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A B S T R A C T

This paper presents a design methodology for equal-width RHS X-joints failing by side wall buckling, with a particular
focus on the effect of a compressive chord pre-load. A slenderness parameter is thereby defined based on the elastic lo-
cal buckling stress of the side wall, idealized as an infinitely long plate under a patch loading transferred from the brace
member in combination with a uniform chord pre-load. A Rayleigh-Ritz approximation is used to obtain a closed form
solution. The proposed design equation is verified against finite element results over a wide range of wall slenderness
values and is demonstrated to yield excellent predictions. Finally, a reliability analysis is performed using the first order
reliability method (FORM) within the framework of both the Eurocode and the AISC Specification to ensure the pro-
posed equation possesses the required level of safety. The proposed equation strongly outperforms the current CIDECT
design rule for side wall buckling and also further extends the range of applicability to a wall slenderness ratio of up to
50.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Structural hollow sections with a rectangular, square or circular
cross-section are widely used in engineering structures because of
their favourable properties, such as a high structural efficiency in
compression and bending, a high strength and stiffness in torsion, an
aesthetic appeal, a reduced exposed area and a reduced drag coef-
ficient in fluid flow [1]. Rectangular hollow sections (RHS) are of-
ten favoured over circular sections because of the reduced complexity
of manufacturing the connections. RHS have important applications
in truss structures which are often found in large roof spans, pedes-
trian bridges, walkways and offshore structures. In the design of these
trusses the joints require particular attention as they are susceptible
to a number of particular failure modes. Research on welded hollow
section joints has been carried out for many decades and CIDECT
(Comité International pour le Développement et l’Etude de la Con-
struction Tubulaire) has been very instrumental in this. The design
rules for hollow section joints issued (and regularly upgraded) by
CIDECT have been adopted by all major design standards around the
world. The most recent version of the design rules can be found in [2].

This paper focuses on right angle X-joints between equal-width
RHS truss members subject to brace compression and a compres-
sive chord pre-load. It is noted that this paper follows the established
CIDECT nomenclature, where h0 and h1 are the chord height and the

⁎⁎ Corresponding author.
Email address: shanshan.cheng@sheffield.ac.uk (S. Cheng)

brace height, respectively, b0 and b1 represent the chord width and the
brace width, respectively, and t0 and t1 refer to the thicknesses of the
chord wall and the brace wall, respectively (Fig. 1).

For these types of joints, side wall failure of the chord member
is critical, either by buckling or by localized plastification under the
brace (bearing failure). In the current CIDECT design rules, this is es-
sentially accounted for by isolating a vertical strip in the chord side
wall and designing it as a column [3]. A chord load function Qf is then
applied to account for the effect of a chord pre-load. While defendable
because of its simplicity, this approach obviously ignores the two-di-
mensional character of the side wall which acts as a plate under bi-di-
rectional stresses.

It is common in experimental work to determine the capacity of
an X-joint as the minimum of either the peak load or the load corre-
sponding to the 0.03b0 deformation limit [4] after carrying out a test
on an isolated connection. However, recently a compelling case has
been made to limit the joint capacity to the load at which side wall
buckling first occurs [5,6]. This rationale is based on the observation
that, in the design of CHS and RHS trusses, completely separate and
uncoupled checks are carried out for the stability of the truss mem-
bers on one hand and the capacity of the truss joints on the other. It
is thereby entirely conceivable that a truss member is continuous over
a joint (e.g. in the case of a chord member or a through-member in
an X-brace) without the truss member being supported out-of-plane
at that particular joint. The out-of-plane effective length of that spe-
cific truss member would thus include one or more joint locations. If
side wall buckling were to take place in one of those joints, it would
locally severely reduce the longitudinal compressive capacity of the
side walls (theoretically in the order of 60% for the elastic case and

http://dx.doi.org/10.1016/j.engstruct.2016.08.019
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Fig. 1. Connection geometry.

idealized boundary conditions [7]) and, by consequence, the
out-of-plane buckling capacity of the truss member through the intro-
duction of a weak link. Since the truss member checks are carried out
based on the assumption of a ‘sound’ cross-section displaying no lo-
cal buckling, a safe (although in most cases somewhat conservative)
design approach consists of limiting the joint capacity to the side wall
buckling load. This philosophy has been adopted in the here proposed
methodology.

Furthermore, it has been known for some time that the current
CIDECT design rules for chord side wall failure are quite conserva-
tive, and more so as the chord wall slenderness h0/t0 increases [8]. The
aim of this paper is therefore to present an alternative design equation
for chord side wall buckling, equally simple in its application as the
current CIDECT rule, but founded on a rational plate buckling model
and verified against numerical and experimental data.

In previous research, 31 tests on equal-width X-joints were car-
ried out by Packer [3]. The brace members thereby consisted of either
RHS members or simple plates welded to the chord. Both hot-formed
and cold-formed RHS tubes were considered and the wall slenderness
values (h0/t0) in the tests ranged from 15.3 to 42.2. The effects of the
brace member angle θ (Fig. 1) and the compressive chord pre-load
were investigated and the research resulted in the proposition of a uni-
fied equation for both T- and X-joints. However, neither the chord
depth (h0) nor the axial chord preload were explicitly included in
the equation, as they were believed to have little effect on the ulti-
mate strength of the joints. At a later stage, Davies and Packer [9] re-
jected this conclusion and instead postulated that the joint strength de-
pends on the chord slenderness (h0/t0) and the non-dimensional bear-
ing length (h1/h0).

