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Dear editor,

we submit a revised version of the manuscript now entitled “Pliocene stratigraphic 

paleobiology in Tuscany and the fossil record of marine megafauna”. We have carefully 

considered the comments of the first reviewer and your comments and revised the 

manuscript accordingly.

We look forward hearing from you.

For the authors,

Best regards,

Stefano Dominici



Dear editor,

we submit a revised version of the manuscript now entitled “Pliocene stratigraphic 

paleobiology in Tuscany and the fossil record of marine megafauna”. We have carefully 

considered the comments of the first reviewer and your comments and revised the 

manuscript accordingly. In particular, we would like to explicit the following answers (in 

red) to review no. 1 (in blue):

Some suggestions that could improve the manuscript:

1) The ambitious paleoecological considerations intended to link the supposed high 

diversity/abundance of the marine vertebrate assemblage to the paleobiogeography/food 

availability of the northwestern Mediterranean are, in my opinion, not supported by solid 

data. In fact:

A) data about the systematic composition of the vertebrate fossil assemblage are only 

reported (for the marine mammals) in table 1 and not discussed in the text (note that I 

disagree with the authors’ statement about "the systematics of Mediterranean Pliocene 

LMV have been recently reviewed"); data about the sharks are not reported;

B) also admitting that the systematic assignations reported in this list are sufficient for this 

analysis, no data are reported about, for example, the trophism and, more generally, the 

ecological behavior of the listed taxa; 

C) diversity and abundance are cited for the vertebrates, but not quantified;

D) the link between diversity and primary productivity/food  availability must be better 

analyzed considering the rich and often controversial bibliography on this topic; 

E) baleen whales and other vertebrates from the Pliocene of Tuscany are here considered 

 'apex predator': the authors must define better this ecological term. In my opinion, baleen 

whales cannot be included among the top predators, as well as other 'large' marine 

vertebrates as they feed on plancton and small fishes with filtering techniques. Apex or top 

predators can be considered some (but not all) 'large' sharks as Carcharodon charcharias 

and Cosmopolitodus hastalis, and, among cetaceans, Orcinus citoniensis.

So, I suggest the authors to review the part focused on the paleoecology of the vertebrate 

assemblage, improving the data. Alternatively, it could be drastically shortened or totally 

removed.
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1A: We enlarged the marine mammal dataset, from 39 to 64 reports, and carefully 

controlled existing literature on the systematics.

1B: We have greatly enlarged the literature on the ecology of modern Mediterranean 

marine mammals and introduced data on the ecology of sharks. Based on these data, we 

attributed a preferred prey and a feeding mechanism to each taxon of our list.

1C: We calculated minimum number of marine mammal specimens. The systematics were 

sufficient for a conservative estimate of standing diversity in terms of species richness of 

both marine mammals and sharks. Marine mammal abundance and richness have been 

calculated for six consecutive intervals and for the overall epoch and compared to modern 

values for the north-eastern Mediterranean. A Pliocene-modern comparison is also given 

for species richness in sharks. We introduced new tables, and two histograms (Fig. 9C-D), 

for an easy understanding of diversity trends during the Pliocene.

1D: In expanding the reference list, we have highlighted the overwhelming evidence for a 

relationship between marine megafauna diversity and primary productivity (bottom-up 

control on marine ecosystems), but also decoupled this from structural factors such as 

trophic cascade (top-down controls exerted by large predators).

1E: There’s no formal definition of what “marine megafauna” is, but practice adopted also 

by palaeontologists includes all marine mammals, seabirds, sea turtles, sharks and rays 

(e.g., Lewison et al., 2004; Pimiento et al., 2017). We clearly stated what we mean by 

apex predator, using concepts derived from modern ecological literature. In particular we 

specify that the definitions of apex predators (or top predators) and mesopredators are 

relative, and to an extent context-dependent (species that in a contact are apex predators, 

in another are mesopredators). By any means, filter-feeding baleen whales are considered 

apex-predators of their community. To avoid misunderstanding between ecological and 

paleoecological usage, we informed on the trophic level of each Pliocene species by 

comparison with modern values, for both marine mammals and sharks.

2) The authors propose a link between the Pliocene-Pleistocene increase in whale size 

and in bone-eaters worms diversity: these considerations should be better supported by 

including more bibliographical data and also by an eventual analysis of the Pliocene 

Tuscany vertebrate assemblage. Are the marine vertebrates from Pliocene of Tuscany 

particularly large? If yes, please support this affirmation with data. My preliminary 

evaluation is that there are some large baleen whales (but not 'giant whales' as today), 

some medium-small sized baleen whales, and several relatively small marine mammals 
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(odontocetes, pinnipeds and sirenians). So, why also the 'small' vertebrates are not 

preserved in the deep sea sediments of the Pliocene of Tuscany?

We have given figures for size differences between Pliocene and modern marine 

magafauna. We are explicit in stating the complex nature of the comparison between MM 

at different times, but we are also clear in relating the radiation of bone-eating worms, and 

the importance of a depth-related taphonomic overprint in the Pliocene fossil record, to the 

emergence of large whales. That is to say, not all MM were large, but some were. We also 

see no need to limit this effect to the carcass of true giants, like the modern blue whale. 

That is to say, we think that large is large enough.

3) The analysis is focused on the 'large' marine vertebrates: in my opinion 'large' is rather 

vague is it is not well defined by the authors. It seems that the authors consider as 'large 

vertebrates' all cetaceans (including the smaller odontocetes), all pinnipeds and all 

sirenians, among the tetrapods (but not the marine turtles and birds), and 

Carcharhiniformes (note that several carchariformes, as the catsharks, are not longer than 

50 cm) and Lamniformes among sharks: it is right?

As stated above, the ecological definition of “marine megafauna” includes smaller animals 

(sea birds, otters, turtles). We focus on the general structure of the MM association, not on 

the role of a particular species.

4) in the analysis are also included some 'large' sharks: their fossil record is exclusively 

based on isolated teeth and most of these are found associated to cetacean skeletons. 

This should be better outlined, since these remains have a different taphonomic 

significance that the bones of the other vertebrates

We have expanded the review of the Pliocene shark record of Tuscany in Tables 5-6 and 

discussed it in the text. Taphonomy has been expanded, also in relationship to evidence of 

interaction between different MM species.

5) the organization of the manuscript, including the presentation of data, results and 

discussion is often unclear and could be improved. Some suggestions:

-  the numeration of the chapters/paragraphs must be revised (the number 3 is repeated 

three times)
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- all the chapters from 'Distribution of large marine vertebrates', to ‘the Biotic factors’  (lines 

950-2012) must be included in the 'Results'

- the paragraph '6.2 Taphonomic control' reports an interesting bibliographical review, but 

no reference to the material here examined.

We have corrected the organization of the ms as suggested. Tables have been expanded 

and augmented in number.

6) Table 2 appears as the more important source of this paper, since it condenses all the 

data about the marine mammals discussed and elaborated in the work. By contrast, the 

table does not seem to have been carefully prepared. For example, most of the specimens 

lacks the description, although these data can be easily found in bibliography (e.g.: the 

Orcinus citoniensis holotype is an articulated partial skeleton) and the few data reported 

are often wrong (e.g.  MOm2-2 and WSi2-1 are not articulated skeleton); moreover it is not 

easy to identify the specimens reported without the catalogue number of the museum 

where they are kept. For example it is not possible identify WFi4-3 from Orciano (no data 

about the systematics and the bones preserved)  considering that Lawley (1876) reported 

several remains from the same locality; similarly, it is reported an articulated skeleton of 

sirenian from Arcille (MOm2-2) based on Tinelli (2013): but Tinelli (2013) described 4 

skeletons from Arcille (3 disarticulated and 1 articulated; see also: Sorbi et al. 2011, Tinelli 

et al. 2012).

We have expanded Tab. 2 and included much more taphonomic information, making it 

more homogenous and informative, also with respect to references. We have excluded 

specimens cited, but no longer traceable (e.g. Lawley 1876).

7) All 'dugongs' in the text must be changed with 'sirenians' ('dugong' is referred only to 

thWe extant Dugong dugong species)

Done

8) The fossil vertebrates from Tuscany are named in the text using a inhomogeneous 

approach about their systematic assignation:  I suggest to uniform (maybe using the more 

detailed determination  available from the literature  for all specimens cited.
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Done (see new Tab. 2)

9) It is unclear if the logs of Figure 4 have been measured by the authors or taken from 

bibliography. In the second case, I suggest to add the references. This is recommended 

particularly for the ones taken from the PhD thesis of Chiara Tinelli. This thesis is available 

online, but, since it has not yet been published, it is important to make clear when the 

authors used these data.

Done, references added in the caption of Fig. 2

10) In the log of Arcille locality (figure 4) the sirenian is placed at the base of the HST. I 

personally participated to the collection of the 4 skeletons discovered in this locality and all 

were found inside the TST, under the HST (see also Tinelli et al. 2012; Tinelli, 2013).

Done (we refer to a “maximum flooding interval”, instead of MFS)

Other more punctual corrections and comments are reported in the annotated manuscript.

 

We corrected the text following comments annotated by the reviewer on the ms

We would also like to answer your comments:

This is an interesting contribution about the fossil record of marine vertebrates and its 

relationship to depositional environments. Although it is focused on the Pliocene of 

Tuscany, the topic is wide enough to be of interest to the readership of Earth-Science 

Reviews.

Both reviewers liked the manuscript. Nevertheless, Reviewer 1 makes many valuable 

comments and suggestions on how to improve it. For example, he thinks that “The 

ambitious paleoecological considerations….are…not supported by solid data”, that more 

data are need to support the relationship between whale size and bone-eating worm 

diversity, that the definition of “large vertebrates” is quite ambiguous, and that the 

organisation of the manuscript and the tables need improvement.

Reviewer 2 is satisfied with the manuscript the way it is now. He says that the coordinates 

of the studied localities should be added, and that the data should be deposited in the 

Paleobiology Database.
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We look forward uploading our data in PBDB

I have looked through the manuscript myself and have to agree with Reviewer 1: there is 

need for a moderate to major revision to make this basically nice and interesting study 

ready for publication. Reviewer 1 suggests to either improve or eliminate the 

palaeoecological analysis. I am strongly in favour of keeping it in (this makes the paper 

interesting also for a non-specialized scientific community) but in this case complement 

and improve the data. Consequently, the manuscript should be expanded to accommodate 

more data and more explanations. Also, please polish the tables (including the 

supplementary ones) and the general organization of the manuscript.

Additional suggestions from my side: In the legend to Figure 3, say “SCUBA diver” and not 

“man” for scale. In the legend to Figures 4 and 8, explain the sequence-stratigraphic 

abbreviations.

We kept the paleoecological analysis, as you suggested, and largely expanded the 

database and the reference list so as to sustain our point. We corrected Fig. 3 caption as 

suggested.

We look forward hearing from you.

For the authors,

Best regards,

Stefano Dominici
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1

SPliocene stratigraphic paleobiology in the Pliocene of 

Tuscany and the fossil record of large marine 

vertebratesmarine megafauna

Stefano Dominici (Università di Firenze, Museo di Storia Naturale, Firenze, Italy)

Silvia Danise (Plymouth University, School of Geography, Earth and Environmental Sciences, 

Plymouth, United Kingdom)

Marco Benvenuti (Università di Firenze, Dipartimento di Scienze della Terra, Firenze, Italy)

Abstract

Tuscany has a rich Pliocene record of marine megafauna (MM), including mysticetes, 

odontocetes, sirenians and seals among the mammals, and six orders of sharks among the 

elasmobranchs. This is reviewed with respect to paleogeography and sequence-

stratigraphic occurrence in six different basins. Conditions at the ancient seafloor are 

explored by means of sedimentary facies analysis, taphonomy and multivariate techniques 

applied to a large quantitative dataset of benthic molluscs. MM is rare or absent in most 

basins during the Zanclean, except in one basin, and most abundant in Piacenzian deposits 

in all six basins. MM occurs preferentially in fine-grained shelfal highstand deposits of small-

scale depositional sequences, or at condensed horizons of the maximum flooding interval. 

It is rare in shallow marine paleonvironments and nearly absent in bathyal paleosettings. 

Paleogeographic and paleoecologic evidence, and a comparison with modern patterns of 

marine upwelling suggest that a wedge of nutrient-rich waters sustained in the offshore 

during the Pliocene a high biomass of primary producers and a community of apex 

consumers and mesopredators, similarly to the modern Northwestern Mediterranean Sea, 

with a higher species-richness than the modern. The highest MM diversity coincides with 
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2

the mid-Piacenzian warm period, suggesting a link between climate and diversity. We 

propose that not all marine environments were suitable for marine mammal preservation. 

Buoyant carcasses were preferentially dismembered and destroyed in high-energy shallow 

waters, with the possible exception of delta front deposits, where sudden sediment input 

occasionally buried pristine carcasses. We hypothesise that carcasses sunken on the 

seafloor below the shelf break underwent destruction through the activity of a whale-fall biota 

of modern type, specialised in the consumption of decomposing tissues, both soft and 

mineralised. A taphonomic window was left between storm wave base and the shelf break. 

Here water pressure is high enough to prevent the formation of decomposing gases and the 

resurfacing of carcasses, while the lack of a specialised whale-fall biota slows down bone 

degradation with respect to deeper settings. Sedimentation rate is high enough to cover 

skeletal material before its complete destruction. An estimate of paleobathymetries based 

on multivariate techniques suggests that the preferential depth for the inclusion of MM in the 

fossil record is 30-300 m. The results are compared with major Mesozoic and Cenozoic MM 

records worldwide. Available evidence suggests that the Neogene radiation of large whales, 

true ecosystem engineers, triggered the radiation of a bone-eating fauna that hampered, 

and hampers, MM preservation in the deep sea.Tuscany has a rich Pliocene record of 

marine megafauna (MM), including mysticetes, odontocetes, sirenians and seals among the 

mammals, and six orders of sharks among the elasmobranchs. This is reviewed with respect 

to paleogeography and sequence-stratigraphic occurrence in six different basins. Conditions 

at the ancient seafloor are explored by means of sedimentary facies analysis, taphonomy 

and multivariate techniques applied to a large quantitative dataset of benthic molluscs. MM 

is rare or absent in most basins during the Zanclean, except in one basin, and most 

abundant in Piacenzian deposits in all six basins. MM occurs preferentially in fine-grained 

shelfal highstand deposits of small-scale depositional sequences, or at condensed horizons 

of the maximum flooding interval. It is rare in shallow marine paleonvironments and nearly 
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absent in bathyal paleosettings. Paleogeographic and paleoecological evidence and a 

comparison with modern patterns of marine upwelling suggest that a wedge of nutrient-rich 

waters sustained in the offshore during the Pliocene a high biomass of primary producers 

and a community of apex consumers and mesopredators, similarly to the modern 

Northwestern Mediterranean Sea, with a higher species-richness than the modern. The 

highest MM diversity coincides with the mid-Piacenzian warm period, suggesting that facies 

control does not obscure a link between climate and diversity. We underline however that 

not all marine environments were suitable for marine mammal preservation. Buoyant 

carcasses were preferentially dismembered and destroyed in high-energy shallow waters, 

with the possible exception of delta front deposits, where sudden sediment input 

occasionally buried pristine carcasses. We hypothesise that carcasses sunken on the 

seafloor below the shelf break underwent destruction through the activity of a whale-fall biota 

of modern type, specialised in the consumption of decomposing tissues, both soft and 

mineralised. A taphonomic window was left between storm wave base and the shelf break. 

Here water pressure is high enough to prevent the formation of decomposing gases and the 

resurfacing of carcasses, while the lack of a specialised whale-fall biota slows down bone 

degradation with respect to deeper settings. Sedimentation rate was high enough to cover 

skeletal material before its complete destruction. An estimate of paleobathymetries based 

on multivariate techniques suggests that the preferential depth for the inclusion of MM in the 

fossil record was 30-300 m. The results are compared with major Mesozoic and Cenozoic 

MM records worldwide. Available evidence suggests that the late Neogene radiation of large 

whales, true ecosystem engineers, and their size increase, triggered the radiation of a bone-

eating fauna that hampered, and hampers, MM preservation in the deep sea. Stratigraphic 

paleobiology and an ecosystem-level approach deliver useful insights in the nature of the 

fossil record.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180



4

1. Introduction

LThe modern marine megafauna (MM) includes all marine mammals, seabirds, sea turtles 

and sharks, apex consumers that influence their associated ecosystems (Lewison et al., 

2004), both pelagic and nearshore, through top-down forcing and trophic cascades, and 

now severely affected by human impact (Estes et al., 1998, 2011, 2016). arge vertebrates 

have played a key role in structuring marine ecosystems. POn a macroevolutionary scale, 

predation pressure has shaped the evolution of marine preys, with feedbacks on predators, 

setting the stage for the Mesozoic marine revolution (Vermeji, 1977;, Chen &and Benton, 

2012; , Benton et al., 2013). The new ecosystem structure started in the the Early and Middle 

Triassic with several lineages of Actinopterygian fishes (Chen and Benton, 2012), continuing 

with marine reptiles possessing feeding styles (Fröbisch et al., 2013;, Motani et al., 2015;, 

but see also Motani et al., 2013) and reproductive adaptations (Motani et al., 2014) of 

modern type. Triassic and Jurassic novelties underwent a prolonged crisis during the 

Cretaceous, with the gradual extinction of plesiosaurians, and mosasaurs (Benson et al., 

2010) and ichthyosaurs (Fischer et al., 2016), and a diversity drop of sharks (Guinot et al., 

2012), but marine giants. A marine megafauna of comparable size of comparable size 

returned in the Paleogene, with the new diversification of neoselachian elasmobranchs 

(Kriwet &and Benton, 2004) and the evolution of large marine mammals: Eocene 

archaeocetes (Uhen, 2008, Gingerich et al., 2009) and Oligocene odontocetes and 

mysticetes (Gingerich, 2005;, Marx &and Uhen 2010, Berta, 2012; Marx et al., 2016) 

empowered by high metabolic rates and new anatomic features (Armfield et al., 2013). 

Among the largest vertebrates of all times, after a dramatic size increase at the outset of 

glacial age (Marx et al., 2016; Bisconti et al., 2017; Slater et al., 2017), bBaleen and sperm 

whales are among today’s ocean’s ecosystem engineers (Roman et al., 2014) with which to 

compare their Mesozoic analogues (Smith et al., 2016). . Notwithstanding an enormousa 
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crucial ecological and evolutionary importancerole in ecology and evolution of these 

animals, the nature and distribution of the MM fossil record of large marine vertebrates 

(LMVs) has been relatively littleless explored, compared to that of marine invertebrates and 

terrestrial vertebrates. Available data suggest a strong correlation between taxic diversity 

and the number of marine fossiliferous formations, resulting in megabiases in the fossil 

record (e.g., Cretaceous: Benson et al., 2010). Within its vast history, studies on the 

geologically recent marine megafauna offer important insights, thanks to aconsidering our 

better knowledge of: 1) geological setting, in terms of outcrop extent and high-resolution 

stratigraphy; 2) ecologic role played by individual species, whether extant or extinct, in terms 

of habitat, trophic role, life histories and population structure, thanks to a comparison with 

extant descendants, or close relatives; 3) MM taphonomy, based on actuopaleontology. A 

recent global study revealed that MM extinction peaked in the late Pliocene, between 3.8 

and 2.4Ma, linked with the sudden drop in the extension of nearshore environments due to 

a large sea level regression, confirming that the fossil record offers important insights on the 

vulnerability of keystone marine species to climate change (Pimiento et al., 2017).linked to 

the sudden drop in the extension of nearshore environments after a large sea level 

regression (Pimiento et al., 2017), confirming that the fossil record offers important clues on 

the vulnerability of keystone marine species to climate change. We contribute here to theira 

better understanding of the Pliocene fossil record by reviewing the rich and varied fossil 

record of Pliocene LMVsMM of Tuscany, in Italy. In particular, we consider all reports of 

Pliocene cetaceans, sharks, sirenians and pinnipedsmarine mammals and sharks and 

revise taphonomy and the sedimentary facies associated with all majorknown recent 

findings, framingsetting them within a sequence stratigraphic framework. At the same time 

we expand on We also expand knowledge on paleoenvironmental contextualisation by 

considering the paleoecology of fossil invertebrates on a regional basisWe also reconstruct 

the paleoenvironmental context and review data on a part of the marine ecosystem through 
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the paleoecology of fossil invertebrates on a regional basis, following a stratigraphic 

paleobiological approach that can be applied to both the recent and the distant geological 

past (Patzkowsky &and Holland,, 2012). Published studies that have taken this direction are 

still a few, examples concerning Jurassic ichthyosaurs, plesiosaurs and pliosaurs (McMullen 

et al.,, 2014), Cretaceous turtles, plesiosaurs, bony fish and sharks (Schemisser McKean 

&and Gillette,, 2015), Eocene archaeocetes, dugongssea cows and sharks (Peters et al., 

2009), and Neogene whales, pinnipedsmarine mammals and sharks (Boessenecker et al., 

2014). All of these papers record the co-occurrence of shelly faunas, only one undertaking 

quantitative studies of the distribution of fossil invertebrates associated with sedimentary 

facies (Jurassic of the Sundance Formation: McMullen et al.,, 2014,; see also Danise &and 

Holland,, 2017). The benefits of an outcrop-scale sequence stratigraphic approach include: 

(1) an independent record of relative sea-level change to test paleobiological hypotheses 

(see also Pyenson &and Lindberg,, 2011;; Noakes et al.,, 2013); (2) a chronostratigraphic 

scheme for high-resolution correlations; (3) a means to recognise minor and major breaks 

of the record; (4) an ecological and sedimentary framework for taphofacies distribution 

(Patzkowsky &and Holland,, 2012); and (5) an independent control of onshore-offshore 

patterns of fossil assemblages (e.g., Tomašových et al.,, 2014). 

From a top-down approach that emphasises the role of large marine vertebrates (LMVs) as 

apex predators of their trophic web, rResearchers that study the geologic history of marine 

ecosystems have focused on patterns of ecological restructuring based on the taxonomy of 

selected groups (e.g., Thorne et al.,, 2011;; Benton et al.,, 2013;; Scheyer et al.,, 2014; 

Fischer et al., 2016), at the expenses of a more holistic approach that includes functional 

diversity and embraces as many ecosystem components as possible (Dineen et al., 2014). 

This attitude should be reversed, similarly toBy analogy with ecologists working on extant 

ecosystems who shift focus from models based on single groups (e.g., Steeman et al.,, 

2009) to an all-embracing vision of marine life (Lawton, 1994; Sergio et al.,, 2014), 
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connecting food web ecology with landscape ecology (Polis et al., 1997; Estes et al., 2011), 

stratigraphic paleobiology can draw from the fossil record and offer multidimensional 

insights on the complex geological history of modern marine ecosystems.. 

After revising LMVsfossil MM hosted in major museums of Tuscany, both isolated and 

articulated remains, we then focus on all fossil skeletonsbones that couldcan be 

stratigraphically (e.g., Bianucci et al., , 1995, ; 1998,; 2001;; Tinelli,, 2013) and 

taphonomically framed (e.g., Dominici et al., 2009; , Bianucci, 2010;, Danise &and Dominici, 

2014). The systematics ofMM lists for the Mediterranean Pliocene LMV have been recently 

reviewedupdated (cetaceansmarine mammals: Landini et al., 2005; Bianucci et al., 2009a; 

Sorbi et al., 2012; Bianucci &and Vomero, 20154; elasmobranchssharks: Marsili, 2006; 

sirenians: Sorbi et al. 2012). ESpecies-level ecological data, are available fromon modern 

Mediterranean studies of apex predatorsconsumers and mesocarnivores (Pauly et al., 1998; 

Cortés, 1999), with detailed information made available for Mediterranean species following 

conservation concerns  (e.g., baleen and sperm whalesmarine mammals: Notarbartolo di 

Sciara, et al., 2003, 2008,2016 Pirotta et al. 2011), with species-level data (; sharks: 

Cavanagh &and Gibson, 2007), allowing for a significantdetailed paleoecological evaluation 

of the Tuscan fossil record. The actualistic approach is also viable for species of benthic 

molluscs, about half of which are still extant in modern Mediterranean sea floorsbottoms 

(55% of extant species of Mediterranean and North Sea bivalves, excluding strictly brackish 

and bathyal forms, i.e., 202 out of 367 species, survives from the Zanclean: Raffi et al., 

1985). The regional quantitative study of molluscan assemblages was the basis for an 

independent assessment of paleoenvironments, paleoecology and paleobathimetry. A 

revisione of abundance distributions of marine molluscs, the largest contributors to 

Mediterranean Pliocene shell beds and a key component of Mesozoic and Cenozoic marine 

ecosystems (Stanley, 1975;; Vermeij, 1977), allowed to further explore the structure and 

composition of the benthic component of Pliocene marine ecosystems, and reconstructing 
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a paleobathymetric gradient (e.g., Scarponi &and Kowaleski, 2004) along which to frame 

LMVMM taphonomyoccurrence. The present work must necessarily start with a review of 

the chronostratigraphy and physical stratigraphy of the Tuscan marine Pliocene.

1. Geological setting

The Pliocene succession of Tuscany was deposited in a complex setting characterizedsed 

by continental collision related to the later evolution of the Northern Apennines chain. 

According to a well-establiilshed hypothesis, the region, affected by shortening before the 

Middle-Late Miocene, accommodated by NE-verging thrust and fold systems, underwent 

crustal extension during the late Neogene and the Quaternary (DeCelles, 2012; Fig. 1). 

Crustal extension generated differential subsidence in a series of normal-fault controlled 

hinterland sedimentary basins, filled throughout by continental and shallow marine, mostly 

clastic successions (Martini &and Sagri, 1993;, Pascucci et al., 2006;, Brogi, 2011). An 

alternative hypothesis places the late orogenic hinterland basins in a more complex tectonic 

setting characterizedsed by the alternation of compressive, extensional and transcurrent 

stress fields (Benvenuti et al.,, 2014; ; Bonini et al.,, 2014). 

The Neogene Tuscan basins considered in this work include, from West to East, and from 

North to South, the Fine Basin (FB; Bossio et al., 1997), the Volterra-Era Basin (VEB; Bossio 

et al., 1994), The Elsa Basin (EB; Benvenuti et al., 2014), the Ombrone-Orcia Basin (OOB; 

Bossio et al., 1991;, Nalin et al., 2010), the Siena-Radicofani Basin (SRB; Ghinassi &and 

Lazzarotto,  2005;, Martini et al., 2011, 2016), and the Chiana Basin (CB; Fig. 1: Pesa Basin 

not considered here). With one exception (OOB, see below), these basins show a shape 

conditioned by the structural and physiographic features of the inner portion of the Northern 

Apennines. Their NW-SE general elongation reflects the trend of the thrust-related anticline 

ridges developed during earlier collisional stages. These compressive structures have 
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bounded most basins through their infilling, only to be obliterated by younger parallel normal 

fault systems, leaving an invariant stratigraphic onlap of the Pliocene successions onto the 

basin margins. Despite a NW-SE distribution of the hinterland basins, the structural setting 

is responsible for a NE-trending physiographic and paleogeographic gradient, where the FB 

is closest, and the CB furthest, from offshore settings throughout the late orogenic phase, 

with important implications for the facies architecture and the distribution of marine 

vertebrates and shell beds. Differential active uplift of the basin shoulders during the 

Pliocene, coupled with important erosional phases, resulted in a different preservation of the 

original stratigraphic architecture. The infill during the Zanclean is generally 

characterizedsed by relatively continuous open marine successions, the correlative fluvial-

coastal systems missing due to uplift and erosion of basin margins. On the other hand, the 

Piacenzian infill is characterizedsed by genetically-connected, fluvial, coastal and shallow 

marine facies tracts, particularly well-preserved in the EB, hinting to reduced uplift of the 

marginal areas. The modern physiography of OOB, escaping the structurally-controlled 

geometry of the other basins, mimics instead an original fluvial network developed during 

the latest Messinian, flooded after the Salinity Crisis (Bossio et al.,, 1991;; Benvenuti et al.,, 

2015), filled during the Pliocene, and finally disrupted by post-Pliocene uplift and erosion. 

