Stereotypic mice are aggressed by their cagemates, and tend to be poor
demonstrators in social learning tasks

L Harper¹, E Choleris², K Ervin², C Fureix¹**, K Reynolds³, M Walker¹ and G Mason¹*

¹Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada

²Department of Psychology, University of Guelph, Guelph, ON

³Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON

* Corresponding author: gmason@uoguelph.ca;
Tel: +1 519 824 4120

** Present address: Department of Animal Husbandry, University of Bristol,
Langford, UK

Running title:

Social characteristics of stereotypic mice
Abstract
Stereotypic behaviours (SBs) are linked with behavioural inflexibility and resemble symptoms of autism, suggesting that stereotypic animals could have autistic-like social impairments. SBs are also common in caged mice. We therefore hypothesised relationships between stereotypic and social behaviours, predicting that highly stereotypic mice would give/receive more agonism and be less effective in social learning tasks.

Experiment One used C57BL/6 and DBA/2 mice in non-enriched or enriched housing (15 cages each); Experiment Two, more cages (6 non-enriched, 44 enriched) plus a third strain (BALB/c). Across both experiments, enrichment reduced SB and agonism (aggression, plus ‘displacements’ where one mouse supplants another at a resource). These effects appeared related: housing effects on agonism became negligible when SB was statistically controlled for; and, at least in enriched cages, SB covaried with receiving aggression. In Experiment Three, 20 DBAs varying in SB from Experiment Two acted as demonstrators in a ‘social transmission of food preferences’ task. They were fed a novel flavour (shatavari powder), then each mingled with a familiar but flavour-naïve C57 observer. Observers were subsequently offered two novel flavours: shatavari or marjoram. Those spontaneously choosing more shatavari (n = 10) tended to have had less stereotypic demonstrators than the other 10 observer mice. Overall, highly stereotypic mice thus received more agonism -- an effect with obvious welfare implications that can be reduced with enrichment -- and seemed potentially less effective at inducing flavour preferences in conspecifics. Such effects are consistent with social impairment, suggesting that reducing SB may perhaps enhance interactions between conspecifics.

Keywords: aggression, animal welfare, environmental enrichment, mice, stereotypic behaviour, social learning
Introduction

Most laboratory rodents are housed in small, barren environments. These conditions are associated with poor welfare, as well as impaired learning and memory (Mason & Latham 2004; Simpson & Kelly 2011), and reduced levels of normal activity that are replaced by spending more time standing still, doing nothing (Tilly et al 2010) and/or performing stereotypic behaviours, SBs (e.g. Sørensen 1987, Mason & Latham, 2004, Tilly et al 2010): repetitive activities arising from frustration, needs to cope, or central nervous system dysfunction (e.g. Campbell et al 2013). Whether environments are enriched or impoverished can also affect laboratory rodents’ interactions with cagemates. For example, male bank voles (Clethrionomys glareolus) housed in enriched rather than barren environments were less aggressive (Sørensen 1987); social play that had been reduced by prenatal stress in rats (Rattus norvegicus), was restored to normal levels through enrichment (Morley-Fletcher et al 2003); and in laboratory mice (Mus musculus), enriched caging can also improve maternal care (Whitaker et al 2009). Enrichment can also affect aggression: in male mice, adding a shelter increased levels of aggression (Van Loo et al 2002), perhaps by increasing resource competition, but providing nesting material significantly decreased it, and more recently, providing diverse enrichments has been shown to reduce aggression in mice of both sexes (Turner et al under revision).

Our aims were therefore to study how providing enrichments affects interactions between mice within their cages, and to investigate how any changes relate to alterations in SB. This is because SBs in captive animals share similarities with the repetitive behaviours seen in certain socially disabling human disorders, especially schizophrenia and autism.
(Lam et al 2008; Dallaire et al 2011): both have been linked to changes in basal ganglia function (eg Tanimura et al 2008; 2011) that help cause behavioural inflexibility and perseveration (the repetition of responses when no longer appropriate) (eg Lopez et al 2005; Campbell et al 2013). Thus to give examples from caged rodents, high levels of SB correlate with elevated perseveration in extinction learning, reversal learning and other tasks in bank voles, African striped mice (Rhabdomys), deer mice (Peromyscus maniculatus) and one strain of laboratory mouse, C57BL/6 (Garner and Mason, 2002; Tanimura et al 2008; Jones et al 2011, Garner et al 2011), and rearing conditions that reduce SB may also reduce perseveration (Tanimura et al 2008 and Jones et al 2011). Such effects seem likely to be relevant for social interactions, since in autistic humans, perseveration and SB predict reduced social competence. Autistic humans thus often show social impairments if prone to repetitive behaviour (McEvoy et al 1993; Lam et al 2008); furthermore, in autistic children, tendencies to perseverate correlate with poorer social skills (McEvoy et al 1993) and reduced social interaction (Memari et al 2013). Do barren-housed stereotypic animals also show such social impairments? This topic has been little studied. However, consistent with this hypothesis, ‘knockout’ mice lacking a dopamine transporter gene show both elevated SB and aggressive, unstable social hierarchies (Rodriguez et al 2005); while in mate choice tasks, non-stereotypic enriched male mink gained more copulations with females than stereotypic non-enriched males (Diez-Leon et al 2013).

