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ABSTRACT 22 

Increasing pressures on natural resources  has led to the adoption of water quality 23 

standards to protect ecological and human health. Lakes and reservoirs are particularly 24 

vulnerable to pressure on water quality owing to long residence times compared with rivers. 25 

This has raised the question of how to determine and to quantify the sources of priority 26 

chemicals (e.g. nutrients, persistent organic pollutants and metals) so that suitable measures 27 

can be taken to address failures to comply with regulatory standards. Contaminants enter 28 

lakes waters from a range of diffuse and point sources. Decision support tools and models 29 

are essential to assess the relative magnitudes of these sources and to estimate the impacts 30 

of any programmes of measures. This paper describes the development and testing of the 31 

Source Apportionment Geographical Information System (SAGIS) for future management of 32 

763 lakes in England and Wales. The model uses readily available national data sets to 33 

estimate contributions of a number of key chemicals including nutrients (nitrogen and 34 

phosphorus), metals (copper, zinc, cadmium, lead, mercury and nickel) and organic 35 

chemicals (Polynuclear Aromatic Hydrocarbons) from multiple sector sources. Lake-specific 36 

sources are included (groundbait from angling and bird faeces) and hydrology associated 37 

with pumped inputs and abstraction. Validation data confirms the efficacy of the model to 38 
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successfully predicted seasonal patterns of all types of contaminant concentrations under a 39 

number of hydrological scenarios. Such a tool has not been available on a national scale 40 

previously for such a wide range of chemicals and is currently being used to assist with 41 

future river basin planning.  42 

 43 

1. INTRODUCTION 44 

 45 

Lakes and reservoirs serve as vital sources of drinking water and support valuable 46 

ecosystems across the globe. For example, there are more than 500,000 natural lakes larger 47 

than 0.01 km2 (1 ha) in Europe alone. Approximately 80 to 90% of these are small with a 48 

surface area of between 0.01 and 0.1 km2, with only around 16,000 having a surface area 49 

exceeding 1 km2 (EEA, 2015a). There are currently 7,000 large dams in Europe (defined as 50 

having greater than 1,000,000m3 capacity) (EEA, 2015b). Reservoirs and lakes hold 51 

approximately 32,000 million m3 of drinking water across Europe representing around 20% 52 

of total supply (Leonard and Crouzet, 1998). In North America the Great Lakes (Erie, 53 

Michigan, Huron, Ontario, Superior) contain one fifth of the world’s freshwater and 84% of 54 

the water supply for the United States of America (USA) and Canada (USEPA, 2017). Other 55 

than drinking water, lakes and reservoirs supply power via hydroelectric schemes, augment 56 

river flows, provide recreation and are valuable habitats for water fowl and species of fish 57 

and invertebrates. There are significant pressures on water quality from numerous sources 58 

including urban and highway runoff, industrial discharges, mining and in some cases 59 

atmospheric deposition (Comber et al., 2013). Eutrophication is a major source of concern 60 

regarding water quality, related mainly to inputs of nitrogen and phosphorus from agriculture 61 

and sewage effluents. In Spain, for example 33% of reservoirs were identified as 62 

mesotrophic, 27% eutrophic and 10% hypertrophic (Leonard and Crouzet, 1998). Toxic algal 63 

blooms occur frequently with the example of suspension of water abstraction from Lake Erie 64 

in 2014, affecting half a million people (USEPA, 2017). Loss of potential amenity value has 65 

seen extensive steps being taken under European Union (EU) legislation to address these 66 

issues.  67 

 68 

Lakes and artificial water bodies such as reservoirs are particularly vulnerable ecosystems 69 

for a number of reasons: 70 

1) Residence times compared with rivers are often much longer so chemical inputs take 71 

longer to be flushed out 72 

2) Accumulation of contaminants is possible in the water column and sediments 73 

3) The lack of flow leads to sediment accumulation within the lentic water body 74 
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4) Resident, fish, algae and invertebrates within the lake have few options regarding 75 

avoiding the contamination present and therefore may be subject to bioaccumulation 76 

and/or toxicity when exposed   77 

 78 

To protect lake environments for both in situ ecology and human health via drinking water 79 

abstraction, the European Union Water Framework Directive (WFD) (EU, 2000) sets criteria 80 

(Environmental Quality standards – EQS) for all water bodies including lakes to meet a 81 

defined status categorised as ‘Good’, for over 30 Priority and Priority Hazardous 82 

Substances. In addition, the Drinking Water Directive (98/83/EC) places maximum 83 

acceptable concentrations for a wide range of inorganic and organic chemicals which are 84 

generally more stringent than environmental standards. Although, compliance can also be 85 

controlled through treatment, options for many chemicals are exceedingly expensive and so 86 

catchment solutions (source control) are preferable. Regulators therefore need tools to 87 

apportion sources of contamination in order to guide future regulation and for known 88 

pollution, plan remedial measures in a fair and proportionate way. For the UK this has been 89 

achieved through the development of the Source Apportionment Geographical Information 90 