This difference in the structural history also justifies the preservation in OOB of Zanclean 

fluvial and shallow marine facies (Fig. 2).

1.1 Pliocene Stratigraphy

The Neogene succession of Tuscany is up to 2000 m-thick, about half of which belongs to 

the uppermost Miocene-Pleistocene interval (Bossio et al., 2004; , 1997;7, Benvenuti et al., 

2014). The Pliocene has been traditionally subdivided into three main informal 

litostratigraphic units: continental conglomerates and sandstones at the base, overlain by 
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the “Blue Clay Formation” (Argille Azzurre: Zanclean-lower Piacenzian), marking the post-

Messinian Mediterranean marine transgression and forming the thickest part of the basin 

infill (e.g., Bossio et al., 1994;, 1997; Ghinassi &and Lazzarotto, 2005), and the “Upper 

Sands” (Sabbie superiori: Piacenzian-Gelasian) and conglomerates, deposited during the 

ensuing regression. Several finer litostratigraphic units have been introduced to define the 

local stratigraphy, resulting in a complex and largely informal litostratigraphic terminology 

which includes Zanclean lower “Blue Clays” and Zanclean-Piacenzian upper “Blue Clays” 

(Capezzuoli et al., 2015), the latter eventually further separated by the widespread 

occurrence of Piacenzian carbonates (Nalin et al., 2016). The lower Zanclean (OOB: 

Ghinassi, 2007;, Nalin et al., 2010; , Dominici et al., 2012) and the Piacenzian, are 

characterised by the high-frequency alternation of coarse-grained and fine-grained facies, 

ranging from fluvial to marine shelf settings (Benvenuti et al., 1995;, 2007; , 2014;, Martini 

et al. 2011, Fig. 2). The dynamics of the Pliocene infilling are better-understood in the EB, 

where six synthems have been defined, each up to more than 200 m-thick, further 

subdivided in a number of elementary and composite depositional sequences and 

chronologically calibrated through marine biostratigraphy and continental vertebrate 

biochronology (Benvenuti &and Del Conte, 2013;3, Benvenuti et al., 2014, with references).

2. Materials and methods

Stratigraphic sections were measured and described at several localities (Fig. 1). Siliciclastic 

and carbonate facies were described, subdivided into groups of facies based on lithology, 

sedimentary structures and ichnology, and interpreted in terms of process and depositional 

environment (Tab. 1). Each group represents a set of individual facies forming monogenic 

associations (in the sense of Mutti et al.,,1994), i.e., the meter-scale stacking of facies which 

express the autocyclic behaviour of specific depositional systems within a given 
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accommodation space (Benvenuti &and Del Conte,, 2013). Sequence stratigraphic 

concepts have been applied to reconstruct the dynamics of basin infills at a hierarchy of 

scales, advancing hypotheses on controlling factors. The chronostratigraphic subdivision of 

Benvenuti et al. (2014), which divides the Pliocene into six synthems, S1-S6 from older to 

younger, was extended to all six Tuscan basins by referring to available biostratigraphic 

schemes (Fig. 2). The sequence stratigraphic interpretation of S2 in OOB is based on Tinelli 

(2013). Other parts of the S1-S3 succession were drawn based on available litostratigraphic 

literature (see below). Studies integrating sedimentary facies analysis, biostratigraphy and 

magnetostratigraphy (Nalin et al.,, 2016) have helped correlating several discontinuous 

carbonate bodies typical of S4. The reader is referred to Benvenuti et al. (2007;7; 2014) for 

details on facies analysis and sequence stratigraphic interpretation of synthems S3-S6.

First, data on the geographic distribution of fossil marine mammals,  and large sharks and 

sirenians were collectedlargely based on collections housed at the Natural History museums 

of the University of Florence (UFMSN), University of Pisa (UPMSN), and Accademia de’ 

Fisiocritici of Siena (AFMSN), the three largest collections of Tuscany, and at the Geological 

Museum Giovanni Capellini, Bologna University (MGGC). In particular, counts of cetaceans 

were based on UFMSN collections (Mysticeti and Odontoceti, nN = 142), and those of large 

shark on the sum of UFMSN, UPMSN and AFMSN collections (Carcharhiniformes and 

Lamniformes, nN = 337, data synthesizedsed from Marsili, 2006), sirenians from all reports 

in Tab. 2 (N = 10). Each record is formed either by a single element (e.g., whale bone, shark 

tooth), by a few elements of the same individual, or by a whole, quasi-articulated skeletons. 

A large proportion of this dataset lacks precise location, allowing only for some crude 

stratigraphic attribution (Fig. 3). 

On a second step, all fossil Tuscan Pliocene cetaceans and other marine mammals (Sirenia, 

Carnivora), sirenians and pinnipeds that could be framed within the available high-resolution 

stratigraphic framework and associated with taphonomic data, were selected. At this step, 
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after excluding isolated and smallerunidentified MM remains, a dataset of 39 cases64 

specimens (cetaceans nN = 3250; dugongsirenians nN = 410; pinnipeds nN = 24) was 

assembled. Many of them were aAssociatiationed with shark teeth is frequent (55% of 25 

cases according to Danise &and Dominici, 2014 for the Italian Pliocene; see also Bianucci 

et al., 2002, 2010). The majority of the 3964 specimens are part ofincluded in the catalogue 

of UFMSN, UPMSN,  and AFMSN and MGGC, whereas a few are stored in smaller 

collections of the municipalities of Montaione, Scandicci (Florence province), and Certaldo 

(Pisa province), and one in a private property (Castello di Villa Banfi, near Montalcino, Siena 

province), and one in the Museum National d’Histoire Naturelle in Paris (France). Each one 

of the 39 LMVsWhenever possible, large marine vertebrates waswere coded by synthem (N 

= 60) and depositional environment (N = 54). We analysed abundance distributions among 

marine mammals, and species richness of marine mammals and sharks. To infer Pliocene 

paleoecology, fossil taxa recognised in Tuscany were compared with their closest 

descendants, focusing on the species . today living in the North-Western Mediterranean Sea 

(NWMS).

Since aAll known LMVMM-bearing sedimentary facies are associated with a mollusc-

dominated benthic fauna. T, the third step of the analysis concerned a quantitative study of 

shell beds, allowing: 1) to interpret the regional evolution from a perspective independent 

from the sedimentary facies, and2) to characterizeise the MM paleoenvironmental and 

bathymetric distribution of LMVs. Molluscs are a key component of Pliocene communities,, 

and 3) allowing to explore the structure of the benthic component of marine ecosystems and 

to identify underlying environmental factorscontrols that underline the paleoenvironmental 

distribution of LMVs. 72 Bulk samples were collected at major shell beds at bed resolution 

throughout the succession and sieved with 1 mm mesh size. Fossils of bivalves, gastropods 

and scaphopods were identified to species level. The minimum number of individuals was 

calculated following standard approaches (see Patzkowsky &and Holland, 2012), resulting 

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720



13

in a richness of 525 species (S) and a total abundance of 64206 individuals (N). We coded 

each fossil assemblage by synthem, tract of small-scale depositional sequence, and 

depositional environment. Most samples belonged to facies types F2-F5 (Tab. 1; see also 

Tomašových et al.,, 2014). Facies F6 usually lacks macrofossils and allowed for the 

collection of only one sample. No samples were collected in facies F1, lacking marine shells, 

facies F7, mostly devoid shells, and facies F8, which is richly fossiliferous, but lacks 

aragonite shells and is associated with specimens hardly extractable from the rock. The 

resulting quantitative dataset served for statistical analyses on the distribution of species-

level abundances on a siliciclastic shelf depositional system, performed with the software 

Primer 6.0 (Clarke &and Gorley, 2006). Analyses included clustering and nMDS ordination 

techniques on a Bray-Curtis similarity matrix, of standardised, square-root transformed data 

(72 samples; S = 333 and N = 63518 after the exclusion of singletons). To test statistically 

whether there is a significant difference between two or more groups of sampling units based 

on sedimentary facies, we performed an analysis of similarity (ANOSIM). To interpret the 

outcomes of the quantitative study and the significance of clusters we used species-level 

autoecologic information available for the most abundant species, based on the distribution 

of extant forms. This information, retrieved from the Marine Biodiversity and Ecosystem 

Functioning EU website (MARBEF: www.marbef.org), included the average life depth of 23 

modern species that in our dataset had an overall abundance > 0.15%.

3. Results

3.1. Unconformity-bounded units

3.1.1 Synthem S1: the early Zanclean transgression
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The Miocene-Pliocene transition, marking the return to marine conditions after the 

Messinian salinity crisis (Krjigsman et al.,, 1999), is recorded in limited exposures of earliest 

Zanclean, open marine mudstones resting both unconformably or conformably onto latest 

Messinian non-marine deposits (Lago-Mare), an isochronous boundary being dated in the 

Mediterranean at 5.33 Ma (Roveri et al.,, 2014). Differences depend on the specific 

structurally-controlled distribution of hinterland basins, where an uplifting chain determined 

the presence of thresholds delaying the early Zanclean marine flooding from inner (EB, 

OOB: Benvenuti et al.,, 2015a) to outer hinterland basins (FB, VEB). In inner basins such 

as EB, where S1 has been defined, continental deposition continued into the earliest 

Zanclean, marine flooding occurring within the MPL1 biozone (references in Benvenuti et 

al., 2015a). A chronostratigraphical equivalent of S1 is represented in FB and VEB (Bossio 

et al.,, 1978) by an open-shelf mudstone, conformably resting on latest Messinian Lago-

Mare deposits (Roveri et al.,, 2014). An apparently analogous situation is documented in 

OOB, where MPL1 shelfal mudstones of the early Zanclean (normal chron C3n) rest on a 

Messinian to basal Pliocene paleovalley fill (Benvenuti et al.,, 2015a).

3.1.2 Synthem S2: Zanclean differential preservation

Synthem S2, as recognizedsed in the EB (Benvenuti et al. 2014), is represented by relatively 

thin fluvial conglomerates unconformably resting on S1 (biozones MPL1-MPL2), capped by 

S3 (biozone MPL4a: Bossio et al., 1993; 2001), comprising important stratigraphic gaps at 

its base and top. On the other hand, in FB (Bossio et al.,, 1997), VEB (Bossio et al., 1994) 

and SRB (Ghinassi &and Lazzarotto, 2005), the same chronostratigraphic interval is 

recorded by monotonous epibathyal mudstones several hundred meters thick, locally 

intercalated with delta-front hyperpycnal sandstones and conglomerates. In a very broad 
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sense, the concept of S2 is extended to these basins, by assuming that erosional 

unconformities in EB pass to into correlative conformities in rapidly subsiding adjacent 

basins, where thick successions could be accomodated. Apart from exceptions, no shells 

were found in bathyal mudstone or in deltaic sandstone. In OOB, the same time span is 

marked by a N-S facies gradient characterizedsed by a single deepening-upward 

succession, from fluvio-deltaic sandstone to shelfal mudstone, replaced by a succession 

made of four distinct regressive-transgressive units in the Orcia valley to the north (Ghinassi, 

2005; Benvenuti et al., 2015b). A laterally-continuous shell bed, with sharks remains and 

skeletons and articulated bones of whales, dugongsirenians and large bonyteleost fishes 

(Danise, 2010; Sorbi et al., 2012; Tinelli, 2013), marks a major transgressive surface 

overlain by open shelf mudstones (Sorbi et al., 2012; Tinelli, 2013: biozone MPL2) that is 

hypothetically traced along a NE-SW profile (Figs. 4, 5).

3.1.3 Synthem S3: Zanclean-Piacenzian transition

Synthem S3 is subdivided in EB into a lower and an upper interval (Benvenuti et al., 2014). 

The lower division is represented by deepening-upward, coarse-grained delta front system, 

overlain by an upper mudstone division from an open shelf setting. The upper part is rich 

with shell beds, and occasional articulated whale skeletons, associated with shark teeth, 

have been recovered (Danise &and Dominici, 2014). Similar shelf mudstones of the MPL4 

biozone crop out in VEB and SRB (Bossio et al., 1993; Riforgiato et al., 2005) whereas 

biostratigraphically equivalent mudstones in FB testify to an upper epibathyal 

paleoenvironment.

3.1.4 Synthem S4: early Piacenzian warm climate and high sea-level

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900



16

Synthem S4 (Benvenuti et al., 2014) has been recognizedsed in FB and VEB by facies 

similarities and chronostratigraphic correlation. In EB, S4 comprises a lower interval 

dominated by richly fossiliferous, massive mudstone or very-fine-grained sandstone 

(prodelta-inner shelf), overlain by bioclast-rich sandstones recording prograding mixed 

carbonate-clastic ramp, outcropping in the southeastern part of the Elsa valley. Equivalent 

deposits, also comprised in biozone MPL4b, are patchily distributed in FB, VEB, SRB, OOB 

and other basins of southern Tuscany (Ghinassi &and Nalin, 2010; Ghinassi, personal 

communication, 2015). The upper interval of S4 is formed by a succession of delta front 

sandstones, passing in EB eastern margin to a few tens of m-thick fluvial succession, hinting 

at an original depositional gradient. S4 is apparently missing due to erosion north of San 

Gimignano (EB), and around Lajatico (VEB). Biostratigraphic data allow to refer S4 to the 

upper part of biozone MPL4b and the lower part of MPL5a, thus comprising the mid-lower 

part of the Piacenzian, globally characterizedsed between 3.264-3.025 Ma by warm climate 

and relatively high sea level (Raymo et al., 2009; Dowsett et al., 2013; Prista et al., 2015).

3.1.5 Synthem S5: mid-Piacenzian high-frequency sea level variation

Synthem S5, recognizedsed in EB and VEB, is bounded below by an erosional unconformity 

that cuts deeply into underlying units, bringing S5 directly on top of S3 (EB: log 15; VEB: 

logs 5-6 in Fig. 1). S5 is up to about 200 m in EB, where it has been subdivided into a 

hierarchy of small-scale depositional sequences (Benvenuti et al., 2007; Dominici et al., 

2008: see following paragraphs). Each composite depositional sequence forms a tens-of-

m-thick asymmetric sedimentary cycle, composed by a deepening-upward part, from fluvial 

or coastal coarse-grained sediments, to open shelf mudstones, sometimes topped by a 

regressive shoreface or delta sandstone, other times directly overlain by the next sequence 

through a sharp contact. Fluvial, lagoonalbrackish-water, and other intertidal deposits mark 
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the lower part of each composite sequence, usually topped by a laterally-continuous shell 

bed, from a few cm to a few dm-thick, representing a surface of transgression. Shell beds 

are particularly well-developed around the middle part of sequences, where they separate 

shoreface and delta sandstones from overlying open shelf mudstones, marking the time of 

maximum flooding (MFS). Large marine vertebrates, including articulated whale skeletons 

and large sharks (Danise &and Dominici, 2014), are often recovered both at MFS and 

overlying mudstone (Fig. 1). Towards the north-eastern margin of EB, cyclothemic fluvial 

conglomerates, sandstones and mudstones replace coastal and fully marine deposits, 

testifying to an original facies gradient. In the central part of EB, composite sequences are 

stacked to form a deepening-upward succession, with a topmost thick and laterally-

continuous open shelf mudstone interval, directly onlapping the S4-S5 basal unconformity 

on the eastern EB (log 15, Fiano: Fig. 1).

3.1.6 Synthem S6: Piacenzian-Gelasian climate change and regression

As S5, synthem S6 is also built through a hierarchy of small-scale depositional sequences, 

better expressed in EB, but also documented in SRB and CB. In EB, fluvial coarse-grained 

sandstones fill a deep valley incised in S5 deposits (logs 8-10 in Fig. 1), resting on the basal 

unconformity of S6. Intertidal or coastal lagoon deposits form the transgressive systems 

tract of the composite depositional sequence. A laterally-continuous shell bed testifies to the 

MFS of S6, topped by highstand shoreface and delta front sandstones. The Piacenzian-

Gelasian boundary, corresponding to a major climatic transition from warmer-moister to 

colder-drier conditions (Benvenuti et al., 1995b; 2007), is marked by the Gauss-Matuyama 

reversal detected at Montopoli (Lindsay et al., 1980). Highstand marine sandstones are 

characterizedsed by the recovery of two mysticete skeletons, at Montopoli (EB, see 

Capellini, 1905) and Sinalunga (CB, Fig. 7). Fully continental environments were established 
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throughout the Gelasian in all basins here under study (e.g., Benvenuti &and Del Conte, 

2013; Benvenuti et al., 2014; Bianchi et al., 2015).

3.2 Sedimentary facies and facies associations

Seven groups of siliciclastic facies and one group of carbonate facies, with very different 

fossil content, have been recognizedsed (Tab. 1). Siliciclastic facies form a 

paleoenvironmental gradient from terrestrial to marine and, in the case of marine facies, 

from shallowest to deepest (Fig. 8a). Facies types are fluvial conglomerate and sandstone, 

and alluvial mudstone (F1); intertidal to very shallow subtidal mudstone and muddy 

sandstone (F2); shallow subtidal coarse- and medium-grained sandstone with sparse 

conglomerate (F3); deep subtidal muddy fine-grained sandstone (F4); open shelf sandy 

mudstone (F5); outer shelf to upper bathyal mudstone (F6); outer shelf and bathyal turbidite 

sandstone and conglomerate (F7). An eighth group is formed by facies deposited subtidally 

in limited mixed carbonatic-siliciclastic ramps (F8), irrespective of depth (Nalin et al., 2016). 

Facies F6-F7 are restricted to Zanclean deposits (synthems S1-S3); facies F5 and F8 

characterise the upper Zanclean-middle Piacenzian interval (synthems S3-S4); facies F1-

F4 characterise the upper Piacenzian (synthems S5-S6). The OOB succession, 

characterised by facies F1-F4, is an exception within the Zanclean.

3.3 Elementary depositional sequences (EDS)

Both fluvial (Benvenuti &and Del Conte, 2013) and marine facies groups (siliciclastics: 

Benvenuti et al., 2007; 2014; carbonates: Nalin et al., 2016) are stacked to form facies 

associations which record cyclic variations of depositional and environmental conditions in 

response to a change in accommodation space. Physical surfaces and the intervening 
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deposits allowed to subdivide depositional sequences in systems tracts (Benvenuti et al., 

2007; Dominici et al., 2008). At the simplest scale, these hybrid facies associations form 

elementary depositional sequences, up to 10-20 m thick, in their turn stacked to form 

composite sequences (original concepts from Mutti et al., 1994). This hierarchy is 

particularly evident in synthems S5-S6, formed at a time of pronounced glacio-eustatic 

oscillations and expressed around coastal settings, where maximum facies contrast allows 

for the expression of subtle cycle of sea level variation (e.g., Benvenuti &and Dominici, 1992; 

Benvenuti et al., 2007; Dominici et al., 2008). Analogue sharp facies contrast within 

Zanclean EDS in OBB (Tinelli, 2013), but is otherwise absent in deeper sediments (facies 

F5-F7). EDSs have different expressions depending on the time interval and the 

sedimentary basin.

3.3.1 Zanclean EDS (synthems S1-S3)

In most basins, deposition of synthems S1-S2-S3 takes place at outer-shelf or bathyal 

depths, well below the point on a depositional profile where the rate of relative sea level 

change is zero (equilibrium point). Here the sediment supply is not sufficient to fill the 

available accommodation space and an aggradational style of deposition prevails, with the 

result that in most Zanclean settings smaller cycles of sea level variations are not marked 

by a facies change. The sharp facies change recorded where the monotonous muddy 

deposition is interrupted by turbidite sandstone and conglomerate, is connected with 

synthem boundaries and major tectonic phases of restructuring of the region. LMVsMM and 

shell beds are practically absent. This situation reverses in the Orcia-Ombrone basin, where 

depths of deposition are shallower and EDS are expressed. At Arcille deltaic sandy 

conglomerates and sandstones (facies F3) are overlain by a fluvial cross-bedded sandstone 

(facies F1a), separated by a transgressive surface (TS) from an overlying bioturbated 

shallow marine sandstone. A Haustator vermicularis shell bed (Danise, 2010; Tinelli, 2013) 
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forms the MFS separating the shoreface sandstone from an open marine mudstone with 

scattered shells (facies F5), marking a sudden and prolonged deepening of the basin 

(biozone MPL2: Sorbi et al., 2012; Tinelli, 2013). The succession is topped by deposits from 

shallower depths, expression of the falling-stage (FSST), below the upper SB (Fig. 4). 

Similar small-scale depositional sequences, expressed through fining-upward cycles no less 

than 40 m-thick, are also present in synthem S3 at Case al Poggio, near Siena (biozones 

MPL3-MPL4a: Bianucci et al., 2001) and at Castelfiorentino (biozone MPL4b: Benvenuti et 

al., 2014).

3.3.2 Piacenzian EDS (synthems S4-S6)

As depth of deposition shallows during the Piacenzian, and cycles of sea level variation 

widen, the cyclic stacking of EDS becomes the typical depositional theme (Benvenuti et al., 

2007, 2014; Dominici et al., 2008). In FB, the northwesternmost basin, depths remain 

considerable and facies change is more subtle. Pliocene at Orciano Pisano is traditionally 

assigned to the “Blue Clays” formation (Bossio et al., 1997), but two distinct bodies where 

evidenced since the late nineteenth century (D’Ancona, 1867). The lower one is formed by 

grey claystone with very rare shells, the upper one by muddy, very-fine grained gray 

sandstone richly fossiliferous. The lower part of the latter interval outcrops at the foothill of 

the small town of Orciano Pisano, around the locality Case Nuove (Bianucci &and Landini, 

2005; Berta et al., 2015). Here a laterally persistent shell bed is dominated by the turritellid 

Archimediella spirata, overlain by a 25 m-thick monotonous sandstone interval with 

intercalated shell beds or sparse shells, becoming muddier upward. The Archimediella shell 

bed is interpreted as the TS of an EDS, coinciding with the lower SB of a lower Piacenzian 

EDS. The overlying muddy fine-grained sandstone is the TST and HST (MPL5a: Dominici 

et al., 2009; Fig. 6). At shallower settings, in all basins to the East and South of FB, EDS of 

synthem S4 take the form of an alternation of mudstone and carbonate (facies F5 and F8: 
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Nalin et al., 2016), or mudstone and sandstone (facies F5 and F3-F4: Benvenuti et al., 2014; 

biozone MPL5a). Middle and upper Piacenzian EDS form and alternation of coastal 

mudstone and sandstone (facies F1-F2-F3: Benvenuti &and Dominici, 1992; Dominici, 

1994), with MFS and HST marked by a shell bed topped by a lower shoreface sandstone, 

or a shelf mudstone (facies F4-F5: Benvenuti et al., 2007; Dominici et al., 2008).

43. Distribution of large marine vertebrates

3.4.1 Geographic distribution

The MM geographic distribution of all LMVs that could be assigned to a given locality and 

sedimentary facies is listed in Table 2. All LMVsMM that werewas geographically located, 

irrespective of stratigraphy, werewas plotted in Fig. 3. The largest number were recovered 

in FB in Northwestern Tuscany, with a peak at a few sites around the small town of Orciano 

Pisano, in the Pisa province. This coincides with the highest number of known species, 

including mammals, elasmobranchs, turtles, and large bony fishes (see Bianucci & Landini 

2005, Marsili 2006). LMVMM abundance is also highis also abundant in the province of 

Siena, around Volterra (VEB; Bianucci &and Landini 2005), and around San Quirico, 

particularly rich with elasmobranchs according to the available data (SRB;  Marsili, 2006). A 

fourth basin with a consistent number of findings is OOB, where cetaceans, sharks, 

dugongsirenians and large bonyteleost fishes have been unearthed.

3.4.2 SMM stratigraphic distribution of LMVs

3.4.2.1 Synthems S1-S2
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In the vicinity of Saline di Volterra, provenance of a mandible with teeth ofone of the sites 

with remains of  Pliophoca etrusca (Berta et al., 20155) and sperm whale (Tab. 2), S1 is 

represented by a bathyal mudstone (facies F6, biozone MPL1). Lower-middle Zanclean 

LMVsMM areis otherwise absent, with the exception of S2 in OOB, where theylarge marine 

vertebrates are concentrated along the MFSat the maximum flooding interval, outcropping 

at Poggio alle Mura (Danise, 2010), Camigliano (Sorbi et al.,, 2012) and Arcille (Tinelli et 

al.,, 2012;; Tinelli,, 2013), in biozone MPL2. At Poggio alle Mura a slightly disarticulated 

balaenopteridbalaenid whale skeleton (WOm1-1 in Tab. 2) has been excavated in contact 

with the laterally-persistent Haustator shell bed at the maximum flooding interval (Figs. 4, -

5; Danise, 2010; Tinelli, 2013). At Camigliano and Arcille, tens of km from Poggio alle Mura, 

the Haustator shell bed is associated with other articulated skeletons and isolated LMVMM 

remains, including several specimens of the sirenian Metaxytherium subapenninums 

(MOm21-1, MOm1-2-5), large bony fishes, rays, and sharks Carcharias taurus, 

Carcharhinus sp., Galeocerdo cuvieri, and Squatina sp.sharks and rays (Sorbi et al.,, 2012; 

Tinelli et al.,, 2012; ; Tinelli,, 2013). A partial skull of the delphinid Etruridelphis giulii, with 

right and left dentaries fractured, but nearly complete and with most teeth still in their alveoli 

(DSi2-1 in Tab. 2), was recovered southeast of Siena, near Chianciano Terme (SRB) at the 

top of a mudstone (facies F6) intercalated with turbiditic sandstone beds (Facies F7), topped 

by a monotonous mudstone interval (upper Zanclean, uppermost part of biozone MPL3: 

Bianucci et al., 2009b). In the same basin, two undetermined beaked whales and bones of 

four different specimens attributed to Metaxytherium subapenninum were found in the 

middle of a fining-upward succession, at the boundary between biozones MPL3 and MPL4a 

(Bianucci et al., 2001; WSi2-1-2 and MSi2-1-4 in Tab. 2), suggesting that findings at the two 

SRB localities belong to the same MFS, in the upper part of S2. FourThree specimens of 

marine mammals were identified in Synthem S1, 13seven in Synthem S2. 
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3.4.2.2 Synthem S3

A partial delphinid skull, with right and left dentaries fractured, but nearly complete and with 

most teeth still in their alveoli (WSi2-1 in Tab. 2), was recovered southeast of Siena, near 

Chianciano Terme (SRB) at the top of a mudstone (facies F6) intercalated with turbiditic 

sandstone beds (Facies F7), topped by a monotonous mudstone interval (upper Zanclean, 

uppermost part of biozone MPL3: Bianucci et al., 2009). In the same basin, a sirenian skull 

and mandible were found in the middle of a fining-upward succession, also at the boundary 

between biozones MPL3 and MPL4a (Bianucci et al., 2001; MSi3-2 in Tab. 2), suggesting 

that these two findings belong to the same MFS, in the lower part of S3. 

