
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2018-02-20

Strength Development and Durability of

Alkali-Activated Fly Ash Mortar with

Calcium Carbide Residue as Additive

Li, Long-yuan

http://hdl.handle.net/10026.1/10600

10.1016/j.conbuildmat.2017.12.034

Construction and Building Materials

Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



1 
 

Construction and Building Materials, Volume 162, 20 February 2018, Pages 714–723. 

Received 26 June 2017, Revised 15 October 2017, Accepted 6 December 2017, Available 

online 15 December 2017 [https://doi.org/10.1016/j.conbuildmat.2017.12.034] 

 

 

Strength Development and Durability of Alkali-Activated Fly Ash 

Mortar with Calcium Carbide Residue as Additive 

Sakonwan Hanjitsuwan
 a*

, Tanakorn Phoo-ngernkham 
b**

, Long-yuan Li 
c
, 

Nattapong Damrongwiriyanupap 
d
 and Prinya Chindaprasirt 

e 

a
 Program of Civil Technology, Faculty of Industrial Technology,  

Lampang Rajabhat University, Lampang 52100, Thailand 

b
 Department of Civil Engineering, Faculty of Engineering and Architecture,  

Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand 

c
 School of Engineering, Faculty of Science and Engineering, Plymouth University,  

PL4 8AA, United of Kingdom 

d
 Civil Engineering Program, School of Engineering, University of Phayao, Phayao 56000, Thailand  

e
 Sustainable Infrastructure Research and Development Center, Dept. of Civil Engineering, 

Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand 

 

Abstract 

The strength development and durability of alkali-activated fly ash (FA) mortar with 

calcium carbide residue (CCR) as additive cured at ambient temperature were investigated in 

this paper. CCR was used to partially replace FA as additional calcium in the alkali-activated 

binder system by a weight percentage of 0%, 10%, 20% and 30%. Sodium hydroxide and 

sodium silicate solutions were used as liquid alkaline activation in all mixtures. Test results 

show that the incorporation of CCR has an effect on the strength development of alkali-

activated FA mortar with CCR. The setting time of alkali-activated FA mortar with CCR has 
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decreased whereas its strength development has increased. This is further confirmed by XRD, 

SEM, and FTIR analyses, which show that the reaction products were increased when the 

alkali-activated FA incorporated with CCR. The highest 28-day compressive strength of 

alkali-activated FA mortar was found in the mix of 70% FA and 30% CCR, which is about 

40.0 MPa. In addition, the resistances of alkali-activated FA mortar incorporated with CCR to 

tap water, 5% H2SO4 solution, and 5% MgSO4 solution are found to be superior to those of 

alkali-activated FA mortar without CCR as indicated by the relatively low strength loss. For 

the samples immersed in 5% H2SO4 solution and 5% MgSO4 solution for 120 days, the 

alkali-activated FA incorporated with 30% CCR showed a low strength reduction of around 

71% and 53%, respectively.  

Keywords: Alkali-activated Fly ash, Calcium carbide residue, Strength development, 

Microstructure, Durability. 

*
 Corresponding author. Tel: +66 5423 7352; Fax: +66 5423 7388; E-mail address: sakonwan@lpru.ac.th 

**
 Corresponding author. Tel: +66 4423 3000 ext.3210; E-mail address: tanakorn.ph@rmuti.ac.th 

 

1. Introduction 

Nowadays, Portland Cement (PC) is still widely used for construction work although its 

manufacturing produces a significant amount of greenhouse gas. It was reported that, about 

one ton of carbon dioxide is created for every one ton PC produced. To solve this problem, 

attempts have been made in recent years [1, 2] to find alternative cementitious materials to 

replace PC in concrete. One of these alternative cementitious materials is the alkali-activated 

binder which uses sodium hydroxide and sodium silicate solutions [3]. The alkali-activated 

binder has received great attention in recent years due to its low carbon dioxide emission 

although it has some disadvantages. According to the reports of Turner and Collins [4] and 

