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Abstract

Human optokinetic nystagmus: a stochastic analysis.

Jonathan Waddington.

Optokinetic nystagmus (OKN) is a fundamental gaze-stabilising response in which
eye movements attempt to compensate for the retinal slip caused by self-motion.
The OKN response consists of a slow following movement made in the direction
of stimulus motion interrupted by fast eye movements that are primarily made in
the opposite direction. The timing and amplitude of these slow phases and quick
phases are notably variable, but this variability is poorly understood.

In this study I performed principal component analysis on OKN parameters in
order to investigate how the eigenvectors and eigenvalues of the underlying com-
ponents contribute to the correlation between OKN parameters over time. I found
three categories of principal components that could explain the variance within
each cycle of OKN, and only parameters from within a single cycle contributed
highly to any given component. Differences found in the correlation matrices of
OKN parameters appear to reflect changes in the eigenvalues of components, while
eigenvectors remain predominantly similar across participants, and trials.

I have developed a linear and stochastic model of OKN based on these results and
demonstrated that OKN can be described as a 1st order Markov process, with
three sources of noise affecting SP velocity, QP triggering, and QP amplitude. I
have used this model to make some important predictions about the optokinetic
reflex: the transient response of SP velocity, the existence of signal dependent
noise in the system, the target position of QPs, and the threshold at which QPs
are generated. Finally, I investigate whether the significant variability within
OKN may represent adaptive control of explicit and implicit parameters.
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Chapter 1

Introduction.

Vision and movement are inextricably linked. As we move through the world, the

visual environment appears to stream by. This motion would cause our vision to

become blurred, so it is essential that the visual system is able to compensate

in order to maintain maximum visual acuity. Sensorimotor systems have evolved

in order to keep gaze stable during head and body movements. The optokinetic

response (OKR) is generated by the patterns of image motion that are presented to

the visual system during locomotion, and optokinetic nystagmus (OKN) is the eye

movement response generated. It is an alternating sequence of slow compensatory

eye movements made in the direction of the image motion, and fast eye movements

made predominantly in the opposite direction that keep gaze in a stable location.

The timing and amplitude of these slow phases (SPs) and quick phases (QPs) are

remarkably variable (fig. 1.1).

This thesis investigates the pattern of eye movements associated with human OKN

and the complex interrelation of the parameters that characterise the movement.

In the past, attempts to understand the details of OKN have recognised the re-

markable variability in the parameters of this fundamental behaviour but have

failed to find an explanation. Models used to explain this behaviour have often

been based on the classical systems engineering approach of formulating a hypoth-

esis using block diagrams, and testing these hypotheses using the techniques of

1



1.1. AIM OF THE RESEARCH.

Figure 1.1: Example of an eye position trace during OKN stimulation, illustrat-
ing SPs made in the stimulus direction and QPs made opposite to
the stimulus direction.

systems analysis. However, in this investigation I take a wholly different approach

and apply methods of stochastic analysis to examine the statistical relationships

between primary eye movement parameters such as the velocity, amplitude and

start position of SPs and QPs. I will present results that illustrate that there

is a structure underlying the variability of OKN eye movement parameters, and

develop a linear stochastic model of the OKN system based on analysis of exper-

imental results. Then I will use the model to illustrate the observed empirical

behaviour, and make some important predictions about the specific goals of the

response.

1.1 Aim of the research.

The aim of the present series of research was to demonstrate that despite the re-

markable variability of individual OKN parameters, there is an underlying struc-

ture to the relationships between OKN parameters that can aid our understanding

of how and why OKN behaves as it does. Both experimental and modelling ap-

proaches have been used to achieve this aim.

The primary aim of the experimental approach was to understand how different

2



1.2. ORGANISATION OF THE THESIS.

OKN stimuli cause various OKN parameters to change, so the spatial and tem-

poral characteristics of the OKN stimuli were varied in order to generate a range

of responses in participants. A secondary aim of the experimental studies was to

create a source of data that could be used to determine and validate a model of

the OKN system, so each individual trial of the OKN responses was recorded over

a long period in order to evaluate the random fluctuations of OKN parameters as

they evolved over time.

The primary aim of the modelling approach was to develop a simple linear and

stochastic model of how the OKN system behaves, which would be able to predict

the distribution and interrelation of OKN parameters observed empirically. In

order to achieve this, principal component analysis (PCA) was performed on the

correlation matrices of OKN parameters in order to determine how the underlying

components contribute to the correlation of OKN parameters. PCA is quite a well

known method used in feature extraction and dimension reduction, and I shall give

a detailed background to how it was implemented in the present series of research

in chapters 3 and 5. Informally, it can be thought of as a method for determining

the correlations between parameters that contain the most amount of information.

1.2 Organisation of the thesis.

The thesis is divided into nine chapters. After this introduction, a more in-depth

background of the OKN literature is presented. The literature review gives an

overview of the field and highlights those areas that are not currently well under-

stood, giving details of those particular studies that have attempted to analyse the

stochastic nature of OKN parameters. Details of the experimental study methods

are presented in the third chapter, describing the range of experimental protocols

that were used and the system for data acquisition. In chapters 4-8, the results
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from the experimental and modelling studies are presented and discussed.

Chapter 4 presents descriptive statistics of the recorded OKN parameters and

the results of repeated measures analysis of variance (RM-ANOVA) performed on

the data from experiment 1. The RM-ANOVA results provide the main effects

of changing stimulus speed on the mean value and standard deviation of OKN

parameters.

Chapter 5 presents the results of PCA performed on OKN parameters recorded

from the first experimental protocol. The results of this analysis highlight an

underlying structure to the data that enables the development of a linear and

stochastic model describing the OKN system. This system consists of three 1st

order Markov processes. The model is used to replicate empiricial behaviour, and

we find four relationships between OKN parameters that remain constant across

participants and despite changes in stimulus speed.

Chapter 6 presents the results of RM-ANOVA performed on the data from exper-

iments 2 and 3. The main and interaction effects of changing stimulus parameters

on the mean value and standard deviation of OKN parameters are reported. The

within-subjects factors tested were the speed, spatial frequency, and pattern of

the OKN stimulus. A number of significant main and interaction effects on OKN

parameters were found. The results found with the Markov model are replicated

with the data from experiments 2 and 3, and so we combine all data sets for a

more thorough investigation of the behaviour of the model. We explore how the

stimulus speed affects the model in order to generate the OKN response, and con-

firm the existance of signal dependent noise in the system. Using the model we

examine the more poorly understood aspects of OKN, such as at what point (in

time or space) QPs are generated and what location they are targeted towards.

Chapter 7 presents the results of an investigation into the particularly interesting
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distribution of SP duration. It reports the results of a study designed to test the

goodness of fit of proposed probability density functions (PDFs) to the histograms

of SP duration from each trial. The distribution of SP duration is particularly

interesting due to its similarity with the distribution of saccade latencies to visual

targets. Stochastic models of saccade latency are often used in the eye movement

literature to explain simple models of decision making. The histograms of both

SP duration and saccade latency have a characteristic positive skewness and are

significantly different to Gaussian, so the PDF that best fits the histograms of

these data is often hotly debated. The results of this investigation demonstrate

that the PDF predicted by the Markov model of OKN best fits the histograms of

SP durations, when compared to a range of other proposed PDFs.

Chapter 8 proposes three possible cost functions to explain the variability in SP

velocity, and presents the results of analysis on these models. Minimising one cost

function in particular gives optimal values of SP velocity that match the mean

values of SP velocity observed in the data, indicating that SP velocity may be

being optimised. This cost function assumes the goal of the system is to minimise

the average positional error in tracking a moving target over the course of each

SP, and not only the retinal slip error.

Chapter 9 presents my conclusions from the major findings. Possible directions

for future research based on the predictions that the models make are considered,

as are possible improvements that could be made to the models based on their

limitations.
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Chapter 2

Background.

In this chapter the elements of the ocular motor system will be reviewed with

regards to the essential characteristics of two important gaze stabilising mecha-

nisms: the OKR, and the vestibulo-ocular reflex (VOR). In the second half of this

chapter the literature that pertain directly to the methods and results that are

presented in this thesis will be discussed.

2.1 The human eye and visual acuity.

In order to see the world around us light must travel from the field of view to

the retina, at the back of the eye, through the visual axis. When light first enters

the human eye it is refracted by the curvature of the cornea, the transparent

component of the outer layer of the eye, accounting for a significant portion of

the eye’s total optical power. Once the light has passed through the cornea it is

further refracted by the curvature of the lens, which is capable of being adjusted

in order to focus on a specific depth plane via the accommodation system.

The light is focused on to the retina, which is comprised of hundreds of millions

of neurons distributed into a number of layers. Many different types of neurons

exist in the retina but those capable of phototransduction that contribute to sight

directly are the rod cells and cone cells, of which the rod cells are most numerous.

Rod cells can be triggered by a very small number of photons and detect dim
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light signals under dark-adapted conditions. There are three types of cone cells

in the retina that each have different peaks in their absorption spectra (Brown

& Wald 1964) and respond differently depending on the wavelength and intensity

of the light. Near the inner surface of the retina are other neurons that receive

information from the rod cells and cone cells. Bipolar and amacrine cells project

to retinal ganglion cells, which then transmit visual information from the retina to

other areas of the central nervous system. Cone cells are capable of discriminating

finer detail than rod cells as each cone cell sends information to only one retinal

ganglion cell, whereas retinal ganglion cells recieve information from a number of

rod cells.

Near the centre of the retina is the oval-shaped macula, approximately 5mm in

diameter, it is defined as having two or more layers of retinal ganglion cells. The

macula contains predominantly only cones, whereas in the rest of the retina the

two different types of photoreceptor are interspersed. At the very centre of the

macula is the fovea, a central pit that contains the highest concentration of cone

cells in the retina arranged in the most efficient packing density of a hexagonal

mosaic. The resolution of the retina is related to the density of the cone mosaic,

and so the fovea is capable of resolving higher spatial frequency images than the

peripheral retina.

Visual acuity is a measure of the spatial resolution of vision, and it can be limited

by corneal or lens imperfections that cause the sharpness of retinal focus to fall. It

can also be limited by the neural characteristics, such as the density of cones and

rods in the retina, or pathological conditions of the central nervous system that

affect the visual system. In the clinical environment it is usual to consider mea-

surements of visual acuity at high spatial frequencies and high contrast. However,

it is also useful to examine visual acuity at levels of low contrast. The threshold
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Figure 2.1: Contrast sensitivity as a function of image velocity. The contrast
sensitivity function to single cycle, biphasic sinusoidal bars of var-
ious widths are shown as function of image velocity, for two par-
ticipants. Figure taken from Burr & Ross (1982). Permission to
reproduce this figure has been granted by Elsevier.

contrast necessary to perceive the details of a visual scene is a function of the

spatial frequency content of that scene. Campbell & Robson (1968) found that

the contrast sensitivity (1/threshold contrast) function peaked at around 4 cy-

cles per degree (cyc/◦) with sensitivity dropping off either side of the peak. This

means that when viewing a stimulus at 4cyc/◦ we can detect smaller differences

in contrast than at any other spatial frequency.

The contrast sensitivity for a moving visual scene is a function of the spatial

frequency content, and the temporal frequency content, of that scene. This means

that the contrast sensitivity is also a function of the speed of the stimulus. Burr &

Ross (1982) found that for high spatial frequency stimuli the peak of the contrast
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sensitivity function occurred at low stimulus speeds, but that for stimuli with

very low spatial frequency the peak of the contrast sensitivity function occurred

at much higher stimulus speeds. The study reported that participants were able to

perceive a bar that was 80◦ in width moving at a remarkable 10,000◦/s (fig. 2.1).

However, for high spatial frequency stimuli the contrast sensitivity function decays

logarithmically at speeds greater than 3◦/s. It seems that an essential prerequisite

for the accurate processing of visual information consists of a sharp retinal image

that is kept relatively still on the fovea.

2.2 Eye movements and the oculomotor system.

At the beginning of the 20th century it was thought that eye movement strategies

could be categorised into five different subsytems: the VOR, OKN, stationary

eyes during fixation, very fast eye movements in between two periods of fixation

(saccades), and the simultaneous movement of both eyes in opposite directions

(vergence) (Dodge 1903). It is well known that different species have a predom-

inance for different types of eye movement strategies, of particular note is the

difference between foveate and afoveate animals.

In some afoveate animals there are specialised distributions of retinal cells, either

circular (area centralis) or elongated (visual streak), where the cones become

more densely packed. In afoveate animals that do not have these specialised

distributions of retinal cells the position of the image on the retina is of lesser

importance, as there is no particular area of the retina that has a higher degree

of resolution. In these species, systems have evolved to stabilise images, and

minimise the retinal slip caused by optic flow via the OKR and VOR.

In foveate animals, eye movements have evolved to bring objects of interest on

to the fovea, where the object can be seen best (using saccades, fixations and
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Figure 2.2: Subcategories of eye movements that are either fast (abrupt), or
slow (smooth). Saccades are very fast eye movements made between
two periods of fixation that generally bring images of interest on to
the fovea. Smooth pursuit is a slow tracking movement that holds
a small image of interest on the fovea. Vergence moves the eyes in
opposite directions such that the images of an object are held on
both foveas simultaneously.

vergence eye movements). Saccades are fast conjugate eye movements that bring

objects of interest onto the fovea, while smooth pursuit holds a small moving

target on the fovea. Vergence movements are disjunctive eye movements that are

made so that images of a single object are placed on both foveas.

These two different eye movement strategies are often classified as either gaze-

stabilising or gaze-shifting. However, there is a certin degree of overlap in these

two categories, as eye movement strategies that shift gaze must also be employed

during eye movement strategies that stabilise gaze. This has led to a more general

classification of eye movement strategies as simply either fast or slow (Steinman

et al. 1990).

Figure 2.2 illustrates the original five subcategories of eye movements as they

correspond to either fast or slow eye movement strategies, and notes the type

10



2.2. EYE MOVEMENTS AND THE OCULOMOTOR SYSTEM.

of innervation required in order to generate each movement. A pulse (or burst)

of innervation is required in order to overcome the viscous drag imposed by the

tissue surrounding the eye when a fast eye movement is made, such as a saccade

made to a visual target. A step, that is a new tonic level, of innervation is

required in order to hold the eye in an eccentric position and overcome the elastic

forces that tend to bring the eye back to its central position. It follows that a

pulse-step command is required in order to produce a fast eye movement to an

eccentric visual stimulus and maintain steady fixation of that stimulus (fig. 2.3).

Slow eye movements require only a step (or ramp) command to follow a smoothly

moving visual stimulus. Two pairs of muscles enable the eye to rotate around the

horizontal and vertical axes (medial and lateral rectus, and superior and inferior

rectus), and a third pair of muscles enables cyclotorsional movements (superior

and inferior oblique). To a good approximation eye movements can be described

as rotations around three axes.

The oculomotor system performs a number of strategies when moving the eyes in

order to provide the central nervous system with adequate visual sensory infor-

mation. Of particular importance in regards to the topic of this thesis is its role

in compensating for optic flow. Optic flow is the apparent visual motion that is

presented to the retina as we walk or move through the world. For example, when

we move forward the retinal projections of objects in the visual field grow outward

from a stationary central point. If we were sat in a train and looking out of the

window the visual scene would appear to move in the opposite direction to the

motion of the train and, while distant objects would appear to move very slowly,

closer objects would appear to move much faster. We have discussed how high

spatial frequency resolution decays when the visual image motion on the retina

(retinal slip) exceeds speeds greater than 3◦/s, and in order to maintain precise
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Figure 2.3: Pulse-step command for a saccade. The ocular motoneuron firing
rate and eye position (in the orbit) are shown as a function of time,
illustrating the pulse and step commands required to generate a
saccade. The long single vertical line represents visual stimulus
onset. The multiple vertical lines in the left plot represent action
potentials of an ocular motoneuron. R, neuron discharge rate; E,
eye position in the orbit. Figure taken from Leigh & Zee (1999).
Permission to reproduce this figure has been granted by Oxford
University Press.

vision it is essential that this motion is compensated for. We find that almost all

vertebrates (Walls 1962, Huang & Neuhauss 2008), and some invertebrates with a

mobile head or eyes (Land 1999), have evolved oculomotor subsystems that per-

form this function and stabilise the gaze of the animal on the visual scene. One

such gaze-stabilising mechanism, which ensures high visual acuity is maintained

during movements of the head, is the VOR.

2.3 The VOR.

The VOR stabilises images on the retina during head movement by producing an

eye movement in the direction opposite to the head movement. The signals that

drive the VOR originate in the vestibular apparatus in the inner ear, where the

semicircular canals detect angular head acceleration and the otolithic organs (the

utricle and saccule) detect linear (translational) head acceleration. As the eyes
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are not at the center of rotation of the head, even pure head rotations produce a

linear displacement of the eyes, and the size of the movements of each eye must

be adjusted independently so that they remain pointed towards the same position

in the depth plane. The system operates without any immediate feedback, so is

an open loop (feedforward) system.

The VOR is able to respond to head movements with minimal delay, and eye

movements can occur within 6-15ms from the initial head movement (Maas et al.

1989). The importance of the VOR is that it is the only eye movement that

can be generated with a short enough latency to compensate for head movements

that occur in the frequency range caused by footfall perturbation during walking

(0.7-5.7Hz; Das et al. (1995)). It is primarily quantified by the ratio of the am-

plitude of eye rotation to the amplitude of the head rotation (VOR gain), and

the temporal difference between eye velocity and head velocity (VOR phase). For

sinusoidal stimuli the perfect VOR would have a gain of 1.0 and a phase of 180◦

indicating that eye and head velocity are exactly equal in magnitude and opposite

in direction.

It is important to consider the differences between the VOR in light and in dark

environments. Measured under light conditions, the VOR gain will approach 1.0

at most frequencies of head movements, but under dark conditions the ampli-

tude of VOR gain decreases and changes in the variability of gain occur when

the frequency of head movement drops below approximately 1Hz (Robinson 1976,

Shelhamer et al. 1994, Fetter et al. 1995). Under light conditions the gain will ap-

proach 1.0 even at low frequencies of movement due to the additional contribution

of the OKR generated by the motion of the visual image that the VOR does not

compensate for. Not only does the VOR perform suboptimally at low frequencies,

the gain of the VOR decays gradually over prolonged periods of rotation due to
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Figure 2.4: Time course of OKN and OKAN in man, monkey, cat and rabbit in
response to a suddenly illuminated OKN stimulus, and later in time
a sudden drop in illumination to complete darkness. Ėi, initial eye
velocity; Ėia, initial eye velocity after darkness; ĖSS, steady state
eye velocity; Tok, transient OKN; Tokan, transient optokinetic after-
nystagmus. Figure taken from Robinson (1981a). Permission to
reproduce this figure has been granted by Oxford University Press.

the mechanical properties of the semicircular canals. Prolonged rotation gener-

ates vestibular nystagmus, where initially SPs are compensatory and made in an

equal and opposite direction to the head rotation and alternate with QPs made

into the direction of head rotation. Over approximately 30s the VOR decays and

the eyes become stationary. In the light, the OKR supplants the fading vestibular

response over this period, and maintains a stable retinal image once there is no

further contribution from the vestibular system.

2.4 The OKR.

In figure 2.4 the OKR to an OKN stimulus is illustrated for a number of different

species including humans. The differences in the initial rise in SP velocity for the

different species can be explained by the differences in the specialised distribution

of retinal cells.

In afoveate lateral-eyed animals, such as the rabbit, a large portion of the retina
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must be stimulated in order to elicit the OKR, but when the optokinetic system

is tested using an artificial stimulus (such as a patterned drum rotating around

the animal) the OKR slowly charges (SP velocity increases) over time (Collewijn

1981, Dubois & Hollewijn 1979). This is the compensatory behaviour discussed

in section 2.3, where the OKR supplants the fading VOR in the light in order

to maintain a stable retinal image. If the illumination in the room is suddenly

turned off and the animal is left in complete darkness, the OKR will begin to

discharge and will produce the optokinetic after-nystagmus. During the period of

optokinetic after-nystagmus, the nystagmus will continue for some seconds with

a decreasing SP velocity, counteracting the postrotational vestibular nystagmus

that is made in the opposite direction to rotation as the mechanical properties of

the semicircular canals return to normal (Barratt & Hood 1988). This charging

and discharging behaviour is mediated by the velocity-storage mechanism, which

also improves the ability of the VOR to transduce the low frequency components of

head rotation. Raphan et al. (1979) modelled the velocity-storage mechanism as a

non-ideal integrator coupled to the visual and peripheral vestibular systems, where

the integrator stabilises eye velocity during whole field rotation and improves

the performance of the VOR by extending the time over which the VOR can

compensate for head movement. A direction bias for the OKR has also been

found, predominantly in lateral-eyed animals but also in very young infants, that

favours temporal-nasal directed stimuli. In lateral-eyed animals it is assumed that

this bias reflects a need to avoid pinning the eyes onto the visual scene behind the

animal as it moves forward, and so nasal-temporally directed stimuli.

In foveate animals, such as humans and other primates, there is a smooth pursuit

system. The smooth pursuit system generates eye movements that are designed

to keep a small visual target on the fovea, and maintain high visual acuity whilst
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tracking. The latency of smooth pursuit eye movements are usually more than

200ms, but predictive mechanisms can adjust the eye movements when the mo-

tion of the target can be anticipated (Barnes 1993). Smooth pursuit is normally

associated with tracking a foveal target whilst ignoring the motion of the back-

ground on the peripheral retina. However, there is some evidence that the pursuit

system supplements the optokinetic system in order to boost SP velocity and

match the speed of the stimulus motion. The ocular following response is a spe-

cific visual tracking mechanism similar to smooth pursuit, but with ultra-short

latency (<85ms in humans), that is responsible for holding gaze on an object

during self motion (Miles et al. 1986, Miles 1995, 1998). In this strategy the vi-

sual system is thought to compensate for movement of the head by generating

eye movements appropriate for the depth plane within which the visual target

exists, using extraretinal information. In effect, binocular images are compared,

and where the images on both eyes match gives the position (and thus plane) of

fixation. Whereas objects behind or in front of the plane of fixation are considered

to have binocular disparity and are seen as double (fig. 2.5). The ocular following

response is thought to follow only those parts of the visual scene that occupy the

same corresponding positions on both retinas.

In a study by Cheng & Outerbridge (1974) selective optokinetic stimulation of

different parts of the retina was achieved by deleting a variable portion of the

stimulus that was controlled by an eye position signal from the participant, in such

a way that the deleted area always remained in the central vision of the participant.

They found that the gain of OKN was reduced as the size of the central vision

deletion was increased. However, Hood (1967) had illustrated that patients with

a scotomatous eye could still generate high SP gain, albeit with some differences

that appeared to be characteristic of vestibular nystagmus and nystagmus under
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Figure 2.5: Illustration of optic flow experienced during translation, such as
looking out of a train window towards the distance. (A) The ob-
server is looking towards the mountain top and the tree in the fore-
ground appears double due to binocular disparity on the retina. (B)
The observer is looking towards the tree and the mountain top in the
distance appears double due to binocular disparity. The large white
arrow represents the motion of the observer, the smaller black ar-
rows represent the magnitude of apparent motion of objects in that
depth field. Figure taken from Busettini et al. (1996). Permission to
reproduce this figure has been granted by Nature Publishing Group.
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liminal illumination. In fact Hood (1967) claimed that SP gain was predominantly

controlled by peripheral vision. In patients with unilateral scotoma, when the non-

scotomatous eye was covered, the SP gain would exceed speeds of 90◦/s as the

stimulus speed was increased to 100◦/s. Whereas when the scotomatous eye was

covered the SP velocity would not exceed 50◦/s, and even began to decrease as

stimulus velocity was increased past 80◦/s. van Die & Collewijn (1986) found

a similar result in scotomatic patients, but also found that elimination of foveal

stimulation was accompanied by a decrease in SP velocity when compared to whole

field stimulation in normal participants. When participants are asked to fixate on

a target in the centre of a moving visual field they are able to completely suppress

the usual nystagmus response (Brandt et al. 1973). As nystagmus is completely

suppressed during fixation, this has been cited as an indication that the pursuit

system is able to dominate the OKR. It is clear that relative contribution of

smooth pursuit mechanisms, such as the ocular following response, to the OKR

are still not fully understood.

2.5 The neural substrate of OKN.

It appears that, in foveate species, both the smooth pursuit and optokinetic sys-

tems contribute to OKN during head translations and rotations. In humans, there

is a very fast response within the first 1 to 2 seconds of OKR stimulation (the

early OKN response; eOKN) that is followed by a slower buildup of stored neural

activity that is revealed in optokinetic after-nystagmus when the subject is placed

in darkness (the delayed OKN response; dOKN).

Neurophysiological studies in primates have revealed that vestibular nucleus neu-

rons that respond to head rotation also respond to optokinetic stimuli (Henn

et al. 1974), and that they can continue to fire even after the lights are turned
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off (Waespe & Henn 1977). It appears that as the vestibular discharge declines

during sustained rotation, the optokinetic system compensates in order to main-

tain a steady vestibular discharge, and this appears to be the neural correlate for

dOKN.

Two important structures for the generation of OKN have been found in the pre-

tectal complex, namely the nucleus of the optic tract (NOT), and the nuclei of the

accessory optic system that consists of the dorsal, lateral, and medial terminal nu-

cleus (DTN, LTN, MTN, respectively). The neural responses from NOT neurons

are very similar to responses from DTN neurons, and since they cannot be differen-

tiated anatomically are often referred to as the NOT-DTN. The importance of the

NOT-DTN in generating OKN has been demonstrated by an ipsiversive reduction

in SP velocity after damage to the NOT-DTN, and by electrical stimulation of

the NOT-DTN producing ipsiversive SPs (Cohen et al. 1992). Neurophysiological

studies have shown that NOT-DTN neurons respond with directional selectivity

to visual motion (Hoffmann 1988), and the preferred directions of the DTN, LTN

and MTN are roughly equivalent with the planes of action of the antagonistic

pairs of extraocular muscles and the planes of the semicircular canals (Walley

1967, Simpson et al. 1979). In the primate LTN neurons respond with directional

selectivity to upward motion (Mustari et al. 1988), but the primate MTN could

not be found (Giolli 1963). Two different types of neurons were found in the pri-

mate NOT-DTN, in approximately half of the recorded neurons the firing stopped

abruptly when the primate fixated a stationary target during OKN stimulation,

and in the other half neuronal firing continued (Ilg & Hoffmann 1996). Further,

when a smooth pursuit target was tracked across a textured background, the neu-

rons that stopped responding when the primate had fixated a stationary target

responded to the movement of the smooth pursuit target. Whereas the neurons
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that continued to fire during fixation responded to the peripheral retinal image

motion due to tracking the moving target over the textured background. These

two different types of cells were termed “target velocity cells” and “background ve-

locity cells”. It appears that these two different cell types found in the NOT-DTN

may be the neural correlates for the smooth pursuit and optokinetic components

found in behavioural OKN studies.

2.6 The systems engineering approach.

Control theory deals with the behaviour of dynamical systems, where the external

input of a system is manipulated by a controller to obtain the desired effect on the

output of the system, and the input and output of a system are related to each

other by the transfer function. The use of control systems analysis in oculomotor

research was popularised by Robinson and revolutionised the way in which the

ocular motor community continue to investigate eye movements. Fuchs et al.

(1993) noted that Robinson had coined many phrases in common use today such

as the “pulse and step”, the “burst generator”, and the “oculomotor integrator”.

Control systems analysis as applied to oculomotor research is essentially a method

of modelling the sensorimotor control of the oculomotor systems using the block

diagrams and algorithmic models usually employed in the control of systems.

Using block diagrams as hypotheses for signal processing pathways in the brain we

can pose questions about how the pathways may work, and simulate the output of

the system given a certain input. If we define system output as some measureable

quantity, such as the gain of the OKR, we can compare the simulated output

with empirical data and determine the quality of model, based on the number of

empirical observations it can simulate and the number of assumptions it requires.

