTs-HTAB – (HA +Ag NPs- Functionalized MWCNTs + HTAB) 

AgNO3 solution (0.4 mg/l) was prepared to have the same dissolved amount of Ag 

available, as it would be from the composites sterilized by autoclaving (121 °C for 15 min 
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at 15 psi pressure). This was based on the results from the dialysis experiment (Chapter 

3, section 3.5.4.2 ). The highest amount of Ag detected in the dialysis bags was used to 

determine the quantity of the AgNO3 to be used for this study. All the composites were 

sterilised by Gamma irradiation (36.42-40.72 KGy for 10 h) due to concern that high 

autoclave temperature might affect the crystal structure and pore size of the composites. 

Figure 5.3 shows a schematic representation of the experimental design. The composites 

were placed at the bottom of 24 well plate using sterile technique. Due to the porous 

nature of the composites, 1ml of sterile broth was added to the wells and removed after 

1 h. Following this,  as shown in Figure 5.3, 1 ml of bacterial suspension was added to the 

wells.  For the AgNO3, 0.5 ml of the solution and 1ml of the bacterial suspension was  

introduced into a well simultaneously.  The plates were then incubated at 37 °C on a shake 

table (MaxQTM 4450, Benchtop Orbital Shaker, ThermoFisher Scientific, Paisley, UK) for 

24 h. The 24 well microplate was a unit of replication (n= 9 plates/ treatment); one of 

each type of composite was added to each plate (Figure 5.3). Additional treatments 

included the pure HA composite (negative control), the AgNO3 solution (positive control), 

and a blank well with just the bacterial suspension (reference) (Figure 5.3).  After 24 h of 

exposure, the external media from 6 replicates was assessed for bacterial growth by 

measuring the lactate production and cell viability using the live/dead kit. The integrity 

of the composites was also assessed by measuring concentrations of calcium, phosphorus 

and silver in the external media and media from the attached cells using ICP-MS as 

detailed in chapter 4 ,section 4.2.5. Briefly, 0.5 ml of the media transferred to acid washed 

Eppendorf tubes and a few drops of 70% nitric acid was added to the tubes to digest the 

metal and other electrolyte which was then analysed using ICP-MS.  Biofilm formation on 

the composites was also investigated. Three replicates were used for SEM observation 

which is explained in detail below
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Figure 5.3 Schematic representation of the experimental setup for the bacterial study.  The figure shows the control for the experiment and 
the treatments tested. The placement of the controls and treatment composites in the 24 well plate (n=9 plates) followed by the different types 
of assays performed on the external media and the assays performed bacteria grown on the composites and controls.          
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5.2.3 Assessment of bacterial attachment    

The viability of the bacteria attached to the composites was tested by following 

the method of (Besinis et al., 2014), with some modifications. In brief, the composites 

were carefully removed from the 24 well microplates using sterile tweezers and then 

washed thrice with sterile saline (0.85% NaCl) to remove any unattached bacteria. Each 

composite was placed separately into sterile glass bottles containing 2 ml of sterile 0.85% 

NaCl and sonicated in an ultrasonic bath (35 KHz frequency, Fisherbrand FB 11010, 

Germany) for 1 min to remove the attached cells from the surface of the composite. The 

composites were removed and the remaining solutions were vortexed for a few seconds 

to homogenize them. Then, 0.5 ml of the saline from the sonicated composites was 

aliquoted into new sterile BHI broth and incubated in the shaker incubator at 37 °C for 5 

h. The incubation time was decided based on the growth curve of S. aureus which was 

assessed before the start of the experiment (Refer optimisation study, growth curve).  

The media from the blank well with no composites and well containing AgNO3 solution 

were mixed well with a pipette and centrifuged for 10 min at 2000 rpm (2040 rotors 

microplate centrifuge, Centurion Scientific Ltd, Ford, UK).  The supernatant was 

discarded and the pellet was washed twice with saline and re-suspended in 2 ml of 0.85% 

saline. Then, 0.5 ml of this solution was aliquoted into new sterile BHI broth and 

incubated in the shaker incubator at 37 °C for 5 h.  

 

5.2.4 Determination of lactate production 

S. aureus is a facultative anaerobe that is capable of fermenting the supplements 

in the broth to lactic acid. The appearance of lactate in the external medium is therefore 

an indication of metabolically active viable cells. After 24 h exposure of the bacteria to the 

composites, 100 µl of the supernatant from each well was transferred to V-bottom 96 well 
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microplates (Produce code: 3896, Corning, Flintshire, UK) which was centrifuged at  2000 

rpm for 10 min to pellet the bacteria. According to (Besinis et al., 2014), 10µl of the 

supernatant was then transferred to a new V-bottom 96 well microplate to perform the 

lactate assay. Briefly, 10 µl of the supernatant from each well was mixed with 211 µl of a 

lactate assay reagent. The assay reagent was made of 200 µl of 0.4 M hydrazine and 0.5 

M glycine solution (buffered to pH 9 with few drops of 6 M KOH), 10 µl of 40 mM 

nicotinamide adenine dinucleotide (NAD+, Melford Laboratories Ltd, Suffolk, UK) and 1 

µl of 1000 units/ml lactate dehydrogenase (LDH, Sigma-Aldrich Ltd, Dorset, UK). Samples 

were then incubated for 2 h at 37°C, and absorbance read with VersaMax plate reader 

(VersaMax microplate reader with SoftMax Pro4.0 software, Molecular Devices, 

Sunnyvale, USA) at 340 nm wavelength. Absorbance values were converted to molar 

concentration using a calibration curve of lactic acid standards in triplicates (0, 0.125, 

0.25, 0.5, 1.0, 2.0, 4.0 and 8 mM). The standards were prepared by adding 480 µl of 30% 

lactic acid to 100 ml Milli-Q- ultrapure water to get 16 mM, and then a 50% serial dilution 

was made to get 8, 6, 4, 2, 1, 0.5, 0.25, 0.125 mM. Similar to the suspended bacteria in the 

external media, lactate production was measured in the media of the attached bacteria 

after 5 h.  

 

5.2.5  Live/ dead assay  

The viability of S. aureus after 24 h exposure to the composites and 5 h growth in 

the broth was assessed using the L7012 Live/Dead ® Backlit Kit (Invitrogen ltd, Paisley, 

UK) according to the manufacturer’s protocol. The kit contains SYTO 9, a green 

fluorescent DNA stain for all kinds of cells, and a red fluorescent DNA stain (propidium 

iodide) for cells with a compromised membrane. To perform the assay the staining 

solution was prepared by mixing the two stains provided in the kit at a 1:1 ratio and then 
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adding Milli-Q- ultrapure water to obtain a final stain concentration of 0.6%. Then 100 µl 

of the samples (external media after 24 test and supernatant after 5 h incubation) were 

transferred into a 96-well plate (flat-bottom sterile polystyrene Microplates, Product 

code: 11319163, Fisher Scientific, Loughborough, UK). Equal quantity of the dye (100 µl) 

was also transferred into the wells and this was mixed well. The microplates were then 

incubated for 15 min in dark at room temperature. The samples were examined 

immediately using a Cytofluor II, fluorescence plate reader (perspectives Biosystems, 

Framingham, MA, USA). The excitation wavelength was set at 480 nm for both the dyes, 

whereas the emission wavelength for SYTO 9 was set at 530 nm and 645nm for 

propidium iodide and gain was 70. 

 

Prior to performing the assay with the bacteria from the samples, the assay was 

calibrated to convert the fluorescence data of live/dead assay to an equivalent live cells 

percentage values. This was done according to Besinis et al., (2014) and the 

manufacturer’s instructions with some modifications.  To calibrate the assay for S. aureus 

5 ml of cells from the stock culture was added to 15 ml of sterile broth and this was 

centrifuged at 4000 rpm for 10 min. The supernatant was discarded and the pellet was 

suspended in 10 ml saline which was again centrifuged at 4000 rpm for 10 min. This was 

repeated twice and the pellet was suspended in 2ml saline. Then 1ml of this suspension 

was added to 15 ml of 70% isopropyl alcohol and incubated for 1 h to kill the cells. The 

remaining 1 ml was suspended in 15 ml saline to obtain an OD of 0.19 (107 CFU/ml) which 

was read at the wavelength of 595 nm. After 1 h the tube containing isopropyl alcohol 

was centrifuged at 4000 rpm for 10 min and the supernatant was discarded. The pellet 

was washed twice in saline. Finally, the pellet obtained was resuspended in 15 ml saline 

to achieve an OD of 0.19 absorbance units. Care was taken to ensure the OD of both the 
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live and dead cells were the same. To obtain the calibration curve (Figure 5.4), the ratio 

of integrated green/ red fluorescence against the known percentage of live cells of the 

standard cell suspension was plotted as follows: 

Live cells % 100 90 80 70 60 50 40 30 20 10 0 

Dead cells % 0 10 20 30 40 50 60 70 80 90 100 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Calibration curve for % live dead cells. A typical calibration gave a linear response 
(e.g., R2 =0.9805, y= 0.1029x+0.5956)  
 

 

5.2.6 Electron microscopy observation 

To qualitatively asses the bacterial growth on the composites, SEM observation 

was performed. Briefly, the composites, positive control (AgNO3) negative control (Pure 

HA) and reference (blank well with only bacteria) were exposed to S. aureus for 24 h as 

described previously (n=3). Since AgNO3 and blank wells only had fluids, circular disks 
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from the bottom of another similar 24 well microplate was cut and sterilised by soaking 

in absolute ethanol for 1h. After drying, the disks were placed at the bottom of the 24 well 

microplates which were used for the experiment and the fluids were introduced. At the 

end of the exposure, the disks and the composites were washed twice with 0.85% NaCl 

to remove the detached bacteria and were subsequently fixed with 2.5% glutaraldehyde 

in 0.05 M cacodylate buffer at pH 7.4 for 2h. The specimens were subjected to a graded 

series of ethanol which involved immersing the specimens in 30, 50, 70, 95 and 100% 

ethanol for 30 min at each concentration. The specimens were then immersed in 50/50 

ethanol/ hexamethyldisilazane (HMDS) for 30 min and finally 100% HDMS for 20 min. 

The specimens were left undisturbed in the fume cupboard to air dry. The resultant 

specimens were mounted on conducting carbon stubs and coated first with carbon to 

perform EDS analysis, followed by gold in a sputter coater (EMITECH K550, Quorum 

Technologies, and UK).  SEM images were collected using a 15 kV accelerating voltage. 

 

5.2.7 Statistical analysis  

All data are presented as mean ±  standard error and were analysed using 

statgraphics software for windows (version XVI.I). After descriptive statistics to 

determine normality, skewness or kurotosis, data were analysed by one way ANOVA 

following a variance check (Levene’s test). All statistical analysis used a 95% confidence 

limit, so the p values < 0.05 were considered statistically significant. 
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5.3 Results  

 

5.3.1 Investigation of the bacterial growth in external media (suspension) 

The growth inhibition of S. aureus on the composites containing the Ag NPs was 

investigated by measuring the amount of lactate (Figure 5.5A) produced by the bacteria, 

as it is an indicator of metabolically active living cells. Lactate production was observed 

in all the composite treatments. However, they were significantly lower than the control 

groups (blank and pure HA composites, one-way ANOVA, < 0.05). Significant difference 

(one-way ANOVA, < 0.05) was observed in the lactate production among the composites, 

wherein lactate production was significantly higher in composites containing 

functionalised MWCNTs. No significant difference was observed between the composites 

made of pristine MWCNTs and positive control (AgNO3 solution). 

 

The proportion of viable cells in the external media was also measured using the 

live/dead assay (Figure 5.5C). The data was normalised against the blank (bacteria grown 

without any treatment); assuming that the bacterial growth was 100% in the blank. 