Teh et al. [5], the low carbon footprint of the alkali-activated bind is only when it is used with 

sodium hydroxide solution [6].  
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Alkali-activated binder is made from aluminosilicate materials such as fly ash (FA), 

calcined kaolin and blast furnace slag, activated with high alkali solutions [7]. Alkali-

activated binder has emerged as one of the possible alternative cements to PC binder because 

it has an excellent properties, e.g., high compressive strength, low shrinkage, and good 

durability against chemical attacks [1-3]. In Thailand, FA from Mae Moh power station is 

suitable to be a good source material for making alkali-activated binder [8-10]. However, this 

FA needs a temperature curing at around 40 to 75
o
C for improving the degree of 

geopolymerization, though its strength when cured at ambient temperature is sufficiently used 

in construction work as reported by researchers [9, 11]. Although alkali-activated FA cured at 

ambient temperature could be used in real construction, the mechanical properties and 

durability of alkali-activated FA are generally not good in terms of strength, shrinkage and 

durability against chemical attacks. To improve these properties, some additives have been 

used to help the geopolymerization of alkali-activated FA. One of such additives is the 

material that consists of calcium oxide [12-14]. For example, Pangdaeng et al. [15] 

investigated the use of PC to replace alkali-activated high calcium FA for making alkali-

activated binder under different curing conditions. They reported that the CaO from PC could 

improve the properties of alkali-activated high calcium FA due to additional reaction 

products within the matrix. Phoo-ngernkham et al. [16] investigated the properties of alkali-

activated high calcium FA paste with PC as additive. They found the reactive CaO from PC 

is essential for the strength development of alkali-activated binder, which is consistent with 

what was reported by Pangdaeng et al. [15]. Many researchers [15-21] claimed that an 

exothermal process at ambient temperature from PC and water is important for accelerating 

the geopolymerization within the matrix. Also, coexistences of calcium silicate hydrate (C-S-

H) and sodium aluminosilicate hydrate (N-A-S-H) gels resulted in a high strength developed 

in the alkali-activated binder [14]. Recently, FA-based alkali-acivated binder has been 
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considered as a sustainable future construction material. For example, recycled asphalt 

pavement (RAP) and FA were used to produce a road construction material [22]. Alkali-

activated FA incorporated with slag was used to stabilize the pavement base/subbase 

applications [23]. More recently, novel low-carbon masonry units by using alkali-activated 

FA with recycled glass were developed by Arulrajah et al. [24]. 

Over the past few years, calcium carbide residue (CCR) has been very attractive for 

using as a promoter similar to the use of PC because it has rich calcium hydroxide (Ca(OH)2) 

[25]. CCR is a by-product of acetylene production process through the hydrolysis of calcium 

carbide (CaC2) regarded as a sustainable cementing agent [26-29]. In Thailand, 

approximately 21,500 tons CCR is produced annually and  is mainly disposed in landfills, 

which causes a huge local environmental problem due to its high alkalinity [30]. Currently, 

some researchers have used the CCR with rice husk ash [31], bagasse ash [32], and FA [33-

36] as new cementitious materials used in construction work. This is because its main 

reaction product is calcium silicate hydrate (C-S-H), which is similar to the hydration 

products of PC. For example, a combination of CCR and FA without PC has been used by 

Makaratat et al. [36] for producing concrete, and for improving the strength characteristics of 

silty clay and soil [34, 35]. Somna et al. [37] reported that CCR-FA blends at the ratio of 

30:70 as a binder without PC gave sufficient strength in construction work and also had the 

reaction products similar to the pozzolanic reaction. Other by-products have been also used as 

the alkali-acivated binder. For instance, Arulrajah et al. [38] investigated recycled demolition 

aggregates such as the recycled concrete aggregates and crushed brick, stabilized by alkali 

activation of CCR with supplementary components of FA and slag for pavement 

base/subbase applications. Phummiphan et al. [39] studied the sustainable pavement based 

material made from marginal lateritic soil stabilized with alkali-acivated FA with CCR, in 

which CCR replacement was recommended for low sodium hydroxide system because 
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calcium hydroxide from CCR could enhance the strength development of alkali-activated 

binder similar to FA-PC blends activated with alkali solutions. Note that the use of CCR in 

construction materials is not only helping the strength development of the materials; but more 

importantly, it has the economic and environmental perspectives. Phetchuay et al. [40] [41] 

have used a combination of CCR and FA as a precursor for making alkali-activated binder to 

stabilize strength development in soft marine clay. Hanjitsuwan et al. [25] presented a 

comparative study by using PC and CCR as a promoter in alkali-acivated bottom ash (BA)  

mortar. It was found that the use of CCR to replace BA provided high compressive strength 

of alkali-activated BA mortar similar to the use of PC. However, the FA with PC provided 

more reaction products and the geopolymerization degree was better than that of CCR.  