An example of a simple negative feedback loop is illustrated in fig. 2.6. The OKR
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Figure 2.6: A simple model of a feedback loop. The dynamic behaviour of the
system is controlled through negative feedback, rather than positive
feedback, because the sensed value is subtracted from the desired
value at the summing junction on the left to create the error signal,
which is amplified by the controller.

is a closed-loop system, and can be considered as a simple negative feedback loop

where the reference is the stimulus velocity, and the measured error is retinal slip,

the controller updates SP velocity based on the measured error in such a way that

retinal slip will be minimised. In such a closed-loop system we would predict that

OKN gain would be very stable, and approximately 1.0. The finding that the

visual system can be split into various component parts allows for models such as

this to be developed. Robinson (1981b) proposed a more complicated model of

the optokinetic system, which also included the system that generates the VOR

(fig 2.7). In this box diagram it was assumed that the optokinetic system was only

concerned with velocity, and not the position of the eye, head, and retinal images,

and so the action of the neural integrator is not shown explicitly. The action of

QPs were also ignored, in order to investigate only how the OKR responds to

changes in head and eye velocity.

2.7 Relationships between parameters in human OKN.

While the control systems approach has allowed a greater understanding of the

mechanisms that generate SP velocity and the gain of the system, and much is

known about the physiology of the OKR, the processes that determine specific
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Figure 2.7: Block diagram illustrating a model of OKN, including its connec-
tion with the vestibulo-ocular reflex. Ḣok, optokinetic signal; vn,
vestibular nucleus; Ḣ, head velocity; Ḣc, transient semicircular
canal signal; ė, retinal slip velocity; not, NOT; Gok, optokinetic
gain; Tokan, optokinetic after-nystagmus time constant; kĖ′, corol-
lary discharge pathway; nrtp, nucleus reticularis tegmenti pontis;
S1, switch from light to dark. Figure taken from Robinson (1981b).
Permission to reproduce this figure has been granted by Annual
Reviews.
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parameters such as when QPs are triggered or to where the end points of QPs are

targetted remain elusive.

The earliest reported consideration on the threshold at which QPs are triggered

is attributed to Ter Braak (1936) who proposed that QPs could be triggered

by three possible mechanisms. First, QPs could be triggered by an extraocular

proprioceptive signal indicating an eye position threshold. Second, the threshold

may be determined by an internal clock or central pattern generator (attributed

to Ohm (1928)). Finally, the threshold may be determined by the combination

of both an eye position control system and an internal clock. Investigating the

VOR, using the control systems approach, Chun & Robinson (1978) extended

the original eye position hypothesis by modelling a local feedback loop in the

pons which rapidly drives the eyes to a position specified by a vestibular signal,

and proposed there were two internal signals that represented the start and end

position of QPs. While the results appeared satisfactory they expressed concern at

the ease to which mean OKN parameters can be predicted by models of the system,

and concluded that measures of the distribution of parameters were necessary

to determine the goodness of fit of a model. Lau et al. (1978) demonstrated

that the threshold for triggering a (vestibular) QP in humans was dependent on

instantaneous eye velocity, and not only on eye position.

An even more difficult problem to solve is understanding how the amplitude of

QPs is determined, or where QPs are directed towards, particularly as there is

no obvious visual target. QPs are usually made in the opposite direction to optic

flow, and tend to reset eye position to maintain gaze around the desired visual

region, but have a tendency to overshoot into the negative field (contraversion).

The degree of contraversion in rotational OKN appears to be a function of the

stimulus speed that saturates at speeds greater than 15◦/s (Garbutt et al. 2002).
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A well known relationship between the amplitude, duration and peak velocity of

saccades is the main sequence. The trajectory determined by this relationship is

an optimal compromise between the speed and accuracy of a saccade to a visual

target, under the constraint that there is signal-dependent noise in the motor

command (Harris & Wolpert 1998, 2006). Studies on the velocity profiles of QPs

have demonstrated that they have a similar, if slightly slower, main sequence

when compared with saccades made to visual targets (Garbutt et al. 2001, 2003,

Kaminiarz et al. 2009).

There is a degree of variability intrinsic to the OKN mechanism that manifests

itself in apparently random fluctuations of OKN parameters such as the SP du-

ration, SP amplitude, QP amplitude and even SP velocity. The origin of this

variability is not known. Significant nonlinear (and linear) predictability has been

reported in the start and end positions of QPs, which indicates a deterministic

component in the process. This has led to some speculation that while the appar-

ently random fluctuations imply an embedded stochastic process, the variability

may be a result of complicated deterministic behaviour manifesting as determin-

istic chaos (Shelhamer & Gross 1998, Shelhamer 1998, Trillenberg et al. 2001).

A low fractional correlation dimension of the OKN waveform has been reported,

ranging from 3.5 to 2.8 over a 120s period of OKN stimulation, implying that the

system is chaotic (Shelhamer 1992, 1996). However, stochasticity affects the cor-

relation dimension (Argyris et al. 1998), and a purely stochastic model of patho-

logical nystagmus has demonstrated low fractional dimensions (Harris & Berry

2006). Finally, only a limited amount of predictability was found in SP velocity,

and little or no predictability was found in SP duration and the amplitude of SPs

and QPs, implying random behaviour.

Despite a highly variable gaze position from cycle to cycle, average position across
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cycles remains steady, implying some adaptive mechanism or gross deterministic

component that keeps gaze in the desired location. This indicates that SP and

QP parameters must be dependent on each other. Dependency of parameters

over time may indicate that working memory of previous OKN parameters is

required to determine future OKN parameters, whereas short term dependencies

may indicate that movements can be generated based solely on the current state

of the system. Several relationships between OKN parameters within OKN cycles

have been reported, such as a positive correlation between SP amplitude and SP

velocity in humans viewing a random dot kinematogram (Watanabe et al. 1994),

and a linear relationship between initial eye position and QP amplitude in turtles

(Balaban & Ariel 1992). Differences in the parameters of human OKN can also be

elicited by giving different instructions to a subject. Honrubia et al. (1968) found

that instructing participants to maintain gaze on a region in space whilst viewing

a large visual scene that moves produced a different type of OKN (stare OKN)

than when the participant was asked to follow the moving bars (look OKN). Look

OKN predominantly produces much larger amplitude SPs and QPs and generally

has a higher gain than stare OKN.

There has yet to be a complete systematic dissection of the interelations be-

tween OKN parameters, but some headway has been made into understanding

the threshold at which QPs are triggered through the testing of so-called “accu-

mulator models”.

2.8 Accumulator models.

Studies on the stochastic nature of OKN have often focused on the timing of QPs,

and the development of models for QP generation that produce the characteristic

positively skewed statistical distributions of SP durations (QP intervals). Several
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Figure 2.8: Illustration of the LATER model. In this model, when a visual
target appears, a decision signal rises in the brain until it reaches
threshold and triggers a response. The time it takes to reach thresh-
old is the latency of the response. The rate of rise varies from trial
to trial, and this variability is described by a normal distribution.
Importantly, the rate remains constant within a trial. PDFs are
illustrated on the right hand side of the figure for the rate of rise
(top), reciprocal latency (middle), and latency (bottom). Figure
taken from Harwood et al. (2008). Permission to reproduce this
figure has been granted by The American Physiological Society.

processes have been suggested that fit the data with varying degrees of success.

The most common are “accumulator models”, that describe a decision signal or

activation parameter in the brain that rises to threshold and triggers a QP once

the threshold is reached. These models hypothesise different stochastic mecha-

nisms by which the decision signal rises, and the variability in QP intervals is

predicted to result from the random fluctuations in the model parameters. A se-

ries of distributions predicted by various statistical models of OKN were all tested

to see which might best fit the histograms of QP intervals, with inconclusive re-

sults (Trillenberg et al. 2002) due to the amount of data required to discriminate

between each distribution.

The linear approach to threshold with ergodic rate (LATER) model is one such

accumulator model that has been used to predict a “recinormal” distribution of

QP intervals (Carpenter 1993). The term recinormal is applied to mean that the
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distribution of the reciprocal of the QP interval (QP rate) is normal. The LATER

model predicts that a decision signal in the brain rises to threshold at a linear

rate, and once it reaches the threshold a QP is triggered. The rate of rise of this

signal varies from QP to QP with a normal distribution, but the rate remains

constant during each QP, and the threshold also remains constant. As the rate

at which the signal rises has a normal distribution, and the threshold is constant,

the QP rate will also have a normal distribution. This leads to the latency of

QPs having a recinormal distribution. This model is illustrated graphically in

figure 2.8. However, while the LATER model does a surprisingly good job of

modelling the distribution of QP intervals, an extension to the model was created

in order to explain the particularly poor fit of very short duration QP intervals

(Carpenter 1994). In this extension to the later model, a second “rogue” LATER

unit is added in parallel with the first, and they both race to threshold. The first

unit to reach threshold triggers a response and then the process resets and the race

starts again. The mean rate of rise of the rogue unit is zero but as the standard

deviation in the fluctuations between trials is so large it occasionally produces

very high rates, hence very fast QPs. The LATER model has not only been used

to model the latency of QPs, and is more often used to analyse the latency of

saccades to visual target or manual reaction times (Carpenter & Williams 1995,

Temel et al. 2009, Harwood et al. 2008).

Anastasio (1996) hypothesised that integration of noisy velocity signals by vestibu-

lar nucleus neurons would approximate a random walk with drift. Random walk

models, or diffusion models, form one of the major classes of models analysed

in reaction time experiments, particularly in two-choice decision tasks. The as-

sumption is that a visual stimulus provides a certain amount of information that

is accumulated over time towards one of two possible thresholds, that represent
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Figure 2.9: Illustration of the diffusion model. In this model, when a visual
target appears, a decision signal in the brain rises and falls, in a
random walk fashion, until it reaches a threshold and triggers a re-
sponse. In the case presented here there are two different thresholds,
one above and one below the inital level of the signal, representing
a two-choice decision task where a different response is triggered
depending on which threshold is reached first. The predicted dis-
tribution of the saccadic latency is depicted by the PDF illustrated
with each threshold. Figure taken from Voss & Voss (2008). Per-
mission to reproduce this figure has been granted by Elsevier.

two different responses, and when the signal reaches a threshold the respective

response is activated (fig. 2.9). In the case where there is no variability in the

drift rate between trials, and the drift rate is always positive (or zero), then the

distribution of SP duration predicted by this model is an inverse Gaussian. Note

that the major difference between this model and the LATER model is that the

decision signal is allowed to vary during the course of each SP, although both

assume a fixed threshold and an activation parameter rising to threshold. This

is important if we consider that a normally distributed rate (as proposed by the

LATER model) would eventually produce a rate with a negative value, leading

to an infinitely long SP duration. As the activation parameter in the diffusion

process is allowed to vary over the course of the SP in a random walk fashion,

it will eventually cross the threshold, even if the drift rate is in the negative di-

rection. Balaban & Ariel (1992) fitted experimental QP interval histograms with

a lognormal distribution, that arises when a QP interval is the product of the

previous QP interval and a normally distributed random variable. However, they
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found that as the normally distributed random variable could take on negative

values, the predicted QP intervals could also take on negative values, and it was

necessary to truncate the variable at zero.

2.9 Concluding remark.

It is certainly evident that much is known about the physiology of how OKN is

generated, and our understanding of the mechanisms that generate SP velocity

have been greatly enhanced by the use of the control systems approach. However,

the mechanisms that generate the QP component of OKN, or more specifically

when the QP is triggered and to where they are targetted, is still poorly under-

stood. The statistical approach to investigating the QP trigger threshold, and

how it is reached, has had some limited success. However, differentiating between

distributions created by these stochastic models requires a great deal of data. It

seems that a systematic analysis of the relationships between OKN parameters,

combined with an assessment of the statistical distributions of these parameters,

would lead to a better understanding of these unresolved yet important mecha-

nisms.
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Chapter 3

Materials and Methods.

The results and conclusions presented in this thesis illustrate the results of statis-

tical analysis applied to eye movement data recorded from normal human partic-

ipants viewing optokinetic stimuli. Detailed information is given in each chapter

on the specific analyses applied to the data. In order to avoid replicating the

material and methods for collecting the eye movement data in each chapter, I

present it here in full.

Three different experimental studies were performed in order to investigate how

different spatiotemporal characteristics of the optokinetic stimuli affected eye

movement parameters. The first study involved manipulating only the stimulus

speed of the stimuli (Experiment 1: effect of stimulus speed). The second study

involved manipulating both the spatial frequency and stimulus speed of square

wave stimuli (Experiment 2: effect of stimulus spatiotemporal frequency). The

third study involved manipulating the type of visual pattern used for the stimuli,

comparing the use of a grid pattern with randomly allocated black and white

squares, and a square wave pattern. The spatial frequency of the pattern was also

manipulated in this experiment (Experiment 3: effect of stimulus pattern)
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3.1. PARTICIPANTS.

3.1 Participants.

28 participants were involved over the course of all experiments (18-35 years old,

14 female and 14 male). Participants were recruited through the departmental

student participation scheme or known through the primary investigator. All

participants were healthy, with no neurological, ophthalmological or vestibular

impairments. Visual acuity for each eye was tested prior to each experimental

session with a Snellen test (Keeler Snellen Test Type Panel (T O Y); Keeler Ltd.,

Windsor). All participants could read the 6/6 line with uncorrected vision. All

protocols were approved by The University of Plymouth Faculty of Science Human

Research Ethics Committee. A full description of the experimental procedures and

an informed consent form were given to each participant before the investigation,

and the option to withdraw from study at any time was explained prior to each

procedure.

3.2 Eye tracking materials and procedure.

Each procedure required the participant to sit in a chair 1m from the middle of a

flat white screen (viewable area of 1.57m by 1.17m landscape, subtending 76◦ by

60◦) and the OKN stimulus was rear projected (EPSON EMP-500; Seiko Epson

Corp., Japan) on to the screen with an SVGA resolution of 800 x 600 pixels.

The participant’s head was constrained using a chin rest. Eye movements were

measured using a binocular head-mounted limbus tracker (Skalar IRIS Infrared

Light Eye Tracker; Skalar Medical BV, Netherlands) that recorded horizontal

movement with a resolution of 3 minarc at a sampling rate of 1kHz.

The eye tracker measures the reflection of infrared light from the recorded eye,

at the edge between the white sclera and the darker iris. The head-mounted

measuring device is an arrangement of two infrared light transducers. Each trans-

31



3.3. CALIBRATION.

ducer consists of a light emitting array of nine infrared light emitting diodes and

a detector array of nine infrared light sensitive phototransistors. Infrared light

is projected onto the eye from the light emitting array and the detector array

converts the reflected infrared light into voltage. The voltage of the nasally lo-

cated phototransistors is subtracted from the voltage of the temporally located

phototransistors, and the voltage difference is demodulated and amplified. The

resultant signal is proportional to the angular deviation of the eye. A feature

of the IRIS eye tracker is that the infrared light emission is chopped in order to

minimise interference from ambient light.

The transducers are attached to a lightweight padded headband that can be ad-

justed independently in three perpendicular directions. The transducers can be

orientated in such a way that either horizontal or vertical eye movements can

be recorded from both eyes, or horizontal eye movements can be recorded from

one eye and vertical eye movements recorded from the other eye. During this

investigation only horizontal eye movements were recorded, in both eyes.

The analogue voltage output for both eyes was recorded on computer (vsgEyetrace

v.3.0.beta software for Windows; Cambridge Research Systems, UK) and stored

on the hard disk for off-line analysis.

3.3 Calibration.

Calibration of eye movement recordings were performed in two steps. Green

LED bar arrays on the front panel of the control module indicate momentary

eye position as a function of the output voltage when the headset is worn. Zero

position was determined by presenting a stimulus at the centre of the screen and

adjusting the “zero” control on the front panel until the moving green LED bar

lined up with the marker for zero. The “gain” control on the front panel was then
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adjusted such that when the participant was viewing a stimulus presented 30◦ to

the left or right of the centre the moving green LED bar lined up with the markers

at the far left and right of the LED display. This rough calibration was performed

before each experiment in order to make sure that the recorded eye movements

would remain linear in the range of the recording equipment, while maintaining a

gain high enough for good quality recordings.

After this initial calibration a total of forty fixation stimuli were pseudorandomly

presented along the horizontal meridian in the range 20◦ left of the centre to 20◦

right of the centre, each for a random period between 3 and 5 seconds, and eye

movements were recorded. These calibration recordings were made before the ex-

perimental session and, in experiments 2 and 3, after the break at the midway

point in the session. A calibration scale factor and offset were calculated offline

after each experimental session, by performing linear regression of the mean ana-

logue voltage recorded during each fixation against the known stimulus position.

Individual fixation periods were visually checked before calibration for signs of

corrective or anticipatory saccades, and if either were observed a portion of the

fixation period was selected manually for calculating the mean analogue voltage.

The calibration scale factor and offset were then applied to the data collected from

the experimental session following the calibration recording.

3.4 OKN stimuli.

During OKN presentation participants were asked to stare straight ahead at the

centre of the screen, rather than follow the moving stripes, in order to evoke

stare-OKN rather than look-OKN. Participants were given a break for one minute

between each trial in order to alleviate discomfort, tiredness, and to minimise the

effects of any optokinetic after-nystagmus. In experiments 2 and 3, where there
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were a large number of trials, participants were also given a break for five minutes

on completion of the first half of the trials.

3.4.1 Experiment 1: effect of stimulus velocity.

10 healthy adults (6 female and 4 male), mean age 25 (SD = 5) years participated

in experiment 1. The OKN stimulus consisted of a flat vertical square wave grat-

ing, comprised of alternating black and white vertical stripes (0.1cycles/◦), moving

horizontally at a fixed speed (10◦/s, 20◦/s, 30◦/s, or 40◦/s). Recording sessions

were composed of a sequence of four trials each lasting 160s. The direction and

stimulus speed was pseudorandomly selected for each trial such that each partici-

pant was presented with all four stimulus speeds. The stimuli were created using

the standard vsgEyetrace software protocol for optokinetic nystagmus stimuli.

3.4.2 Experiment 2: effect of stimulus spatiotemporal frequency.

8 healthy adults (2 female and 6 male), mean age 26 (SD = 4) years participated in

experiment 3. The OKN stimulus consisted of a flat vertical square wave grating,

comprised of alternating black and white vertical stripes, moving horizontally at

a fixed speed. Recording sessions were composed of a pseudorandom sequence of

12 trials, each with a different spatial frequency (0.05cyc/◦, 0.1cyc/◦ or 0.2cyc/◦),

stimulus speed (10◦/s or 30◦/s), or direction (leftward or rightward) lasting 100s.

The stimuli were created using the standard vsgEyetrace software protocol for

optokinetic nystagmus stimuli.

3.4.3 Experiment 3: effect of stimulus type.

10 (6 female and 4 male), mean age 19 (SD = 1) years participated in experiment

3. In this experiment two different types of OKN stimulus patterns were used.

One pattern consisted of a flat vertical square wave grating (fig. 3.1a). The second

type of pattern consisted of a grid of randomly allocated black and white squares
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A

B

Figure 3.1: Examples of the two types of OKN stimulus patterns used: (A) a
flat vertical square wave grating and (B) a “random grid” pattern.
The random grid pattern in B is made up of squares that have a
width and length equal to the width of the bars in A.

(fig. 3.1b). In order to compare the two different types of patterns the width (and

thus the height) of squares was made to be exactly the same as the width of the

vertical stripes in the respective square wave grating. Recording sessions were

composed of a pseudorandom sequence of 12 trials, each with a different stimulus

pattern (square wave or random grid), spatial frequency (0.083cyc/◦, 0.165cyc/◦

or 0.248cyc/◦), or direction (leftward or rightward) lasting 100s. The stimuli were

created in Matlab (Matlab; Mathworks, USA) and exported as bitmap images.

They were presented using the standard vsgEyetrace software protocol for scrolling

picture stimuli at a stimulus speed of 31.5◦/s.

The patterns were developed in Matlab by creating three matrixes with 600x1620

elements that were divided in to vertical subintervals containingm elements, where
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m = 20, 30 or 60. The number of elements were specifically chosen in order that

there would be an even number of subintervals in each matrix and that all the

subintervals in a matrix could be the same width. For the square wave pattern,

alternating vertical subintervals were allocated the numbers 0 then 1. Each matrix

was then converted to a bitmap image using the built in Matlab function: imwrite,

where the numbers 0 represent the colour black and the numbers 1 represent the

colour white. In order to create the grid pattern each of the three 600x1620

element matrixes were further divided in to horizontal subintervals containing n

elements, where n = m. A pseudorandom number generator: rand was used to

generate a scalar value r from a uniform distribution on the unit scale for every

square (mxn) subinterval. These numbers were then rounded up to 1 for r ≥ 0.5 or

down to 0 for r < 0.5. The process of assigning numbers to each square subinterval

was repeated until an equal number of zeros and ones had been assigned to the

matrix, and then the matrix was converted to a bitmap image using: imwrite.

3.5 Data acquisition.

All programs and algorithms for analysing data were developed and created in

Matlab. Each eye was calibrated separately, and the average was computed to

yield a “cyclopean” eye position in order to acquire a more accurate recording

of eye position. Position traces of individual eyes were also compared for signs

of vergence movements. At the higher stimulus speeds (30◦/s and 40◦/s) some

participants would occasionally have divergent eye movements, but they were for

brief periods (1 or 2s) and did not seem to occur in any systematic manner. Eye

velocity was derived from the eye position using a central difference algorithm

and then zero-phase digital filtering was performed, using an 8th-order high pass

Butterworth filter with a cut-off frequency of 80Hz. A Butterworth filter was used

as it is maximally flat in the passband, and the cutoff frequency of 80Hz was chosen
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based on previous studies investigating oculomotor tracking with the Skalar IRIS

equipment that had used the same cutoff frequency (Barnes & Marsden 2002,

Collins & Barnes 2006).

For the purposes of simplifying both analysis and presentation, data were nor-

malised such that the stimulus direction was always positive. In this manner eye

movement recordings for a rightward moving stimulus are unchanged but for a

leftward moving stimulus are reversed. Thus SPs always had positive amplitude

and velocity, whereas most QPs had negative amplitude and velocity. Each half

of the stimulus was also described (relative to the stimulus centre) as positive or

negative, such that a positive position is on the side which the stimulus is drifting

towards and a negative position is on the side which the stimulus is drifting from.

As an example, if the stimulus is drifting to the left, a position to the left of the

stimulus centre would be positive and to the right would be negative.

Detecting QPs is a non-trivial process. SP Gain (stimulus speed/SP velocity)

is often dependent on stimulus parameters, and varies in an apparently random

fashion from trial to trial and also from SP to SP. A first pass of the data detected

possible QPs when eye acceleration was greater than 1000◦/s2. Once a possible

QP was detected the algorithm continued to search forwards in the data in order

to find the peak velocity of the saccade. Peak velocity was calculated at the point

where the eye velocity first began to decrease and then continuously decreased

for a further period of 3ms. The possible QP was rejected if the value of eye

velocity increased above 600◦/s before the peak velocity was determined as this

was indicative of an anomaly caused by a blink rather than a real eye movement.

The time at which peak velocity occured was indexed and the direction of the QP

was determined from the sign of the peak velocity. Once the peak velocity had

been calculated and indexed two more passes were made of the data, from the
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time at which peak velocity occurred, forward and backward. The start and end

of QPs made in the negative direction were determined when eye velocity returned

to a value above 0◦/s for more than 2ms. The start and end of QPs made in the

positive direction were determined when eye velocity returned to a value under

the stimulus velocity for a period longer than 2ms. In some trials when the SP

gain was higher than 1, the eye velocity did not always return to a value under

the stimulus velocity for a period longer than 2ms, and on visual inspection it was

clear that some QPs were not detected. In these trials (30 of 256) a buffer zone

of 5◦/s was added to the threshold for detecting the start and end positions of

QPs, and on visual inspection this buffer zone appeared to allow the QP detection

algorithm to find all QPs. However, this criteria was not applied to all trials, as

in typical OKN it would cause the detection algorithm to find the end and start

points of QPs visibly earlier than they appeared to occur when examined by eye.

I defined a cycle of OKN as one SP and the following QP in series, and each cycle is

numbered in chronological order. A matrix was created whose columns correspond

to cycles and whose rows correspond to one of ten OKN variables recorded: SP

start time, SP end time, SP duration, SP start position, SP end position, SP

amplitude, SP velocity, QP amplitude, QP peak velocity, and QP duration. SP

start times were determined to be the same as the end time of the previous QP, SP

end times were determined to be the same as the start time of the following QP,

and the SP duration was calculated from the SP start and end times. SP start

position and end position were determined using the raw eye position data at the

SP start and end times, and the SP amplitude was calculated from the SP start

and end position. SP velocity was calculated by performing ordinary least squares

linear regression on the raw positional data between the SP start and end times.

QP amplitude was calculated from the end position of one SP to the start position
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Figure 3.2: (A) Cyclopean eye position during 3 seconds of OKN stimulation.
(B) Digitally filtered cyclopean eye velocity during the same pe-
riod. Black dots represent the start and end position of QPs as
determined by the QP detection algorithm without a buffer zone
(i.e. for QPs made in the negative direction, when eye velocity re-
turned to a value above 0◦/s for more than 2ms, or for QPs made
in the positive direction when eye velocity returned to a value un-
der the stimulus velocity for a period longer than 2ms). Note the
algorithm is capable of detecting very small QPs (at approximately
31s), small SPs (at approximately 32s), and QPs made in the direc-
tion opposite to stimulus motion (at approximately 32.7s). Upper
dashed line in (B) represents stimulus speed (+10◦/s), and lower
dashed line in (B) represents 0◦/s.
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of the next SP. QP peak velocity was recorded during the process of determining

the QP start and end positions explained above. QP duration was calculated from

the end time of one SP to the start time of the next SP. All eye movements were

then reviewed in a customised interactive graphical interface developed in Matlab.

Blinks were detected manually and intervals containing blinks were marked and

removed from analysis. After blinks were extracted, each trial contained m OKN

cycles where m ranged from 49 to 536 (mean=227) for experiment 1, from 8 to

331 (mean=132) for experiment 2, and from 34 to 251 (mean=152) for experiment

3.

3.6 Data analysis.

RM-ANOVA was performed using the mean and standard deviation of OKN pa-

rameters as the dependent variables, and the stimulus parameters as the within-

subjects factor, to determine the main and interaction effects of changing stim-

ulus parameters on OKN parameters. These results are presented in chapter 4.

The mean and standard deviation of SP velocity, SP gain, retinal slip (stimulus

speed−SP velocity), SP amplitude, QP amplitude, QP start position, and SP

start position were used as dependent variables. The within-subjects factors were

stimulus speed, spatial frequency, direction and pattern type.

SP duration and QP rate (1/SP duration) were both skewed distributions with

a heavy positive tail, so non-parametric tests were employed. A related-samples

Friedman’s two-way ANOVA by ranks test was performed, using either the me-

dian values of SP duration or the median QP rate as the dependent variable and

stimulus speed as the within-subjects factor to test the main effect of stimulus

speed in experiment 1. Performing F-tests on rank transformed data generally

produces innacurate results for interaction effects. However, aligned rank trans-
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formation can be performed on factorial nonparametric analyses and can han-

dle RM-ANOVA to find both main and interaction effects (Higgins & Tashtoush

1994, Wobbrock et al. 2011). The median values of SP duration and QP rate were

aligned and ranked using a software package ARTool (available by Wobbrock et al.

at http://faculty.washington.edu/wobbrock/art/), and RM-ANOVA was carried

out on each aligned data set in turn to find the significant main and interaction

effects. The alignment process was used to estimate the main and interaction

effects as marginal means and then all but one of these effects was stripped from

the response variable to create an aligned variable. Ranks were assigned to the

aligned variable and RM-ANOVA was performed on the ranked data, but only the

effect for which the response was aligned was considered. This process was then

systematically repeated until the response variable had been aligned and tested

for all main and interaction effects.

In all RM-ANOVA tests where sphericity was violated, if the epsilon value was

less than 0.75 the Greenhouse-Geisser correction was used to determine the cor-

rected degrees of freedom (DOF), and if the epsilon value was greater than 0.75

the Huynh-Feldt correction was used. Bonferroni corrected confidence intervals

were used to test significant differences in pairwise comparisons of values between

stimulus conditions.