Similar to the lactate assay, significantly lower growth was observed in the treatment 

composites compared to the control (pure HA composites) by approximately 80%.  No 

significant difference was observed between the treatment composites but the 

composites containing functionalised MWCNTs showed significantly higher amount of 

live cells compared to the positive control (AgNO3 solution). 
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5.3.2. Assessment of bacterial attachment to the composites  

Determination of the bacterial attachment on the composites was done by 

incubating the media obtained from the composites for 5 h. Similar to the lactate 

production in the external media; lower lactate production was observed in the 

treatment composites. The lactate production (Figure 5.5B) was significantly less 

compared to the controls (blank and pure HA composites). However, no significant 

difference was observed between the treatments and the positive control (AgNO3 

solution). Figure 5.5D depicts the results of live/dead assay for the attached bacteria. The 

data was normalised against the blank (bacteria grown without any treatment) similar to 

the external media. The viability of the bacterial cells was significantly reduced in the 

composites compared to the control by approximately 25%. No significant difference was 

observed between the composites. Although, no significant difference in the presence of 

viable cells was observed between the positive control and the composites. 

 

 

 

 

 

 

 

 



 

147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Growth inhibition of S. aureus A) Lactate production in external media, B) Lactate 
production of bacteria attached to the composites after 5 h incubation, C) Proportion of live bacterial 
cells in external media after normalization with control, D) Proportion of live bacterial cells attached 
to the composites after 5 h incubation (normalized with control). Different letter indicates significant 
different between the groups (ANOVA, P < 0.05).
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5.3.3 Investigation of the stability of the composites  

To determine the stability of the composites and leaching of Ag NPs from the 

composites, the concentration of silver was measured in both the external media and the 

sonicated media. In the external media (Table 5.1), silver release from  all the composites 

was significantly lower compared to the positive control. The maximum concentration 

released from the positive control was 3.48±0.74 ug/l (mean ± S.E.M., n=6). Within the 

treatment groups, the composites with PVA surfactant had a higher release of silver 

compared to composites with the HTAB surfactant. Silver release from the sonicated 

media showed that f-MWCNTs-PVA-Ag showed significantly higher release (0.65 ± 0.07 

ug/l) compared to the other composites. Overall, silver release in the external media was 

higher compared to the silver release from sonicated media (Table 5.1), indicating that 

most of the silver was released from the composites into the external media during the 

incubation period.   

 

Table 5.1 Total concentration of Ag (ug/l), Ca (mg/l) and P (mg/l) from the external and 

sonicated media.  

 
Treatment 

 

External media 
 

Ag Ca P  
Blank 0.005 ± 0.0a 8.72 ± 0.7a 1285.33 ± 117.8a  
HA 0.005 ± 0.0a 49.05 ± 11.7b 1238.09 ± 178.4a  
AgNO3 3.48 ± 0.7b 7.90 ± 0.1a,e 777.11 ± 12.6b   
p-MWCNTs-PVA-Ag  1.58 ± 0.1a 11.23 ± 3.7a,e,f 184.29 ± 11.8c  
f-MWCNTs-PVA- Ag 0.91 ± 0.04a 36.19 ± 4.3b,c 104.28 ± 13.3c  
p-MWCNTs-HTAB-Ag  0.87 ± 0.02a 23.4 ± 0.7c,d 129.58 ± 8.4c  
f-MWCNTs-HTAB-Ag 0.80 ± 0.1a 19.31 ± 1.5a,d,e,f 470.16 ± 10.3d 

Sonicated Media HA 0.005 ± 0.0a 38.34 ± 13.07a 151.08 ± 13.5a  
p-MWCNTs-PVA-Ag  0.49 ± 0.01b 30.59 ± 3.8a 44.61 ± 3.3b  
f-MWCNTs-PVA- Ag 0.65 ± 0.07c 38.51 ± 4.7a 64.7 ± 5.1b  
p-MWCNTs-HTAB-Ag  0.49 ± 0.01b 13.89 ± 0.9b 30.71 ± 7b  
f-MWCNTs-HTAB-Ag 0.59 ± 0.08b,c 22.35 ± 2.1a 92.53 ± 8.7c 

Data are expressed as mean± S.E.M (n=6 for each treatment). Different letters are statistically different from 

each other within the column (one-way ANOVA, p < 0.5).  
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The concentration of calcium and phosphorus (Table 5.1) was also measured in 

the media as an indication of composite degradation. Highest release of calcium in both 

the external and sonicated media was from the pure HA composites. In the external media, 

there was a significant difference between the treatments in calcium concentration (one-

way ANOVA, p < 0.05). The concentration of calcium release was highest in pure HA 

composites (negative control) 49.05±11.74 mg/l followed by f-MWCNTs-PVA- Ag 

(36.19±4.38 mg/l). The least amount of calcium was detected in AgNO3 solution which 

was the positive control. In the sonicated media, p-MWCNTs-HTAB-Ag had significantly 

less quantities of calcium  compared to the other composites. Phosphorus concentration 

in the external media showed significant difference between treatments. Both blank and 

pure HA composites showed significantly higher amount of phosphorus release 

compared to the treatment composites. The least amount of phosphorus release was 

observed in all the treatment composites, except f-MWCNTs-HTAB-Ag, which was 

significantly higher than the other composites.  Phosphorus release (Table 5.1) in 

sonicated media followed the same pattern as the external media with the highest 

amount of release from pure HA composite (negative control) followed by f-MWCNTs-

HTAB-Ag (one-way ANOVA, p < 0.05).  

 

5.3.4 Qualitative assessment of bacterial attachment (SEM observation)  

The bacterial growth on the composites was qualitatively analysed using SEM. 

Biofilm formation was observed in the blank well (bacteria grown without any 

treatment). Multilayer of bacterial cells was also observed on pure HA composite 

(negative control) surface and within the pores of the composites. S. aureus did not show 

any signs of stress and grew in multiple layers (Figure 5.6A and B). On the other hand, 

minimum to no bacterial cells were observed in AgNO3 as expected (Figure 5.6c). Among 
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the treatment composites, relatively higher amount of bacterial cells was observed on the 

surface of composites containing functionalised MWCNTs (Figures 5.6E and G). The 

bacterial cells had also filtered into the pores of the composites. Less bacterial cell 

adhesion and growth was observed in the composites containing pristine MWCNTs 

(Figures 5.6D and F) with the least on f-MWCNTs-HTAB-Ag composite.  
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Figure 5.6 Scanning electron micrographs of the composites exposed to S. aureus for 24 h, A) Blank (bacteria grown without any treatment) 
shows presence of bacterial biofilm, B) Pure HA composite (negative control) which shows full bacterial growth, C) Silver nitrate solution (positive 
control) which shows no bacterial growth, D) p-MWCNTs-PVA-Ag composite, E) f-MWCNTs-PVA-Ag composite, F) p-MWCNTs-HTAB-Ag 
composite, G) f-MWCNTs-HTAB- Ag composite. More bacterial cells are present on the composites containing functionalised MWCNTs (E and G). 
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5.4 Discussion 

 

This study reports the antibacterial activity of silver nanoparticles against 

clinically relevant bacteria S. aureus and their potential use in the development of 

composites for bone implants. The main finding was that the incorporation of Ag NPs in 

the composites enhanced the antibacterial effect compared to the pure HA composite, 

which provided a favourable condition for the bacteria to attach and proliferate.  

 

5.4.1 Integrity of the composites  

The concentration of calcium and phosphate was measured to investigate the 

degradation of all the composites. Significantly high amount of calcium and phosphorus 

was detected in the external media for the HA composite (control) suggesting a possible 

degradation (Table 5.1). The same effect was not observed with the treatments 

suggesting that since HA was nucleated in the presence of the MWCNTs they were held 

together strongly preventing the degradation of the treatment composites. The amount 

of calcium and phosphorus in the external media was higher than the sonicated media. 

Taking into consideration that no composites were present in the sonicated media after 

sonication, this could be because of calcium and phosphorus precipitation in the media. 

 

5.4.2 Antibacterial effect  

The bioassay results confirmed that the composites containing Ag NPs had  

antibacterial activity against S. aureus. It is well known that the antibacterial effect of 

AgNO3   is due to the release of silver ions which are toxic to microbes (Zarubina et al., 

2015). However, for Ag NPs, there are two possible explanations for this, either it is due 
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to the silver ion release from the composites or the direct contact of the microbe with the 

silver nanoparticles (Jose Ruben et al., 2005). The former is more likely, because the ICP-

MS results showed silver ion release from the composites to the external media (Table 

5.1). It is assumed that the potency of silver is related to its active form (soluble silver 

ions). (Schreurs and Rosenberg, 1982) found that silver ions can bind to the electron 

donor groups in biological molecules containing sulphur, oxygen or nitrogen, which 

causes defects in cell membrane and bacterial death. 

 

 It was shown that the composites containing Ag NPs and pristine MWCNTs 

showed the highest antibacterial activity among all the tested groups (Figure 5.5 A and C) 

which could be attributed to the poor adhesion of Ag NPs to the sidewall of the pristine 

CNTs (as explained in chapter 3). This means that, once broth was introduced into the 

well containing the composites, the broth filled up the pores in the composite washing 

out the trapped Ag NPs which were loosely adhered to the MWCNTs. It is hypothesised 

that this quick release of the Ag NPs in the first few hours of introducing the bacterial 

broth would have killed a partial amount of microbes resulting in the higher antibacterial 

effect as seen in the results (Figure 5.5 A and C).  

 

SEM analysis shows the presence of bio film formation in the blank and pure HA 

composites (Figure 5.6A and B). The same was not observed in the treatment composites 

suggesting that the composites containing Ag NPs had potential anti-biofilm activity by 

decreasing the colonisation and attachment of the bacteria to the composite surface 

(Figure 5.2 B and D). There are two possible mechanisms by which the colonisation of the 

composites leading to the formation of biofilm could have been prevented. The large 

surface area of the Ag NPs provide better contact with the microbes. This results in high 
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percentage of interaction with the microbes compared to silver micro particles or other 

bulk forms of silver.  Lok et al., (2007) had suggested that  direct contact of the Ag NPs 

with the bacteria may result in membrane rupture. Another explanation is that the 

bacteria would be killed in the suspension before settling down on the composites due to 

the effect of the silver released from the composites into the media (Table 5.1) preventing 

the biofilm formation. Furthermore, (Sondi and Salopek-Sondi, 2004a) revealed that Ag 

NPs could accumulate in the bacterial membrane and increase the permeability of the cell 

wall that leads to loss of cell content and eventually result in bacterial death.  

 

According to the assay results and SEM observation (Figure 5.5A and B; 5.6 B) 

complete growth of bacteria was observed in the pure HA composites (external media 

and sonicated media) confirming that HA had no antibacterial activity against S. aureus, 

but enhances their growth instead.  This finding further supports the idea of 

(Rameshbabu et al., 2007) who suggested that HA could absorb many proteins, amino 

acids and other organic materials, which favour the attachment and colonisation of 

bacteria.  

 

Although live/dead results (Figure 5.2C and D) was in agreement with the lactate 

production assays, the data values must be interpreted with caution as the calibration 

curve was not performed on the same day as the measurements of the fluorescence.  

Differences in the performance of the dyes was observed each day and it became clear 

that the calibrations are best conducted with each use of the dyes in the kit. The source 

of error may be small differences in dye concentration or quenching effects each day, 

which when converted from a calibration curve led to difference in the apparent live and 

dead ratios in sample resulting in negative values. For that reason, the data were 
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normalised to control, assuming that the growth of bacteria in the control (blank) was 

100%. 