In regard to the durability of alkali-activated binders, several researchers [42-46] 

reported that the alkali-activated binder has excellent resistance to sulfate and acid, which is 

superior to that of normal PC mortar and concrete. For example, Bakharev [43] did the 5-

month resistance test of alkali-activated low calcium FA to 5% sulfuric acid. Ariffin et al. 

[42] did the one-year resistance test of alkali-activated binder concrete made from pulverized 

flue FA and palm oil fuel ash to 2% sulfate acid. Sata et al. [47] did the resistance test of 

alkali-activated BA mortar to sodium sulfate and sulfuric acid solutions. It was reported that 

alkali-activated BA under different particle sizes showed less susceptible to the attack by 

sodium sulfate and sulfuric acid solutions than that of PC mortar. Chindaprasirt et al. [48] 

reported that the alkali-activated binders made from ground fluidized bed combustion FA and 

silica fume have both good strength and resistance to sulfate and sulfuric acid attack. In 

addition, Chindaprasirt et al. [49] also investigated  the resistance of microwave-assisted 

alkali-activated high calcium FA to acid and sulfate attack. However, in the literature the 

durability of alkali-activated FA with CCR has not been discussed. In this paper the 

mechanical and durability properties of alkali-activated FA mortar with CCR as an additive 
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were investigated using various different experimental methods. The work includes the 

setting time test, compressive strength test and immersion test of alkali-activated FA mortar 

incorporated with CCR, while the material characterization of alkali-activated FA paste 

incorporated with CCR was analysed using XRD, SEM, and FTIR techniques. The 

experimental details are described in Section 2 and corresponding results are presented in 

Section 3. The results show that the binder made from alkali-activated FA incorporated with 

CCR has the advantages of high compressive strength, short setting time and good resistance 

to H2SO4 and MgSO4 attack. It can potentially be used, for example, as the binder for the 

precast structural members, pavement of roadworks, and repair materials for replacing the 

damaged concrete in existed RC structures.  

 

2. Experimental details 

2.1 Materials  

The precursors used in this study are the lignite coal FA and CCR. The FA is the by-

product from the Mae Moh power plant in northern Thailand with a specific gravity of 2.65 

and the mean particle size of 15.6 micron, respectively. The CCR is the by-product from 

acetylene gas process in Sai 5 Gas Product Co., Ltd. It was oven-dried at 100
o
C for 24 hours 

and then ground by a Los Angeles abrasion machine. After that, it was passed through a sieve 

No. 100 (150 µm) before used as the precursor. The specific gravity and mean particle size of 

CCR are 2.25 and 21.2 micron, respectively. Table 1 summarizes the chemical compositions 

of the FA and CCR used in the present experimental work, which were determined using  

X-ray Diffractometry (XRD) analysis. Note that the FA mainly contains silica (SiO2), 

alumina (Al2O3), iron oxide (Fe2O3), and lime (CaO). ASTM C618 [50] classifies FA into 

two categories: Class F and Class C. Class F FA is produced from anthracite and bituminous 

coal and contains less than 5-10% lime. It is essentially pozzolanic material, meaning it does 
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not react with water on its own, but reacts with Ca(OH)2, a byproduct of cement hydration 

reaction, in the presence of water to give calcium silicate hydrates. In contrast, Class C FA is 

typically derived from lignite and subbituminous coal and contains a high amount of lime 

(15-30%). Apart from its pozzolanic property, Class C FA has a hydraulic (cementitious) 

property as well. It can react with water on its own to form calcium silicate hydrates.  The 

major components (SiO2, Al2O3 and Fe2O3) of the CCR are 9.88% with high Ca(OH)2 and/or 

CaO contents at 89.24%. Figure 1 shows the mineral compositions of the FA and CCR as 

determined by XRD analysis. The FA consists of hump peak around 20-40
° 
2theta and crystal 

of quartz and ferric oxide, whereas the CCR consists of crystal phase of calcium hydroxide, 

quartz, calcium carbonate and aluminite. The fine aggregate used in this study is the local 

river sand (RS) with a specific gravity of 2.63 and fineness modulus of 2.40. 