The first part of this study used behavioural observations to assess in-cage social and stereotypic behaviour in female C57BL/6 (C57), DBA/2 (DBA) and BALB/c mice, housed in both enriched (EE) and non-enriched (NE) cages. All animals were housed in
mixed strain trios, enabling the generality of effects across these widely-used strains to be easily assessed, without increasing the animal numbers used (Walker et al 2013). We predicted that mice in non-enriched housing would display more SB and more aggression. We also hypothesized that if SB reflects autistic-like impairments that compromise social functioning, then stereotypic individuals should receive more aggression, and fewer affiliative behaviours such as resting/sleeping together.

The second part of this study aimed to further assess the social normality of stereotypic mice by investigating the effect that SB has on social learning. Social learning involves the transfer of information between individuals (eg Kavaliers et al 2001), and has been demonstrated in many rodent species, including rats, mice and gerbils (Galef & Wigmore 1983; Valsecchi et al 1996; Kavaliers et al 2001). One commonly used paradigm to assess social learning is the transmission of food preferences, which involves a demonstrator transmitting information about a novel flavour to an observer, as revealed by that observer then preferring diets with this flavour even though they are novel. There has been no research into the role of SB on social learning, despite evidence that the perceived quality of the demonstrator in such tests can be influential. Thus in mice, pups are less effective demonstrators than adults (Choleris et al 1997); in gerbils, unfamiliar, unrelated demonstrators are not effective at conferring flavour preferences, while familiar, related demonstrators are (Valsecchi et al 1996); in African striped mice, fathers are less effective than mothers at transferring food preferences to their offspring (Rymer et al 2008); and in deer mice, subordinate demonstrators are less effective than dominant demonstrators (Kavaliers et al 2005; see Clipperton et al 2008 for potentially similar effects in lab mice). We therefore predicted that if stereotypic animals are perceived as
abnormal, subordinate, or receive less attention from observers in the transmission phase of the task, then they would prove poorer demonstrators.

Methods

Ethics Statement

All procedures and husbandry techniques were approved by the University of Guelph Animal Care Committee, and comply with the Canadian Council on Animal Care guidelines (covered by AUPs #1398 and #2430).

Experiment One

Animals and housing

The subjects were part of another ongoing experiment (a long-term study of enrichment effects on activity levels) and were observed opportunistically for this study in order to reduce the total number of animals used (NC3Rs 2015). Animals were adult female C57BL/6 (henceforth ‘C57’) mice (n = 60) and female DBA/2 (‘DBA’) mice (n = 30), purchased from Charles River Laboratories (Quebec) at four weeks of age. Mice were housed in groups of three, with two C57 mice and one DBA mouse per cage (see Walker et al. 2013 for a validation of this mixed strain housing), in either non-enriched ‘NE’ housing (15 cages) or enriched ‘E’ housing (15 cages). NE cages were standard laboratory cages, measuring $12H \times 27L \times 16W$ cm. NE mice were provided with Shepherd Enviro-dri© nesting material and a UDEL polysulfone plastic mouse house shelter, but no other enrichments. E cages were each $12H \times 43L \times 21W$ cm in size, and as well as a clear plastic shelter and nesting material (as used in the NE cages), they contained enrichments: a horizontal plastic running wheel, a pinecone, a sock ‘hammock’
measuring roughly $11 \times 7 \text{ cm}$, 2 paper cups, a piece of PVC pipe roughly 6.5 cm, a sponge, and two cotton balls. All mice were maintained at 21°C and were fed a standard laboratory rodent diet (Harlan® Teklad Global Diet [14% protein]). Food and water were given *ad libitum*. Mice were kept on a 12:12 reversed dark/light cycle, with the dark cycle beginning at 1000h.

Observations

Mice were six months old at the time of behavioural observations. They were observed *in situ* in their home cages, using red room lights and headlamps, via live scan sampling. The positions of E and NE cages were randomised across racks and shelves. To assess home cage activity time budgets, scans were taken every 20 minutes, for a period of four hours per session (based on Walker *et al* 2013, and validated using split-half analyses regressing data from odd and even days [Martin & Bateson 1993]). Sampling periods were from 1130h to 1530h, and from 1730h to 2130h. Eight sampling periods were conducted, for a total of 94 scans (one scanning period only had ten scans). Scans were split between two experimenters (LH and KR), whose inter-observer reliability after training was >95%.