 

Examination of the composites at the end of the 24 h incubation period by SEM 

(Figure 5.6) showed varying levels of bacterial adhesion on the composites under 

investigation. Bank (plastic disks) and HA composites (Figure 5.3 A and B) were fully 

covered with a multilayer of   S. aureus biofilm. In contrast, wells that contained AgNO3 

solution (plastic disk, see above) showed minimal or no bacterial presence on the disk, as 

expected. Within the composite treatments, the composites containing pristine MWCNTs 

were the least susceptible to bacterial adhesion followed by the composites containing 

functionalised MWCNTs. A possible explanation for this could be the presence of 

MWCNTs as proposed by (Kang et al., 2008). According to Kang et al, (Kang et al., 2008) 

the direct contact between the MWCNTs and the microbes inactivate the cells. Hence, the 

size of the MWCNTs plays a crucial role.  For the functionalised CNTs, during the oxidation 

process the CNTs are exfoliated reducing the size of the CNTs (see chapter 3) suggesting 

that more pristine MWCNTs would have been available to be exposed to the microbes. 

Further studies of the composites without the presence of Ag NPs needs to be performed 

to validate this.   
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5.5 Conclusion  

 

In the present study, the suitability of HA composites containing MWCNTs 

decorated with Ag NPs to provide good antibacterial and anti-biofilm activity to the 

implants was determined. The evidence from this study supports the idea that the 

antibacterial activity of Ag NPs is mainly due to silver ion release. Further, the study also 

supports the idea that MWCNTs could be antibacterial in nature. However, there is 

concern about the biological safety of MWCNTs-silver releasing implant material. 

Therefore, further in vitro and in vivo studies are needed to investigate the biosafety of 

the Ag NPs and to determine the antibacterial properties of MWCNTs.  
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6. Investigation of osteoblast cell 

differentiation and mineralization in the 

presence of silver nanoparticle-multiwall 

carbon nanotube-hydroxyapatite composites 
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6.1 Introduction 

 

Osteoblasts are specialized fibroblasts with the ability to secrete and mineralize 

the bone matrix.  Mineralization refers to cell mediated deposition of extracellular 

calcium and phosphorus salts where anionic matrix molecules take up the calcium and 

phosphate ions and serve as nucleation and growth sites leading to calcification. The ideal 

scaffolds should promote early mineralization of osteoblasts and support new bone 

formation.Since the introduction in Chapter 4 details the benefits and concerns about the 

application of MWNCNTs in implants, emphasis is placed on the same for Ag NPs 

biocompatibility in this chapter introduction.  Ag NPs are known to exhibit cytotoxic 

effect on osteoblast cells in a time and dose dependent manner, along with affecting the 

functional expression of the differentiation genes in the cells. So far there is only one 

study led by (Herkendell et al., 2014) which focused on the biocompatibility of the 

combined application of Ag NPs–MWCNTs in HA matrix composites. They have compared 

varying quantities of MWCNTs and Ag NPs in HA matrix and have shown that the 

cytotoxicity of the composites are increased with the increase in Ag NPs.  

Short-term in vitro studies that cultivate osteoblasts on composites can provide 

vital information about the biocompatibility of the cells with the implants. In the present 

study, synthetic HA composites containing Ag NPs were produced which were intended 

to have the ability to release Ag ions. Therefore, it is necessary to carefully consider the 

effects silver might exert at the nano scale to the cells and to understand the mechanism 

enabling the biocidal properties of the composite. The influence of the Ag NPs-MWCNTs-

HA composites on the bioactivity of human osteoblasts was studied by allowing the cells 

to proliferate, differentiate and mineralize on the composites. The effect of the 

composites was analysed at the molecular level by examining the expression of various 
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targeted differentiation and inflammation genes. Additionally, total glutathione 

concentration assay and lactate dehydrogenase activity assay were used to evaluate the 

oxidative stress and viability of the cell, respectively. ALP plays an important role in 

mineral formation by increasing the local concentration of inorganic phosphate 

(mineralization promoter) and by decreasing the extracellular pyro phosphate 

(mineralization inhibitor) (Golub and Boesze-Battaglia, 2007) and was used as a 

biomarker to evaluate the metabolic activity of the osteoblast cells.  Moreover, the 

dissolution of the Ag NPs-MWCNTS-HA composites and cellular uptake of silver was also 

investigated by measuring the total concentration of Ca2+ , P and Ag2+ in the external 

media and cell homogenate along with the concentration of the electrolytes (K+, Na+ and 

Mg2+).  

6.2 Methodology 

 

The biocompatibility of silver nanoparticles in the HA-MWCNTs composites, and 

the overall bioactivity was determined by growing human osteoblast cells on the 

composites and allowing them to differentiate. The composites were prepared and the 

following composites were exposed to osteoblast cells: pure HA (control), Ag NPs-p-

MWCNTs-PVA, Ag NPs-f-MWCNTs-PVA, Ag NPs-p-MWCNTs-HTAB, Ag NPs-f-MWCNTs-

HTAB. Human osteoblast cells were grown as mentioned in chapter four (section 4.2.1 – 

cell culture). The cells of passage 3, 4 and 6 were used for the experiment below.  

 

6.2.1 Experimental Design   

The experimental design is similar to the experimental setup explained in chapter 

four (section 4.2.2 – experimental design). In brief, the composites were sterilized using 
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gamma radiation and placed aseptically at the bottom of 24 well plates. The cell culture 

plate containing all the controls and treatments was a unit of replication. The composites 

were soaked in DMEM for 24 h before seeding with cells. The media were then removed 

and 1 ml of fresh DMEM containing 4x104 cells/ml from the stock was introduced into 

the wells. After 24 h the media was replaced with fresh DMEM, from there on media was 

changed every two days.  Two time points, day 7 and 21 were used in this study (culture 

time was calculated from the day of cell seeding). A schematic representation of the test 

performed at the two time points is presented in Figure 6.1. Two separate runs were 

performed for the two time points (day 7 and 21). Each run had eight replicates of which 

4 were used for RT-qPCR studies and 4 for biochemical studies. A separate run consisting 

of 3 replicates were used for SEM analysis for which day 7 time point was not performed. 

To enable the osteoblasts to mineralize, the differentiation supplements,  ascorbic acid – 

50 µg/ml (A4403, sigma Aldrich, Irvine, UK), Dexamethasone – 10nM (D4902, Sigma 

Aldrich, Irvine, UK), and β-Glycerolphosphate – 7mM (G9422, Sigma Aldrich, Irvine, UK) 

were added to the DMEM media from day 7, referred to hereafter as “Supplemented 

DMEM”. The treated media were also collected  to measure LDH and ALP activity along 

with ion concentrations. 
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Figure 6.1 Schematic representation of the tests performed at the two time points 
of the study. Two  runs with eight  replicates were performed of which four repeats were 
used for PCR and biochemical assays on day 7 and four repeats for PCR, biochemical assays 
on day 21. A separate run with three replicates was performed for day 21 SEM analysis.  

 

 

 

6.2.2 RNA extraction and RT-qPCR (Reverse transcription - quantitative 

polymerase chain reaction) analysis 

At the end of day 7 and 21, total RNA was extracted using RNeasy mini Kit (Product 

code: 74104, Qiagen, Manchester, UK) according to the manufacturer’s specifications. The 

control and treatment composites containing the cells were washed twice with 2 ml of 

phosphate buffered saline (PBS 1x without calcium and magnesium, Product code: 

10708144, Fisher scientific, Loughborough, UK). Following this, 600 µl of prepared buffer 

RLT was added for 10 min to lyse the cells (buffer RLT was previously prepared by adding 

10 µl of β-Mercaptonethanol per 1 ml of RLT buffer) according to manufacturer’s 
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instructions. The lysate was collected and centrifuged for 2 min at approximately 13,000 

x g (Heraeus pico 17 centrifuge, Thermo electron crop, Paisley, UK). Then, one volume of 

70% ethanol was added to the lysate and mixed well by pipetting. This lysate was then 

transferred to an RNeasy spin column and centrifuged for 30 s at 10,000 x g. The flow 

through was discarded and the spin column membrane was washed by adding 350 µl of 

buffer RW1 and centrifuged for 30 s at 10,000 x g. To ensure that all the DNA was 

removed efficiently, on-column digestion of DNA was performed during the RNA 

purification procedure. This was done by adding 80 µl of DNase I incubation mix directly 

to the spin column membrane for 15 min followed by the addition of 350µl of RW1 buffer. 

The spin column along with the contents was centrifuged again for 30 s at 10,000 xg. 

Following this, the spin column membrane was washed twice with 500 µl of buffer RPE 

and centrifuged for 4 min at 10,000 xg.  Finally, 30 µl of RNase-free water was added to 

the spin column and centrifuged for 2 min at 10,000 x g. The flow through containing the 

RNA was collected in a centrifuge tube to perform RT-qPCR.  

 

PCR was done for one housekeeping gene: -actin, and eight target genes: ALP, 

Osteocalcin, runx2, tumour necrosis factor (TNF-), interleukin-6(IL-6), Osterix (OSX), 

DLX-5 and osteopontin (OPN). The target genes were selected to represent the health 

(response for any toxic reaction) and differentiation capability of the osteoblast cells. A 

description of the target genes and their function in the osteoblast cells is presented in 

Figure 6.2.  The forward and reverse primer for the housekeeping and the target genes 

are detailed in Table 6.1. 
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Figure 6.2 Description of the various target genes selected for the RT-qPCR study. The expression of these genes sever as an indicator of the 
effect of the composites on the osteoblast cells at the molecular level. The genes were selected to represent health and differentiation capability 
of the cells in the presence of the composites. 
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Table 6.1 Description of the forward and reverse primers for the housekeeping and target 

genes 

Name  Forward Primer Reverse Primer Reference 
β-Actin CCCAAGGCCAACCG

CGAGAAGATG 
GTCCCGGCCAGCCAGGT
CCAGA 

(Cheng et al., 
2015) 

ALP GACAATCGGAATGA
GCCCACAC 

GTACTTATCCCGCGCCT
TCACCAC 

(Cheng et al., 
2015) 

Osteocalcin AGCCCAGCGGTGCA
GAGTCCA 

GCCGTAGAAGCGCCGAT
AGG 

(Cheng et al., 
2015) 

RUNX 2 TGCGGCCGCCCCAC
GACAA 

ACCCGCCATGACAGTAA
CCACAGT 

(Cheng et al., 
2015) 

TNF-α AGCCCCCAGTCTGT
ATCCTT 

CTCCCTTTGCAGAACTC
AGG 

(Neacsu et al., 
2014) 

IL 6 AGTTGCCTTCTTGG
GACTGA 

TCCACGATTTCCCAGAG
AAC 

(Neacsu et al., 
2014) 

Osterix GCAGCTAGAAGGGA
GTGGTG 

GCAGGCAGGTGAACTT
CTTC 

(Sunk et al., 2006) 

DLX-5 CCAACCAGCCAGAG
AAAGAA 

GCAAGGCGAGGTACTG
AGTC 

(Morsczeck, 2006) 

Osteopontin TTGCAGCCTTCTCA
GCCAA 

GGAGGCAAAAGCAAAT
CACTG 

(Bahrambeigi et 
al., 2012) 

 

RT-qPCR was performed in duplicates (per treatment on each plate, per gene) 

using QuantiNova SYBR Green RT-PCR Kit (Product code: 208154, Qiagen,  Manchester, 

UK) in Quantstudio 12K Flex real time PCR system (Product code: 4471134, Applied 

Bioscience, Thermo Fisher scientific, Loughborough, UK). A total volume of 10 l of PCR 

mixture was loaded in each well of the 368 well PCR plate (Product code: AB1384, 

ThermoFisher Scientific, Loughborough, UK). The PCR mixture was made up of 5 l of 2x 

SYBR Green RT-PCR Master Mix, 0.1l of QN SYBR Green RT-Mix and 0.5l of 20x primer 

mix ( 0.5 M forward primer and 0.5 M reverse primer), 1 l of template RNA and 3.4 l 

of Nuclease free ultrapure water. PCR amplification was conducted with an initial 10 min 

RT-step at 50 C followed by  2 min PCR initial heat activation step at 95 C , then 40 cycles 

of 5 s denaturation step at 95 C and 10 s combined annealing/extension step at 60 C 

was performed. The fluorescent signal from SYBR Green was detected immediately after 
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the extension step of each cycle and the cycle at which the product was first detectable 

was recorded as the cycle threshold. The housekeeping gene (β-actin) was used as the 

internal control gene to normalize the mRNA of the target genes.  