 

2.2 Sample preparation of alkali-activated FA mortar with CCR 

The mix proportions of alkali-activated FA mortar with CCR as additive used in this 

study are summarized in Table 2. The alkali-activated FA with CCR sample is a combination 

of FA, CCR and liquid alkaline activator, i.e., commercial grade sodium silicate (Na2SiO3) 

with 13.45% Na2O, 32.39% SiO2, 54.16% H2O and 10 molar sodium hydroxide (NaOH). 

According to Table 2, the FA:CCR ratios were fixed at 100:0 (control), 90:10, 80:20 and 

70:30; while the Na2SiO3/NaOH ratio, liquid alkaline activator/binders ratio, and fine 

aggregate/binders ratio were kept unchanged in all mixtures. For the mixing of alkali-

activated FA mortar incorporated with CCR, precursors with and without fine aggregate were 

dry mixed first until the mixture was almost uniformly mixed, which took approximately one 

minute. Liquid alkaline activators were then added into the mixture and the mixing was 

continued again for another three minutes.  
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2.3 Testing procedure of alkali-activated FA mortar with CCR 

The setting time of the alkali-activated FA mortar with CCR was tested using Vicat 

apparatus as per ASTM C191 [51]. The fresh alkali-activated FA mortar with CCR was 

placed into a 50x50x50 mm
3
 cube molds and compacted as per ASTM C109

 
[52]. After that, 

all samples were wrapped with vinyl sheet to protect moisture loss. They then were cured for 

a day and then demolded with immediately wrapped by vinyl sheet and kept in ambient 

temperature until testing age. The compressive strengths of the samples were tested at the 

ages of 1, 3, 7, 28 and 90 days. Five identical samples were tested for each case and their 

average result was used as the reported experimental result. 

After 28 days of curing time, the alkali-activated FA pastes with CCR were broken into 

small fragments approximately 3-6 mm for observation in growth of the reaction products via 

Scanning Electron Microscopic (SEM) analysis. Furthermore, the pastes were also ground as 

fine powder for XRD and Fourier Transform Infrared Spectroscopy (FTIR) analyses. The 

XRDs were performed for 2 theta from 10
 
and 60° [25], whereas the FTIRs were conducted 

in the wave number region of between 400 and 4000 cm
-1

. For the FTIR analysis, the powder 

specimens were mixed with KBr at the concentration of 0.2–1.0 wt% to make the KBr disks. 

Then the disks were tested using a FTIR spectrometer. 

For the durability test, the alkali-activated FA mortars incorporated with CCR after 28 

days of curing time were then immersed into tap water (H2O), 5% sulfuric acid (H2SO4) 

solution, and 5% magnesium sulfate (MgSO4) solution. The durability test of alkali-activated 

FA mortars incorporated with CCR was modified from ASTM C267-01 [53]. After the 30, 

60, 90 and 120 days immersion, the retained compressive strengths of the alkali-activated FA 

mortars with CCR were tested. Again, five identical samples were tested for each case and 

their average result was used as the reported experimental result. 
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3. Results and Discussion 

3.1 Setting time and compressive strength 

 Setting time is one of the important characteristics of binder materials. Figure 2 

summarizes the results of the setting time and the compressive strength of the alkali-activated 

FA mortars incorporated with CCR. The final setting time and the compressive strength were 

found to vary with the amount of CCR replacement. It can be observed from Figure 2 that, the 

final setting time tends to decrease whereas the compressive strength tends to increase with the 

increase of CCR replacement. For example, the final setting times of FA:CCR ratios at 100:0, 

90:10, 80:20 and 70:30 are 125, 85, 35 and 25 min, respectively; whereas the 28-day 

compressive strengths of them are 35.6, 41.8, 44.4, 45.8 MPa, respectively. As reported, the 

FA:CCR ratios at 80:20 and 70:30 meet the initial setting time and 7-day strength 

requirements for repair binder, which were 30 minutes and 35.0 MPa, respectively as per 

