
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Arts and Humanities School of Art, Design and Architecture

2017-05-12

Predictability of occupant presence and

performance gap in building energy

simulation

Ahn, K-U

http://hdl.handle.net/10026.1/10422

10.1016/j.apenergy.2017.04.083

Applied Energy

Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



 
Page 1 of 25 

Predictability of occupant presence and performance gap in building 

energy simulation 

 

Ki-Uhn Ahn 

Ph.D. candidate  

School of Civil, Architectural Engineering and Landscape Architecture,  

College of Engineering, Sungkyunkwan University  

Cheoncheon-Dong, Jangan-Gu,  

Suwon, Gyeonggi, 440-746 

Suwon, 440-746, South Korea 

ahnkiuhn@skku.edu 

 

Deuk-Woo Kim, Ph.D. 

Research Strategy Division,  

Korea Institute of Civil Engineering and Building Technology,  

Daehwa-Dong 283, Goyang-Ro, Ilsanseo-Gu, 

Goyang-Si, Gyeonggi, 411-802, South Korea 

deukwookim@kict.re.kr 

 

Cheol-Soo Park, Ph.D. 

Professor 

School of Civil, Architectural Engineering and Landscape Architecture,  

College of Engineering, Sungkyunkwan University  

Cheoncheon-Dong, Jangan-Gu,  

Suwon, Gyeonggi, 440-746 

Suwon, 440-746, South Korea 

cheolspark@skku.ac.kr, csparkbt@yahoo.com, http://bs.skku.ac.kr 

 

 

mailto:ahnkiuhn@skku.edu
mailto:deukwookim@kict.re.kr
mailto:cheolspark@skku.ac.kr
mailto:csparkbt@yahoo.com
http://bs.skku.ac.kr/


 
Page 2 of 25 

Pieter de Wilde, Ph.D. 

Professor  

Building Performance Analysis, 

Plymouth University 

Roland Levinsky Building Room 301A 

Drake Circus, Plymouth, PL4 8AA, United Kingdom 

pieter.dewilde@plymouth.ac.uk 

 

 

Corresponding author: Cheol-Soo Park 

Mailing address:  

Prof. Cheol-Soo Park, Ph.D. 

School of Civil, Architectural Engineering and Landscape Architecture,  

College of Engineering, Sungkyunkwan University  

Cheoncheon-Dong, Jangan-Gu,  

Suwon, Gyeonggi, 440-746 

South Korea 

E-mail address: cheolspark@skku.ac.kr , csparkbt@yahoo.com   

Telephone : +82-31-290-7567 

Fax  : +82-31-290-7570 

 

  

mailto:pieter.dewilde@plymouth.ac.uk
mailto:cheolspark@skku.ac.kr
mailto:csparkbt@yahoo.com


 
Page 3 of 25 

Predictability of occupant presence and performance gap in building 

energy simulation1 

  

 

Abstract 

Occupant behavior is regarded as one of the major factors contributing to the 

discrepancy between simulation prediction and real energy use. Over the past several decades, 

occupants have been represented as fixed profiles of occupant presence in building energy 

simulation tools. Recently, stochastic models have been introduced to account for dynamic 

occupant presence. This stochastic approach is based on the premise that occupant presence can 

be described by empirical and probabilistic transition rules, e.g. Markov Chain. 

This paper presents evidence that occupant presence in some rooms and buildings 

follows a “random walk” pattern. In other words, occupant presence in certain types of 

buildings cannot be predicted stochastically. In this study, occupants’ presence in two 

laboratories and three reading rooms at two universities was monitored. The hypothesis of the 

random walk pattern was tested using the Normalized Cumulative Periodogram (NCP) method. 

Based on a series of six experiments, it is shown that each occupant’s presence in the five 

locations follows a random walk pattern. Three different occupant models (fixed ASHRAE 

model, Markov Chain model, and Random Walk model) were applied in EnergyPlus simulation 

runs. The adjusted R2 for three experiments between the fixed AHSRAE model and the random 

walk model, and between the Markov chain model and the random walk model are 0.54, 0.02, 

0.01 and 0.86, 0.19, 0.41, respectively. This does not negate the need for the fixed ASHRAE 

model or the MC model. Rather, this signifies that, for a certain type of building, another 

occupant presence model should be introduced, e.g. the RW Model.  