Wardenier [10,11] conducted tests on RHS T- and X-joints, with
the brace members loaded either in tension or compression, but with-
out a compressive load in the chord. Both hot finished and cold fin-
ished hollow sections of grades S235 and S275 were included in the
programme. It was concluded that for equal-width X-joints, the com-
pressive strength of the joint is limited by either a bearing or a buck-
ling failure mode in the chord side walls. The authors provided a uni-
fied equation for both failure modes, in which the buckling stress is
derived from the model of a pin-ended strut with an effective length
of (h0 − 2t0). This approach formed the basis of the current CIDECT
design rule.

Through a series of experimental and numerical studies on RHS
X-joints carried out by Yu [12], it was found that the effect of an

axial chord pre-load on the ultimate capacity of an X-joint decreases
with increasing β values, where β = b1/b0. For full-width X-joints
(β = 1) the effect was found to be very small. At the same time, how-
ever, it was discovered that the influence of the axial pre-load in-
creases with increasing side wall slenderness. The numerical results
by Yu [12] formed the basis of the chord stress function Qf for side
wall failure in the CIDECT design guide [2].

Recently, experimental and numerical studies have been carried
out by Becque and co-workers [5,6] to develop an alternative de-
sign equation for chord side wall failure of equal-width RHS X-joints,
founded on a rational plate buckling model. The proposed design
equation showed excellent agreement with experimental and numeri-
cal results, but did not account for a compressive chord load. In this
paper, the research is extended and a model founded on the same prin-
ciples is developed which also includes the effect of a compressive
chord pre-load. Detailed numerical models, first validated against ex-
perimental data, were employed to carry out parametric studies and
generate numerical data. These data were subsequently used to vali-
date the proposed design model.

2. Analytical model

A rational model was developed in which the chord side wall was
idealized as an infinitely long plate simply supported along both longi-
tudinal edges and subject to a transverse localized stress σ1 (originat-
ing from the brace members) and a longitudinal compressive stress σ2
(Fig. 2). The plate was assumed to be made of a linear elastic, isotropic
and homogeneous material with thickness t0. The loads and boundary
conditions were idealized as follows:

1. It was assumed that the vertical load transferred from the brace side
wall is uniformly distributed over the brace width h1. The total ver-
tical load carried by the connection (two side walls) is then given
by:

2. The chord preload P2 is uniformly distributed over the cross-sec-
tion of the chord member:

3. The plate is hinged along both longitudinal edges. This is a conser-
vative assumption, neglecting any restraint provided by the chord
top and bottom faces and by the welded connection with the brace
member.

Fig. 2. Idealized model.

(1)

(2)
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A Rayleigh-Ritz approach was used to approximate the critical
buckling stress of the chord side wall. The exponential Gauss function
was thereby chosen to represent the longitudinal shape of the buckle.
This function descends to zero almost immediately when moving out-
side a narrow region around the origin and thus captures the localized
nature of the failure mode very well. When also adopting a half-sine
wave solution in the transverse direction (across the depth of the chord
wall), the proposed deformed shape is expressed by the following mul-
tiplicative function:

where w is the out-of-plane displacement of the plate, and Δ and B are
presently undetermined parameters. Δ determines the amplitude of the
displacements, while B is related to the length of the local buckle. The
Gauss function features prominently in statistics and from the study of
the Gaussian (normal) distribution it is known that only 0.27% of the
points in the distribution are more than three standard deviations re-
moved from the average. A comparison between Eq. (3) and the stan-
dard expression of the Gaussian distribution:

where μ is the average and s is the standard deviation, yields an ap-
proximate length of the buckle:

The elastic strain energy U contained in the deformed shape of the
plate is given by (e.g. Timoshenko and Gere [13]):

In the above equation, D is the flexural rigidity of the plate, given by:

where E is the modulus of elasticity and ν is the Poisson’s ratio. Sub-
stitution of Eq. (3) into Eq. (6) requires computation of the following
integrals:

and eventually leads to the following expression for the elastic strain
energy U:

The potential energy of the applied stresses, on the other hand, is
given by:

or, after substituting Eq. (3) into Eq. (11):

The remaining integral in Eq. (12) has no closed form solution and can
only be expressed as a series:

Only the first term in the series is retained, so that:

Neglecting the higher order terms in Eq. (13) is acceptable, pro-
vided that:

It will be shown at a later stage (once an expression for B has been de-
termined) that this is indeed a reasonable assumption.

In order to minimize the total energy U + V, its derivatives with re-
spect to B and Δ are set equal to zero:

Eqs. (16) and (17) eventually yield:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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and:

In case σ2 = 0, indicating that there is no chord preload, Eq. (18)
becomes:

which is consistent with the value previously obtained in [6] in the ab-
sence of chord pre-compression.

After introducing , Eqs. (17) and (18) can be more

succinctly written as:

in which:

Since the brace load is assumed to be uniformly distributed over
the brace width h1, the critical elastic buckling load of the X-joint is
obtained from the following equation:

The condition in Eq. (15) can now be evaluated. Substituting Eq.
(21) into Eq. (15) yields:

The parameter a is typically smaller than 2 in practical applications,
with a = 2 (corresponding, for instance, to h0/t0 = 50 and
σ2 = 290 MPa) yielding the most critical value for Eq. (25):

Given the fact that the chord member is typically the larger member
compared to the braces (or at most of equal size), h1/h0 usually satis-
fies Eq. (26) and, consequently, Eq. (15).

3. Finite element modelling

Since there is a profound lack of experimental data related to side
wall failure of RHS X-joints with a compressive load applied to the
chord, the Finite Element (FE) method was employed in this study to
investigate the effect of a chord pre-load. The finite element model
was developed in Abaqus [14] and was first benchmarked against nine
experimental results X1–X9 involving equal-width RHS X-joints with
no chord preload applied, obtained from [6,8].