Social interactions were assessed by LH using a focal sampling regime, since they were relatively rare occurrences. Each cage was observed for five minutes, with all bouts of social behaviour in the cage recorded; the next cage was then moved on to. Observations commenced at 1130h and again at 1700h. This was repeated 10 times per cage (thus 50 minutes of focal observation over six days, a regime again confirmed as valid using split-half analyses regressing data from odd and even days). An ethogram of behaviours
recorded during scan and focal sampling is provided in Table 1. Note that we chose to
assess and analyse being ‘still but awake’ separately, because being inactive despite being
awake seems to increase in mice housed in barren rather than enriched cages (Tilly et al
2010).

** Table 1 about here **

** Experiment Two **

Animals and Housing

Again, subjects were part of another on-going experiment (this time a long-term study of
enrichment effects on life expectancy), being observed opportunistically for this study to
maximise their usefulness and minimize the total number of animals used. This second
cohort comprised 150 adult female mice purchased from Charles River Laboratories
(Quebec) at 3 to 6 weeks of age, and housed in groups of three in mixed-strain housing.
This time three strains were used, BALB/c, DBA/2 and C57BL/6, one mouse of each per
cage (thus 50 cages). 50 cages were used as this was the maximum number of cages that
could be observed in a single 40-60 minute session of focal observations (one per cage).
They were part of an on-going longevity study, and so were housed in one of seven
housing types (again randomised across racks and shelves). Six cages were standard
laboratory cages, as used in Experiment 1. The other 44 cages were larger, \(20H \times 43L \times 21W\) cm. Half of these were enriched with ‘comforts’ (enrichments designed to enhance
comfortable rest: a sock ‘hammock’, Nestlets, a tissue to construct into nests, and a paper
cup to shelter in), while half were not. Cross-factored with the presence or absence of
comforts, approximately one third of the cages contained a working horizontal plastic
running wheel, approximately one third contained a working metal wheel, and
approximately a third contained a locked wheel (for specifics see Table 2). The same room was used as in Experiment One, mice being provided with the same rodent chow and water *ad libitum*. Mice were kept on a 12:12 reversed dark/light cycle, with the dark cycle beginning at 1000h.

** Table 2 about here **

Observations

All observations were conducted in home cages when mice were seven months old. Activity budgets were again generated using scan sampling. Scans were taken every 40 minutes to an hour; scanning times were longer in Experiment Two due to the greater number of cages (120 cages were scored for activity levels as part of the larger longevity study). Sessions commenced twice daily, at 1130h and 1700, with three scans being taken per session (a total of 48 scans/cage). Scans were split between the two experimenters of Experiment One, plus a new, experienced experimenter (MW).

Social data were again collected by LH using focal sampling, from just the 50 cages used in this study. Each was watched for three minutes (reduced from the five minutes in Experiment One for practical reasons, due to the increased number of cages observed) per focal observation, with observations commencing at 1130h and 1700h per day. Data came from a total of 12 focal periods per cage, over 12 days. All bouts of social behaviours that occurred in each observation period were recorded using the ethogram in Table 1; SB was also recorded during these focal observations.
Experiment Three: Social transmission of food preferences

Animals

The subjects used were 20 pairs of females, one DBA and one C57, now aged 8 months, each pair being selected from one of 20 of the enriched cages used in Experiment Two. Twenty pairs were used because this allowed for a range of SB to be investigated, while still remaining a manageable sample size for the researchers.

Only E mice were used to ensure that all subjects came from similar housing types (only six NE cages were available), and because only in the E conditions did highly stereotypic mice attract elevated agonism from their cagemates (see Results for Experiment Two). The 20 cages used were selected on the basis of their SB (as quantified in focal observations), as follows. Of the three strains, DBA mice had the most variation in SB, and so these mice were chosen to act as demonstrators in the social learning task. Of the 44 E cages screened in Experiment Two, these 20 cages were chosen because their DBAs displayed the greatest variation in their average levels of SB, from 0.44 bouts/minute (two mice) to zero bouts/minute (four mice) C57 mice were selected to be used as observers, since a previous experiment using social transmission of food preferences had been conducted with this strain (Ryan et al 2008). As well, all the C57 observers in the study had very low amounts of stereotypic behaviour (only one observer mouse showed any stereotypic behaviour during focal observations), so selecting these mice reduced behavioural variation across the observers. All mice continued to be housed as they had been for Experiment Two, including in the same trios of individuals (although the BALB/cs played no active role in Experiment Three). During the social transmission test, each demonstrator was paired with a C57 observer from its home cage: thus
demonstrators and observers were familiar.