 

Keywords: occupant presence, occupant behavior, random walk, energy prediction, 

performance gap, Normalized Cumulative Periodogram  

 

 

 
1 This paper was significantly revised based on the short version, which was presented at the 

CUE2015- Applied Energy Symposium and Summit 2015: low carbon cities and urban 

energy systems in Nov 2016, Fuzhou, China. 
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1. Introduction 
 

Building occupancy is a key factor for accurate prediction of building energy use and 

energy saving potential with regard to occupancy-related systems and controls [1-4]. 

Specifically, lighting, plug loads, ventilation and internal heat gain or loss greatly depends on 

the level of occupancy within a building [5]. Chang and Hong [6] proved that the presence of 

occupants leaving their cubicles and the corresponding durations of absence had significant 

impact on the total energy use and controls of an office building. The occupancy diversity 

factors measured in [7] differ as much as 46% from those published in ASHRAE 90.1 2016 [8] 

energy cost method guidelines, a document referenced by energy modelers regarding occupancy 

diversity factors for simulations. This discrepancy may result in misleading simulation results 

and may introduce inefficiencies in the final equipment and systems design [7]. 

In most building energy simulation tools, occupant presence is still represented as a 

fixed schedule of occupant presence [8]. To overcome this limitation, a number of occupant 

presence and behavior models have thus far been developed based on stochastic approaches to 

describe window operations [9-14], blinds [15-19], lighting [19-22], and occupant presence [4, 

23-26].  

Page et al. [23] proposed a stochastic Markov Chain model to predict occupant presence 

in private offices. The model has proven its capacity to realistically reproduce key properties of 

occupant presence such as times of arrival and departure [23]. Richardson et al. [24] developed 

a realistic stochastic model that generates occupancy time-series data for UK households at a 

ten-minute resolution and takes account of differences between weekdays and weekends. From 

a case study of an office building, Wang et al. [4] developed a model that can produce realistic 

occupancy variations in an office building for a typical workday with key statistical properties 

of occupancy such as the time of morning arrival and evening departure, lunch time, periods of 

intermediate walking-around, etc. Sun et al. [25] developed a stochastic model to describe 

overtime occupancy data from an office building.  The overtime model [25] was used to 

generate an overtime occupancy schedule as an input for an energy model of a second office 

building. Feng et al. [26] developed a software module to predict four levels of occupant 

presence based on a Markov chain approach.  

As noted above [4, 23-26], the Markov chain occupant presence model is based on the 

premise that a future state can be predicted by a present state and the probabilities of an event 

occurrence. A statistical relationship between the future state and the present state is established 

based on extensive observed data [4, 23-27]. It is intuitively obvious that the Markov Chain 

occupant presence model could be applied to process-driven buildings such as offices and 

households where occupant presence can be easily defined by fixed profiles of occupant 

presence [4, 23-27]. It is noteworthy that such stochastic occupant presence studies have been 
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conducted in process-driven buildings such as offices [4, 5, 9-12, 14-23, 25, 28-30], residences 

[13, 24, 31, 32], and dormitories [33]. However, it is questionable whether a stochastic occupant 

presence model can be applied to a different type of buildings, e.g. a random walk driven 

building where occupant presence follows a random process. To date, there is no complete 

occupant presence model that considers the degree of randomness in occupant presence. 

This study aims to demonstrate that the aforementioned stochastic model is not suitable 

for the prediction of occupant presence in a random walk driven building, and that a new 

occupant presence model should be introduced. Employing a series of six experiments, the 

authors gathered occupant presence data in two laboratories of Sungkyunkwan University and 

three library rooms of Kangwon University, South Korea. These five spaces were purposefully 

selected, because the authors assumed that the occupants’ presence in these five spaces might 

differ from that in process-driven buildings, but rather might be close to that in random walk 

driven buildings. Normalized Cumulative Periodograms (NCPs) were used to investigate the 

predictability of occupant presence in the five spaces. An NCP delivers a graphical 

representation that allows to assess whether time-series data (e.g. occupant presence data) have 

a periodicity (predictable), or they do not (not predictable). Three occupant presence models 

(fixed ASHRAE model, Markov Chain model, and Random Walk model) were applied in 

EnergyPlus simulation runs in order to show the importance of appropriate occupant presence 

model for predicting building energy use. 