The model incorporated the measured dimensions, geometric im-
perfections and weld sizes, the values of which can be found in Table
1 and [15,16]. Material properties obtained from coupon test results
were included in the model. The material yield stresses fy and ulti-
mate strengths fu are listed in Table 1. Note that the reported values
are engineering stresses. For the weld material, a bilinear stress-strain
relationship was used, based on the nominal material properties
(fy = 460 MPa; fu = 600 MPa), as shown in Fig. 3. Fig. 3 also shows
the measured stress-strain curves of the S355 steel, used to model
X1–X5, and the C450 steel, used for X6–X9.

Boundary conditions consistent with the experiment were applied
to the FE models. Except for specimens X6 and X7, the brace ends
were fixed (prevented from lateral displacement and overall rotation),
while uniform longitudinal displacements were imposed on the spec-
imen. Specimens X6 and X7 were tested between hinged bound-
ary conditions [8]. In those cases, rigid body constraints were used
to tie all nodes in the brace end sections to the centroids of those
cross-sections and rotations about the centroid were allowed. Symmet-
ric boundary conditions were applied where possible, which typically
meant 1/8 of the connection was modelled (unless asymmetric chord
imperfections were measured).

‘Tie constraints’ were used to fuse the surfaces between the welds
and the brace and chord members together. The weld surfaces were
thereby used as the master surfaces in all constraints.

3D solid elements were employed and three elements were used
in the through-thickness direction of the RHS walls. Hexahedral el-
ements were used throughout the model, except for the welds where
tetrahedral elements were chosen due to the complexity of the geom-
etry. A global mesh size of twice the thickness of the chord was used,
while a finer mesh size of about 2/3 of the chord wall thickness was
chosen for the region of the chord side wall under the brace members,
where side wall failure was expected to occur (Fig. 4).

The influence of the mesh size, the element type (i.e. linear vs.
quadratic elements), and the analysis solver were investigated in a
sensitivity study using test X7. A total of 10 models were run, cov

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Table 1
Measured dimensions.

Label
Nominal chord
size

Nominal brace
size

h0
(mm)

b0
(mm)

t0
(mm)

r0
a

(mm)
b1
(mm)

h1
(mm)

t1
(mm)

r1
a

(mm)
Δ (left)b

(mm)
Δ (right)b

(mm)
fy
(MPa)

fu
(MPa)

X1 100 × 100 × 3 100 × 100 × 3 100.27 100.52 2.92 6.2 100.22 100.33 2.73 6.2 −0.05 −0.05 330 388
X2 100 × 100 × 4 100 × 100 × 4 100.14 100.36 3.84 11.5 100.37 100.19 3.69 11.5 −0.05 −0.30 330 404
X3 100 × 100 × 5 100 × 100 × 5 99.80 100.25 4.89 12.7 100.08 99.90 4.70 12.7 −0.20 −0.10 400 437
X4 100 × 100 × 6 100 × 100 × 6 99.61 99.63 5.80 12.1 99.76 99.66 5.46 12.1 −0.05 −0.20 370 425
X5 100 × 100 × 8 100 × 100 × 8 99.70 99.89 7.92 15.1 100.12 99.64 7.68 15.1 −0.15 −0.15 345 392
X6 250 × 150 × 5 150 × 150 × 5 250.00 149.77 5.00 17.7 150.10 150.10 4.76 11.4 3.0 2.0 463 513
X7 150 × 150 × 6 150 × 150 × 6 150.18 150.23 5.86 14.1 150.48 150.35 5.86 14.7 −1.0 −1.0 451 502
X8 350 × 250 × 10 250 × 250 × 10 350.40 250.70 9.94 27.0 248.50 249.00 9.94 26.6 0.0 0.0 468 534
X9 400 × 300 × 8 300 × 300 × 8 400.00 300.00 7.92 22.7 300.30 300.30 7.97 22.3 2.0 2.0 481 546

a r = outside corner radius.
b Δ is the imperfection of the chord side wall at the vertical centre line of the connection, positive when measured outwards.

Fig. 3. Stress-strain curves.

ering mesh sizes ranging from 2 mm to 15 mm (in the most refined
region), 8-node as well as 20-node hexahedral elements, and ‘Gen-
eral Static’ vs. ‘Riks’ analyses. The peak load Pult, the axial shorten-
ing d at the peak load Pult and the initial stiffness Ki obtained from the
models are compared in Table 2. Fig. 5 also plots the peak load Pult
as a function of the mesh size. It was found that the results are quite

insensitive to either the mesh size or the number of nodes in the ele-
ment, as long as the mesh size is smaller than the chord wall thickness
in the most refined region. However, a 20-node quadratic hexahedral
element significantly increased the running time and was therefore not
used in further analyses. Nevertheless, quadratic tetrahedral elements
were adopted in the welds in all cases due to the occasionally high
aspect ratios of these elements. A ‘Riks’ analysis did not deliver re-
sults which were significantly different from a ‘General Static’ analy-
sis, and the Riks solver was selected because of its computational ef-
ficiency.

The FE results for all nine tests X1–X9 are compared to the exper-
imental data in Table 3 with respect to the ultimate load Pult, the initial
stiffness Ki and the axial shortening d at the peak load. Good agree-
ment was generally achieved between the FE models and the test data.
The average ratio of the FE predicted capacity to the measured capac-
ity (Pult,FEA/Pult,test) was found to be 1.03 with a standard deviation of
0.1. Note that a comparison of the peak load for X8 was not included,
because the peak load was not reached in the actual test.

To further illustrate the predictive capacity of the FE models, Fig.
6 shows the failure modes of specimen X1 obtained from both the ex-
periment and the FE model, while Fig. 7 compares the predicted and

Fig. 4. Finite element model of test X7.



UN
CO

RR
EC

TE
D

PR
OO

F

6 Engineering Structures xxx (2016) xxx-xxx

Table 2
Sensitivity studies.