 

 A cycle threshold (Ct) value was obtained for each amplified sample using the 

Quantstudio 12K Flex Real-Time PCR System thermocycler analysis software. The mean 

value of the two replicas analysed for each gene/ each repeat of the treatment (4 repeats 

/treatment) was calculated and a final average Ct value was obtained (Schmittgen and 

Livak, 2008). The correspondent housekeeping gene β-actin was subtracted to normalize 

those values, obtaining a dCt (∆Ct) value. The level of gene expression showed by cells 

grown on their own (blank) were taken as a reference for both the time points. To 

estimate gene expression relative to this reference, the mean dCt value corresponding to 

each gene calculated from the positive control (pure HA) and treatments was subtracted 

from the mean dCt values of the reference, obtaining a ddCt (∆∆Ct) value. Finally, mean 

fold change value, the times a gene is expressed in a treatment compared to the 

expression level in a control (Pure HA composite), taken as reference, was calculated from 

the ddCt value of the treatments on the two time points (Day 7 and 21) . 

 

6.2.3 Biochemical assays and cell morphology  

At the two time points (day 7 and 21), cell homogenates were prepared in hypo-

osmotic buffer as mentioned in chapter 4 (section 4.2.2–experimental design). Aliquots 

of the cell homogenates was stored at -80 ° C and were later used to measure lactate 

dehydrogenase and alkaline phosphatase activity, total protein and total glutathione 

(GSH) concentration. The electrolyte composition (Na+, K+, Ca2+, P+ and Mg2+) of the cells 

and the concentration of total Ag in the cell homogenate was measured from fresh 
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aliquots by acid digestion followed by ICP-MS and/or ICP-OES analysis. The protocols 

used for the measurement of, LDH, ALP and electrolyte and metal analysis and protein 

content is previously described in Chapter 4 (Sections 4.2.3, 4.2.4 and 4.2.5, 4.2.6). The 

LDH, ALP assays and ion concentration measurements were also performed with the 

external media from days 1, 4, 7, 10, 13, 16, 19 and 21.   

 

Glutathione (GSH)  is a tripeptide synthesised in the cytoplasm of all cells and acts 

as a chemical antioxidant. Hence, the presence of GSH in the cell homogenate is an 

indication of oxidative stress in the cell caused by reactive oxygen species such as silver 

accumulation. GSH was measured according to (Owens and Belcher, 1965) with minor 

modifications. Briefly, 20 µl of the cell homogenate was added to 300 µl of the reaction 

mixture consisting of  260 µl assay buffer (100 mmol/l potassium phosphate + 5mmol/l 

potassium EDTA, pH 7.4), 10mmol/l  of buffered DTNB (Ellman’s reagent – 5, 5’ – dithiobis 

– 2- nitrobenzoicacid) and 20 µl of 2 U/ml glutathione reductase. After equilibration for 

1 min, the reaction was started by adding 20 µl of 3.63 mmol/l NADPH. Since this is a 

kinetic assay which is time critical, the NADPH was added simultaneously in all the wells 

by pipetting with a multichannel pipette. Absorbance was read at 412 nm for 15 min using 

microplate reader (SpectraMax 190 Microplate reader, Molecular Devices, Wokingham, 

UK). A series of glutathione reductase standards (0, 4, 8, 12, 16, and 20) µmol/l  was used 

for calibration. The assay was performed in triplicates for each sample.   

 

Morphology (shape and appearance) of the cells was regularly observed by light 

microscope to determine the health of the cells. The DMEM media appeared normal (no 

loss of the pH indicator or excessive cell debris). Light microscopy observations showed 

no signs of deterioration such as necrosis, detachment of cells from the substrate, 
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granularity around the nucleus or obvious disruption of the cell membrane (i.e., no 

membrane blebs or cell swelling). The mineralization of the cells was observed after 

adding supplemented DMEM. At the end of the experiment, the presence and health of the 

cells were determined using a scanning electron microscope (SEM) (JEOL JSM -5600LV, 

JEOL ltd, Japan). A separate run (n = 3) replicates were done for SEM work as mentioned 

previously. Only one time point (day 21) was done for SEM analysis. The composites 

containing the cells were processed and fixed as mentioned in chapter 4 (section 4.2.6 – 

cell morphology). SEM images were collected using a 15 kV accelerating voltage. The 

observations were conducted systematically, starting at a lower magnification (X30) to 

examine the distribution of the cells on the composites, and then at a higher magnification 

(X1000) to observe the morphology of the cell membrane as well as to determine the 

attachment of cells on the composites. 

 

6.2.4 Statistics  

All data are presented as mean ± standard error and were analysed using 

statgraphics software for windows (version XVI.I). After descriptive statistics to 

determine normality, skewness or kurotosis, parametric data were analysed by one way 

ANOVA following a variance check (Levene’s test) and non- parametric data analysed by 

Kruskal-Wallis. The differences between the treatments and controls at each time point, 

and time effects within treatment were evaluated using one-way analysis of variance 

(ANOVA). For treatment x time effects, a two-way ANOVA was also applied to the data. All 

statistical analysis used a 95% confidence limit, so the p values < 0.05 were considered 

statistically significant.  
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6.3 Results  

6.3.1 Growth and morphology of cultured cells  

The morphology of the osteoblast cells was investigated after the inoculation stage 

(24h) using light microscopy (Figure 6.3 A). No signs of cell death due to toxicity or 

infection was observed. To determine the structural integrity and presence of any 

infection, cells were observed with naked eye and under light microscope throughout the 

experiment. The osteoblasts appeared flat with extending pseudopods before the 

addition of supplemented DMEM. After the addition of supplemented DMEM to the wells, 

the cells appear to cluster to form a single layer with calcium deposition on the surface 

(Figure 6.3 B).  

 F 

Figure  6.3  Light microscope  observation of the osteoblast cells (Control)  (A)  
Osteoblast cells after 24 h, arrows point to the individual cells which can be clearly 
observed. (B) Osteoblast cells after 21 days incubations. Mineralization of the cells is 
evidenced by the presence of the mineral deposit. 

A B 
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E D 

F Figure 6.4 SEM images of the osteoblasts after 21 days of growth 
and mineralization on the composites. Various magnification has 
been used for the treatments to show the presence of nodules  (A) 
Control cells grown on the plastic plate; (B) cells grown on pure HA , 
it can be seen that the cells have infiltrated into the pores; (C) 
shows cells grown on p-MWCNTs-PVA (D) shows cells on f-
MWCNTs-PVA; (E) shows a single cell with the presence of  a nodule 
on  p-MWCNTs-HTAB; (F)shows cells on  f-MWCNTs-HTAB forming 
bridges. Arrows  in (A, B ,C, D and F) indicate the nodules formed 
by the cells Arrow in (E) shows the podia extending from a cells. 
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After 21 days of culture, the controls and the treatment samples were visualized 

using SEM (Figure 6.4). The white solid crystalline structures on the blanks and the 

treatments were mineralized crystals deposited by the cells (Figure 6.4, arrows in the 

images). Crystal nodules were also observed in the areas were the cells had in filtered 

through the pores. Since the treatments had areas of uneven surfaces, the cells were often 

seen to form bridges between the gaps (Figure 6.4 F).   

  

6.3.2 Quantification of specific mRNA 

Quantification of relative expression of the different genes related to 

differentiation and inflammation was performed to understand the potential regulatory 

effect of the composites on human osteoblast cells. This was  done by calculating the value 

of ΔΔCt, using the endogenous expression of the gene β-actin as a control, to normalise 

the expression levels. The Figure 6.5 show the mean value of fold change of selected gene 

expression after 7 and 21 days of osteoblast cell cultures on the treatments relative to the 

cells on pure HA composites. The genes were classified into groups according to the 

known or proposed function of the encoded protein .The categories are: transcription 

factors (Dlx-5, Runx2, Osterix), bone matrix proteins (ALP, osteocalcin), non-collagenous 

protein (osteopontin) and cytokines (IL-6, TNF –α).  As shown in (Figure 6.5 A, B and C) 

the transcription factor Dlx5 is downregulated on both the days whereas Runx2 and 

osterix are upregulated on day 7, but downregulated on day 21 except for genes from p-

MWCNTs-PVA, where they are downregulated on day 7 as well.  The bone matrix proteins 

(Figure 6.5 D and E) ALP and osteocalcin are as expected (ALP is upregulated on day 7 

and downregulated on day 21 and vice versa for osteocalcin).  The only exception is the 

p-MWCNTs-PVA which are downregulated for both the genes on both the days. The 

cytokines  IL-6 and TNF–α (Figure 6.5 G and H) are both upregulated on both the days 
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reaching a maximum of 16.15 and  7.1 fold change for Il-6 and TNF -α respectively on day 

7  and 6.5 and 2.4 fold change  on day 21.   
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Figure 6.5 RT-qPCR measurement of targeted mRNA levels of the osteoblast cells 

adhered to the composites. Total RNA was isolated from cells on day 7 and 21 from AgNP- 

p-MWCNTs-PVA, AgNP- f-MWCNTs-PVA, AgNP- p-MWCNTs-HTAB, AgNP- f-MWCNTs-HTAB. 

Data are mean ± S.D (n=4 per treatment per end point). Expression levels (fold change) for 

(A) Dlx-5, (B) RunX2, (c) Osterix, (D) Alkaline Phosphatase, (E) Osteocalcin, (F) Osteopontin, 

(G) Interleukin -6, (H) Tumour Necrosis Factor-Alpha are compared for all the treatments. 

The results are shown as fold change (ddCt method, relative to cells on pure HA 

composites).* significantly different from the other treatments (one way ANOVA or Kruskal – 

Wallis test, p <0.05) 

 

6.3.3 Investigation of the silver exposure and ion concentration in the media and 

cell homogenates  

The total silver concentration was measured in the external media on days 1, 4, 7, 

10, 13, 16, 19 and 21 (Table 6.2). The concentration of the silver in the media of 

composites containing p-MWCNTs was high over 21 days.  There was a significant 

difference in silver concentration between the groups (Ag NP-p-MWCNTs and Ag NP-f-

MWCNTs). The highest concentration of silver (µg/l) was observed after one day in the 
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external media of the p-MWCNTs–HTAB and p-MWCNTs-PVA treatments; the 

concentration was 22.1 ± 2.5 and 20.7 ± 2.3 respectively. There is an initial release of Ag 

from all the treatment composites which  decreases over time. The concentration of silver 

in the media from control (blank) and Pure HA composite was below the detection limit 

(detection limit <0.03µg/l).  

 

In the cell homogenate, silver accumulation was observed in all the treatment 

composites. The concentration of silver was significantly higher on day 21 in all the p-

MWCNTs treatments compared to day 7.  Low concentration of silver (day 7 - 0.03 (blank 

and HA), day 21 – 0.1 (control), 0.0 (pure HA) µg/l) was detected on both the days in the 

control (blank) and pure HA composite. 

  

The electrolytes Na+, K+, Ca2+, Mg2+, and P were also measured in the external 

media and cell homogenate (Tables 6.2 and 6.3). No significant difference in the 

concentration of Na+, K+ and P between the treatments and control was observed whereas 

significant difference was observed in the concentration of Ca2+ and Mg2+ in the external 

media. The concentration of Ca2+ in the media was significantly lower in the pure HA 

composite and significantly higher in the p-MWCNTs treatments compared to the control. 

The concentration of Mg2+ in the media was significantly lower in pure HA composite and 

all the treatments compared to the control (Blank). In the cell homogenates, the 

concentration of the electrolytes was significantly higher in the treatments and pure HA 

composite compared to the control (Blank). 
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Table 6.2 The total concentration of Ag (µg/l) and electrolytes, Na+, K+, Ca2+, Mg2+, and P (mg/l) in the media after exposing the osteoblasts to 

the composites for 21 days.  