 

2. Random walk  
 

A random walk is a mathematical formalization of a path that consists of a succession 

of random steps. The term “random walk”, first introduced by Pearson [34], has been used in 

many fields (e.g. ecology, economics, psychology, etc.) to explain observed time-series 

behavior [35]. Fig. 1 shows an example of twenty random walks in one-dimension, showing the 

current position on the y-axis over time. The mathematical formula of a random walk for time-

series data is as follows [36]: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑤𝑘        (1) 

𝑤𝑘 = 𝑥𝑘+1 − 𝑥𝑘          (2) 

 

where 𝑥𝑘is the state of the 𝑘th time-step, 𝑥𝑘+1 is the state of the (𝑘 + 1)th time-step, 

and 𝑤𝑘 is the difference between  𝑥𝑘 and 𝑥𝑘+1, meaning the difference in the state over time.   
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Fig. 1 Example of twenty random walks 

 

The time series 𝑤𝑘 (Equation (2)) can be characterized by a frequency analysis with a 

Fourier transform. The term 𝑤𝑘 can be expressed as a combination of cosine and sine waves and 

can then be used to examine the periodic behavior of the time series. The NCP is a common 

method used to identify the periodicity of a given time-series in a frequency domain [37]. 

For a given 𝑛 stationary time-series (𝑥1, … , 𝑥𝑛), the periodogram function (𝐼(𝑓𝑖)), which 

shows the spectral density of the time-series at each frequency, is calculated as shown in 

Equation (3) [37]. 

 

𝐼(𝑓𝑗) =
2

𝑛
|∑ 𝑥𝑙 exp(−2𝜋𝑖𝑓𝑗𝑙)𝑛

𝑙=1 | =
2

𝑛
[(∑ 𝑥𝑙cos (2𝜋𝑓𝑗𝑙)𝑛

𝑙=1 )
2

+ (∑ 𝑥𝑙sin (2𝜋𝑓𝑗𝑙)𝑛
𝑙=1 )

2
]

1/2
  (3) 

 

where 𝑓𝑗 = 𝑗/𝑛 is the jth frequency (𝑗 = 1, … , 𝑁′), 𝑁′ = 𝑛/2, |∙| denotes the magnitude, 

and 𝑖 = √−1. Essentially, 𝐼(𝑓𝑗) measures the strength (or spectral density) of the relationship 

between data sequence 𝑥𝑛 and a sinusoid with frequency 𝑓𝑗, where 0<𝑓𝑗≤0.5 [36]. Finally, the 

NCP of frequency is defined as Equation (4). 

 

𝐶(𝑓𝑘) =
∑ 𝐼(𝑓𝑗)𝑘

𝑗=1

𝑛𝑐0
2⁄         (4) 

 

where 𝐶(. ) is the NCP and 𝑐0
2 is the estimated variance. The randomness of 𝑤𝑘  can be 

identified if the power spectrum density of 𝑤𝑘  is evenly distributed over the frequency in the 
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NCP. The random time-series data are not concentrated in the few specific frequencies, but are 

uniformly distributed over the entire frequency domain. Therefore, it can be said that 𝑤𝑘 

follows a random walk if it is drawn within a confidence interval with a straight line joining (0, 

0) and (0.5, 1) in the NCP [37]. For example, 1,000 random numbers were generated by the 

“rand” function in Matlab and were recorded at a rate of one number per minute. Fig. 2 shows 

the NCP for 1,000 random numbers (bold blue line), where the dotted lines indicate 95% 

confidence intervals for testing the random walk [35].  