Label
Element
type

Analysis
solver

Mesh size
(mm)

Pult
(kN)

d
(mm)

Ki (kN/
mm)

Test 832.35 2.68 353
S1 Hex-8 Riks 2 860.42 3.03 356
S2 Hex-8 Riks 3 860.42 3.05 356
S3 Hex-8 Riks 4 859.90 3.05 355
S4 Hex-20 Riks 4 888.62 3.15 356
S5 Hex-8 Static 4 859.30 3.02 353
S6 Hex-8 Riks 5 858.80 3.02 355
S7 Hex-8 Riks 6 865.82 3.07 354
S8 Hex-8 Riks 8 888.62 3.15 353
S9 Hex-8 Riks 10 826.89 3.22 347
S10 Hex-8 Riks 15 998.11 4.62 351

Fig. 5. Effect of mesh size.

Table 3
FE model validation.

Label Ultimate load, Pult (kN)
Initial stiffness, Ki (kN/
mm)

Axial shortening, d
(mm)

Test FEA
FEA/
test Test FEA FEA/test Test FEA

FEA/
test

X1 176 182 1.03 208 233 1.12 0.92 0.9 0.98
X2 302 270 0.89 229 312 1.36 1.6 1.03 0.64
X3 373 434 1.16 291 392 1.35 1.75 1.68 0.96
X4 560 501 0.89 369 458 1.24 2.46 1.69 0.69
X5 783 789 1.01 459 624 1.36 4.03 3.87 0.96
X6 409 448 1.09 271 252 0.93 5.07 2.55 0.50
X7 828 862 1.04 411 373 0.91 2.65 3.02 1.14
X8 – 2045 – 810 737 0.91 – 3.64 –
X9 1289 1405 1.09 870 698 0.80 2.22 3.54 1.59

Avg. 1.03 Avg. 1.11 Avg. 0.93
St.
dev.

0.1 St.
dev.

0.23 St.
dev.

0.34

the measured load vs. axial shortening curve and load vs. side wall de-
flection curve of specimen X1.

After verifying the FE model, a total of 36 parametric studies were
run to investigate the effect of an added compressive chord pre-load.
Three levels of pre-compression were applied to X1–X9, amounting to
25%, 50% and 75% of the chord squash load. A ‘General Static’ step
was first used to apply the chord compression, followed by a ‘Riks’
step with increasing brace compression while keeping the chord load
constant.

As an example, Fig. 8 shows the load-axial shortening curves of
joints X1 and X5, subject to various levels of chord pre-load. It is
seen that the chord pre-load has only a very minor effect on the ul-
timate capacity and behaviour of joint X1, which initially buckles in

the elastic range. This is consistent with the work previously con-
ducted by Platt [17]. However the compressive chord pre-load results
in a more substantial effect on the ultimate capacity when joint X5
is considered, where initial buckling is interwoven with gradual ma-
terial yielding. Interestingly, X5 maintains its stiffness longer (i.e. at
higher load levels) when a higher compressive force is present in the
chord. This can be attributed to the state of biaxial compression in the
side wall which postpones material yielding until higher stress levels.
However, the peak load of the X-joint is gradually reduced with in-
creasing chord pre-load, as the post-buckling reserve capacity of the
side wall is significantly reduced by the bi-axially applied load.

The proposed design methodology follows the rationale put for-
ward in [5,6] that initial buckling of the side wall is the limiting factor
in the determination of the joint capacity. This is based on the need
to avoid non-linear interaction effects between flexural bucking of the
members and local buckling of the joint.

The side wall buckling loads determined from all FE models are
listed in Table 4. The exact point of buckling is not always easy to
pinpoint from the change in axial stiffness of the specimen or the lat-
eral side wall displacements, especially when buckling takes place
in the inelastic range. The buckling load was therefore determined
from the divergence point between a geometric non-linear analysis
and a linear analysis (both including material non-linearity) in the load
vs. axial shortening diagram (see Fig. 9). It is also noted that no re-
sults are provided in Table 4 for X6, X8 and X9 at elevated levels of
chord pre-load, since these slender chord sections simply cannot sus-
tain these compressive pre-loads and would collapse in local buckling
even before any brace load is applied.

It is seen from Table 4 that, in general, the chord pre-load does not
have a major effect on the buckling load. Only the very slender side
walls (h0/t0 = 50) show a distinct reduction in buck-ling load. Interest-
ingly, a slight increase in buckling load is typically observed in the
stockiest sections, which buckle inelastically. As previously discussed
in relation to Fig. 8, this can be attributed to the state of biaxial com-
pression in the side wall actually delaying yielding.

4. Proposed design method

Table 4 lists, for each specimen: the elastic critical buckling load
Pcr obtained using Eq. (24), the inelastic buckling load Pb,FEA, and the
yield load Py, which is taken as:

The factor 1.2 thereby takes into account that some of the load fol-
lows an alternative load path through the chord top and bottom faces
and then spreads out into the chord side walls. This factor agrees well
with the failure load observed in the stockiest joint (X5) and is slightly
conservative based on experimental results and equations provided in
[3,9]. A dimensionless slenderness parameter λ can then be defined as:

The dimensionless buckling loads χ = Pb,FEA/Py at different chord
pre-load levels, obtained from all FE models, are plotted against the
calculated slenderness values λ in Fig. 10, which also shows the elas-
tic critical buckling curve in dashed line:

(27)

(28)

https://www.researchgate.net/publication/245547117_ANALYSIS_OF_WEB_CRIPPLING_IN_A_RECTANGULAR_HOLLOW_SECTION?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
https://www.researchgate.net/publication/245301538_Web_Crippling_of_Rectangular_Hollow_Sections?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
https://www.researchgate.net/publication/283227851_A_new_design_equation_for_side_wall_buckling_of_RHS_truss_X-joints?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
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Fig. 6. Comparison of experimental and predicted failure modes of test specimen X1.