3.7 PCA.

PCA was performed on the OKN data in order to investigate the underlying

components that explain the correlation of OKN parameters within each cycle of

OKN, and the possible correlation of OKN parameters between cycles of OKN.

These results are presented in chapter 5.

The method of PCA essentially passes a line through an n-dimensional cloud of
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data points (through the centroid) and rotates the line to minimise the square of

the orthogonal distance of each point to that line. This line is said to go through

the maximum variation of the data and is termed the first “principal component”

or “axis of variability”. Successive components can be found by repeating this

procedure to explain the maximum proportion of remaining variance, with the

added constraint that it must be orthogonal to all preceding components. The

total number of components that can be discovered in the cloud of data points is

less than or equal to n. Each component is made up of a weighted linear sum of

the original n parameters (the eigenvector) and explains a certain percentage of

the variance in the data that is proportional to the eigenvalue of each eigenvector.

The individual numbers in an eigenvector are called loadings (or component coeffi-

cients) and these represent the contribution of each of the original n dimensions to

the principal components, scaled by the amount of variance explained by the com-

ponent. An example illustrating the 2 principal components of a 2-dimensional

data set are shown in figure 3.3, where the two dimensions are clearly correlated.

The first component passes through the direction of maximum variance of the

data (80%), and the second component is placed orthogonal to the first to explain

the remaining variance in the data (20%).

Mathematically PCA is performed by eigenvalue decomposition, where the nxn

input correlation (or covariance) matrix is diagonalised to yield n eigenvalues

and n eigenvectors, which are linear sums of the n original dimensions. The

eigenvectors of a real symmetric square matrix are the (non-zero) vectors that,

after being multiplied by the matrix, remain parallel to the original vector. The

corresponding eigenvalue is the factor by which the eigenvector is scaled. This

concept is most easily represented graphically (fig. 3.4). The vector x is illustrated

by an arrow with a length and direction in Cartesian coordinates. The vector x
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3.7. PCA.

Figure 3.3: Scatter plot of 2-dimensional simulated data, with the two principal
component overlayed on top. The first principal component passes
through the direction of maximum variance of the data and is given
by the formula PC1=0.44x+0.90y (solid line). The second principal
component lies orthogonal to the first principal component and is
given by the formula PC2=-0.90x+0.44y (dotted line).

is an eigenvector of the square (nxn) matrix R if multiplication by R causes the

arrow to either remain the same, stretch or shrink, but to otherwise point in the

exact same direction or in the exact opposite direction. The eigenvalue λ is the

factor by which the arrow is stretched. Thus, the vector x is an eigenvector of

the matrix R with the scalar eigenvalue λ, if and only if it satisfies the following

equation:

Rx = λx. (3.1)

PCA was performed using the correlation matrices (rather than the covariance

matrices) as variables measured on a different scale could influence the results

of the analysis disproportionately (Blunch 2008). The correlation matrix R is
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Figure 3.4: An example of an eigenvector illustrated as an arrow in Cartesian
coordinates. The matrix R stretches the vector x but does not
change its direction, therefore the vector x is an eigenvector of the
matrix R. The scalar λ is the eigenvalue of the eigenvector, and
represents the factor by which the arrow is stretched.

diagonalised with the equation:

R = VTDV (3.2)

where D is the diagonal matrix of eigenvalues of R, V is the eigenvector matrix,

and VT is the transpose of V. Rearranging equation 3.2 and taking the square

root of the eigenvalue matrix gives:

R = (V
√
D)(VT

√
D). (3.3)

We let V
√
D = A and VT

√
D = AT to give:
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R = AAT (3.4)

where A is the loading matrix and AT is its transpose, and each is a combination

of the eigenvectors and the square roots of eigenvalues. The correlation matrix is

the product of the loading matrix and its transpose, and the loading matrix repre-

sents the correlation between each component and each of the original dimensions.

PCA was performed on the correlation matrix using the built in Matlab function:

pcacov.

After extraction of the principal components it is sometimes preferable to discard

components that only explain a small amount of variance before interpreting the

results. There are several methods for determining how many components should

be retained, but methods of best practice indicate that the use of a scree test

is the best choice in order to obtain interpretable results (Costello & Osborne

2005). Scree tests involve plotting the eigenvalues of the principal components in

descending order to create a scree plot. This is then examined for an inflection

point, or “elbow”. An elbow exists where the slope of the plot reaches some value

close to zero, and indicates the point at which discarding the component associ-

ated with that eigenvalue (and all other smaller eigenvalues) would not result in

discarding significant variance. An example scree plot is illustrated in fig. 3.5. The

slope of the scree plot flattens off after the fourth component and the eigenvalues

reach values less than 0.1, consequently explaining less than 2% of the variance

in the system. If components 5-7 were discarded, the remaining four components

would still explain 98% of the variance in the system. Details on the number

of components retained, and the number discarded before further analysis, are
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Figure 3.5: An example scree plot. An “elbow” in the plot after component 4
indicates there are 4 significant dimensions in the data.

explained in chapter 5 in relation to the maximum DOF in the system.

In my application factor rotation was performed on the retained components using

the “varimax” strategy. Varimax rotation is a rotation of the component axes

that maximises the sum of the variance of the squared loadings of a component.

This results in components that have high loadings for a few variables and low

loadings for the other variables, and aids in making the underlying structure of the

loading patterns more clear. An example of rotation using the varimax strategy

is illustrated in figure 3.6. In this example, rotation of the coordinate system

brings the axes of the principal components closer to two clusters of loading values

representing two components in the data. Oblique rotation strategies relax the

restriction of orthogonal components and allow axes to pass through the centre

of the clusters. Oblique rotations were tested as well as orthogonal rotations, as

suggested by Costello & Osborne (2005), using the “promax” strategy, but there

were no qualitative differences in the results. After factor rotation, similar loading

patterns were observed among trials, and a heuristic algorithm was applied to sort

the patterns into categories. The details and results of this sorting are explained

in chapter 5.

There are a number of other possible methods that can be used to investigate the

underlying components of correlated variables, or to investigate time series data
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Figure 3.6: (A) Scatter plot of loading values from 8 original dimensions on
the principal component axes (solid lines), with the new varimax
rotated axes overlayed on top (dotted lines). (B) Scatter plot of
loading values after varimax rotation. Loading values of the original
dimensions are relatively higher on the new axis for one component
and relatively lower on the other axis, allowing clusters of loadings
to be more easily detected.
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specifically, that were considered inappropriate for use in this analysis. These

methods are Independent components analysis, factor analysis, and ARIMA mod-

elling. I give a brief explanation below as to why these methods were not employed.

Independent component analysis is a similar method to PCA, popular in signal

processing. However, performing independent components analysis finds the un-

derlying components by maximising the statistical independence of the estimated

components rather than maximising the proportion of explained variance. While

this appears to make independent components analysis a more powerful tool than

PCA, in order to identify the underlying components using this method no more

than one of them may be Gaussian (Comon 1994). In fact the algorithms used

to identify the underlying independent components rotate the n-dimensional data

cloud such that it finds the least Gaussian component. The classical central limit

theorem states that the mean of a sufficiently large number of independent random

variables, each with a finite mean and variance, will be approximately normally

distributed. The least Gaussian component extracted by independent components

analysis is considered to be the most statistically independent, as a consequence of

the central limit theorem. Independent component analysis is a particularly useful

tool in blind source separation, such as in separating mixed EEG signals where

neural networks are infrequently “on”, so signals are often logistically distributed.

However, it is inapplicable in the case where the underlying components actually

represent multiple sources of Gaussian noise. Initial examination of the data re-

vealed that many OKN parameters had an approximately Gaussian distribution.

This is corroborated in chapter 6 where we illustrate that after detrending OKN

parameters, using the model derived in chapter 5, the residuals are approximately

Gaussian.

Factor analysis is another technique similar to PCA. The aim of factor analysis is
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to reveal those factors that cause the observed parameters to covary. The analysis

estimates the “specific variance” and “error variance” that is unique to each param-

eter, and includes only the estimated shared variance (the communalities) in the

calculation of the factors. PCA does not assume an underlying causal structure,

it is a mathematical transformation typically used for feature extraction or as an

objective method of dimension reduction. It is not a statistical model and does

not estimate any unique variance of the observed parameters, instead it includes

the total variance of parameters in the calculation of the principal components

(Blunch 2008). The PCA method of extraction was chosen in order to conserve as

much information as possible without making any statistical assumptions about

the data.

The Box-Jenkins (ARIMA - autoregressive integrated moving average models)

approach is a common method used to analyse time series data and evaluate

models based on their forecasting ability. However, these techniques assume that

values in the time series occur at equally spaced intervals, do not contain missing

data, and the variance in the fluctuations over time are constant (Box & Jenkins

1976). Whereas there is a remarkable amount of variability in the timing of both

SPs and QPs, blinks during eye movement recordings create variable gaps in the

time series, and there is known to be some signal dependent noise in the ocular

motor system (e.g. in the amplitude of saccades). Although ARIMA methods

allow for statistical testing of the validity of time series models, the statistical

significance can be interpreted incorrectly, and sometimes cannot be computed at

all, when the assumptions of the model are not met. However, methods specified

for identifying the order of an autoregressive or moving average model, such as

examining the autocorrelation function and partial autocorrelation function of

parameters for significant values were used in this analysis.
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The autocorrelation function describes the correlation between the same param-

eter at different points in time, as a function of the time difference. Given a time

series xt, the partial autocorrelation of lag k, is the autocorrelation between xt

and xt+k that is not already accounted for by lags 1 up to and including k − 1.

The sample autocorrelation function was calculated in this analysis using the built

in Matlab function: corrcoeff. The sample partial auto-correlation function was

calculated in SPSS 19.0 from the menu Analyze > Forecasting > Autocorrelations.

When identifying the order of an autoregressive or moving average model, it is

recommended that the auto-correlation function and the partial auto-correlation

function should be examined for certain patterns. Exponential decay of the auto-

correlation function to zero is one indication that the data can be modelled with

an autoregressive model rather than a moving average model. The partial auto-

correlation function should then be examined to determine whether there is a lag

at which there is a sharp cutoff in the function, or the function becomes non-

significant. A sharp cutoff at a lag of one in the partial autocorrelation function is

an indication that the time series data follow a 1st order autoregressive model. A

1st order autoregressive model explains the change in xt at each cycle as a function

of xt−1 plus some unexplained noise. Whereas, a 1st order moving average model

explains the change in xt at each cycle as a function of only the error term (or

unexplained noise) in the previous cycle, rather than as a function of xt−1. These

techniques were used in conjunction with the results of PCA in order to interpret

the most likely update dynamics of OKN parameters between cycles.
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Chapter 4

Results of experiment 1: description

of OKN parameters and stimulus speed

effects.

In this chapter the general characteristics of the distribution of OKN parameters

is presented alongside the results of RM-ANOVA performed on OKN parameters

recorded from experiment 1. The effect of stimulus speed, and the remarkable

amount of variability in OKN parameters between and within trials is illustrated,

and important differences in the distributions of OKN parameters are highlighted.

4.1 SP velocity, retinal slip, and gain.

The most notable characteristic of SP velocity recorded in experiments 1-3 is the

remarkable amount of apparently random fluctuations, not just between trials, but

also between SPs. The distribution of SP velocity within a trial is unimodal and

has a mean value, but the SP velocity during any given SP can be much less than,

or much more than, the mean value (fig. 4.1a and 4.1b). The coefficient of variation

(CV; standard deviation/mean) of SP velocity during each trial ranged from 0.08

to 1.34 (mean=0.32). To put this in context, if we assume a normal distribution,

a CV of SP velocity greater than 0.5 would indicate that there is approximately
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4.1. SP VELOCITY, RETINAL SLIP, AND GAIN.

a 2% chance for SP velocity to drop below 0◦/s and actually drive SPs in the

opposite direction to stimulus motion. If the CV of SP velocity was greater than

1 the chance of SP velocity dropping below 0◦/s would be approximately 14%.

Despite the relatively high values for the CV of SP velocity, no SPs were observed

in the direction opposite to stimulus motion, although some SPs did reach very

low values close to zero. However, the SP velocity did occasionally exceed the

stimulus speed, producing negative values of retinal slip (fig. 4.1c) and values of

gain higher than 1 (fig. 4.1e). A representative example of an eye movement trace,

with a corresponding plot of the SP velocity is illustrated in figure 4.2 containing

10 seconds of OKN eye movement data from one trial. In this example, the mean

SP velocity is much lower than the stimulus speed (mean SP gain=0.38) and SP

velocity appears to change in a haphazard fashion from one SP to the next. In

general the mean SP gain was less than 1 during each trial (mean=0.74), and

tended to decrease with stimulus speed as presented in the results of RM-ANOVA

below.

4.1.1 Effect of stimulus speed.

The mean SP velocity, retinal slip, and gain were calculated for each presentation

and figure 4.3 contains three boxplots demonstrating how these parameters were

affected by stimulus speed. A one-way RM-ANOVA was performed using each

parameter as the dependant variable and stimulus speed as the within-subjects

factor to determine the main effects of changing stimulus speed.

There was a significant main effect of stimulus speed on the mean SP velocity

(F (1.37,12.3)=18.2, p=0.001), retinal slip (F (1.37,12.3)=39.4, p<0.001) and SP

gain (F (3,27)=15.4, p<0.001). Bonferroni corrected confidence intervals for mul-

tiple comparisons indicated there was a significant difference in the mean values

of SP velocity between presentations with a stimulus speed of 10◦/s and 20◦/s
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4.1. SP VELOCITY, RETINAL SLIP, AND GAIN.

Figure 4.1: (A and B) Distribution of SP velocity. (C and D) Distribution
of retinal slip. (E and F) Distribution of SP gain. Data taken
from participant 1. Left panel, stimulus speed 10◦/s; Right panel,
stimulus speed 40◦/s.
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Figure 4.2: (A) Example eye movement trace and (B) a plot of the correspond-
ing average eye velocity during each SP. Data taken from participant
1, stimulus speed 40◦/s. Mean SP velocity=15◦/s. SP velocity CV=
0.56.

(p<0.001), 10◦/s and 30◦/s (p<0.001), and 10◦and 40◦/s (p=0.006). Signifi-

cant differences in mean retinal slip were found between all presentations, be-

tween 10◦/s and 20◦/s (p=0.005), 10◦/s and 30◦/s (p<0.001), 10◦/s and 40◦/s

(p<0.001), 20◦/s and 30◦/s (p=0.007), 20◦/s and 40◦/s (p=0.001), and 30◦/s and

40◦/s (p=0.003). Significant differences in the mean values of SP gain were found

between presentations with a stimulus speed of 10◦/s and 30◦/s (p=0.007), and

10◦/s and 40◦/s (p=0.005).

One-way repeated measures ANOVA performed on the standard deviation of

these parameters found a main effect of stimulus speed on the standard devi-

ation of SP velocity and retinal slip (F (1.61,14.5)=41.3, p<0.001), but not SP

gain (F (1.75,15.7)=1.0, p=0.385). Bonferroni corrected confidence intervals for

multiple comparisons indicated there was a significant difference in the standard

deviation of SP velocity and retinal slip, between presentations with a stimulus
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Figure 4.3: Boxplot illustrating the effect of stimulus speed on (A) SP veloc-
ity, (B) retinal slip, and (C) SP gain. Each box represents the
parameter grouped across all participants for each stimulus condi-
tion. Stimulus conditions tested were: stimulus speed, 10◦/s, 20◦/s,
30◦/s or 40◦/s. Box represents interquartile range, whiskers repre-
sent maximum and minimum data values (excluding outliers), and
dots represent outliers found more than 1.5 times the interquartile
range from the ends of the box.
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4.2. SP AMPLITUDE, QP AMPLITUDE, AND THE START AND END POINTS
OF QPS.

speed of 10◦/s and 20◦/s (p=0.001), 10◦/s and 30◦/ (p<0.001), 10◦/s and 40◦/s

(p<0.001), 20◦/s and 30◦/s (p=0.014), 20◦/s and 40◦/s (p=0.006).

In summary, increasing stimulus speed resulted in an increase in the mean SP

velocity and retinal slip that saturated at higher stimulus speeds, and a decrease

in SP gain. Increasing stimulus speed also resulted in an increase in the standard

deviation of SP velocity and retinal slip, but had no effect on the standard devi-

ation of SP gain. The mean value of the standard deviation of SP gain across all

trials was 0.2.

4.2 SP amplitude, QP amplitude, and the start and end points of

QPs.

QPs were predominantly made in the negative direction (opposite to stimulus

motion), although there were a small population of QPs that were made in the

direction of stimulus motion, and these positive amplitude QPs made up 5% of

the total population of QPs across all trials. The shape of the QP distribution

sometimes appeared bimodal with a dip around 0◦ that extended approximately

0.5-0.75◦ in both directions. Manual examination of the eye movement records

verified that these dips were real, and not an artefact of the QP detection algo-

rithm, although we cannot rule out the possibility that very small microsaccades

were made that were not possible to detect. When the CV of the QP amplitude

was smaller than 0.35 (167 of 256 trials) there were rarely any QPs made in the

positive direction at all, so this “dead zone” often could not be observed and the

distribution appeared unimodal. Also, when the dead zone could be observed it

was clear that the cutoff was not absolute as some very small amplitude QPs would

occasionally occur. Figures 4.4a and 4.4b illustrate representative examples of the

distribution of QP amplitude from two participants viewing an OKN stimulus at
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Figure 4.4: (A and B) Distribution of QP amplitude. (C and D) Distribution
of SP amplitude. Left panel: data collected from the same trial,
participant 1, stimulus speed 10◦/s; Right panel: data collected
from the same trial, participant 6, stimulus speed 10◦/s. Note the
“dead zone” around 0◦ in (A).

the same stimulus speed (10◦/s), that had very different values for the CV of QP

amplitude, and in figures 4.4c and 4.4d the distribution of SP amplitude from

the same trials are shown. It was clear that mean QP amplitude and mean SP

amplitude had a strong tendency to compensate for each other (i.e. mean values

of magnitude were equal, but were made in the opposite direction), but that the

distributions of SP and QP amplitudes could be quite different. The SP ampli-

tude distribution was always unimodal, and often slightly positively skewed (mean

skewness=0.88), particularly at low stimulus speeds. SPs were always made in

the direction of stimulus motion and no negative SPs were found in the data.

The standard deviation of SP amplitude was usually smaller than the standard

deviation of QP amplitude (237 of 256 trials).

Over the course of a trial, QPs tend to compensate for the eye displacement due
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to SPs, in order to stop the average eye position from drifting towards the limit

of gaze. However, from figures 4.4c and 4.4d it appears that QPs are generally

triggered when the eye position is close to the centre of the stimulus, and they are

driven into the negative direction of the stimulus field. We define contraversion

as the mean eye position over the course of a trial and found that it was on

average 3◦ in the negative direction, with no significant stimulus velocity effect

(F=0.6, p=0.50). An increase in contraversion has been observed with increasing

stimulus speed when elicited with a rotating full-field patterned curtain (Garbutt

et al. 2002). An increase in contraversion has also been observed during periods of

perceived self-motion (circular vection) that occur during rotational OKN (Thilo

et al. 2000). The lack of a significant stimulus speed effect on contraversion in the

data could be the result of using a translational rather than rotational stimulus

and the lack of any strong linear vection.

4.2.1 Effect of stimulus speed.

The mean SP amplitude, QP amplitude, and the start and end points of QPs

were calculated for each presentation and boxplots were plotted for each of these

parameters (fig. 4.5) illustrating how these parameters were affected by stimu-

lus speed. A one-way RM-ANOVA was performed using each parameter as the

dependent variable and stimulus speed as the within-subjects factor.

There was a significant main effect of stimulus speed on the mean SP amplitude

(F (3,27)=13.1, p<0.001) and QP amplitude (F (3,27)=14.9, p<0.001), but not on

QP start position (F (2.27,20.4)=1.1, p=0.356) nor QP end position (F (1.69,15.2)

=1.1, p=0.345). Bonferroni corrected confidence intervals for multiple compar-

isons indicated there was a significant difference in the mean values of SP ampli-

tude between presentations with a stimulus speed of 10◦/s and 20◦/s (p=0.041),

10◦/s and 30◦/s (p=0.005), and 10◦/s and 40◦/s (p=0.007). There were signifi-
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Figure 4.5: . Boxplot illustrating the effect of stimulus speed on (A) SP am-
plitude, (B) QP amplitude, (C) QP start position, and (D) QP
end position. Each box represents the parameter grouped across
all participants for each stimulus condition. Stimulus conditions
tested were: stimulus speed, 10◦/s, 20◦/s, 30◦/s or 40◦/s. Box rep-
resents interquartile range, whiskers represent maximum and min-
imum data values (excluding outliers), and dots represent outliers
found more than 1.5 times the interquartile range from the ends of
the box.
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cant differences in the mean value of QP amplitude between presentations with a

stimulus speed of 10◦/s and 30◦/s (p=0.007), and 10◦/s and 40◦/s (p=0.004).

One-way RM-ANOVA on the standard deviations of these parameters found a

main effect of stimulus speed on the standard deviation of SP amplitude (F (3,27)

=12.0, p<0.001), QP amplitude (F (3,27)=5.7, p=0.004), QP start position (F (3,

27)=4.9, p=0.007), and QP end position (F (3,27)=6.7, p=0.002). Bonferroni

correctd confidence intervals for multiple comparisons indicated there were signif-

icant differences in the standard deviation of SP amplitude between presentations

with a stimulus speed of 10◦/s and 30◦/s (p=0.049), 10◦/s and 40◦/s (p=0.011),

and 20◦/s and 40◦/s (p=0.028). Significant differences in the standard deviation

of QP amplitude (p=0.031), QP start position (p=0.018), and QP end position

(p=0.009) were only found between presentations with a stimulus speed of 10◦/s

and 40◦/s.

In summary, increasing stimulus speed resulted in an increase in the mean SP

and QP magnitude, but had no effect on the mean start and end position of QPs

(and SPs). Increasing stimulus speed also resulted in an increase in the standard

deviation of the mean SP and QP magnitude, and the start and end position of

QPs (and SPs).

4.3 SP duration and QP rate.

The distribution of SP duration was almost always positively skewed (mean skew-

ness=1.7). Lilliefors tests conducted on all 256 trials (corrected using the Holm-

Bonferroni method) showed that 207 of 256 histograms were significantly different

to Gaussian. A reciprocal transformation has been cited as a method for trans-

forming the SP duration to a Gaussian distribution (Carpenter 1993). However,

the distribution of the reciprocal transformation of SP duration (which we will
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Figure 4.6: (A and B) Distribution of SP duration. (C and D) Distribution of
QP rate. Left panel, data collected from the same trial: participant
2, stimulus speed 10◦/s; Right panel, data collected from the same
trial: participant 6, stimulus speed 10◦/s.

term QP rate) is often more positively skewed than the distribution of SP duration

itself (mean skewness=3.7). Lilliefors tests conducted on all 256 trials (corrected

using the Holm-Bonferroni method) showed that 212 of 256 histograms were sig-

nificantly different to Gaussian. The distribution of SP duration and QP rate for

two trials, from two different participants at the same stimulus speed, are illus-

trated in figure 4.6. One participant had a number of particularly short duration

SPs and a highly skewed distribution of QP rate, the other participant did not

demonstrate any SPs under 200ms and the corresponding distribution of QP rate

was approximately symmetrical.

Care must be taken when dealing with positively skewed distributions that have

particularly heavy tails. One consideration is that if the tails of the PDF decay

slowly it may not have moments (mean, variance, skewness, kurtosis) that con-

verge to a finite value. Although sample moments can be calculated from data
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sampled from such a distribution, they are really erroneous values if the distri-

bution of the parent population does not have finite moments. Measures of the

sample moments, such as the measures of skewness presented above, should be

considered with a deal of caution, and it is more useful to describe the population

using non-parametric measures such as the median and the interquartile range.

Also, it is usually best to use non-parametric methods when performing statistical

tests on data from such distributions, as non-parametric methods do not make

assumptions about the asymptotic tail behaviour of the model to be tested in

order to produce accurate results.

4.3.1 Effect of stimulus speed.

The median SP duration and QP rate were calculated for each presentation and

figure 4.7 contains two boxplots demonstrating how these parameters are affected

by stimulus speed. A related-samples Friedman’s two-way ANOVA by ranks was

performed using the rank-transformed median values of each parameter as the

dependent variable and stimulus speed as the within-subjects factor.

There was a significant main effect of stimulus speed on SP duration and QP rate

(χ2(3)=14.5, p=0.002). Bonferroni corrected confidence intervals for multiple

comparisons indicated there was a significant difference in SP duration and QP

rate between presentations with a stimulus speed of 10◦/s and 30◦/s (p=0.006),

and 10◦/s and 40◦/s (p=0.006). Increasing stimulus speed resulted in a decrease in

SP duration with the mean asymptote at approximately 250ms for speeds greater

than 20◦/s, and an increase in QP rate with the mean asymptote at approximately

4Hz.
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Figure 4.7: Boxplot illustrating the effect of stimulus speed on (A) SP duration
and (B) QP rate. Each box represents the parameter grouped across
all participants for each stimulus condition. Stimulus conditions
tested were: stimulus speed, 10◦/s, 20◦/s, 30◦/s or 40◦/s. Box rep-
resents interquartile range, whiskers represent maximum and min-
imum data values (excluding outliers), and dots represent outliers
found more than 1.5 times the interquartile range from the ends of
the box.
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4.4 OKN cycles

In the next section we will examine the correlations between OKN parameters,

but before we do so it useful to introduce the concept of an OKN cycle. We

will define an OKN cycle to be one SP and the following QP in series. The

concept of investigating OKN behaviour in terms of cycles is not common in the

eye movement literature. As discussed in chapter 2 it is much more common

to investigate OKN using a classical systems engineering approach. However,

investigating how OKN parameters change and interrelate within a single cycle

of OKN makes sense when we consider that within each and every cycle of OKN

there are three decisions that must always be made. These three decisions require

determining three values:

SP velocity. After each QP the system must settle at the new SP velocity. The

common assumption is that SP velocity minimises retinal slip, so we might

assume that SP velocity will always be equal to stimulus speed. However,

we have found that the mean SP velocity of a given trial is often lower

than stimulus speed, and in individual cycles the SP velocity often reaches

values much lower or higher than the mean SP velocity. This indicates

that the system is either limited, remarkably variable, or that the system is

purposefully generating a SP velocity below stimulus speed.

SP end position. The system must determine at what point in time or space

to end the SP and trigger a QP. At some point the system must generate

a QP or the eye will reach the limit of the orbit and remain there. How-

ever, we have found that QPs are made when the eye position is directed

approximately towards the centre of the OKN stimulus. This indicates that

there must be some trigger that causes the eyes to shift gaze long before it
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4.4. OKN CYCLES

Figure 4.8: Representation of OKN and its parameters. The i th cycle in a
series contains one SP followed by one QP and is defined by six
characteristic parameters; SP start position (xi), SP amplitude (Si),
average SP velocity (Vi), SP duration (Ti), QP start position (yi),
and QP amplitude (Qi).

becomes necessary due to reaching the limit of gaze.

QP end position. The system must determine where to target the QP towards

in order to maintain a stable gaze. When participants are asked to stare

directly at the centre of the screen we might expect the end position of QPs

to be directed straight ahead to the centre of the stimulus. However, we

have found that QPs are generally targetted into the negative field of view.

This indicates that there is some target position, or area, within the negative

field that the eyes are directed towards during OKN.

Figure 4.8 illustrates three cycles of OKN in series where the central cycle is the

ith cycle, the cycle before it is the i-1 cycle, and the cycle after is the i+1 cycle.

In this illustration each cycle is characterised by the same 6 OKN parameters (xi,

Si, Vi, Ti, yi and Qi), so we can define each of these cycles with a vector containing

just 6 parameters and examine the relationships between and within these vectors.