System (SAGIS), originally developed for river catchments (Comber et al., 2013) but has 91 

now been further developed for lakes. SAGIS combines a number of inputs including 92 

modelled, measured and estimated loads from the main point and diffuse sources of metals, 93 

organics and nutrients for catchments of England, Wales and Scotland. 94 

 95 

Once discharged to a lake catchment, any given chemical will be subject to dilution and 96 

undergo various biogeochemical processes, effects that might both be incorporated into a 97 

model. However, whereas there have been published reports on load apportionment to lakes 98 

and reservoirs and models to determine concentrations within such water bodies by taking 99 

account of physico-chemical and biochemical processes (e.g. relationships between 100 

biological growth rate and nutrient availability, sunlight and temperature, and phytoplankton 101 

and the growth rate of zooplankton; Gough, 1969; Yih and Davison, 2008), few models have 102 

attempted to combine the two. More recent water quality models which simulate lakes 103 

specifically include the United States Environmental Protection Agency (USEPA) WASP 104 

(Ambrose et al., 1988), and QUAL2E models (Shanahan et al., 1998), the MIKE3 model 105 

developed by the Danish Hydraulics Institute (DHI), and the Systeme Hydrologique 106 

European (SHE) (Abbott et al., 1986). At a larger spatial scale, catchment models include 107 

BASINS (Nasr and Breun, 2004) and the Environmental Fluid Dynamics Code (EFDC) which 108 

is a multifunctional surface water modelling system, which includes hydrodynamic, sediment-109 

contaminant, and eutrophication components. EFDC has been applied to over 100 water 110 
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bodies including lakes and reservoirs, and is a state-of-the-art hydrodynamic model that can 111 

be used to simulate aquatic systems in one, two, and three dimensions (USEPA, 2007).     112 

 113 

Source apportionment of nutrient loads within specific catchments is well developed (EEA, 114 

2005) and a number of lakes have been modelled but sources have been aggregated and 115 

classified as point, agriculture, and background only (e.g. MESAW model for Lake Peipsi 116 

(Vassiljev and Stålnacke, 2003); Lake Mjøsa and Vättern (Nashoug, 1999); Lough Neagh 117 

(Dardni, 2007 and Danish lakes (SFT, 2005)). Source apportionment models differ from 118 

water quality models in that they have value in risk assessment by determining input loads 119 

and to some degree, input locations. For accurate modelling of lentic water bodies a water 120 

balance needs to be completed taking into account variability of flow and chemical load as 121 

well as any abstractions in the case of reservoirs. Key physico-chemical parameters have to 122 

be modelled including sedimentation of suspended solids. There are currently few models 123 

which can do this on a local or regional scale and none on a national scale.  124 

 125 

Examples of specific models which combine source loads and predicted concentrations 126 

include the USEPA CMB8.2 model for has been used to apportion the sources of sediment-127 

bound polynuclear aromatic hydrocarbons (PAHs) in Lake Calumet, Chicago (Li et al., 128 

2003), and mass balance modelling for PAH distributions in Lac Saint Louis, Quebec 129 

(MacKay and Hickie, 2000). For nutrients a nitrogen source apportionment model has been 130 

developed which converts input loads, based on the surrounding land use, to concentrations 131 

using the distributed HBV-N-D and Fyrismodel models for Swedish lake catchments. The 132 

models used export coefficients and simple retention equations (Lingren et al., 2007). For 133 

making decisions at a river basin or national level it is necessary to be able to predict loads 134 

across many lakes and reservoirs and be able to predict if compliance can be achieved 135 

based on predicted concentration data resulting from an identified load reduction mitigation 136 

measure being applied.         137 

 138 

Lakes and reservoirs are subject to additional and significant chemical sources compared 139 

with rivers, particularly nutrients from birds and angling. Birds are recognised as significant 140 

sources of nutrients to some lakes (Manny et al., 1994; Marion et al., 1994; Hahn et al., 141 

2008). Fishing is a popular pastime in the UK. Approximately 9% of the population in 142 

England and Wales have been freshwater fishing as reported by the Environment Agency in 143 

2010 (EA, 2010). Ground bait, comprising of ingredients such as maize, fish meal, milk 144 

protein and semolina, is commonly used, particularly for coarse fishing and nutrient inputs to 145 

water bodies from the use of ground bait may present a potential threat to water quality 146 
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where angling intensity is high (Arlinghaus and Mehner, 2003). These studies have 147 

estimated German mean annual gross P-input of 1018 g P angler−1 due to ground bait.  148 

This paper describes the significant development of the existing SAGIS model for rivers 149 

(Comber et al., 2013) to include 763 lakes and reservoirs within England and Wales. The 150 

model utilises national datasets for multiple parameters including hydrology, rainfall, 151 

modelled discharges of chemicals, reported discharge loads, and spatial datasets including 152 

the locations of wastewater treatment works and smaller on-site works (often termed “septic 153 

tanks”), combined sewer overflow locations, output from diffuse pollution risk models, road 154 

and river system networks and lake specific inputs from birds and angling. It also allows 155 

more detailed local data to be applied where this is available, for example pumped volumes 156 

at intake locations. 157 

 158 

2. METHODS  159 

The SAGIS modelling framework integrates data from multiple sources (Comber et al., 160 