The upper part of the latter synthemS3 yielded several other LMVs, including an articulated 

and well-preserved balenopterid skeleton found in a 30 m-thick mudstone succession at 

Castelfiorentino, in the Elsa basin (EB, WEl3-12). These strata are richly fossiliferous, with 

several shell beds with epifaunal cemented taxa, such as vermetid gastropods, oysters and 

corals (Facies F5), withinin a normal-polarity magnetostratigraphic interval (Gauss chron: 

Andrea Albianelli, personal communication, 1999). Based on physical stratigraphic 

correlation, this can be assigned to a lower Piacenzian HST. Finally, aA dolphin skull of 

Hemisyntrachelus sp. (Aldinucci et al., 2011) and an incomplete, almost articulatedpartly 

articulated vertebrae and costae of a dolphin skeleton (Arbeid et al., 2015) were recently 

excavated a few hundred meters apart one from the other, along a monotonous mudstone 

S3 succession intercalated with several Ostrea and Serpulorbis shell beds, near Certaldo 

(facies F5, DWEI3-1-2 in Tab. 24). Overall, specimens of marine mammals attributed to 

Synthem S3 were sixeleven (some are uncertain and may come from the upper part of S2: 

Tab. 2).

3.4.2.3 Synthem S4
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Synthem S4 yielded the highest number of the reviewed large marine vertebratesabundance 

and species-richness of the Tuscan MM. In the Fine basin, the locality of Orciano Pisano is 

represented in Table 2 by nine18 records of whales, dolphins (a partial skeleton: Bianucci, 

1996; Bianucci et al., 2009), seals (Berta et al., 2015), tens of other cetacean 

specimensunidentified cetacean elements, hundreds of shark teeth and vertebrae (Fig. 3), 

and sea turtles, large bony fishes, and sea birds hosted in museum collections (Bianucci 

&and Landini, 2005; Marsili, 2007b; Cioppi and Dominici, 2011). In locality Case Nuove, a 

single middle Piacenzian TStransgressive surface is known to havehas yielded a whole, 

articulated whale skeleton (Figs. 4, 6), teeth of blue and white sharks and bones of sea birds 

(Dominici et al., 2009). From the same site comess a n articulated seal skeleton of the monk 

seal Pliophoca etrusca (Berta et al., 20154), and possibly many other museum specimens 

labelled “Orciano Pisano” (e.g., Higgs et al., 2012), suggesting that this surfaceinterval 

isforms the most prolific bonebed of the region (Tab. 2). A few cm above the Archimediella 

shell bed, glauconitic and deeply bioeroded whale bones (Danise, 2010), associated with 

ichnological evidence of the activity of Osedax bone-eating worms (see Higgs et al., 2012), 

lie in a bioturbated muddy, fine-grained sandstone with a complex boxwork of Ophiomorpha 

and Thalassinoides trace fossils (Fig. 6), associated with a diverse paleocommunity of 

molluscs and other benthic invertebrates from several trophic groupswith complex trophic 

connections (Dominici et al., 2009; Danise et al., 2010). In the adjacentAt the boundary 

between FB and VEB, an incomplete dolphin skull and skeleton of the dolphin Etruridelphis 

giulii was recovered near Lorenzana (Lawley, 1876; Bianucci, 1996; Bianucci et al., 2009b), 

at a locality associated with a muddy sandstone interval (facies F4) in synthem S4. An 

incomplete and disarticulated mysticebalenopterid whalete was recovered in a sandstone at 

San Gimignano, associated with pectinid bivalves (Fig. 7; facies F3; Elsa basin, EB: Danise 

&and Dominici, 2014), here tentatively assigned to the uppermost part of the synthem 
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(WEl4-1 in Tab. 2). Overall, specimens of marine mammals attributed to Synthem S4 were 

2728.

3.4.2.4 Synthem S5

The next MM richer stratigraphic interval are Piacenzian deposits of synthem S5. An 

incomplete and disarticulated balaenid skeleton was found in intertidal deposits of the lower 

part of the synthem, at La FarfallaCasenuove (facies F2, EB; Bianucci et al., 1995; Collareta 

et al., 2016; WEl5-1 in Tab. 2). A large bowhead whalebalaenid (Balaena) was recovered 

higher up section, a few meters above a laterally-continuous very thick and complex 

Haustator vermicularis shell bed, up to 2 m-thick (Benvenuti et al., 1995a), traced laterally 

for 2 km to the east of San Miniato (“Turritella strata”, De Stefani, 1874), and forming a 

surface of transgression within the TST of synthem S5 (Benvenuti et al., 2007; 2014; 

Dominici et al., 2008). The MFS is formed by a Glycymeris insubricus shell bed, separating 

around San Miniato shoreface sandstone (facies F3 or F4) from offshore mudstone (F5; 

Benvenuti et al., 2007). The Balaena sbalaenid skeleton was almost articulated, complete  

and bioeroded, closely associated with teeth of the great white shark and other scavengers 

(Borselli &and Cozzini, 1992; Bianucci et al., 2002; Danise and Dominici, 2014), in the early 

HST of synthem S5 (Benvenuti et al.,  2007; , Dominici et al., 2008; WEl5-2 in Tab. 2). The 

Glycymeris shell bed can be traced laterally for several km. In the vicinity of Fiano, it includes 

bioeroded and encrusted gravels inherited from underlying successions, interpreted as 

revinement deposits. The interval of maximum flooding  and early HST is marked by the 

stacking of at least three distinct shell beds, all including a high-diversity association with 

bioeroded and encrusted shells. This situation suggests that balaenid WEl5-2, in the middle 

of EB, lies in correspondence of an interval of low rates of sedimentation. In SRB, near 
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Castelnuovo Berardenga, shelfal mudstones (facies type F5) have yielded MM remains at 

a few localities. Delphinid remains were found at the “I Sodi” quarry and at Troiola (DSi5-1-

2, in Tab. 2). Bones of a beaked whale and undetermined mysticetes are reported from 

Guistrigona (Manganelli and Benocci, 2014) and a fragmentary specimen of the monk seal 

Pliophoca etrusca from Castelnuovo Berardenga (Berta et al., 2015). A very rich shark 

fauna, including sawsharks, thresher, frilled, bluntnose sixgill, bramble, gulper, kitten, sand 

tiger, shorten mako, basking and requiem sharks, an association suggesting an upper slope 

paleoenvironment for the surroundings of Castelnuovo Berardenga Scalo (Cigala-Fulgosi et 

al., 2009; the same mudstone interval at the same locality has been interpreted as a shelfal 

deposit: Martini et al., 2016). Marine mammals identified in Synthem S5 were eight.Judging 

from historical accounts (Capellini, 1883), the killer whale Orcinus citonensis (DCh4-1) was 

recovered in a sandy unit lying on top of a thick mudstone interval (S3 or S4) and is 

tentatively assigned to S5. Specimens of marine mammals attributed to Synthem S5 were 

10.

3.4.2.5 Synthem S6

A fairly complete skeleton of a large balaenid whale was recovered in the second half of the 

19th Century in the EB near Montopoli Valdarno (Capellini 1905), in open shelf strata 

attributable to the interval of maximum flooding of Synthem S6 (WEl6-1 in Tab. 2). The MFS 

of S6, of uppermost Piacenzian age, is marked in EB by a laterally continuous Pteria 

phalenacea shell bed, with a high-diversity association of macroinvertebrates, including a 

rich decapod paleocommunity (Garassino et al., 2012). In the same localityvicinity, near 

Palaia, a right whale (Eubalena sp.) was recovered in 1974 in sandy mudstones, in 

association with mollusc shells and teeth of the great white shark (Carcharodon carcharias: 

Bisconti, 2002; Sorbini et al., 2014). A tightly articulated balaenopterid skeleton was found 
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at Sinalunga (WCh4-1 in Tab. 2), in deltaic sandstones and conglomerates (Fig. 8). Marine 

mammal specimens attributed to Synthem S6 with some confidence were three.

4.3 MM facies type distribution

In an ideal deepening-up gradient, multi-element findings of marine mammals are very rare 

in intertidal and very shallow subtidal paleoenvironments (facies type F2, 1,5%: Fig. 9A), 

moderately represented in delta or shoreface sandstones (facies type F3, 4,6%), most 

abundant in sandy mudstone of open shelf settings (facies type F5, 8770%), rare in outer 

shelf and bathyal sediments (facies type F6-F7, 6,21,5%). The most pristine and complete 

skeletons are associated with gravelly well-sorted sands from event sedimentation, 

suggesting a negative relationship between taphonomic loss and sedimentary processes at 

delta fronts. In the tightly articulated and pristine Sinalunga balaenopterid (WCh4-1 in S4-

CB), the cortical surface of the tightly-connected vertebrae is practically intact, and carpal, 

metacarpal and phalanges of the flipper are in perfect anatomical connection, as if a sudden 

depositional event buried a fresh carcass (Fig. 8; similar pristine skeleton are found in deep 

water turbiditic succession: Stinnesbeck et al., 2014). Another pristine and tightly articulated 

skeleton, belonging to a killer whale (WCh3-1 in CB), was collected at Cetona in the second 

half of the 19th century, in a locality associated with sandstones, also possibly of deltaic 

origin. Large vertebrates embedded in fine-grained, muddy matrix (shelf deposit formed 

below storm wave base) and those associated with laterally-persistent shell beds 

(condensed deposits) are slightly disarticulated and fairly complete, showing signs of long 

permanence in a low energy, well-oxygenated seafloor before the final burial. Bioerosion of 

bones caused by phototrophic cyanobacteria and algae, heterotrophic fungi and bacteria 

(Orciano balaenopterid WFi4-1 in S4-FB), and eventually by whalebone-eating siboglinid 

worm of genus Osedax (on a ziphiid humerus, WFi4-14: Higgs et al., 2012), occurred at 
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condensed intervals, in association with glauconite (Danise, 2010). In one instance, a 

condensed shelly interval is traced for a few kilometers, connecting bioturbated shoreface 

sandstones yielding slightly disarticulated sirenian skeletons (MOm2-1, MOm2-2) and other 

MM (Tinelli, 2013), with open shelf deposits yielding slightly disarticulated whale remains 

(WOm2-1 in S2-OOB). 

Regarding a sequence stratigraphic interpretation, pristine skeletons from delta front 

sediments can be part of the FSST (Fig. 4; or in an alternative interpretation it may belong 

to, of the early TST, when incised valleys are filled with coastal deposits). TST deposits 

account for 126,2% of cases (Fig. 9B). Much more frequently, articulated or slightly 

disarticulated skeletons are associated with the HST of the corresponding depositional 

sequence, lying above the MFS (6956,9% of cases), or within the maximum flooding 

intervaldirectly in coincidence with it, above a laterally-persistent shell bed (10,8%). Bone 

bioerosion is less pronounced in the late HST, when sedimentation rate increases 

(Castelfiorentino whale WEl3-2 in S3-EB).

4.4 MM abundance and species-richness

Some taxa need revision, but a conservative estimate of the different morphologies suggest 

that at least 17 marine mammal species lived in the NWMS during the Pliocene (possibly 

more than 20, an estimate for the whole epoch, i.e., 5,332-2,588 Ma), against only 9nine 

presently living in the same area (plus two occasional visitors). Among the cetaceans, six 

families were present, against only five presently living in the Ligurian Sea (Tab. 3). The 

most abundant Pliocene species of Tuscany are the sirenian Metaxytherium subapenninum 

(N = 10), the dolphin Etruridelphis giulii (N = 7) and the delphinid Hemisyntrachelus cortesii 

(N = 5: Tab. 4). Overall abundance and species richness are not randomly distributed, but 

are maximum in Piacenzian strata of synthem S4, dated at 3.2-3.0 Ma (Tab. 2, Figs Fig.2, 
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9C-D2), particularly in the FB and VEB (Tab. 4). A species list of marine mammals summing 

up findingsfossils found around Orciano Pisano and at La Rocca, near Volterra, yields a 

species richness (S) of 11-1213. This Piacenzian peak in marine mammal diversity is 

matched by the fossil record of sharks, also maximum near Orciano Pisano (S = 27), with a 

second peak in S5, around Castelnuovo Berardenga (SRB, S = 16). Differently from the 

marine mammals, showing a complete turnover from the Pliocene to the recent (Tab. 3), 

34% of Pliocene shark species are still extant in the NWMS (Tabs. 5-6). Marine mammal 

frequency and diversity gradually decreases in S5-S6.

35. Paleoenvironment-fauna relations

The paleoecology of Pliocene MM of Tuscany can be reconstructed by comparison with the 

ecology of their modern relatives. This approach can be applied at the family or genus level 

for marine mammals (Tab. 3), at the genus or species level for sharks (Tab. 5). With the 

only exception of the sirenian Metaxytherium subapenninum, feeding on seagrasses 

(Domining, 2001), and small demersal sharks (e.g., catsharks, frilled sharks), all MM studied 

here are pelagic forms that had no direct connection to conditions at the seafloor (Tabs. 4 

and 6). With the exception of the few benthopelagic marine vertebrates (seals, dugongs), 

many LMVs of the Pliocene of Tuscany were epipelagic (e.g., mysticetes, larger sharks) or 

mesopelagic (e.g., sperm whales, ziphiids), with no direct connection with the ecological 

conditions at the seafloor. The paleoecology of benthic habitats informs however on the 

situation of the overlying water column in terms of ecological factors that matter to the 

distribution of pelagicepipelagic and mesopelagic organisms. These factors include, such 

as water depth, salinity and nutrient levels. In the second place, since all LMVall MM remains 

after death ultimately sink to the seafloor, benthic paleoecology is also a means to 
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understand taphonomic controls on LMVMM distribution. Cluster analysis based on the 

distribution of mollusc species in 72 samples resulted in the identification of four main groups 

of mollusc samples, roughly corresponding to the four main facies types recognizedsed 

based on lithology and sedimentary structures (F2-F5 in Tab. 1). Clusters are formed by 

samples from outer shelf and upper slope (three samples), open shelf (34 samples), 

shoreface (23 samples), and transitional settings, such as brackish-water coastal lagoons 

and tidal flats (12 samples: see Supplement Material, Fig. S1). ANOSIM confirms that 

sedimentary facies type can broadly predict what benthic assemblage it will yield (Tab. 73; 

general R = 0,632). The difficulty to discriminate between upper and lower shoreface facies, 

and between shoreface and open shelf facies is confirmed by overlaps in sample distribution 

in the NMDS ordination diagram (Fig. 109A). Samples AG1, MON1 and MON2 allow to re-

interpret the associated sandstones, originally included in upper shoreface facies type, as 

offshore deposits. The presence of gravels and cobbles intensely bioeroded by bivalves and 

polychaete (ichnofossils include Gastrochaenolithes, Meandripolydora and Caulostrepsis) 

and encrusted by balanids, oysters, serpulids, and bryozoans, suggests they are part of 

condensed beds resulting from transgressive pulses (hiatal concentrations). The 

relationship between facies type and mollusc association is broadly summarizedsed in the 

following paragraphs (see online Supplement Information for a list of characterizingsing 

species).

35.1 Coastal lagoon, tidal flat and embayment

Intertidal faunas  are always associated with facies type F2 and are characterised by low-

diversity associations, sometimes with less than 10 taxa and dominated by one or two 

species, including species today living in brackish waters of the Mediterranean, at intertidal 

or very shallow subtidal depths (e.g. Cerastoderma edule, Nassarius reticulatus, 
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Scrobicularia plana: Pérés &and Picard, 1964). Facies type F2 is also associated with 

samples having a species richness higher than the preceding and including species typical 

of seagrass bottoms and known to withstand moderate changes of salinity. In only one 

instance a LMVlarge vertebrate was associated with intertidal deposits. Interestingly, this 

was  (not a sirenian, but a balaenid, lying on top of large wood fragments (: Bianucci, 1995; 

Collareta et al., 2016; Fig. 98A).

35.2 Upper shoreface

Facies type F3 is associated with a high-diversity assemblage representing a 

paleocommunity dominated by suspension feeders adapted to shifting sandy bottoms, with 

bivalves typical of modern shoreface sandy bottoms (e.g., families Glycymeridae, Tellinidae, 

Donacidae and Veneridae). Among extinct species of this recurring assemblage, some are 

large-sized or have very thick shells. Some species of this group indicate the presence of 

vegetated bottoms. Small pyramidellid gastropods are parasitic on echinoderms, also typical 

of the upper shoreface.

35.3 Lower shoreface

Species richness further increases in collections associated with facies type F4 (lower 

shoreface). Species typical of this recurring assemblage include both suspension-feeding 

and detritus-feeding bivalves and gastropods. The following gastropod families are usually 

represented by several species: Trochidae, Rissoidae, Cerithiidae (from vegetated 

bottoms), Naticidae, Muricidae, Turridae, Conidae, Terebridae, Bullidae, Cylichnidae 

(carnivores), Pyramidellidae (echinoderm parasites). Many bivalve species occur in both 

facies types F2 and F3. At three different sites and at different stratigraphic units LMVs 
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werelarge marine vertebrates, including mysticetes, sirenians and sharks, were recovered 

in association with shell beds dominated by the turritellid and gregarious turritellid gastropod 

Haustator vermicularis (Fig. 6C-D).

35.4 Offshore and upper slope

Another important set of species recurred in facies type F5 (mudstone deposited in offshore 

bottoms at shelf depths). Among characterizingsing gastropods are the suspension feeders 

(Turritella tricarinata, Archimediella spirata and Petalochoncus intortus), deposit feeders 

(Aporrhais uttingeriana) and carnivores or scavengers (Epitonium frondiculoides, Nassarius 

semistriatus, Mitrella nassoides). Also the bivalves occupy many different ecological niches 

(e.g., infaunal detritus feeders, epifaunal suspension feeders, either free-living, byssate, or 

cemented). Outer shelf and uppermost bathyal samplessediments from F6 mudstones, 

studied at only one location, are characterizedsed by a separate set of carnivorous 

gastropods and by a few small bivalve species. Ubiquitous molluscs include species found 

from intertidal to outer shelf depths (e.g., Corbula gibba), and those preferential of open 

marine waters, from lower shoreface to outer shelf. Most multi-element findings of marine 

mammals are associated with sandy mudstones from open shelf settings, below storm wave 

base (F5, 75-80% of occurrences; e.g., Orciano whale: Fig. 8A), also in association with an 

Archimediella spirata shell bed (Fig. 6C-D). No molluscs were recovered in facies type F7, 

with the exception of bathyal mudstone in the lowermost Pliocene of FB, associated with 

sparse specimens of the gryphaeid epifaunal bivalve Neopycnodonte navicularis .(not 

sampled).

35.5 Carbonate platform

1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920



33

A recurring benthic assemblage associated with the highly fossiliferous facies type F8, not 

included in the quantitative analysis, consists of the large pectinid bivalves Gigantopecten 

latissima and Hinnites crispus and by a mixture of photozoans (large benthic foraminifera), 

hard-substrata dwellers (brachiopods, echinoderms), encrusters (red algae, bryozoa) and 

bioeroders (clionid sponges). All fossil-rich carbonates are associated with synthem S4 , in 

the middle part of the -Piacenzian (Fig. 2, see also Nalin et al., 2016).

46. Paleodepths

Multivariate techniques can beare usefully applied to stratigraphic and paleobiologic 

analysis (Scarponi &and Kowalewski, 2004). We used the results of the ordination analysis 

to estimate absolute depths of the final resting place of some LMVslarge vertebrates listed 

in Tab. 2. Samples in the NMDS ordination plot following a water depth gradient, with 

shallower samples to the left (low values of NMDS axis 1) and deeper samples to the right 

(high values of axis 1). Therefore, NMDS values of axis 1 can be used as a proxy for relative 

water depth. We calculated absolute palaeodepths by fitting a logarithmic regression curve 

between absolute paleodepth of 23 modern species (data from MARBEF database), 

common in our dataset, and the values on NMDS axis 1 (Supplement Material: Tabs. S1-

S4). The regression analysis, with R2 = 0.813, indicates that scores along the nMDS main 

axis are a good predictor of the preferred depth for the 23 modern species (Fig. 910B, inset), 

thus supporting the bathymetric interpretation. This allowed to estimate the absolute depth 

of the 72 mollusc samples, which ranged from 0.4 m to 365 m, i.e., from intertidal to upper 

slope depths (Fig. 109B). These results are, in accordance with a previous estimate of 

absolute paleodepths, carried out in the upper part of the Pliocene succession of EB,  and 

based on counts of foraminifera:  (Dominici et al., 2007). According to the present estimates, 

fFacies type F2 is deposited at 0-105 m depth (mostly 0-5 m), F3 at 3-30 m, F4 at 10-100 
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m, and F5 at 40-300 m, F5 at around 350 m depth (only one sample: Fig. 910B). The position 

of fossil cetaceans, dugongsirenians, pinnipeds and large sharks (respectively W, M, P and 

S, N = 13) was plotted near the corresponding shell bed in the NMDS ordination. The 

resulting pattern shows that all large mammalsMM considered, associated with open shelf 

settings and with facies types F4-F5, cluster around a depth of about -100 m, spanning -30-

300 m (Fig. 9B).

5. Interpretation

Large marine vertebrates are nearly unrecorded in synthem S1-2 (Zanclean, mostly bathyal 

mudstone and turbiditic sandstone), notwithstanding these successions are the thickest, but 

they are recovered in S2 in OOB (shoreface and open shelf deposits). LMVs are abundant 

in synthems S3-5, peaking in synthem S4 (middle part of the Piacenzian), with intermediate 

abundances in synthem S6 (upper Piacenzian-lowermost Gelasian). In an ideal deepening-

up gradient, multi-element findings of marine mammals are very rare in intertidal and very 

shallow subtidal paleoenvironments (facies type F2: one instance in Bianucci, 1995, out of 

39 cases explored), moderately represented in delta or shoreface sandstones (facies type 

F3), most abundant in sandy mudstone of open shelf settings (facies type F5, 77% of 

occurrences: Fig. 8A; e.g., Orciano whale: Figs. 4, 6), nearly absent in outer shelf and 

bathyal sediments (Saline di Volterra seal, PEr1-1 in S1-VB; Lucciolabella dolphin, WSi2-1 

in S3-SB). Regarding their taphonomy, the most pristine and complete skeletons are 

associated with gravelly well-sorted sands from event sedimentation, suggesting a negative 

relationship between taphonomic loss and sedimentary processes at delta fronts. In the 

tightly articulated and pristine Sinalunga balaenopterid (WCh4-1 in S4-CB), the cortical 

surface of the tightly-connected vertebrae is practically intact, and carpal, metacarpal and 

phalanges of the flipper are in perfect anatomical connection, as if a sudden depositional 

event buried a fresh carcass (Fig. 7; similar pristine skeleton are found in deep water 
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turbiditic succession: Stinnesbeck et al. 2014). Another pristine and tightly articulated 

skeleton, belonging to a killer whale (WCh3-1 in S4-CB), was collected at Cetona in the 

second half of the 19th century, in a locality associated with sandstones, also possibly of 

deltaic origin. LMVs embedded in a fine-grained, muddy matrix (shelf deposit formed below 

storm wave base) and those associated with laterally-persistent shell beds (condensed 

deposits) are slightly disarticulated and fairly complete, showing signs of long permanence 

in a low energy, well-oxygenated seafloor before the final burial. Bioerosion of bones caused 

by phototrophic cyanobacteria and algae, heterotrophic fungi and bacteria (Orciano 

balaenopterid WFi4-1 in S4-FB), and eventually by whalebone-eating siboglinid worm of 

genus Osedax (on a ziphiid humerus: Higgs et al. 2012), occurred at condensed intervals, 

in association with glauconite (Danise 2010). In one instance, a condensed shelly interval is 

traced for a few kilometers, connecting bioturbated shoreface sandstones yielding slightly 

disarticulated dugong skeletons (MOm2-1, MOm2-2) and other LMVs (Tinelli, 2013), with 

open shelf deposits yielding slightly disarticulated whale remains (WOm2-1 in S2-OOB). 

Regarding a sequence stratigraphic interpretation, pristine skeletons from delta front 

sediments can be part of the FSST (Fig. 4; or in alternative interpretation, of the early TST, 

when incised valleys are filled with coastal deposits). TST deposits account for 12% of 

cases. Much more frequently, slightly disarticulated skeletons are associated with the HST 

of the corresponding depositional sequence, lying above the MFS (69% of cases), or directly 

in coincidence with it, above a laterally-persistent shell bed (10%). Bone bioerosion is less 

pronounced in the late HST, when sedimentation rate increases (Castelfiorentino whale 

WEl3-2 in S3-EB).

67. DiscussionFactors of the Pliocene NWMS marine 

megafauna fossil record
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The detailed sequence-stratigraphic framework and the abundant shell beds, offering an 

independent check on sedimentary facies distribution by benthic paleoecology, allows also 

to explore factors behind MM geographic and stratigraphic distribution, and to sort out 

evolutionary, ecological, and taphonomic drivers of this particular fossil record. NWMS 

Pliocene distribution can be compared with similar studies in different settings and at 

different times, to draw conclusions on the general quality of MM fossil record.

7.1 Evolutionary control

Available data allow a meaningful comparison of NWMS MM diversity across the Pliocene, 

particularly detailed for marine mammals (Fig. 9D). Although ourthe study suggests a facies 

control on MM distribution, with large vertebrateMM remains being generally 

connectedassociated with late TST-HST muddy sandstones and mudstones from lower 

shoreface and offshore shelf paleosettings, the temporal pattern of biodiversity recorded on 

a regional basis should in partlikely representreflects also a paleobiologic phanomenon, 

since lower shoreface and offshore shelf sediments are represented in all synthems. Marine 

mammals are unrecorded in the thickest part of synthem S1-2 (Zanclean, mostly bathyal 

mudstone and turbiditic sandstone), but they are present in S2, in OOB (Zanclean shoreface 

and open shelf deposits) and SRB (Zanclean upper slope deposits). MM is 

uncommongradually rises in S3, at the upper Zanclean-lower Piacenzian, whereas it 

suddenly peaks in synthem S4, where species richness of both marine mammals and sharks 

is highest. S5 reflects a lower diversity of marine mammals, but still a high diversity of sharks, 

while values of both groups drop to the lowest abundance and species richness in S6, during 

the upper Piacenzian-lowermost Gelasian (Fig. 9D).

The S4 diversity peak coincides with the middle part (3.264–3.025 Ma) of the Piacenzian, a 

time interval in which the earth experienced global average temperature 1.84 °C-3.60 °C 
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warmer than the pre-industrial period (Dowsett et al., 2013). Climatic impact is testified by 

the widespread occurrence of carbonate deposits in S4 (Fig. 2), with sedimentary facies 

indicative of warm-temperate to subtropical conditions, with summer sea-surface 

temperature considerably warmer than 20°C and winter temperatures colder than 20°C 

(Nalin et al., 2016). This suggests a causative link between global climate and biodiversity, 

S4 diversity peak recording a global phenomenon, possibly an increase of speciation rate 

connected with global warming. Similarly, we propose that the lower diversities recorded at 

S5-S6 are the regional expression of an increase in extinction rate related to climatic cooling 

and global sea-level drop, ultimately leading to the global MM extinction event recorded on 

a coarser scale at the Pliocene-Pleistocene boundary (Pimiento et al., 2017): the finer 

stratigraphic resolution adopted here suggests a stepwise extinction event. NWMS data also 

point to a selective effect, extinction being recorded by marine mammals, with a 100% 

regional turnover between Pliocene and Recent (Tab. 3), but not as much by the shark 

fauna, with 34% of the species still living in the Mediterranean, while still others have shrank 

their distribution to subtropical latitudes. Also the Piacenzian teleost fish fauna (Cigala 

Fulgosi et al., 2009) and the benthic molluscks (Raffi et al., 1985) show a high percentage 

of holdovers, suggesting that marine mammals have been particularly prone to climatic 

change (see also Steeman et al., 2009).