It is worth considering how OKN parameters may be sequentially dependent on

other OKN parameters, and we note that direct causal relationships between

three or more OKN parameters will manifest as many “indirect” relationships. As
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4.4. OKN CYCLES

Figure 4.9: Representation of possible direct and indirect relationships between
parameters and cycles of OKN. Direct correlations are represented
by solid arrows, and the resultant indirect correlations are repre-
sented by dotted arrows. Direct correlations can occur within cycles
(e.g. Ti with yi), across one cycle (e.g. xi with xi+1), or across mul-
tiple cycles (e.g. Si−1 with Si+1). Indirect correlations are caused by
a number of direct correlations in series and can also occur within
cycles, across one cycle, or across multiple cycles. For example,
Qi−1 directly correlates with Qi, and Qi directly correlates with
Qi+1, causing an indirect correlation between Qi−1 and Qi+1.

more cycles and more direct relationships are considered the number of indirect

relationships grows such that we will find correlations between many (if not all)

of the OKN parameters (fig. 4.9). We applied PCA to the correlation matrices of

OKN parameters in order to determine the underlying structure of the correlations

between OKN parameters within and between cycles of OKN.
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4.5. RESULTS OF INVESTIGATING THE CORRELATION OF OKN
PARAMETERS BETWEEN AND WITHIN CYCLES.

4.5 Results of investigating the correlation of OKN parameters be-

tween and within cycles.

Multiple pair-wise scatter plots illustrated that most relationships were linear,

except for the hyperbolic relationship between SP velocity and SP duration and a

number of parameters that did not seem to be related at all. The QP “dead zone”

around zero degrees was also clearly visible when the coefficient of variation of the

QP amplitude was greater than 0.5. Plotting the same pair-wise correlations for

all 40 trials revealed some general similarities but often some clear differences as

well. This implied that there was some underlying structure to the relationships

between parameters, but that there might be specific variables or relationships

that change between participants or stimulus conditions. An example of the pair-

wise scatter plots is shown in figure 4.10, where a variety of strong, weak, positive

and negative correlations are evident. Note that in this data set the coefficient of

variation of the QP amplitude is only 0.34, so the distribution of QP amplitude

does not cross zero and the QP “dead zone” cannot be observed.

The correlation matrices of OKN parameters were examined in order to deter-

mine if there were likely to be significant correlations between parameters. Three

examples are shown in fig. 4.11 that illustrate clear differences in the correlation

matrices between trials with different stimulus speeds, and between participants.

The sample auto-correlation function of each parameter was examined in order to

determine if there were likely to be relationships that persisted over a number of

cycles. A typical example of the auto-correlograms of OKN parameters is shown

in fig. 4.12, where the sample auto-correlation is illustrated as a function of the in-

teger cycle iterations (or time “lags”). SP velocity, SP start position, and QP start

position have some correlation with previous cycles, sometimes extending back as
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Figure 4.10: A representative sample of pair-wise scatter plots, illustrating the
direct and indirect relationships between OKN variables. A num-
ber of strong and weak linear relationships, as well as a potentially
non-linear relationship between Vi and Ti, can be seen. The de-
gree of correlation between participants does vary from trial to
trial. Illustrated data obtained from participant 5, stimulus speed
40◦/s.
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4.5. RESULTS OF INVESTIGATING THE CORRELATION OF OKN
PARAMETERS BETWEEN AND WITHIN CYCLES.

Figure 4.11: Three correlation matrices, illustrating the correlations between
OKN parameters. (A) Data from participant 1, stimulus speed
10◦/s. (B) Data from participants 2, stimulus speed 40◦/s. (C)
Data from participant 2, stimulus speed 10◦/s.
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4.5. RESULTS OF INVESTIGATING THE CORRELATION OF OKN
PARAMETERS BETWEEN AND WITHIN CYCLES.

Figure 4.12: Auto-correlograms of (A) SP velocity, (B) SP start position, (C)
SP end position, (D) SP duration, (E) SP amplitude and (F) QP
amplitude. Illustrated data obtained from participant 1, stimulus
speed 40◦/s.

far as 5 cycles, although the decay of the auto-correlation was fast. Plotting the

same autocorrelograms for all 40 trials revealed a similar pattern. SP velocity,

SP start position, and QP start position always illustrated some auto-correlation

but the strength of the autocorrelation and the number of cycles over which the

correlation extends varied from trial to trial. An auto-correlation function with an

exponential shape decaying to zero indicates an autoregressive model in ARIMA

model identification, and examination of the partial autocorrelation function was

warranted, in order to identify the order of the autoregressive process. The sam-

ple auto-correlation function of SP duration, SP amplitude and QP amplitude is

approximately zero for all lags other than zero, which appeared to indicate that

these data are essentially random.

The partial auto-correlation functions of SP velocity, the start position of SPs,

and the start position of QPs were examined. Significant partial auto-correlations

were only found at a lag of 1 cycle for SP velocity, indicating that the auto-
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PARAMETERS BETWEEN AND WITHIN CYCLES.

Figure 4.13: Partial auto-correlograms of (A) SP velocity, (B) SP start position
and (C) QP start position. Illustrated data obtained from par-
ticipant 1, stimulus speed 40◦/s. Dotted lines, upper and lower
confidence limits.

correlation at a lag of 1 cycle could explain all the higher-order auto-correlations

in SP velocity. Significant partial auto-correlations were predominantly found at

a lag of 1 cycle for the start position of SPs and QPs, although for some trials

the partial auto-correlation at a lag of 2 could be significantly different to zero

(fig. 4.13). This indicated that the auto-correlation at a lag of 1 cycle might be

enough to explain all the higher-order auto-correlations in the start position of

SPs and QPs. Although a second-order term might appear to be required for some

trials, considering how close these “significant” partial auto-correlations were to the

edge of the confidence interval it seemed likely that they may have only appeared

significant by chance, due to comparing multiple trials. Taken with the results of

the auto-correlograms, the results of the partial auto-correlograms indicated that

SP velocity, and the start and end position of SPs could be described by a 1st

order autoregressive model.

The scatter plots of pair-wise correlations and the auto-correlograms provide evi-

dence of many correlations among OKN variables both within and between cycles.

Other than the hyperbolic relationship between SP velocity and SP duration,

when relationships did exist between parameters they appeared to be linear or

non-existant.
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4.6. DISCUSSION OF RESULTS.

4.6 Discussion of results.

The most striking observation from these experiments was the remarkable de-

gree of variability in SP velocity. The OKR is generally understood as a servo

mechanism that minimises retinal slip, as the contrast sensitivity for high spatial

frequency images drops at a logarithmic rate when images move faster than 4◦/s

across the retina. We have found that the mean value of SP velocity can be much

lower than stimulus speed, allowing the average retinal slip to reach values much

higher than 4◦/s. SP velocity also appears to vary in a random fashion from SP

to SP and we have found that during individual SPs, the SP velocity can actually

drop to values close to 0◦/s. We also found that as stimulus speed was increased

the mean SP velocity recorded during each trial increased, but this increase satu-

rated at higher stimulus speeds resulting in more retinal slip, and lower values of

SP gain. The variability of SP velocity and retinal slip also increased with stim-

ulus speed, but the variability of gain did not. If the standard deviation of SP

gain was approximately constant (≈0.2) during each trial then we would expect

that as stimulus speed was increased, the standard deviation of SP velocity (and

correspondingly retinal slip) would increase proportionally. This result may point

to a specific role for SP gain in the OKN system.

Increasing stimulus speed also resulted in an increase in the magnitude of SPs

and QPs, a decrease in SP duration and an increase in QP rate. Correlation

between SP amplitude and SP velocity has been previously reported (Watanabe

et al. 1994), so we could not be certain if the increase in SP amplitude was due

to an increase in stimulus speed or SP velocity, or both. Similarly, as QPs must

compensate for SPs in order that the mean eye position does not wander to the

limit of gaze, the mean QP amplitude must be correlated with mean SP amplitude

and the increase in QP amplitude with stimulus speed could be caused indirectly
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4.6. DISCUSSION OF RESULTS.

via SP amplitude or SP velocity.

We have examined the statistical relationships among OKN parameters (the start

position, end position and amplitude of the SP and QP, the SP duration, and the

SP velocity). We found a number of correlations exist between parameters but the

correlation matrices vary markedly between trials, and clearly the stochasticity

of OKN cannot be summarised by a single correlation matrix. The results also

indicate that SP velocity, and the start and end position of SPs are autocorrelated,

and might be described by a 1st order autoregressive model. In chapter 5 we

examine the correlations between OKN parameters within and between adjacent

OKN cycles with PCA, in order to determine the underlying structure of the

relationships between parameters.
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Chapter 5

Results of PCA performed on OKN data:

a stochastic model of OKN.

In this chapter the results of performing PCA on OKN parameters within and

across adjacent OKN cycles is reported. This analysis was performed in order to

investigate how the underlying components contribute to the correlation of OKN

parameters within and across adjacent OKN cycles. The results indicate that the

differences in the correlation matrices of OKN parameters, between participants

and stimulus conditions, appear to reflect changes in the eigenvalues of compo-

nents while the eigenvectors remain predominantly similar across trials and across

cycles. A model is developed from these results that describes OKN as a purely

stochastic process that has dependencies only among adjacent cycles, but with

three sources of noise affecting SP velocity, QP triggering (SP amplitude), and

QP amplitude. Changes in the amplitude of QPs and SPs are explained by a

dependence on the position of the eye at the beginning of the respective QP or

SP, as well as the SP velocity during that cycle of OKN. Future SP velocity is

explained by a dependence on the current SP velocity, and the dynamic behaviour

of SP velocity is modelled as a 1st order Markov chain that updates iteratively

during each cyclce of OKN.
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5.1. METHOD OF PRINCIPAL COMPONENTS ANALYSIS.

5.1 Method of principal components analysis.

For any nxn correlation matrix the maximum number of components is n, where

n is the number of parameters (or original dimensions) to be considered. However,

when applying PCA to the OKN parameters, n is an overestimate of the maximum

DOF because of the constraints imposed by the geometric relationships among the

parameters illustrated in figure 4.8. The start position of a SP must equal the

start position of the QP plus the QP amplitude. Likewise, the start position

of a QP must equal the start position of the SP plus the SP amplitude. These

constraints, and the assumption that SP velocity is constant within each cycle,

are defined mathematically as:

xi+1 = yi +Qi (5.1)

yi = xi + Si (5.2)

Vi = (yi + xi)/Ti (5.3)

Thus there is effectively only a maximum of d dimensions in the data, and we can

assume that the smallest n-d components will not contain any meaningful infor-

mation. The exact number of d depends on how many cycles and how many of the

OKN parameters we consider. If we consider all of the characteristic parameters
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5.1. METHOD OF PRINCIPAL COMPONENTS ANALYSIS.

(xi, Si, Vi, Ti, yi, and Qi) then d is three times the number of cycles included

plus one, so d = 4 when we consider only one cycle with all of the characteristic

parameters. The values of d for each analysis performed is given in section 5.2.

The d dimensions do not all pass through the same axes as the n dimensions, and

so it is important to include all n dimensions in PCA extraction, but only the

d largest components are retained for further analysis. During this investigation

the discarded eigenvectors had eigenvalues that were either negligible (< 10−5)

or had values less than 1 (0.3±0.2) due to the residual error from the linear ap-

proximation of eq. 5.3 implicit in the PCA. This error can be partially overcome

by performing a reciprocal transformation of Ti, although this introduces a new

nonlinear relationship between Si and 1/Ti so cannot solve the problem entirely.

For completeness PCA was also performed using 1/Ti as a parameter in place of

Ti with qualitatively similar results, but with the sign of the loadings from 1/Ti

reversed when compared with the loadings from Ti on each component. After

discarding n− d components, factor rotation was performed using the “varimax”

strategy in order to obtain orthogonal (uncorrelated) rotated components. After

factor rotation, similar loading patterns were observed among the trials, but with

different eigenvalues.

The d components from each trial were sorted into categories manually by eye,

based on the whether they shared the same high (or low) component loadings.

Later, when it appeared that the similarities in loading patterns were consistent

across individuals this procedure was automated using a numerical algorithm.

These heuristics can be found in Appendix A. It should be noted that principal

components can be rotated, such that they face in the opposite direction but

remain in the same dimension, causing all the loadings on the component to

have the opposite sign. During sorting it was necessary to flip the sign of all
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5.2. SEQUENCES OF OKN PARAMETERS INCLUDED IN THE ANALYSED
CORRELATION MATRICES.

loadings on these “mirrored” components so that they could be sorted in to the

correct categories. In order to demonstrate the stability of components across

participants and stimulus speeds, each category was expressed graphically as a

line plot of component loading against the original parameters, and components

placed in the same category were plotted on the same axis (fig. 5.1 - 5.6).

There are limits to categorising components using this type of heuristic approach.

As the criteria for creating categories were initially derived by examining the com-

ponents by eye, they are quite arbitrary and applying these criteria to a different

set of data would likely generate some different results. The sorting is limited to

the complexity of the heuristic algorithm. Any categories not accounted for by

the heuristic criteria could result in components being sorted into very different

categories, and subcategories of components could also be missed. However, I de-

cided to use the heuristic approach based on the observation that components did

fit quite clearly into similar loading patterns. Had there been striking differences

between components sorted into the same category a more sophisticated form of

cluster analysis would have been warranted, but this appeared to be unnecesary.

5.2 Sequences of OKN parameters included in the analysed correla-

tion matrices.

Six measurements were taken from each OKN cycle: xi, Si, yi, Qi, Vi and Ti

(i = 1...m) according to the scheme shown in fig. 4.8, and we defined these as

the six characteristic parameters of an OKN cycle. Eye velocity changed between

cycles but could also vary during a single SP, however the variability introduced

by these non-linear SPs was not analysed in this study. For the purposes of PCA

the SP velocity is measured as the difference in eye position at the beginning and

end of the SP divided by the SP duration, such that Vi = (yi − xi)/Ti.
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CORRELATION MATRICES.

Measurements from adjacent OKN cycles were grouped to create a vector that

was used to generate a correlation matrix for each trial (40 trials, 10 subjects x 4

speeds). Several different vectors were considered in order to generate the corre-

lation matrixes. The first analysis was performed on the 1x5 vector consisting of

the parameters: xi, Si, yi, Qi and xi+1. This vector is simple as it encompasses

only one SP and one QP in series and does not include the non-linear relationship

between SP velocity and duration. The Pearson correlation coefficients were calcu-

lated using the built-in Matlab function: corrcoef, for all possible pairs among the

5 variables using m-1 vectors (the mth is dropped as there is no xm+1 parameter).

This generated a symmetric 5x5 correlation matrix with 10 unique off-diagonal

coefficients. PCA was then performed on the correlation matrixes.

The second vector that was considered consisted of the parameters: xi, Si, Vi,

Ti yi, Qi and xi+1. This vector still encompasses only one SP and one QP in

series but introduces the non-linear relationship between SP velocity and duration.

This generated a symmetric 7x7 correlation matrix with 21 unique off-diagonal

coefficients. PCA was then performed on these correlation matrixes.

The third vector considered consisted of the parameters: xi, Si, Vi, Ti yi, Qi,

xi+1, Si+1, Vi+1, Ti+1 yi+1, Qi+1 and xi+2. This vector includes the non-linear

relationship between SP velocity and duration, and introduces a second cycle of

OKN. There was no overlap between vectors and in this and subsequent analyses

a vector was not included if it contained one or more blinks. This generated a

symmetric 13x13 correlation matrix with 78 unique off-diagonal coefficients.

The fourth vector considered consisted of the parameters from three adjacent

cycles and the fifth vector consisted of the parameters from four adjacent cycles.

These vectors generated a symmetric 19x19 correlation matrix with 171 unique off-

diagonal coefficients and a symmetric 25x25 correlation matrix with 300 unique
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off-diagonal coefficients respectively. There was no qualitative difference in the

results of PCA performed on the third, fourth and fifth vectors and so exploration

was terminated at 4 adjacent cycles.

Due to the constraints imposed by equations 5.1 and 5.2 the DOF for our first

vector (xi, Si, yi, Qi and xi+1) were reduced by two. For the second vector (xi,

Si, Vi, Ti, yi, Qi and xi+1) the DOF were reduced by three (eq. 5.1, 5.2 and 5.3).

For the third vector, including two cycles of OKN, the DOF were reduced by

six. For all five vectors the maximum possible DOF were therefore d=3, 4, 7, 10

and 13 respectively. PCA is often used to reduce the number of dimensions in a

data set. However, the goal of this analysis was to examine all of the d DOF in

order to explore the linear weights of the components and look for any underlying

patterns. In this case the number of eigenvalues to be retained is already known

and the components with the n − d lowest eigenvalues can be discarded before

rotation. Eigenvalues of the discarded components were checked and found to be

either negligible (< 10−5) or had values less than 1 (0.3± 0.2) due to the residual

error from the linear approximation of eq. 5.3 implicit in PCA.

5.3 Results of PCA performed on a single cycle of OKN parameters.

The first analysis was performed on the simplest non-trivial vector of a single

OKN cycle consisting of the 5 variables (xi, Si, yi, Qi and xi+1) with a maximum

of 3 DOF (section 5.2). Figure 5.1 illustrates, step by step, the analysis of

OKN data from two different participants with qualitatively different traces of eye

position. In the left panel (fig. 5.1a, 5.1c and 5.1e) are the results from participant

2 (stimulus speed 10◦/s, m=201 cycles) and in the right panel (fig. 5.1b, 5.1d

and 5.1f) are the results from participant 1 (stimulus speed 10◦/s, m=388 cycles).

The correlation matrix in the left panel (fig. 5.1b) contains a mixture of high and
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Figure 5.1: Step-by-step example of PCA analysis. Top panels (A and B) il-
lustrate eye position during OKN presentation. Middle panels (C
and D) illustrate correlation matrixes of OKN parameters from the
data set corresponding to the eye position trace above them. Bot-
tom panels (E and F) illustrate the component loadings for the
three primary components extracted from the data and are plotted,
in the order of highest to lowest eigenvalues, from left to right. Left
panels (A, C and E) illustrates data from participant 2, stimulus
speed 10◦/s. Right panels (B, D and F) illustrates data from par-
ticipant 1, stimulus speed 10◦/s. First component in panel E and
second component in panel F represents QPs with a more negative
amplitude have a more negative end position. Second component in
panel E and third component in panel F represents SPs with a more
negative start position have a more positive amplitude. Third com-
ponent in panel E and first component in panel F represents QPs
with a more negative start position have a more positive amplitude.
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low correlation coefficients between the OKN parameters. PCA performed on this

matrix produced 5 components with the eigenvalues 2.50, 1.59, 0.90, 3.09·10−6

and 3.63·10−7. The 4th and 5th eigenvalues were negligible as expected because

the constraints in eq. 5.1 and 5.2 reduce the DOF to a maximum of 3. The first

three components were retained and rotated using the “varimax” strategy. After

rotation each component is illustrated as a line plot of the rotated component

loadings against the original OKN parameters, and the components are placed in

order of descending eigenvalue (fig. 5.1e).

In order to interpret the loading patterns it was necessary to consider that they

represent the relative contribution of the original parameters to the components.

For example the first component expressed in figure 5.1e has negative loadings

from Qi and xi+1, thus represents QPs with more negative amplitude (bigger

magnitude) having a more negative end position. In other words bigger QPs

end further in the direction that the stimulus is drifting from. Note that this

interpretation is equally valid if the sign of all loadings were reversed, as more

positive amplitude (smaller magnitude) QPs would have more positive end posi-

tion. The second component expressed in figure 5.1e has negative loading from xi

and positive loading from Si, and represents SPs that start further in the direc-

tion that the stimulus is drifting from having a more positive amplitude (bigger

magnitude). Finally, the third component represents QPs that start further in

the direction that the stimulus is drifting from having a more positive amplitude

(smaller magnitude).

The correlation matrix in the right panel (fig. 5.1d) was very different from the

first example. PCA performed on this matrix produced 5 components with the

eigenvalues 2.41, 1.51, 1.08, 5.58·10−6 and 2.37·10−6. The first three components

were retained and rotated using the “varimax” strategy, and the rotated com-
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ponent loadings were plotted against the original OKN parameters in descending

eigenvalue order as before (fig. 5.1f). In spite of the qualitative differences between

the two OKN traces and the quantitative differences in the correlation matrixes,

there is a similar pattern of component loadings but in a different eigenvalue order.

The first component expressed in figure 5.1f is similar to the third component in

figure 5.1e, whereas the second component expressed in figure 5.1f is similar to the

first component in figure 5.1e, and the third component expressed in figure 5.1f is

similar to the second component in figure 5.1e.

Performing PCA on the correlation matrixes obtained from all 40 trials it be-

came clear that, despite the differences across individuals and stimulus speeds,

the component loadings always fell into 3 similar patterns. In every trial, 3 sig-

nificant eigenvalues were found corresponding to the maximum number of DOF.

Sometimes these components might appear in a different order of eigenvalues, and

so 3 simple heuristics were developed in order to sort components in to categories

based on their component loadings rather than their eigenvalues (fig. 5.2). At

first these categories were simply labelled category “X”, “Q” or “S”. Category “X”

contained components with high positive loading from QP amplitude and high

negative loading from QP start position. We will return to category “X” in sec-

tion 5.5 as it appears this category is closely linked to the “Q” category. Category

“Q” contained components associated with high negative loading from QP ampli-

tude and high negative loading from QP end position. Category “S” contained

components with high positive loading from SP amplitude.

These results implied that there was some underlying structure to the correlations

between OKN parameters despite the clear differences in correlation matrices

between participants, and that there were three uncorrelated sources of variance

in the first analysis, including xi, Si, yi, Qi and xi+1.
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Figure 5.2: Results of single cycle PCA. Component loadings of 3 principal
components extracted from OKN data for all 40 trials. For each
trial the 3 principal components extracted are sorted heuristically
in to 3 categories. From left to right, categories “X”, “Q” and “S”.

5.4 Results of PCA performed on a single cycle of OKN parameters,

including SP velocity and SP duration.

The 2nd analysis was performed on the correlation matrix created from a vector

including SP velocity and duration, so that there were now 7 variables (xi, Si, Vi,

Ti, yi, Qi and xi+1) and a maximum of 4 DOF. Performing PCA on the correlation

matrixes from all 40 trials revealed 4 significant eigenvalues corresponding to the

maximum number of DOF. The 6th and 7th eigenvalues were always near zero

and the 5th was always very small (0.3± 0.2). This small variance appeared

to arise due to the non-linear constraint (eq. 5.3). Simulating a simple non-

linear relationship between three parameters, where one parameter was subject to

random fluctuations, it was possible to demonstrate that PCA cannot completely

re-express the non-linear combination of variables as a linear weighted sum. This

leaves some small fraction of variance seemingly “unexplained”.

As before, PCA performed on every trial generated these 4 significant eigenvalues

and 4 simple heuristics were developed in order to sort the components in to

categories based on their component loadings rather than their eigenvalues (fig.
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Figure 5.3: Results of PCA performed on a single cycle of OKN, including SP
velocity and duration. Component loadings of 4 principal compo-
nents extracted from OKN data for all 40 trials. For each trial the 4
principal components associated with the 4 highest eigenvalues are
sorted heuristically in to 4 categories. From left to right, categories
“X”, “Q”, “S” and “V”.

5.3). The most clear effect was to introduce the new category “V” that contained

components with high positive loading from SP velocity and high negative loading

from SP duration. This seemed to imply that variability in these two variables

tends to cancel to keep SP amplitude roughly constant. Category “S” was also

affected. For most trials a high positive loading from SP duration was introduced,

and a very small positive loading from SP velocity. There were several trials,

however, where SP velocity had high positive loadings on the component and

there were correspondingly lower positive loadings from SP duration. Categories

“X” and “Q” were largely unaffected.

These results implied that the introduction of the parameters SP velocity and

duration generated only one more significant source of variance in a single cycle

of OKN, the “V” component.

84



5.5. RESULTS OF PCA PERFORMED ON MULTIPLE CYCLES OF OKN
PARAMETERS.

5.5 Results of PCA performed on multiple cycles of OKN parame-

ters.

The 3rd, 4th and 5th analyses were performed on correlation matrices created by

vectors including parameters from across multiple cycles of OKN. Vectors of OKN

parameters from 2, 3 and 4 cycles were considered with similar results. Here, the

results of analysis on the 4 cycle vector are presented.

For n cycles (including Vi and Ti) there are 6n+1 parameters and 3n+1 maximum

DOF. Vectors of 4 cycles contained 25 parameters, 300 unique off-diagonal corre-

lation coefficients and a maximum of 13 DOF. Performing PCA on the correlation

matrices from all 40 trials revealed 13 significant eigenvalues corresponding to the

maximum number of DOF.

Further, we found that there were three broad groups of components and that

these groups represented the categories with similar loading patterns but displaced

by one, two or three cycles (fig. 5.4 - 5.6), and OKN parameters from only one

cycle (or just over one cycle) had high loadings in any given component. At this

point it was also possible to see that the categories that were initially labelled “X”

and “Q” belonged to essentially the same group of components but separated by

one cycle. Component 1 and component 5 (fig. 5.4) represent the original “X” and

“Q” components respectively (cf.fig. 5.2).

While eigenvectors demonstrated remarkably similar loading patterns their eigen-

values were much more variable. The eigenvalue order of the sorted components

often changed between trials, as illustrated in figure 5.7 where no particular com-

ponent maintained a high or low eigenvalue across all of the trials, except for

component 5. Component 5 was characterised with high loading from just two

parameters (Q4 and X5, in fig. 5.4) and maintained a relatively low eigenvalue of
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Figure 5.4: Results of PCA performed on four cycles of OKN parameters in
series, including SP velocity and duration. Component loadings of
5 principal components extracted from OKN data from all 40 trials.
A total of 13 principal components were extracted during analysis.
Five components were similar to the categories “X” and “Q” in the
single cycle analysis and are illustrated in this figure as one broad
category of components, the Q-component category. Numbers are
used only to label components and do not represent the position
of the corresponding eigenvalue on the scree plot as these varied
between trials.
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Figure 5.5: Results of PCA performed on four cycles of OKN parameters in
series, including SP velocity and duration. Component loadings
of 4 principal components extracted from OKN data from all 40
trials. A total of 13 principal components were extracted during
analysis. 4 components were similar to the category “S” in the
single cycle analysis and are illustrated in this figure as one broad
category of components, the S-component category. Numbers are
used only to label components and do not represent the position
of the corresponding eigenvalue on the scree plot as these varied
between trials.
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Figure 5.6: Results of PCA performed on four cycles of OKN parameters in se-
ries, including SP velocity and duration. Component loadings of 4
principal components extracted from OKN data from all 40 presen-
tations. A total of 13 principal components were extracted during
analysis, 4 components were similar to the category “V” in the single
cycle analysis and are illustrated in this figure as one broad cate-
gory of components, the V-component category. Numbers are used
only to label components and do not represent the position of the
corresponding eigenvalue on the scree plot as these varied between
trials.
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Figure 5.7: (A) Boxplot illustrating the eigenvalues of principal components
found in four cycles of OKN parameters in series before being sorted
by heuristics. Number on principal component axis represents the
eigenvalue order of components from largest to smallest. (B) Box-
plot illustrating the eigenvalues of principal components extracted
from four cycles of OKN parameters in series after being sorted by
heuristics. Sorted component numbers 1-5, “Q-component”; 6-9, “S-
component”; 10-13, “V-component”. Boxes represents interquartile
range, whiskers represent maximum and minimum data values (ex-
cluding outliers), and dots represent outliers found more than 1.5
times the interquartile range from the ends of the box.

an order just under 1 across all trials.