2013), point source loads are expressed as mean and standard deviation of annual average 161 

(or monthly if available) concentrations and flow, with diffuse sources input as mass per 162 

year, or month, per km2. Owing the large size of databases used, water bodies of England, 163 

Wales and Scotland are broken up into 18 regional databases. A common map projection 164 

was used for all databases and mapping based on a 1km2 grid. Such GIS mapping 165 

calibration and validation has been undertaken as part of previous projects associated with 166 

the hydrological and diffuse source components for sources of chemicals to rivers (Comber 167 

et al., 2013). Detailed information regarding the methodologies used to calculate loads for 168 

each source is provided elsewhere (UKWIR, 2012). However, a brief description of the data 169 

and method used to derived load estimates is provided in the following section. 170 

 171 

For both diffuse and point sources loads of chemicals discharged into the water bodies were 172 

either derived from an established model or were calculated as part of this research (See 173 

Table S1 to S3 of the Electronic Supplementary Information (ESI)). Unlike estimates for river 174 

catchments the lakes model includes 763 hydrologically connected lakes in England and 175 

Wales. A number of additional sources are included which were considered significant for 176 

these lentic water bodies. Figure 1 provides a schematic for the structure and key 177 

components of the SAGIS decision support framework.  178 

  179 
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 180 

Figure 1.   Schematic diagram for SAGIS tool structure  181 

 182 

2.1 Inputs already present within the SAGIS rivers model 183 

Sources are represented within a Microsoft Access™ database either as a point source with 184 

an X and Y, UK national grid location coordinate or as an individual 1 km2 grid 185 

(approximately 150,000 for England and Wales). The main database is split into regional 186 

Access databases (see Figure S1 of the ESI) which form the attribute tables behind the 187 

features in ArcMAP GIS software. Lists of the key datasets used to derive the exported loads 188 

from each point and diffuse source and on how these are used to derive the calculated loads 189 

to water bodies are provided in the ESI.   190 

 191 

The functionality with ArcMap and bespoke macros developed in Visual Basic are then used 192 

to extract the necessary data and generate the text file required to run SIMCAT, a stochastic 193 

water quality model. SIMCAT can be run from within SAGIS and provide outputs (total and 194 

dissolved concentrations and loads for metals, total concentrations and loads for nutrients 195 

and organics) which are fed back into ArcGIS to provide cartographic, graphical and 196 

Lake Model 
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spreadsheet outputs. The existing river model was validated using monitoring data provided 197 

by the Environment Agency (EA) and provided a good fit with predicted values (Comber et 198 

al., 2013).  The EA’s Water Quality Archive provides data on water quality measurements 199 

from across England for over 100 determinands, analysed within accredited laboratories. 200 

Samples include coastal or estuarine waters, rivers, lakes, ponds, canals or groundwaters. 201 

They are taken for a number of purposes including compliance assessment against 202 

discharge permits, investigation of pollution incidents or environmental monitoring. The 203 

archive provides data on measurements and samples dating from 2000 to present day. 204 

 205 

2.2 Additional sources to lakes 206 

Data sources 207 

Additional data was gathered to support the development of the SAGIS Lakes tool (Table 1) 208 

including where available, operational data on water company drinking water supply 209 

reservoir.  210 

  211 
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Table 1. Summary of databases utilised for the lake and reservoir source 212 
                   apportionment model 213 

Information Source  

WFD Lake shape files Provided by Environment Agency (EA) and Scottish 
Environment Protection Agency (SEPA) 

Lake Volume and area Derived from EA and SEPA, WFD lake classification data 
and water company survey 

Estimated Catchment Area Derived from EA lake classification data 

Lake Abstraction Location and 
Abstraction Quantities 

Compiled from EA water resources GIS and locations and 
licence numbers identified from SEPA  

Intake Location and Abstraction 
Quantities 

Compiled from EA water resources GIS and locations and 
licence numbers identified from SEPA 

Estimated bird numbers UK wide summary data from Wetland Bird Survey data 
(WeBS, 2014) 

Export of nutrients per bird 
(related to each species) 

Waterbirds v1.1, 2007. Hahn et al, (2007; 2008) 

Estimated angler numbers of 
visits 

National (England and Wales) summary (EA, 2010)  

Estimated load associated with 
each angler 

Published data by Arlinghaus and Mehner (2003); 
Arlinghaus and Niesar (2005) 

Water quality monitoring data 
for validation purposes 

EA Water Information Management System database 
(WIMS) and SEPA equivalent  

Discharges to lakes SAGIS databases Comber et al., (2013) 