Flavour selection for the social learning test

Non-subject mice in pilot trials were tested to determine suitable flavours for the experiment. Two flavours picked were those that no researchers or technicians had consumed in the past six months (shatavari powder and ashwagandha root powder), while two others had been very little ingested (marjoram and anise seed): important because rodents can pick up flavour preferences from humans (Galef 2001). Flavours were ground up (if needed) and mixed into powdered rodent chow at appropriate concentrations. Mice were each given a choice of two flavours in a specialised test apparatus designed for this purpose: a polyethylene cage (37 x 21 x 19 cm) with two food magazines affixed to one side (Tecniplast SPA, Buguggiate, VA, Italy). The food magazines had removable food trays that hold the flavoured foods; the food trays each had an apron to catch spilled food, so allowing for precise measurements of food intake (Valsecchi et al 1989). Each flavour was available for consumption in one of the two compartments, counterbalanced, for a period of four hours. Dishes were weighed and the amount of food eaten was measured at one, two and four hours. Both powdered diets were measured at wet weight. We confirmed whether all mice consumed each flavoured food (defined as eating more than 0.1g), and calculated the coefficient of variation across individuals to assess how consistent consumption levels were across mice. The two flavours eaten by all mice with the lowest coefficients of variation were chosen for Experiment Three. These were 2% shatavari powder (Rootalive Inc., Canada) and 2% marjoram (McCormick®, Canada). In these pilot tests, mice consumed more marjoram (mean 0.738±0.586g) than shatavari (mean 0.589±0.508g); however, because these two flavours were never offered in a
pairwise combination, their relative appeal to naïve mice was unknown.

Social transmission of food preferences

The protocol described here is adapted from Valsecchi & Galef 1989. Ten cages were tested daily (thus 10 DBA demonstrators and 10 C57 observers), for two days. The demonstrators’ variation in SB was balanced across days (ie mice spanning similar ranges were tested each day), and the tester was blind to these during the test.

All cages of subjects were food deprived for 16 hours before trials began, largely over the 12 hour light phase (when food consumption is very low: eg Clipperton et al 2008), thus starting at 1730h, in order to ensure food consumption the morning of the following day. At 0930h each demonstrator mouse was moved to a clean empty cage and fed a powdered diet composed of 2% shatavari powder and powdered rodent chow. Food was presented for two hours to these demonstrators, in jars approximately 7 cm in diameter and 5 cm in depth (with a perforated stainless steel disc placed on the top of the food to prevent digging and spillage). Weights of food given were measured before and after consumption, to ensure that each demonstrator consumed the diet (greater than 0.2g).

Food was removed from the cage, and each demonstrator was then immediately paired with its corresponding observer (the C57 from its homecage) by placing the observer mouse in the test cage with the demonstrator and the two familiar mice were allowed to interact for one hour. Demonstrators were then moved back to their home cages. Observers were instead each moved to a specialised Tecniplast test cage (as used to screen potential flavours at the start of this study), with each flavour of food available for
consumption in one of the two compartments, counterbalanced across cages. The observer mice in these test apparatuses were also provided with a small amount of bedding and water ad libitum. Weights of each food were taken before testing and after two hours (after which each observer mouse was then returned to its homecage). The amounts of each diet consumed by each observer mouse were then analyzed, to determine effects of demonstrator levels of SB on observer preferences.

Statistical analyses

Statistical analysis was performed using JMP® 11 software, and general linear models (GLMs). Appropriate transformations were performed in order to satisfy the assumptions of parametric models as best as possible; in practice this typically meant that homogeneity of variance was achieved but strict normality of residuals was not; realistically, this is of small concern as these tests are robust to deviations from normality (Rasch & Guiard 2004). All results were considered significant at $P = 0.05$ or lower (and presented as trends if between 0.05 and 0.10). Two-tailed tests were used throughout, to be conservative, even though we made directional predictions. Tukey’s tests were used to investigate the drivers of any significant interactions between categorical variables.

In Experiments One and Two, cage was treated as a random effect, and nested within housing type (EE / NE). Strain, housing and their interactions were included as fixed effects in every model. Behavioural variables analysed were stereotypic behaviour, and ‘still but awake’ (both calculated as a percentage of all observations); along with the number of aggressive + displacement acts given or received per minute of observation (pooled under the term ‘agonism’), the number of aggressive acts recorded per minute of...
observation, and time spent nesting together recorded per minute of observation. To avoid problems of non-orthogonality, sequential tests were used when continuous independent variables were included, with the term of interest placed last in the model (Doncaster & Davey 2007, Grafen & Hails 2002).

Pooled analyses were also conducted, combining data from Experiments One and Two to assess the consistency or otherwise of effects across the two studies, and to run some analyses with greater power. The BALB/c mice were excluded from this pooled dataset, since not present in both studies. In these analyses, cage (again a random effect) was nested within both housing type and experiment, and for categorical variables, all possible two- and three-way interaction terms were included. These analyses aimed to investigate: 1) whether mice in enriched cages were more often out of sight than mice in non-enriched; 2) if so, whether housing type effects on behaviour could still be detected when this problem was controlled for statistically, by incorporating all ‘out of sight’ observations (active and inactive pooled) into all relevant models; 3) whether housing type effects on aggression or agonism could still be detected if stereotypic behaviour was statistically controlled for, and vice versa; and 4) how consistent relationships between SB and social interactions were across the two studies.