The finding that there are essentially only three broad groups of components,

each associated with a given cycle of OKN, greatly simplifies our results. The

three groups of components indicate that each cycle of OKN has three orthogonal

(uncorrelated) noise processes, which we call the “Q-component” (originally the

“X” and “Q” categories), the “S-component”, and the “V-component”.
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Figure 5.8: A representative example of a scree plot, illustrating the eigenvalues
of all 25 components in four cycles of OKN parameters. The eigen-
values of the 11th-13tm largest eigenvectors sum to 1.45, indicating
that they explained only 5.8% of the variance in the data. Data
taken from participant 10, stimulus speed 40◦/s

5.6 The results of retaining only ten eigenvectors.

PCA is often used as a dimension-reducing scheme for data sets with numerous

observed dimensions of data. During extraction a number of eigenvectors can be

discarded before factor rotation, leaving only a certain percentage of the variance

explained by the components retained. The purpose of our analysis was not to

deliberately reduce the dimensions of the data other than the reduction already

imposed by the geometric relationships between parameters, which would still

leave 100% of the variance explained. However, for completeness, and in order

to check the validity and possible interpretation of the results, scree plots were

created for each trial when four cycles of OKN parameters were considered and

dimension reduction was conducted in order to determine if it was at all possible

to reduce the number of components.

A representitive scree plot is illustrated in figure 5.8. The 10 largest components

could explain 94% of the variance in the 25 parameters, and when only 10 eigenvec-

tors were retained for rotation another interesting pattern of categories emerged.

All of the components from the “V” category appeared to merge their loading
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patterns into a single component that illustrated high loading from SP velocity

across all cycles (fig. 5.9). The loading patterns of the “S” and “Q” category of

components remained relatively similar, but with increased loading from SP ve-

locity across all cycles. This appeared to indicate that the ‘S” and “Q” categories

were somewhat dependent on SP velocity.

Other than when all thirteen components were retained, these clear loading pat-

terns of components only occurred when the ten largest components were retained

for factor rotation. When only eleven components were retained, the nine com-

ponents representing the “S” and “Q” category of components remained relatively

similar but with an increased loading from SP velocity across all cycles, as when

only ten components were retained. The remaining two components were charac-

terised by high loading from SP velocity from two separate cycles, but these cycles

appeared arbitrary. From the parameters in a given trial, one of these components

might have high loading from SP velocity in cycles 1 and 4 whereas the other com-

ponent would have high loading from SP velocity in cycles 2 and 3. However, in a

separate trial one component might have high loading from SP velocity in cycles

1 and 2 whereas the other component would have high loading from SP velocity

in cycles 3 and 4. Only when ten components were retained for factor rotation

did all four of the “V” category of components merge into one component. These

results indicated that when considered together the three smallest components

from the d DOF represented uncorrelated sources of noise in SP velocity that

occurred during each cycle of OKN. However, when considered individually these

components occured in different eigenvalue orders.
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Figure 5.9: Results of PCA performed on four cycles of OKN in series, includ-
ing SP velocity and duration. Component loadings of the 10 largest
principal components extracted from OKN data from all 40 pre-
sentations. The “V” category of components found in the previous
results have all merged in to one very different component. SP ve-
locity now loads on to both the “S” and “Q” category of components
from across all cycles.
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5.7 Development of the 1st order Markov model.

Some correlations between OKN parameters would be forced due to the constraints

imposed by eq. 5.1 - 5.3 and so it was not possible to simply take the rotated

component loadings from each category. Instead, it was necessary to interpret the

loading patterns and constraints together to yield a stochastic model. A number

of possible linear statistical relationships were considered between the original

OKN parameters that could give the observed categories of principal components.

In order to arrive at a model based on PCA results, that could reproduce realistic

OKN with the same component loadings seen in fig. 5.4 - 5.6 it was necessary

to make a few assumptions. The first assumption was that there were 3 sources

of variability or “noise” within each individual cycle, corresponding to the S-, Q-

and V-component groups, and that this noise was normally distributed. PCA

performed with “varimax” rotation identifies orthogonal (uncorrelated) compo-

nents after discarding components that represent a negligible amount of variance,

and so these sources of variability would also be uncorrelated and independent of

each other if they were jointly normal. Second, as the results of PCA indicated

a lack of long range correlations across cycles, it seemed that the process could

be explained by a 1st order Markov process. For a 1st order Markov process, the

state of the system is conditional only on the immediate previous state and not

explicitly on earlier states. This assumption also agrees with the finding that

methods for determining the order of an ARIMA model would lead to a 1st order

autoregressive model being identified (section 4.5). Third, the value of parameters

from the model may differ across individuals and stimulus speeds as evidenced by

the differences in correlation matrices between trials, so it would be necessary to

derive parameters from individual trial data using multiple linear regression.
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In order to test the model, I performed Monte-Carlo simulations to generate 40

artificial sequences of OKN parameters (xi, Si, Vi, Ti, yi and Qi). The length of

each sequence was matched to the corresponding number of cycles from each trial,

and the coefficients of the linear model were based on the robust regression analysis

(weighted least squares method) of the relevant parameters from each trial using

the Matlab function: robustfit. The same PCA procedure was then performed on

these sequences, in order to determine if they would produce the same categories

of components as the original data. Other possible linear relationships were also

explored, but the simulated sequences produced from these other models generated

poorer examples of the component categories and pairwise scatter plots.

5.7.1 S-component.

In the S-component there was high positive loading from Si, positive loading from

Vi, and negative loading from xi (fig. 5.5). This loading pattern indicated that SP

amplitude increases (becomes more positive) as SP velocity increases, and as the

eye position at the start of the SP is directed further in to the negative direction.

These relationships can be seen in the regression of Si against xi and Vi (fig. 5.10a

and 5.10b), both illustrating a linear trend, and can be expressed in the form:

Si = axi + bVi + ŝ+ εs(i) (5.4)

where a, b and ŝ are constants, and εs(i) is a normal random process with standard

deviation σs.

In the S-component there are also positive loadings from Ti and some from yi. It

seems most likely that the positive loading from yi is forced by the constraint in

eq. 5.2, considering that yi cannot have a direct causal effect on the parameters
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that precede it. Similarly the positive loadings from Ti will be forced by the

constraint in eq. 5.3. It could be argued that the loading pattern indicates that

SP duration increases with SP velocity, and that it is the positive loading from

Si that is forced by the constraint in eq. 5.3. I decided to take the consistently

higher loading from Si over Ti in the S-component to mean that Si is the dependent

variable here.

5.7.2 Q-component.

There was a similar loading pattern in the Q-component, with positive loading

from Qi and negative loading from yi, indicating that the QP magnitude increases

(becomes more negative) as the eye position at the start of the QP is directed

further in to the positive direction. Evidence of Vi loading on the Q-component

was not as clear in fig. 5.4, but is apparent in the results of retaining only 10

components fig. 5.9, and is sometimes positive and sometimes negative. Regression

of Qi against Vi did reveal a linear trend, as did the regression of Qi against yi

(fig. 5.10c and 5.10d), and can be expressed in the form:

Qi = cxi + dVi + q̂ + εq(i) (5.5)

where c, d and q̂ are constants, and εq(i) is a normal random process with standard

deviation σq. We interpret the other loadings in the Q-component to be forced by

the constraints expressed in eq. 5.1, 5.2 and 5.3.

5.7.3 V-component.

In the V-component of each cycle there was a high positive loading from Vi and

corresponding negative laoding from Ti with a small or absent loading from Si
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Figure 5.10: Scatter plots illustrating linear relationships between (A) SP start
position and SP amplitude, (B) SP velocity and SP amplitude,
(C) QP start position and QP amplitude, (D) SP velocity and QP
amplitude, and (E) SP velocity during one cycle and SP velocity
during the next cycle. Data taken from participant 3, stimulus
speed 30◦/s.
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(fig. 5.6). This indicates that the V-component describes whether SP velocity is

fast or slow independently of its amplitude. This is expected from the constraint

in 5.3 and implies that the V-component is self-contained, and does not depend

directly on the other variables. However, from figure 5.9 we can see that there is

a clear cross cycle dependency if we ignore the uncorrelated sources of noise in SP

velocity that occur during each OKN cycle. This auto-correlation is also visible in

the autocorrelogram of SP velocity (fig. 4.12a), and the regression of Vi+1 against

Vi ( 5.10e). Results from the autocorrelograms and partial autocorrelograms of

SP velocity indicated that this relationship should be modelled in the form of an

autoregressive, rather than a moving average model:

Vi+1 = eVi + v̂ + εv(i) (5.6)

where e and v̂ are constants, and εv(i) is a normal random process with a standard

deviation σv.

5.8 Results of Monte Carlo simulations.

Eq. 5.1 - 5.6 describe the model of the OKN system, containing three constraints

and three discrete uncorrelated stochastic processes that are each expressed as

a simple linear combination of OKN variables. Eq. 5.1 and 5.6 describe the

update dynamics as a 1st order Markov process where the subsequent value of the

parameters is dependent only on the current value of the parameters.

For the purposes of estimating the model variables, they were assumed to be con-

stant during each individual OKN presentation. Robust multiple linear regression

was performed on the parameters recorded from the real OKN data in order to
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estimate the values of a, b, c, d, e, ŝ, q̂ and v̂ from each trial using a weighted least

squares method. The values of σs, σq and σv were also estimated from each trial

using the standard deviation of the residuals of linear regression. Using all of these

values, 40 Monte Carlo simulations were performed in order to create simulated

data to mirror the original data sets. The simulations were created iteratively

using eq. 5.1 - 5.6 in a simple Matlab function, with the additional constraints:

Si > 0 (5.7)

Vi > 0 (5.8)

|Qi| > z (5.9)

where z is a small positive value to mimic the QP dead zone, which was set to

1◦. If a value of Si or Vi was generated equal to or below zero the algorithm

would generate a new value, and this process would continue until a value above

zero was generated. The same system was put in place for generating a value of

Qi but the process continued until a value above |z|. PCA was then performed

on the simulated data in exactly the same way as with the empirical data, and

a similar pattern emerged. Thirteen significant components were found in each

simulated data set when four cycles of OKN parameters were considered, and the

eigenvalue order of the sorted components changed between trials (fig. 5.11) as
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Figure 5.11: (A) Boxplot illustrating the eigenvalues of principal components
found in four cycles of simulated OKN parameters in series be-
fore being sorted by heuristics. Number on principal component
axis represents the eigenvalue order of components from largest
to smallest. (B) Boxplot illustrating the eigenvalues of principal
components extracted from four cycles of simulated OKN param-
eters in series after being sorted by heuristics. Sorted compo-
nent numbers 1-5, “Q-component”; 6-9, “S-component”; 10-13, “V-
component”. Boxes represents interquartile range, whiskers repre-
sent maximum and minimum data values (excluding outliers), and
dots represent outliers found more than 1.5 times the interquartile
range from the ends of the box.

before. The components were sorted using the same numerical heuristics, and the

results are illustrated in Fig. 5.12 - 5.14. The number of components extracted,

and the patterns and values of component loadings were identical to those found

in the empirical data (cf. fig. 5.4 - 5.6).

The mean (and median) values of simulated parameters accurately predict the

mean (and median) values observed in OKN parameters (fig. 5.15). However, it

is worth noting that while this is a nice quantitative result, it is not surprising

considering the number of parameters that are fit to the data. It is therefore also
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Figure 5.12: Results of PCA performed on four cycles of simulated OKN in
series, including SP velocity and duration. Component loadings
of five principal components extracted from 40 sets of OKN data
simulated from eq. 5.1 - 5.9. A total of 13 principal components
were extracted during analysis, 5 components are illustrated in this
figure as the Q-component category.
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Figure 5.13: Results of PCA performed on four cycles of simulated OKN in se-
ries. Component loadings of four principal components extracted
from 40 sets of OKN data simulated from eq. 5.1 - 5.9. A total of
13 principal components were extracted during analysis, 4 compo-
nents are illustrated in this figure as the S-component category.
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Figure 5.14: Results of PCA performed on four cycles of simulated OKN in se-
ries. Component loadings of five principal components extracted
from 40 sets of OKN data simulated from eq. 5.1 - 5.9. A total of
13 principal components were extracted during analysis, 4 compo-
nents are illustrated in this figure as the V-component category.
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necessary to consider a qualitative comparison of the simulated data with observed

OKN parameters. Pair-wise scatter plots between the simulated OKN parameters

were created and assessed for how well the model could describe the indirect as

well as the direct relationships in the OKN system (fig. 5.16). The simulated

data capture the subtle shape of each scatter plot very accurately (cf. fig. 4.10),

such as the non-linear relationship between Vi and Ti, the distributions of OKN

parameters, the variability of SP velocity, and certain indirect relationships (such

as between Si and Qi, and between Vi and xi).

Auto-correlograms were also created from the simulated data (fig. 5.17) and illus-

trate the cross-cycle correlations within SP velocity and the start and end position

of SPs found empirically (cf.fig. 4.12), despite the update dynamics being only 1st

order Markov. The partial auto-correlograms of the simulated data also illustrated

the sharp cutoff in the partial autocorrelation function at a lag of 1 (fig. 5.18) seen

in the data as expected for a 1st order autoregressive model.

An estimate of the main sequence was used to determine values of QP duration

from simulated values of QP amplitude:

TQ = 18.5 |Q|0.54 (5.10)

where TQ is the QP duration (Kaminiarz et al. 2009). Simulated eye position traces

were created using the simulated OKN parameters and the estimated values of QP

duration. The simulated eye traces were compared to real data and the simulation

could capture both the random nature of OKN and other gross traits such as

the degree of contraversion and the percentage of QPs made in the direction of

stimulus motion (fig. 5.19).
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Figure 5.15: Scatter plots of the values of central tendency from the observed
OKN parameters for each trial in experiment 1, against the values
of central tendency from the simulated OKN parameters. Simu-
lated data were created using the iterative 1st order Markov model.
The number of simulated samples of each parameter was set to
match the number of observed samples for each parameter. Dot-
ted lines represent identity.
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Figure 5.16: Pair-wise scatter plots of simulated data, illustrating the direct
and indirect relationships between OKN parameters in the model.
Relationships in the simulated data match relationships seen in the
empirical data set from which regression coefficients were obtained.
Simulated data were created using the iterative 1st order Markov
model, with the regression coefficients obtained from participant
5, stimulus speed 40◦/s.
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Figure 5.17: Auto-correlograms of simulated (A) SP start position, (B) SP am-
plitude, (C) SP velocity, (D) SP duration, (E) QP amplitude and
(F) QP start position. Data simulated using regression coefficients
obtained from participant 1, stimulus speed 40◦/s.

Figure 5.18: Partial auto-correlograms of simulated (A) SP velocity, (B) SP
start position and (C) QP start position. Data simulated using
regression coefficients obtained from participant 1, stimulus speed
40◦/s. Dotted lines, upper and lower confidence limits.
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Figure 5.19: Eye position traces from (A) empirical data and (B) a computer
simulation of the model. Data is taken from participant 10, stim-
ulus speed 40◦/s, and simulation is computed using the regression
coefficients estimated from the same data set.
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5.9 Model parameters.

Considering the similar loading patterns of the eigenvectors it seemed that re-

lationships between parameters that were within a single OKN cycle could be

predominantly the same across trials and participants, and might be considered

constants rather than free variables in the model. Taking the mean values of the

estimates for a, b, c and d as constant values the values of ŝ and q̂ were recalculated

by rearranging the eqs. 5.4 and 5.5 respectively to give:

ŝ = Si − aXi − bVi (5.11)

and

q̂ = Qi − cYi − dVi (5.12)

The values of ŝ and q̂ were then calculated separately for each trial, by substituting

the mean values of the respective OKN parameters (e.g. S, X and V in to Si, Xi

and Vi) for that trial and the constants a, b, c and d into eq. 5.11 and 5.12. The

value of e was kept as a free variable because it represented correlations across

multiple cycles of OKN, and not within a single cycle. The constants a, b, c and d

were calculated to be -0.250, 0.158, -0.478 and -0.166 respectively. The parameters

e, ŝ, q̂, v̂, εs, εq and εv remained free variables in the model. A table of these free

variables can be found in Appendix B.

Mean values of the new simulated parameters were compared with the observed
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mean values of OKN parameters, and still demonstrated a very close fit (fig. 5.20)

despite the reduced number of free variables in the model. Pair-wise scatter plots

between OKN parameters were also created from the new simulated data, and

there was no qualitative loss in the description of the OKN parameters (fig. 5.21).

Scatter plots of the mean (and median) values of the new simulated parameters

were compared to the mean (and median) values of observed parameters, in order

to determine if using constant values for a, b, c and d had an effect on predicting

the values of observed OKN parameters, and no difference was found.

It was clear that the relationships expressed by the terms axi, bVi, cyi and dVi

were relatively constant across stimulus speeds and across participants. This was

particularly useful as it reduced the number of free parameters in our model from

8 to just 4 (or from 11 to 7 if the standard deviation of the error terms are to be

included).

5.10 Autonomous equations for the update dynamics of OKN param-

eters.

A clearer picture of the system can be obtained by solving eq. 5.1 - 5.6 to find the

autonomous update dynamics of xi+1, yi+1, Si+1 and Qi+1, given by:

xi+1 =(1 + a)(1 + c)xi + ((1 + c)b+ d)Vi + (1 + c)(ŝ+ εs(i))

+ q̂ + εq(i), (5.13)
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Figure 5.20: Scatter plots of the values of central tendency from the observed
OKN parameters for each trial in experiment 1, against the values
of central tendency from the simulated OKN parameters. These
simulated data were created using Monte Carlo simulations of
equations 5.1 - 5.9, where the parameters a, b, c and d were consid-
ered constants and not free parameters. The number of simulated
samples of each parameter was set to match the number of observed
samples for each parameter. Dotted lines represent identity.
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Figure 5.21: Pair-wise scatter plots of simulated data, illustrating the direct
and indirect relationships between OKN parameters in the model.
These simulated data were created using Monte Carlo simulations
of equations 5.1 - 5.9, where the parameters a, b, c and d were
considered constants and not free parameters. Relationships in the
simulated data match relationships seen in the empirical data set
from which regression coefficients were obtained. Data simulated
using regression coefficients obtained from participant 5, stimulus
speed 40◦/s.
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yi+1 =(1 + a)(1 + c)yi + ((1 + a)d+ be)Vi + ŝ+ εs(i+ 1)

+ (1 + a)(q̂ + εq(i)) + b(v̂ + εv(i)), (5.14)

Si+1 =(1 + a)(1 + c)Si + (−b(1 + c− e) + ad)Vi − c(ŝ+ εs(i))

+ a(q̂ + εq(i)) + b(v̂ + εv(i)), (5.15)

and

Qi+1 =(1 + a)(1 + c)Qi + (−d(1 + a− e) + cbe)Vi + c(ŝ+ εs(i+ 1))

− a(q̂ + εq(i)) + (cb+ d)(v̂ + εv(i)), (5.16)

where

Vi+1 = eVi + v̂ + εv(i).

From these equations it is clear that each of these parameters depends on its value

only in the previous cycle, and also the SP velocity in the previous cycle. In other

words, the dynamics are 1st order Markov and driven by SP velocity, which is

itself another 1st order Markov process. The variables xi+1, yi+1, Si+1 and Qi+1

are all correlated with each other through a common dependence on SP velocity

112



5.11. DISCUSSION OF RESULTS.

and the three noise sources εs(i), εq(i) and εv(i).

5.11 Discussion of results.

The underlying structure of the correlation matrices was examined using PCA

and remarkably similar eigenvectors across subjects and conditions were found

that were obviously clustered into three categories. The eigenvalues were much

more variable than the eigenvectors between trials, often affecting the order in

which eigenvectors were expressed (in terms of their explained variance) on a

scree plot. It appears that the variation in the correlation matrices between trials

is primarily caused by the variation in the eigenvalues associated with each eigen-

vector rather than the eigenvectors themselves. In other words the differences

found in the correlation matrixes are caused by the differences in noise associ-

ated with SP velocity, SP amplitude and QP amplitude between participants and

between stimulus speeds. In the terms of our model, it is the varying values of

εs(i), εq(i) and εv(i) that cause the differences in the correlation matrices, not the

values of a, b, c and d.

Only three categories of components were detected and retained in this analysis.

PCA is often used as a dimension-reducing scheme, in which only a certain per-

centage of the variance is explained by the components retained. In this analysis

the low number of categories of eigenvectors found emerged from the data due to

the DOF imposed by the geometric relationships between parameters, and was not

due to any deliberate dimension-reducing scheme. Almost 100% of the variance

was explained in the components that were retained, with only a slight loss due

to the non-linear relationship between SP velocity and SP duration. We conclude

that OKN is a stochastic process with three uncorrelated noise sources, which we

label as the “S”, “Q” and “V” components (eq. 5.4 - 5.6).
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Parameters such as the start and end position of SPs and QPs are correlated over

several OKN cycles, and originally direct correlations among parameters across

many OKN cycles had been anticipated, as a long-term adaptive mechanism could

explain why average eye position does not randomly wander off to the limit of gaze.

Surprisingly, only correlations across adjacent cycles were apparent indicating no

memory of parameters across cycles (1st order Markov process). It seems that the

Q and S components control mean eye position in a rather simple fashion. QP

amplitude is negatively correlated with the start position of the QP determined

by c in eq. 5.5. QP amplitude will therefore tend to correct for the end position

of the previous SP. Similarly, SP amplitude is negatively correlated with SP start

position as determined by a in eq. 5.4 such that it tends to correct for end position

of the previous QP. It appears that the Q and S components cooperate to maintain

mean eye position, via a rapid start position “feedback”.

The start of a QP is determined by the saccadic trigger, which could be deter-

mined by SP duration, eye position, or a combination of processes. In this model

the threshold for the generating a QP is the SP amplitude, which is determined by

the SP velocity and SP start position. It is tempting to consider the dependence

of SP amplitude on SP velocity as a refractory period during which QPs are not

triggered. The mean value of b estimated from the data was 0.16, which could

indicate an average minimum duration for SPs of 160ms. However, this conclusion

does require careful consideration of the other terms expressed in eq. 5.4 particu-

larly as SPs clearly do occur under 160ms in duration. The proposed model also

predicts that QP amplitude is dependent on SP velocity and the QP start posi-

tion. Remarkably, it seems that the values of all these correlations are relatively

constant, even between participants and stimulus speeds. The threshold for gen-

erating a vestibular QP in humans has been reported to depend on instantaneous
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5.11. DISCUSSION OF RESULTS.

eye velocity as well as eye position (Lau et al. 1978). The dependence of both

SP and QP amplitude on eye position and eye velocity was also observed in the

vestibular nystagmus of rabbits (Lau & Honrubia 1986), but with a much greater

dependence of QP amplitude than SP amplitude on SP velocity.

A remarkable finding was that SP velocity can be described by an autonomous 1st

order Markov process. Vi does not depend on any of the other OKN parameters

(although they all depend on Vi). Vi depends on Vi+1, but not explicitly on the

state of earlier OKN cycles. It is difficult to reconcile the Markovian behaviour

of SP velocity with the conventional view of OKN as a deterministic control

system driven by retinal slip. This type of system requires internal feed-forward

and/or feedback open loop gains, together with loop delays, to place limits on

the steady-state closed loop gain of the system. However, when we examine OKN

cycle-by-cycle, we observe gain changing haphazardly as SP velocity wanders in

Markov fashion often far above or far below the mean gain. Clearly, high gain

can occur (i.e. SP velocity is not limited within the range of speeds we have

investigated), so then why is a high gain not always maintained? In the next

chapter we investigate further the interaction of SP velocity with the other OKN

parameters, and consider the contribution of all three sources of noise to the

system. SP velocity can be described by an autonomous 1st order Markov process,

but all other OKN parameters that we have investigated are dependent on SP

velocity and this has important consequences on how the system behaves.
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Chapter 6

Results of experiments 2 and 3: the

description and predictions of OKN

behaviour.

In this chapter the results of RM-ANOVA performed on OKN parameters recorded

from experiments 2 and 3 are presented. The main and interaction effects of chang-

ing stimulus parameters on the mean and standard deviation of OKN parameters

are reported. The within-subjects factors tested were the speed, spatial frequency,

and pattern of the OKN stimulus. The previous chapter reported the results of

performing PCA on OKN data from experiment 1, and from these results we de-

veloped a Markov model of the OKN system that could replicate the empirical

behaviour. Here, we apply the Markov model to the OKN parameters recorded

from experiment 2 and 3 separately, in order to demonstrate that the model is

capable of fitting all of the data. We then use the combined data from all exper-

iments, and the model, to make a number of observations and predictions about

the behaviour of the OKN system.
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6.1. RM-ANOVA RESULTS FOR EXPERIMENT 2: EFFECTS OF SPATIAL
FREQUENCY

6.1 RM-ANOVA results for experiment 2: effects of spatial frequency

6.1.1 SP velocity, retinal slip, and gain.

Figure 6.1 contains three boxplots demonstrating how the mean SP velocity, reti-

nal slip and SP gain were affected by spatial frequency and speed of the stimulus.

A three-way RM-ANOVA was performed using each parameter in turn as the de-

pendant variable, and spatial frequency, speed, and direction of the stimulus as

the within-subjects factors.

There was a significant main effect of stimulus speed on the mean SP veloc-

ity (F (1,7)=11.5, p=0.012), retinal slip (F (1,7)=26.8, p=0.001), and SP gain

(F (1,7)=18.7, p=0.003), verifying the results of experiment 1.

There was also a significant main effect of spatial frequency on the mean SP ve-

locity (F (2,14)=6.0, p=0.013), retinal slip (F (2,14)=6.1, p=0.013), and SP gain

(F (2,14)=6.9, p=0.008). However, Bonferroni corrected confidence intervals could

not indicate a significant difference in pairwise comparisons of mean SP velocity,

retinal slip, or SP gain, between presentations of different spatial frequency stim-

uli.

There was no significant interaction effect between spatial frequency and stimulus

velocity on the mean SP velocity (F (2,14)=13.5, p=0.152), retinal slip (F (2,14)=

16.3, p=0.138), or SP gain (F (2,14)=0.0, p=0.931).

There was no significant main effect of direction on the mean SP velocity (F (1,7)=

0.0, p=0.938), retinal slip (F (1,7)=0.0, p=0.897), or SP gain (F (1,7)=0.0, p=

0.812). There were also no significant interaction effects between direction and

any other factor on the mean SP velocity, retinal slip or gain.

One-way RM-ANOVA performed on the standard deviation of these parameters

117
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FREQUENCY

Figure 6.1: Boxplot illustrating the effect of spatial frequency and stimulus
speed on (A) SP velocity, (B) retinal slip, and (C) SP gain). Each
box represents the parameter grouped across all participants for
each stimulus condition. Stimulus conditions tested were: stimu-
lus speed, 10◦/s or 30◦/s; spatial frequency, 0.05cyc/◦, 0.1cyc/◦, or
0.2cyc/◦. Grey boxes represent data from trials with a stimulus
speed of 30◦/s, white boxes represent data from trials with a stim-
ulus speed of 10◦/s. Box represents interquartile range, whiskers
represent maximum and minimum data values (excluding outliers),
and dots represent outliers found more than 1.5 times the interquar-
tile range from the ends of the box.
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found a main effect of stimulus speed on the standard deviation of SP velocity

and retinal slip (F (1,7)=41.3, p<0.001), but not SP gain (F (1,7)=1.0, p=0.239),

as before.

In summary, the results of varying stimulus speed verified the findings in exper-

iment 1 that there was a main effect of stimulus speed on mean values of SP

velocity, retinal slip and SP gain, as well as the standard deviation of SP velocity

and retinal slip. Increasing the spatial frequency of the stimulus resulted in an

increase in mean SP velocity and gain, and a decrease in retinal slip.

6.1.2 SP amplitude, QP amplitude, and the start and end points of QPs.

Figure 6.2 contains four boxplots demonstrating how the mean SP amplitude,

QP amplitude, QP start position and QP end position were affected by spatial

frequency and speed of the stimulus. A three-way RM-ANOVA was performed

using each parameter in turn as the dependant variable, and spatial frequency,

speed, and direction of the stimulus as the within-subjects factors.

There was a significiant main effect of stimulus speed on the mean SP ampli-

tude (F (1,7)=17.2, p=0.004) and QP amplitude (F (1,7)=18.8, p=0.003), but not

on QP start position (F (1,7)=0.2, p=0.664) or QP end position (F (1,7)=1.2,

p=0.309), verifying the results of experiment 1.