Fig. 7. Comparison of experimental and predicted behaviour of test specimen X1.

It is seen that, generally, a good agreement is obtained between the
data and the above equation in the elastic range (λ >> 1). In order to
account for the gradual transition from the elastic to the inelastic buck-
ling range at lower slenderness values, the following equation is pro-
posed (denoted as ‘Prediction 1’), which is deliberately aligned with
the current CIDECT practice of referring to the code specifications for
column buckling (e.g. EN1993-1-1 [18]):

with:
(29)

(30)

(31)

(32)
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Fig. 8. Effect of compressive chord pre-load on load-axial shortening relationship.

Table 4
Test results and predicted capacities.

Test h0/t0
Pre-load
level (%)

Py
(kN)

Pb,FEA
(kN)

Pcr
(kN)

λpred,1
(–)

Pd,CIDECT
(kN)

Pult,CIDECT
(kN)

Ppred,1
(kN)

Ppred,2
(kN)

Pb,FEA/Py
(–)

Pult,CIDECT/Pb,FEA
(–)

Ppred,1/Pb,FEA
(–)

Ppred,2/Pb,FEA
(–)

X1 36.7 0 232 170 125 1.36 61 76 114 114 0.73 0.45 0.67 0.67
25 232 168 116 1.41 59 74 106 114 0.72 0.44 0.63 0.68
50 232 168 106 1.48 57 71 98 114 0.72 0.42 0.58 0.68
75 232 168 95 1.56 53 66 89 114 0.72 0.39 0.53 0.68

X2 26.7 0 305 277 285 1.03 122 153 228 228 0.91 0.55 0.82 0.82
25 305 286 272 1.06 119 149 222 228 0.94 0.52 0.78 0.80
50 305 286 259 1.08 114 143 215 228 0.94 0.50 0.75 0.80
75 305 286 246 1.11 107 133 208 228 0.94 0.47 0.73 0.80

X3 21.2 0 469 386 594 0.89 236 295 401 401 0.82 0.76 1.04 1.04
25 469 400 575 0.90 229 286 397 401 0.85 0.72 0.99 1.00
50 469 399 555 0.92 220 275 392 401 0.85 0.69 0.98 1.00
75 469 399 535 0.94 205 256 387 401 0.85 0.64 0.97 1.00

X4 18.1 0 513 477 995 0.72 319 399 475 475 0.93 0.84 1.00 1.00
25 513 482 974 0.73 310 387 474 475 0.94 0.80 0.98 0.99
50 513 483 953 0.73 298 372 473 475 0.94 0.77 0.98 0.98
75 513 484 932 0.74 278 347 472 475 0.94 0.72 0.97 0.98

X5 12.9 0 654 672 2465 0.52 520 649 632 632 1.03 0.97 0.94 0.94
25 654 683 2438 0.52 505 631 632 632 1.04 0.92 0.93 0.93
50 654 683 2411 0.52 485 606 632 632 1.04 0.89 0.93 0.93
75 654 666 2384 0.52 452 565 632 632 1.02 0.85 0.95 0.95

X6 50.0 0 834 270 243 1.85 75 104 231 231 0.32 0.39 0.86 0.86
25 834 213 183 2.14 73 101 175 231 0.26 0.47 0.82 1.08
50 – – – – – – – – – – – –
75 – – – – – – – – – – – –

X7 25.6 0 953 791 652 1.21 285 396 573 573 0.83 0.50 0.72 0.72
25 953 801 613 1.25 277 385 544 573 0.84 0.48 0.68 0.72
50 953 781 572 1.29 266 369 514 573 0.82 0.47 0.66 0.73
75 953 751 530 1.34 248 345 481 573 0.79 0.46 0.64 0.76

X8 35.3 0 2778 1550 1364 1.43 482 669 1254 1254 0.56 0.43 0.81 0.81
25 2778 1490 1199 1.52 468 650 1114 1254 0.54 0.44 0.75 0.84
50 2778 1410 1024 1.65 450 624 961 1254 0.51 0.44 0.68 0.89
75 – – – – – – – – – – – –

X9 50.5 0 2745 682 604 2.13 227 315 579 579 0.25 0.46 0.85 0.85
25 2745 590 445 2.48 221 306 430 579 0.21 0.52 0.73 0.98
50 – – – – – – – – – – – –
75 – – – – – – – – – – – –

Avg. 0.59 0.82 0.87
St. dev. 0.18 0.14 0.12
COV 0.30 0.18 0.14

where Py and λ are determined by Eqs. (27) and (28), respectively.
By trial and error the value of the imperfection factor α was deter-
mined to be 0.08, as this results in an accurate yet conservative fit of
the data. It is seen in Fig. 10 that the proposed equation agrees well
with the numerically determined buckling loads Pb,FEA, both for slen-
der side walls buckling elastically and stocky side walls buckling in-
elastically, although it leads to somewhat conservative results in the

intermediate slenderness range. Eq. (30) is also consistent with the
equation provided in [6] in the absence of a chord load. The buck-
ling resistances predicted by the above equations are listed as Ppred,1 in
Table 4.

In light of the observation that the buckling loads do not vary all
that significantly with different levels of chord pre-load (see Table 4),
it is worth investigating whether the effect of the chord pre-load can
simply be ignored in design. With a = 0 in Eq. (22), the methodology

https://www.researchgate.net/publication/283227851_A_new_design_equation_for_side_wall_buckling_of_RHS_truss_X-joints?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
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Fig. 9. Determination of the buckling load of specimen X4.