In Experiment Three, the weight of shatavari-flavoured food (the diet eaten by the demonstrators) eaten by each observer was expressed as a proportion of all food eaten, and regressed against how stereotypic each demonstrator was (as a % time budget). Observers were also divided into two groups according to whether the shatavari-flavoured food was qualitatively preferred (ie making up more than 50% total weight of
food consumed) over the control novel food. The stereotypic behaviour levels of the two
groups’ demonstrators were then compared in a GLM, with ‘test day’ and its interaction
as blocking factors.

Results

Experiment One

Compared to mice in enriched (E) cages, mice in non-enriched (NE) cages performed
more SB (F_{1,34} = 63.35, P < 0.0001), and more ‘still but awake’ behaviour (F_{1,32} = 6.85,
 P = 0.01). They also performed more acts of agonism (aggression + displacement) (F_{1,32
= 5.59, P = 0.024; see Figure 1), although not aggression when considered on its own.
For receiving agonism, there was an interaction between strain and housing type
(strain*housing: F_{1,58} = 14.53, P = 0.003), caused by C57 mice in NE cages receiving
more aggression than those in enriched cages (Tukey’s test, P = 0.006). There were no
effects on the receipt of aggression when considered on its own. There was no effect of
housing type on nesting together.

** Figure 1 about here **

Performance of agonistic behaviour in enriched and non-enriched cages.

Experiment Two

No behavioural differences were found between the various large enriched housing types,
and so all were pooled as ‘enriched cages’ for ease of subsequent analysis. Compared to
mice in enriched cages, mice in NE cages were more stereotypic (F_{1,48} = 9.70, P =
For ‘still but awake’ behaviour there was a strain*housing interaction ($F_{2,96} = 3.21, P = 0.04$), because C57s in NE cages performed more than C57s in enriched cages (Tukey’s test, $P = 0.010$). There were no effects of housing type on all acts of agonism ($F_{1,48} = 1.04, P = 0.31$), but for being aggressive, there was a strain*housing interaction ($F_{1,96} = 3.30, P = 0.041$), because C57 mice in NE cages were more aggressive than those in large enriched cages (Tukey’s test, $P = 0.035$; see Figure 2). There were also no housing type effects on the receipt of agonism ($F_{1,48} = 1.28, P > 0.10$), but for receiving aggression per se there was a trend for NE mice to receive more ($F_{1,48} = 3.21, P = 0.08$). Mice in NE cages also spent significantly more time nesting together than those in enriched cages ($F_{1,48} = 22.34, P < 0.0001$).

Figure 2 about here

There were no relationships between SB and giving or receiving agonism. However, a significant interaction with strain was found when correlating SB with the performance of aggression (Strain*SB: $F_{1,125.8} = 12.16, P < 0.0001$). Upon further analysis, it was found that C57 mice that performed more aggression had lower levels of SB ($F_{1,46} = 16.00, P = 0.0002$). A significant interaction with housing type was also found regressing SB against receiving aggression (housing*SB: $F_{1,137.8} = 17.77, P < 0.0001$), because in enriched cages, mice that performed more SB also received more aggression ($F_{1,115.3} = 9.77, P = 0.002$). Finally, mice that performed higher levels of SB also spent more time nesting with cage mates ($F_{1,109} = 15.523, P < 0.0001$).

Pooled analyses

Across the two studies pooled, mice in enriched cages were out of sight significantly...
more often than those in NE cages: ($F_{1,74.3} = 24.03, P < 0.0001$). All potential housing
type effects on behaviour therefore were reinvestigated to check they were not mere side-
effects of enriched mice being harder to observe. For SB, there remained a strong overall
effect of housing type, enriched mice being less stereotypic ($F_{1,75} = 36.28, P < 0.0001$).
However, experiment*strain*housing was also significant ($F_{1,101} = 6.65, P = 0.013$), with
Tukey’s tests revealing that while enrichment reduced SB in both strains in Experiment
One ($P < 0.005$), in Experiment Two it only did so for DBAs ($P < 0.0001$). Being ‘still
but awake’ was consistently reduced by enrichment (with no interactions with strain or
experiment) ($F_{1,78} = 6.89, P = 0.010$).

Enriched mice also still performed fewer agonistic acts ($F_{1,87} = 5.85, P = 0.018$), and
fewer acts of aggression per se ($F_{1,78} = 4.27, P = 0.042$): housing effects that did not
interact with experiment (or strain), ie were consistent across populations. The pooled
analyses also revealed a three-way effect of strain*housing*experiment effect on agonism
received ($F_{1,112} = 8.83, p = 0.004$). A Tukey’s test showed that this was driven by
enrichment only reducing the receipt of agonism in C57s in Experiment One ($P = 0.006$).
When looking at the receipt of aggression only, the pattern was the same as described for
agonism (strain*housing: $F_{1,104} = 6.83, P = 0.01$). Finally, for nesting together, the tests
revealed another three-way effect of strain*housing*experiment ($F_{1,104} = 6.124, P =
0.015$), driven by both strains in Experiment Two doing more co-nesting in NE housing
(for C57s: Tukey’s $P < 0.0001$; for DBAs, $P = 0.0005$), but no such effects in
Experiment One.