There was a significant main effect of spatial frequency on the mean SP ampli-

tude (F (2,14)=9.1, p=0.003) and QP amplitude (F (2,14)=10.2, p=0.002), but not

on QP start position (F (2,14)=1.0, p=0.374) or QP end position (F (2,14)=0.8,

p=0.475). Corrected confidence intervals indicated a significant difference in pair-

wise comparisons of mean SP amplitude (p=0.016) and QP amplitude (p=0.012)

between presentations of stimuli with a spatial frequency of 0.05cyc/◦ and 0.2cyc/◦.

There was a significant interaction effect between spatial frequency and stimulus
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Figure 6.2: Boxplot illustrating the effect of spatial frequency and stimulus
speed on (A) SP amplitude, (B) QP amplitude, (C) QP start posi-
tion, and (D) QP end position. Each box represents the parameter
grouped across all participants for each stimulus condition. Stimu-
lus conditions tested were: stimulus speed, 10◦/s or 30◦/s; spatial
frequency, 0.05cyc/◦, 0.1cyc/◦ or 0.2cyc/◦. Grey boxes represent
data from trials with a stimulus speed of 30◦/s, white boxes rep-
resent data from trials with a stimulus speed of 10◦/s. Box rep-
resents interquartile range, whiskers represent maximum and min-
imum data values (excluding outliers), and dots represent outliers
found more than 1.5 times the interquartile range from the ends of
the box.
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speed on the mean SP amplitude (F (2,14)=4.7, p=0.028) and QP amplitude

(F (2,14)=5.6, p=0.016), but not on QP start position (F (2,14)=1.2, p=0.322)

nor on QP end position (F (2,14)=2.9, p=0.087).

There was no significant main effect of direction on the mean SP amplitude

(F (1,7)=0.0, p=0.955), QP amplitude (F (1,7)=0.0, p=0.912), QP start position

(F (1,7)=2.0, p=0.200), or QP end position (F (1,7)=2.0, p=0.199). There were

also no significant interaction effects between direction and any other factor on

the mean SP amplitude, QP amplitude, QP start position, or QP end position.

Three-way RM-ANOVA on the standard deviation of these parameters found a

main effect of stimulus speed on the standard deviation of SP amplitude (F (1,7)=

46.1, p<0.001), QP amplitude (F (1,7)=27.0, p=0.001), QP start position (F (1,7)=

18.4, p=0.004) and QP end position (F (1,7)=29.9, p=0.001). There was also a

significant interaction effect between spatial frequency and stimulus velocity on

the standard deviation of QP amplitude (F (2,14)=4.7, p=0.027) but not on SP

amplitude (F (2,14)=2.5, p=0.114).

In summary, the results of varying stimulus speed verified the findings in exper-

iment 1 that there was a main effect of stimulus speed on mean SP and QP

amplitude, as well as the standard deviation of SP and QP amplitude, and the

start and end position of QPs (and SPs). Increasing the spatial frequency of the

stimulus resulted in an increase in the mean SP and QP magnitude, but had no

effect on the mean start and end position of QPs (and SPs). Increasing the spa-

tial frequency also resulted in an increase in the standard deviation of SP and QP

magnitude, and an increase in the standard deviation of the start and end position

of QPs (and SPs). There was also a significant interaction effect between spatial

frequency and stimulus velocity on the mean SP and QP amplitude, indicating a

possible temporal frequency effect of the stimulus.
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Figure 6.3: Boxplot illustrating the effect of spatial frequency and stimulus
speed on (A) SP duration and (B) QP rate. Each box represents
the parameter grouped across all participants for each stimulus con-
dition. Stimulus conditions tested were: stimulus speed, 10◦/s or
30◦/s; spatial frequency, 0.05cyc/◦, 0.1cyc/◦ or 0.2cyc◦. Grey boxes
represent data from trials with a stimulus speed of 30◦/s, white
boxes represent data from trials with a stimulus speed of 10◦/s.
Box represents interquartile range, whiskers represent maximum
and minimum data values (excluding outliers), and dots represent
outliers found more than 1.5 times the interquartile range from the
ends of the box.

6.1.3 SP duration and QP rate.

Figure 6.3 contains two boxplots demonstrating how the median SP duration

and QP rate are affected by spatial frequency and speed of the stimulus. RM-

ANOVA was performed using the aligned rank-transformed median values of each

parameter as the dependent variables, and spatial frequency, speed, and direction

of the stimulus as the within-subjects factors.

There was a significant main effect of stimulus speed on SP duration (F (1,7)=15.1,

p=0.006) and on QP rate (F (1,7)=14.0, p=0.007), verifying the results of exper-

iment 1.
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6.2. INVESTIGATING THE PRINCIPAL COMPONENTS FOUND IN
EXPERIMENT 2.

There was no significant main effect of spatial frequency on SP duration (F (2,14)=0.3,

p=0.717) or QP rate (F (2,14)=1.0, p=0.388), and there was no significant main

effect of direction on SP duration (F (1,7)=0.0, p=0.867) or QP rate (F (1,7)=0.1,

p=0.735).

There was no significant interaction effect of spatial frequency and stimulus veloc-

ity on SP duration (F (2,14)=0.8, p=0.459) or QP rate (F (2,14)=0.0, p=0.933).

There were also no significant interaction effects between direction and any other

factor on the SP duration or QP rate.

6.2 Investigating the principal components found in experiment 2.

The same PCA procedure applied to the data from experiment 1 was applied to the

data from experiment 2. The analysis was performed on the correlation matrixes

of parameters from across four adjacent cycles. However, in one trial there were

such a large number of blinks that only 8 cycles of data could be retrieved, and

it was not possible to find four consecutive cycles of OKN at all, so this trial

was ignored for the purposes of PCA analysis. PCA performed on the correlation

matrixes of the other 95 trials did reveal 13 significant eigenvalues, corresponding

to the maximum number of DOF (fig. 6.4a). The heuristic algorithm that had

been applied to the components found in the data from experiment 1 performed

well in sorting the components found in experiment 2 into individual categories,

but not perfectly as 3 components (out of 1248) did not fit the sorting criteria for

any of the categories. The heuristic criteria for sorting were then changed such

that all the components found in the data from experiment 2 (and experiment 1)

could be placed into individual categories. These results indicated that there were

13 qualitatively different components within the data from each trial in experiment

2, but they could be sorted into similar categories as found in experiment 1 (i.e.
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6.3. RESULTS OF APPLYING THE MODEL TO OKN PARAMETERS
RECORDED FROM EXPERIMENT 2.

Figure 6.4: (A) Boxplot illustrating the eigenvalues of principal components
found in four cycles of OKN parameters in series before being sorted
by heuristics. Number on principal component axis represents the
eigenvalue order of components from largest to smallest. (B) Box-
plot illustrating the eigenvalues of principal components extracted
from four cycles of OKN parameters in series after being sorted by
heuristics. Sorted component numbers 1-5, “Q-component”; 6-9, “S-
component”; 10-13, “V-component”. Boxes represents interquartile
range, whiskers represent maximum and minimum data values (ex-
cluding outliers), and dots represent outliers found more than 1.5
times the interquartile range from the ends of the box. OKN data
taken from experiment 2 only.

they had similar loading patterns). As in the results from experiment 1, each of

these sorted components had variable eigenvalues between trials (fig. 6.4b).

6.3 Results of applying the model to OKN parameters recorded from

experiment 2.

In the previous chapter we demonstrated that the parameters a, b, c and d could

be considered constants rather than free variables in the model, and did not ap-
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Figure 6.5: Results of PCA performed on four cycles of OKN in series, including
SP velocity and duration. Component loadings of 5 principal com-
ponents extracted from OKN data from experiment 2 (95 trials).
A total of 13 principal components were extracted during analysis.
These 5 components verify the existence of the Q-component cat-
egory in the data recorded from experiment 2. Numbers are used
only to label components and do not represent the position of the
corresponding eigenvalue on the scree plot as these varied between
trials.
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Figure 6.6: Results of PCA performed on four cycles of OKN in series, including
SP velocity and duration. Component loadings of 4 principal com-
ponents extracted from OKN data from experiment 2 (95 trials).
A total of 13 principal components were extracted during analysis.
These 4 components verify the existence of the S-component cat-
egory in the data recorded from experiment 2. Numbers are used
only to label components and do not represent the position of the
corresponding eigenvalue on the scree plot as these varied between
trials.
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RECORDED FROM EXPERIMENT 2.

Figure 6.7: Results of PCA performed on four cycles of OKN in series, including
SP velocity and duration. Component loadings of 4 principal com-
ponents extracted from OKN data from experiments 2 (95 trials).
A total of 13 principal components were extracted during analysis.
These 4 components verify the existence of the V-component cat-
egory in the data recorded from experiment 2. Numbers are used
only to label components and do not represent the position of the
corresponding eigenvalue on the scree plot as these varied between
trials.
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RECORDED FROM EXPERIMENT 2.

pear to be affected by stimulus velocity. In order to determine if these parameters

changed with spatial frequency, multiple linear regression (weighted least squares)

was performed on the OKN parameters recorded from experiment 2. Regression

was performed on SP amplitude, SP start position and SP velocity in order to

estimate the coefficients a and b (Si = axi + bVi + ŝ+ εs(i)). Regression was per-

formed on QP amplitude, QP start position and SP velocity in order to estimate

the coefficients c and d (Qi = cyi+dVi+ q̂+ εq(i)). The mean values of a, b, c and

d found from regression of the parameters in experiment 2 were -0.251 (SD=0.20),

0.124 (SD=0.20), -0.397 (SD=0.21) and -0.197 (SD=0.16) respectively. Note that

the mean values of a, b, c and d found in experiment 1 were -0.250 (SD=0.15),

0.158 (SD=0.16), -0.478 (SD=0.27) and -0.166 (SD=0.10) respectively, so there

appeared to be no significant difference (p>0.089) in these values between exper-

iments 1 and 2.

In order to determine if these non-significant differences would have an effect on

the predictive power of the model the values of the constants from experiment 1

were substituted in to the model, and simulated parameters were created using the

free variables estimated from the trials in experiment 2. The simulated parameters

were then compared to the observed OKN parameters from those trials. The

values of e, v̂, σs, σq and σv from each trial were estimated with robust linear

regression performed on the OKN parameters recorded from experiment 2. The

values of ŝ and q̂ were calculated by substituting the constants and mean OKN

parameters into eq. 5.4 and 5.5. For example, S, x and V were substituted into

ŝ = Si− axi− bVi + εs(i), with the values of a and b from experiment 1, to find ŝ.

Simulated data sets were created iteratively in a Matlab function with eqs. 5.1

- 5.9 and a number of simulated parameters were created to match the number

of observed samples of each parameter. Then the mean (and median) values of
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simulated parameters were compared with the mean (and median) values of the

observed data (fig. 6.8). Also, the standard deviation (and interquartile range) of

simulated parameters were compared with the standard deviation (and interquar-

tile range) of observed data (fig. 6.9). R2 for mean (and median) values of OKN

parameters range from 0.78 to 1.00, and the R2 for standard deviation (and in-

terquartile range) values range from 0.55 to 0.80. This indicated that in both

cases the simulated values accurately reflected the observed values, and that the

model could capture the distribution of OKN parameters well with only four free

variables in the model (or 7, including the estimated values of standard deviation

in the underlying components).

6.4 RM-ANOVA results for experiment 3: effects of stimulus pattern

type.

6.4.1 SP velocity, retinal slip, and gain.

Figure 6.10 contains three boxplots demonstrating how the mean SP velocity, reti-

nal slip and SP gain were affected by different stimulus patterns and by changing

the spatial frequency of those stimulus patterns. A three-way RM-ANOVA was

performed using each parameter in turn as the dependant variable, and stimulus

pattern, spatial frequency, and direction of the stimulus as the within-subjects

factors.

There was a significant main effect of spatial frequency on the mean SP velocity,

retinal slip, and SP gain (F (2,18)=5.7, p=0.012). However, corrected confidence

intervals could not indicate a significant difference in pairwise comparisons of

presentations with different spatial frequency stimuli.

There was also a significant main effect of stimulus pattern on mean SP velocity,

retinal slip, and SP gain (F (1,9)=19.6, p=0.002).
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Figure 6.8: Scatter plots of the values of central tendency from the observed
OKN parameters for each trial in experiment 2, against the values
of central tendency from the simulated OKN parameters. These
simulated data were created using Monte Carlo simulations of equa-
tions 5.4 - 5.6, where the parameters a, b, c and d were estimated
from experiment 1. The number of simulated samples of each pa-
rameter was set to match the number of observed samples for each
parameter. Dotted lines represent identity.
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Figure 6.9: Scatter plots of the values of the measure of dispersion from the
observed OKN parameters for each trial in experiment 2, against
the values of the measure of dispersion from the simulated OKN
parameters. These simulated data were created using Monte Carlo
simulations of equations 5.4 - 5.6, where the parameters a, b, c
and d were estimated from experiment 1. The number of simulated
samples of each parameter was set to match the number of observed
samples for each parameter. SD, standard deviation; IQR, Inter-
quartile range. Dotted lines represent identity.
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Figure 6.10: Boxplot illustrating the effect of spatial frequency and stimulus
pattern on (A) SP velocity, (B) retinal slip, and (C) SP gain. Each
box represents the parameter grouped across all participants for
each stimulus condition. Stimulus conditions tested were: stimulus
pattern, square wave or random grid; spatial frequency, 0.083cyc/◦,
0.165cyc/◦or 0.248cyc/◦. Grey boxes represent data from trials
with a square wave stimulus pattern, white boxes represent data
from trials with a random grid stimulus pattern. Box represents
interquartile range, whiskers represent maximum and minimum
data values (excluding outliers), and dots represent outliers found
more than 1.5 times the interquartile range from the ends of the
box.
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As before, there was no significant effect of direction on mean SP velocity, retinal

slip, or SP gain (F (1,9)=1.0, p=0.282). There were also no significant interaction

effects between any of the parameters on SP velocity, retinal slip, or SP gain.

Three-way RM-ANOVA performed on the standard deviation of these parameters

found a main effect of spatial frequency on the standard deviation of SP velocity,

retinal slip, and SP gain (F (2,18)=5.4, p=0.015).

In summary, the results of varying spatial frequency verified the findings in ex-

periment 2 that there was a main effect of spatial frequency on mean values of SP

velocity, retinal slip and SP gain. Using a random grid stimulus pattern resulted

in an increase in mean SP velocity and gain, and a decrease in retinal slip, when

compared with using a square wave stimulus pattern.

6.4.2 SP amplitude, QP amplitude, and the start and end points of QPs.

Figure 6.11 contains four boxplots demonstrating how the mean SP amplitude,

QP amplitude, QP start position and QP end position are affected by different

stimulus patterns and by changing the spatial frequency of those stimulus patterns.

A three-way RM-ANOVA was performed using each parameter in turn as the

dependant variable, and stimulus pattern, spatial frequency, and direction of the

stimulus as the within-subjects factors.

There was a significant main effect of spatial frequency on the mean SP ampli-

tude (F (2,18)=7.6, p=0.004) and QP amplitude (F (2,18)=7.0, p=0.006), but not

for QP start position (F (2,18)=0.7, p=0.507) or QP end position (F (2,18)=0.1,

p=0.906). Corrected confidence intervals indicated a significant difference in

pairwise comparisons of SP amplitude between presentations with a spatial fre-

quency of 0.083cyc/◦ and 0.165cyc/◦ (p=0.041), and 0.083cyc/◦ and 0.248cyc/◦

(p=0.022). Corrected confidence intervals also indicated a significant difference in
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Figure 6.11: Boxplot illustrating the effect of spatial frequency and stimulus
pattern on (A) SP amplitude, (B) QP amplitude, (C) QP start
position, and (D) QP end position. Each box represents the pa-
rameter grouped across all participants for each stimulus condi-
tion. Stimulus conditions tested were: stimulus pattern, square
wave or random grid; spatial frequency, 0.083cyc/◦, 0.165cyc/◦or
0.248cyc/◦. Grey boxes represent data from trials with a square
wave stimulus pattern, white boxes represent data from trials
with a random grid stimulus pattern. Box represents interquar-
tile range, whiskers represent maximum and minimum data values
(excluding outliers), and dots represent outliers found more than
1.5 times the interquartile range from the ends of the box.
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QP amplitude between presentations with a spatial frequency of 0.083cyc/◦ and

0.165cyc/◦ (p=0.041), and between 0.083cyc/◦ and 0.248cyc/◦ (p=0.022).

There was a significant main effect of stimulus pattern on mean SP amplitude

(F (1,9)=16.8, p=0.003), QP amplitude (F (1,9)=15.1, p=0.004), QP start posi-

tion (F (1,9)=6.1, p=0.035), and QP end position (F (1,9)=10.5, p=0.010).

As before, there was no significant main effect of direction on mean SP amplitude

(F (1,9)=14.0, p=0.165), QP amplitude (F (1,9)=2.5, p=0.150) or QP start posi-

tion (F (1,9)=4.8, p=0.056), although there was a significant main effect on QP

end position (F (1,9)=6.0, p=0.036). There were no significant interaction effects

between any of the stimulus conditions on SP amplitude, QP amplitude, QP start

position or QP end position.

Three-way RM-ANOVA on the standard deviation of these parameters found

a main effect of spatial frequency on the standard deviation of SP amplitude

(F (1.28,11.5)=1.2, p=0.323), QP amplitude (F (2,18)=0.5, p=0.624), QP start

position (F (2,18)=0.9, p=0.427) and QP end position (F (2,18)=2.9, p=0.084).

There was also no main effect of stimulus pattern on the standard deviation of

SP amplitude (F (1,9)=1.2, p=0.301) or QP amplitude (F (1,9)=2.0, p=0.192),

but there was an effect on QP start position (F (1,9)=10.2, p=0.011) and QP end

position (F (1,9), p=0.026.)

In summary, these results verified the findings in experiment 2 that there was

a main effect of spatial frequency on mean values of SP amplitude and QP am-

plitude, as well as on the standard deviation of QP and SP amplitude, and the

standard deviation of the start and end position of QPs and SPs. Using a random

grid stimulus pattern resulted in an increase in the mean SP and QP amplitude,

and the standard deviation of the start and end positions of QPs and SPs, when

compared with using a square wave stimulus pattern. Using a random grid stim-
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Figure 6.12: Boxplot illustrating the effect of spatial frequency and stimulus
pattern on (A) SP duration and (B) QP rate. Each box repre-
sents the parameter grouped across all participants for each stim-
ulus condition. Stimulus conditions tested were: stimulus pat-
tern, square wave or random grid; spatial frequency, 0.083cyc/◦,
0.165cyc/◦or 0.248cyc/◦. Grey boxes represent data from trials
with a square wave stimulus pattern, white boxes represent data
from trials with a random grid stimulus pattern. Box represents
interquartile range, whiskers represent maximum and minimum
data values (excluding outliers), and dots represent outliers found
more than 1.5 times the interquartile range from the ends of the
box.

ulus pattern also resulted in more negative start and end positions of QPs (and

SPs) when compared with using a square wave stimulus pattern.

6.4.3 SP duration and QP rate.

Figure 6.12 contains two boxplots demonstrating how the median SP duration and

QP rate are affected by different stimulus patterns and by changing the relevant

spatial frequency of those stimulus patterns. A three-way RM-ANOVA was per-

formed on the aligned rank-transformed median values of each parameter as the

dependent variables, and the stimulus pattern, spatial frequency, and direction of

the stimulus as the within-subjects factors.
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6.5. INVESTIGATING THE PRINCIPAL COMPONENTS FOUND IN
EXPERIMENT 3.

There was no significant main effect of spatial frequency on SP duration (F (2,18)=

0.4, p=0.691) or QP rate (F (2,18)=0.5, p=0.616), as expected from the results of

experiment 2.

There was a significant main effect of stimulus pattern on SP duration (F (1,9)=5.8,

p=0.039) and QP rate (F (1,9)=5.6, p=0.042).

There was no significant main effect of direction on SP duration (F (1,9)=0.0,

p=0.874) or QP rate (F (1,9)=0.0, p=0.935). There were also no significant in-

teraction effects between any of the stimulus conditions on SP duration or QP

rate.

6.5 Investigating the principal components found in experiment 3.

As with experiment 2, the same PCA procedure that had been applied to the

data from experiment 1 was applied to the data from experiment 3. The anal-

ysis was performed on the correlation matrices of parameters from across four

adjacent cycles. PCA performed on the correlation matrices of the 120 trials did

reveal 13 significant eigenvalues, corresponding to the maximum number of DOF

(fig. 6.13a). The adjusted heuristics that had been created in order to sort the

components from experiment 2 into individual categories were capable of sorting

all of these components into individual categories. These results illustrated that

there were 13 qualitatively different components within the data from each trial

in experiment 3, and they could be sorted into the same categories as found in

experiment 1 and 2 (i.e. they had similar loading patterns). As in the results

from experiment 1 and 2, each of these sorted components occurred in a different

eigenvalue order (fig. 6.13b).
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EXPERIMENT 3.

Figure 6.13: (A) Boxplot illustrating the eigenvalues of principal components
found in four cycles of OKN parameters in series before being
sorted by heuristics. Number on principal component axis repre-
sents the eigenvalue order of components from largest to small-
est. (B) Boxplot illustrating the eigenvalues of principal compo-
nents extracted from four cycles of OKN parameters in series after
being sorted by heuristics. Sorted component numbers 1-5, “Q-
component”; 6-9, “S-component”; 10-13, “V-component”. Boxes
represents interquartile range, whiskers represent maximum and
minimum data values (excluding outliers), and dots represent out-
liers found more than 1.5 times the interquartile range from the
ends of the box. OKN data taken from experiment 3 only.
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6.5. INVESTIGATING THE PRINCIPAL COMPONENTS FOUND IN
EXPERIMENT 3.

Figure 6.14: Results of PCA performed on four cycles of OKN in series, in-
cluding SP velocity and duration. Component loadings of 5 prin-
cipal components extracted from OKN data from experiment 3
(120 trials). A total of 13 principal components were extracted
during analysis. These 5 components verify the existence of the
Q-component category in the data recorded from experiment 3.
Numbers are used only to label components and do not represent
the position of the corresponding eigenvalue on the scree plot as
these varied between trials.
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6.5. INVESTIGATING THE PRINCIPAL COMPONENTS FOUND IN
EXPERIMENT 3.

Figure 6.15: Results of PCA performed on four cycles of OKN in series, in-
cluding SP velocity and duration. Component loadings of 4 prin-
cipal components extracted from OKN data from experiment 3
(120 trials). A total of 13 principal components were extracted
during analysis. These 4 components verify the existence of the
S-component category in the data recorded from experiment 3.
Numbers are used only to label components and do not represent
the position of the corresponding eigenvalue on the scree plot as
these varied between trials.
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6.5. INVESTIGATING THE PRINCIPAL COMPONENTS FOUND IN
EXPERIMENT 3.

Figure 6.16: Results of PCA performed on four cycles of OKN in series, in-
cluding SP velocity and duration. Component loadings of 4 prin-
cipal components extracted from OKN data from experiments 3
(120 trials). A total of 13 principal components were extracted
during analysis. These 4 components verify the existence of the
V-component category in the data recorded from experiment 3.
Numbers are used only to label components and do not represent
the position of the corresponding eigenvalue on the scree plot as
these varied between trials.
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6.6. RESULTS OF APPLYING THE MODEL TO OKN PARAMETERS
RECORDED FROM EXPERIMENT 3.

6.6 Results of applying the model to OKN parameters recorded from

experiment 3.

Multiple linear regression was performed on the OKN parameters recorded from

experiment 3 in order to determine the coefficients a, b, c and d in exactly the

same way as with experiment 2, and they were found to be -0.318 (SD=0.19), 0.120

(SD=0.14), -0.352 (SD=0.25) and -0.137 (SD=0.10) respectively. Bonferroni cor-

rected t-tests indicated a possible significant difference in c between experiments

1 and 3 (p=0.010).

We applied the model to the recorded parameters of experiment 3 in order to

determine if the differences in parameters would have a significant impact on the

predictive power of the model. Robust linear regression was performed on the

parameters recorded from the real OKN data in order to estimate the values of e,

v̂, σs, σq and σv from each trial. The mean values of the estimates for a, b, c and

d that had been found in the data from experiment 1 (-0.250, 0.158, -0.478 and

-0.166), and the mean values of the respective OKN parameters recorded from

experiment 3, were substituted into eq. 5.4 and 5.5 in order to find the values of

ŝ and q̂ from each trial.

Simulated data sets were created iteratively in a Matlab function with eqs. 5.1

- 5.9 and the number of simulated samples was set to match the number of ob-

served samples for each parameter. The mean (and median) values of simulated

parameters were compared with the mean (and median) values of observed data

(fig. 6.17). Also, the standard deviation (and interquartile range) of simulated pa-

rameters were compared with the standard deviation (and interquartile range) of

observed data (fig. 6.18). In both cases the simulated values accurately reflected

the observed values. R2 for mean (and median) values of OKN parameters range
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6.6. RESULTS OF APPLYING THE MODEL TO OKN PARAMETERS
RECORDED FROM EXPERIMENT 3.

Figure 6.17: Scatter plots of the values of central tendency from the observed
OKN parameters for each trial in experiment 3, against the values
of central tendency from the simulated OKN parameters. These
simulated data were created using Monte Carlo simulations of
equations 5.4 - 5.6, where the parameters a, b, c and d were es-
timated from results in experiment 1. The number of simulated
samples of each parameter was set to match the number of observed
samples for each parameter. Dotted lines represent identity.
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6.6. RESULTS OF APPLYING THE MODEL TO OKN PARAMETERS
RECORDED FROM EXPERIMENT 3.

Figure 6.18: Scatter plots of the values of the measure of dispersion from the
observed OKN parameters for each trial in experiment 3, against
the values of the measure of dispersion from the simulated OKN
parameters. These simulated data were created using Monte Carlo
simulations of equations 5.4 - 5.6, where the parameters a, b, c
and d were estimated from results in experiment 1. The number of
simulated samples of each parameter was set to match the number
of observed samples for each parameter. SD, standard deviation;
IQR, Inter-quartile range. Dotted lines represent identity.
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6.7. VERIFYING THE DISTRIBUTION OF THE NOISE PROCESSES.

Experiment a b c d

Experiment 1 -0.250 (0.15) 0.158 (0.16) -0.478 (0.27) -0.166 (0.10)
Experiment 2 -0.251 (0.20) 0.124 (0.20) -0.397 (0.21) -0.197 (0.16)
Experiment 3 -0.318 (0.19) 0.120 (0.14) -0.352 (0.25) -0.137 (0.10)
Combined -0.282 (0.19) 0.127 (0.17) -0.389 (0.24) -0.164 (0.13)

Table 6.1: Table of constants found for the Markov model from each experiment.
The mean values of a, b, c and d are given from across all trials for
each experiment, and finally combined across all trials. The standard
deviation of these parameters are given in brackets.

from 0.74 to 1.00, and the R2 for standard deviation (and interquartile range)

values range from 0.32 to 0.77. This illustrated that the model could capture the

distribution of OKN parameters well with only four free variables in the model

(or 7, including the estimated values of standard deviation in the underlying com-

ponents).

When taken across all 256 trials, the mean values of a, b, c and d were -0.282

(SD=0.19), 0.127 (SD=0.17), -0.389 (SD=0.24) and -0.164 (SD=0.13) respec-

tively. For the purpose of future simulations using the Markov model, the values

of the constants a, b, c and d were set to -0.282, 0.127, -0.389 and -0.164. These

values had been determined from 256 trials as opposed to just the first 40 trials

in experiment 1, so were likely to be more representative of the actual values of

these parameters. A table containing the estimated values of a, b, c and d from

each experiment, and combined across all experiments, is illustrated in table 6.1.

6.7 Verifying the distribution of the noise processes.

In the previous chapter we assumed the noise process in each component was

Gaussian. We can test this hypothesis by finding the residuals of the observed
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6.7. VERIFYING THE DISTRIBUTION OF THE NOISE PROCESSES.