ASTM C881/C881M-14 [54]. Also, they meet the 7-day strength requirement of rapid-

hardening mortar that was 28.0 MPa as per ASTM C928-13 [55]. In addition, only 1-day 

compressive strength of alkali-activated FA mortar with CCR meet the 28-day strength 

requirement for non-load-bearing and load-bearing brick masonry units as per ASTM C129-

01 [56] and ASTM C90-02a [57]. These results appear consistent with what was reported by 

Pangdaeng et al. [15] and Hanjitsuwan et al. [25], which demonstrates that the CaO from PC 

and CCR could accelerate the geopolymerization within the matrix. The fast setting time of 

alkali-activated FA when incorporated with CCR could be an advantage in the conditions 

where a speeding setting is required, whereas in some applications too short of setting time 

could have a negative effect. As a comparison with the previous research, the final setting 

time of alkali-activated FA with CCR at the ratio of 70:30 obtained from this study (25 min) 

is faster than that of the alkali-activated BA with CCR at the ratio of 70:30 (35 min) [25]. 

Note that both the FA and BA consist of SiO2 and Al2O3. However, as reported by 
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Chindaprasirt et al. [58], the dissolution of BA in NaOH solution would be lower than that of 

FA. Hence, in general, BA requires to have a high concentration of NaOH for dissolving SiO2 

and Al2O3 to make geopolymerization [58]. Similarly, the strength development of alkali-

activated FA mortar with CCR at the ratio of 70:30 is higher than that of alkali-activated BA 

with CCR, but it is lower than alkali-activated FA mortar with PC at the same ratio of 70:30 

[25]. Chindaprasirt et al. [58] explained that the lower strength of alkali-activated BA was 

mainly due to the BA particles which were much porous. Also, it is noticed from Figure 2 

that the strength development of mortars tends to increase with the curing time. This implies 

that the present of Ca(OH)2 from CCR in the system could react with silica and alumina from 

FA, resulting in additional formation of C-S-H co-existed with N-A-S-H gels as reported by 

Hanjitsuwan et al. [25] and Gue et al. [12]. The continuous strength development of alkali-

activated FA mortars with CCR at later stage is a very attractive property when compared with 

some alkali-activated binders that exhibit strength reduction at the later stage [59].  

 

3.2 XRD, SEM and FTIR analyses 

 Figure 3 shows the XRD plot of alkali-activated FA pastes with CCR as additive. The 

control mix (Figure 3a) consists of amorphous phase at the hump around 25-35
° 
2theta and 

crystalline phases of quartz (SiO2), ferric oxide (Fe2O3), and calcium silicate hydrate (C-S-

H). The presence of amorphous phases are generally well corresponding to the coexistence of 

C-S-H and N-A-S-H gels as reported by Hanjitsuwan et al. [10] and Garcia-Lodeiro et. al. 

[16]. As mentioned earlier, additional formation of C-S-H is essential for increasing strength 

development of alkali-activated binders similar to the reaction products from PC hydration. 

When both the FA and CCR are present in the mixture, the patterns exhibit broad hump peak, 

quartz, ferric oxide (Fe2O3), calcium silicate hydrate (C-S-H) and calcium carbonate 

(CaCO3). 
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The SEM images of alkali-activated FA paste incorporated with CCR cured at ambient 

temperature for 28 days are displayed in Figure 4. The image of the control sample (Figure 

4a) shows a number of non-reacted and/or partially reacted FA particles embedded in the 

matrix, resulting in a relatively low reaction degree of geopolymerization. Chindaprasirt et al. 

[11] claimed that the degree of geopolymerization at ambient temperature of alkali-activated 

high calcium FA is low; therefore, higher temperature curing could accelerate the strength 

development of alkali-activated high calcium FA as reported by Pangdaeng et al. [15]. When 

alkali-activated FA was mixed with 10% CCR (Figure 4b), the paste shows denser than the 

control one and the former is with less number of non-reacted and/or partially reacted FA 

particles in the matrix. Noticeable difference is observed in the 80FA20CCR (Figure 4c) and 

the 70FA30CCR (Figure 4d) mixes. Their SEM images appear denser and more uniform than 

those of the control and 90FA10CCR mixes. The increase of CCR replacement in the mix 

could enhance the reaction products within the matrix. The reaction of CCR with alkali 

solutions is an exothermal process and can liberate heat and hence the additional formation of 

C-S-H (see Figure 3), resulting in a better overall strength development (see Figure 2) and a 

shorter setting time.  