If SB was added as a covariate, then the effects of housing type on the giving and receipt
of agonistic behaviour were all reduced or even eliminated. Enrichment effects on the performance of aggression thus became non-significant ($F_{1,85} = 0.42, P = 0.51$); enrichment effects on the production of agonistic behaviours were reduced to a trend ($F_{1,96} = 3.54, P = 0.06$). This suggests that at least in part, the effects of housing type on agonism reflected its effects on SB. In contrast, if performing aggression or all agonism were added as covariates, or if receiving aggression or all agonism were, the effects of housing type on SB remained very similar: enriched mice remained significantly less stereotypic ($P < 0.0001$ in all models), with experiment*strain*housing also remaining significant ($P < 0.05$ in all models), and Tukey’s tests again revealing that while enrichment reduced SB in both strains in Experiment One ($P < 0.01$ in all models), in Experiment Two it only did so for DBAs ($P < 0.01$ in all models). This in turn thus suggests that the effects of housing type on SB were not dependent on its effects on agonism.

The last pooled analyses re-investigated the potential relationships between SB and social interactions. No relationships were found between performing SB and being dominant or aggressive (nor were there any significant interactive effects). For receiving all acts of agonism, however, across both studies together there was a near positive trend with SB ($F_{1,176} = 2.69, P = 0.102$). Furthermore, for receiving aggression only, there was a significant interaction with housing type ($F_{1,153} = 16.57, P < 0.0001$). Splitting the data by housing type revealed a strong positive relationship between performing SB and receiving aggression within enriched mice, regardless of strain or experiment ($F_{1,121} = 8.79, P = 0.004$), but not within NE mice ($F_{1,45} = 0.001, P = 0.98$). Finally, for co-
nesting, there were no consistent patterns, but instead two significant three-way
interactions, and a trend effect for a third (SB*housing*strain: $F_{1,122} = 7.58, P = 0.007$;
SB*strain*experiment: $F_{1,130} = 4.43, P = 0.037$; SB*housing*experiment: $F_{1,155} = 2.72,
P = 0.101$). Splitting data into subsets to try and investigate why, revealed no significant
main effects of SB.

** Table 3 about here **

** Experiment Three **

A regression revealed no significant linear relationship between how stereotypic the
demonstrators were and how much shatavari-flavoured diet was selected by their
observers ($F_{1,16} = 0.16, P = 0.692$). However, the 20 observers divided into two equal
sized groups as to whether or not they chose to eat more shatavari-flavoured diet than
marjoram-flavoured control. When these groups’ demonstrators were compared, the
observers who chose to eat more shatavari tended to have had less stereotypic
demonstrators than observers who ingested equal amounts of the two flavours or ate more
marjoram ($F_{1,16} = 3.58, P = 0.077$; see Figure 3). The amount of aggression received by
these demonstrators in their home cages, in contrast, appeared unrelated to whether or not
their observers favoured the shatavari-flavoured diet ($F_{1,16} = 0.96, P = 0.34$).

** Figure 3 about here **

** Discussion **

In Experiments One and Two, mice raised and housed in standard non-enriched (NE)
cages broadly performed more stereotypic behaviour than those in enriched cages, just as
expected. NE mice also spent significantly more time being ‘still but awake’. Being inactive despite being awake has previously been found to increase in barren enclosures in mice (Tilly et al 2010), and similar effects have been seen in other species too (reviewed Meagher & Mason 2012). In mink, this behaviour appears to indicate boredom-like states (Meagher & Mason 2012). In mice, its welfare significance is unknown, and it was not the focus on our research; however, we do flag this behaviour as a potentially interesting topic for future study.

In terms of social interactions within the home cage, in Experiment Two, mice in NE cages spent more time nesting together than those in enriched cages, but this effect was not consistent across both studies. However, across both Experiments One and Two together, as predicted, agonistic social interactions were consistently more frequent in NE housing. As reviewed in the Introduction, this finding joins several previous studies in showing that barren housing can have adverse social effects on laboratory rodents. Such effects occur beyond this taxonomic group too: NE housing can promote agonistic interactions between conspecifics in non-rodent species (eg as reviewed Diez-Leon et al 2013, Diez-Leon & Mason subm.). For example, NE conditions can exacerbate aggressive behaviour in primates (Honess & Marin 2006, Márquez-Arias et al 2010) and newly weaned pigs (Schaefer et al 1990), while in farmed mink, NE males are less successful with females in a mate choice experiment (Diez-Leon et al 2013). It would be interesting to explore such effects further, perhaps using less enriched NE cages to create more contrast, or studying males, as the more aggressive sex. Possible mechanisms for elevated agonism could also be investigated; these include greater levels of frustration in
NE mice (since frustration can exacerbate aggression; reviewed Papini 2003); reduced behavioural competition, with NE mice having fewer opportunities than enriched mice to perform behaviours other than aggression (Turner et al under review); reduced abilities of NE mice to physically remove themselves from each other, and/or use enrichment objects to hide in order to diffuse social tension; and more abnormal brain development, perhaps increasing agonistic interactions by making mice poorer at learning and/or more prone to repeat activities that are counter-productive.