Estimates of body size in Pliocene mysticetes of Tuscany, with several specimens reaching 

10 m (Danise and Dominici, 2014: seven specimens in Tab. 1), are comparable to global 

values derived from the literature for this time interval (Lambert et al., 2010), confirming that 

NWMS baleen whales were larger than their Miocene analogues, and smaller than modern 

forms. As with regard to odontocetes, the most common Pliocene delphinid, Etruridelphis, 

was larger than the modern analogue Stenella (Bianucci et al., 2009b). The same is true for 

Hemisyntrachelus cortesii, larger than modern Tursiops (Bianucci, 1997a). On the other 

hand, the largest extant delphinid Orcinus orca, reaching 9 m, is about twice as long as 
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Orcinus citonensis (Heyning and Dahlheim, 1988). The high percent of holdover points to a 

more conservative figure for larger sharks (Tab. 5), but the presence in the Pliocene of the 

gigantic Carcharocles megalodon and some large thermophilic species today restricted to 

lower latitudes suggests that impoverishment of the fauna is coupled with an average 

decrease in size (Marsili, 2008). Comparing sizes suggests an overall restructuring of 

NWMS MM during the last three million years (see also Bisconti, 2009).

The geographic and stratigraphic distribution of large marine vertebrates in the fossil record, 

as that of any other key elements of marine ecosystems, depends on ecological (i.e., the 

production of organic parts) and taphonomic factors (their preservation). The detailed 

sequence-stratigraphic framework available for the very thick Pliocene succession of 

Tuscany, and the abundant shell beds that offer an independent check on sedimentary 

facies distribution by benthic paleoecology, allow to explore ecological and taphonomic 

drivers on the distribution of Northwestern Mediterranean LMVs. In its turn, this can be 

compared with similar studies in different settings and at different times, to draw conclusions 

on the general quality of LMV fossil record.

67.21 Ecological control 

Marine

The composition of the Pliocene NWMS MM is affected in the first place by the availability 

of food. At the lowest trophic level, inferring from the ecology of the modern MM (Tabs. 3, 

5), we found herbivore sirenians feeding on seagrasses (trophic level, TL = 2,0), all others 

being carnivores, thus having TL > 3,0 (Fig. 1211). The lowermost levels among the 

carnivores were occupied by baleen whales and whale sharks (TL = 3,2-3,4), filter-feeding 

on pelagic crustaceans and fishes (krill). Roughsharks, catsharks, and houndsharks, with 

many species living in the modern Mediterranean, have a relatively species-poor Pliocene 

record, probably due to a preservation bias related to their small size. At TL = 3,7-4,0 were 
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one species of catshark and a monk seal, both feeding near the seafloor on crustaceans, 

teleost fishes and cephalopods. At TL = 4,1 were sandbar, tiger and blue sharks, feeding on 

teleost fishes, cephalopods and on marine mammals. At the same level, in slope 

environments, kitefin sharks mainly fed on other sharks. The majority of MM species were 

found at TL = 4,2, with smaller odontocetes (three species) and 11 species of sharks, 

including several requiem sharks, a houndshark and a hammerhead. Larger dephinids, 

sperm whales, beaked whales, together with mackerel, sand and sand tiger sharks, 

occupied high trophic levels (TL = 4,3), followed at the top of the global NWMS food web by 

white shark, megalodon shark, one species of sevengill shark (genus Notorynchus), and 

killer whales, all feeding on marine mammals and smaller sharks (TL = 4,4-4,7). With no 

exception, all highest levels encountered in modern NWMS offshore pelagic and nearshore 

communites were occupied during the Pliocene by an analogous MM, often by the same 

species (large sharks), or by congeneric or con-familial species (marine mammals: Tab. 3, 

5). The Pliocene pelagic ecosystem, typified by the mid-Piacenzian S4 association, must 

have been however trophically more diversified (Fig. 11), including aquatic megaherbivores, 

several balaenid filter feeders, larger and more diverse dolphins, and sharks species today 

extinct (e.g., Carcharocles megalodon) or restricted to tropical seas (e.g., Galeocerdo 

cuvier). With the exception of TL = 2, all Pliocene NWMS MM were either apex predators of 

their community, or mesopredators, occupying trophic positions below apex predators. The 

definitions of apex predators (or top predators) and mesopredators are relative and to an 

extent context-dependent (species that in a contact are apex predators, in another are 

mesopredators, e.g., Estes et al., 1998). Since predation is a trophic interaction in which 

one animal (predator) consumes another (prey) as a source of energy (food), irrespective of 

the means by which this is accomplished (Lourenço et al., 2013), filter-feeding baleen 

whales can be considered apex-predators of their community (e.g., Lewiston et al., 2004; 

Notarbartolo di Sciara et al., 2016). Among sharks, 68% of living Mediterranean 
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elasmobranches are ranked as top predators, with a trophic level of 4 or more (Goffredo and 

Dubinsky, 2014, including superorder Batoidea, against 22% of teleost fishes), an estimate 

that can be extended to Pliocene NWMS MM. Relationships between apex predators and 

mesopredators are complex and hard to define in ecology, involving predation on other 

predators (intraguild predation, combining competition and predation: Polis et al., 1989), 

where consumption and competition need to be proved (Lourenço et al., 2013). In the 

Mediterranean Pliocene, paleontological evidences of carnivores serving as food to MM 

include killing of prey (Bianucci et al., 2010) and scavenging (Cigala Fulgosi, 1990; Bianucci 

et al., 2002; Dominici et al., 2009). The occurrence of intraguild predation must have been 

far more extended than what taphonomy can prove, however, given a Pliocene diversity of 

NWMS very large raptorial feeders higher than the modern, including the killer whale 

Orcinus citonensis, the large delphinid Hemisyntrachelus cortesii (phylogenetically related 

to the modern killer whale: Murakami  et al., 2014), the white shark Carcharodon carcharias, 

the largest shark of all times Carcharocles magalodon (Marsili, 2008), and a diverse 

association of smaller carnivores, including monk seal, delphinids and sharks with 4,0 < TL 

< 4,2 (Tab. 3, 5), candidate prey for larger raptorial feeders. This interaction likely exerted 

in its turn a control on community structure at lower trophic levels through processes like 

“mesopredator release” and trophic cascades (Roemer et al., 2009), eventually linking 

pelagic and nearshore communities, including benthic animals and plants, like in many 

modern ecosystems (Estes et al., 2011, 2016), down to slope depths (e.g., Parrish, 2009). 

Large raptorial feeders could exert a control on the diversity of the filter-feeding MM, like it 

has been suggested on a global scale since the Miocene (Lambert et al., 2010), and for the 

Pliocene by Bisconti (2003), when baleen whales were more diversified, both in terms of 

species richness, size range, and feeding strategies, including both skim- and lunge-filter 

feeding (respectively balaenid and balaenopterid whales: Berta et al., 2016; Hocking et al., 

2017), minimising competition for food and diversifying spatial niches (see also Marx et al., 
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2017, for the upper Miocene). A further important top-down control on community structure 

is suggested by modern studies on the role of baleen and sperm whales as nutrient vectors, 

both in horizontal (during seasonal migration) and vertical direction (during daily feeding 

migration: Roman and McCarthy, 2010), a process particularly important in oligotrophic seas 

(Alleger et al., 2017), like large sectors of the Mediterranean. Finally (literally, after death), 

MM becomes a detrital sources of energy and habitat for deep sea whale-fall communities 

(Roman et al., 2014; Smith et al., 2015), with paleontological evidence available for the 

NWMS (Dominici et al., 2009; Higgs et al., 2012; Baldanza et al., 2013).

Much evidence suggests that a bottom-up control on the structure of NWMS MM community 

was exerted by wind-driven upwelling currents, through enhanced oceanic productivity and 

concentration of preys. Over geologic time, these factors may have exerted a selection 

favoring large size, triggering the Plio-Pleistocene emergence of whale gigantism in several 

lineages (Slater et al., 2017). The largest among marine top predators can travel long 

distances and cross oceans, but tend to congregate in shallow waters with abundant prey. 

Baleen whales, abundant in boreal eutrophic waters (Woodley &and Gaskin, 1996), with 

population size under the control of food availability (Croll et al., , 2005), always require high 

prey density for efficient bulk filter feeding (Goldbogen et al.,, 2011). Six different species of 

mysticetes currently foraging in the Southern ocean, among which the largest animals that 

have ever lived in world oceans, exploit the high biomass of Antarctic krill, their main food 

resource. The gGreat white sharks isare abundant in the offshore of California (Jorgensen 

et al.,, 2010), Australia-New Zealand, South Africa, and formerly in the Mediterranean 

(Compagno, 2001; Bonfil et al.,, 2005), clustering in proximity of seal colonies, . Marine 

mammals are in fact an important food resource in some areas, in addition to fish and 

cephalopodsincluding monk seals. The distribution in the modern Mediterranean is no 

exception to general rule, only in a smaller scale, with large sharks and marine mammals 

congregating in productive areas, such as the Strait of Sicily and the Balearic Archipelago 
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(Tabs. 3, 5), with the second largest animal on earth, the fin whale, showing a movement 

pattern that parallels seasonal variability in available feeding habitat (Notarbartolo di Sciara, 

2016), contributing to the horizontal transfer of nutrients. Large sharks can also prey or 

scavenge on cetaceans (Compagno, 2002), whereas foraging may also take place in the 

offshore, diving at 100-200 m on average (Jorgensen et al., 2010). Among the pinnipeds, 

grey seals live from estuaries to open shelves (Boehme et al. 2012) and elephant seals are 

abundant in upwelling zones (Biuw et al. 2007). Like whales, also pinnipeds are diverse and 

abundant in the nutrient-rich Southern Ocean, where they feed on krill, cephalopods, and 

fish. The diverse association of Pliocene pinnipeds, sharks and whales in Tuscany points 

therefore to the presence of nutrient-rich waters in the Northwestern sector of the 

Mediterranean (NWMed). A further and independent paleoecological evidence of a nutrient-

rich regime is the association of many LMVs with “Turritella beds”, turritelline gastropods 

showing gregarious habit and high abundance in areas of high nutrient content (Allmon, 

1988). The modern Tuscan shoreline facesTuscany faces the Ligurian Sea, the 

northernmost reach of the Mediterranean, where a deep-water upwelling current coming 

from Southeast convects nutrients to the water surface, leading to high levels of primary 

productivity in its western sectors, extending westward to the Provençal and Balearic Seas, 

with spring algal blooms. These waters host different trophic regimes with respect to other 

parts of the Mediterranean,in an otherwise oligotrophic Mediterranean Ssea (Lazzari et al., 

2012;, Melanotte-Rizzoli et al., 2014; Stambler, 2014). Supporting a conspicuous biomass 

of zooplankton (Cuzin-Roudy 2011), the modern NWMedLigurian Sea sustains large 

populations of fin whales (Balaenoptera physalis) and striped dolphins (Stenella 

coeruleoalba), together with other large cetaceans (: Notarbartolo di Sciara et al., 2008). 

Mediterranean-resident fin whales have adapted to exploit localised mesoscale hotspots of 

productivity that are highly variable in space and time (Notarbartolo di Sciara et al., 2016), 

feeding behaviors possibly mediated by the depth of prey and species-specific behaviours, 
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allowing to minimise competition with other large filter feeders (see Friedlaender et al., 

2014). Among the odontoceti,The sperm whale Physeter macrocephalus uses habitat 

across a range of depths and a specialised diet (Rendell and Frantzis, 2016), gathersing 

along NWMedNWMS steeper slopes, where water currents allows for higher trophic level 

biomass (Pirotta et al.,, 2011). . Beaked whales are particularly abundant in the Ligurian 

Sea and central Tyrrhenian Sea, preferring submarine canyons at slope depths (Podestà et 

al., 2016). The largest among common Mediterranean delphinids, Grampus griseus, is 

frequent in the Ligurian and Thyrrenian seas where it forages on cephalopods at depths 

300-1500, where upwelling currents are most effective (Azzellino et al., 2016).

The NWMedNWMS existed as a Liguro-Provençal back-arc oceanic basin since the upper 

Miocene, when Sardinia rotated to its present position (Gattacceca et al.,, 2007), and in 

coincidence with the formation of the hinterland basins here under study (Muttoni et al.,, 

2001), justifying the assumption that the modern NWMedNWMS trophic regime is a feature 

that dates back at least to the upper Miocene. Past eutrophic conditions are testified in 

Tuscany by dConsistenly, diatomites deposited in Tuscany during the Messinian, before the 

salinity crisis (Bossio et al.,, 1997;; Roveri et al.,, 2014), indicate that high productivity was 

a primitive feature of the Ligurian Seaand by t. Paleontological evidences include the very 

high diversity and abundance of Pliocene LMVsMM in FB, the closest to modern upwelling 

areas (Fig. 3), and the association of several MM with “Turritella beds”, turritelline 

gastropods showing gregarious habit and high abundance in areas of high primary 

productivity (Allmon, 1988). Both a comparison with the modern and paleoecologic data 

strongly suggest that, particularly at times of transgression, maximum flooding and 

highstand, a wedge of NWMedNWMS nutrient-rich waters intersecting the Tuscan shelf 

would have positively affected the general biomassexerted a strong bottom-up control . on 

community structure through mixing and upwelling of nutrients, stimulation of phytoplankton 

blooms, followed by zooplankton increase, while nekton and vertebrates tracked plankton 
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concentrations, as is typical of modern upwelling systems throughout the world (Polis et al., 

1997). High surface primary productivity in the study area during the Pliocene would have 

caused a concentration of fooddetritus-falls, supporting a diverse community of deep-sea 

scavengers.

67.32 Taphonomic control

Taphonomic data on articulation and completeness of MM specimens are available for large 

mammals, the shark record being formed mainly by isolated teeth collected through 

superficial picking during the years (Cigala Fulgosi et al., 2009), with only a few 

contextualised studies (e.g., Bianucci et al., 2002; Dominici et al., 2009). Our record includes 

several marine mammals with a high degree of articulation (14%) and completeness (27%), 

or with at least cranial and post-cranial elements of the same individual (38%). All articulated 

specimens and the most complete skeletons are associated with shelf mudstones, usually 

forming the HST of the relative depositional sequence (Tab. 2), with two exceptions, one 

associated with delta-front, coarse-grained beds (WCh6-1, Fig. 6), another from outer shelf 

or upper slope sediments (DSi2-1). These data point to a strong environmental control on 

the quality of the MM fossil record, at least concerning articulation and completeness of 

skeletons, very shallow and very deep (bathyal) depths being generally unfavourable to the 

preservation of MM bones (Fig. 9A). To explain these results, hypotheses are based on the 

available data on carcasses of MM in modern marine environments.

The biostratinomy of lung-breathing marine mammals depends on water depth (Allison et 

al. 1991; Smith et al., 2005). The vast majority of mammals are negatively buoyant and sink 

after death, but in shallow waters the low hydrostatic pressure allows putrefaction gases to 

develop and carcasses to resurface. Skeletons are scavenged (Dicken, 2008) and 

disintegrate while floating, leading to the preferential deposition of isolated bones. At deeper 
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settings, where high hydrostatic pressure allows the carcass to lay relatively undisturbed on 

the seafloor, the skeleton becomes only slightly disarticulated after soft tissue removal 

(Reisdorf et al., 2012). The subsequent fate of deep-water, disarticulated skeletons depends 

on the nature of the scavenging fauna and other elements of the whale-fall community, and 

on the time of exposure on the seafloor (Boessenecker et al. 2014). At depths deeper than 

the slope breaks, where sedimentation rate is very low, carcasses are exposed for a long 

time and the skeleton is rapidly disintegrated. Time-series analyses carried out at modern 

whale-fall communities at slope depths (range 382-2893 m: Lundsen et al., 2010) suggests 

that carcasses up to 17 m are rapidly degraded, with the deepest whale carcasses 

disappearing after only seven years of exposure on the sea floor. Larger skeletons may 

persist on deeper settings for decades, but if not buried, they also ultimately undergo 

complete destruction. Although environmental forcing triggered by higher temperatures, 

active currents and sediment transport,  clearly plays a role, a specializedsed whale-fall 

fauna rapidly consumes both soft and mineralizedsed tissues. This fauna is 

characterizedsed by low diversity and high abundance of microorganisms, most likely as a 

result of both specialiszation to nutrient enrichment and high growth rates. Whale-fall 

habitats likely undergo a temporal microbial succession from primarily heterotrophic to more 

heterotrophic/chemosynthetic metabolisms until the whale biomass is completely exploited 

(Smith et al., 2015). Of all the specializedsed taxa, bone-eating polychaetes of genus 

Osedax, with their soft root-like tissues that erode the bones to access nutrients 

(Tresguerres et al., 2013;, Minamoto et al., 2017), are the primary cause of bone 

disintegration, particularly of denser bones (Higgs et al., 2011). Found also at shelf depths, 

but invariably in low abundance (Huusgaard et al., 2012;, Higgs et al., 2014b), bone-eating 

worms occur in high numbers in the deep sea (Smith et al., 2015) where they act as 

biodiversity regulators (Alfaro-Lucas et al., 2017). The general paucity of novel taxa on 

shallow-water whale falls suggests that species-rich, specializedsed whale-fall communities 
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develop only in the food-poor deep sea. Accordingly, among new animal species described 

in the recent literature from whale falls, only about 10% have been found on whale remains 

at depths of less than 260 m (12 out of 129 new species: Smith et al., 2015). Of all large 

marine vertebratesMM investigated so far, only whales are known to host a whale-fall 

community, but also carcasses of large elasmobranchs undergo rapid destruction on the 

deep seaat bathyal depths, teeth being all that eventually remains (Higgs et al., 2014a; teeth 

are also lost by sharks during feeding: Pokines and Symes, 2013). As a consequence, over 

geological time no large marine vertebrate is expected to be recovered at depths greater 

than the shelf break. On the opposite side, the lack of a biota specializedsed in exploiting 

large organic falls, coupled with higher rates of deposition in proximity of sediment sources, 

make it more probable that articulated, or only partially disarticulatedthe most articulated 

and complete whale skeletons become part of the fossil record of shelf settings below storm 

wave base.

78. Comparison with other studies

The study of sedimentary facies uncovers some environmental factors that directly control 

the taphonomy of large marine vertebrates. Such abiotic drivers include water pressure, 

wave energy and sedimentation rate — three factors summarizedsed by water depth, and 

upwelling, bringing to the surface deep sea nutrients and concentrating preys. The 

taphonomic pathway of large marine carcasses is also driven by biotic factors that change 

in geological time in response to coevolution between bacteria, scavengers and their 

substrates. We now explore the multifaceted nature of LMVMM taphonomy by reviewing 

Mesozoic and Cenozoic studies comparable to ourswhere sufficient data for stratigraphic 

paleobiology are available. 
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7.8.1 Abiotic factors

According to one of the few previous studies on the sequence stratigraphic distribution of 

large marine vertebratesMM, Jurassic ichthyosaurs, plesiosaurs, and pliosaurs of the 

Sundance Seaway, in North America, display facies control and are found primarily in 

offshore mudstone and at condensed intervals at the maximum flooding surface, rather than 

shoreface and estuarine sandstone (McMullen et al.,, 2014, in a study that included isolated 

LMV remains). Taphonomic data on Upper Cretaceous marine reptiles and large fishes 

suggest that partially articulated and disarticulated skeletons are associated with little 

biological activity and relatively rapid burial by muddy sediments, deposited in the North 

American seaway during an interval of maximum flooding (Schemisser McKean &and 

Gillette,, 2015). Upper Cretaceous mosasaur remains are particularly concentrated in fine-

grained shelf deposits in Europe (Jagt &and Jagt-Yazykova, 2016). Complete, partially 

articulated whale skeletons of archaeocetes, together with bones and teeth of 

dugongsirenians and sharks, are abundant in offshore marine flooding surfaces (MFS) in 

the Priabonian late TST of Egypt. In a further parallelism with the Pliocene of Tuscany, Late 

Eocene well-articulated whales are associated with rapidly accumulating shoreface 

sediments of the FSST, comprising “Turritella shell beds” (Peters et al.,, 2009). During the 

Oligocene, eomysticete whale bones were deposited at shelf depth below storm wave base. 

The occurrence of sparse traces attributed to Osedax and the association with a glauconitic 

limestone testify to the exposure of bones on the seafloor without undergoing complete 

destruction (Boessenecker &and Fordyce,, 2014), in a manner similar to LMVsMM at 

Orciano (see Danise et al.,, 2010;; Higgs et al.,, 2012). Burdigalian/Langhian MM recovered 

in the Antwerpen Sands, in Belgium (including isolated remains of a baleen whale, several 

odontocetes and a pinniped) are fragmented, worn and associated with clayey sandstone 
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rich in glauconite, suggesting long exposure on the sea-floor (Louwye et al., 2010). Bones 

are concentrated at the base of a coarsening-upward succession, on top of shallow marine, 

coarse-grained sandstone, suggesting this is a surface of maximum flooding. An association 

of LMVsMM taxonomically comparable to thosethat here under study is encountered in the 

Mio-Pliocene of the Purisima Formation, in Central California. Taphofacies differ in some 

aspects. The Pliocene of California yields laterally persistent bonebeds with polished and 

phosphatised bones, and abundant phosphate nodules that are absent in Tuscany, 

indicating times of higher sediment starvation during transgressive pulses, in an area of 

much stronger nutrient content (the California Current system is a northern-hemisphere 

analogue of the Peruvian upwelling system, associated with the economically most 

important fish stocks in the world: Mann &and Lazier,, 2006). Shoreface deposits indicate 

stronger wave energy, and the preferential absence of molluscs in bonebeds indicates 

chemical destruction of carbonate shells (Boessenecker et al.,, 2014, in a quantitative MM 

taphonomic study that includes isolated LMV fragments). Episodic sedimentation, however, 

causes the preferential preservation of articulated remains in the Californian offshore as in 

the Pliocene of NWMedNWMS. The late Miocene Pisco Formation in Perù offers another, 

more extreme example of LMVMM taphonomy in a eutrophic setting. Here almost two 

hundred cetaceans, pinnipeds, and sharks were described in an exceptional state of 

preservation (Bianucci et al., 2015), within a monotonous succession of finely laminated 

white diatomites (Di Celma et al., 2015), suggesting very high primary productivity in an area 

of intense upwelling and volcanic activity. Algal blooms sustained high biomass of apex 

predators (see Marx &and Uhen, 2010), triggering at the same time anoxic conditions at the 

seafloor where LMVMM carcasses remained intact (Brand et al., 2004;; see also Gioncada 

et al., 2016; Marx et al., 2017, also in offshore paleosettings). Finally, the stratigraphic 

distribution of Pliocene cetaceans in western Emilia (Italy) shows an uneven distribution of 

findings (N = 24, dolphins and baleen whales) and a strong positive correlation with offshore 
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mudstones (no findings in shoreface sandstones, rare occurrences in epibathyal 

mudstones: Freschi and Cau, 2016), paralleling the distribution of Tuscan Pliocene MM.

78.2 Biotic factors

Many reviews of Triassic (Camp, 1980;, Hogler, 1992; Motani et al., 2008; Hu et al., 2011; 

Liu et al., 2014) and Early Jurassic marine reptiles (Benton &and Taylor, 1984) report mostly 

good preservation and a high degree of completeness and articulation of skeletal material. 

This record might be partially controlled by prevailing anoxic or dysoxic conditions in the 

bottom waters of many Mesozoic fossiliferous deposits (e.g., Middle Triassic Besano and 

Guangling Formations, Lower Jurassic Blue Lias and Posidonia Shale Formations), which 

precluded organism activity within the sediment, and prevented predation or scavenging of 

the carcasses on the sea bottom (Beardmore &and Furrer, 2016). Evidence of advanced 

levels of disarticulation or bone degradation (Martill, 1985; sauropterygians, crocodilians, 

ichthyosaurs and fishes from the Middle Jurassic Oxford Clay Formation), is mostly 

attributed to physical factors (e.g., weathering on the sea floor). Up to the early-Late 

Cretaceous, biological activity is testified by circumstantial evidence of scavenging 

(Hybodus teeth associated with marine reptile skeletons, Martill et al., 1994), and by the 

more common occurrence of microbial mats, grazers and encrusters (Martill, 1987;, Meyer, 

2011;, Danise et al., 2014;, Reolid et al., 2015), but lack traces of bone-eating worms and 

sulphophilic fauna typical of modern whale falls. The siboglinid Osedax is an evolutionary 

novelty in possessing a root system that hosts heterotrophic mutualists and secretes bone-

dissolving acids (Tresguerres et al., 2013;, Miyamoto et al., 2017), and an ecosystem 

engineer (Alfaro-Lucas et al., 2017). Genus Osedax is today associated with whale falls 

worldwide (Taboada et al., 2015), but its impact on LMVMM has changed in time. The oldest 

trace fossils attributable to a bone-eating fauna is found on early-Late Cretaceous plesiosaur 
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and sea turtle bones (about 100 Ma: Danise &and Higgs, 2015). Time estimates suggest 

that Osedax diverged from other siboglinids in the Middle Cretaceous (around 108 Ma: 

Taboada et al., 2015). However, if the bone-eating worm lives also on the bones of birds 

and terrestrial mammals (Rouse et al., 2011), its global nature and high species diversity in 

modern oceans suggest that whale falls, as complex and species-rich habitats, have been 

the most important biodiversity generators (Higgs et al., 2014b; Smith et al., 2015). And 

although the first appearance of Osedax is concomitant with the occurrence of large marine 

reptiles and teleost fishes in the oceans, long before whale evolution, and although their 

distribution is not limited to large carcasses (Pyenson and Haas, 2007), the radiation of 

ocean-going mysticetes at the Oligocene onset of the Antarctic Circumpolar Current 

(Fordyce, 2003) clearly increased available substrata worldwide. The steady increase of 

cetacean size during the Neogene, with a dramatic pulse in the last five million years, when 

Neoceti surpassed 10 m length and reached 30 m in the Pleistocene (Lambert et al., 2010; 

Slater et al., 2017), would have thus triggered a second and more massive radiation of bone-

eating worms (Kiel and Goedert, 2006). Consistently with this hypothesis, the preferential 

distribution of modern Osedax in high latitude settings worldwide (Taboada et al., 2015) 

suggests that biodiversity hotspots coincide with the feeding grounds of larger cetaceans. 

Other bone-eaters of modern deep water whale-fall ecosystem belong to the group of 

abyssochrysoid snails, with fossils found on Late Cretaceous plesiosaur bones (Kaim et al. 

2008) and sea turtle bones (within a chemosynthesis-based association: Jenkins et al., 

2017). Modern abyssochrysoid whalebone-eaters of genus Rubyspira, hosting a specific 

and exclusive microbiome (Aronson et al., 2017), split during the upper Eocene/lower 

Oligocene (Johnson et al., 2010). Like for Osedax, sSpecies of Rubyspira likely benefited 

too from the radiation of ocean-going whales. Although scanty, available evidence on the 

geological history of bone-eaters thus makes the ephemeral nature of large carcasses in 
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modern deep seas — and their absence in bathyal deposits of the Pliocene of 

NWMedNWMS — a larger-than-life model for the Mesozoic and the early Paleogene.

C9. Conclusions

1) Sedimentary facies in the Pliocene of Tuscany are vertically stacked to form small-scale 

depositional sequences particularly in the upper half, Piacenzian part of the succession, 

with laterally-continuous shell beds marking transgressive surfaces and the 

surfaceintervals of maximum flooding. Small-scale sedimentary sequences are stacked 

to form six major, unconformity-bounded stratigraphic units (synthems) of regional 

extension, forming a high-resolution framework to study the chronostratigraphic 

distribution of marine megafauna (MM).

2) Sedimentary faciesBenthic biotopes, identified through a quantitative study of a large 

molluskmollusc dataset, can be arranged to form an ideal onshore-offshore, bathymetric 

gradient, connecting terrestrial environments with deep sea epibathyal bottoms, 

consistently with the distribution of sedimentary facies. BonesMM remains of large 

marine vertebrates and shell beds are present in all marine paleoenvironments, but their 

distribution is uneven. 

2) The fossil record of large vertebrates, including marine mammals (abundance data) and 

larger sharks (presence-absence data), is particularly rich in sediments deposited 

between storm wave base and the shelf break, moderately rich in shoreface sediments, 

very poor in epibathyal sediments. Paleobathymetric estimates suggest that a peak of 

abundance of better preserved skeletons occurs around 100 m depth, within the 30-300 

m range.