OKN data, i.e. the deviation of the observed OKN parameters from the estimated

value of the OKN parameters, and their distribution in the empirical data. The

residuals of the S-, Q-, and V-component are given by a simple rearrangement of

the eqs. 5.4 - 5.5 respectively:

εs(i) = Si − axi − bVi − ŝ, (6.1)

εq(i) = Qi − cyi − dVi − q̂, (6.2)

and

εv(i) = Vi+1 − eVi − v̂. (6.3)

Figures 6.19 - 6.21 illustrate these residuals taken from one participant at different

stimulus speeds. These histograms are representative of those created from all tri-

als, and by eye might appear Gaussian. However, Lilliefors tests conducted on all

256 trials (corrected using the Holm-Bonferroni method) show that 110 histograms

of the S-component residuals, 63 histograms of the Q-component residuals, and

100 histograms of the V-component residuals are significantly different to the

Gaussian distribution. This appeared to be due to the tendency for residuals to

be leptokurtic, with a more acute peak and fatter tails than normal. The kurtosis

of a Gaussian distribution is 3.0, whereas the average kurtosis of the S-component
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.19: Frequency histograms of the noise process from the S-component
as calculated by finding the residuals of Si − axi − bVi − ŝ. Data
from participant 10, stimulus speed (A) 10◦/s, (B) 20◦/s, (C) 30◦/s
and (D) 40◦/s.

residuals is 5.2, of the Q-component residuals is 5.2, and of the V-component

residuals is 8.8. The Q-component and V-component residuals are approximately

symmetric (mean skewness = 0.2 and 0.1 respectively). However, the S-component

residuals sometimes demonstrated a moderate amount of positive skewness (mean

skewness = 0.7). Another interesting pattern found in the V-component resid-

uals was that the standard deviation of the residuals appeared to increase with

stimulus speed. This indicated that there may be signal dependent noise in the

V-component.

6.8 Signal-dependent noise.

In order to determine if any of the three stochastic processes demonstrated noise

proportional to the magnitude of the process, the values of σs and σq were plotted

against the values S andQ respectively. The relationship between σs and S, and σq
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.20: Frequency histograms of the noise process from the Q-component
as calculated by finding the residuals of Qi − cyi − dVi − q̂. Data
from participant 10, stimulus speed (A) 10◦/s, (B) 20◦/s, (C) 30◦/s
and (D) 40◦/s.

and Q was determined using the bivariate total least squares method (orthogonal

regression). Both the S- and Q-components demonstrated proportional noise, as

illustrated by a linear increase in the standard deviation of the error term with

the magnitude of S and Q respectively, and a possible constant source of noise

illustrated by the significant positive intercept of the line of regression on the y-

axis (fig. 6.22a and 6.22b). Ordinary least squares regression indicated that the

95% confidence interval of the intercept did not contain zero, also indicating a

constant source of noise.

The values of σv were also plotted against V , stimulus speed, and retinal slip.

There was a relatively weak relationship between σv and V (r2 = 0.21), and a

very weak relationship between σv and the absolute mean retinal slip (r2 = 0.05).

However, there was a moderate relationship between σv and stimulus speed (r2 =
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.21: Frequency histograms of the noise process from the V-component
as calculated by finding the residuals of Vi+1− eVi− v̂. Data from
participant 10, stimulus speed (A) 10◦/s, (B) 20◦/s, (C) 30◦/s and
(D) 40◦/s.

Figure 6.22: Scatter plots illustrating proportional noise in all three stochas-
tic processes. Dashed lines represent lines of orthogonal regres-
sion. In (A) S-component error increases with SP amplitude
(σs = 0.22S + 0.52) and in (B) Q-component error increases with
QP amplitude (σq = 0.23Q + 1.1). Error values (σs and σq) are
the standard deviations of the error term estimated from linear
regression performed on the data.
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.23: Scatter plots illustrating proportional noise in V components.
Dashed lines represent lines of regression. In (A) V-component
error increases with stimulus speed (σv = 0.15(stimulus speed) +
0.05), in (B) V-component error increases with SP velocity (σv =
0.11V +1.8), and in (C) V-component error increases with the ab-
solute mean retinal slip (σv = 0.05(retinal slip) + 3.5). The error
value (σv) is the standard deviation of the error term estimated
from linear regression performed on the data.

0.37). The relationships between the σv and V , σv and stimulus speed, and σv

and retinal slip, using orthogonal regression (fig. 6.23). The relationship between

σv and stimulus speed has no constant source of noise (fig. 6.23a).

The proportional relationships of the signal dependent noise in each component

were:

σs = 0.22S + 0.52, (6.4)

σq = 0.23Q+ 1.1, (6.5)

and
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6.8. SIGNAL-DEPENDENT NOISE.

σv = 0.15VS + 0.05 (6.6)

where VS is the stimulus speed. This means that during trials where the mean QP

amplitude is 5.6◦ (this is the mean value across all trials) the constant component

of noise contributes approximately 46% towards the total amount of noise in

the Q-component. Whereas when the mean SP amplitude is 5.6◦ the constant

component contributes approximately 30% towards the total amount of noise in

the S-component. Of course, as the QP or SP amplitude increases the contribution

from the level of constant noise will decrease.

The possibility of using these proportional relationships to define the standard

deviation of the error terms in the Markov model, rather than estimating the

standard deviation of the error term from every trial was considered. The mean

values of the estimates for a, b, c and d that had been found in the data from

experiments 1-3 (-0.282, 0.127, -0.389 and -0.164), and the respective mean val-

ues of the OKN parameters recorded from experiments 1-3, were substituted into

eq. 5.4 and 5.5 to find the values of ŝ and q̂ from each trial. The values of σs,

σq and σv from each trial were estimated using eqs. 6.4 - 6.6. The free variables e

and v̂ were estimated with robust linear regression as before. Simulated data sets

were created iteratively in a Matlab function with eqs. 5.1 - 5.9 and the number of

simulated samples was set to match the number of observed samples for each pa-

rameter. The mean (and median) values of simulated parameters were compared

with the mean (and median) values of observed data (fig. 6.24). Also, the stan-

dard deviation (and interquartile range) of simulated parameters were compared

with the standard deviation (and interquartile range) of observed data (fig. 6.25).
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.24: Scatter plots of the values of central tendency from the observed
OKN parameters for each trial in experiments 2 and 3, against the
values of central tendency from the simulated OKN parameters.
These simulated data were created using Monte Carlo simulations
of equations 5.4 - 5.6. The parameters a, b, c and d were considered
constants and not free parameters, and the standard deviation of
the noise processes εs(i), εq(i) and εv(i) were calculated from the
constants of proportionality found in the signal dependent noise
results. The number of simulated samples of each parameter was
set to match the number of observed samples for each parameter.
Dotted lines represent identity.
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6.8. SIGNAL-DEPENDENT NOISE.

Figure 6.25: Scatter plots of the values of the measure of dispersion from the
observed OKN parameters for each trial in experiments 2 and 3,
against the values of the measure of dispersion from the simulated
OKN parameters. These simulated data were created using Monte
Carlo simulations of equations 5.4 - 5.6. The parameters a, b,
c and d were considered constants and not free parameters, and
the standard deviation of the noise processes εs(i), εq(i) and εv(i)
were calculated from the constants of proportionality found in the
signal dependent noise results. The number of simulated samples
of each parameter was set to match the number of observed samples
for each parameter. SD, standard deviation; IQR, Inter-quartile
range. Dotted lines represent identity.
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6.9. HOW DOES STIMULUS SPEED AFFECT SP VELOCITY IN THE MARKOV
MODEL?

The model could still accurately predict the observed mean (and median) values

when the standard deviation of the error terms in each component was estimated

using eqs. 6.4 - 6.6. However, the R2 for the values of standard deviation (and

interquartile range) of OKN parameters dropped to a range between 0.11 and 0.60

when the standard deviation of the error terms was estimated from eqs. 6.4 - 6.6,

illustrating that the power of the model in predicting the distribution of parame-

ters was somewhat reduced from when the standard deviation was estimated from

the residuals of linear regression.

6.9 How does stimulus speed affect SP velocity in the Markov model?

In section 6.8 we illustrated how the stimulus speed appears to affect the standard

deviation of the error term in the V-component. It is important to consider

how the stimulus speed affects the model, and in particular how stimulus speed

affects SP velocity. From figure 4.3a it is obvious that SP velocity depends on

stimulus speed and so we might assume that the stimulus dependence is captured

somehow in eq. 5.6 either by e or by v̂. In order to investigate how stimulus

speed affects the parameters of the model some assumptions were made about the

system that generates OKN. A closed loop system driven by a retinal slip signal

in the forward loop, and efference copy of the SP velocity in a feedback loop is

illustrated in figure 6.26a. The values g1, g2, g3 and g4 are the gain of retinal

slip, efference copy, combined retinal slip and efference copy, and SP velocity

respectively. Assuming that g1, g2, g3 and g4 are linear and time-invariant, this

system gives the relationship:

Vi+1 = g4(g3(g1(VS − Vi) + g2(VEC))) (6.7)
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Figure 6.26: (A) Block diagram illustrating a simple system that could generate
OKN, where a retinal slip signal and an efference copy signal are
summed to generate an eye velocity signal. The values g1, g2 and g3
are the respective gain elements of retinal slip in the forward loop,
efference copy in the feedback loop, and SP velocity in the forward
loop. The value g4 represents a linear plant. VS , stimulus velocity;
VS − Vi, retinal slip; Vi, SP velocity; VEC , efference copy. (B)
Scatter plot relating the values of v̂ and e. Data points represent
values estimated from each trial by linear regression. Note that
under the assumptions of the model v̂ = g1g3g4VS (the product of
the gain elements in the forward loop and stimulus velocity) and
e = g2g3−g1g3g4 (the product of the gain elements in the feedback
loop, minus the product of the gain elements in the forward loop).
Dotted line, e = 1− v̂

VS
.
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where VS − Vi and VEC are retinal slip and efference copy respectively. We can

relate SP velocity and efference copy with:

VEC =
Vi+1

g4
(6.8)

Substituting eq. 6.8 into eq. 6.7 gives:

Vi+1 = g1g3g4(VS − Vi) + g2g3Vi+1 (6.9)

and collecting terms in eq. 6.9 gives:

Vi+1 = g3(g2 − g1g4)Vi + g1g3g4VS (6.10)

Substituting eq. 6.10 into eq. 5.6 gives:

e = g3(g2 − g1g4) (6.11)

and

v̂ = g1g3g4VS (6.12)
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It appears that the term v̂ captures the dependence of the Markov model on

the OKN stimulus speed, when considered as part of the system described in

figure 6.26a. However, if this is the case then the terms e and v̂ must be related

as they share the term g1g3g4. Rearranging eq. 6.12 and substituting into eq. 6.11

illustrates that:

e = g2g3 −
v̂

VS
(6.13)

This relationship can be observed in the scatter plot of the values of e against

−v̂/VS estimated from each trial (fig. 6.26b). Data points tend to fall below the

line defined by e = 1 − v̂/VS, and bivariate linear regression performed on these

data give a slope of 0.882, and a y-intercept of 0.842. There is some variability in

this realtionship as not all points fall exactly on the line of regression so we might

suppose that the error term in the V component is due to one (or more) of the

gain values (g1, g2, g3 or g4) being variable. An interesting possibility is given if

g1, g3 or g4 varies. As the product of g1, g3 and g4 is multiplied by the stimulus

speed to arrive at v̂ (eq. 6.12) this would explain our finding that the error term

in the V-component is proportional to stimulus speed.

6.10 Steady state of OKN parameters.

Any ergodic stable 1st order Markov process will tend towards a statistical steady

state, where the probability distribution approaches some fixed function, indepen-

dent of starting conditions (Kijima 1997). Therefore, the mean and variance will

tend to become constant as i→∞. Once the system reaches the steady state the

mean values for each of these OKN parameters can be calculated in relation to
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V , ŝ and q̂, from eq. 5.3, 5.6 and 5.13 - 5.16 using the values estimated for the

constant parameters (a, b, c, and d), and are given by:

x =
((1 + c)b+ d)

1− (1 + a)(1 + c)
V +

(1 + c)ŝ+ q̂

1− (1 + a)(1 + c)

(6.14)

≈ −0.154V + 1.09ŝ+ 1.78q̂

y =
((1 + a)d+ b)

1− (1 + a)(1 + c)
V +

ŝ+ (1 + a)q̂

1− (1 + a)(1 + c)

(6.15)

≈ 0.017V + 1.78ŝ+ 1.28q̂

S =
ad− bc

1− (1 + a)(1 + c)
V +

aq̂ − cŝ
1− (1 + a)(1 + c)

(6.16)

≈ 0.17V + 0.69ŝ− 0.50q̂

Q =
bc− ad

1− (1 + a)(1 + c)
V +

cŝ− aq̂
1− (1 + a)(1 + c)

(6.17)

≈ −0.17V − 0.69ŝ+ 0.50q̂
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T =
ad− bc

1− (1 + a)(1 + c)
+

aq̂ − cŝ
1− (1 + a)(1 + c)

1

V

(6.18)

≈ 0.171 +
0.38ŝ− 0.28q̂

0.56V

and

V =
v̂

1− e
(6.19)

The model clearly predicts that mean SP and QP amplitudes depend linearly with

mean SP velocity, whereas mean SP duration is inversely related, as empirically

observed. As the mean SP and QP amplitude both depend on the mean SP

velocity and the values of ŝ and q̂, the standard deviation of the error terms in

the S-component and Q-component will also depend on the mean SP velocity and

the values of ŝ and q̂, due to the signal dependent noise processes.

6.11 Transient state of OKN parameters.

In the inital period before a Markov process reaches steady state it is said to

be in a transient state that is dependent on the initial conditions of the system.

The behaviour of transients may give additional interesting information about a

system, and here we investigate the behaviour of the transient state in the simple

case where the initial eye velocity and position are both 0◦/s. In the Markov

model SP velocity is only dependent on SP velocity in the previous cycle and will

converge to a stable steady state if the value of the parameter e is less than ±1,
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6.11. TRANSIENT STATE OF OKN PARAMETERS.

otherwise the process will diverge and continue to increase in magnitude. The

value of e ranged from -0.15 to 0.94, consequently SP velocity should reach a

stable steady state. Although we have not measured transient responses directly,

they can be easily computed.

The update dynamics of SP velocity were simulated with eq. 5.6 using the values

of the parameters v̂ and e obtained through linear regression from all 256 data

sets, then the number of cycles it took to reach 63% of the steady state SP velocity

(eq. 6.19) from an initial eye velocity of 0◦/s was calculated. When the point at

which SP velocity reached 63% of the steady state value was between one cycle

and the next, linear interpolation was used to determine the fractional value at

which SP velocity reached 63% of the steady state value.

From an initial eye velocity of 0◦/s, the transient state of SP velocity lasted

for just a few cycles. To reach 63% of the steady state SP velocity took an

average 2.1 cycles (standard deviation=1.8) across all 256 simulated data sets.

This is in good agreement with the study by Abadi et al. (2005) who showed

that steady state was usually reached in two OKN cycles. We compared the

transient response of SP velocity at different stimulus speeds. When the simulated

transient responses from trials with a stimulus speed of 10◦/s were averaged, it

took 1.3 cycles (standard deviation=0.9) to reach 63% of SP velocity. The average

simulated transient response from trials with a stimulus speed of 20◦/s was 2.7

(standard deviation=2.7), at 30◦/s it was 2.3 (standard deviation=1.9), and at

40◦/s it was 2.4 (standard deviation=1.9). Figure 6.27a illustrates the transient

response of SP velocity, when all the simulations created using parameters from

trials with the same stimulus speed were averaged. There was a tendency for SP

velocity to reach steady state more quickly when the stimulus speed was 10◦/s

than at other stimulus speeds, but the transient response times were quite variable.
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Figure 6.27: Simulated transient response of SP velocity starting from 0◦/s.
Simulations that were created using the parameters from trials
with the same stimulus speed were averaged. Each line represents
one averaged transient response of SP velocity with a matching
stimulus speed. VS notes stimulus speed. Solid line at 2.1 cycles
represents mean of the cycles required to reach 63% of SP velocity,
shaded area represents ± 1 standard deviation either side of the
mean value.

6.12 QP targetting.

As the participants were asked to stare towards the centre of the screen we might

assume that the desired target for returning QPs was straight ahead. However,

the end position of QPs tends to overshoot the centre and drive eye position in to

the negative field of view. The data illustrates that the amplitude of QPs depend

on their start position and our model predicts that there is a start position where,

if a QP is triggered, the system would generate a QP with mean amplitude of zero.

Assuming that there is some desired location towards which QPs are targetted,

we can make the hypothesis that the position where a zero amplitude QP would

be generated is the desired target location of QPs. In order to estimate what this

position is, we solve eq. 5.5 for yi when Qi = 0 to give:
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yT =
−(dVi + q̂)

c
(6.20)

where yT is the desired target location. Using the values of c, d and q̂ from our

data, and estimating Vi with V the average yT for each trial was found. Mean

values of yT were -9.8◦, -13.1◦, -18.9◦ and -15.6◦ for trials with a stimulus speed of

10◦/s, 20◦/s, 30◦/s and 40◦/s respectively (mean SP velocity was 8.3◦/s, 14.4◦/s,

22.0◦/s and 20.7◦/s respectively). Figure 6.28a illustrates how the proposed QP

target position changes with SP velocity and with different values of q̂. Increasing

SP velocity causes a linear increase in the QP target position, in the negative

direction. However, making the value of q̂ more negative also causes the QP

target position to become more negative. These results indicate that QPs were

being targeted into the negative field and not straight ahead. Calculating values

of y and x from eq. 6.14 and 6.15 we find that the average amplitude of QPs

and the average distance to the target location. The model predicts QPs on

average undershoot the target location with mean values of -4.7◦, -6.8◦, -9.4◦ and

-9.0◦for trials with a stimulus speed of 10◦/s, 20◦/s, 30◦/s and 40◦/s respectively.

When this undershoot bias was considered as saccadic gain (QP amplitude ÷ QP

target amplitude) the mean value of the saccadic gain was 0.39. Figure 6.28b

demonstrates how the mean QP start position, QP end position and QP target

position relate to the mean SP velocity in the model, and illustrates the undershoot

bias. Thus the model predicts that QPs have a tendency to undershoot their

desired target location, possibly due to adaptive changes in the value of saccadic

gain or as a result of not fully compensating for the movement away from the

target location during the SP.
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Figure 6.28: (A) Diagram illustrating the relationship between SP velocity and
the proposed QP target position. Solid line indicates the proposed
QP target position, using the mean value of q̂. Dotted lines in-
dicate QP target position after increasing or decreasing q̂ by two
each time. (B) Diagram illustrating the relationship between SP
velocity and the proposed QP target position (yT ), mean QP start
position (y), and mean QP end position (x). Dotted arrow illus-
trates the amplitude of the target QP. Solid arrow illustrates the
actual (mean) amplitude of QPs.
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6.13. THE EFFECT OF SP VELOCITY ON QP DURATION.

Figure 6.29: Relationship between SP velocity and the percentage of the total
time spent in saccadic flight (saccadic blind time). Solid line indi-
cate saccadic blind time, using the mean values of ŝ and q̂. Dotted
lines indicate saccadic blind time after increasing or decreasing ŝ
by two each time.

6.13 The effect of SP velocity on QP duration.

The average QP duration is related to the average SP duration through the de-

pendence of Q on V and the dependence of T on 1/V . Substituting the average

values of ŝ and q̂ from the data (ŝ = 0.51 and q̂ = −3.38) into eq. 6.18 and 6.17

the values of T and Q were found for a variety of different V . I then used eq. 5.10

to find the values TQ, where TQ is the average QP duration.

When V = 40◦/s, T = 222ms and TQ = 60ms, and when V = 10◦/s, T = 374ms

and TQ = 38ms. This result illustrates that if SP velocity increases both the SP

duration decreases and the QP duration increases regardless of stimulus speed.

In this case increasing SP velocity from 10◦/s to 40◦/s lead to an increase in

the average saccadic flight time from 9% to 21% of the total time. Figure 6.29

illustrates how the percentage of the total time spent in saccadic flight (saccadic

blind time) changes with SP velocity and with different values of ŝ. Increasing SP
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velocity causes an approximately logarithmic increase in the saccadic blind time.

Changing ŝ and q̂ has a relatively minor effect on the saccadic blind time, but in

general increasing ŝ increases the saccadic blind time and decreasing ŝ decreases

the saccadic blind time.

6.14 Discussion of results.

6.14.1 Discussion of RM-ANOVA results.

An interesting finding in the RM-ANOVA results was that increasing the spatial

frequency of the stimulus caused an increase in the mean SP velocity, such that SP

gain was increased and retinal slip was reduced. In chapter 2 we discussed that the

contrast sensitivity drops rapidly when images move faster than 4◦/s across the

retina, but the relationship between contrast sensitivity and the speed at which

the visual stimulus moves across the retina depends on the spatial frequency of the

stimulus, and the contrast sensitivity to low spatial frequency gratings can peak

at high levels of retinal slip. The spatial frequency of the square wave grating used

in these experiments ranged from 0.05cyc/◦ to 0.248cyc/◦, which equates to bar

widths of 2◦ to 10◦. The peak contrast sensitivity for detecting the motion of a

bar that is 1◦ in width is approximately 4◦/s, but at 2.9◦ in width it is between 10

and 20◦/s, and at 9.8◦it is between 30 and 40◦/s (Burr & Ross 1982). The increase

in retinal slip that is observed when the spatial frequency of the OKN stimulus is

decreased may reflect an attempt to maximise visual contrast, by matching retinal

slip to the velocity at which peak contrast sensitivity is achieved for the spatial

frequency of that stimulus.

Changing the stimulus pattern also caused a change in SP velocity. Using a

random grid pattern rather than a square wave grating caused the SP velocity

to increase such that SP gain was increased and retinal slip was decreased, in a
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similar manner to increasing the spatial frequency of the stimulus. If we assume

that retinal slip does decrease with increasing spatial frequency in an attempt to

maintain optimal visual contrast, we might consider that the constantly changing

spatial frequency of the random grid stimulus pattern also causes retinal slip to

change. However, as the spatial frequency of the stimulus is aperiodic, the degree

of retinal slip that would be required to maximise visual contrast is not clear. If

retinal slip changed as the spatial frequency of the stimulus currently being viewed

changed, we might expect this effect to average out over the period of stimulation

as the number of black and white squares across the width of the random grid

pattern were matched to the number of black and white stripes in the square wave

grating. However, this effect did not appear to average out, indicating that a more

complex compromise might be being made.

6.14.2 Discussion of model results.

In this chapter we have also investigated the Markov model developed in chapter

5 further, in order to verify that the model can be fit to all of the OKN trials

tested, and to examine the description and predictions the model makes about

OKN behaviour. For example, we have used the model to demonstrate that OKN

has a transient response of just a few cycles for SP velocity, which is in agreement

with Abadi et al. (2005) who demonstrated that the steady state of SP velocity

was reached in two cycles. The model also predicts a fast transient response for

SP start position of just two or three cycles.

We found that the standard deviation for the Q-component (σq) is linearly related

to the mean QP amplitude indicating that QPs are subject to proportional noise.

This result is not entirely unexpected, as it is well known that larger saccades to

static visual targets have larger errors. What is surprising is that the constant of

proportionality is about 23%, which is much more than the typical values found
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for saccades to static target found by van Beers (2008) (≈ 10%). The reason

for this is unknown but it may reflect targetting error for a moving target (note

that retinal slip is usually not zero in OKN). The standard deviation for the S-

component (σs) was also linearly related to the mean SP amplitude, indicating

the presence of proportional noise in determining the threshold at which to trigger

a QP, and this result was rather more unexpected.

We have also found that the noise associated with the V-component is related to

stimulus velocity, in accordance with Kolarik et al. (2009) who found that variation

in velocity between SPs increased linearly with stimulus speed. Stimulus speed,

retinal slip, and V are each dependent on the others (retinal slip = stimulus

speed - eye velocity), however the correlation between the error term in eq. 5.6

and stimulus speed was much stronger than the correlation of the error term with

either retinal slip or V . It is important to consider that only retinal slip, and

eye velocity by way of efference copy (Sperry 1950), are readily available to the

system whereas stimulus speed must be reconstructed internally. The error term

expressed in eq. 5.6 then appears to reflect an internally generated noise, possibly

in reconstructing stimulus velocity as part of a forward model whose output allows

prediction of the motor output (a dynamic predictor). I propose that this is most

likely explained by a variable gain in the OKN forward loop.

As we have noted, QP amplitude is influenced by proportional noise that increases

linearly with the magnitude of the QP. The constant of proportionality for these

movements is approximately 23%, meaning that QPs with an average magnitude

of 2◦ would only have a standard deviation of 0.5◦ (plus 1.1◦) whereas QPs with

an average magnitude of 10◦ would have a standard deviation of 2.3◦ (plus 1.1◦).

The error introduced by the proportional noise in QPs would direct QPs of a large

magnitude into a correspondingly larger target area, consistently overshooting and

167



6.14. DISCUSSION OF RESULTS.

undershooting the desired location. Making QPs smaller by reducing SP velocity

would allow participants to make QPs to a more accurately predicted location.

We have determined a possible location towards which QPs are targeted that

appears to be dependent on SP velocity. However, we predict that QPs to this

target constantly undershoot with a saccadic gain as low as 0.39, possibly as a

result of not fully compensating for the movement away from the target location

during the SP. Daye et al. (2010) demonstrated that memory guided saccades

made during a period of head-unrestrained visual tracking could compensate for

approximately 62% of the smooth gaze displacement. This compensation was a

function of saccade latency that was maximal (62%) at latencies greater than

400ms, and reduced to no compensation for saccades made with a latency under

200ms. As the median SP duration is typically between 200 and 400ms we might

expect that compensation of the movement away from the target during the SP

would be somewhere between 0 and 62%.

It seems that correspondingly very small saccades would drastically lower the

fraction of time spent making a SP during a given OKN cycle. The visual sys-

tem integrates contrast of both stationary and moving stimuli over approximately

120ms (Burr 1981). Visual information during a SP of 12ms will have only one

tenth the effective contrast obtained from a SP of 120ms or longer. Also, small

saccades have only a small effect on improving the contrast of a tracked target

(Harris & Berry 2006), such that their cost may exceed their benefit. It seems

likely that it would not pay to make very small QPs at all, and this could explain

the QP dead-zone that has been consistently observed in the data.

The data (and the model) demonstrate that, as SP velocity increases, QP am-

plitude increases and SP duration decreases regardless of stimulus speed. The

increase in QP amplitude would cause a corresponding increase in QP duration
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due to the main sequence of saccadic eye movements (Garbutt et al. 2001, 2003,

Kaminiarz et al. 2009). This would result in a longer period of time making a QP

during each cycle and, combined with the shorter period of time making a SP, the

ratio of QP duration to the total duration of the OKN cycle would increase. Since

high spatial frequency vision is lost during a QP, the average visual contrast per

cycle would decrease. Closely matching stimulus velocity would maintain visual

acuity during the SP but this could be offset by the contrast loss during the QP,

and an optimal compromise might lead to an allowance for SP velocity to decrease

in order to keep the QP amplitude low. However, visual acuity was not tested

during this investigation and it is not possible to determine whether participants

were attempting to maintain maximal visual contrast.

In Chapters 5 and 6 we have examined the parameters of human OKN cycle by

cycle, and the results of PCA performed on this data have led us to consider

OKN not as an archaic primitive oculomotor sub-sytem, but as three stochastic

processes acting simultaneously in concert or in competition. It is possible that

the goal of OKN is not to simply minimise retinal slip, but to find some optimal

value of SP velocity that maximises the benefit (or minimises the cost) provided by

each of these three processes. This hypothesis will be further explored in Chapter

8.
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Chapter 7

Results of fitting SP duration histograms:

the ratio distribution of two truncated

normal variables.

In this chapter we find the maximum likelihood estimates (MLEs) of parameters

for a number of PDFs to histograms of SP duration, and present the goodness of

fit of these PDFs. The measures of goodness of fit from the PDFs predicted by

the Markov model are then compared to the goodness of fit of PDFs predicted

by other stochastic models of OKN that have been proposed in the literature,

predominantly those that result from internal accumulator models.