This last idea led us to investigate how SB and agonistic behaviours inter-relate. Experiment One yielded no information on this, perhaps because of its relatively small sample size, but Experiment Two yielded several interesting results, as did analyses of both datasets pooled. One of our predictions, based on studies of dopamine transporter knockout mice (Rodriguez et al 2004) was that stereotypic mice would show increased levels of aggression. However, our results did not support this. Our second prediction was that highly stereotypic mice would receive high levels of aggression, and this received more support. Receiving aggression positively correlated with SB, although only in enriched cages: stereotypic enriched mice consistently received the most aggression from their cagemates. Why this was only manifest in the enriched cages is unclear, but could perhaps reflect the masking effects of other potentially abnormal behavioural changes in non-enriched mice (eg more time spent still but awake).

At least in the enriched populations, this pattern is thus consistent with the most stereotypic mice being perceived as abnormal by cagemates, or acting socially oddly in competitive situations, thence becoming targets for aggression. Another potential
explanation, however, is that mice receiving high levels of aggression then develop more SB in response to increased stress (cf eg Akre et al 2011). To tease apart these two possibilities, analyses were run to investigate whether housing type effects on agonism were still detectable if variation in SB was statistically controlled for, and conversely, whether housing type effects on SB were still detectable if variation in agonism was statistically controlled for. These analyses revealed that effects of housing type on SB were still evident even when variation in agonism was factored out, but the converse was not true: housing effects on agonism were reduced or even eliminated when variation in SB was factored out. These patterns are consistent with SB being a key driver of the housing effect on agonistic social interactions, just as predicted. Future research should test this hypothesis experimentally, for instance in longitudinal studies to assess which behavioural differences appear first, and/or by moving mice between cages to investigate whether transferring high or low SB individuals to new social groups differentially influences the expression of agonistic behaviour by their cagemates. We also recommend that any such future studies use video rather than direct live observation, to assist the quantification of more nuanced aspects of social interaction (eg affiliative versus aggressive allogrooming: Warne 1947, Grant & Macintosh 1963).

Experiment Three then investigated the social abilities of stereotypic mice in a different way. We tested the hypothesis that stereotypic mice would be less effective demonstrators in a social learning task. This was inspired by previous findings of demonstrator effects in rodent studies (see Introduction). Mixed-strains were used, as this is how mice were housed in the experiment; as far as we know this is the first study to investigate the social transmission of food preferences between different strains of mice.
As predicted, low SB demonstrators appeared to possibly be more effective than high SB demonstrators at inducing a qualitative relative preference in observer mice for a novel flavour the demonstrators had recently eaten. However, since this is the first ever indication of such an effect, and it was also merely a trend, we recommend that repeat studies are now conducted to assess whether this result can be replicated. Such studies should use flavours a priori shown to be equally preferred by naïve observers (we did not have such data), to allow a clearer, more quantitative assessment of the social transmission of preference. They should also involve videoing the interactions between the demonstrator and observers -- particularly oronasal investigations, since olfactory cues are essential for the social transmission of food preferences (Valsecchi & Galef 1989) -- to both identify how these vary in quality or quantity (cf eg Choleris et al 2011), and assess the impact of any SB performance during this interaction phase. Replicate studies might also benefit from using feeding regimes for the demonstrators that have been shown to induce weaker, more variable flavour preferences in observers, since social effects might be more easily detected using such paradigms (cf Galef et al 1998).

Overall, the findings from these three experiments together suggest that non-enriched mice who develop SB do not just have a motor symptom consistent with autism, but possibly also the social and communicative deficits that characterise this condition (eg Silverman et al 2010, Patterson 2011). Future research should therefore test this hypothesis further, both in the ways already suggested, and also by investigating whether low SB mice are preferred as social or sexual partners to high SB mice (cf the mink studies of Diez-Leon et al 2013).
Animal welfare implications and conclusions

This study shows that in addition to reducing levels of stereotypic behaviour, housing female mice in larger, enriched laboratory cages decreases the undesirable social behaviours of aggression and displacement, with obvious implications for their welfare. Furthermore, the two effects seemed related, with high SB mice appearing more prone to being the targets of aggression. Since being aggressed and subordinate is stressful (Lumley et al. 2000, Bartolomucci et al. 2005), this suggests that in mice, the welfare of highly stereotypic individuals is of particular concern. It also suggests that these mice may be abnormal in ways that render them socially impaired – an idea tentatively supported by high SB mice tending to be relatively ineffective demonstrators in a social learning task. Whether SBs and their underlying causes truly render mice socially compromised, and if so, how, needs future research, as it could have welfare implications, not only for high SB individuals but also for their cagemates, and not only in mice, but all captive species prone to SB.