FTIR spectroscopic was used to study the geopolymerization degree of alkali-activated 

FA pastes with CCR cured at ambient temperature for 28 days as illustrated in Figure 5. All 

samples of FTIR analysis are found in the range between 400 and 4000 cm
-1

. Both of spectra 

band and wave number in Figures 5a to 5d had little change because the FA could react with 

CCR in an alkali system. According to Figure 5, the wave number was divided into four 

groups. First one is located at approximately 3450 and at between 1650-1600 cm
-1

 that is the 

O-H stretching and O-H bending of water molecule
 
[58, 60]. Second one is located at 

approximately 1400-1450 cm
-1

 that is the carbonate (CO3
2-

) band [43-44]. According to 

Figures 5b-5d, the alkali-activated FA pastes incorporated with CCR are easily identified to 
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have the carbonate (CO3
2-

) band which is related to the calcium carbonate phase in XRD 

results (see Figure 3). Third one is located at between 1200 and 950 cm
-1

 that is the Si-O-Si 

and Si-O-Al stretching vibration [61, 62]. Alvarez-Ayuso et al. [61] and Barbosa et al. [62] 

claimed that the geopolymerization generally occurred in the matrix with this wave number. 

Also, Chindaprasirt et al. [58] explained that this wave number is essential for strength 

development of alkali-activated FA with CCR. The final one is located at approximately 460 

cm
-1

 that is the O-Si-O bending mode. This wave number indicates the remain part of the 

unreacted quartz in the matrix [63], which is related to the quartz in XRD results. The results 

of FTIR spectra analysis shown herein correspond very well to the previously described 

results for the compressive strength, XRD and SEM analyses.  

 

3.3 Durability 

The results of alkali-activated FA mortars incorporated with CCR after immersion in 

H2O, 5% H2SO4 solution and 5% MgSO4 solution for 30, 60, 90 and 120 days, in terms of the 

retained compressive strength, the percentage of strength loss, and weight change of 

specimens are shown in Figures 6 and 7, and Table 3, respectively. The strengths of alkali-

activated FA mortars incorporated with CCR after immersion in the H2O for 30 days were 

found to be higher than their strengths before immersion, especially in the 80FA20CCR and 

70FA30CCR mixes. This is probably due to the Ca(OH)2 that could react with SiO2 and/or 

Al2O3 in the suitable humidity to form C-S-H gels in the similar way as the pozzolanic 

reaction [64]. After exposure to H2O for 60 days, the strengths of alkali-activated FA mortars 

incorporated with CCR are still higher than their strengths before immersion. When the 

samples immersed in H2O for 90-120 days, the control, 90FA10CCR, and 80FA20CCR 

mixes have lower strengths than them before immersion. However, there is one exception, 

which is the 70FA30CCR mix that still has higher strength than it before immersion although 
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its strength after the 30 days immersion decreases with the immersion time (see Figure 7). 

This result is consistent with the physical appearance of alkali-activated FA mortar with CCR 

after exposure to H2O for 30 and 120 days (see Figure 8), in which the intact surface of 

samples is in a good agreement with the result of their strength. 

Note that the H2SO4 solution is a strong acid and readily attacks calcium compound and 

other calcareous materials in concrete as reported by Chindaprasirt et al. [49] and Sata et al. 

[47]. For the samples immersed in the 5% H2SO4 solution, the strengths of alkali-activated 

FA mortars with CCR slightly reduced when compared to their strength before immersion. 

This behavior corresponds to the physical appearance of the samples as illustrated in Figure 

9, which shows the alkali-activated FA mortars with CCR was slightly damaged at its 

surfaces. As can be seen in the figure, the retained strengths of 70FA30CCR mortar after 

exposure to 5% H2SO4 solution for 30, 60, 90 and 120 days are 45.73, 43.20, 40.00 and 37.17 