 214 
The key elements of the existing databases used within the model are listed and described 215 

elsewhere (Comber et al., 2013). Table S6 provides details of updated structure for lakes 216 

and reservoirs.  217 

 218 

Angling ground bait (nutrients) inputs to lakes 219 

A detailed description of the methodology is provided in S1 of the ESI. 220 

To derive an export load for the SAGIS model, the following data was obtained from 221 

scientific literature: 222 

1. The number of lakes in the UK classified under the WFD that are fished and allow 223 
ground baiting; 224 

2. The surface area and boundary length of these lakes; 225 

3. The number of coarse fishing anglers per year in the UK; and 226 

4. Nitrogen and phosphorus content of ground bait. 227 
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Annual loads to lakes were based on the lake boundary length as a proportion of the 228 

boundary length of all lakes in England and Wales and the estimated national input from all 229 

angling based on the number of licences, estimated number of fishing trips per licence and 230 

the bait usage per trip. Loads were distributed across the year based on a typical distribution 231 

of angling trips, taking into account the closed season for coarse fishing (Table S7). 232 

Other factors that might be important such as the distance of the lake from urban areas and 233 

level of active management of the fishery, e.g. fish stocking, are not taken into account but 234 

the model user interface allows the user to specify numbers of anglers based on local 235 

knowledge.  236 

Bird nutrient excretion (nutrients)  237 

A detailed description of the methodology is provided in S2 of the ESI. 238 

Briefly, to estimate loads from this source, the following data was sought from scientific 239 

literature, existing models and general internet searches: 240 

1. Bird populations on lakes in the UK; and 241 

2. Guano composition and excretion rates from literature for key species. 242 

Assumptions included: 243 

 Bird population data of which it was assumed that 50% of the population were based 244 

on lakes. This can be replaced by detailed local information by the model user if 245 

available. 246 

 Nutrient inputs estimated from Netherlands data which takes account of food intake, 247 

foraging behaviour and digestive performance of water birds (Table S8) (Hahn et al., 248 

2007; 2008).  249 

 Total bird populations (Table S9) and seasonal distribution (Table S10) combined 250 

with survey data to pro rata distribute loads to individual lakes and reservoirs (based 251 

on size). Again, default values for number of birds can be replaced by better local 252 

data from bird counts and the estimated nutrient input recalculated accordingly. 253 

 254 
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2.3 Allocation of chemical loads to lakes 255 

Processing tools within SAGIS have been developed to allocate chemical loads from the 256 

existing and new sectors to each lake are described below. 257 

Inputs from rivers 258 

Where rivers feed directly into lakes and reservoirs, monthly model output from SIMCAT at 259 

defined input locations are used to derive riverine loads to these water bodies (Comber et 260 

al., 2013). SIMCAT output files are processed by the tools in SAGIS to populate tables in the 261 

regional databases with estimated annual and monthly chemical loads and flows which input 262 

to each lake water body. 263 

Pumped inputs 264 

Pumped inputs to lakes are calculated from simulated chemical concentrations from 265 

SIMCAT at the intake along with information on the licensed abstraction rate and ‘hands off 266 

flow’. Either annual average or distributed monthly inputs can be calculated. Alternatively, a 267 

non parametric distribution for each month can be input which the model then samples. 268 

Direct inputs from the catchment. 269 

In addition to inputs from rivers, there are additional inputs from the local catchment that are 270 

not included within the river inputs. Export loads for each chemical substance and sector to 271 

the surrounding water bodies are taken from the existing SAGIS load databases. A 272 

proportion of these water body loads is allocated to a lake on a pro rata basis in relation to 273 

the length of river within the lake area compared to the length of river within the water body 274 

as a whole as defined by input and output nodes as shown in Figure S2. Any lake inputs 275 

such as sewage works in these reaches are excluded from the water quality simulation in 276 

SIMCAT to avoid double counting. 277 

Lakes which are ‘offline’ and not connected to rivers, are identified so and a local catchment 278 

area for them defined. Diffuse inputs are then calculated pro rata based on the proportion of 279 

the overall area of the water body that forms the local lake catchment whilst point sources 280 

within the area are allocated to the lake 281 

  282 
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Groundwater inputs 283 

In the absence of a national database to provide groundwater inputs, the model allows the 284 

user to specify estimated inputs of groundwater to lakes and associated water quality where 285 

considered significant.  286 

2.4 SAGIS and SIMCAT model updates 287 

Greater detail on the lake quality modelling is provided in S3 of the ESI. Briefly, Visual Basic 288 

for Applications (VBA) was used to model concentrations in lakes, using input data for 289 

inflows and chemical loads derived from the export load databases and outputs from the 290 