 

 

Fig. 2 Example of NCP for 1,000 random numbers 

 

Fig. 3 shows the calculation steps for NCP. In Step 1, the time-series data of interest are 

collected and 𝑥𝑘, 𝑥𝑘+1, and 𝑤𝑘 are calculated (Equations 1-2). Then,  
𝑛

2
 outputs are obtained 

from the periodogram function (Equation 3, Step 2). In Step 3,  
𝑛

2
 NCPs are obtained from 

Equation (4). In Step 4, the calculated NCPs are plotted as shown in Fig. 2.  
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Fig. 3 NCP calculation steps  

 

3. Experiments 
 

The occupants’ presence in two laboratories at Sungkyunkwan University and three 

reading rooms at Kangwon University (Fig. 4) was monitored, as presented in Table 1. The 

arrival and departure times of the occupants were recorded using webcams. Based on the 

recorded scenes, the occupants’ presence was calculated at sampling times of 10 minutes (Case 

A) and 1 minute (Cases B, C, D, E, and F) (Table 1). The original purpose of the Case A 

experiment was to study the cognitive responses of occupants, while the studies of Cases B to F 

were conducted to investigate the predictability of the occupants’ presence. While different 

sampling times were applied, the authors assumed that it was worthwhile to include all 

experiments in this paper. Fig. 5 shows samples of recorded images.  

 

Table 1 Overview of six experiments 

Step 1. 

Collect time series data and calculate , , and

- Equations (1)-(2) 

Step 2. 

Calculate the periodogram function [ ]

- Equation (3)

Step 3. 

Calculate normalized cumulative periodogram (NCP) 

or [ ]. The number of NCPs is equal to n/2.

- Equation (4)

Step 4. 

Draw the NCPs calculated from Step 3

- Fig. 2

Experiment  Name and use of space  Max. number of 

occupants during 

experiment  

Measurement period and date  Sampling 

time 

A Laboratories in 

Sungkyunkwan 

University 

U-lab. 9 

4days  

June 7th - 8th (Th., Fri.), 

June 19th - 20th (Tue., Wed.) 

10 min. 

B BS-lab. 6 5days  1 min. 
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(a) U-laboratory at Sungkyunkwan University 

 

 

(b) BS-laboratory at Sungkyunkwan University 

 

 

Feb 26th - 28th (Tue.-Th.) 

March 1st (Fri.), March 4th (Mon.) 

C BS-lab. 7 

8days  

Feb 23rd - 26th (Mon.-Th.) 

Mar 2nd - 5th (Mon.-Th.) 

1 min. 

D 

Reading rooms 

in Kangwon 

University 

Room#1 31 
2days  

Oct 21st – 22nd (Sun.-Mon.) 
1 min. 

E Room#2 10 
2days 

Oct 21st - 22nd (Sun.-Mon.) 
1 min. 

F Room#3 15 
1day 

Oct 22nd (Mon.) 
1 min. 
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(c) Three reading rooms at Kangwon University 

 
Fig. 4. Photos of laboratories and rooms 

 

 

(a) U-laboratory at Sungkyunkwan University 

 

 

(b) BS-laboratory at Sungkyunkwan University 

 

(c) Three reading rooms at Kangwon University  

Fig. 5 Images recorded by webcams  
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In Experiments A, B, and C (Table 1), there were no strict office hours. Graduate 

students were able to enter and leave the labs according to their own preferred timing. In the 

case of the library reading rooms (Experiments D, E, and F, Table 1), the library opens at 8:30 

A.M. and closes at 11:00 P.M.  

Fig. 6 shows the occupants’ presence for each experiment. For the laboratories, the 

rooms were occupied until late at night, which is typical for university research laboratories. 

Meanwhile, in the case of the reading rooms at Kangwon University, the library operating hours 

were more restricted. Please note that each experiment (Fig. 6) has different measurement 

period (Table 1). 

 

 

(a) Experiment A 

 

(b) Experiment B 



 
Page 12 of 25 

 

(c) Experiment C 

 

(d) Experiment D 

 

(e) Experiment E 
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(f) Experiment F 

Fig. 6. Occupants’ presence (𝑥𝑘) (left) and variation in occupants’ presence (𝑤𝑘) (right) 

 

4. Results 
 

To verify whether or not the occupants’ presence followed a random walk, the 

occupants’ presence (𝑥𝑘) (Equation 1) and the variation in the occupants’ presence (𝑤𝑘) 

(Equation 2) were tested by the NCP. It is worth noting that the x-axis in the NCP plot usually 

represents a frequency. However, it has been purposefully replaced with a period for the sake of 

clarity (Fig. 7, Table 2). Because of this replacement, the period on the x-axis is in descending 

order, as the period is the inverse of frequency. It should be noted that a difference is observed 

in the minimum and maximum values of the x-axis between Experiment A and the other 

experiments (Experiments B, C, D, E, and F) (Fig. 7) because of differences in the sampling 

times for the experiments (Table 1). 

