Faculty of Science and Engineering

School of Geography, Earth and Environmental Sciences

2018-03

A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite

Jones, Katie Louise

http://hdl.handle.net/10026.1/10403

10.1016/j.carbon.2017.11.076 Carbon Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite.

Katie L. Jones^a, Giuliano M. Laudone^{a,*}, G. Peter Matthews^a

^aFaculty of Science and Engineering, Plymouth University, Plymouth, UK.

Supplementary Information

(b)

Figure 1: Apparatus set-up to remove the residual mercury from the internal pore network of the IG-graphites; (a) vacuum pistol heated to 360° C (b) vacuum pump with liquid nitrogen trap, reaching pressures better than 0.13 Pa

*Corresponding author. Email address: glaudone@plymouth.ac.uk (Giuliano M. Laudone)

Preprint submitted to Elsevier

22nd November 2017

Figure 2: Cumulative PSDs obtained using BJH modelling simulations for IG-nuclear graphites

Table 1: Volumes of entrapped mercury present within the samples porous matrix during three key stages of the first mercury analysis: at maximum pressure during the first porosimetry run; after depressurisation and the sample has been removed from the instrument; and after thermal treatment after an attempt to remove all mercury from the porous sample; is given for IG-110 and IG-430 nuclear graphite.

Sample	Maximum Intrusion	post depressurisation	post thermal treatment				
	$ m /mm^{3}g^{-1}$	$/\mathrm{mm^{3}g^{-1}}$	$/\mathrm{mm^{3}g^{-1}}$				
IG-110	111.04	11.46	3.81				
IG-430	93.14	85.42	4.91				

		limit Upper limit	23515 1.484102085	63406 19.93131581	12012 0.653455951	10317 5.745157683	30388 0.054835017	55483 1.345644517			limit Upper limit	02693 1.787370907	37988 14.19505001	50001 0.617795099	54509 5.651134841	67112 0.134407788	89795 1.309910205	
			Lower	5 1.24962	-0.3122	0.5109	3 4.25151	-0.043	7 1.25035			Lower	7 1.0650(2 0.9156	9 0.4653!	6 3.9841	8 0.0050	5 1.1540
		StDev	0.117239285	10.12178961	0.071256969	0.746823683	0.029569449	0.047644517			StDev	0.36118410	6.63970601	0.07622254	0.83349016	0.06467033	0.07791020	
		Average	1.3668628	9.8095262	0.582198981	4.998334	0.025265569	1.298			Average	1.4261868	7.555344	0.54157255	4.817644675	0.06973745	1.232	
		ъ	1.25763	19.78885	0.477166	3.707256	0.01352	1.38			5	1.091996	10.983338	0.533637	4.933736	0.069206	1.18	
	c realisation number	umber	4	1.334031	1.494558	0.61368	5.3858	0.016384	1.26	F	umber	4	1.989441	0.811751	0.58638	5.412755	0.023677	1.27
rtically banded		റ	1.341179	21.789972	0.65985225	5.00083225	0.0028295	1.29	Vertically banded	Stochastic realisation r	ი	1.179774	5.230064	0.57608175	5.306793375	0.04887325	1.16	
Vei	Stochasti	2	1.33403	1.494558	0.613680406	5.3858	0.016383594	1.27			2	1.561367	3.382969	0.599237	5.06938	0.02634	1.35	
		1	1.567444	4.479693	0.54661625	5.51198175	0.07721075	1.29			1	1.308356	17.368598	0.412527	3.365559	0.180591	1.2	
IG-110		Parameter	Pore skew	Throat skew	Throat spread	Connectivity	Correlation level	Distance(%)	IG-430		Parameter	Pore skew	Throat skew	Throat spread	Connectivity	Correlation level	$\operatorname{Distance}(\%)$	

Table 2: Sensitivity analysis performed for the five stochastic generations run for each graphite sample. The representative results for each graphite were those that had all five fitting parameters closest to the mean of those parameters, shown here in bold.

Table 3: Calculations to explain the apparent intrusion of graphite by mercury at high pressures $% \left(\frac{1}{2} \right) = 0$

	Graphite results	Units
Modulus of elasticity	12.925	${ m GN}{ m m}^{-2}$
Modulus of elasticity	1.29×10^{10}	${ m Nm^{-2}}$
Max intrusion pressure (stress)	400	MPa
Max intrusion pressure (stress)	400000000	\mathbf{Pa}
Resulting strain	0.030945	
Assumed size of cubic sample	0.005	m
Original volume of sample	0.00000125	m^3
Final volume of sample	1.1375 E-07	m^3
Apparent intrusion	1.125 E-08	m^3
Apparent intrusion	11.25	mm^3
Sample Density	1.8	${ m gcm^{-3}}$
Sample Density	1800000	${ m gm^{-3}}$
Sample weight	0.225	g
Intrusion volume	49.99	$\rm mm^3g^{-1}$