SIMCAT water quality model. Monte Carlo simulation is used to generate distributions of 291 

concentrations (Comber et al., 2013). Monthly statistics for water quality are simulated for 292 

each chemical substance for each source. In contrast to the SIMCAT river quality model 293 

used in SAGIS for rivers, the Monte Carlo simulation is driven by a hydrologically based time 294 

sequence of river flows so that wet and dry periods can be taken into account in affecting 295 

lake storage and the accumulation of chemicals. This sequence is defined for each regional 296 

database based on long term naturalised times series for river flow. The lake simulation is 297 

then carried out on a time series basis for a period specified by the user. 298 

 299 

A water balance and chemical mass balance is calculated for inputs and outputs of water 300 

and chemical loads, respectively, i.e. pumped inputs, abstractions, groundwater inflows, 301 

upstream inflow, rainfall and evaporation. The water quality simulation taking account of 302 

sediment interactions is based on a simple lake model developed by Chapra (1997) (see S3 303 

of ESI). Apparent settling, re-suspension rates rate and burial rates, are applied to simulate 304 

chemical exchanges between the water column and sediment and determine within-lake 305 

losses. These can be specified as a range of values that are sampled in the Monte Carlo 306 

process and also specified monthly if required (e.g. to represent widely observed seasonal 307 

changes in sediment exchange and nitrification). Parameterisation and simulation of nitrogen 308 

and phosphorus are described below and represented schematically in the Figure S3 of the 309 

supporting information.  310 

 311 

Lake process parameterisation 312 

To represent within lake processes for phosphorus and nitrogen, parameters for settling rate, 313 

sediment release rate and permanent burial rate were modified to produce a better fit with 314 

observed data. Removal rates of these chemicals in lakes are known to vary considerably 315 

(by orders of magnitude), so this step is necessary as part of the modelling process (Table 316 
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2). Parameter values were derived based on data obtained for lakes used for the validation 317 

process. For example, for the east of England, Ormesby Broads monthly release rates were 318 

applied to simulate sediment release in the summer. This process is consistent with the 319 

observed data and summer release of sediment phosphorus is known to be important in the 320 

Norfolk Broads (E of England). Similar approaches could be applied to metal and organic 321 

contaminants if such data were available  322 

 323 

Table 2.     Lake processes parameterisation 324 

Lake Phosphorus (m/d) Nitrate (m/d) 

 Settling 

Rate 

Release 

Rate 

Burial Rate Settling Rate 

Rutland Water 0.3 0.00175 0.0000175 0.05 

Hollowell Reservoir 0.25 0.00175 0.0000175 0.05 

Grafham Water 0.125 0.00175 0.0000175 0.05 

Costessey Pits 0.25 0.00075 0.00003 0 

Ormesby Broad 0.15 0.0007* 0.00003 0.05 

Queen Mary Reservoir 0.25 0.00075 0.00003 0 

Lower Shustoke Reservoir 0.035 0.00125 0.00003 0.05 

Lake Windermere 0.25 0.000375 0.00003 0 

Lake Vyrnwy 0.11 0.00075 0.00003 0.025 

Sutton Bingham Reservoir 0.15 0.000375 0.00003 0.075 

Clatworthy Reservoir 0.15 0.000375 0.00003 0 

Kielder Water 0.25 0.00075 0.00003 0 

*Seasonal pattern of release applied to simulate summer phosphorus sediment release (average 325 

value shown) 326 

Settling rates for phosphorus and nitrate tended to be lower in upland reservoirs with lower 327 

levels of nutrient loading. No parameter values were beyond the range of those expected for 328 

normal lake processes. For example, Chapra (1997) gives a range of settling of 0.05 to 0.6 329 

m/day. Parameter values will also reflect inaccuracies in the inputs from the river model, 330 

such as if nitrate concentrations are over predicted by the river model, the nitrate loss rate in 331 

the lake will be increased to compensate. Future development of the tool may make it 332 

possible to derive default rate values for different types of lakes e.g. upland reservoirs, 333 

pumped storage, lowland etc. 334 
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Using the above parameters, each model simulation can be carried out for each month for a 335 

number of Monte Carlo ‘shots’ with different starting conditions for lake volume also specified 336 

by the user, i.e. based on historical patterns of lake volume. Alternatively, in the absence of 337 

this information, the lake is assumed to be full at the start of each month. Within this period 338 

input flows and loads are sampled from distributions generated from averages and standard 339 

deviations in loads taken from SIMCAT output, i.e. for river inflows, and the export load 340 

databases. The outputs of each month define the starting conditions from the next month 341 

along with a new starting volume. The simulation is continued for a number of years defined 342 

by the user until a steady state seasonal pattern of concentrations is reached. For larger 343 

lakes with longer retention times, a longer simulation period is required before stable 344 

conditions are achieved. Settling rates, release rates and starting sediment concentrations 345 

can also be sampled between bounds set by the user, initially based on literature values.  346 

 347 

Monthly outputs for total simulated concentrations and concentrations associated with each 348 

sector are generated for plotting either as monthly averages or long term monthly time series 349 

results. The latter provides information on how long the lake takes to reach a new steady 350 

state of seasonal pattern in concentrations (Figure S4).  351 

 352 

A number of changes were carried out on the existing SIMCAT water quality model to 353 

support the lake simulations: 354 

1. New boundary features called lake inflow and lake outflow and 355 

2. A new input feature downstream of the lake. 356 

The SIMCAT simulation effectively ends at the inflow boundary and resumes at the outflow 357 

after collecting output from the lake model. 358 

2.5 Model validation 359 

To validate the model, SAGIS-Lake output was compared with observed water quality data 360 

for 11 lakes, selected to be representative of different lake types (pumped storage, natural 361 

refill and bankside storage) and geographical regions. A combination of chemical 362 

substances were selected for the comparison (nutrients, one metal and one organic); Total 363 