MPa, respectively; indicating the strength loss at approximately -0.15%, -5.69%, -12.66% 

and -18.33%, respectively. According to Figure 7, the strength of alkali-activated FA mortar 

with CCR after immersion in the 5% H2SO4 solution for 30 days exhibits a slight decrease 

compared to its strength before immersion. After exposure to 5% H2SO4 solution for 60, 90 

and 120 days, however, its strength loss becomes more obvious and higher. Similar results 

were reported by Sata et al. [47] for alkali-activated BA mortar (cured at temperature of 75
o
C 

for 48 hours) which, after exposure to 3% H2SO4 solution for 120 days, exhibited a low 

strength loss. Mehta and Siddique [65] also reported that the strength loss of alkali-activated 

FA concrete with PC as additive after immersion in 2% H2SO4 solution for 28 and 90 days 

was between -15% and -28% and between -30% and -45%, respectively. In addition, 

Chindaprasirt et al. [49] studied the compressive strength of alkali-activated high calcium FA 

under 3% H2SO4 solution attack. They reported that after immersion in the H2SO4 for 3 

months there was a slight strength decrease. Note that the strength loss of alkali-activated FA 
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with CCR after exposure to H2SO4 could have two reasons. One is related to the reaction of 

Ca(OH)2 from CCR and high calcium from FA with H2SO4. The other is related to the 

reaction between C-S-H and H2SO4, as reported by Chindaprasirt et al. [49] and Neville [66]. 

The reaction of Ca(OH)2 and H2SO4 generates the gypsum (CaSO4.2H2O) within the matrix; 

whereas the reaction of C-S-H and H2SO4 produces both the gypsum (CaSO4.2H2O) and 

amorphous silica gels, which become as ettringite in later stage [49, 66], causing the 

expansion and/or cracking of the matrix and thus a loss of compressive strength.  

The compressive strength of alkali-activated FA mortar with CCR after immersion in 5% 

MgSO4 solution for 30, 60, 90 and 120 days was found to reduce with the immersed time, 

which is similar to the result of the specimen immersed in the 5% H2SO4 solution. However, 

by comparing the results shown in Figures 6 and 7, one can see that the resistance of alkali-

activated FA mortars with CCR is lower to the 5% MgSO4 solution than to the 5% H2SO4 

solution since the strength in the former is lower than the strength in the latter. For instance, 

the strength loss of the 70FA30CCR mortar after exposure to 5% MgSO4 solution for 30, 60, 

90 and 120 days is -21.93%, -28.66%, -32.95% and -46.77%, respectively; whereas the 

strength loss of the 70FA30CCR mortar after exposure to 5% H2SO4 solution for 30, 60, 90 

and 120 days is 0.15%, -5.69%, -12.66% and -18.33%, respectively. This seems to be in line 

with the results reported by Chindaprasirt et al. [49], who investigated the resistance of 

microwave-assisted alkali-activated high calcium FA to acid and sulfate solutions. Note that 

many researchers [47, 49, 67] claimed that the magnesium hydroxide (Mg(OH)2) and gypsum 

(CaSO4.2H2O) were obtained by the reaction between Ca(OH)2 and MgSO4 or between C-S-

H and MgSO4 within the matrix, leading to the deposition on the material surface. This is also 

demonstrated by the result shown in Figure 10, in which a white substance, known as 

‘efflorescence’,   appears on the surface and then the mortars were destroyed. Similar results 

were reported by Chindaprasirt et al. [49] in which the degradation of C-S-H phase after 
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exposure to 3% MgSO4 solution gave faster than that of other sulfate, which leads to low 

strength. 

 

4. Conclusion 

This paper presents an experimental study on the setting time, compressive strength and 

durability of alkali-activated FA mortars with CCR, and the microstructure of alkali-activated 

FA pastes with CCR. Based on the obtained experimental results, the following conclusions 

could be drawn: 

1) The use of CCR to partially replace FA for making alkali-activated mortar can 

reduce the setting time. The final setting time of the mortar with CCR is between 25 and 85 

min, whereas the mortar without CCR is about 125 min. The faster setting time of alkali-

activated FA mortars incorporated with CCR could be an advantage for their use in the 

conditions where fast setting is required. 

2) The main reaction products of alkali-activated FA pastes incorporated with CCR 

are the amorphous phase, C-S-H and calcite. This was confirmed by the SEM images in 

which the pastes with CCR show denser and more uniform than the pastes without CCR. The 

relatively high compressive strength of alkali-activated FA mortar with 30% CCR at curing 

times of 7 and 28 days are 40.0 and 45.8 MPa, respectively. 