3) Species-richenns of MM and abundance of marine mammal remains steadily increase 

during the Zanclean, reaching a peak in synthem 4, possibly as a response to the mid-
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Piacenzian warm period, and gradually decrease until reaching a minimum in proximity 

of the Plio-Pleistocene boaundary.

4) Comparison with ecological data on a global scale, paleogeographic and topographic 

considerations on the North-Western Mediterranean Sea (NWMS)Mediterranean 

paleogeography, and the frequentoccasional association of Pliocene large marine 

vertebratesMM with Turritella beds, suggest that upwelling and high-nutrient conditions 

in the Northwestern Mediterranean offshore sustained during the Pliocene a rich 

community of apex predators and mesopredators. Higher taxonomic MM diversity in the 

NWMS during the Pliocene, suggests higher niche-partitioning. with respect to the 

modern NWMS and a top-down control on community structure. 

5) A comparison with studies on the biota exploiting tissues of large food particles sunken 

on the seafloor, both modern and ancient, suggests that the poor epibathyal record of 

Pliocene larger vertebrates of Tuscany may be caused by the destructive action of bone-

eating invertebrates. This biotic driver of the marine vertebrate fossil record was less 

efficient before the radiation of ocean-going whales in the late Eocene-lower Oligocene. 

On the other hand, bone-eaters played a major taphonomic role on a global scale after 

the Pliocene-Pleistocene increase in whale size.

6) Due to resurfacing of carcasses in shallow waters, the taphonomy of large marine 

vertebratesMM fossil record through the Mesozoic-Cenozoic isreviewed through 

stratigraphic paleobiology shows a strong facies control, being more continuous 

comparable through the Mesozoic-Cenozoic in rocks formeddeposited below storm wave 

base and above the shelf-slope break during sea-level transgressions and highstands.
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Figure and table captions:

Fig. 1 - Location of sedimentary logs within the largest Pliocene basins of Tuscany. Fine 

Basin (FB): Pagliana (1), Pieve Vecchia (2) and Orciano Pisano (3). Volterra-Era Basin 

(VEB): Parlascio (4), Lajatico (5), Fabbrica (6) and Volterra (7). Era Basin (EB): San Lorenzo 

(8), La Serra (9), Poggio al lupo (10), San Maiano (11), Canneto (12), Casenuove (13), 

Castelfiorentino (14), Fiano (15) and San Gimignano (16). Orcia-Ombrone Basin: Arcille (17) 

and Poggio alle Mura (18). Siena-Radicofani Basin (SRB): Siena (19),  Monteaperto (20), 

Castelnuovo Berardenga (210),  and Radicofani (2122) and Fastelli (23). Chiana Basin (CB): 

Sinalunga (242), Cetona (253) and Allerona (264).

Fig. 2 - Pliocene stratigraphy of Tuscany, see Fig. 1 for the location of numbered sections. 

All logs measured and described by the authors, except Volterra (log 7: Bianucci et al. 1998), 

Arcille (log 17: Tinelli et al.,  2012; Tinelli, 2013), Siena (log 19: Bianucci et al., 2001), 

Monteaperto (log 20: Martini et al., 2011), Castelnuovo Berardenga (log 21: Martini et al., 
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2016) and Radicofani (log 22: Ghinassi  and Lazzarotto, 2005)(chronostratigraphy based on 

biostratigraphic data from several sources, see main text). See Fig. 1 for the location of 

numbered logs.  (Chronostratigraphy  of localities 25 (Poltriciano, Cetona: Capellini, 1883) 

and 26 (Allerona: Danise, 2010) are unknownlogs 21-23 not shown). Correlation between 

sections is also shown as boundaries of planktonic foraminifera biozones (dashed lines), 

following the scheme of Sprovieri (1992), based on available biostratigraphic studies for 

each basin (see main text for relevant references).

Fig. 3 - NumberAbundance of fossil large marine vertebrateMM records in major museums 

of Tuscany catalogues, distributed by locality of provenance. Each record ranges from a 

single fragment or single tooth, to a quasi-articulated, nearly complete skeleton. A: whales 

and dolphinsmasticates and odontocetes; B: large sharks; C: dugongsirenians — manscuba 

diver for scale in each figure. Symbols for basins as in Fig. 1.

Fig. 4 - Detailed sedimentary logs measured at three localities, representing three different 

stratigraphic contexts for the large marine vertebrate fossil record of the Tuscan Pliocene. 

The succession at Orciano Pisano is included in synthems S3-S4 of FB, at Arcille-Poggio 

alle Mura-Camigliano in synthem S2 of OOB, at Sinalunga in synthem S6 of CB. See Figs.1-

2 for the location of the numbered localities and references in the main text for facies 

analysis and sequence stratigraphy of synthem S5. Arcille log from Tinelli et al., 2012, and 

Tinelli, 2013.

Fig. 5 - Taphonomy of large marine vertebrates at Poggio alle Mura (Figs. 5A-5D) and Arcille 

(Fig. 5E, see Fig. 4 for the sequence stratigraphic and sedimentary context; plan view of the 

sirenian skeleton is modified from Tinelli et al., 2012), synthem S2. A: Plan view of the 

Poggio alle Mura undetermined balaenopterid. Parts of the skeleton are quasi-articulated, 
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others are scattered, but not far from the original position. B: Quasi-articulated vertebrae of 

the same specimen, lying on top of a Haustator shell bed. C: Side view of a vertebra on top 

of the densely-packed shell bed. D. Detail of the shell bed, in top view. The turritelline 

gastropod Haustator vermicularis is visible in the upper left, a large fragment of wood in the 

lower right, with the inchnofossil Teredolithes produced by wood-dwelling teredinid bivalves, 

in the centre of the photograph. E: Plan view of one of the Arcille dugongsirenian specimens, 

belonging to the species of Metaxitherium appenninicum. Same scale as in 5A, the arrows 

points to the North.

Fig. 6 - Taphonomy of a 10m-long, undetermined balaenopterid at Orciano Pisano (see Fig. 

4 for the sequence stratigraphic and sedimentary context), synthem 4. A: Planimetry of the 

quasi-articulated and nearly complete skeleton. B: Detail of the central part of the skeleton 

in the field. The cortex layer of vertebrae and flipper bones is badly consumed, whereas 

some of the costae are still pristine. C: Lateral view of a turritellid shell bed, below, and the 

surface where the whale skeleton lied (dashed line), about 15 cm above the shell bed. The 

sediment is a very fine-grained silty sand, completely bioturbated (large vertical burrows are 

visible). D: Top view detail of the turritellid shell bed. At the center a valve of Yoldia nitida, 

surrounded by a few specimens of the turritellid Archimediella spirata.

Fig. 7 - Taphonomy of an incomplete, undetermined mystecete at Castel San Gimignano, 

synthem 4, comprising articulated torso elements. A: Planimetry of the articulated elements. 

B: Detail of one of the limbs in the field (trowel for scale = 22 cm): humerus, radius and ulna 

are in anatomical relationship; the cortex layer is well preserved, suggesting quick burial of 

the carcass. C: Bones of the chest region; on the background the massive sandstone 

associated with the fossil whale. Articulated shoreface pectinid bivalves (Pecten 

flabelliformis) were interspersed in the sandstone (photographs by Fabio Cozzini, 1985).
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Fig. 87 - Taphonomy of a 5m-long, undetermined balaenopterid at Sinalunga (see Fig. 4 for 

a tentative sequence stratigraphic interpretation), synthem 6. A: Oblique view of the fully 

articulated skeleton lying in a gravelly sandstone, stratified in the lower part, massive in the 

upper. Vertebrae are tightly connected as if in life. B: Plan view of the flipper, with carpals, 

metacarpals and phalanges in perfect anatomical connection. C: The gravelly sandstone 

lies above a bioturbated muddy sandstone, with vertical burrows (Ophiomorpha). D: The 

lower part of the unit with the whale skeleton if formed by three fining-upward beds. Each 

bed grades from gravel to medium-grained sand. Articulated and empty shoreface bivalves 

(e.g., Callista chione), not in life position, are interspersed with the coarse gravel.

Fig. 98 - Quantitative analysis of the facies type and sequence stratigraphic distribution of 

large marine vertebrates, Pliocene of Tuscany (N = 39, see Tab. 2). A: The vast majority of 

cases (77%) are associated with fine-grained muddy sediments of the shelf, a few are found 

in deltaic coarse-grained strata. B: Most LMVsMM (69%) areis found in highstand deposits, 

a few in proximity of the maximum flooding interval, or in transgressive deposits.

Fig. 109 - NMDS ordination of bulk samples (N = 72, see Fig. 2 for their stratigraphic 

position), based on the distribution of standardised abundances of 329 mollusc species 

(further explanation on multivariate techniques in the main text). A: Samples are subdivided 

based on the associated sedimentary facies types (F2-F5 in Tab. 1). The main axis ordinates 

samples along a paleodepth gradient, from shallowest to deepest, moving from the left to 

the right side of the bivariate plot. B: Same ordination, with an estimate of absolute 

paleodepth of each sample based on score along the main axis and calibrated through the 

average modern depth distribution of 23 extant species characterising the Pliocene dataset 

(abundance > 0.15%, see text; regression logarithmic curve in the inset). Vertebrates 
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recovered in proximity of some of the samples (N = 13) are plotted on the diagram, 

confirming that, on average, the LMVMM fossil record is concentrated on the open shelf at 

an estimated depth of  30-300 m (M =dugongs sirenians; S = sharks; P = pinnipeds; W = 

whales).

Fig. 11 - Occupancy of trophic levels by Pliocene marine mammals and sharks in the north-

western Mediterranean, expressed by number of species per trophic level (see Tabs 3, 5 for 

explanation and references). This figure, summing up data for the whole epoch, spanning 

circa 2,8 My, closely matches the association found in one single synthem S4, of much 

shorter duration (mid-Piacenzian, 3-4 hundred thousand years).

Tab. 1 - Sedimentary facies types.

Tab. 2 - Stratigraphic, taphonomic and paleoenvironmental framework for Pliocene large 

marine vertebratesmarine mammals recovered ofin Tuscany, with abundance data (N = 

3964). A: Highly aArticulated and quasi-articulated skeleton; C: Highly cComplete and quasi-

complete skeleton; C+PC: Cranial and post-cranial bonesremains.

Tab. 3 - Paleoecology of Pliocene large mammals compared toand ecology of modern 

NWMS analogues.

Tab. 4 - Geographic distribution of Pliocene large mammals in Tuscany.

Tab. 5 . Paleoecology of Pliocene sharks compared toand ecology of modern NWMS 

analogues.
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Tab. 6 - Geographic distribution of Pliocene sharks in Tuscany.

Supplement Material

Fig. S1 - Dendrogram resulting from cluster analysis of a dataset of 336 species distributed 

in 72 samples (standardised abundance, square-root transformed, Bray-Curtis similarity).

Tab. S1 - Ranked total average of standardised abundance of Pliocene molluscs.

Tab. S2 - Score on main axis of NMDS ordination (NMDS1) of Pliocene mollusc species 

(N=329).

Tab. S3 - Average depth of extant mollusc species with >1,5% abundance in the Pliocene 

dataset (N=23).

Tab. S4 - Estimated depth of Pliocene samples (N=72) based on NMDS1.
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Pliocene stratigraphic paleobiology in Tuscany and the 

fossil record of marine megafauna

Abstract

Tuscany has a rich Pliocene record of marine megafauna (MM), including mysticetes, 

odontocetes, sirenians and seals among the mammals, and six orders of sharks among the 

elasmobranchs. This is reviewed with respect to paleogeography and sequence-

stratigraphic occurrence in six different basins. Conditions at the ancient seafloor are 

explored by means of sedimentary facies analysis, taphonomy and multivariate techniques 

applied to a large quantitative dataset of benthic molluscs. MM is rare or absent in most 

basins during the Zanclean, except in one basin, and most abundant in Piacenzian deposits 

in all six basins. MM occurs preferentially in fine-grained shelfal highstand deposits of small-

scale depositional sequences, or at condensed horizons of the maximum flooding interval. 

It is rare in shallow marine paleonvironments and nearly absent in bathyal paleosettings. 

Paleogeographic and paleoecological evidence and a comparison with modern patterns of 

marine upwelling suggest that a wedge of nutrient-rich waters sustained in the offshore 

during the Pliocene a high biomass of primary producers and a community of apex 

consumers and mesopredators, similarly to the modern Northwestern Mediterranean Sea, 

with a higher species-richness than the modern. The highest MM diversity coincides with 

the mid-Piacenzian warm period, suggesting that facies control does not obscure a link 

between climate and diversity. We underline however that not all marine environments were 

suitable for marine mammal preservation. Buoyant carcasses were preferentially 

dismembered and destroyed in high-energy shallow waters, with the possible exception of 

delta front deposits, where sudden sediment input occasionally buried pristine carcasses. 

We hypothesise that carcasses sunken on the seafloor below the shelf break underwent 

destruction through the activity of a whale-fall biota of modern type, specialised in the 
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consumption of decomposing tissues, both soft and mineralised. A taphonomic window was 

left between storm wave base and the shelf break. Here water pressure is high enough to 

prevent the formation of decomposing gases and the resurfacing of carcasses, while the 

lack of a specialised whale-fall biota slows down bone degradation with respect to deeper 

settings. Sedimentation rate was high enough to cover skeletal material before its complete 

destruction. An estimate of paleobathymetries based on multivariate techniques suggests 

that the preferential depth for the inclusion of MM in the fossil record was 30-300 m. The 

results are compared with major Mesozoic and Cenozoic MM records worldwide. Available 

evidence suggests that the late Neogene radiation of large whales, true ecosystem 

engineers, and their size increase, triggered the radiation of a bone-eating fauna that 

hampered, and hampers, MM preservation in the deep sea. Stratigraphic paleobiology and 

an ecosystem-level approach deliver useful insights in the nature of the fossil record.
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Abstract

Tuscany has a rich Pliocene record of marine megafauna (MM), including mysticetes, 

odontocetes, sirenians and seals among the mammals, and six orders of sharks among the 

elasmobranchs. This is reviewed with respect to paleogeography and sequence-

stratigraphic occurrence in six different basins. Conditions at the ancient seafloor are 

explored by means of sedimentary facies analysis, taphonomy and multivariate techniques 

applied to a large quantitative dataset of benthic molluscs. MM is rare or absent in most 

basins during the Zanclean, except in one basin, and most abundant in Piacenzian deposits 

in all six basins. MM occurs preferentially in fine-grained shelfal highstand deposits of small-

scale depositional sequences, or at condensed horizons of the maximum flooding interval. 

It is rare in shallow marine paleonvironments and nearly absent in bathyal paleosettings. 

Paleogeographic and paleoecological evidence and a comparison with modern patterns of 

marine upwelling suggest that a wedge of nutrient-rich waters sustained in the offshore 

during the Pliocene a high biomass of primary producers and a community of apex 

consumers and mesopredators, similarly to the modern Northwestern Mediterranean Sea, 

with a higher species-richness than the modern. The highest MM diversity coincides with 

the mid-Piacenzian warm period, suggesting that facies control does not obscure a link 
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between climate and diversity. We underline however that not all marine environments were 

suitable for marine mammal preservation. Buoyant carcasses were preferentially 

dismembered and destroyed in high-energy shallow waters, with the possible exception of 

delta front deposits, where sudden sediment input occasionally buried pristine carcasses. 

We hypothesise that carcasses sunken on the seafloor below the shelf break underwent 

destruction through the activity of a whale-fall biota of modern type, specialised in the 

consumption of decomposing tissues, both soft and mineralised. A taphonomic window was 

left between storm wave base and the shelf break. Here water pressure is high enough to 

prevent the formation of decomposing gases and the resurfacing of carcasses, while the 

lack of a specialised whale-fall biota slows down bone degradation with respect to deeper 

settings. Sedimentation rate was high enough to cover skeletal material before its complete 

destruction. An estimate of paleobathymetries based on multivariate techniques suggests 

that the preferential depth for the inclusion of MM in the fossil record was 30-300 m. The 

results are compared with major Mesozoic and Cenozoic MM records worldwide. Available 

evidence suggests that the late Neogene radiation of large whales, true ecosystem 

engineers, and their size increase, triggered the radiation of a bone-eating fauna that 

hampered, and hampers, MM preservation in the deep sea. Stratigraphic paleobiology and 

an ecosystem-level approach deliver useful insights in the nature of the fossil record.

1. Introduction

The modern marine megafauna (MM) includes all marine mammals, seabirds, sea turtles 

and sharks, apex consumers that influence their associated ecosystems (Lewison et al., 

2004), both pelagic and nearshore, through top-down forcing and trophic cascades, and 

now severely affected by human impact (Estes et al., 1998, 2011, 2016). On a 

macroevolutionary scale, predation pressure has shaped the evolution of marine preys, with 

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



3

feedbacks on predators, setting the stage for the Mesozoic marine revolution (Vermeji, 1977; 

Chen and Benton, 2012; Benton et al., 2013). The new ecosystem structure started in the 

the Early and Middle Triassic with several lineages of Actinopterygian fishes (Chen and 

Benton, 2012), continuing with marine reptiles possessing feeding styles (Fröbisch et al., 

2013; Motani et al., 2015; but see also Motani et al., 2013) and reproductive adaptations 

(Motani et al., 2014) of modern type. Triassic and Jurassic novelties underwent a prolonged 

crisis during the Cretaceous, with the gradual extinction of plesiosaurians,mosasaurs 

(Benson et al., 2010) and ichthyosaurs (Fischer et al., 2016), and a diversity drop of sharks 

(Guinot et al., 2012). A marine megafauna of comparable size returned in the Paleogene, 

with the new diversification of neoselachian elasmobranchs (Kriwet and Benton, 2004) and 

the evolution of large marine mammals: Eocene archaeocetes (Uhen, 2008, Gingerich et 

al., 2009) and Oligocene odontocetes and mysticetes (Gingerich, 2005; Marx and Uhen 

2010, Berta, 2012; Marx et al., 2016) empowered by high metabolic rates and new anatomic 

features (Armfield et al., 2013). Among the largest vertebrates of all times, after a dramatic 

size increase at the outset of glacial age (Marx et al., 2016; Bisconti et al., 2017; Slater et 

al., 2017), baleen and sperm whales are among today’s ocean’s ecosystem engineers 

(Roman et al., 2014) with which to compare their Mesozoic analogues (Smith et al., 2016). 

Notwithstanding a crucial role in ecology and evolution, the nature and distribution of the 

MM fossil record has been less explored, compared to that of marine invertebrates and 

terrestrial vertebrates. Available data suggest a strong correlation between taxic diversity 

and the number of marine fossiliferous formations, resulting in megabiases in the fossil 

record (e.g., Cretaceous: Benson et al., 2010). Within its vast history, studies on the 

geologically recent marine megafauna offer important insights, considering our better 

knowledge of: 1) geological setting, in terms of outcrop extent and high-resolution 

stratigraphy; 2) ecologic role played by individual species, whether extant or extinct, in terms 

of habitat, trophic role, life histories and population structure, thanks to a comparison with 
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extant descendants, or close relatives; 3) MM taphonomy, based on actuopaleontology. A 

recent global study revealed that MM extinction peaked in the late Pliocene, between 3.8 

and 2.4Ma, linked to the sudden drop in the extension of nearshore environments after a 

large sea level regression (Pimiento et al., 2017), confirming that the fossil record offers 

important clues on the vulnerability of keystone marine species to climate change. We 

contribute here to a better understanding of the Pliocene fossil record by reviewing the rich 

MM of Tuscany, in Italy. In particular, we consider all reports of Pliocene marine mammals 

and sharks and revise taphonomy and sedimentary facies associated with all known 

findings, setting them within a sequence stratigraphic framework. We also reconstruct the 

paleoenvironmental context and review data on a part of the marine ecosystem through the 

paleoecology of fossil invertebrates on a regional basis, following a stratigraphic 

paleobiological approach that can be applied to both the recent and the distant geological 

past (Patzkowsky and Holland, 2012). Published studies that have taken this direction are 

still a few, examples concerning Jurassic ichthyosaurs, plesiosaurs and pliosaurs (McMullen 

et al., 2014), Cretaceous turtles, plesiosaurs, bony fish and sharks (Schemisser McKean 

and Gillette, 2015), Eocene archaeocetes, sea cows and sharks (Peters et al. 2009), and 

Neogene marine mammals and sharks (Boessenecker et al., 2014). All of these papers 

record the co-occurrence of shelly faunas, only one undertaking quantitative studies of the 

distribution of fossil invertebrates (Jurassic of the Sundance Formation: McMullen et al., 

2014, see also Danise and Holland, 2017). The benefits of an outcrop-scale sequence 

stratigraphic approach include: (1) an independent record of relative sea-level change to 

test paleobiological hypotheses (see also Pyenson and Lindberg, 2011; Noakes et al., 

2013); (2) a chronostratigraphic scheme for high-resolution correlations; (3) a means to 

recognise minor and major breaks of the record; (4) an ecological and sedimentary 

framework for taphofacies distribution (Patzkowsky and Holland, 2012); and (5) an 
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independent control of onshore-offshore patterns of fossil assemblages (e.g., Tomašových 

et al., 2014). 

Researchers that study the geologic history of marine ecosystems have focused on patterns 

of ecological restructuring based on the taxonomy of selected groups (e.g., Thorne et al., 

2011; Benton et al., 2013; Scheyer et al., 2014; Fischer et al., 2016), at the expenses of a 

more holistic approach that includes functional diversity and embraces as many ecosystem 

components as possible (Dineen et al., 2014). By analogy with ecologists who shift focus 

from models based on single groups (e.g., Steeman et al., 2009) to an all-embracing vision 

of marine life (Lawton, 1994; Sergio et al., 2014), connecting food web ecology with 

landscape ecology (Polis et al., 1997; Estes et al., 2011), stratigraphic paleobiology can 

draw from the fossil record and offer multidimensional insights on the complex geological 

history of modern marine ecosystems.

After revising fossil MM hosted in major museums of Tuscany, both isolated and articulated 

remains, we focus on all fossil bones that can be stratigraphically (e.g., Bianucci et al., 1995, 

1998, 2001; Tinelli, 2013) and taphonomically framed (e.g., Dominici et al., 2009; Bianucci, 

2010; Danise and Dominici, 2014). MM lists for the Mediterranean Pliocene have been 

recently updated (marine mammals: Landini et al., 2005; Bianucci et al., 2009a; Sorbi et al., 

2012; Bianucci and Vomero, 2014; sharks: Marsili, 2006). Species-level ecological data are 

available on modern apex consumers and mesocarnivores (Pauly et al., 1998; Cortés, 

1999), with detailed information made available for Mediterranean species following 

conservation concerns (marine mammals: Notarbartolo di Sciara et al., 2016; sharks: 

Cavanagh and Gibson, 2007), allowing for a detailed paleoecological evaluation of the 

Tuscan fossil record. The actualistic approach is also viable for species of benthic molluscs, 

about half of which are still extant in modern Mediterranean bottoms (55% of extant species 

of Mediterranean and North Sea bivalves, excluding strictly brackish and bathyal forms, i.e., 

202 out of 367 species, survives from the Zanclean: Raffi et al., 1985). The regional 
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quantitative study of molluscan assemblages was the basis for an independent assessment 

of paleoenvironments, paleoecology and paleobathimetry. A revision of abundance 

distributions of marine molluscs, the largest contributors to Mediterranean Pliocene shell 

beds and a key component of Mesozoic and Cenozoic marine ecosystems (Stanley, 1975; 

Vermeij, 1977), allowed to further explore the structure and composition of Pliocene marine 

ecosystems, and reconstruct a paleobathymetric gradient (e.g., Scarponi and Kowaleski, 

2004) along which to frame MM occurrence. The present work must necessarily start with a 

review of the chronostratigraphy and physical stratigraphy of the Tuscan marine Pliocene.

1. Geological setting

The Pliocene succession of Tuscany was deposited in a complex setting characterised by 

continental collision related to the later evolution of the Northern Apennines chain. According 

to a well-established hypothesis, the region, affected by shortening before the Middle-Late 

Miocene, accommodated by NE-verging thrust and fold systems, underwent crustal 

extension during the late Neogene and the Quaternary (DeCelles, 2012; Fig. 1). Crustal 

extension generated differential subsidence in a series of normal-fault controlled hinterland 

sedimentary basins, filled throughout by continental and shallow marine, mostly clastic 

successions (Martini and Sagri, 1993; Pascucci et al., 2006; Brogi, 2011). An alternative 

hypothesis places the late orogenic hinterland basins in a more complex tectonic setting 

characterised by the alternation of compressive, extensional and transcurrent stress fields 

(Benvenuti et al., 2014; Bonini et al., 2014). 

The Neogene Tuscan basins considered in this work include, from West to East, and from 

North to South, the Fine Basin (FB; Bossio et al., 1997), the Volterra-Era Basin (VEB; Bossio 

et al., 1994), The Elsa Basin (EB; Benvenuti et al., 2014), the Ombrone-Orcia Basin (OOB; 

Bossio et al., 1991; Nalin et al., 2010), the Siena-Radicofani Basin (SRB; Ghinassi and 
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Lazzarotto, 2005; Martini et al., 2011, 2016), and the Chiana Basin (CB; Fig. 1: Pesa Basin 

not considered here). With one exception (OOB, see below), these basins show a shape 

conditioned by the structural and physiographic features of the inner portion of the Northern 

Apennines. Their NW-SE general elongation reflects the trend of the thrust-related anticline 

ridges developed during earlier collisional stages. These compressive structures have 

bounded most basins through their infilling, only to be obliterated by younger parallel normal 

fault systems, leaving an invariant stratigraphic onlap of the Pliocene successions onto the 

basin margins. Despite a NW-SE distribution of the hinterland basins, the structural setting 

is responsible for a NE-trending physiographic and paleogeographic gradient, where the FB 

is closest, and the CB furthest, from offshore settings throughout the late orogenic phase, 

with important implications for the facies architecture and the distribution of marine 

vertebrates and shell beds. Differential active uplift of the basin shoulders during the 

Pliocene, coupled with important erosional phases, resulted in a different preservation of the 

original stratigraphic architecture. The infill during the Zanclean is generally characterised 

by relatively continuous open marine successions, the correlative fluvial-coastal systems 

missing due to uplift and erosion of basin margins. On the other hand, the Piacenzian infill 

is characterised by genetically-connected, fluvial, coastal and shallow marine facies tracts, 

particularly well-preserved in the EB, hinting to reduced uplift of the marginal areas. The 

modern physiography of OOB, escaping the structurally-controlled geometry of the other 

basins, mimics instead an original fluvial network developed during the latest Messinian, 

flooded after the Salinity Crisis (Bossio et al., 1991; Benvenuti et al., 2015), filled during the 

Pliocene, and finally disrupted by post-Pliocene uplift and erosion. This difference in the 

structural history also justifies the preservation in OOB of Zanclean fluvial and shallow 

marine facies (Fig. 2).
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1.1 Pliocene Stratigraphy

The Neogene succession of Tuscany is up to 2000 m-thick, about half of which belongs to 

the uppermost Miocene-Pleistocene interval (Bossio et al., 2004; 1997; Benvenuti et al., 

2014). The Pliocene has been traditionally subdivided into three main informal 

litostratigraphic units: continental conglomerates and sandstones at the base, overlain by 

the “Blue Clay Formation” (Argille Azzurre: Zanclean-lower Piacenzian), marking the post-

Messinian Mediterranean marine transgression and forming the thickest part of the basin 

infill (e.g., Bossio et al., 1994; 1997; Ghinassi and Lazzarotto, 2005), and the “Upper Sands” 

(Sabbie superiori: Piacenzian-Gelasian) and conglomerates, deposited during the ensuing 

regression. Several finer litostratigraphic units have been introduced to define the local 

stratigraphy, resulting in a complex and largely informal litostratigraphic terminology which 

includes Zanclean lower “Blue Clays” and Zanclean-Piacenzian upper “Blue Clays” 

(Capezzuoli et al., 2015), the latter eventually further separated by the widespread 

occurrence of Piacenzian carbonates (Nalin et al., 2016). The lower Zanclean (OOB: 

Ghinassi, 2007; Nalin et al., 2010; Dominici et al., 2012) and the Piacenzian, are 

characterised by the high-frequency alternation of coarse-grained and fine-grained facies, 

ranging from fluvial to marine shelf settings (Benvenuti et al., 1995; 2007; 2014; Martini et 

al. 2011, Fig. 2). The dynamics of the Pliocene infilling are better-understood in the EB, 

where six synthems have been defined, each up to more than 200 m-thick, further 

subdivided in a number of elementary and composite depositional sequences and 

chronologically calibrated through marine biostratigraphy and continental vertebrate 

biochronology (Benvenuti and Del Conte, 2013; Benvenuti et al., 2014, with references).