Silver 
 

Days Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 0.12±0.03 0.13±0.05a 20.7 ± 2.3*b 2.2 ± 0.7a 22.1 ± 2.5*b 5.7 ± 4.2a 

4 0.15±0.06 0.21±0.02a 13.2 ± 0.3*b 1.5 ± 0.1a 21.2 ± 3.5*b 3.7 ± 2.1a 

7 0.24±0.03 0.05±0.03a 8.4 ± 3.1*b 1 ± 0.3a 16.4 ± 2.4*b 1.5 ± 1a 

10 0.12±0.08 0.15±0.07a 7 ± 2.1*b 0.3 ± 0.1a 8.6 ± 1.3*b 0.5 ± 0.1a 

13 0.17±0.08 0.08±0.08a 13.2 ± 1.2*b 0.8 ± 0.05a 7 ± 1.5*b 7.6 ± 0.2a 

16 0.44±0.01 0.30±0.02a 6.6 ± 0.7*b 0.2 ± 0.1a 9.3 ± 3.5*b 0.2 ± 0.1a 

19 0.4±0.05 0.10±0.04a 9.3 ± 3.3*b 0.3 ± 0.4a 4 ± 1*b 0.04 ± 0.1a 

21 0.31±0.1 0.42±0.005a 8.3 ± 1.8*b 1.6 ± 0.2a 8.4 ± 1.8*b 0.07 ± 0.1a 

Sodium 

Days Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 251.4 ± 6.8 257.2 ± 11.5a 333.5 ± 14*b 384.2 ± 18* 324.2 ± 15.5*b 276.8 ± 18.8a 

4 217.4 ± 8.2# 203 ± 12.4a# 253.3 ± 17.8b# 261.6 ± 13*b# 243.2 ± 11b# 233.8 ± 14ab# 

7 240.8 ± 13.4 207.8 ± 9.2a 283.7 ± 29b 258 ± 4.6bc 220.4 ± 8.6acd 210.2 ± 8.07ad 

10 262.5 ± 15.8 261 ± 13.2a# 221.4 ± 12.1*# 243.2 ± 10a 233.5 ± 4.7a 231.7 ± 17.7a 

13 252 ± 5 224.5 ± 13.4*a 248 ± 10b 273 ± 6.2c 252.1 ± 7.1bc 239.5 ± 4.3ab 

16 235.5 ± 7.4 220 ± 7.5a 256 ± 3.4b 269.8 ± 9*bc 264.6 ± 3.7*bc 204.4 ± 16.5*a 

19 312.5 ± 10.6# 354.8 ± 14.1*# 475.7 ± 11.6*a# 457.8 ± 10.8*a# 456 ± 4.6*a# 444 ± 16.5*a# 



 

179 
 

21 527.4 ± 17.8# 544.2 ± 16.7# 539.3 ± 18.3# 555.1 ± 19.4# 539.1 ± 15.2# 527.4 ± 9.8# 

 
Potassium 

 Days Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 19.8 ± 0.4 21.7 ± 2.3 20.8 ± 2.3 19.6 ± 1 19.4 ± 0.6 19.6 ± 0.6 

4 17.7 ± 0.7 16.7 ± 1# 16.3 ± 1.4# 17 ± 1.3 16.1 ± 0.5 18 ± 1.3 

7 19.6 ± 1.1 18.6 ± 1.6 19 ± 1.7 18.8 ± 1.4 18 ± 2 17 ± 2 

10 18.8 ± 1.3 18.4 ± 1.7a 14.5 ± 0.6*b# 18.2 ± 1.3abc 18.5 ± 1.7ac 15.1 ± 0.8abc 

13 18.8 ± 0.4 17.2 ± 1 18.4 ± 1.3 19.2 ± 0.8 18.2 ± 0.4 17.7 ± 0.6 

16 17.6 ± 0.4 16.6 ± 0.4a 18.3 ± 0.3ab 19 ± 0.6bc 19.1 ± 0.1bc 15.3 ± 1.4*a 

19 24.2 ± 1.1# 30.1 ± 1.1*# 34.5 ± 1.7*a# 36.6 ± 1.2*a# 35.3 ± 1.2*a# 35.5 ± 0.7*a# 

21 34.4 ± 1.7# 37.3 ± 2.1# 40.1 ± 1.2*# 38.3 ± 1.1 38.8 ± 1.5 36.3 ± 1.3 

Calcium 
 

Days  Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 7 ± 0.7 1.1 ± 0.1*a 29.2 ± 2.4*b 6.6 ± 2.8c 40.1 ± 0.8*d 14.2 ± 1.5*e 

4 5.8 ± 0.2 1.6 ± 0.1*a 25.3 ± 1.3*b 5 ± 1a 23.3 ± 1.9*b# 9.4 ± 1.2*# 

7 6.6 ± 0.4 1.0 ± 0.2* 13.5 ± 1.9*# 8 ± 0.8a 21.2 ± 10* 5.3± 1.0a# 

10 6 ± 0.5 0.4 ± 0.1* 21.2 ± 0.5*# 3.4 ± 0.7*a# 16.6 ± 1.4* 4.4 ± 0.4a 

13 5.3 ± 0.1 0.4 ± 0.07* 26.1 ± 0.3*# 5 ± 1a 12 ± 0.8* 4.5 ± 0.3a 

16 3.6 ± 0.5# 0.4 ± 0.1* 12.5 ± 0.7*a# 5.2 ± 1ab 14.8 ± 1.2*a 3.5 ± 1ab 

19 2 ± 0.3# 0.3 ± 0.06a 15 ± 15.4*b 2.1 ± 0.5a 10.5 ± 3.3*b 6 ± 1 

21 2 ± 0.1 1.6 ± 0.8# 24.2 ± 2*# 17.4 ± 1.2*a# 19.1 ± 2.4*a# 14.1 ± 0.4*a# 
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Phosphorus 

Days Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 3.4 ± 0.4* 21.5 ± 1.4*a 32.1 ± 3.3* 28 ± 2.3*a 30.6 ± 2.6* 28.7 ± 1.7* 

4 2.7 ± 0.1 16 ± 0.2*a# 23.7 ± 1.2*b# 26.3± 2.4*b 21 ± 1.8*# 19.3 ± 2.5*a# 

7 3 ± 0.1 16.3 ± 1*a 15 ± 1.2*ab# 21.8 ± 1*a 23.1 ± 4.1* 15.7 ± 1.7*ab 

10 20 ± 0.5# 22 ± 1.5# 20 ± 2.2 23.4 ± 1.1 21.1 ± 0.8 21.5 ± 1.5 

13 14 ± 1ab# 21 ± 0.4ab 31 ± 0.8a# 25.06 ± 1b 20.8 ± 1.4ab 23.3 ± 1.1ab 

16 11.8 ± 0.5 20.5 ± 0.7*ab 21.7 ± 0.7*ab# 24 ± 1.6*b 21.6 ± 1.3*ab 19 ± 1.6*a 

19 16.8 ± 2 29.2 ± 2*# 35 ± 1.1*# 30.6 ± 2*# 29 ± 2.4*# 32.6 ± 3.1*# 

21 21.5 ± 4.4 31.7 ± 2.8*a 43.7 ± 1.3* 36.5 ± 3.6*ab 25.5 ± 2ac 31.1 ± 2.3*abc 

Magnesium 

Days Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 2 ± 0.2 0.2 ± 0.04* 0.1 ± 0.03* 0.1 ± 0.01* 0.1 ± 0.04* 0.1 ±0.00* 

4 1.5 ± 0.05 0.07 ± 0.0*# 0.08 ± 0.01* 0.05 ± 0.01* 0.1 ± 0.04* 0.06 ± 0.01*# 

7 1.7 ± 0.1 0.06 ± 0.0* 0.04 ± 0.02* 0.06 ± 0.00* 0.1 ± 0.03* 0.04 ± 0.00* 

10 1.6 ± 0.1 0.07 ± 0.0* 0.08 ± 0.03* 0.06 ± 0.01* 0.06 ± 0.01* 0.05 ± 0.00* 

13 1.6 ± 0 0.07 ± 0.0*a 0.1 ± 0.04*b 0.06 ± 0.00*a 0.06 ± 0.01*a 0.2 ± 0.01*b 

16 1.4 ± 0.1 0.08 ± 0.0* 0.1 ± 0.01* 0.07 ± 0.00* 0.1 ± 0.04* 0.04 ± 0.00* 

19 1.8 ± 0.1 0.1 ± 0.01* 0.2 ± 0.07* 0.1 ± 0.03* 0.1 ± 0.02* 0.1 ± 0.01*# 

21 2.3 ± 0.2# 0.2 ± 0.01*# 0.2 ± 0.04* 0.2 ± 0.05*# 0.3 ± 0.07*# 0.2 ± 0.02*# 

Data expressed as mean ± S.E.M (n=4 for each treatment).Different letters are statistically different from each other within the column and 

absence of letters means there is no significant difference.*significantly different from the control in each row. # Significantly different from 

previous time point within the column (one way ANOVA or Kruskal-wallis test, P<0.05) 
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Table 6.3 The total concentration of Ag in (µg/l) and electrolytes, Na+, K+, Ca2+, Mg2+ and P (mg/l) in the cell homogenate after 7 and 21 days 

 

  Treatment Day 7 Cell Homogenate Day 21 cell homogenate  

 

 

Silver 

Control 0.03 ± 0.01 0.03 ± 0.01 

HA 0.03 ± 0.0 0.03 ± 0.0 

p-MWCNTs-PVA 20.1 ± 2.6*b 57.7 ± 9.7*c 

f-MWCNTs-PVA 15.4 ± 1.2*b 16.6 ± 1.8*b 

p-MWCNTs-HTAB 18 ± 2.4*b 68.7 ± 7.5*c 

f-MWCNTs-HTAB 1.7 ± 0.3a 3.4 ± 1a 

 

 

 

Sodium 

Control 3.1 ± 0.9 5.3 ± 0.7 

HA 39 ± 1.6* 44 ± 6.7* 

p-MWCNTs-PVA 71.4 ± 3.5*a 132.4 ± 8.8*ab 

f-MWCNTs-PVA 70 ± 5.3*a 109 ± 7.1*ab 

p-MWCNTs-HTAB 74 ± 3.8*a 136 ± 12*ab 

f-MWCNTs-HTAB 69.8 ± 6.1*a 73.4 ± 7.9*a 
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 Treatment Day 7 Cell Homogenate Day 21 cell homogenate  

 

 

 

Potassium 

 

Control 

 

1.3 ± 0.06 

 

1.1 ± 0.3 

HA 3.7 ± 0.3*a 4 ± 0.5*a 

p-MWCNTs-PVA 4.7 ± 0.7*a 8.1 ± 0.5* 

f-MWCNTs-PVA 4.2 ± 0.4*a 6.2 ± 1*b 

p-MWCNTs-HTAB 5.3 ± 0.3* 6.2 ± 1.1*b 

f-MWCNTs-HTAB 5.3 ± 0.5* 5.5 ± 0.6*a 

 

 

 

Calcium 

Control 0.03 ± 0.008 9.2 ± 0.6 

HA 34.6 ± 3.2*a 122.5 ± 7.7*a 

p-MWCNTs-PVA 135.5 ± 11*b 456 ± 16.3*b 

f-MWCNTs-PVA 223.1 ± 14*c 278.7 ± 18.4*c 

p-MWCNTs-HTAB 287.5 ± 17.3*d 662 ± 32.2*d 

f-MWCNTs-HTAB 133.7 ± 6.5*b 277.1 ± 25.6*c 
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 Treatment Day 7 Cell Homogenate Day 21 cell homogenate  

 

 

 