Fig. 10. Buckling loads at different chord pre-load levels and proposed design method
1.

reduces to the one previously proposed in [6] (from here on referred
to as ‘Prediction 2’). The corresponding buckling resistances Ppred,2
predicted for all numerical simulations are also listed in Table 4. The
full design curve is presented in Fig. 11. Good agreement with the
numerical data is observed. It is even noted that much of the conser-
vatism in the intermediate slenderness has disappeared. However, the

Fig. 11. Proposed design method 2.

predictions are now occasionally slightly unsafe in the high slender-
ness range, with the buckling load being overestimated by 8% for X6
(h0/t0 = 50) with a chord pre-load of 25% of the squash load.

Table 4 also lists the ratios of the predicted buckling capacities
over the numerical results, using the current CIDECT rules, as well as
Prediction 1 (Fig. 10) and Prediction 2 (Fig. 11). An average ratio of
0.82 with a standard deviation of 0.14 was obtained for Prediction 1,
while an average ratio of 0.87 with a standard deviation of 0.12 was
achieved for Prediction 2. In order to compare the performance of the
proposed design equations with that of the current CIDECT rules, it
should be noted that the CIDECT equations provide factored design
resistances, i.e. they already contain an implicit safety factor, which
is γM = 1.25 for side wall buckling [11,12]. This safety factor is im-
plemented through the use of a reduction factor of 0.8 in the CIDECT
equation for the side wall buckling stress fk [2]. Also, the CIDECT
rules impose an extra reduction factor of 0.9 on the capacity of the
higher grade C450 connections (applicable to X6–X9) [2]. In order to
allow an objective comparison, the CIDECT predicted design resis-
tances Pd,CIDECT in Table 4 were first transformed into ‘nominal’ resis-
tances Pult,CIDECT, by dividing away the safety factor of 0.8 and, where
applicable, the extra reduction factor of 0.9. It is seen that both pro-
posed methodologies strongly outperform the current CIDECT design
rule for side wall buckling, which over the same data set features an
average ratio of the predicted to the FE capacity of 0.59 with a stan-
dard deviation of 0.18. Importantly, it is also seen that the CIDECT
rule does not offer a consistent margin of safety, but is more conserva-
tive for side walls with high h0/t0 values. In this respect, it should also
be noted that the applicability of the current CIDECT rule is limited
to an h0/t0 ratio of 40, while the proposed equations are based on data
including sections with h0/t0 ratios of up to 50.

5. Reliability analysis

In this section of the paper, the reliability of the two proposed de-
sign models is assessed within the frameworks of both the Eurocode
[19] and the AISC specifications [20].

In the Eurocode, the limit state function Z is defined as:

or, according to an alternative definition, which will be used in this
paper, as:

(33)

https://www.researchgate.net/publication/245492565_The_2005_Specification_for_Structural_Steel_Buildings_A_Specification_for_the_21st_Century?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
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https://www.researchgate.net/publication/27348695_The_Static_Strenght_of_Uniplanar_and_Multiplanar_Connections_in_Rectangular_Hollow_Sections?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
https://www.researchgate.net/publication/283227851_A_new_design_equation_for_side_wall_buckling_of_RHS_truss_X-joints?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
https://www.researchgate.net/publication/261061803_Design_guide_for_circular_hollow_section_CHS_joints_under_predominantly_static_loading?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==
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In the above equation KR is the model uncertainty of the resistance R
and KE is the model uncertainty of the (G + Q) load effects, where G
and Q denote the dead and the live load, respectively. The probability
of failure Pf can then be evaluated using:

where β is the reliability index and Φ is the cumulative distribution
function of the standard normal distribution. To ensure that the struc-
ture has an acceptable level of safety with a sufficiently small proba-
bility of failure Pf, the reliability index β should exceed a specific tar-
get value. For new structures with a design working life of 50 years
and a consequence class rated as CC2 (moderate consequences of fail-
ure), the Eurocode prescribes a reliability index of 3.8 [19]. In this pa-
per a target value of 3.8 was therefore adopted to calibrate the partial
safety factor γM.

The first order reliability method (FORM) was adopted to carry out
the reliability analysis. The probabilistic models of the basic variables
are listed in Table 5, based on literature data. Assuming that both the
resistance and the load effects follow lognormal distributions, the re-
sultant limit state function Z (Eq. (34)) will also follow a lognormal
distribution. In this case the reliability index β can be expressed in
terms of the mean values and the coefficients of variation (COV) of
the resistance and the load effects as follows [21]:

where

and and VS are the mean values and COVs of the re

Table 5
Statistical distributions used in Eurocode approach.

Variable Distribution Nominal Mean COV Reference

G Normal Gn Gn 0.1 [22]
Q Gumbel Qn 0.6Qn 0.35 [22]
R Lognormal Rn Rn 0.15 Eq. (50)
KR–prediction 1 Lognormal – 1.24 0.18 Fitted by authors
KR–prediction 2 Lognormal – 1.16 0.15 Fitted by authors
KE Lognormal – 1 0.1 [23]
h0 Normal h0 h0 0.005 [2]
h1 Normal h1 h1 0.005 [2]
t Normal t t 0.05 [2]
E Normal E E 0.03 [2]
fy Lognormal fy 1.18fy 0.075 [2]

sistance R′ and the load S respectively. Furthermore,
and σln S are the mean values and the standard deviations of natural
logarithms of the resistance R′ and the load S.