2. Materials and methods
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Stratigraphic sections were measured and described at several localities (Fig. 1). Siliciclastic 

and carbonate facies were described, subdivided into groups of facies based on lithology, 

sedimentary structures and ichnology, and interpreted in terms of process and depositional 

environment (Tab. 1). Each group represents a set of individual facies forming monogenic 

associations (in the sense of Mutti et al.,1994), i.e., the meter-scale stacking of facies which 

express the autocyclic behaviour of specific depositional systems within a given 

accommodation space (Benvenuti and Del Conte, 2013). Sequence stratigraphic concepts 

have been applied to reconstruct the dynamics of basin infills at a hierarchy of scales, 

advancing hypotheses on controlling factors. The chronostratigraphic subdivision of 

Benvenuti et al. (2014), which divides the Pliocene into six synthems, S1-S6 from older to 

younger, was extended to all six Tuscan basins by referring to available biostratigraphic 

schemes (Fig. 2). The sequence stratigraphic interpretation of S2 in OOB is based on Tinelli 

(2013). Other parts of the S1-S3 succession were drawn based on available litostratigraphic 

literature (see below). Studies integrating sedimentary facies analysis, biostratigraphy and 

magnetostratigraphy (Nalin et al., 2016) have helped correlating carbonate bodies typical of 

S4. The reader is referred to Benvenuti et al. (2007; 2014) for details on facies analysis and 

sequence stratigraphic interpretation of synthems S3-S6.

First, data on the geographic distribution of fossil marine mammals, large sharks and 

sirenians were largely based on collections housed at the Natural History museums of the 

University of Florence (UFMSN), University of Pisa (UPMSN), and Accademia de’ Fisiocritici 

of Siena (AFMSN), the three largest collections of Tuscany, and at the Geological Museum 

Giovanni Capellini, Bologna University (MGGC). In particular, counts of cetaceans were 

based on UFMSN collections (Mysticeti and Odontoceti, N = 142), large shark on the sum 

of UFMSN, UPMSN and AFMSN collections (Carcharhiniformes and Lamniformes, N = 337, 

data synthesised from Marsili, 2006), sirenians from all reports in Tab. 2 (N = 10). Each 

record is formed either by a single element (e.g., whale bone, shark tooth), by a few 
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elements of the same individual, or by a whole, quasi-articulated skeletons. A large 

proportion of this dataset lacks precise location, allowing only for some crude stratigraphic 

attribution (Fig. 3). 

On a second step, all fossil Tuscan Pliocene cetaceans, sirenians and pinnipeds that could 

be framed within the available high-resolution stratigraphic framework and associated with 

taphonomic data, were selected. At this step, after excluding unidentified MM remains, a 

dataset of 64 specimens (cetaceans N = 50; sirenians N = 10; pinnipeds N = 4) was 

assembled. Associatiation with shark teeth is frequent (55% of 25 cases according to Danise 

and Dominici 2014 for the Italian Pliocene; see also Bianucci et al. 2002, 2010). The majority 

of the 64 specimens are included in the catalogue of UFMSN, UPMSN, AFMSN and MGGC, 

whereas a few are stored in smaller collections of the municipalities of Montaione, Scandicci 

(Florence province), and Certaldo (Pisa province), one in a private property (Castello di Villa 

Banfi, near Montalcino, Siena province), and one in the Museum National d’Histoire 

Naturelle in Paris (France). Whenever possible, large marine vertebrates were coded by 

synthem (N = 60) and depositional environment (N = 54). We analysed abundance 

distributions among marine mammals, and species richness of marine mammals and 

sharks. To infer Pliocene paleoecology, fossil taxa recognised in Tuscany were compared 

with their closest descendants, focusing on the species today living in the North-Western 

Mediterranean Sea (NWMS).

All known MM-bearing sedimentary facies are associated with a mollusc-dominated benthic 

fauna. The third step of the analysis concerned a quantitative study of shell beds, allowing: 

1) to interpret the regional evolution from a perspective independent from the sedimentary 

facies, 2) to characterise MM paleoenvironmental and bathymetric distribution, and 3) to 

explore the structure of the benthic component of marine ecosystems and to identify 

underlying environmental controls. 72 Bulk samples were collected at major shell beds at 

bed resolution throughout the succession and sieved with 1 mm mesh size. Fossils of 
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bivalves, gastropods and scaphopods were identified to species level. The minimum number 

of individuals was calculated following standard approaches (see Patzkowsky and Holland, 

2012), resulting in a richness of 525 species (S) and a total abundance of 64206 individuals 

(N). We coded each fossil assemblage by synthem, tract of small-scale depositional 

sequence, and depositional environment. Most samples belonged to facies types F2-F5 

(Tab. 1; see also Tomašových et al., 2014). Facies F6 usually lacks macrofossils and 

allowed for the collection of only one sample. No samples were collected in facies F1, 

lacking marine shells, facies F7, mostly devoid shells, and facies F8, which is richly 

fossiliferous, but lacks aragonite shells and is associated with specimens hardly extractable 

from the rock. The resulting quantitative dataset served for statistical analyses on the 

distribution of species-level abundances on a siliciclastic shelf depositional system, 

performed with the software Primer 6.0 (Clarke and Gorley, 2006). Analyses included 

clustering and nMDS ordination techniques on a Bray-Curtis similarity matrix, of 

standardised, square-root transformed data (72 samples; S = 333 and N = 63518 after the 

exclusion of singletons). To test statistically whether there is a significant difference between 

two or more groups of sampling units based on sedimentary facies, we performed an 

analysis of similarity (ANOSIM). To interpret the outcomes of the quantitative study and the 

significance of clusters we used species-level autoecologic information available for the 

most abundant species, based on the distribution of extant forms. This information, retrieved 

from the Marine Biodiversity and Ecosystem Functioning EU website (MARBEF: 

www.marbef.org), included the average life depth of 23 modern species that in our dataset 

had an overall abundance > 0.15%.

3. Results
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3.1. Unconformity-bounded units

3.1.1 Synthem S1: the early Zanclean transgression

The Miocene-Pliocene transition, marking the return to marine conditions after the 

Messinian salinity crisis (Krjigsman et al., 1999), is recorded in limited exposures of earliest 

Zanclean, open marine mudstones resting both unconformably or conformably onto latest 

Messinian non-marine deposits (Lago-Mare), an isochronous boundary being dated in the 

Mediterranean at 5.33 Ma (Roveri et al., 2014). Differences depend on the specific 

structurally-controlled distribution of hinterland basins, where an uplifting chain determined 

the presence of thresholds delaying the early Zanclean marine flooding from inner (EB, 

OOB: Benvenuti et al., 2015a) to outer hinterland basins (FB, VEB). In inner basins such as 

EB, where S1 has been defined, continental deposition continued into the earliest Zanclean, 

marine flooding occurring within the MPL1 biozone (references in Benvenuti et al., 2015a). 

A chronostratigraphical equivalent of S1 is represented in FB and VEB (Bossio et al., 1978) 

by an open-shelf mudstone, conformably resting on latest Messinian Lago-Mare deposits 

(Roveri et al., 2014). An apparently analogous situation is documented in OOB, where MPL1 

shelfal mudstones of the early Zanclean (normal chron C3n) rest on a Messinian to basal 

Pliocene paleovalley fill (Benvenuti et al., 2015a).

3.1.2 Synthem S2: Zanclean differential preservation

Synthem S2, as recognised in the EB (Benvenuti et al. 2014), is represented by relatively 

thin fluvial conglomerates unconformably resting on S1 (biozones MPL1-MPL2), capped by 

S3 (biozone MPL4a: Bossio et al., 1993; 2001), comprising important stratigraphic gaps at 

its base and top. On the other hand, in FB (Bossio et al., 1997), VEB (Bossio et al., 1994) 
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and SRB (Ghinassi and Lazzarotto, 2005), the same chronostratigraphic interval is recorded 

by monotonous epibathyal mudstones several hundred meters thick, locally intercalated with 

delta-front hyperpycnal sandstones and conglomerates. In a very broad sense, the concept 

of S2 is extended to these basins, by assuming that erosional unconformities in EB pass to 

into correlative conformities in rapidly subsiding adjacent basins, where thick successions 

could be accomodated. Apart from exceptions, no shells were found in bathyal mudstone or 

in deltaic sandstone. In OOB, the same time span is marked by a N-S facies gradient 

characterised by a single deepening-upward succession, from fluvio-deltaic sandstone to 

shelfal mudstone, replaced by a succession made of four distinct regressive-transgressive 

units in the Orcia valley to the north (Ghinassi, 2005; Benvenuti et al., 2015b). A laterally-

continuous shell bed, with sharks remains and skeletons and articulated bones of whales, 

sirenians and large teleost fishes (Danise, 2010; Sorbi et al., 2012; Tinelli, 2013), marks a 

major transgressive surface overlain by open shelf mudstones (Sorbi et al., 2012; Tinelli, 

2013: biozone MPL2) that is hypothetically traced along a NE-SW profile (Figs. 4, 5).

3.1.3 Synthem S3: Zanclean-Piacenzian transition

Synthem S3 is subdivided in EB into a lower and an upper interval (Benvenuti et al., 2014). 

The lower division is represented by deepening-upward, coarse-grained delta front system, 

overlain by an upper mudstone division from an open shelf setting. The upper part is rich 

with shell beds, and occasional articulated whale skeletons, associated with shark teeth, 

have been recovered (Danise and Dominici, 2014). Similar shelf mudstones of the MPL4 

biozone crop out in VEB and SRB (Bossio et al., 1993; Riforgiato et al., 2005) whereas 

biostratigraphically equivalent mudstones in FB testify to an upper epibathyal 

paleoenvironment.
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3.1.4 Synthem S4: early Piacenzian warm climate and high sea-level

Synthem S4 (Benvenuti et al., 2014) has been recognised in FB and VEB by facies 

similarities and chronostratigraphic correlation. In EB, S4 comprises a lower interval 

dominated by richly fossiliferous, massive mudstone or very-fine-grained sandstone 

(prodelta-inner shelf), overlain by bioclast-rich sandstones recording prograding mixed 

carbonate-clastic ramp, outcropping in the southeastern part of the Elsa valley. Equivalent 

deposits, also comprised in biozone MPL4b, are patchily distributed in FB, VEB, SRB, OOB 

and other basins of southern Tuscany (Ghinassi and Nalin, 2010; Ghinassi, personal 

communication, 2015). The upper interval of S4 is formed by a succession of delta front 

sandstones, passing in EB eastern margin to a few tens of m-thick fluvial succession, hinting 

at an original depositional gradient. S4 is apparently missing due to erosion north of San 

Gimignano (EB), and around Lajatico (VEB). Biostratigraphic data allow to refer S4 to the 

upper part of biozone MPL4b and the lower part of MPL5a, thus comprising the mid-lower 

part of the Piacenzian, globally characterised between 3.264-3.025 Ma by warm climate and 

relatively high sea level (Raymo et al., 2009; Dowsett et al., 2013; Prista et al., 2015).

3.1.5 Synthem S5: mid-Piacenzian high-frequency sea level variation

Synthem S5, recognised in EB and VEB, is bounded below by an erosional unconformity 

that cuts deeply into underlying units, bringing S5 directly on top of S3 (EB: log 15; VEB: 

logs 5-6 in Fig. 1). S5 is up to about 200 m in EB, where it has been subdivided into a 

hierarchy of small-scale depositional sequences (Benvenuti et al., 2007; Dominici et al., 

2008: see following paragraphs). Each composite depositional sequence forms a tens-of-

m-thick asymmetric sedimentary cycle, composed by a deepening-upward part, from fluvial 

or coastal coarse-grained sediments, to open shelf mudstones, sometimes topped by a 
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regressive shoreface or delta sandstone, other times directly overlain by the next sequence 

through a sharp contact. Fluvial, brackish-water, and other intertidal deposits mark the lower 

part of each composite sequence, usually topped by a laterally-continuous shell bed, from 

a few cm to a few dm-thick, representing a surface of transgression. Shell beds are 

particularly well-developed around the middle part of sequences, where they separate 

shoreface and delta sandstones from overlying open shelf mudstones, marking the time of 

maximum flooding (MFS). Large marine vertebrates, including articulated whale skeletons 

and large sharks (Danise and Dominici, 2014), are often recovered both at MFS and 

overlying mudstone (Fig. 1). Towards the north-eastern margin of EB, cyclothemic fluvial 

conglomerates, sandstones and mudstones replace coastal and fully marine deposits, 

testifying to an original facies gradient. In the central part of EB, composite sequences are 

stacked to form a deepening-upward succession, with a topmost thick and laterally-

continuous open shelf mudstone interval, directly onlapping the S4-S5 basal unconformity 

on the eastern EB (log 15, Fiano: Fig. 1).

3.1.6 Synthem S6: Piacenzian-Gelasian climate change and regression

As S5, synthem S6 is also built through a hierarchy of small-scale depositional sequences, 

better expressed in EB, but also documented in SRB and CB. In EB, fluvial coarse-grained 

sandstones fill a deep valley incised in S5 deposits (logs 8-10 in Fig. 1), resting on the basal 

unconformity of S6. Intertidal or coastal lagoon deposits form the transgressive systems 

tract of the composite depositional sequence. A laterally-continuous shell bed testifies to the 

MFS of S6, topped by highstand shoreface and delta front sandstones. The Piacenzian-

Gelasian boundary, corresponding to a major climatic transition from warmer-moister to 

colder-drier conditions (Benvenuti et al., 1995b; 2007), is marked by the Gauss-Matuyama 

reversal detected at Montopoli (Lindsay et al., 1980). Highstand marine sandstones are 
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characterised by the recovery of two mysticete skeletons, at Montopoli (EB, see Capellini, 

1905) and Sinalunga (CB, Fig. 7). Fully continental environments were established 

throughout the Gelasian in all basins here under study (e.g., Benvenuti and Del Conte, 2013; 

Benvenuti et al., 2014; Bianchi et al., 2015).

3.2 Sedimentary facies and facies associations

Seven groups of siliciclastic facies and one group of carbonate facies, with very different 

fossil content, have been recognised (Tab. 1). Siliciclastic facies form a paleoenvironmental 

gradient from terrestrial to marine and, in the case of marine facies, from shallowest to 

deepest (Fig. 8a). Facies types are fluvial conglomerate and sandstone, and alluvial 

mudstone (F1); intertidal to very shallow subtidal mudstone and muddy sandstone (F2); 

shallow subtidal coarse- and medium-grained sandstone with sparse conglomerate (F3); 

deep subtidal muddy fine-grained sandstone (F4); open shelf sandy mudstone (F5); outer 

shelf to upper bathyal mudstone (F6); outer shelf and bathyal turbidite sandstone and 

conglomerate (F7). An eighth group is formed by facies deposited subtidally in limited mixed 

carbonatic-siliciclastic ramps (F8), irrespective of depth (Nalin et al., 2016). Facies F6-F7 

are restricted to Zanclean deposits (synthems S1-S3); facies F5 and F8 characterise the 

upper Zanclean-middle Piacenzian interval (synthems S3-S4); facies F1-F4 characterise the 

upper Piacenzian (synthems S5-S6). The OOB succession, characterised by facies F1-F4, 

is an exception within the Zanclean.

3.3 Elementary depositional sequences (EDS)

Both fluvial (Benvenuti and Del Conte, 2013) and marine facies groups (siliciclastics: 

Benvenuti et al., 2007; 2014; carbonates: Nalin et al., 2016) are stacked to form facies 
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associations which record cyclic variations of depositional and environmental conditions in 

response to a change in accommodation space. Physical surfaces and the intervening 

deposits allowed to subdivide depositional sequences in systems tracts (Benvenuti et al., 

2007; Dominici et al., 2008). At the simplest scale, these hybrid facies associations form 

elementary depositional sequences, up to 10-20 m thick, in their turn stacked to form 

composite sequences (original concepts from Mutti et al., 1994). This hierarchy is 

particularly evident in synthems S5-S6, formed at a time of pronounced glacio-eustatic 

oscillations and expressed around coastal settings, where maximum facies contrast allows 

for the expression of subtle cycle of sea level variation (e.g., Benvenuti and Dominici, 1992; 

Benvenuti et al., 2007; Dominici et al., 2008). Analogue sharp facies contrast within 

Zanclean EDS in OBB (Tinelli, 2013), but is otherwise absent in deeper sediments (facies 

F5-F7). EDSs have different expressions depending on the time interval and the 

sedimentary basin.

3.3.1 Zanclean EDS (synthems S1-S3)

In most basins, deposition of synthems S1-S2-S3 takes place at outer-shelf or bathyal 

depths, well below the point on a depositional profile where the rate of relative sea level 

change is zero (equilibrium point). Here the sediment supply is not sufficient to fill the 

available accommodation space and an aggradational style of deposition prevails, with the 

result that in most Zanclean settings smaller cycles of sea level variations are not marked 

by a facies change. The sharp facies change recorded where the monotonous muddy 

deposition is interrupted by turbidite sandstone and conglomerate, is connected with 

synthem boundaries and major tectonic phases of restructuring of the region. MM and shell 

beds are practically absent. This situation reverses in the Orcia-Ombrone basin, where 

depths of deposition are shallower and EDS are expressed. At Arcille deltaic sandy 

conglomerates and sandstones (facies F3) are overlain by a fluvial cross-bedded sandstone 
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(facies F1a), separated by a transgressive surface (TS) from an overlying bioturbated 

shallow marine sandstone. A Haustator vermicularis shell bed (Danise, 2010; Tinelli, 2013) 

forms the MFS separating the shoreface sandstone from an open marine mudstone with 

scattered shells (facies F5), marking a sudden and prolonged deepening of the basin 

(biozone MPL2: Sorbi et al., 2012; Tinelli, 2013). The succession is topped by deposits from 

shallower depths, expression of the falling-stage (FSST), below the upper SB (Fig. 4). 

Similar small-scale depositional sequences, expressed through fining-upward cycles no less 

than 40 m-thick, are also present in synthem S3 at Case al Poggio, near Siena (biozones 

MPL3-MPL4a: Bianucci et al., 2001) and at Castelfiorentino (biozone MPL4b: Benvenuti et 

al., 2014).

3.3.2 Piacenzian EDS (synthems S4-S6)

As depth of deposition shallows during the Piacenzian, and cycles of sea level variation 

widen, the cyclic stacking of EDS becomes the typical depositional theme (Benvenuti et al., 

2007, 2014; Dominici et al., 2008). In FB, the northwesternmost basin, depths remain 

considerable and facies change is more subtle. Pliocene at Orciano Pisano is traditionally 

assigned to the “Blue Clays” formation (Bossio et al., 1997), but two distinct bodies where 

evidenced since the late nineteenth century (D’Ancona, 1867). The lower one is formed by 

grey claystone with very rare shells, the upper one by muddy, very-fine grained gray 

sandstone richly fossiliferous. The lower part of the latter interval outcrops at the foothill of 

the small town of Orciano Pisano, around the locality Case Nuove (Bianucci and Landini, 

2005; Berta et al., 2015). Here a laterally persistent shell bed is dominated by the turritellid 

Archimediella spirata, overlain by a 25 m-thick monotonous sandstone interval with 

intercalated shell beds or sparse shells, becoming muddier upward. The Archimediella shell 

bed is interpreted as the TS of an EDS, coinciding with the lower SB of a lower Piacenzian 

EDS. The overlying muddy fine-grained sandstone is the TST and HST (MPL5a: Dominici 
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et al., 2009; Fig. 6). At shallower settings, in all basins to the East and South of FB, EDS of 

synthem S4 take the form of an alternation of mudstone and carbonate (facies F5 and F8: 

Nalin et al., 2016), or mudstone and sandstone (facies F5 and F3-F4: Benvenuti et al., 2014; 

biozone MPL5a). Middle and upper Piacenzian EDS form and alternation of coastal 

mudstone and sandstone (facies F1-F2-F3: Benvenuti and Dominici, 1992; Dominici, 1994), 

with MFS and HST marked by a shell bed topped by a lower shoreface sandstone, or a shelf 

mudstone (facies F4-F5: Benvenuti et al., 2007; Dominici et al., 2008).

4. Distribution of large marine vertebrates

4.1 Geographic distribution

The MM geographic distribution is listed in Table 2. All MM that was geographically located, 

irrespective of stratigraphy, was plotted in Fig. 3. The largest number were recovered in FB 

in Northwestern Tuscany, with a peak at a few sites around the small town of Orciano 

Pisano, in the Pisa province. This coincides with the highest number of known species, 

including mammals, elasmobranchs, turtles, and large bony fishes. MM is also abundant in 

the province of Siena, around Volterra (VEB; Bianucci and Landini 2005), and around San 

Quirico, particularly rich with elasmobranchs according to the available data (SRB;  Marsili, 

2006). A fourth basin with a consistent number of findings is OOB, where cetaceans, sharks, 

sirenians and large teleost fishes have been unearthed.

4.2 MM stratigraphic distribution

4.2.1 Synthems S1-S2
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In the vicinity of Saline di Volterra, one of the sites with remains of Pliophoca etrusca (Berta 

et al. 2015) and sperm whale (Tab. 2), S1 is represented by a bathyal mudstone (facies F6, 

biozone MPL1). Lower-middle Zanclean MM is otherwise absent, with the exception of S2 

in OOB, where large marine vertebrates are concentrated at the maximum flooding interval, 

outcropping at Poggio alle Mura (Danise, 2010), Camigliano (Sorbi et al., 2012) and Arcille 

(Tinelli et al., 2012; Tinelli, 2013), in biozone MPL2. At Poggio alle Mura a slightly 

disarticulated balaenid whale skeleton (WOm1-1 in Tab. 2) has been excavated in contact 

with the laterally-persistent Haustator shell bed at the maximum flooding interval (Figs. 4, 5; 

Danise, 2010; Tinelli, 2013). At Camigliano and Arcille, tens of km from Poggio alle Mura, 

the Haustator shell bed is associated with other articulated skeletons and isolated MM 

remains, including several specimens of the sirenian Metaxytherium subapenninum 

(MOm2-1-5), large bony fishes, rays, and sharks Carcharias taurus, Carcharhinus sp., 

Galeocerdo cuvieri, and Squatina sp. (Sorbi et al., 2012; Tinelli et al., 2012; Tinelli, 2013). 

A partial skull of the delphinid Etruridelphis giulii, with right and left dentaries fractured, but 

nearly complete and with most teeth still in their alveoli (DSi2-1 in Tab. 2), was recovered 

southeast of Siena, near Chianciano Terme (SRB) at the top of a mudstone (facies F6) 

intercalated with turbiditic sandstone beds (Facies F7), topped by a monotonous mudstone 

interval (upper Zanclean, uppermost part of biozone MPL3: Bianucci et al., 2009b). In the 

same basin, two undetermined beaked whales and bones of four different specimens 

attributed to Metaxytherium subapenninum were found in the middle of a fining-upward 

succession, at the boundary between biozones MPL3 and MPL4a (Bianucci et al., 2001; 

WSi2-1-2 and MSi2-1-4 in Tab. 2), suggesting that findings at the two SRB localities belong 

to the same MFS, in the upper part of S2. Three specimens of marine mammals were 

identified in Synthem S1, seven in Synthem S2. 

4.2.2 Synthem S3
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The upper part of S3 yielded an articulated and well-preserved balenopterid skeleton found 

in a 30 m-thick mudstone succession at Castelfiorentino, in the Elsa basin (EB, WEl3-1). 

These strata are richly fossiliferous, with several shell beds with epifaunal cemented taxa, 

such as vermetid gastropods, oysters and corals (Facies F5), in a normal-polarity 

magnetostratigraphic interval (Gauss chron: Andrea Albianelli, personal communication, 

1999). Based on physical stratigraphic correlation, this can be assigned to a lower 

Piacenzian HST. A skull of Hemisyntrachelus sp. (Aldinucci et al., 2011) and partly 

articulated vertebrae and costae of a dolphin skeleton (Arbeid et al., 2015) were recently 

excavated a few hundred meters apart one from the other, along a monotonous mudstone 

S3 succession intercalated with several Ostrea and Serpulorbis shell beds, near Certaldo 

(facies F5, DEI3-1-2 in Tab. 2). Overall, specimens of marine mammals attributed to 

Synthem S3 were eleven (some are uncertain and may come from the upper part of S2: 

Tab. 2).

4.2.3 Synthem S4

Synthem S4 yielded the highest abundance and species-richness of the Tuscan MM. In the 

Fine basin, the locality of Orciano Pisano is represented in Table 2 by 18 records of whales, 

dolphins (a partial skeleton: Bianucci, 1996; Bianucci et al., 2009), seals (Berta et al., 2015), 

tens of other unidentified cetacean elements, hundreds of shark teeth and vertebrae (Fig. 

3), and sea turtles, large bony fishes, and sea birds hosted in museum collections (Bianucci 

and Landini, 2005; Marsili, 2007b; Cioppi and Dominici, 2011). In locality Case Nuove, a 

single middle Piacenzian transgressive surface has yielded a whole, articulated whale 

skeleton (Figs. 4, 6), teeth of blue and white sharks and bones of sea birds (Dominici et al., 

2009). From the same site comes a skeleton of the monk seal Pliophoca etrusca (Berta et 

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260



22

al., 2015), and possibly many other museum specimens labelled “Orciano Pisano”, 

suggesting that this interval forms the most prolific bonebed of the region (Tab. 2). A few cm 

above the Archimediella shell bed, glauconitic and deeply bioeroded whale bones (Danise, 

2010), associated with ichnological evidence of the activity of Osedax bone-eating worms 

(see Higgs et al., 2012), lie in a bioturbated muddy, fine-grained sandstone with a complex 

boxwork of Ophiomorpha and Thalassinoides trace fossils (Fig. 6), associated with a diverse 

paleocommunity of molluscs and other benthic invertebrates with complex trophic 

connections (Dominici et al., 2009; Danise et al., 2010). At the boundary between FB and 

VEB, an incomplete skull and skeleton of the dolphin Etruridelphis giulii was recovered near 

Lorenzana (Lawley, 1876; Bianucci, 1996; Bianucci et al., 2009b), at a locality associated 

with a muddy sandstone interval (facies F4) in synthem S4. An incomplete and articulated 

mysticete was recovered in a sandstone at San Gimignano, associated with pectinid 

bivalves (Fig. 7; facies F3; Elsa basin, EB: Danise and Dominici, 2014), here tentatively 

assigned to the uppermost part of the synthem (WEl4-1 in Tab. 2). Overall, specimens of 

marine mammals attributed to Synthem S4 were 28.