Phosphorus 

              Control               0.1 ± 0.08              5.8 ± 0.8 

HA 17.8 ± 2.7*a 58.5 ± 3.2*a 

p-MWCNTs-PVA 89 ± 1.7*b 212 ± 17*b 

f-MWCNTs-PVA 142 ± 10*c 141.8 ± 10.6*c 

p-MWCNTs-HTAB 52.3 ± 6*d 312.3 ± 24.4*d 

f-MWCNTs-HTAB 68.8 ± 2.7*e 152.4 ± 15.1*c 

 

 

 

Magnesium 

Control 0.1 ± 0.002 6.3 ± 0.1 

HA 1 ± 0.02a 3 ± 0.1a 

p-MWCNTs-PVA 6.3 ± 1.6*b 12.8 ± 1.7*b 

f-MWCNTs-PVA 3.5 ± 0.1a 12.3 ± 0.3*b 

p-MWCNTs-HTAB 10.7 ± 1.8*b 11.6 ± 0.1*b 

f-MWCNTs-HTAB 5.3 ± 1*b 7.8 ± 2.2a 

Data expressed as mean ± S.E.M (n=4 per treatment per end point). Different letter are statistically different from each other.*significantly 

different from the control within the column (one way ANOVA or Kruskal – Wallis test, P<0.05) 
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6.3.4 Lactate dehydrogenase  

The presence of LDH activity in the external media is one of the parameters that 

indicate cell injury. Table 6.4 represents the concentration of LDH (IU/ml media) in the 

external media after 1, 4, 7, 10, 13, 16, 19 and 21 days which was negligible.  No statistical 

difference was observed between the treatments on all the days. Significant difference 

between the control (blank) and pure HA composite was observed on day 13. No 

significant difference was observed between the control (blank) and the treatments on all 

the other days. Within the controls and treatments, no significant difference was observed 

between the different days except for f-MWCNTs-PVA on day 10 and 13 and p-MWCNTs –

HTAB on day 7 and 16.  In the cell homogenate, the LDH was low and < 1um/mg protein 

on day 7 in both the controls and treatment composites but as the cells matured there was 

an increase (Figure 6.6). Statistical difference was observed between the control (blank), 

pure HA composite and all the treatments on day 7 whereas no statistical difference was 

observed between the control and the treatments on day 21 except f-MWCNTs-PVA which 

was significantly lower than control.  
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Figure 6.6 LDH activity from cell homogenate after 7 and 21 days. Data are mean ± S.E.M 
(n = 4 per treatment per end point);* statistically different from control. Bars with letter ‘a’ 
are statistically differ from the others (p < 0.05). 
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Table 6.4 Lactate dehydrogenase activity in the external media (IU/ml media) during exposure of the osteoblast cells to the pure HA composite 

and the treatments containing MWCNTs and Ag NPs.  

 Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

Day 1 0.011 ± 0.05 0.042 ± 0.03 0.002 ± 0.002 
 

0.014 ± 0.01 
 

0.013 ± 0.005 
 

0.018 ± 0.01 
 

Day 4 0.036 ± 0.02 0.029 ± 0.01 
 

0.011 ± 0.007 
 

0.002 ± 0.001 
 

0.048 ± 0.01 
 

0.008 ± 0.004 
 

Day 7 0.025 ± 0.01 
 

 0.007 ± 0.003 
 

0.026 ± 0.02 
 

0.000 ± 0.000a 
 

0.014 ± 0.01# 
 

0.064 ± 0.04b 
 

Day 10 0.024 ± 0.02 0.110 ± 0.1 
 

0.011 ± 0.01 
 

0.061 ± 0.04# 
 

0.000 ± 0.000 
 

0.007 ± 0.007 
 

Day 13 0.000 ± 0.00 0.035 ± 0.020*a 
 

0.002 ± 0.002 
 

0.000 ± 0.000# 
 

0.000 ± 0.000 
 

0.000 ± 0.000 
 

Day 16 0.012 ± 0.006 0.001 ± 0.001 
 

0.014 ± 0.01 
 

0.033 ± 0.02 
 

0.012 ± 0.009# 
 

0.044 ± 0.04 
 

Day 19 0.038 ± 0.02 0.007 ± 0.007 
 

0.021 ± 0.02 
 

0.012 ± 0.01 
 

0.005 ± 0.005 
 

0.000 ± 0.000 
 

Day 21 0.033 ± 0.01 0.001 ± 0.001 
 

0.036 ± 0.02 
 

0.017 ± 0.01 
 

0.013 ± 0.005 
 

0.010 ± 0.01 
 

 The data is presented as mean ± S.E.M (n= 4 per treatment); different letters within rows are statistically different from each other and 
absence of the letters means there is no significate difference. * statistically different from the control within each row. # Significantly different 
from previous time point within the column (one way ANOVA or Kruskal-wallis test, P<0.05
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6.3.5 Alkaline Phosphatase  

The presence of alkaline phosphatase in the media indicates the metabolic activity 

of the osteoblast cells. Table 6.5 shows the ALP activity (IU/ml) in the external media on 

days 1, 4, 7, 10, 13, 16, 19 and 21. The data did not show any significant differences 

between the control (blank) and the treatments on all the days.  Significant difference 

between the control (blank) and pure HA composite was observed on day 4 and 13. 

Within the control and treatments no significant difference as observed within the days 

except pure HA composite which had a significant difference between day 13 and 16.  An 

increase in ALP activity was observed in the media of all the composites from day 1 to day 

21. After 7 and 21 day incubation, ALP activity of the cell homogenates were also 

measured (Figure 6.7). No significant difference was observed between the controls and 

treatments on both the days (one way ANOVA, P =0.102 (day 7) 0.209(day 21)). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Alkaline Phosphatase activity (ALP) from the cell homogenates after 7 and 21 
days. Data are mean ± S.E.M (n=4 per treatment per end point). No statistical difference was 
observed between the treatments and control on both the days, one way ANOVA, P = 0.102 
(day 7) 0.209(day 21) 
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Table 6.5 Alkaline phosphatase activity of the osteoblast cells in external media (µmol/min/ml) after exposing the osteoblasts cells to the 

composites over 21 days.   

Day Control HA p-MWCNTs-PVA f-MWCNTs-PVA p-MWCNTs-HTAB f-MWCNTs-HTAB 

1 0.023 ± 0.006 0.016 ± 0.003 0.017 ± 0.003 0.016 ± 0.005 0.022 ± 0.01 0.019 ± 0.007 

4 0.032 ± 0.003 0.012 ± 0.002* 0.026 ± 0.004 0.024 ± 0.01 0.028 ± 0.01 0.024 ± 0.01 

7 0.021 ± 0.01 0.014 ± 0.003 0.028 ± 0.008 0.017 ± 0.004 0.016 ± 0.004 0.020 ± 0.007 

10 0.022 ± 0.01 0.024 ± 0.006 0.015 ± 0.006 0.015 ± 0.005 0.026 ± 0.01 0.021 ± 0.008 

13 0.029 ± 0.007 0.011 ± 0.002*a# 0.029 ± 0.007 0.026 ± 0.006b 0.032 ± 0.01 0.038 ± 0.01 

16 0.028 ± 0.01 0.029 ± 0.007# 0.020 ± 0.003 0.022 ± 0.01 0.022 ± 0.01 0.028 ± 0.008 

19 0.029 ± 0.004 0.025 ± 0.006 0.014 ± 0.007 0.025 ± 0.007 0.033 ± 0.01 0.031 ± 0.01 

21 0.038 ± 0.007 0.028 ± 0.005 0.040 ± 0.01# 0.024 ± 0.007 0.024 ± 0.01 0.028 ± 0.01 

The data are presented as mean ± S.E.M (n=4 per treatment); different letters within rows are statistically different from each other and 

absence of the letters means there is no significate difference. * statistically different from the control within each row. # Significantly different 

from previous time point within the column (one way ANOVA, P<0.05) 
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6.3.6 Total Glutathione assay  

Glutathione is involved in protecting cells against cytotoxicity by counteracting 

the effects of oxidative stress in cells and maintaining the intracellular redox balance. The 

total concentration of GSH was measured in cell homogenate after day 7 and 21 (Figure 

6.8). No statistical difference was observed between the controls and treatments on both 

the days (one-way ANOVA, p = 0.743(day 7), 0.27 (day 21)).  
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Figure 6.8 Total Glutathione activity (GSH) from the cell homogenates after 7 and 
21 days.  Data are mean ± S.E.M (n=4 per treatment per end point). No statistical 
difference was observed between the treatments and control on both the days, one 
way ANOVA, P = 0.743 (day 7) 0.27(day 21) 
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6.4 Discussion   

The aim of this study was to test the biosafety of the Ag NPs-MWCNTS-HA 

composites for clinical application by allowing human osteoblast cells to differentiate and 

mineralize on the composites. Osteogenesis was induced by specific culture media 

conditions and was monitored by measuring the bone specific proteins and protein 

encoding mRNA expression. Osteoblastic differentiation and mineralization was 

observed for all the treatment substrates, pure HA control and for the cultures grown on 

tissue culture plastic (reference, control).  

 

6.4.1 The exposure of the DMEM media and cells to the composites and silver 

accumulation  

The total silver concentration was measured in the external media and cell 

homogenates (Table 6.2 and 6.3) in order to determine the exposure of the osteoblast to 

silver. High concentrations of silver was observed in the external media of the composites 

with p-MWCNTs, specifically after 24 h incubation which then starts to decrease with the 

media being changed every 48 h. This high dissolution of silver from the p-MWCNTs 

compared to the f-MWCNTs could be due to the difference in the decoration of Ag NPs on 

the outer walls of the MWCNTs. Compared to the p-MWCNTs, higher amount of silver 

nanoparticles decorated the outerwalls of the f- MWCNTs which was evident from the 

TEM images (Chapter 3, Section 3.3.2). This result correlates with the dialysis experiment 

results (Section 3.3.2) which also showed higher silver release in SBF from the p-

MWCNTs composites. Also, the Ag NPs surface will be modified in DMEM media and once 

an insoluble coat of AgCl or protein corona is formed, then the particles will be less likely 

to leach. Another possible explanation lies in the medium, which bathes the composites. 
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Hansen et al. (Hansen and Thünemann, 2015) have shown that silver dissolution was 

higher in DMEM media supplemented with  10 % FBS compared to pure water due to the 

presence of proteins.  The presence of amino acids such as L-cysteine (63mg/l) from FBS 

could have enhanced silver release from the composites. The cysteine –SH group has a 

very high affinity for Ag which is an irreversible binding. This would stimulate an outward 

diffusion gradient from the particle surface. Furthermore, accumulation of silver in the 

cell homogenate of the treatments and controls was analysed for both the days. Silver 

accumulation was observed in all the cell homogenate from all the treatments, except the 

controls. Day 7 cell homogenates had an approximate concentration between 20 -15 µg/l 

except f-MWCNTs-HTAB which was significantly lower. However, by day 21 the 

concentration of silver in p-MWCNTs composites and f-MWCNTs-HTAB  increased by ~ 

170%. This result seems to be consistent with Zhang et al (Zhang et al., 2016) who 

showed that silver could accumulate in human cells such as fibroblasts and osteoblasts. 

The electrolytes Mg 2+, Ca2+,P,  Na+, K+  were measured in the media and significantly 

higher concentration of Ca2+ and P was observed in the p-MWCNTs composites 

suggesting possible dissolution or degradation of the material. Further studies needs to 

be undertaken to confirm this effect.  

 

6.4 2 Effect of the composites on biochemistry 

The cytotoxicity of the composites against the osteoblast cells was measured by 

the LDH and glutathione assay. LDH activity in the external media was very low and 

supports the idea that the composites did not exhibit a toxic effect on the cells. Although 

silver was detected in the media (Table 6.2), the proteins (cysteine) in the media might 

bind with any free silver reducing the bioavailability of the silver to cause toxicity to the 

cells. Another possible explanation is the formation of insoluble AgCl at high chloride 
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concentrations [120Mm] present in DMEM (Huynh and Chen, 2011). Also, the total 

concentration of the LDH in the cell homogenate (Figure 6.6) was generally low 

suggesting that  there was not sufficient LDH to leak out into the external media.  