The mean values of R′ and S are obtained as follows:

By introducing a load ratio κ = Qn/Gn, Eq. (40) is transformed into:

On the other hand, design is governed by:

where Rd is the design resistance and REd is the design load effect. By
setting Rd = REd the following relationship emerges:

or

The assumption that Rd = REd corresponds to a full use of the resis-
tance, without reserve capacity. This assumption allows an assessment
of the intrinsic safety level of the design equation without making any
further assumptions with regards to the specific load conditions. Rear-
ranging Eqs. (39)–(44) leads to:

The COVs of R′ and S are given by the following expressions:

Substituting Eqs. (45)–(47) in Eq. (36) eventually yields the reli

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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ability index:

After rearranging the above equation, the partial safety factor γM is
obtained as:

In order to apply Eq. (49), the statistical data presented in Table 5, is
needed. The model uncertainty KR considers the deviations of the de-
sign model compared to reality and its statistical parameters were de-
termined by fitting a lognormal distribution to the ratios of the buck

Fig. 12. Partial safety factors as a function of the live-to-dead load ratio.

ling load to the model prediction (Pb,FEA/Ppred,1 or Pb,FEA/Ppred,2). The
COV of the resistance VR was evaluated based on a Taylor approxima-
tion of Eq. (30), while retaining the first term only:

Using Eq. (49), the partial safety factor γM was calculated as a
function of the load ratio κ for both Prediction 1 and Prediction 2, as-
suming a target reliability index of 3.8. Fig. 12 plots this relationship
for both design models up to a load ratio of 5, which is the typical
range of live to dead load ratios for metal structures [24]. It is seen
that, in both cases, the partial safety factor γM displays a minimum
when the load ratio is approximately equal to 2. The partial factors γM
range between 1.38 and 1.43 for Prediction 1, and between 1.38 and
1.45 for Prediction 2. To ensure that the design model achieves the re-
quired level of safety for all practical load ratios, a partial safety factor
γM = 1.45 is recommended for both design models.

It is noted that Eq. (36) is based on the assumption that both the
resistance and the load effects follow lognormal distributions. This is
not quite the case, as is seen from Table 5 and, therefore, the calcu-
lated partial safety factors are approximate. Hence, the reliability level
of the two design models was more accurately assessed using Monte
Carlo simulations for all nine test specimens X1–X9. The failure fre-
quency was evaluated using:

where R is the resistance, calculated using the proposed design mod-
els, and E = G + Q is the load effect. A Matlab [25] script was de-
veloped by the authors to create random values of the variables h0,
h1, t, E, fy, KR, KE, G and Q according to the distributions listed in
Table 5, in order to arrive at the distribution of R. Sixty million simu-
lations were run for each joint under a given chord pre-load level and
load ratio κ. Fig. 13 shows the reliability index β obtained from the
Monte-Carlo simulations for specimen X1 at various levels of chord
pre-load, using a partial safety factor γM = 1.45. The reliability index
displays a local maximum when the load ratio κ is approximately 1
and then decreases with increasing load ratio. It is also noted that in
both design models a higher chord pre-load results in a lower relia-
bility index. However, neither design model achieves a satisfactory

Fig. 13. Reliability levels of specimen X1 using .

(48)

(49)

(50)

(51)
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reliability level of 3.8, especially at higher load ratios. As previously
pointed out, this is because neither the resistance nor the loads fol-
low the assumed lognormal distributions. For example, it is well es-
tablished that the live load Q follows a Gumbel distribution, which has
a higher probability of large load values occurring than a lognormal
distribution. A higher safety factor should thus be used to ensure a tar-
get reliability level of 3.8.

Fig. 14 shows the reliability indices of specimen X1, obtained us-
ing a partial safety factor γM = 1.6. Both design models now reveal a
satisfactory reliability level across the various chord pre-load levels
and load ratios κ.

Fig. 15 shows the reliability index for all nine test specimens using
a partial safety factor γM = 1.6 and κ = 5. It is seen that both proposed
design models provide satisfactory safety levels across all nine spec-
imens (although Prediction 2 is minutely below the target reliability
level for the most slender joints X6 and X9).

The (factored) design resistances of specimens X1–X9, resulting
from both proposed design models, as well as the CIDECT rules, are
listed in Table 6. The proposed models consistently predict higher
design resistances than the CIDECT rules, with average increases of
17% and 26% for Prediction 1 and Prediction 2, respectively. More
importantly, the proposed design models significantly reduce the con-
servativeness inherent in the CIDECT rules for slender joints, while
still ensuring safe predictions for the stocky joints.

With respect to the North American Standards [20], a simplified
approach is usually applied when carrying out the reliability assess-
ment, in which:

with

and

In the above equations, the variable P denotes the ratio of the nu-
merically determined buckling capacity to the model predictions
(Pb,FEA/Ppred,1 or Pb,FEA/Ppred,2). It plays an equivalent role to the vari-
able KR in the Eurocode. The variables M and F denote the ratio of the
actual to the nominal material properties and the ratio of the actual to
the nominal cross-sectional dimensions, respectively. Pm, Mm and Fm
are the mean values of P, M and F, respectively, and VP, VM and VF
represent the corresponding COVs.

Compared to the Eurocode specifications, the distributions of the
dead and the live loads have slightly different parameters in the North
American approach, as summarized in Table 7. The design is typically
governed by:

Fig. 14. Reliability levels of specimen X1 using .

Fig. 15. Reliability levels of all X-joints for a partial safety factor γM=1.6 and a load ratio .

(52)

(53)

(54)
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Table 6
Design resistances of all specimens.