4.2.4 Synthem S5

The next MM richer stratigraphic interval are Piacenzian deposits of synthem S5. An 

incomplete and disarticulated balaenid skeleton was found in intertidal deposits of the lower 

part of the synthem, at Casenuove (facies F2, EB; Bianucci et al., 1995; Collareta et al., 

2016; WEl5-1 in Tab. 2). A large balaenid was recovered higher up section, a few meters 

above a laterally-continuous very thick and complex Haustator vermicularis shell bed, up to 

2 m-thick (Benvenuti et al., 1995a), traced laterally for 2 km to the east of San Miniato 

(“Turritella strata”, De Stefani, 1874), and forming a surface of transgression within the TST 

of S5 (Benvenuti et al., 2007; 2014; Dominici et al., 2008). The MFS is formed by a 
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Glycymeris insubricus shell bed, separating around San Miniato shoreface sandstone 

(facies F3 or F4) from offshore mudstone (F5; Benvenuti et al., 2007). The balaenid skeleton 

was almost articulated and bioeroded, closely associated with teeth of the great white shark 

and other scavengers (Borselli and Cozzini, 1992; Bianucci et al., 2002; Danise and 

Dominici, 2014), in the early HST of synthem S5 (Benvenuti et al., 2007; Dominici et al., 

2008; WEl5-2 in Tab. 2). The Glycymeris shell bed can be traced laterally for several km. In 

the vicinity of Fiano, it includes bioeroded and encrusted gravels inherited from underlying 

successions, interpreted as revinement deposits. The interval of maximum flooding is 

marked by the stacking of at least three distinct shell beds, all including a high-diversity 

association with bioeroded and encrusted shells. This situation suggests that balaenid 

WEl5-2 lies in correspondence of an interval of low rates of sedimentation. In SRB, near 

Castelnuovo Berardenga, shelfal mudstones (facies type F5) have yielded MM remains at 

a few localities. Delphinid remains were found at the “I Sodi” quarry and at Troiola (DSi5-1-

2, in Tab. 2). Bones of a beaked whale and undetermined mysticetes are reported from 

Guistrigona (Manganelli and Benocci, 2014) and a fragmentary specimen of the monk seal 

Pliophoca etrusca from Castelnuovo Berardenga (Berta et al., 2015). A very rich shark 

fauna, including sawsharks, thresher, frilled, bluntnose sixgill, bramble, gulper, kitten, sand 

tiger, shorten mako, basking and requiem sharks, an association suggesting an upper slope 

paleoenvironment for the surroundings of Castelnuovo Berardenga Scalo (Cigala-Fulgosi et 

al., 2009; the same mudstone interval at the same locality has been interpreted as a shelfal 

deposit: Martini et al., 2016). Judging from historical accounts (Capellini, 1883), the killer 

whale Orcinus citonensis (DCh4-1) was recovered in a sandy unit lying on top of a thick 

mudstone interval (S3 or S4) and is tentatively assigned to S5. Specimens of marine 

mammals attributed to Synthem S5 were 10.

4.2.5 Synthem S6
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A fairly complete skeleton of a large balaenid whale was recovered in the second half of the 

19th Century in the EB near Montopoli Valdarno (Capellini 1905), in open shelf strata 

attributable to the interval of maximum flooding of S6 (WEl6-1 in Tab. 2). The MFS of S6, of 

uppermost Piacenzian age, is marked in EB by a laterally continuous Pteria phalenacea 

shell bed, with a high-diversity association of macroinvertebrates, including a rich decapod 

paleocommunity (Garassino et al., 2012). In the vicinity, near Palaia, a right whale (Eubalena 

sp.) was recovered in 1974 in sandy mudstones, in association with mollusc shells and teeth 

of the great white shark (Carcharodon carcharias: Bisconti, 2002; Sorbini et al., 2014). A 

tightly articulated balaenopterid skeleton was found at Sinalunga (WCh4-1 in Tab. 2), in 

deltaic sandstones and conglomerates (Fig. 8). Marine mammal specimens attributed to 

Synthem S6 were three.

4.3 MM facies type distribution

In an ideal deepening-up gradient, multi-element findings of marine mammals are very rare 

in intertidal and very shallow subtidal paleoenvironments (facies type F2, 1,5%: Fig. 9A), 

moderately represented in delta or shoreface sandstones (facies type F3, 4,6%), most 

abundant in sandy mudstone of open shelf settings (facies type F5, 70%), rare in outer shelf 

and bathyal sediments (facies type F6-F7, 1,5%). The most pristine and complete skeletons 

are associated with gravelly well-sorted sands from event sedimentation, suggesting a 

negative relationship between taphonomic loss and sedimentary processes at delta fronts. 

In the tightly articulated and pristine Sinalunga balaenopterid (WCh4-1 in S4-CB), the 

cortical surface of the tightly-connected vertebrae is practically intact, and carpal, 

metacarpal and phalanges of the flipper are in perfect anatomical connection, as if a sudden 

depositional event buried a fresh carcass (Fig. 8; similar pristine skeleton are found in deep 
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water turbiditic succession: Stinnesbeck et al., 2014). Another pristine and tightly articulated 

skeleton, belonging to a killer whale (WCh3-1 in CB), was collected at Cetona in the second 

half of the 19th century, in a locality associated with sandstones, also possibly of deltaic 

origin. Large vertebrates embedded in fine-grained, muddy matrix (shelf deposit formed 

below storm wave base) and those associated with laterally-persistent shell beds 

(condensed deposits) are slightly disarticulated and fairly complete, showing signs of long 

permanence in a low energy, well-oxygenated seafloor before the final burial. Bioerosion of 

bones caused by phototrophic cyanobacteria and algae, heterotrophic fungi and bacteria 

(Orciano balaenopterid WFi4-1 in S4-FB), and eventually by whalebone-eating siboglinid 

worm of genus Osedax (on a ziphiid humerus, WFi4-14: Higgs et al., 2012), occurred at 

condensed intervals, in association with glauconite (Danise, 2010). In one instance, a 

condensed shelly interval is traced for a few kilometers, connecting bioturbated shoreface 

sandstones yielding slightly disarticulated sirenian skeletons (MOm2-1, MOm2-2) and other 

MM (Tinelli, 2013), with open shelf deposits yielding slightly disarticulated whale remains 

(WOm2-1 in S2-OOB). 

Regarding a sequence stratigraphic interpretation, pristine skeletons from delta front 

sediments can be part of the FSST (Fig. 4; in an alternative interpretation it may belong to 

the early TST, when incised valleys are filled with coastal deposits). TST deposits account 

for 6,2% of cases (Fig. 9B). Much more frequently, articulated or slightly disarticulated 

skeletons are associated with the HST of the corresponding depositional sequence, lying 

above the MFS (56,9% of cases), or within the maximum flooding interval, above a laterally-

persistent shell bed (10,8%). Bone bioerosion is less pronounced in the late HST, when 

sedimentation rate increases (Castelfiorentino whale WEl3-2 in S3-EB).

4.4 MM abundance and species-richness
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Some taxa need revision, but a conservative estimate of the different morphologies suggest 

that at least 17 marine mammal species lived in the NWMS during the Pliocene (possibly 

more than 20, an estimate for the whole epoch, i.e., 5,332-2,588 Ma), against nine presently 

living in the same area (plus two occasional visitors). Among the cetaceans, six families 

were present, against only five presently living in the Ligurian Sea (Tab. 3). The most 

abundant Pliocene species of Tuscany are the sirenian Metaxytherium subapenninum (N = 

10), the dolphin Etruridelphis giulii (N = 7) and the delphinid Hemisyntrachelus cortesii (N = 

5: Tab. 4). Overall abundance and species richness are not randomly distributed, but are 

maximum in Piacenzian strata of synthem S4, dated at 3.2-3.0 Ma (Tab. 2, Figs 2, 9C-D), 

particularly in the FB and VEB (Tab. 4). A species list of marine mammals summing up 

fossils found around Orciano Pisano and at La Rocca, near Volterra, yields a species 

richness (S) of 13. This Piacenzian peak in marine mammal diversity is matched by the fossil 

record of sharks, also maximum near Orciano Pisano (S = 27), with a second peak in S5, 

around Castelnuovo Berardenga (SRB, S = 16). Differently from the marine mammals, 

showing a complete turnover from the Pliocene to the recent (Tab. 3), 34% of Pliocene shark 

species are still extant in the NWMS (Tabs. 5-6). Marine mammal frequency and diversity 

gradually decreases in S5-S6.

5. Paleoenvironment-fauna relations

The paleoecology of Pliocene MM of Tuscany can be reconstructed by comparison with the 

ecology of their modern relatives. This approach can be applied at the family or genus level 

for marine mammals (Tab. 3), at the genus or species level for sharks (Tab. 5). With the 

only exception of the sirenian Metaxytherium subapenninum, feeding on seagrasses 

(Domining, 2001), and small demersal sharks (e.g., catsharks, frilled sharks), all MM studied 

here are pelagic forms that had no direct connection to conditions at the seafloor (Tabs. 4 
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and 6). The paleoecology of benthic habitats informs however on the situation of the 

overlying water column in terms of factors that matter to the distribution of pelagic 

organisms, such as water depth, salinity and nutrient levels. In the second place, since all 

MM remains after death ultimately sink to the seafloor, benthic paleoecology is also a means 

to understand taphonomic controls on MM distribution. Cluster analysis based on the 

distribution of mollusc species in 72 samples resulted in the identification of four main groups 

of samples, roughly corresponding to the four main facies types recognised based on 

lithology and sedimentary structures (F2-F5 in Tab. 1). Clusters are formed by samples from 

outer shelf and upper slope (three samples), open shelf (34 samples), shoreface (23 

samples), and transitional settings, such as brackish-water coastal lagoons and tidal flats 

(12 samples: see Supplement Material, Fig. S1). ANOSIM confirms that sedimentary facies 

type can broadly predict what benthic assemblage it will yield (Tab. 7; general R = 0,632). 

The difficulty to discriminate between upper and lower shoreface facies, and between 

shoreface and open shelf facies is confirmed by overlaps in sample distribution in the NMDS 

ordination diagram (Fig. 10A). Samples AG1, MON1 and MON2 allow to re-interpret the 

associated sandstones, originally included in upper shoreface facies type, as offshore 

deposits. The presence of gravels and cobbles intensely bioeroded by bivalves and 

polychaete (ichnofossils include Gastrochaenolithes, Meandripolydora and Caulostrepsis) 

and encrusted by balanids, oysters, serpulids, and bryozoans, suggests they are part of 

condensed beds resulting from transgressive pulses (hiatal concentrations). The 

relationship between facies type and mollusc association is broadly summarised in the 

following paragraphs (see online Supplement Information for a list of characterising 

species).

5.1 Coastal lagoon, tidal flat and embayment
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Intertidal faunas are always associated with facies type F2 and are characterised by low-

diversity associations, sometimes with less than 10 taxa and dominated by one or two 

species, including species today living in brackish waters of the Mediterranean, at intertidal 

or very shallow subtidal depths (e.g. Cerastoderma edule, Nassarius reticulatus, 

Scrobicularia plana: Pérés and Picard, 1964). Facies type F2 is also associated with 

samples having a species richness higher than the preceding and including species typical 

of seagrass bottoms and known to withstand moderate changes of salinity. In only one 

instance a large vertebrate was associated with intertidal deposits (a balaenid, lying on top 

of large wood fragments: Bianucci, 1995; Collareta et al., 2016).

5.2 Upper shoreface

Facies type F3 is associated with a high-diversity assemblage representing a 

paleocommunity dominated by suspension feeders adapted to shifting sandy bottoms, with 

bivalves typical of modern shoreface sandy bottoms (e.g., families Glycymeridae, Tellinidae, 

Donacidae and Veneridae). Among extinct species of this recurring assemblage, some are 

large-sized or have very thick shells. Some species of this group indicate the presence of 

vegetated bottoms. Small pyramidellid gastropods are parasitic on echinoderms, also typical 

of the upper shoreface.

5.3 Lower shoreface

Species richness further increases in collections associated with facies type F4 (lower 

shoreface). Species typical of this recurring assemblage include both suspension-feeding 

and detritus-feeding bivalves and gastropods. The following gastropod families are usually 

represented by several species: Trochidae, Rissoidae, Cerithiidae (from vegetated 
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bottoms), Naticidae, Muricidae, Turridae, Conidae, Terebridae, Bullidae, Cylichnidae 

(carnivores), Pyramidellidae (echinoderm parasites). Many bivalve species occur in both 

facies types F2 and F3. At three different sites and at different stratigraphic units large 

marine vertebrates, including mysticetes, sirenians and sharks, were recovered in 

association with shell beds dominated by the gregarious turritellid gastropod Haustator 

vermicularis (Fig. 6C-D).

5.4 Offshore and upper slope

Another important set of species recurred in facies type F5 (mudstone deposited in offshore 

bottoms at shelf depths). Among characterising gastropods are the suspension feeders 

(Turritella tricarinata, Archimediella spirata and Petalochoncus intortus), deposit feeders 

(Aporrhais uttingeriana) and carnivores or scavengers (Epitonium frondiculoides, Nassarius 

semistriatus, Mitrella nassoides). Also the bivalves occupy many different ecological niches 

(e.g., infaunal detritus feeders, epifaunal suspension feeders, either free-living, byssate, or 

cemented). Outer shelf and uppermost bathyal sediments from F6 mudstones, studied at 

only one location, are characterised by a separate set of carnivorous gastropods and by a 

few small bivalve species. Ubiquitous molluscs include species found from intertidal to outer 

shelf depths (e.g., Corbula gibba), and those preferential of open marine waters, from lower 

shoreface to outer shelf. Most multi-element findings of marine mammals are associated 

with sandy mudstones from open shelf settings, below storm wave base, also in association 

with an Archimediella spirata shell bed (Fig. 6C-D). No molluscs were recovered in facies 

type F7, with the exception of bathyal mudstone in the lowermost Pliocene of FB, associated 

with sparse specimens of the gryphaeid epifaunal bivalve Neopycnodonte navicularis (not 

sampled).
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5.5 Carbonate platform

A recurring benthic assemblage associated with the highly fossiliferous facies type F8, not 

included in the quantitative analysis, consists of the large pectinid bivalves Gigantopecten 

latissima and Hinnites crispus and by a mixture of photozoans (large benthic foraminifera), 

hard-substrata dwellers (brachiopods, echinoderms), encrusters (red algae, bryozoa) and 

bioeroders (clionid sponges). All fossil-rich carbonates are associated with synthem S4 , in 

the mid-Piacenzian (Fig. 2, see also Nalin et al., 2016).

6. Paleodepths

Multivariate techniques are usefully applied to stratigraphic and paleobiologic analysis 

(Scarponi and Kowalewski, 2004). We used the results of the ordination analysis to estimate 

absolute depths of the final resting place of some large vertebrates listed in Tab. 2. Samples 

in the NMDS ordination plot following a water depth gradient, with shallower samples to the 

left (low values of NMDS axis 1) and deeper samples to the right (high values of axis 1). 

Therefore, NMDS values of axis 1 can be used as a proxy for relative water depth. We 

calculated absolute palaeodepths by fitting a logarithmic regression curve between absolute 

paleodepth of 23 modern species (data from MARBEF database), common in our dataset, 

and the values on NMDS axis 1 (Supplement Material: Tabs. S1-S4). The regression 

analysis, with R2 = 0.813, indicates that scores along the nMDS main axis are a good 

predictor of the preferred depth for the 23 modern species (Fig. 10B, inset), thus supporting 

the bathymetric interpretation. This allowed to estimate the absolute depth of the 72 

samples, which ranged from 0.4 m to 365 m, i.e., from intertidal to upper slope depths (in 

accordance with a previous estimate of absolute paleodepths in the upper part of the 

Pliocene of EB, based on counts of foraminifera: Dominici et al., 2007). Facies type F2 is 
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deposited at 0-5 m depth, F3 at 3-30 m, F4 at 10-100 m, and F5 at 40-300 m, F5 at around 

350 m depth (only one sample: Fig. 10B). The position of fossil cetaceans, sirenians, 

pinnipeds and large sharks (respectively W, M, P and S, N = 13) was plotted near the 

corresponding shell bed in the NMDS ordination. The resulting pattern shows that all MM 

considered, associated with open shelf settings and with facies types F4-F5, cluster around 

-100 m, spanning -30-300 m.

7. Factors of the Pliocene NWMS marine megafauna fossil 

record

The detailed sequence-stratigraphic framework and the abundant shell beds, offering an 

independent check on sedimentary facies distribution by benthic paleoecology, allows also 

to explore factors behind MM geographic and stratigraphic distribution, and to sort out 

evolutionary, ecological, and taphonomic drivers of this particular fossil record. NWMS 

Pliocene distribution can be compared with similar studies in different settings and at 

different times, to draw conclusions on the general quality of MM fossil record.

7.1 Evolutionary control

Available data allow a meaningful comparison of NWMS MM diversity across the Pliocene, 

particularly detailed for marine mammals (Fig. 9D). Although the study suggests a facies 

control, with MM remains being generally associated with late TST-HST muddy sandstones 

and mudstones from lower shoreface and offshore shelf paleosettings, the temporal pattern 

of biodiversity recorded on a regional basis likely reflects also a paleobiologic phanomenon, 

since lower shoreface and offshore shelf sediments are represented in all synthems. Marine 
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mammals are unrecorded in the thickest part of synthem S1-2 (Zanclean, mostly bathyal 

mudstone and turbiditic sandstone), but they are present in S2, in OOB (Zanclean shoreface 

and open shelf deposits) and SRB (Zanclean upper slope deposits). MM gradually rises in 

S3, at the upper Zanclean-lower Piacenzian, whereas it suddenly peaks in synthem S4, 

where species richness of both marine mammals and sharks is highest. S5 reflects a lower 

diversity of marine mammals, but still a high diversity of sharks, while values of both groups 

drop to the lowest abundance and species richness in S6, during the upper Piacenzian-

lowermost Gelasian (Fig. 9D).

The S4 diversity peak coincides with the middle part (3.264–3.025 Ma) of the Piacenzian, a 

time interval in which the earth experienced global average temperature 1.84 °C-3.60 °C 

warmer than the pre-industrial period (Dowsett et al., 2013). Climatic impact is testified by 

the widespread occurrence of carbonate deposits in S4 (Fig. 2), with sedimentary facies 

indicative of warm-temperate to subtropical conditions, with summer sea-surface 

temperature considerably warmer than 20°C and winter temperatures colder than 20°C 

(Nalin et al., 2016). This suggests a causative link between global climate and biodiversity, 

S4 diversity peak recording a global phenomenon, possibly an increase of speciation rate 

connected with global warming. Similarly, we propose that the lower diversities recorded at 

S5-S6 are the regional expression of an increase in extinction rate related to climatic cooling 

and global sea-level drop, ultimately leading to the global MM extinction event recorded on 

a coarser scale at the Pliocene-Pleistocene boundary (Pimiento et al., 2017): the finer 

stratigraphic resolution adopted here suggests a stepwise extinction event. NWMS data also 

point to a selective effect, extinction being recorded by marine mammals, with a 100% 

regional turnover between Pliocene and Recent (Tab. 3), but not as much by the shark 

fauna, with 34% of the species still living in the Mediterranean, while still others have shrank 

their distribution to subtropical latitudes. Also the Piacenzian teleost fish fauna (Cigala 

Fulgosi et al., 2009) and benthic molluscs (Raffi et al., 1985) show a high percentage of 
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holdovers, suggesting that marine mammals have been particularly prone to climatic change 

(see also Steeman et al., 2009).

Estimates of body size in Pliocene mysticetes of Tuscany, with several specimens reaching 

10 m (Danise and Dominici, 2014: seven specimens in Tab. 1), are comparable to global 

values derived from the literature for this time interval (Lambert et al., 2010), confirming that 

NWMS baleen whales were larger than their Miocene analogues, and smaller than modern 

forms. As with regard to odontocetes, the most common Pliocene delphinid, Etruridelphis, 

was larger than the modern analogue Stenella (Bianucci et al., 2009b). The same is true for 

Hemisyntrachelus cortesii, larger than modern Tursiops (Bianucci, 1997a). On the other 

hand, the largest extant delphinid Orcinus orca, reaching 9 m, is about twice as long as 

Orcinus citonensis (Heyning and Dahlheim, 1988). The high percent of holdover points to a 

more conservative figure for larger sharks (Tab. 5), but the presence in the Pliocene of the 

gigantic Carcharocles megalodon and some large thermophilic species today restricted to 

lower latitudes suggests that impoverishment of the fauna is coupled with an average 

decrease in size (Marsili, 2008). Comparing sizes suggests an overall restructuring of 

NWMS MM during the last three million years (see also Bisconti, 2009).

7.2 Ecological control

The composition of the Pliocene NWMS MM is affected in the first place by the availability 

of food. At the lowest trophic level, inferring from the ecology of the modern MM (Tabs. 3, 

5), we found herbivore sirenians feeding on seagrasses (trophic level, TL = 2,0), all others 

being carnivores, thus having TL > 3,0 (Fig. 11). The lowermost levels among the carnivores 

were occupied by baleen whales and whale sharks (TL = 3,2-3,4), filter-feeding on pelagic 

crustaceans and fishes (krill). Roughsharks, catsharks, and houndsharks, with many 

species living in the modern Mediterranean, have a relatively species-poor Pliocene record, 
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probably due to a preservation bias related to their small size. At TL = 3,7-4,0 were one 

species of catshark and a monk seal, both feeding near the seafloor on crustaceans, teleost 

fishes and cephalopods. At TL = 4,1 were sandbar, tiger and blue sharks, feeding on teleost 

fishes, cephalopods and on marine mammals. At the same level, in slope environments, 

kitefin sharks mainly fed on other sharks. The majority of MM species were found at TL = 

4,2, with smaller odontocetes (three species) and 11 species of sharks, including several 

requiem sharks, a houndshark and a hammerhead. Larger dephinids, sperm whales, 

beaked whales, together with mackerel, sand and sand tiger sharks, occupied high trophic 

levels (TL = 4,3), followed at the top of the global NWMS food web by white shark, 

megalodon shark, one species of sevengill shark (genus Notorynchus), and killer whales, 

all feeding on marine mammals and smaller sharks (TL = 4,4-4,7). With no exception, all 

highest levels encountered in modern NWMS offshore pelagic and nearshore communites 

were occupied during the Pliocene by an analogous MM, often by the same species (large 

sharks), or by congeneric or con-familial species (marine mammals: Tab. 3, 5). The Pliocene 

pelagic ecosystem, typified by the mid-Piacenzian S4 association, must have been however 

trophically more diversified (Fig. 11), including aquatic megaherbivores, several balaenid 

filter feeders, larger and more diverse dolphins, and sharks species today extinct (e.g., 

Carcharocles megalodon) or restricted to tropical seas (e.g., Galeocerdo cuvier). With the 

exception of TL = 2, all Pliocene NWMS MM were either apex predators of their community, 

or mesopredators, occupying trophic positions below apex predators. The definitions of apex 

predators (or top predators) and mesopredators are relative and to an extent context-

dependent (species that in a contact are apex predators, in another are mesopredators, e.g., 

Estes et al., 1998). Since predation is a trophic interaction in which one animal (predator) 

consumes another (prey) as a source of energy (food), irrespective of the means by which 

this is accomplished (Lourenço et al., 2013), filter-feeding baleen whales can be considered 

apex-predators of their community (e.g., Lewiston et al., 2004; Notarbartolo di Sciara et al., 
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2016). Among sharks, 68% of living Mediterranean elasmobranches are ranked as top 

predators, with a trophic level of 4 or more (Goffredo and Dubinsky, 2014, including 

superorder Batoidea, against 22% of teleost fishes), an estimate that can be extended to 

Pliocene NWMS MM. Relationships between apex predators and mesopredators are 

complex and hard to define in ecology, involving predation on other predators (intraguild 

predation, combining competition and predation: Polis et al., 1989), where consumption and 

competition need to be proved (Lourenço et al., 2013). In the Mediterranean Pliocene, 

paleontological evidences of carnivores serving as food to MM include killing of prey 

(Bianucci et al., 2010) and scavenging (Cigala Fulgosi, 1990; Bianucci et al., 2002; Dominici 

et al., 2009). The occurrence of intraguild predation must have been far more extended than 

what taphonomy can prove, however, given a Pliocene diversity of NWMS very large 

raptorial feeders higher than the modern, including the killer whale Orcinus citonensis, the 

large delphinid Hemisyntrachelus cortesii (phylogenetically related to the modern killer 

whale: Murakami  et al., 2014), the white shark Carcharodon carcharias, the largest shark 

of all times Carcharocles magalodon (Marsili, 2008), and a diverse association of smaller 

carnivores, including monk seal, delphinids and sharks with 4,0 < TL < 4,2 (Tab. 3, 5), 

candidate prey for larger raptorial feeders. This interaction likely exerted in its turn a control 

on community structure at lower trophic levels through processes like “mesopredator 

release” and trophic cascades (Roemer et al., 2009), eventually linking pelagic and 

nearshore communities, including benthic animals and plants, like in many modern 

ecosystems (Estes et al., 2011, 2016), down to slope depths (e.g., Parrish, 2009). Large 

raptorial feeders could exert a control on the diversity of the filter-feeding MM, like it has 

been suggested on a global scale since the Miocene (Lambert et al., 2010), and for the 

Pliocene by Bisconti (2003), when baleen whales were more diversified, both in terms of 

species richness, size range, and feeding strategies, including both skim- and lunge-filter 

feeding (respectively balaenid and balaenopterid whales: Berta et al., 2016; Hocking et al., 
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2017), minimising competition for food and diversifying spatial niches (see also Marx et al., 

2017, for the upper Miocene). A further important top-down control on community structure 

is suggested by modern studies on the role of baleen and sperm whales as nutrient vectors, 

both in horizontal (during seasonal migration) and vertical direction (during daily feeding 

migration: Roman and McCarthy, 2010), a process particularly important in oligotrophic seas 

(Alleger et al., 2017), like large sectors of the Mediterranean. Finally (literally, after death), 

MM becomes a detrital sources of energy and habitat for deep sea whale-fall communities 

(Roman et al., 2014; Smith et al., 2015), with paleontological evidence available for the 

NWMS (Dominici et al., 2009; Higgs et al., 2012; Baldanza et al., 2013).

Much evidence suggests that a bottom-up control on the structure of NWMS MM community 

was exerted by wind-driven upwelling currents, through enhanced oceanic productivity and 

concentration of preys. Over geologic time, these factors may have exerted a selection 

favoring large size, triggering the Plio-Pleistocene emergence of whale gigantism in several 

lineages (Slater et al., 2017). The largest among marine top predators can travel long 

distances and cross oceans, but tend to congregate in shallow waters with abundant prey. 

Baleen whales, abundant in boreal eutrophic waters (Woodley and Gaskin, 1996), with 

population size under the control of food availability (Croll et al., 2005), always require high 

prey density for efficient bulk filter feeding (Goldbogen et al., 2011). Six different species of 

mysticetes currently foraging in the Southern ocean, among which the largest animals that 

have ever lived in world oceans, exploit the high biomass of Antarctic krill, their main food 

resource. Great white sharks are abundant in the offshore of California (Jorgensen et al., 

2010), Australia-New Zealand, South Africa, and in the Mediterranean (Bonfil et al., 2005), 

clustering in proximity of seal colonies, including monk seals. The distribution in the modern 

Mediterranean is no exception to general rule, only in a smaller scale, with large sharks and 

marine mammals congregating in productive areas, such as the Strait of Sicily and the 

Balearic Archipelago (Tabs. 3, 5), with the second largest animal on earth, the fin whale, 
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showing a movement pattern that parallels seasonal variability in available feeding habitat 

(Notarbartolo di Sciara, 2016), contributing to the horizontal transfer of nutrients. Tuscany 

faces the Ligurian Sea, where a deep-water upwelling current coming from Southeast 

convects nutrients to the water surface, leading to high levels of primary productivity in its 

western sectors, extending westward to the Provençal and Balearic Seas, with spring algal 

blooms. These waters host different trophic regimes in an otherwise oligotrophic 

Mediterranean Sea (Lazzari et al., 2012; Melanotte-Rizzoli et al., 2014; Stambler, 2014). 