 

However, day 7 cell homogenates showed a low level of LDH activity in the 

treatments compared to the reference control ( blank, Figure 6.6), which infers to less 

number of viable cells in the composites but by the end of 21 days no significant 

difference was observed in the LDH activity between the reference and the treatments 

(Figure 6.6).  Contrary to the LDH result, no significate difference was observed in the 

concentration of GSH on both the days. The LDH results correlates with the concentration 

of silver released in the media (Table 6.2) as the concentration of silver being released 

into the media has decreased gradually over time. It seems possible that the 

concentration of silver in the media was at sub-lethal dose as the silver did not kill the 

cells but slowed the proliferation of the cells temporarily.   

 

GSH is an antioxidant and is the first defence in the cell against oxidative stress as 

it scavenges of reactive oxygen species. No significant change in the GSH measurement 

was observed in both the days (Figure 6.8) suggesting that the cells were not under stress.  

Many studies involving Ag NPs have suggested oxidative stress as the main route by 

which Ag NPs decrease proliferation of cells and cause toxicity (Carlson et al., 2008, Piao 

et al., 2011, Lee et al., 2014). Oxidative stress is caused by an imbalance between the 

production of reactive oxygen species and antioxidant capacity of the cells. The results 

from this study show that oxidative stress might not be the primary toxic mechanism for 

Ag NPs.  This result is in accordance with Nguyen et al (Nguyen et al., 2013) who showed 

that the toxicity route of the Ag NPs differ based on the physiochemical properties such 



 

193 
 

as shape, size and coating of the Ag NPs. They have shown that Ag NPs have stimulatory 

and suppressive effects on the production of cytokines. Similarly, the cytokines, Il-6 and 

TNF-α are upregulated in this study (Figure 6.5 G and H) which are discussed in detail 

below. 

 

 A small fraction of dissolved silver from the Ag NPs will instantaneously form 

silver chloride and be lost. The GSH present in the cells will bind to the silver at it enters 

the cells. When the GSH pool is depleted, the genes encoding cytokines will be 

upregulated (Tew and Townsend, 2011). The cells are also capable of transporting total 

glutathione across the cell membrane and GSH along with other solutes may leak from 

damaged cells (Perrone et al., 2005).  However, the possibility of cell damage and leak of 

enzymes in the media is not supported by the other assays such as LDH, ALP and 

qualitative analysis by SEM. To exemplify, as the release of silver was reduced over time, 

the cells were able to proliferate and no significant difference was observed between the 

reference control and treatments by day 21in LDH assay. This is in accordance with the 

fact that cytotoxicity of silver is time and dose dependent and the cells are able to revive 

as the concentration of the silver reduces.  

 

Similarly, no significant difference in the ALP activity was detected in the cell 

homogenate on both the days (Figure 6.7). ALP is an enzyme bound to the inositol-

phosphate membrane on the outer surface of osteoblasts.  The mechanism with which 

this enzyme carries out its function is not completely understood but it appears to act 

both to increase the local concentration of inorganic phosphate, a mineralization 

promoter, and to decrease the concentration of extracellular pyrophosphate, an inhibitor 

of mineral phosphate (Golub and Boesze-Battaglia, 2007). The presence of ALP in the 
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media (Table 6.5) suggests that the cells were healthy and had the ability to mineralise 

as ALP is released from the osteoblast cells into the media during active bone formation. 

The results show that the presence of silver did not decrease the ALP activity which 

confirms that silver has no adverse effect on the activity of the osteoblasts. This finding 

is consistent with the study done by Pauksch et al (2014) who suggested that silver at 

sublethal dose (10 mg/l) does not inhibit the alkaline phosphate activity in human 

osteoblast cells. The biochemical assay results are reflected in the SEM observation as no 

major differences in the presence of nodule formation on the cells was observed.  

 

6.4.3 Effect of the composites on the cells at molecular level 

As cells undergo differentiation, various markers are induced in an ordered and 

sequential manner; although the details of the steps can be overlapping and difficult to 

elucidate. The most frequently used bone matrix protein markers of the osteoblast 

differentiation process (ALP, OPN and OCN, Figure 6.5) are all expressed in the 

treatments confirming the differentiation and mineralization of the cells. Many studies 

have suggested that the osteoblast gene expression and subsequent mineralization are 

affected by the surface topographies of the implants (Boyan et al., 1996, Schneider et al., 

2003, Masaki et al., 2005). Since the topography of the composites are not comparable to 

that of the cell culture plate the expression of the genes are relative to the pure HA 

composite. Further, the cells grown on the composites were not expected to outperform 

the control (reference cells) grown on the plastic culture plate which is evidenced by the 

biochemical assay results.  

 

The transcription factors Runx2, Dlx5 and OSX (Figure 6.5 A, B and C) are all 

expressed on both the days and their expression has been either upregulated or 
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downregulated depending on their role in osteoblast differentiation. Runx2 is considered 

as the osteoblast master regulator as it is the first transcription factor required for the 

determination of the osteoblast lineage from the mesenchymal cells, while the Sp7 and 

Wnt-signalling block their differentiation into other cell types such as osteoclasts and 

chondrocytes (Komori, 2010). Runx2 is upregulated by day 7 as they are still immature 

cells and differentiation was induced by the addition of supplemented DMEM which 

reduced the expression of Runx2 by day 21. This is because Runx2 is first detected in 

preostoblasts and the expression increases in immature osteoblasts but during 

maturation the expression of Runx2 is reduced and do not express a significant amount 

in mature osteoblasts (Komori, 2010) whereas the expression of DLX-5 which is usually 

expressed during mineralization stage is also downregulated. The downregulation of 

DLX-5 could be due to the upregulation of cytokines, which suggests possible 

inflammation reaction of the osteoblasts to the composites. Following Runx2, OSX is the 

next transcription factor crucial for osteoblast differentiation which is expressed during 

the maturation of pre-osteoblasts to immature osteoblasts (Cao et al., 2005, Komori, 

2006). The expression of OSX also follows the same pattern as Runx2 which is 

upregulated on day 7 and downregulated on day 21 which suggests that the molecular 

function mainly coding differentiation of the cells is not affected by the presence of the 

composites.  

 

Factors secreted by the osteoblasts also control the differentiation and activity of 

the bone –resorbing osteoclast (Zhou et al., 2010). Cytokines reduce osteoblastic bone 

formation and stimulate osteoclastic bone resorption.  The cytokines TNF-α and IL- 6  are 

both upregulated in all the treatments on both the days (Figure 6.5 G and H) with a 

maximum of 15 fold change on day 7. TNF-α is one of the most important 
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proinflammatory cytokines that is induced in response to the early phase of injury which 

inturn activates IL-6 expression (Kurokouchi et al., 1998). The  results from this study 

correspond to the study by Kaneshiro et al. (Kaneshiro et al., 2014) who suggested that 

IL-6 negatively regulates the osteoblast differentiation by reducing the expression of 

Runx2, osterix and osteocalcin  and differentiation in a dose dependent manner. Similarly, 

all the genes encoding differentiation are downregulated on both the days in cells from 

the composite AgNP-p-MWCNTs –PVA which could be due to the relatively higher 

upregulation of IL-6 associated with the relatively high Ag NPs release from these 

composites compared to the other composites. The upregulation of the cytokines in the 

other treatments is also higher on day 7 compared to day 21 which again corresponds 

with the relatively higher silver release on day 7 compared to day 21. However, the 

expression of the bone matrix proteins (ALP and OCN) and non-collagenous protein (OPN) 

are as expected.  

 

In all the treatments, ALP is upregulated on day 7 and downregulated on day 21, 

except for AgNP-p-MWCNTs –PVA (Figure 6.5). In general, ALP as early marker of 

osteoblast differentiation, is among the first functional genes expressed in the process of 

calcification, and appear in relatively immature osteoblasts. On the other hand, OCN 

appears later with the onset of mineralization which occurs at the same time as the 

expression of DLX-5 transcription factor (Ryoo et al., 1997, Golub and Boesze-Battaglia, 

2007, Komori, 2010). An upregulation in the expression of OPN is observed on day 7 and 

downregulated on day 21. OPN mediates the binding of osteoclasts to the mineral matrix 

protein resulting in bone resorption. The high expression of TNF-α and IL-6 due to 

inflammation promotes the upregulation of OPN leading to the promotion of bone 

resorption. This result has been observed by Kutokouchi et al (Kurokouchi et al., 1998) 
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who observed that TNF-α upregulates the IL-6 which leads to the cascading events 

leading to high bone resorption in cases  of osteoporosis and inflammatory diseases such 

as rheumatoid arthritis.  

6.5 Conclusion 

 

The goal of the study was to determine the biocompatibility of the Ag NPs-

MWCNTs –HA by allowing human osteoblast cells to differentiate and mineralize on the 

composites. The main outcome of this study is that the nature of the MWCNTs (pristine 

or functionalised) affect the release of the Ag NPs which was significantly higher in the 

presence of p-MWCNTs. At sub lethal dose, Ag NPs release temporarily affect the  

proliferation of osteoblasts but with the reduction in the release of silver, the cells are 

able to resume proliferation but the activity (mineralization) is not affected. The study of 

the genes suggested that the cells were subjected to inflammation reaction but it does not 

manifest as an effect on cell health. Literature suggests that high expression of cytokines 

may trigger bone resorption by activating osteoclast cells.  Hence, for clinical purposes, 

these composites are not yet ready and further studies are needed to investigate the 

expression of the cytokines after extended periods and the exact mechanism by which 

silver affects the expression of the genes.  
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7. General Discussion  
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There is a rise in the demand for long term artificial bone implants which do not 

have to be replaced as a result of implant failure. Currently, implants fail as a result of 

either infection following surgery, inflammation / adverse reaction from the body due to 

non-biocompatibility of the implant or poor mechanical properties in load bearing areas.  

So far, there is no single ideal treatment and all the alternatives have their own 

advantages and disadvantages. The main hypothesis of the current study was to develop 

a composite which is biocompatible and mechanically strong with the ability to prevent 

infection following surgery. To achieve this, the initial pilot study was undertaken which 

confirmed that HA was the most biocompatible type of calcium phosphate with human 

osteoblast cells. Following that, Ag NPs were incorporated to provide antibacterial 

properties while MWCNTs were used to reinforce the HA to improve the mechanical 

strength and to serve as anchor points for the silver nanoparticles. The suitability of the 

composites for the intended purpose was tested by subjecting the composites to 

mechanical, biocompatible and antibacterial testing and the main conclusions of the 

study are as follows. 

Ag NPs-MWCNTs-HA composite powders with a MWCNTs loading of 0.5 wt. % 

were successfully synthesized using the sol-gel technique. The powders mainly contained 

phase pure HA as shown by XRD, FTIR and TEM analysis (Figures 3.5, 3.6 and 3.7). The 

morphology of the HA crystals was influenced by the presence of surfactants (section 

3.7.2).   Composites containing pristine MWCNTs and needle shaped HA crystals (Ag NPs- 

pMWCNTs-PVA) presented the highest mechanical properties compared to the pure HA 

composites. The functionalisation of the MWCNTs using nitric acid resulted in defects on 

the walls of the MWCNTs, which affected the tensile strength of the composite, but not 

the compressive strength (Figure 3.11). Human osteoblast cells were grown and allowed 
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to differentiate on the pure HA control and the four treatment composites. Cells 

proliferated and differentiated on all the composites. mRNA studies showed that the 

molecular activity of the cells encoding differentiation  were upregulated although the 

genes encoding the cytokines were also upregulated meaning that the cells were 

subjected to stress. However, the biochemical analysis showed that the stress did not 

affect the health of the cells and they were able to proliferate and mineralize. The viability 

of S. aureus was reduced in all the composites containing Ag NPs compared to pure HA 

composites after 24 h. The silver ion release was low and controlled.  