3) After exposure to H2O, the use of CCR replacement could improve the strength 

development of alkali-activated FA mortar at early-stage. However, a strength reduction was 

found at later stage except in mortar with CCR of 30%. 

4) The alkali-activated FA mortar incorporated with CCR shows an excellent 

performance to the attack of the 5% H2SO4 solution when compared to the mortar without 

CCR. The deterioration of the alkali-activated mortar after exposure to 5% H2SO4 solution is 
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due to the reactions of Ca(OH)2 or C-S-H with H2SO4 solution to form gypsum 

(CaSO4.2H2O) within the matrix, which causes a loss in compressive strength. 

5) The deterioration of alkali-activated FA mortar incorporated with CCR is severer 

to the attack of 5% MgSO4 solution than to the attack of H2SO4 solution; the former leads to a 

high loss in the strength of mortars. This is because the magnesium hydroxide (Mg(OH)2) 

and gypsum (CaSO4.2H2O) were generated by the reactions of Ca(OH)2 or C-S-H with 

MgSO4 within the matrix.  
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Table 1 Chemical compositions of FA and CCR (by weight)  

Materials SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O P2O5 SO3 LOI 

FA 31.32 13.96 15.64 25.79 2.94 2.93 2.83 - 3.29 1.30 

CCR 6.16 3.54 0.18 89.24 0.37 - - 0.50 0.87 2.79 

 

Table 2 Mix proportions of alkali-activated FA mortar incorporated with CCR 

Symbols FA (kg) CCR (kg) RS (kg) NaOH (kg) Na2SiO3 (kg) 

Control 1.0 - 1.5 0.233 0.467 

90FA10CCR 0.9 0.1 1.5 0.233 0.467 

80FA20CCR 0.8 0.2 1.5 0.233 0.467 

70FA30CCR 0.7 0.3 1.5 0.233 0.467 

 

Table 3 Weight change of alkali-activated FA mortars with CCR after immersion in H2O, 

5%MgSO4, and 5%H2SO4 solutions 

Mixes 

Weight change of alkali-activated FA mortars with CCR after immersion test (%) 

30 days 60 days 90 days 120 days 

H2O H2SO4 MgSO4 H2O H2SO4 MgSO4 H2O H2SO4 MgSO4 H2O H2SO4 MgSO4 

Control 
-1.50 -2.36 -3.33 -2.00 -2.87 -4.00 -2.60 -3.00 -4.35 -3.00 -3.30 -4.55 

90FA10CCR 
-1.24 -2.13 -3.00 -1.70 -2.30 -3.80 -2.20 -2.55 -4.00 -2.58 -2.96 -4.30 

80FA20CCR 
-1.00 -1.36 -2.79 -1.25 -1.56 -3.26 -1.90 -2.20 -3.75 -2.15 -2.45 -4.00 

70FA30CCR 
-0.52 -0.85 -2.38 -1.00 -1.12 -3.00 -1.50 -1.72 -3.20 -1.80 -2.22 -3.60 
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Figure 1 XRD patterns of FA and CCR  
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Figure 2 Compressive strength and setting time of alkali-activated FA mortars with CCR  
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Figure 3 XRD patterns of alkali-activated FA pastes with CCR at 28 days  
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Figure 4 SEM images of alkali-activated FA pastes with CCR at 28 days  
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Figure 5 FTIR of alkali-activated FA pastes with CCR at 28 days  
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Figure 6 Compressive strength of alkali-activated FA mortars with CCR after immersion in 

H2O, 5%MgSO4, and 5%H2SO4 solutions 
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Figure 7 Percentage change of compressive strength of alkali-activated FA mortars with 

CCR after immersion in H2O, 5%MgSO4, and 5%H2SO4 solutions 
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Figure 8 Physical appearance of alkali-activated FA mortars with CCR after 30-day and 120-

day immersion in H2O 
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Figure 9 Physical appearance of alkali-activated FA mortars with CCR after 30-day and 120-

day immersion in 5% H2SO4 solution 
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Figure 10 Physical appearance of alkali-activated FA mortars with CCR after 30-day and 

120-day immersion in 5% MgSO4 solution 

 