Supporting a conspicuous biomass of zooplankton (Cuzin-Roudy 2011), the Ligurian Sea 

sustains large populations of fin whales (Balaenoptera physalis) and striped dolphins 

(Stenella coeruleoalba: Notarbartolo di Sciara et al., 2008). Mediterranean-resident fin 

whales have adapted to exploit localised mesoscale hotspots of productivity that are highly 

variable in space and time (Notarbartolo di Sciara et al., 2016), feeding behaviors possibly 

mediated by the depth of prey and species-specific behaviours, allowing to minimise 

competition with other large filter feeders (see Friedlaender et al., 2014). The sperm whale 

Physeter macrocephalus uses habitat across a range of depths and a specialised diet 

(Rendell and Frantzis, 2016), gathering along NWMS steeper slopes, where water currents 

allows for higher trophic level biomass (Pirotta et al., 2011). Beaked whales are particularly 

abundant in the Ligurian Sea and central Tyrrhenian Sea, preferring submarine canyons at 

slope depths (Podestà et al., 2016). The largest among common Mediterranean delphinids, 

Grampus griseus, is frequent in the Ligurian and Thyrrenian seas where it forages on 

cephalopods at depths 300-1500, where upwelling currents are most effective (Azzellino et 

al., 2016).

The NWMS existed as a Liguro-Provençal back-arc oceanic basin since the upper Miocene, 

when Sardinia rotated to its present position (Gattacceca et al., 2007), and in coincidence 

with the formation of the hinterland basins here under study (Muttoni et al., 2001), justifying 

the assumption that the modern NWMS trophic regime is a feature that dates back at least 
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to the upper Miocene. Consistenly, diatomites deposited in Tuscany during the Messinian, 

before the salinity crisis (Bossio et al., 1997; Roveri et al., 2014), indicate that high 

productivity was a primitive feature of the Ligurian Sea. Paleontological evidences include 

the high diversity and abundance of Pliocene MM in FB, the closest to modern upwelling 

areas (Fig. 3), and the association of several MM with “Turritella beds”, turritelline 

gastropods showing gregarious habit and high abundance in areas of high primary 

productivity (Allmon, 1988). Both a comparison with the modern and paleoecologic data 

strongly suggest that a wedge of NWMS nutrient-rich waters intersecting the Tuscan shelf 

exerted a strong bottom-up control on community structure through mixing and upwelling of 

nutrients, stimulation of phytoplankton blooms, followed by zooplankton increase, while 

nekton and vertebrates tracked plankton concentrations, as is typical of modern upwelling 

systems throughout the world (Polis et al., 1997). High surface primary productivity in the 

study area during the Pliocene would have caused a concentration of detritus-falls, 

supporting a diverse community of deep-sea scavengers.

7.3 Taphonomic control

Taphonomic data on articulation and completeness of MM specimens are available for large 

mammals, the shark record being formed mainly by isolated teeth collected through 

superficial picking during the years (Cigala Fulgosi et al., 2009), with only a few 

contextualised studies (e.g., Bianucci et al., 2002; Dominici et al., 2009). Our record includes 

several marine mammals with a high degree of articulation (14%) and completeness (27%), 

or with at least cranial and post-cranial elements of the same individual (38%). All articulated 

specimens and the most complete skeletons are associated with shelf mudstones, usually 

forming the HST of the relative depositional sequence (Tab. 2), with two exceptions, one 

associated with delta-front, coarse-grained beds (WCh6-1, Fig. 6), another from outer shelf 
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or upper slope sediments (DSi2-1). These data point to a strong environmental control on 

the quality of the MM fossil record, at least concerning articulation and completeness of 

skeletons, very shallow and very deep (bathyal) depths being generally unfavourable to the 

preservation of MM bones (Fig. 9A). To explain these results, hypotheses are based on the 

available data on carcasses of MM in modern marine environments.

The biostratinomy of lung-breathing marine mammals depends on water depth (Allison et 

al. 1991; Smith et al., 2005). The vast majority of mammals are negatively buoyant and sink 

after death, but in shallow waters the low hydrostatic pressure allows putrefaction gases to 

develop and carcasses to resurface. Skeletons are scavenged (Dicken, 2008) and 

disintegrate while floating, leading to the preferential deposition of isolated bones. At deeper 

settings, where high hydrostatic pressure allows the carcass to lay relatively undisturbed on 

the seafloor, the skeleton becomes only slightly disarticulated after soft tissue removal 

(Reisdorf et al., 2012). The subsequent fate of deep-water, disarticulated skeletons depends 

on the nature of the scavenging fauna and other elements of the whale-fall community, and 

on the time of exposure on the seafloor (Boessenecker et al. 2014). At depths deeper than 

the slope breaks, where sedimentation rate is very low, carcasses are exposed for a long 

time and the skeleton is rapidly disintegrated. Time-series analyses carried out at modern 

whale-fall communities at slope depths (range 382-2893 m: Lundsen et al., 2010) suggests 

that carcasses up to 17 m are rapidly degraded, with the deepest whale carcasses 

disappearing after only seven years of exposure on the sea floor. Larger skeletons may 

persist on deeper settings for decades, but if not buried, they also ultimately undergo 

complete destruction. Although environmental forcing triggered by higher temperatures, 

active currents and sediment transport,  clearly plays a role, a specialised whale-fall fauna 

rapidly consumes both soft and mineralised tissues. This fauna is characterised by low 

diversity and high abundance of microorganisms, most likely as a result of both 

specialisation to nutrient enrichment and high growth rates. Whale-fall habitats likely 
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undergo a temporal microbial succession from primarily heterotrophic to more 

heterotrophic/chemosynthetic metabolisms until the whale biomass is completely exploited 

(Smith et al., 2015). Of all the specialised taxa, bone-eating polychaetes of genus Osedax, 

with their soft root-like tissues that erode the bones to access nutrients (Tresguerres et al., 

2013; Minamoto et al., 2017), are the primary cause of bone disintegration, particularly of 

denser bones (Higgs et al., 2011). Found also at shelf depths, but invariably in low 

abundance (Huusgaard et al., 2012; Higgs et al., 2014b), bone-eating worms occur in high 

numbers in the deep sea (Smith et al., 2015) where they act as biodiversity regulators 

(Alfaro-Lucas et al., 2017). The general paucity of novel taxa on shallow-water whale falls 

suggests that species-rich, specialised whale-fall communities develop only in the food-poor 

deep sea. Accordingly, among new animal species described in the recent literature from 

whale falls, only about 10% have been found on whale remains at depths of less than 260 

m (12 out of 129 new species: Smith et al., 2015). Of all MM investigated so far, only whales 

are known to host a whale-fall community, but also carcasses of large elasmobranchs 

undergo rapid destruction at bathyal depths, teeth being all that eventually remains (Higgs 

et al., 2014a; teeth are also lost by sharks during feeding: Pokines and Symes, 2013). As a 

consequence, over geological time no large marine vertebrate is expected to be recovered 

at depths greater than the shelf break. On the opposite side, the lack of a biota specialised 

in exploiting large organic falls, coupled with higher rates of deposition in proximity of 

sediment sources, make it more probable that the most articulated and complete whale 

skeletons become part of the fossil record of shelf settings below storm wave base.

8. Comparison with other studies

The study of sedimentary facies uncovers some environmental factors that directly control 

the taphonomy of large marine vertebrates. Such abiotic drivers include water pressure, 
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wave energy and sedimentation rate — three factors summarised by water depth, and 

upwelling, bringing to the surface deep sea nutrients and concentrating preys. The 

taphonomic pathway of large marine carcasses is also driven by biotic factors that change 

in geological time in response to coevolution between bacteria, scavengers and their 

substrates. We now explore the multifaceted nature of MM taphonomy by reviewing 

Mesozoic and Cenozoic studies where sufficient data for stratigraphic paleobiology are 

available. 

 

8.1 Abiotic factors

According to one of the few previous studies on the sequence stratigraphic distribution of 

MM, Jurassic ichthyosaurs, plesiosaurs, and pliosaurs of the Sundance Seaway, in North 

America, display facies control and are found primarily in offshore mudstone and at 

condensed intervals at the maximum flooding surface, rather than shoreface and estuarine 

sandstone (McMullen et al., 2014). Taphonomic data on Upper Cretaceous marine reptiles 

and large fishes suggest that partially articulated and disarticulated skeletons are associated 

with little biological activity and relatively rapid burial by muddy sediments, deposited in the 

North American seaway during an interval of maximum flooding (Schemisser McKean and 

Gillette, 2015). Upper Cretaceous mosasaur remains are particularly concentrated in fine-

grained shelf deposits in Europe (Jagt and Jagt-Yazykova, 2016). Complete, partially 

articulated whale skeletons of archaeocetes, together with bones and teeth of sirenians and 

sharks, are abundant in offshore marine flooding surfaces (MFS) in the Priabonian late TST 

of Egypt. In a further parallelism with the Pliocene of Tuscany, Late Eocene well-articulated 

whales are associated with rapidly accumulating shoreface sediments of the FSST, 

comprising “Turritella shell beds” (Peters et al., 2009). During the Oligocene, eomysticete 

whale bones were deposited at shelf depth below storm wave base. The occurrence of 
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sparse traces attributed to Osedax and the association with a glauconitic limestone testify 

to the exposure of bones on the seafloor without undergoing complete destruction 

(Boessenecker and Fordyce, 2014), in a manner similar to MM at Orciano (see Danise et 

al., 2010; Higgs et al., 2012). Burdigalian/Langhian MM recovered in the Antwerpen Sands, 

in Belgium (including isolated remains of a baleen whale, several odontocetes and a 

pinniped) are fragmented, worn and associated with clayey sandstone rich in glauconite, 

suggesting long exposure on the sea-floor (Louwye et al., 2010). Bones are concentrated 

at the base of a coarsening-upward succession, on top of shallow marine, coarse-grained 

sandstone, suggesting this is a surface of maximum flooding. An association of MM 

taxonomically comparable to that here under study is encountered in the Mio-Pliocene of 

the Purisima Formation, in Central California. Taphofacies differ in some aspects. The 

Pliocene of California yields laterally persistent bonebeds with polished and phosphatised 

bones, and abundant phosphate nodules that are absent in Tuscany, indicating times of 

higher sediment starvation during transgressive pulses, in an area of much stronger nutrient 

content (the California Current system is a northern-hemisphere analogue of the Peruvian 

upwelling system, associated with the economically most important fish stocks in the world: 

Mann and Lazier, 2006). Shoreface deposits indicate stronger wave energy, and the 

preferential absence of molluscs in bonebeds indicates chemical destruction of carbonate 

shells (Boessenecker et al., 2014, in a quantitative MM taphonomic study). Episodic 

sedimentation, however, causes the preferential preservation of articulated remains in the 

Californian offshore as in the Pliocene of NWMS. The late Miocene Pisco Formation in Perù 

offers another, more extreme example of MM taphonomy in a eutrophic setting. Here almost 

two hundred cetaceans, pinnipeds, and sharks were described in an exceptional state of 

preservation (Bianucci et al., 2015), within a monotonous succession of finely laminated 

white diatomites (Di Celma et al., 2015), suggesting very high primary productivity in an area 

of intense upwelling and volcanic activity. Algal blooms sustained high biomass of apex 
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predators (see Marx and Uhen, 2010), triggering at the same time anoxic conditions at the 

seafloor where MM carcasses remained intact (Brand et al., 2004; see also Gioncada et al., 

2016; Marx et al., 2017, also in offshore paleosettings). Finally, the stratigraphic distribution 

of Pliocene cetaceans in western Emilia (Italy) shows an uneven distribution of findings (N 

= 24, dolphins and baleen whales) and a strong positive correlation with offshore mudstones 

(no findings in shoreface sandstones, rare occurrences in epibathyal mudstones: Freschi 

and Cau, 2016), paralleling the distribution of Tuscan Pliocene MM.

8.2 Biotic factors

Many reviews of Triassic (Camp, 1980; Hogler, 1992; Motani et al., 2008; Hu et al., 2011; 

Liu et al., 2014) and Early Jurassic marine reptiles (Benton and Taylor, 1984) report mostly 

good preservation and a high degree of completeness and articulation of skeletal material. 

This record might be partially controlled by prevailing anoxic or dysoxic conditions in the 

bottom waters of many Mesozoic fossiliferous deposits (e.g., Middle Triassic Besano and 

Guangling Formations, Lower Jurassic Blue Lias and Posidonia Shale Formations), which 

precluded organism activity within the sediment, and prevented predation or scavenging of 

the carcasses on the sea bottom (Beardmore and Furrer, 2016). Evidence of advanced 

levels of disarticulation or bone degradation (Martill, 1985; sauropterygians, crocodilians, 

ichthyosaurs and fishes from the Middle Jurassic Oxford Clay Formation), is mostly 

attributed to physical factors (e.g., weathering on the sea floor). Up to the early-Late 

Cretaceous, biological activity is testified by circumstantial evidence of scavenging 

(Hybodus teeth associated with marine reptile skeletons, Martill et al., 1994), and by the 

more common occurrence of microbial mats, grazers and encrusters (Martill, 1987; Meyer, 

2011; Danise et al., 2014; Reolid et al., 2015), but lack traces of bone-eating worms and 

sulphophilic fauna typical of modern whale falls. The siboglinid Osedax is an evolutionary 
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novelty in possessing a root system that hosts heterotrophic mutualists and secretes bone-

dissolving acids (Tresguerres et al., 2013; Miyamoto et al., 2017), and an ecosystem 

engineer (Alfaro-Lucas et al., 2017). Genus Osedax is today associated with whale falls 

worldwide (Taboada et al., 2015), but its impact on MM has changed in time. The oldest 

trace fossils attributable to a bone-eating fauna is found on early-Late Cretaceous plesiosaur 

and sea turtle bones (about 100 Ma: Danise and Higgs, 2015). Time estimates suggest that 

Osedax diverged from other siboglinids in the Middle Cretaceous (around 108 Ma: Taboada 

et al., 2015). However, if the bone-eating worm lives also on the bones of birds and terrestrial 

mammals (Rouse et al., 2011), its global nature and high species diversity in modern oceans 

suggest that whale falls, as complex and species-rich habitats, have been the most 

important biodiversity generators (Higgs et al., 2014b; Smith et al., 2015). And although the 

first appearance of Osedax is concomitant with the occurrence of large marine reptiles and 

teleost fishes in the oceans, long before whale evolution, and although their distribution is 

not limited to large carcasses (Pyenson and Haas, 2007), the radiation of ocean-going 

mysticetes at the Oligocene onset of the Antarctic Circumpolar Current (Fordyce, 2003) 

clearly increased available substrata worldwide. The steady increase of cetacean size 

during the Neogene, with a dramatic pulse in the last five million years, when Neoceti 

surpassed 10 m length and reached 30 m in the Pleistocene (Lambert et al., 2010; Slater et 

al., 2017), would have thus triggered a second and more massive radiation of bone-eating 

worms (Kiel and Goedert, 2006). Consistently with this hypothesis, the preferential 

distribution of modern Osedax in high latitude settings worldwide (Taboada et al., 2015) 

suggests that biodiversity hotspots coincide with the feeding grounds of larger cetaceans. 

Other bone-eaters of modern deep water whale-fall ecosystem belong to the group of 

abyssochrysoid snails, with fossils found on Late Cretaceous plesiosaur (Kaim et al. 2008) 

and sea turtle bones (within a chemosynthesis-based association: Jenkins et al., 2017). 

Modern abyssochrysoid whalebone-eaters of genus Rubyspira, hosting a specific and 

2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640



45

exclusive microbiome (Aronson et al., 2017), split during the upper Eocene/lower Oligocene 

(Johnson et al., 2010). Species of Rubyspira benefited too from the radiation of ocean-going 

whales. Although scanty, available evidence on the geological history of bone-eaters thus 

makes the ephemeral nature of large carcasses in modern deep seas — and their absence 

in bathyal deposits of the Pliocene of NWMS — a larger-than-life model for the Mesozoic 

and the early Paleogene.

9. Conclusions

1) Sedimentary facies in the Pliocene of Tuscany are vertically stacked to form small-scale 

depositional sequences particularly in the upper half, Piacenzian part of the succession, 

with laterally-continuous shell beds marking transgressive surfaces and intervals of 

maximum flooding. Small-scale sedimentary sequences are stacked to form six major, 

unconformity-bounded stratigraphic units (synthems) of regional extension, forming a 

high-resolution framework to study the chronostratigraphic distribution of marine 

megafauna (MM).

2) Benthic biotopes, identified through a quantitative study of a large mollusc dataset, can 

be arranged to form an ideal onshore-offshore, bathymetric gradient, connecting 

terrestrial environments with deep sea epibathyal bottoms, consistently with the 

distribution of sedimentary facies. MM remains and shell beds are present in all marine 

paleoenvironments, but their distribution is uneven. The fossil record of large vertebrates, 

including marine mammals (abundance data) and sharks (presence-absence data), is 

particularly rich in sediments deposited between storm wave base and shelf break, 

moderately rich in shoreface sediments, very poor in epibathyal sediments. 

Paleobathymetric estimates suggest that a peak of abundance of better preserved 

skeletons occurs around 100 m depth, within the 30-300 m range.
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3) Species-richenns of MM and abundance of marine mammal remains steadily increase 

during the Zanclean, reaching a peak in synthem 4, possibly as a response to the mid-

Piacenzian warm period, and gradually decrease until reaching a minimum in proximity 

of the Plio-Pleistocene boaundary.

4) Comparison with ecological data on a global scale, paleogeographic and topographic 

considerations on the North-Western Mediterranean Sea (NWMS), and the occasional 

association of Pliocene MM with Turritella beds, suggest that upwelling and high-nutrient 

conditions in the Northwestern Mediterranean offshore sustained during the Pliocene a 

rich community of apex predators and mesopredators. Higher taxonomic MM diversity in 

the NWMS during the Pliocene, suggests higher niche-partitioning with respect to the 

modern NWMS and a top-down control on community structure. 

5) A comparison with studies on the biota exploiting tissues of large food particles sunken 

on the seafloor, both modern and ancient, suggests that the poor epibathyal record of 

Pliocene larger vertebrates of Tuscany may be caused by the destructive action of bone-

eating invertebrates. This biotic driver of the marine vertebrate fossil record was less 

efficient before the radiation of ocean-going whales in the late Eocene-lower Oligocene. 

On the other hand, bone-eaters played a major taphonomic role on a global scale after 

the Pliocene-Pleistocene increase in whale size.

6) Due to resurfacing of carcasses in shallow waters, the MM fossil record through the 

Mesozoic-Cenozoic reviewed through stratigraphic paleobiology shows a strong facies 

control, being more continuous in rocks deposited below storm wave base and above the 

shelf-slope break during sea-level transgressions and highstands.
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Figure and table captions:

Fig. 1 - Location of sedimentary logs within the largest Pliocene basins of Tuscany. Fine 

Basin (FB): Pagliana (1), Pieve Vecchia (2) and Orciano Pisano (3). Volterra-Era Basin 

(VEB): Parlascio (4), Lajatico (5), Fabbrica (6) and Volterra (7). Era Basin (EB): San Lorenzo 

(8), La Serra (9), Poggio al lupo (10), San Maiano (11), Canneto (12), Casenuove (13), 
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Castelfiorentino (14), Fiano (15) and San Gimignano (16). Orcia-Ombrone Basin: Arcille (17) 

and Poggio alle Mura (18). Siena-Radicofani Basin (SRB): Siena (19),  Monteaperto (20), 

Castelnuovo Berardenga (21), Radicofani (22) and Fastelli (23). Chiana Basin (CB): 

Sinalunga (24), Cetona (25) and Allerona (26).

Fig. 2 - Pliocene stratigraphy of Tuscany, see Fig. 1 for the location of numbered sections. 

All logs measured and described by the authors, except Volterra (log 7: Bianucci et al. 1998), 

Arcille (log 17: Tinelli et al., 2012; Tinelli, 2013), Siena (log 19: Bianucci et al., 2001), 

Monteaperto (log 20: Martini et al., 2011), Castelnuovo Berardenga (log 21: Martini et al., 

2016) and Radicofani (log 22: Ghinassi  and Lazzarotto, 2005). Chronostratigraphy  of 

localities 25 (Poltriciano, Cetona: Capellini, 1883) and 26 (Allerona: Danise, 2010) are 

unknown. Correlation between sections is also shown as boundaries of planktonic 

foraminifera biozones (dashed lines), following the scheme of Sprovieri (1992), based on 

available biostratigraphic studies for each basin (see main text for relevant references).

Fig. 3 - Abundance of fossil MM records in major museums of Tuscany, distributed by locality 

of provenance. Each record ranges from a single fragment or tooth, to articulated, nearly 

complete skeleton. A: masticates and odontocetes; B: large sharks; C: sirenians — scuba 

diver for scale in each figure. Symbols for basins as in Fig. 1.

Fig. 4 - Detailed sedimentary logs measured at three localities, representing three different 

stratigraphic contexts for the large marine vertebrate fossil record of the Tuscan Pliocene. 

The succession at Orciano Pisano is included in synthems S3-S4 of FB, at Arcille-Poggio 

alle Mura-Camigliano in synthem S2 of OOB, at Sinalunga in synthem S6 of CB. See Figs.1-

2 for the location of the numbered localities and references in the main text for facies 

4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860



82

analysis and sequence stratigraphy of synthem S5. Arcille log from Tinelli et al., 2012, and 

Tinelli, 2013.

Fig. 5 - Taphonomy of large marine vertebrates at Poggio alle Mura (Figs. 5A-5D) and Arcille 

(Fig. 5E, see Fig. 4 for the sequence stratigraphic and sedimentary context; plan view of the 

sirenian skeleton is modified from Tinelli et al., 2012), synthem S2. A: Plan view of the 

Poggio alle Mura undetermined balaenopterid. Parts of the skeleton are quasi-articulated, 

others are scattered, but not far from the original position. B: Quasi-articulated vertebrae of 

the same specimen, lying on top of a Haustator shell bed. C: Side view of a vertebra on top 

of the densely-packed shell bed. D. Detail of the shell bed, in top view. The turritelline 

gastropod Haustator vermicularis is visible in the upper left, a large fragment of wood in the 

lower right, with the inchnofossil Teredolithes produced by wood-dwelling teredinid bivalves, 

in the centre of the photograph. E: Plan view of one of the Arcille sirenian specimens of 

Metaxitherium appenninicum. Same scale as in 5A, the arrows points to the North.

Fig. 6 - Taphonomy of a 10m-long, undetermined balaenopterid at Orciano Pisano (see Fig. 

4 for the sequence stratigraphic and sedimentary context), synthem 4. A: Planimetry of the 

quasi-articulated and nearly complete skeleton. B: Detail of the central part of the skeleton 

in the field. The cortex layer of vertebrae and flipper bones is badly consumed, whereas 

some of the costae are still pristine. C: Lateral view of a turritellid shell bed, below, and the 

surface where the whale skeleton lied (dashed line), about 15 cm above the shell bed. The 

sediment is a very fine-grained silty sand, completely bioturbated (large vertical burrows are 

visible). D: Top view detail of the turritellid shell bed. At the center a valve of Yoldia nitida, 

surrounded by a few specimens of the turritellid Archimediella spirata.
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Fig. 7 - Taphonomy of an incomplete, undetermined mystecete at Castel San Gimignano, 

synthem 4, comprising articulated torso elements. A: Planimetry of the articulated elements. 

B: Detail of one of the limbs in the field (trowel for scale = 22 cm): humerus, radius and ulna 

are in anatomical relationship; the cortex layer is well preserved, suggesting quick burial of 

the carcass. C: Bones of the chest region; on the background the massive sandstone 

associated with the fossil whale. Articulated shoreface pectinid bivalves (Pecten 

flabelliformis) were interspersed in the sandstone (photographs by Fabio Cozzini, 1985).

Fig. 8 - Taphonomy of a 5m-long, undetermined balaenopterid at Sinalunga (see Fig. 4 for 

a tentative sequence stratigraphic interpretation), synthem 6. A: Oblique view of the fully 

articulated skeleton lying in a gravelly sandstone, stratified in the lower part, massive in the 

upper. Vertebrae are tightly connected as if in life. B: Plan view of the flipper, with carpals, 

metacarpals and phalanges in perfect anatomical connection. C: The gravelly sandstone 

lies above a bioturbated muddy sandstone, with vertical burrows (Ophiomorpha). D: The 

lower part of the unit with the whale skeleton if formed by three fining-upward beds. Each 

bed grades from gravel to medium-grained sand. Articulated and empty shoreface bivalves 

(e.g., Callista chione), not in life position, are interspersed with the coarse gravel.

Fig. 9 - Quantitative analysis of the facies type and sequence stratigraphic distribution of 

large marine vertebrates, Pliocene of Tuscany (N = 39, see Tab. 2). A: The vast majority of 

cases (77%) are associated with fine-grained muddy sediments of the shelf, a few are found 

in deltaic coarse-grained strata. B: Most MM (69%) is found in highstand deposits, a few in 

proximity of the maximum flooding interval, or in transgressive deposits.

Fig. 10 - NMDS ordination of bulk samples (N = 72, see Fig. 2 for their stratigraphic position), 

based on the distribution of standardised abundances of 329 mollusc species (further 
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explanation on multivariate techniques in the main text). A: Samples are subdivided based 

on the associated sedimentary facies types (F2-F5 in Tab. 1). The main axis ordinates 

samples along a paleodepth gradient, from shallowest to deepest, moving from the left to 

the right side of the bivariate plot. B: Same ordination, with an estimate of absolute 

paleodepth of each sample based on score along the main axis and calibrated through the 

average modern depth distribution of 23 extant species characterising the Pliocene dataset 

(abundance > 0.15%, see text; regression logarithmic curve in the inset). Vertebrates 

recovered in proximity of some of the samples (N = 13) are plotted on the diagram, 

confirming that, on average, the MM fossil record is concentrated on the open shelf at an 

estimated depth of  30-300 m (M = sirenians; S = sharks; P = pinnipeds; W = whales).

Fig. 11 - Occupancy of trophic levels by Pliocene marine mammals and sharks in the north-

western Mediterranean, expressed by number of species per trophic level (see Tabs 3, 5 for 

explanation and references). This figure, summing up data for the whole epoch, spanning 

circa 2,8 My, closely matches the association found in one single synthem S4, of much 

shorter duration (mid-Piacenzian, 3-4 hundred thousand years).

Tab. 1 - Sedimentary facies types.

Tab. 2 - Stratigraphic, taphonomic and paleoenvironmental framework for Pliocene marine 

mammals recovered in Tuscany, with abundance data (N = 64). A: Articulated and quasi-

articulated skeleton; C: Complete and quasi-complete skeleton; C+PC: Cranial and post-

cranial remains.

Tab. 3 - Paleoecology of Pliocene large mammals and ecology of modern NWMS 

analogues.
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Tab. 4 - Geographic distribution of Pliocene large mammals in Tuscany.

Tab. 5 . Paleoecology of Pliocene sharks and ecology of modern NWMS analogues.

Tab. 6 - Geographic distribution of Pliocene sharks in Tuscany.

Supplement Material

Fig. S1 - Dendrogram resulting from cluster analysis of a dataset of 336 species distributed 

in 72 samples (standardised abundance, square-root transformed, Bray-Curtis similarity).

Tab. S1 - Ranked total average of standardised abundance of Pliocene molluscs.

Tab. S2 - Score on main axis of NMDS ordination (NMDS1) of Pliocene mollusc species 

(N=329).

Tab. S3 - Average depth of extant mollusc species with >1,5% abundance in the Pliocene 

dataset (N=23).

Tab. S4 - Estimated depth of Pliocene samples (N=72) based on NMDS1.
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