 

7.1 Mechanical strength of the composites  

All bones are bearing loads to different extents.  The mechanical strength results 

showed a promising outcome for the Ag NPs-MWCNTs-HA composites. This is because 

the tensile and compressive strength of the composites were improved significantly 

compared to pure HA composites. Both the nature of the MWCNTs (Pristine or 

functionalised) and the HA crystal morphology played a crucial role in determining the 

overall mechanical properties of the composite. The tensile strength values of the Ag NPs-

MWCNTs-PVA composites are approaching that of cancellous bones which is 

approximately 10-20 MPa, whereas the compressive strength values have exceeded the  

values of cancellous bone which are between 7- 10 MPa by approximately 200% 

(Murugan and Ramakrishna, 2005). Based on the results obtained, the composites can be 

mainly used in less load bearing areas such as the upper extremity bones or clavicle bone.  

The results also  confirm that the addition of the MWCNTs and Ag NPs do not negatively 

affect the mechanical properties of the final composite.  
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7.2 Biocompatibility and toxicity of the composites to human cells and bacteria  

In this study, both the antibacterial activity and the biocompatibility of the 

composites were investigated. The investigation against S. aureus showed the ability of 

the composites to reduce/ prevent infection compared to pure HA composites (Section 

5.3; Figure 5.5 and 5.6). This is especially promising as the Ag NPs were able to 

significantly reduce bacterial growth in the composites with very low silver ion release 

of 1.6 µg/l (Table 5.1). The result suggest that the Ag NPs- p-MWCNTs-PVA composite 

will meet the antimicrobial criteria for an implant  to be translated to clinical use. 

Nevertheless to use these composites clinically, their toxicity and  biocompatibility to 

human cells should also be studied. Hence, the human osteoblast cells were used to 

evaluate the biocompatibility of these composites in vitro first without the presence of Ag 

NPs for 7 days. The results showed that the MWCNTs-HA composites were biocompatible 

and allowed the proliferation of the cells (Figure 4.2 and 4.4). However, the ALP results 

suggested that the mineralization ability of the cells grown on the MWCNTs-HA 

composites might be reduced (Figure 4.5). Hence, an extended biocompatibility study of 

the final Ag NPs–MWCNTs-HA composites involving the differentiation and 

mineralization of the osteoblast cells in the presence of the composites for 21 days was 

performed. The overall results showed that the cells were able to proliferate with healthy 

morphology and mineralize in the presence of the composites (Figure 6.4). The ALP 

analysis showed that the metabolic activity of the cells were also not affected in the 

presence of the composites (Figure 6.7).  Although the genes encoding mineralization had 

been upregulated, the mRNA analysis also suggested that the cells were under stress as 

the cytokines (TNF - α and IL – 6, Figure 6.5) were also upregulated. The overall 

biocompatibility studies have shown that the composites are biocompatible and the 

osteoblast cells were able to proliferate, differentiate and mineralize. The 
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biocompatibility of the composites are in accordance with the study led by Herkendell et 

al., (2014) which is the only other study which has examined the impact of HA, MWCNTs 

and Ag NPs composites. However, from the clinical perspective, the biocompatibility 

study should also be performed with other cell types, which are involved in wound 

healing such as  fibroblasts , endothelial cells and angiogenesis.   

 

Humans are exposed to low quantities of heavy metals such as silver and gold 

every day from food, cosmetics and clothing. For example, silver is approved as a foil for 

consumption by the European Union as food additive E174 (Aguilar et al.,2016) . This is 

because silver is generally considered to exhibit low toxicity in the human body. Minimal 

risk is also expected due to the clinical exposure by the use of silver in implants. Free 

silver (Ag+) which are released from the composites will bind avidly to the –SH groups 

almost irreversibly. So, any free silver will be neutralised by the plasma proteins like 

albumins. Also, Ag+ will react with the copious amount of chloride (Cl-) to form AgCl 

which is an insoluble particulate precipitate and can enter into circulation. Similarly, Ag 

NPs which could be released from the composites would normally be digested by the 

immune cells and any undigested particle will be processed by the liver into the bile and 

excreted by the gut lumen. If the Ag NPs are reabsorbed into circulation by resorption 

rather than excreted, it will only cause imbalance in the microbial flora resulting in 

gastrointestinal tract disturbances in patients. Hence, the silver used in the development 

of the composites which is at sub lethal levels should not pose a risk to the human health 

in the long term but they are able to reduce microbial infection. Another main concern 

would be the use of MWCNTs as CNTs have a toxic effect on human cells similar to the 

toxicity effect of asbestos (Donaldson et al., 2013, Poland et al., 2008, Pacurari et al., 2010). 

However, the results  suggest that MWCNTs are biocompatible, promote the proliferation 
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of the osteoblast cells and do not elicit a toxic response. Furthermore, most of the 

toxicology studies are based on the bioaccumulation of CNTs in internal organs following 

respiratory exposure whereas, the effect of CNTs leaching from implants has not been 

explored (Muller et al., 2005, Poland et al., 2008, Teeguarden et al., 2010). Furthermore, 

the toxicity of CNTs should not be compared to asbestos as the mechanism by which 

asbestos cause toxicity is different to that of CNTs.  Asbestos toxicity is due to the rigid 

needle like nature which causes cell injury and are not phagocytosed by macrophages 

whereas CNTs are flexible and non-rigid and they can undergo phagocytosis (Smart et al., 

2006, Muller et al., 2009, Nagai and Toyokuni, 2012).  

 

7.3 Clinical perspective    

The process of translating a new medical product into a clinically approved 

product involves acquiring the approval of European Medicines Agency (EMA). There are 

specific requirements stipulated by both the EMA and Food and Drug Administration 

(FDA) in the United States of America for medical implants.  For the European Union, the 

Clinical Trials Directive (Directive 2001/20 /EC) which details the implementation of 

good clinical practice for the clinical trials overview the process of conducting a clinical 

trial for human medicines. Additionally, Basins et al (2015) suggests that there are 

regulations set by the EMA that lays down the procedures for the authorization and 

supervision of medicinal products which gives the EMA some oversight of national 

authority within Europe. Outside the European Union, regulations are often established 

at national level. There are three main principles behind the regulations of both the EMA 

and FDA which are: (i) the efficiency of the medical product for its intended clinical use; 

(ii) if the medial product is replacing an existing product, its effectives compared to the 

existing product and (iii) the safety of the new product – is it safe or safer than the existing 
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product (Juillerat-Jeanneret et al., 2015). In the case of Dental and bone implants, Annex 

I of the Medical Device Directive 93/42/EC details the legal requirements for the use of 

bone/dental implants but there are no specific directives for the use of nanoparticles in 

bone/dental implants.   The use of the various nanoparticles in the composite poses some 

complexity for the regulations. For example, the Ag NPs might be regarded as medicine 

since their main intended purpose is to provide antibacterial properties to the composite 

whereas the MWCNTs and HA falls under then medical device regulation. In essence, the 

main purpose of the composites is to be used as a medical device and that would be the 

starting point to get  health agency approval.  

 

Nevertheless, the important aspect of getting approval for the composite is to 

ensure that the above mentioned criteria are met and the benefits outweigh the risks of 

the composite. Risk assessment of the composites will include the hazard (toxicity) 

potential of the composites for the intended use. Although, some investigation has been 

undertaken to determine this, further investigations on the erosion of the composite and 

bioavailability of the Ag NPs and MWCNTs may be needed. Consequently, animal models 

will be relevant to determine the toxicity and in vivo reaction of the composites.  

 

In conclusion, the study set out to develop a composite that is mechanically strong, 

biocompatible with antibacterial properties and the specific objectives were either 

achieved or partially achieved: 

 

1. Investigate the biocompatibility of HA and compare it with different types 

calcium phosphate such as dicalcium phosphate and β-tricalcium phosphate – 
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achieved, HA showed better biocompatibility than the other two types of 

calcium phosphates;  

 

2. Synthesise Ag NPs-MWCNTs-HA composites (with pristine and functionalised 

MWCNTs and surfactants) and characterize them using various techniques- 

achieved; 

3. Demonstrate the mechanical properties of the composites by performing the 

diametral tensile strength test and compressive strength test- partially achieved, 

the results showed that the composites exceed the compressive strength but 

not the tensile; 

4. Determine the biocompatibility of the MWCNTS- HA composites without the 

presence of Ag NPs in vitro by testing the viability and cytotoxic response to the 

cells to the composites- achieved, the biocompatibility of the composites was 

better than pure HA composites; 

5. Demonstrate the antibacterial activity of the Ag NPs- MWCNTs-HA composites 

against Streptococcus aureus and select the composites with good antibacterial 

property for further study – achieved, the composites containing pristine 

MWCNTs had higher antibacterial effect compared to the other composites; 

6. Investigate the biocompatibility of the Ag NPs- MWCNTs-HA composites with the 

human osteoblast cells by allowing the cells to differentiate and mineralize in the 

presence of the composites and study the viability of the cells by analysing gene 

expression and cytotoxic response to the composites- achieved, the cells were 

able to proliferate and mineralize in the presence of all the composites. 
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7.4 Future work suggestions   

Based on the results obtained the following future work needs to be undertaken 

before the composites can be approved for human use. Adding functional groups to the 

MWCNTs surface to improve the dispersability in the HA matrix is most commonly 

achieved through treatments with strong acids. This affects the morphology and 

structural integrity of the MWCNTs, which damages the strength of the composite as 

shown in the mechanical results. A focus of the future work should be to find alternate 

less disruptive methods to add functional groups which would improve the homogeneity 

of the MWCNTs.  

 

As a result of this study, it is evident that the mechanical properties of the final 

composite are dependent on the starting material and the HA crystals morphology which 

can be manipulated by the presence of surfactants. It would be interesting to compare the 

mechanical strength of different HA crystal to achieve the maximum necessary strength 

using various surfactants which might also improve the dispensability of the MWCNTs. 

Based on the literature survey only one type of MWCNTs loading (0.5% wt. %) was tried 

in this study. It would be beneficial to try different weight loadings above 5% as no results 

are available for composites with higher CNTs Wt.%. The mechanical study undertaken 

in the current research work was only preliminary investigation. It would be useful to try 

a wide range of mechanical tests such as 3-point bending test. It would also be beneficial 

to study the alignment of CNTs, the current method does not allow the alignment of CNTs 

in any one given direction. This will have a major effect on the mechanical properties of 

the final composite.  
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It would also be useful to test the antibacterial nature of the MWCNTs which might 

enhance the current antibacterial properties Ag NPs. Further investigation of the 

composites with varying quantities of Ag NPs will be useful to determine the exact 

quantity / release of Ag NPs required to fully prevent bacterial growth without 

compromising the biocompatibility of the materials. Furthermore, testing with one type 

of microbe is not sufficient to confirm their efficiency and the composites need to be 

exposed to other strains of microbes.  The in vitro study is still a preliminary work and 

further investigation needs to be undertaken to study the effect of the composites on the 

various molecular and metabolic activities of the cells. Animal testing needs to be 

undertaken to determine the effect of the composites on other organs if there is MWCNTs 

dissolution from the composite.  

 

7.5 Conclusion  

There is a great potential to translate the Ag NPs-MWCNTs-PVA composites into 

clinically approved product. Ag NPs is a suitable alternative to the antibiotics and with 

the current surge in antibiotic resistance microbes, Ag NPs have the potential to prevent 

bacterial infection following surgery. This study has shown that the CNTs are 

biocompatible. However, even if the biological community eventually rules out CNTs due 

to their toxicity and prohibits their use in human body, this study and further 

investigations will be useful in understanding the mechanism by which CNTs reinforce 

ceramics which could be translated to a wide range of applications.  
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