Phosphorus, nitrate, benzo-ghi-perylene and copper. In the results below we show outputs 364 

from three representative lakes with each of the main types of hydrological control; pumped 365 

storage, natural refill and bankside storage.  366 



14 

 

 367 

3. RESULTS 368 

 369 

In general the lake model performed well with regard to comparison between model output 370 

and observed data and consistency of the source apportionment output with the nature of 371 

the lake catchments and upstream chemical sources for the 11 lakes used for validation 372 

purposes, across all types of hydrology (UKWIR 2013). For illustrative purposes one of each 373 

hydrological type is provided here, Rutland Water (pumped storage), Cotessey Pits 374 

(bankside storage) and Ormesby Broad (natural refill). Model performance was shown to be 375 

influenced by the accuracy of the SAGIS river model that provides inputs to the lake model 376 

and accuracy of the representation of within lake processes. The river model is most 377 

accurate for phosphorus and less accurate for the other chemicals.  378 

Annual and monthly input loads to each lake and reservoir from all sectors and source types, 379 

i.e. river, direct, local and pumped, are compiled in tables in the regional databases. 380 

Mapping tools have been developed in SAGIS to present source apportionment plots for 381 

these inputs in the form of pie and stacked bar charts (e.g. Figure 2.) as well as being able to 382 

show the relative contribution of each upstream sewage works to the total phosphorus loads 383 

(e.g. Figure S5 for Rutland Water). This is based on the functionality in SIMCAT to ‘track’ the 384 

contribution of individual sources to sector loads. 385 

  386 
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 392 

 393 

 394 

 395 

 396 

 397 

Figure 2.    Sector bar charts for sector input loads to lakes 398 

 399 

Model output for simulated water quality was compared with observed data for the selected 400 

lakes listed below.  401 

 Pumped Storage: Rutland Water (Anglian Water) 402 

 Natural Refill: Ormsby Broads (Trinity Broads, Anglian Water) 403 

 Bankside Storage: Costessey Pits (Anglian Water) 404 

These lakes were chosen with the aim of representing a variety of lake types with regards to 405 

location, hydrology and the nature of the chemical inputs. For illustrative purposes, one 406 

example of each is provided here where monitoring data were available. Further figures are 407 

provided in the Electronic Supporting Information (Figures S6 to S11) and a full validation 408 

report elsewhere (UKWIR, 2013). 409 

The following chemical substances were selected for the comparison (nutrients, one metal 410 

and one organic). 411 
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 Total Phosphorus 412 

 Nitrate 413 

 Copper 414 

 Benzo-ghi-perylene 415 

Source apportionment information and a comparison between model output and observed 416 

data are provided in Figures 3 and 4. For phosphorus and nitrate, lake model parameters 417 

were modified to best represent within lake processes and improve the fit with observed data 418 

(Table 2) but other chemicals were assumed to behave conservatively and no loss 419 

parameters were applied from the water column. For Ormesby Broad, groundwater inflows 420 

are based on outputs from regional EA groundwater models and monitoring data. Source 421 

apportionment for phosphorus at Rutland Water shows a wide range of sources, dominated 422 

by WwTW effluent. Bird and angler inputs of nutrients, new to the lake model, were shown to 423 

be only a relatively small contribution to the overall load. Nitrate loads on the other hand 424 

were made up almost entirely of arable sources and atmospheric deposition. Lowest 425 

concentrations were predicted and observed during the drier summer months. For Cotessey 426 

Pits a similar seasonal trend in nutrient concentration is observed, but agricultural inputs 427 

dominate both nitrate and phosphorus reflecting a more rural catchment. Ormesby Broad 428 

nutrient sources were dominated by groundwater inputs (Figure S11). Unlike the river SAGIS 429 

version, the model has the capacity to include bird and angling inputs for nitrogen and 430 

phosphorus from roosting and over wintering fowl and the use of nutrient-rich groundbait 431 

used by anglers. Based on the assumptions used these sources appear to be insignificant 432 

for these case studies sites, although it is not possible to rule out greater loads where the 433 

density of angling and bird populations are greater. Given the lack of detailed databases 434 

available regarding lake specific activities it is anticipated that users would be reliant on 435 

overwriting the default values for actual angling statistics and bird populations where they 436 

may be considered significant.  437 

The seasonal trends in the lakes are related to the changes in input concentrations, input 438 

flows and retention time in the lake through the year. Nutrient uptake and release from the 439 

sediment is modelled as part of the simulation and can be varied through the year if there is 440 

an indication of phosphorus sediment release in the summer. Apart from Ormesby Broad 441 

where this is the case, the loss rates are constant throughout the year in the examples 442 

shown.   443 
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 444 

Figure 3. Modelled (black line) and observed (orange dots) monthly average total 445 
phosphorus and nitrate concentrations (+/- standard deviation) in Rutland Water with 446 
monthly source apportion 447 