Label h0/t0 Pre-load level (%) Py (kN) Pcr (kN) Pd,CIDECT (kN) Pd,pred1 (kN) Pd,pred2 (kN) Pd,pred1/Pd,CIDECT (–) Pd,pred2/Pd,CIDECT (–)

X1 36.7 0 232 125 61 71 71 1.18 1.18
25 232 116 59 66 71 1.13 1.21
50 232 106 57 61 71 1.08 1.26
75 232 95 53 56 71 1.05 1.35

X2 26.7 0 305 285 122 143 143 1.16 1.16
25 305 272 119 139 143 1.17 1.20
50 305 259 114 135 143 1.18 1.25
75 305 246 107 130 143 1.22 1.34

X3 21.2 0 469 594 236 250 250 1.06 1.06
25 469 575 229 248 250 1.08 1.09
50 469 555 220 245 250 1.11 1.14
75 469 535 205 242 250 1.18 1.22

X4 18.1 0 513 995 319 297 297 0.93 0.93
25 513 974 310 296 297 0.96 0.96
50 513 953 298 296 297 0.99 1.00
75 513 932 278 295 297 1.06 1.07

X5 12.9 0 654 2465 520 395 395 0.76 0.76
25 654 2438 505 395 395 0.78 0.78
50 654 2411 485 395 395 0.81 0.82
75 654 2384 452 395 395 0.87 0.87

X6 50.0 0 834 243 75 144 144 1.93 1.93
25 834 183 73 110 144 1.50 1.98
50 – – – – – – –
75 – – – – – – –

X7 25.6 0 953 652 285 358 358 1.26 1.26
25 953 613 277 340 358 1.23 1.29
50 953 572 266 321 358 1.21 1.35
75 953 530 248 300 358 1.21 1.44

X8 35.3 0 2778 1364 482 784 784 1.63 1.63
25 2778 1199 468 696 784 1.49 1.67
50 2778 1024 450 601 784 1.34 1.74
75 – – – – – – –

X9 50.5 0 2745 604 227 362 362 1.60 1.60
25 2745 445 221 268 362 1.22 1.64
50 – – – – – – –
75 – – – – – – –

Avg. 1.17 1.26
St. dev. 0.25 0.32
COV 0.22 0.25

where ϕ is the resistance factor, which is to be determined. By rear-
ranging Eqs. (52)–(55), the reliability index can be evaluated as:

and consequently:

Fig. 16 plots the resistance factors calculated using Eq. (57) as a func-
tion of the load ratio κ. A target reliability index of 3.5 was used,
which is the recommended value for connections in the North Amer-
ican Standard [20]. Considering that the practical range of load ratios

Fig. 16. Resistance factors calculated using AISC approach.

reaches up to 5 for steel structures, the minimum resistance factor over
this range is 0.7 for both models. The design equation proposed within
the framework of AISC specifications thus becomes:

Additional Monte-Carlo simulations were run to more accurately
assess the reliability level of the two design models. The failure fre

(55)

(56)

(57)

(58)

https://www.researchgate.net/publication/245492565_The_2005_Specification_for_Structural_Steel_Buildings_A_Specification_for_the_21st_Century?el=1_x_8&enrichId=rgreq-ccf520193c1d7b252cf6780b7988494b-XXX&enrichSource=Y292ZXJQYWdlOzMwODE2MzM1NDtBUzo0MTcwNTgyMDM0MjI3MjBAMTQ3NjQ0NTgzMjQzMA==


UN
CO

RR
EC

TE
D

PR
OO

F

14 Engineering Structures xxx (2016) xxx-xxx

quency was again evaluated using a limit state function:

Table 7
Statistical distributions used in North American Standard.

Name Distribution Nominal Mean COV Reference

G Normal Gn 1.05Gn 0.1 [24]
Q Gumbel Qn Qn 0.25 [24]
M Lognormal – 1.1 0.1 [26]
P–prediction 1 Lognormal – 1.24 0.18 Fitted by authors
P–prediction 2 Lognormal – 1.16 0.15 Fitted by authors
F Lognormal – 1.0 0.1 [26]

where P is the ratio of the actual resistance to the design model predic-
tion, R is the resistance predicted by the design model, and E = G + Q
is the load effect. The distributions of the variables h0, h1, t, E, fy, P,
G and Q were adopted from Tables 5 and 7. Fig. 17 shows the re-
liability index obtained from Monte-Carlo simulations for specimen
X1 at various levels of chord pre-load, using a resistance factor of
ϕ = 0.7. Given the simplified assumptions underlying Eq. (57) it is not
entirely surprising that the initially proposed resistance factor of 0.7
does not achieve the target reliability level. By trial and error a re

Fig. 17. Reliability levels of specimen X1 using ϕ = 0.7.

Fig. 18. Reliability levels of specimen X1 using ϕ = 0.55.

Fig. 19. Reliability levels of all X-joints for a resistance factor ϕ=0.55 anda load ratio .

(59)
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sistance factor of 0.55 was found to be satisfactory, as shown in Figs.
18 and 19.

6. Conclusions

This paper presents a new method for the design of equal-width
RHS X-joints, for which side wall failure is the critical failure mode.
The method accounts for the possible presence of a compressive chord
pre-load. The approach employs a slenderness parameter which is
based on a rational analysis of an infinitely long plate subject to a com-
bination of a localized distributed load and longitudinal compression.
A Rayleigh-Ritz approximation was thereby used to obtain the critical
elastic buckling stress.

A detailed FE model was developed which includes material and
geometric non-linearity and accounts for imperfect geometry. The
model was first verified against experimental data including RHS
X-joints of widely varying sizes, wall slenderness values and mater-
ial properties and was found to yield highly accurate results. In a next
stage, parametric studies were conducted in which various levels of
compressive pre-load were applied to the chord members. It was found
that, generally, the chord pre-load does not have a major effect on the
side wall buckling load, although a more substantial reduction of the
buckling load was observed for the specimens with the most slender
chord walls.

A new design equation was proposed which strongly outperforms
the current CIDECT design rule for side wall failure. Reliability analy-
ses were conducted within the frameworks of both the Eurocode and
the AISC specifications. A partial safety factor of γM = 1.6 was recom-
mended for use within the Eurocode and a resistance factor ϕ = 0.55
was proposed for design according to the AISC specifications.
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