As shown in Table 2 and Fig. 7(a), the NCP of the occupants’ presence sharply 

increases in the range of periods between 1,440 min and 160 min. In other words, 88% of the 

periodicities of the occupants’ presence (𝑥𝑘) in Experiment A are longer than 160 min, which is 

equivalent to 2.67 hours. In other words, it can be inferred that 88% of the occupants’ presence 

in Experiment A has a periodicity longer than 2.67 hours (Table 2).  

Interestingly, 59.9% of the frequencies in the occupants’ presence (𝑤𝑘) (Fig. 7(a)) are 

located inside the 95% confidence limit in the NCP plot. The other 40.1% of the frequencies are 

distributed close to the confidence interval (Fig. 7(b)). This means that the spectral density of 

𝑤𝑘  is evenly distributed over all periods (or over all frequencies). This indicates that the 

difference (𝑤𝑘) between 𝑥𝑘 and 𝑥𝑘+1 is random. Thus, 𝑤𝑘  in Experiment A is unpredictable 

and follows a random walk. Clearly, this means that 𝑤𝑘  cannot be predicted by any stochastic 

model. It is important to note that because the sampling time for Experiment A (Table 1) is 10 
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minutes, the confidence limit shown in pink in Fig. 7(a) is wider than that for the other 

confidence limits (Experiments B, C, D, E, and F). 

The results of experiment B are similar to those of Experiment A. As shown in Fig. 7(b), 

the cumulative periodogram of the occupants’ presence (𝑥𝑘) in Experiment B sharply increases 

in the range of periods between 1,440 min and 160 min. As shown on the right side of Fig. 7(b), 

the spectra of 𝑤𝑘 are evenly distributed over all the periods (or over all the frequencies) near the 

shaded confidence region, similar to those of Fig. 7(a). It can be concluded that the variation in 

the occupants’ presence (𝑤𝑘  ) in Experiment B is equivalent to, or close to, a random walk. In 

other words, the occupants’ presence at the next time step cannot be predicted, because since 

𝑤𝑘  is unpredictable.  

As shown on the left side of Fig. 7(c), the NCP of the occupants’ presence sharply 

increases up to the location at (160, 0.85). The spectra of 𝑤𝑘 (right side of Fig. 7(c)) are located 

slightly outside of the lower dotted line. However, the degree of deviation from the confidence 

interval is not significant. It can be said that the occupants’ presence (𝑥𝑘) in experiment C 

marginally follows a random walk.  

As shown on the left side of Fig. 7(d), the NCP of the occupants’ presence (𝑥𝑘) rapidly 

increases close to the point at (160, 0.94). The NCP of the variation in the occupants’ presence 

(𝑤𝑘) (right side of Fig. 7(d)) is shown inside the confidence limits. This indicates that the 

variation in the occupants’ presence (𝑤𝑘  ) in Experiment D follows a random walk.  

With regard to the occupants’ presence (𝑥𝑘) in Experiments E and F (left sides of Figs. 

7(e) and 7(f)), the cumulative periodogram curves sharply increase, similar to those in other 

experiments (A, B, C, and D). The NCPs of the variation in the occupants’ presence (𝑤𝑘) (right 

sides of Figs. 7(e) and 7(f)) show a random sequence. It is important to note that the NCP of the 

variation in the occupants’ presence (𝑤𝑘) (right side of Fig. 7(f)) slightly deviates from the 

lower bound of the confidence limits near the periods of 5.5 and 3.3 min. However, the degree 

of deviation is negligible.  