 448 

Figure 4.  Modelled (black line) and observed (orange dots) monthly average total 449 
phosphorus and nitrate concentrations (+/- standard deviation) in Cotessey Pits with 450 
monthly source apportionment  451 
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 452 
For copper in Rutland Water (Figure 5) concentrations are predicted to be between 4 and 5 453 

µg/l. There are no recent data with which to compare the simulations so for illustrative 454 

purposes data from 2006 (one or two per month with the exception of February and 455 

December) are provided. Observed concentrations are of the same order but lower; in the 456 

order of 2 µg/l, dominated by WwTW effluent, atmospheric deposition and background 457 

geology. Neither observed or predicted data suggested any significant seasonal variations in 458 

copper concentrations reflecting the low levels of inputs and broad range of sources.  459 

Performance of the river model for copper was generally good but background geology 460 

inputs for copper were derived from relatively sparse FOREGS data (Comber et al., 2013) 461 

potentially impacting on model accuracy for static water bodies. Furthermore, it should also 462 

be noted that Rutland’s catchment is large, most of the county of Northamptonshire, and so 463 

a factor of two difference between predicted and observed copper data may be considered 464 

acceptable based on a lack of calibration, uncertainty about transport and limited datasets. 465 

Observed data for benzo(ghi)perylene were absent, which means it is not possible to 466 

validate the model, but predictions suggest the presence of low ng/l levels with little seasonal 467 

variation, with urban runoff, atmospheric deposition and background contributions from 468 

contaminated soil being the main sources as would be expected from such a persistent 469 

contaminant largely released through combustion processes over hundreds of years (Figure 470 

S7).  471 
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472 

 473 

Figure 5.  Modelled (black line) and observed (for 2006 data - orange dots) monthly 474 
average total copper concentrations (+/- standard deviation) in Rutland 475 
Water and monthly source apportionment. 476 

  477 
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 478 

4. DISCUSSION 479 

A validation report comparing model results is provided elsewhere (UKWIR, 2013). The 480 

validation process aimed to identify any: i) calculation errors; ii) systematic errors that require 481 

modification related to the methodologies and their associated assumptions; iii) underlying 482 

uncertainties that may affect the performance of the tool and iv) possible performance 483 

improvements. Model outputs were compared with observed data for 11 lakes, selected to 484 

be representative of different lake types (pumped storage, natural refill and bankside 485 

storage) and geographical regions. Total phosphorus, nitrate, benzo(ghi)perylene and 486 

copper were selected to represent the main type of chemicals for which the model would 487 

likely to be used and which have widely differing sources and chemical characteristics. The 488 

lake model performed well with regard to predicted versus observed concentrations and 489 

consistency of the source apportionment output, with the nature of the lake catchments and 490 

upstream chemical sources. Model outputs were very much controlled by the accuracy of the 491 

SAGIS river model, that provides inputs to the lake model, and accuracy of the 492 

representation of within lake processes. The river model was most accurate for nutrients and 493 

less accurate for metals and organic substances because the latter groups have more 494 

limited data that form the basis of the source loads.  495 

It is anticipated the SAGIS Lake model will be used in the following ways: 496 

• Water quality planning for lakes - The lakes tools provide the first national 497 

modelling platform for water quality in lakes linked to a national river planning tool. 498 

This will now allow the extension of river basin planning to include lakes. Where non-499 

compliance with water quality objectives are observed within lentic water bodies, it is 500 

now possible to identify the main sources contributing to this exceedance.   501 

• Improve river quality simulations - By taking into account the influence of lakes on 502 

river quality and flow by modifying flow and providing natural purification of 503 

chemicals. 504 

• Reporting - SAGIS provides a range of visualisation options for chemical inputs and 505 

predicted within-stream and lake concentrations which could be readily used for 506 

reporting of pressure characterisation and compliance. 507 

• Testing of measures - SAGIS provides a means to assess the efficacy of 508 

remediation options related to each source and sector.  509 
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• Catchment management stakeholder engagement – The variety of sources and 510 

chemicals covered, linked to GIS mapping tools enhances the options for stakeholder 511 

engagement. 512 

• Identify further monitoring and research – The use of national datasets highlights 513 

areas of uncertainty in the estimation of source apportionment, thereby providing a 514 

focus for targeting resources on improving source data or the methodologies used to 515 

create the export coefficient databases. 516 

As a national tool, no calibration or model conditioning has been carried out on the tool at 517 

present and default values have been used in many cases; for example for river travel times 518 

and decay rates and lake settling and release parameters. Depending on the intended 519 

purpose of the model, it is important to review the accuracy of the initial output in relation to 520 

the questions being asked and consider the value of improving the input data and 521 

undertaking model calibration. For some chemicals and catchment conditions, complex 522 

hydrological interactions and dynamics (e.g. stratification) and active management 523 