Acknowledgements

This project was funded by a Universities Federation for Animal Welfare (UFAW) studentship to LH and GM, an Ontario Graduate Scholarship (OGS) to LH, an NSERC Discovery Grant to GM, a NSERC scholarship to MW, and a Fyssen Foundation postdoctoral fellowship to CF. Many thanks to the excellent animal care technicians that looked after the mice in this study, and to Kammy Punniamoorthy for help with data collection.
References

Campbell DLM, Dallaire JA, Mason GJ 2013 Environmentally enriched rearing environments reduce repetitive perseveration in caged mink, but increase spontaneous alteration. Behavioural Brain Research 239: 177-187

Choleris E, Clipperton-Allen AE, Gray DG, Diaz-Gonzalez S and Welsman RG 2011 Differential effects of dopamine receptor D1-type and D2-type antagonists and phase of the estrous cycle on social learning of food preferences, feeding, and social interactions in mice. Neuropsychopharmacology 36: 1689-1702

Doncaster CP and Davey AJH 2007 Analysis of variance and covariance. How to choose and construct models for the life sciences. Cambridge: Cambridge University Press

Friske JE and Gammie SC 2005 Environmental enrichment alters plus maze, but not maternal defense performance in mice. Physiology and Behaviour 85: 187-194

Galef BG and Wigmore SW 1983 Transfer of information concerning distant food: a
laboratory investigation of the ‘information-centre’ hypothesis. *Animal Behaviour*. 31: 748-758

Grant EC and Mackintosh JH 1963 A comparison of the social postures of some common laboratory rodents. *Behaviour* 21: 246-259

Honess PE and Marin CM 2006 Enrichment and aggression in primates. *Neuroscience and Biobehavioural Reviews* 30: 413-436

Kavaliers M, Colwell DD and Choleris E 2005 Kinship, familiarity and social status modulate social learning about “micropredators” (biting flies) in deer mice.

McEvoy RE, Rogers SJ and Pennington BF 1993 Executive function and social communication deficits in young autistic children. Journal of Child Psychology and...
Meagher RK and Mason GJ 2012 Environmental enrichment reduces signs of boredom in caged mink. *PLOS One* 7: 1-10

National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) 2015 The 3Rs. https://www.nc3rs.org.uk/the-3rs#What%20are%20the%203Rs? (accessed Feb. 3, 2015)

Ryan BC, Young NB, Moy SS and Crawley JN 2008 Olfactory cues are
sufficient to elicit social approach behaviours but not social transmission of food preference in C57BL/6J mice. *Behavioural Brain Research* 193: 235-242

Sørenson G 1987 Stereotyped behaviour, hyperaggressiveness and “tyrannic” hierarchy induced in bank voles (*Clethrionomys glareolus*) by a restricted cage milieu. *Progress in Neuropsychopharmacology and Biological Psychiatry* 11: 9-21

Tilly SC, Dallaire J and Mason GJ 2010 Middle-aged mice with enrichment-resistant stereotypic behaviour show reduced motivation for enrichment. Animal Behaviour 80: 363-373

Turner PV, Wozniak L, Batista L, Ovari J, Clipperton-Allen AE, Hammermueller J, Ingrao JC, JN, Bienzle D and Choleris E, under revision, 2015. Long term provision of environmental improvements alters behaviour but not physiology or neuroanatomy of male and female BALB/c and C57BL/6 mice. JAALAS.

Valsecchi P and Galef BG 1989 Social influences on the food preferences of house mice (Mus musculus). The International Journal of Comparative Psychology 2: 245-256

Tables and figures

Table 1 Behaviours recorded during scan and focal sampling in Experiments One and Two (adapted from Grant & Mackintosh 1963; Tilly et al 2010; Clipperton-Allen et al 2011)

Table 2. Types of cages and number of cages per housing type for Experiment Two

Table 3: Overview of how the home cage behaviours of non-enriched (NE) and enriched mice compare across both studies

Figure 1: The effects of housing type on the performance of agonistic behaviours; there was a significant main effect of housing type and no interaction with strain (see text for details). Data presented are means and SEs of raw data.

Figure 2: Performance of aggression (bouts/min) in enriched and non-enriched cages in Experiment Two (data shown are means and SEs of raw data); housing type interacted with strain, an effect driven by the elevated aggression of NE C57s (see text for details)
Figure 3: Level of stereotypic behaviour in the demonstrators of shatavari flavour, compared for observers who ate either more marjoram (n = 10) or more shatavari (n = 10) in a two choice test. Shown are means and SEs of raw data (see text for details)