 

Table 2. NCP of the occupants’ presence (𝑥𝑘) 

Index 
Period 
(min) 

Period  
(hours) 

Exp. A 
NCP (-) 

Exp. B 
NCP (-) 

Exp. C 
NCP (-) 

Exp. D 
NCP (-) 

Exp. E 
NCP (-) 

Exp. F 
NCP (-) 

1 1,440 24.0 0.49 0.47 0.67 0.72 0.65 0.45 
2 720 12.0 0.65 0.60 0.70 0.76 0.74 0.46 
3 480 8.00 0.71 0.64 0.74 0.82 0.76 0.64 
4 360 6.00 0.79 0.68 0.76 0.83 0.81 0.73 
5 288 4.80 0.81 0.71 0.78 0.86 0.85 0.74 
6 240 4.00 0.82 0.72 0.79 0.90 0.87 0.79 
7 206 3.43 0.85 0.74 0.81 0.92 0.88 0.83 
8 180 3.00 0.87 0.76 0.84 0.94 0.89 0.86 
9 160 2.67 0.88 0.77 0.85 0.94 0.90 0.89 
10 144 2.40 0.88 0.79 0.86 0.95 0.91 0.89 

* Indices #1, 3, 5, 7, and 9 correspond to the red circles in Fig. 7. 
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(a) Experiment A 

 

(b) Experiment B 

 

(c) Experiment C 
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(d) Experiment D 

 

(e) Experiment E 

 

(f) Experiment F 

Fig. 7. NCP of occupants’ presence (xk) (left) and variation in occupants’ presence (wk) (right) 
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In summary, the results of the six experiments confirm the evidence of the random walk. 

This output is contradictory to the prediction of occupant presence by the Markov chain model. 

However, as mentioned in Section 1, stochastic prediction models were based on measured data 

in process-driven buildings, whereas the “random walk” case studies in this current study used 

data from university labs and library reading rooms, which are not process-driven. This means 

that the occupant modeling approach must be determined based on the characteristics of 

building occupants. 

 

5. Energy simulation with three different occupant 

models  
 

Occupants’ presence and interaction with various building components significantly 

affect the energy simulation [5]. Clevenger and Haymaker [38] studied uncertainty in occupant 

presence and behavior in building energy simulation models, using various occupancy 

schedules and environmental preferences and found that the energy consumption differed 150% 

(or more) if the occupant-related inputs were maximized and minimized, even for typical 

occupancy patterns.  

In order to show the importance of appropriate occupant presence models for predicting 

building energy use, the authors conducted a series of EnergyPlus simulation runs with three 

occupant models: fixed ASHRAE [4], Markov chain (MC), and Random Walk (RW). The 

simulation cases were made for Experiments A to C (Tables 1, 3).  

The fixed ASHRAE model uses the office occupancy schedules suggested in ASRHAE 

Standard 90.1-2016 [4]. For the MC model, the authors used part of the measured data (Table 3). 

It is worth noting that Experiments D, E, and F (Table 1) were excluded from this simulation 

study, because the measurement period (1-2 days) was insufficient for developing an MC model. 

The RW model employs the measured occupancy data.  

 

Table 3 Training and validation period for Markov chain (MC) models 

Experiment 
Training period (for development of MC 

model) 
Validation period (for cross-comparison 

of occupant presence and energy 
simulation between three models) 

A June 7th (Th.), 8th (Fri.), 19th (Tue.) June 20th (Wed.) 
B Feb 26th (Tue.) – 28th (Thu.) March 1st (Fri.), 4th (Mon.) 

C 
Feb 23rd (Mon.) – 26th (Thu.), Mar 2nd 

(Mon.) 
Mar 3rd (Tue.) – 5th (Thu.) 
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Fig. 8 shows a comparison of the three occupant presence models during the validation 

period (Table 3). Significant differences are observed in the prediction of the occupants’ 

presence between the three models. Obviously, this does not negate the need for the fixed 

ASHRAE model or the MC model. Rather, this signifies that an additional occupant presence 

model should be introduced for a certain type of building, e.g. the RW Model.  

 

 

(a) Experiment A  

 

(b) Experiment B  

 

(c) Experiment C  

Fig. 8. Comparison of three occupant presence models  
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Using the aforementioned three occupant presence models, the authors conducted 

EnergyPlus simulation runs for Experiments A-C. The EnergyPlus simulation models were 

developed for U-lab and BS-lab (Table 1). All simulation inputs except the number of occupants 

were equally applied for fair comparison. The indoor temperatures in U-lab and BS-lab were 

controlled by ceiling mounted electric heat pumps (EHPs) at 22oC. The EHPs were only 

operated if an occupant was present in a space.  