(pumping) of lakes have a strong influence on water quality. In these circumstances, other 524 

models such as time series models or hydrodynamic mixing models may be more suitable 525 

than SAGIS or SAGIS output may be used to provide improved inputs to complex models.  526 

In considering output from the tool, it is important to understand uncertainty in the input data 527 

and representation of processes that will inevitably result in errors in the model output and 528 

differentiate this from systematic errors that may result from calculation or assumption based 529 

errors that can be corrected. Effects of uncertainty in the input data on the outputs are likely 530 

to be more evident at the local scale because the sample size of the data will be smaller. 531 

SAGIS in its current form provides outputs based on national data sets and for subsequent 532 

enhancement it will be important to identify key areas that would benefit from improvement in 533 

the underlying data and model refinement at the local scale.   534 

Although uncertainty between observed and predicted concentrations can be generated for 535 

individual lakes, owing to the variation in sources of the uncertainty it is not possible to 536 

provide quantify them as a whole. Consequently key sources of uncertainty related to input 537 

data, process representation and potential improvements are discussed below in Table 3 538 

(uncertainties in the existing river model, as reported previously (Comber et al., 2013) and 539 

available in the supporting information Table S11).   540 

 541 

542 
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Table 3. Source of uncertainty in the model  543 
 544 

Uncertainty 
Source 

Description of uncertainty Likely impact on model outputs 
and ways to reduce uncertainty 

Direct Data Inputs 

Groundwater Groundwater flows and water quality are provided as 
user defined inputs. Information is rarely available to 
quantify groundwater inputs so a default of no inputs 
is applied for most lakes.  

Groundwater inputs are likely to be 
underestimated (more significant in 
lowland than upland areas). 

Pumped 
inflows and 
outflows to 
lakes 

Pumped flows are based on the abstraction data in 
SIMCAT and information in the Water Resources GIS 
on the abstraction locations that operate as intakes to 
reservoirs. This information is incomplete and some 
lake abstractions will not be included in the SIMCAT 
databases e.g. if lakes are not located on the river 
polyline. 

Review of abstraction data for lakes 
and input of better local data required 
where likely to be significant. 

Inputs to SIMCAT 

Lake 
modelling 

The lake model used in SAGIS-Lakes is a simple 
zero dimensional tank model with no horizontal or 
vertical spatial differentiation. Uneven mixing 
between different areas of a lake or vertical 
stratification are, therefore, not taken into account so 
performance is likely to be worse in lake where these 
processes are important. 

 

History of 
lake loading 

Within lake concentrations are a reflection of 
historical loading of chemicals, e.g. phosphorus, 
whereas the SAGIS model only accounts for current 
loading.  

Assess history of loading when 
interpreting outputs 

Inputs from other models 

Wildfowl National wildfowl numbers and distributed across the 
lakes based on the perimeter length. Lakes will 
however vary and local data is required if wildfowl is 
likely to contribute significantly to input loads. 

Inputs will tend to be overestimated 
in lakes with small bird populations 
and underestimated if bird 
populations are large. 

Anglers National angler numbers and distributed across the 
lakes based on the perimeter length. Again, local 
data is required if angling is likely to contribute 
significantly to input loads, which is most likely to be 
the case in small lakes. 

Inputs will tend to be overestimated 
in smaller, heavily fish stocked lakes. 

 545 

Such a large spatial model such as SAGIS clearly requires national datasets with the 546 

aim of providing a consistent approach to national and regional water quality 547 

planning. This is obviously at the expense of localised sources which may impact on 548 

water quality. Furthermore, hydrological connectivity between lakes and the 549 

catchment is often complex and operational management may substantially influence 550 
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water quality, e.g. the timing of pumping to reservoirs. The export load databases for 551 

birds and anglers are, for example, derived from regional information and local more 552 

detailed information will may be available, e.g. bird numbers on lakes which could be 553 

utilised in future. This is particularly important for lakes because of their hydrological 554 

complexities. Furthermore, lakes often have relatively small local catchments that 555 

strongly influence water quality. At this spatial scale it is often essential to apply 556 

detailed local knowledge to develop a reliable understanding of key influences and 557 

processes. The functionality of the lakes model in SAGIS ensures that more detailed 558 

local information can be easily accommodated by the model user. 559 

5. CONCLUSIONS 560 

The SAGIS model represents the first comprehensive source apportionment tool to 561 

be developed on a national scale for such a wide variety of chemicals and sources to 562 

lakes and reservoirs. To meet ever more stringent standards multiple interventions 563 

will be required to reduce discharges from point and diffuse sources. SAGIS will 564 

assist regulators in making effective decisions regarding how best to meet 565 

challenging water quality targets by identifying the predominant source of a chemical 566 

which can now be extended to management of lakes and reservoirs.  567 

 568 

SAGIS provides a flexible framework and research to improve the model datasets 569 

and representation of processes is ongoing. This process is supported by the 570 

regulators and industry within the UK to drive consistent, fair attributed, cost-effective 571 

water quality improvements. 572 
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