Figs.9-10 show the energy simulation results during the validation period (Table 3). As 

indicated in the adjusted R2 in Fig. 10, a significant difference is observed between the three 

occupant presence models. In Experiments A to C (Figs.9-10), the on/off operation of the EHPs 

was determined by the occupants’ presence. Therefore, the occupants’ presence (Fig. 8) is the 

only variable that can account for the gap between three predictions. For the types of buildings 

in which occupant presence follows a random walk pattern, careful attention must be paid. The 

fixed ASHRAE model or the MC model could lead to a performance gap between actual and 

expected energy consumption for this type of building.  

 

(a) Experiment A  

 

(b) Experiment B 



 
Page 20 of 25 

 

(c) Experiment C  

Fig. 9. Energy simulation results  

 

 
                               Adjusted R2: 0.54                                          Adjusted R2: 0.86 

(a) Experiment A 

 
Adjusted R2: 0.02                                          Adjusted R2: 0.19 

(b) Experiment B 
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Adjusted R2: 0.01                                          Adjusted R2: 0.41 

(c) Experiment C 

Fig. 10. Comparison of energy prediction among the three models  

6. Discussion 
 

Fig. 11 illustrates the findings of this paper. The x-axis represents the degree of 

randomness in occupant presence. In other words, the x-axis refers to the degree of 

predictability of occupant presence. If a building is located at the far left of the x-axis, a 

stochastic model (e.g. Markov chain model) can predict occupant presence to some extent. 

Process-driven buildings such as K-12 school buildings, offices, factories, etc. are located at the 

far left of the x-axis, in which high stochastic predictability is inherent. Occupant presence in 

other building types located at the right of the x-axis is more likely to follow a random walk. 

Examples include university labs and reading rooms, as shown in this paper. Obviously, any 

stochastic model can fail to predict occupant presence in random walk driven buildings.  

As shown in Fig. 11, the stochastic characteristics of occupant presence can vary 

according to building type (specifically, room [space] type rather than building type). To date, 

studies conducted on the “random walk” (or unpredictability) of occupant presence have been 

insufficient. More studies need to be carried out to characterize occupant presence according to 

building types, and to develop a new prediction model for random walk-driven buildings.  
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Fig. 11 Predictability of occupant presence according to building types (the location of building 

types on x-axis can vary) [4, 5, 9-26, 28-33] 

 

7. Conclusion 
 

Occupant presence and behavior are known to be a major reason for the performance 

gap between actual and expected energy consumption in buildings. Accurate information and 

modeling with regard to occupant presence and behavior is important for reliable energy 

simulation. The aim of this study is to propose a new occupant presence model based on the so-

called random walk pattern.  

A series of experiments was conducted to obtain occupancy data in two laboratories and 

three reading rooms at two different universities. The degrees of randomness of the occupants’ 

presence in the five spaces were verified using Normalized Cumulative Periodogram (NCP). 

The NCP results show strong evidence of the random walk pattern with regard to occupant 

presence in real-life situations. This means that it is difficult to predict the variation in the 

number of people over a certain time interval for this type of buildings.   

According to energy simulation results using the three occupant presence models (fixed 

ASHRAE model, Markov Chain model, and Random Walk model), a significant difference is 

observed in energy prediction among the three models. In other words, the performance gap is 

influenced by the characteristics of the occupants’ presence. This also indicates that it is 

important to use an appropriate occupant presence model for predicting building energy use, 

depending on the ‘occupant presence’ characteristics.  
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Contrary to previous works (fixed ASHRAE model, Markov Chain model), this study 

presents a new concept: “random walk” occupant presence model. However, it should be noted 

that this study was performed in two laboratories and three reading rooms at two universities; 

such buildings significantly differ from process-driven buildings such as K-12 schools, offices, 

factories, etc. Accordingly, as suggested in Fig. 11, more work on occupant presence model 

needs to be performed, depending on the types of buildings (process-driven vs. random walk-

driven).  
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