7.1 Ratio distributions.

In our Markov model of OKN the SP duration is determined by the ratio of

SP amplitude and SP velocity. SP velocity is described by a 1st order Markov

process. The update dynamics of SP amplitude are slightly more complicated,

as SP amplitude during one cycle of OKN depends on the SP amplitude during

the previous cycle (and not on the SP amplitude during earlier cycles), but also

on the SP velocity during the previous cycle (eq. 5.15). However, a stable 1st

order Markov process tends towards a steady state where the probability density
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approaches a fixed function, independent of the initial starting conditions. We

have demonstrated that in the Markov model steady state SP velocity is reached

in approximately 2 cycles (section 6.11).

For steady-state OKN, the model predicts that the probability distribution of

SP duration would be a ratio of two random variables (Si/Vi). We approximate

the error terms of components with a Gaussian distribution although this is not

strictly observed, as in chapter 6 we illustrated that the error terms had a ten-

dency to be leptokurtic for approximately 1/3 of the trials. However, if normality

of the error terms is assumed the resultant ratio distribution would be a positively

skewed distribution that is at least qualitatively similar to the observed SP du-

ration distribution. This distribution has been examined before in the context of

saccadic latency (Nakahara et al. 2006), but as the result of an internal accumu-

lator model and not as the result of the geometric relationships between primary

eye movement parameters. However, the saccadic latencies investigated in the

Nakahara et al. (2006) study were not recorded from OKN data, and there was

no correlation between the threshold at which the saccades were triggered and

the rate of the accumulating decision signal. Whereas the proposed correlation

between SP amplitude and SP velocity is included in our analysis, and slightly

complicates the PDFs of the proposed distributions. Two ratio distributions were

tested for the goodness of fit of their PDF to the histograms of SP durations: the

FRD and the DRTN. The explanation of how the PDF of these distributions is

determined is given below.

7.1.1 Fieller’s ratio distribution.

If X1 and X2 are two normally distributed random variables X1 ∼ N(µ1, σ
2
1) and

X2 ∼ N(µ2, σ
2
2) with Pearson correlation coefficient ρ then let T be the random

variable resulting from the ratio ofX1 andX2 (T = X1/X2). Fieller (1932) derived
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the PDF f(τ) for the distribution of this random variable, which we call Fieller’s

ratio distribution (FRD). We denote the variable T ∼ FRD(µ1, σ
2
1, µ2, σ

2
2, ρ), and

give the PDF:

f(τ) =
b(τ)d(τ)

σ1σ2a3(τ)
√

2π

[
Φ

(
b(τ)

a(τ)
√

1− ρ2

)
− Φ

(
− b(τ)

a(τ)
√

1− ρ2

)]

+

√
1− ρ2

πσ1σ2a2(τ)
e
− c

2(1−ρ2) , (7.1)

where

a(τ) =

√
τ 2

σ2
1

− 2ρτ

σ1σ2
+

1

σ2
2

, (7.2)

b(τ) =
µ1τ

σ2
1

− ρ (µ1 + µ2τ)

µ1µ2

+
µ2

σ2
2

, (7.3)

c =
µ2
1

σ2
1

− 2ρµ1µ2

σ1σ2
+
µ2

σ2
2

, (7.4)

d(τ) = e
b2(τ)−ca2(τ)
2(1−ρ2)a2(τ) , (7.5)

and Φ is the CDF of the standard normal distribution.
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For the purposes of this study it is important to note that due to a simple scaling

factor this distribution can be described by four free parameters rather than the

five suggested by the formulation above. To characterise the distribution it is only

necessary to know the ratio between the two means (κ = µ1/µ2), the CV of both

original variables (λ1 = σ1/µ1 and λ2 = σ2/µ2), and the correlation coefficient

(ρ).

The PDF described in eq. 7.1 can predict a small proportion of negative SP

durations even when µ1 and µ2 are positive. In the context of our model this

would equate to a SP with negative velocity and positive amplitude or vice versa,

something that cannot happen in real terms without producing a SP of infinite

duration. In order to overcome this problem I have assumed that these negative SP

durations cannot happen and investigated the truncated PDF, with a lower bound

of 0. The zero-truncated PDF Tr(τ) is given by renormalising the probability

density in the interval (0,∞) such that it sums to 1, using the value of the CDF

at τ = 0. Hinkley (1969) derived the CDF F (τ) for this distribution:

F (τ) =L

{
µ1 − µ2τ

σ1σ2a(τ)
,−µ2

σ2
;
σ2τ − ρσ1
σ1σ2a(τ)

}
+ L

{
µ2τ − µ1

σ1σ2a(τ)
,−µ2

σ2
;
σ2τ − ρσ1
σ1σ2a(τ)

}
, (7.6)

where L {h, k; γ} is the value at (h, k) of the CDF of a standard bivariate nor-

mal distribution with correlation coefficient γ. There is no analytical expression

of the multivariate normal CDF but it can be approximated with numerical in-

tegration, and we use the Matlab function: mvncdf to do so. Thus Tr(τ) for

T ∼ FRD(κ, λ1, λ2, ρ) is:
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Figure 7.1: Histogram of SP duration from one trial (grey bars). PDF of the
FRD fitted to the data (using MLEs of PDF parameters) (black
line). Values of the FRD PDF at the central value of each bin
(black dots). Data from participant 1, stimulus speed 10◦/s.

Tr(τ) = f(τ)(1− F (0)), τ > 0 (7.7)

where f(τ) is eq. 7.1 and F (τ) is eq. 7.6. An example of this function fitted

to a histogram of SP duration is illustrated in figure 7.1. The results of formal

goodness of fit tests are given later in this chapter (section 7.4).

7.1.2 Distribution of the ratio of two truncated normal variables.

Empirically SPs are never made in the opposite direction to the stimulus motion,

a constraint that is also included in the Markov model of OKN. A more strict

description of the distribution of SP duration then would be given by the ratio

of two random variables that are defined only in the positive domain. Under

this assumption the Markov model predicts that the SP duration distribution will

be the distribution of the ratio of two truncated normal variables (DRTN). It is

174



7.1. RATIO DISTRIBUTIONS.

necessary to consider the joint distribution of two normally distributed variables.

SupposeX1 andX2 are two normally distributed random variablesX1 ∼ N(µ1, σ
2
1)

and X2 ∼ N(µ2, σ
2
2) with Pearson correlation coefficient ρ. The multivariate

distribution f(x1, x2) for X ∼ N2


 µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 is:

G(x1, x2) =
1

2πσ1σ2
√

1− ρ2
e

(
− 1

2(1−ρ2)

[
(x1−µ1)

2

σ21
+

(x2−µ2)
2

σ22
− 2ρ(x1−µ1)(x2−µ2)

σ1σ2

])
(7.8)

The PDF of the ratio of these two variables g(τ) can then be derived through

integration (Curtiss 1941), and is given by:

g(τ) =

∫ +∞

−∞
|x2|G(τx2, x2) dx2 (7.9)

However, if we consider both X1 and X2 with a lower bound of 0 the situation is

more complicated. Harris (2011, personal communication) has derived a formula

to calculate this PDF that can be found in appendix C. The PDF f(τ) for T ∼

DRTN(κ, λ1, λ2, ρ) is given by:

f(τ) = −exp(c)

2ak1

[
1 + b

√
π

−4a
exp(−b2/4a)erfc(−b/2

√
−a)

]
, τ > 0 (7.10)

where
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a =
−1

2(1− ρ2)
τ 2σ2

x2
− 2τρσx1σx2 + σ2

x1

σ2
x2
σ2
x1

< 0 (7.11)

b =
1

2(1− ρ2)
2τµx1σ

2
x2

+ 2µx2σ
2
x1
− 2τρµx1σx1σx2

σ2
x2
σ2
x1

(7.12)

c =
−1

2(1− ρ2)
µ2
x1
σ2
x2
− 2ρµx1µx2σx1σx2 + µ2

x2
σ2
x1

σ2
x2
σ2
x1

(7.13)

and

k1 =

∫ ∞
0

∫ ∞
0

G(x1, x2)dx1dx2 (7.14)

where k1 is found numerically. An example of this function fitted to a histogram

of SP duration is illustrated in figure 7.2.

7.2 Distributions predicted by saccadic initiation and decision-making

models.

In chapter 2 we discussed a number of stochastic models of OKN that have been

used to describe the distribution of SP duration or, in a more general sense, inter-

saccadic intervals and saccade latency. Here we formally introduce the equations

that describe the PDF of SP duration, that are predicted by these models.
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Figure 7.2: Histogram of SP duration from one trial (grey bars). PDF of the
DRTN fitted to the data (using MLEs of PDF parameters) (black
line). Values of the DRTN PDF at the central value of each bin
(black dots). Data from participant 1, stimulus speed 10◦/s.

7.2.1 Recinormal distribution.

The LATER model is a model of a decision process that has been used to describe

the PDF of saccade latencies (Carpenter & Williams 1995) and OKN SP durations

(Carpenter 1993). It can be simply described as a decision signal (S(t)) that rises

at a linear rate (r) from an initial level (S0) to a threshold (ST ), and generates a

response (i.e. the QP) when the signal reaches this threshold. The time taken to

make the decision to generate a QP is then given by T = ∆S/r where ∆S is the

change in the level of the decision signal (∆S = ST −S0) required to generate the

QP.

Importantly r varies randomly from decision to decision and is assumed to be a

normally distributed random variable r ∼ N(µr, σ
2
r). If r is normally distributed

then the reciprocal decision time (also called “promptness”) will also be a normally

distributed random variable 1
τ
∼ N(µp, σ

2
p) and the distribution of decision times

is thus called recinormal. The mean rate of the decision signal is directly related
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to the mean promptness by the distance to threshold (µr = µp∆S). Assuming

there is no stochastic variation in ∆S we can see that the standard deviation

of the rate is also directly related to the standard deviation of the promptness

(σr = σp∆S).

Developing the normal PDF it is possible to obtain the PDF f(τ) of the recinormal

distribution (RND) for the variable T ∼ RND(µp, σ
2
p):

f(τ) =


1

τ2
√

2πσ2
p

e
− (1−τµp)2

2τ2σ2p if τ 6= 0

0 if τ = 0

(7.15)

This PDF is always bimodal and can predict a small proportion of negative SP

durations even when µp is positive. As in the case of the FRD, we wish to define

the variable T only in the positive domain. Thus the zero-truncated PDF Tr(τ)

for T ∼ RND(µp, σ
2
p) supported only in the positive domain is:

Tr(τ) =
1

k2τ 2
√

2πσ2
p

e
− (1−τµp)2

2τ2σ2p , τ > 0 (7.16)

where k2 is a normalising constant given by:

k2 = 1− Φ(−µ/σ) (7.17)

and Φ is the standard Normal CDF.

An example of this function fitted to a histogram of SP duration is illustrated in
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Figure 7.3: Histogram of SP duration from one trial (grey bars). PDF of the
RND fitted to the data (using MLEs of PDF parameters) (black
line). Values of the RND PDF at the central value of each bin
(black dots). Data from participant 1, stimulus speed 10◦/s.

figure 7.3.

7.2.2 Recinormal mixture distribution.

An extension to the LATER model has been provided to account for the exis-

tence of extremely short latency (express) saccades, and has also been used to

model what appear to be SPs of extremely short duration (Carpenter 1994). This

extension to the LATER model has two LATER units in parallel. The prompt-

ness of both units are normally distributed random variables p1 ∼ N(µ1, σ
2
1) and

p0 ∼ N(µ0, σ
2
0). We consider the case where the decision signal with p = p1 is de-

scribed as a standard LATER unit and the decision signal with p = p0 is described

as a rogue unit with µ0 = 0 and σ2
0 > σ2

1. These two units then compete in a race

to threshold and the response (i.e. the QP) is triggered when either signal reaches

threshold first. This results in a recinormal mixture distribution (RNMD) where

the probability of the standard unit reaching threshold first is given the probabil-

ity p, and the probability of the rogue unit reaching threshold first is given by the
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Figure 7.4: Histogram of SP duration from one trial (grey bars). PDF of the
RNMD fitted to the data (using MLEs of PDF parameters) (black
line). Values of the RNMD PDF at the central value of each bin
(black dots). Data from participant 1, stimulus speed 10◦/s.

probability 1− p. The PDF f(τ) for T ∼ RNMD(µ1, σ
2
1, σ

2
0, p) supported only in

the positive domain is:

f(τ) = p

(
1

k3τ 2
√

2πσ2
1

e
− (τ−1−τµ1)

2

2τ2σ21

)
+ (1− p)

(
1

0.5τ 2
√

2πσ2
0

e
− (τ−1)2

2τ2σ20

)
(7.18)

where k3 is a normalising constant given by:

k3 = 1− Φ(−µ1/σ1) (7.19)

and Φ is the standard Normal CDF.

An example of this function fitted to a histogram of SP duration is illustrated in

figure 7.4.
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DECISION-MAKING MODELS.

7.2.3 Inverse Gaussian distribution.

Another common accumulator model that randomly rises to some fixed threshold

before activating a response can be described by a decision signal subject to a

random walk, with a drift rate that tends to cause the decision signal to rise. This

is the well-known diffusion process, the PDF of which can be described by the

inverse Gaussian distribution (IGD). The PDF of the IGD f(τ) for T ∼ IGD(µ, λ)

supported only in the positive domain is:

f(τ) =

√
λ

2πτ 3
e

−λ(τ−µ)2

2µ2τ , τ > 0 (7.20)

where µ is the mean and λ is the shape parameter. An example of this function

fitted to a histogram of SP duration is illustrated in figure 7.5. This model was

previously proposed by Anastasio (1996) who suggested that the the integration

of noisy vestibular nucleus neurons could be described in the same manner.

7.2.4 Gamma distribution.

Another simple model of a decision process that rises to threshold before activat-

ing a response is described by a neuron (or network of neurons) that integrates

incoming spikes that appear at randomly distributed time intervals until a certain

number of spikes have been received (Tuckwell 1988). When the random intervals

of spikes is exponentially distributed, the distribution of the total decision time

(T ) is given by a gamma distribution (GD). The gamma distributed variable is

then given by T ∼ GD(a, b) where a is the threshold number of spikes and 1/b is

the probability per unit time of a spike occurring. A GD of the first order where

a = 1 is simply an exponential distribution with a rate parameter λ = 1/b.

181
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Figure 7.5: Histogram of SP duration from one trial (grey bars). PDF of the
IGD fitted to the data (using MLEs of PDF parameters) (black line).
Values of the IGD PDF at the central value of each bin (black dots).
Data from participant 1, stimulus speed 10◦/s.

If Γ is the gamma function defined by the integral:

Γ(a) =

∫ ∞
0

e−tta−1 dt (7.21)

then the PDF of the GD f(τ) for T ∼ GD(a, b) supported only in the positive

domain is:

f(τ) =
1

baΓ(a)
τa−1e−

τ
b , τ > 0 (7.22)

where a is the shape parameter and b is the rate parameter of the distribution.

An example of this function fitted to a histogram of SP duration is illustrated in

figure 7.6.

182



7.2. DISTRIBUTIONS PREDICTED BY SACCADIC INITIATION AND
DECISION-MAKING MODELS.

Figure 7.6: Histogram of SP duration from one trial (grey bars). PDF of the
GD fitted to the data (using MLEs of PDF parameters) (black line).
Values of the GD PDF at the central value of each bin (black dots).
Data from participant 1, stimulus speed 10◦/s.

7.2.5 Lognormal distribution.

In a study on OKN in turtles, Balaban & Ariel (1992) described the duration of

SPs with the lognormal distribution (LND), and proposed that this was based on

an integrate-and-fire neuron model. The distribution they proposed would arise

if SP duration was determined by the product of the duration of the previous SP

and a zero-truncated normal variable with a mean of 1. The PDF of the LND

f(τ) for T ∼ LND(µ, σ) supported only in the positive domain is:

f(τ) =
1

τσ
√

2π
e−

(lnτ−µ)2

2σ2 , τ > 0 (7.23)

where µ is the location parameter, and σ is the scale parameter of the distribution.

An example of this function fitted to a histogram of SP duration is illustrated in

figure 7.7.
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7.3. DISTRIBUTION FITTING.

Figure 7.7: Histogram of SP duration from one trial (grey bars). PDF of the
LND fitted to the data (using MLEs of PDF parameters) (black
line). Values of the LND PDF at the central value of each bin
(black dots). Data from participant 1, stimulus speed 10◦/s.

7.3 Distribution fitting.

7 PDFs were tested for their goodness of fit to the histogram of SP duration from

each trial. The distributions tested were the Fieller’s ratio (FRD), the distribution

of the ratio of two truncated normal variables (DRTN), the recinormal (RND), the

recinormal mixture (RNMD), the inverse Gaussian (IGD), the gamma (GD), and

the lognormal (LND) distributions. Further details of the tested distributions, in-

cluding the equations for calculating the PDF, and the number and interpretation

of parameters required to define each PDF, is given in Chapter 7. Likewise, the

details for calculating the cumulative distribution function for the FRD and the

DRTN are also given in Chapter 7.

To fit the distributions to each SP duration histogram maximum likelihood es-

timates (MLEs) of the parameters for each distribution were obtained using the

function from the Matlab statistics toolbox: mle. This routine searches the pa-

rameter space for a minimum value of the negative log likelihood criterion. The
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7.3. DISTRIBUTION FITTING.

search is conducted using a simplex search algorithm: fminsearch that is both

robust and can find the minimum of a multiparameter function effectively (La-

couture & Cousineau 2008, Myung 2003). It is particularly useful as it allows the

user to define a custom PDF to fit to the data, enabling the fitting procedure for

PDFs that are not supported by the statistics toolbox such as truncated distribu-

tions and the DRTN. A simplex is a d-dimensional polygon with d + 1 vertices,

where d is the number of parameters to be estimated. A simplex search works

by calculating the values of the objective function at each corner of the simplex

and then reorienting the simplex around the corner with the lowest value of the

function, and either contracting or expanding. This search continues for a number

of iterations until the simplex is smaller than some minimum volume (Nelder &

Mead 1965).

The maximum number of iterations of the simplex search was set to 2·103, and the

maximum number of function evaluations allowed was set to 5·103. Termination

tolerance on the values of parameters was set to 1·10−6, and the termination

tolerance on the values of the function value was set to 1·10−6. These values

were chosen in order to give sufficient time for the simplex search to converge.

Estimates of the correlation coefficient could not be reliably retrieved for FRD

and DRTN using the simplex search to minimise maximum likelihood, as the

maximum likelihood function became “lumpy” when this parameter was included

in the search. The estimates of the correlation coefficient for these PDFs was

instead fixed to the value of the sample correlation coefficient between the SP

amplitude and SP velocity for the trial from which the SP duration histogram had

been calculated. A lower bound of zero was set for the estimation of parameters

only defined in the positive domain, such as the shape and scale parameters of

GD, the mean and shape parameters of IGD, and values of standard deviation.
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7.3. DISTRIBUTION FITTING.

An upper bound of ∞ was set for the estimation of all parameters.

After finding the MLEs for each distribution the goodness of fit was also estimated

with the chi-square criterion for the purpose of comparing the goodness of fit

between the different PDFs tested. This test is sensitive to the choice of bin sizes

and so they were matched to those bin sizes from a similar study (Trillenberg et al.

2002), where each SP duration histogram was covered by 40 bins of equal size.

The observed frequency was taken from the histogram, and the expected frequency

was calculated using the PDF of the distribution under study with the parameters

obtained from MLE. The chi-square criterion is given by: χ2 =
∫ k
i=1

(Oi−Ei)2/Ei,

where Oi is the observed frequency for bin i and Ei is the expectd frequency for

bin i. The actual χ2 statistic was calculated using the Matlab function: chi2gof

by specifying the observed and expected bin counts. This test performs poorly if

the expected frequency in any given bin is small and so chi2gof combines bins in

the tails of each distribution until there is a minimum expected frequency of 5 in

each bin.

The reduced chi-squared test statistic calculated follows the χ2 distribution with

υ = N − 1− n DOF, where N is the number of non-empty bins in the histogram

and n is the number of parameters estimated in the distribution function. The

goodness of fit of a test distribution to a single histogram can be tested by con-

sidering the null hypothesis that the data are from the tested distribution. The

null hypothesis must be rejected if χ2 > χ2
α,υ, where χ2

α,υ is the chi-square inverse

CDF and α is the level of significance. In some trials with small data sets and

highly peaked distributions there were actually more parameters to estimate than

bins, after bins in the tails have been combined. In these instances the total DOF

were reduced to zero (or less) and the null hypothesis was automatically rejected.

The number of trials for which this occured are given in the results in chapter 7.
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7.4. RESULTS OF TESTING GOODNESS OF FIT.

Testing the null hypothesis on multiple histograms simultaneously requires a

method to counter the problem of multiple testing. In a situation where it is

more interesting to retain the null hypothesis, simple Bonferroni correction is

actually non-conservative. Instead, the Holm-Bonferroni method was applied in

order to retain the power of the test procedure. The Holm-Bonferroni method

first requires that the p-values of all the null hypotheses tested are sorted in as-

cending order. The smallest p-value was compared to the value α/k, where α

was the overall significance level (type 1 error rate) and k was the number of null

hypotheses to be tested. If that p-value was less than α/k, then that hypothesis

was rejected and the process was repeated with k− 1 hypotheses, and so the next

p-value was compared to the value α/k− 1. This process was continued until the

smallest p-value could not be rejected. The remaining null hypotheses, that were

not rejected at previous steps, were all accepted.

The results of fitting one histogram with two different PDFs were compared by

taking the ratio of the two test statistics scaled appropriately by their DOF.

F = (χ2
1/υ1)(χ

2
2/υ2) follows the F distribution with υ1, υ2 DOF, where χ2

1 and χ2
2

are the test statistics derived from fitting two different distributions to a single

histogram and υ1 and υ2 are their respective DOF. The cumulative results of

fitting all histograms with two different PDFs was also compared by summing

all the values of χ2
1, χ2

2, υ1 and υ2 from each histogram tested, such that F =

(
∑
χ2
1/
∑
υ1)(

∑
χ2
2/
∑
υ2) follows the F distribution with

∑
υ1 and

∑
υ2 DOF.

7.4 Results of testing goodness of fit.

On testing the goodness of fit of PDFs from trials with small data sets and highly

peaked distributions there were some cases where there were more parameters to

estimate than there were bins, after bins in the tails had been combined. This
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occurred when testing the FRD for 5 histograms, the DRTN for 5 histograms, the

RND for 7 histograms, the RNMD for 7 histograms, the IGD for 6 histograms,

the GD for 6 histograms, and the LND for 4 histograms. These histograms were

generally from the same group of trials and the low number of bins was due to

a large number of empty bins between the mode of the distribution and extreme

outliers in the positive tail of these specific trials. In these cases, where we were

unable to determine the reduced chi-squared statistic we assumed that the model

was significantly different to the observed values. The reduced chi-squared statis-

tics were almost always greater than 1, and there was no evidence of “over-fitting”

the data.

When testing the goodness of fit to individual histograms, out of 256 trials the

FRD demonstrated a significantly good fit (Holm-Bonferroni corrected) for 244

trials, the DRTN for 245, the RNMD for 229, the LND for 207, the GD for 197,

the IGD for 181, and the RND for 114. This indicated three different groups

of PDFs, one group that gave a good fit to over 95% of the histograms of SP

duration (FRD and DRTN), one that gave a good fit to between 71% and 89%

of the histograms (IGD, GD, LND and RNMD), and one that gave a good fit to

only 45% of the histograms (RND).

When comparing the goodness of fit from different PDFs to individual histograms

only the RND produced significantly worse fits than the other PDFs. The RND

was significantly worse than the FRD in 21 cases, the DRTN in 20 cases, the GD

in 20 cases, the RNMD in 7 cases, and the LND in 7 cases.

Although there were relatively few significant differences in the goodness of fit of

different PDFs for single histograms, there were a number of significant differences

in the goodness of fit when the chi-squared values and the DOF for the individual

trials were added, and combined for testing. The table 7.1 lists the values for the
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PDF
∑
χ2

∑
f

∑
χ2/

∑
f

FRD 3597 2083 1.73
DRTN 3650 2088 1.75
LND 5731 2654 2.16
GD 6538 2914 2.24
RNMD 3843 1673 2.30
IGD 6842 2615 2.62
RND 17297 2107 8.21

Table 7.1: Table of the reduced chi-squared statistics for goodness of fit tests be-
tween PDFs for multiple histograms.

∑
χ2 is the sum of the reduced

chi-squared statistics from all histograms tested, for each PDF.
∑
f

is the sum of the DOF from all histograms tested, for each PDF.

∑
χ2,

∑
f , and

∑
χ2/

∑
f .

The goodness of fit of the FRD and the DRTN were compared to the goodness of

fit of the other PDFs. There was no significant difference in goodness of fit between

FRD and DRTN (F2083,2088 = 0.988, p = 0.39), but FRD was a significantly better

fit than the LND (F2083,2654 = 0.799, p = 3.41 · 10−8), GD (F2083,2914 = 0.767, p =

4.43 · 10−11), RNMD (F2083,1673 = 0.755, p = 5.88 · 10−10), IGD (F2083,2615 = 0.657,

p = 8.60 · 10−24), and RND (F2083,2107 = 0.211, p = 6.09 · 10−252). The DRTN was

a significantly better fit than the LND (F2088,2654 = 0.809, p = 1.62 · 10−7), GD

(F2088,2914 = 0.776, p = 2.86 · 10−10), RNMD (F2088,1673 = 0.765, p = 3.28 · 10−9),

IGD (F2088,2615 = 0.665, p = 1.34 · 10−22), and RND (F2088,2107 = 0.214, p =

1.55 · 10−248).

The goodness of fit of the remaining PDFs were also compared. The LND was

a significantly better fit than the IGD (F2654,2615 = 0.825, p = 4.21 · 10−7) and

the RND (F2654,2107 = 0.266, p = 1.13 · 10−221), but not the GD (F2654,2914 =

0.963, p = 0.16) nor the RNMD (F2654,1673 = 0.947), p = 0.11). The GD was a
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significantly better fit than the IGD (F2914,2615 = 0.857, p = 2.54 · 10−5) and the

RND (F2914,2107 = 0.276, p = 1.68 ·10−222), but not the RNMD (F2914,1673 = 0.985,

p = 0.37). The RNMD was a significantly better fit than the IGD (F1673,2615 =

0.869, p = 8.18·10−4) and the RND (F1673,2107 = 0.322, p = 2.80·10−149). The IGD

was a significantly better fit than the RND (F2615,2107 = 0.322, p = 2.65 · 10−163).

7.5 Discussion of results.

The Markov model predicts that the distribution of SP duration is a ratio dis-

tribution of two random variables Si and Vi. The results of this analysis give

compelling evidence to support this hypothesis.

The results appear to indicate three groups of PDFs that each have a different level

of goodness of fit for the histograms of SP duration. The group with the poorest

fit consisted solely of the RND, which was significantly different to between 55%

of the histograms tested. The second group consisted of the IGD, GD and LND,

and represented PDFs that were significantly different to approximately 10% to

30% of histograms. The third group consisted of the DRTN and the FRD which

were significantly different to less than 5% of histograms.

Comparing the goodness of fit from different PDFs to individual histograms, re-

vealed only significantly worse fits from the RND than with other distributions.

However, comparing the goodness of fit from different PDFs using the combined

values for the reduced chi-squared statistic and DOF revealed a number of sta-

tistically significant differences. While the goodness of fit of the FRD and DRTN

were not significantly different to each other, they were both significantly better

fits than the distributions proposed by the accumulator models.

It is often reported that the distribution of saccade latency and more generally

reaction times, appear to have the same characteristic shape, that of a positively
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skewed distribution. It is not the intention of this analysis to declare that the FRD

or the DRTN are the best distributions for describing all intersaccadic interval

distributions, but rather that they are representative of the distribution of the

SP duration specifically. There is no a priori reason to believe that because the

distribution of saccadic latency to a visual target appears to be best described by

one distribution (such as the RND described by the LATER process), that the

same distribution necessarily describes all intersaccadic intervals.

The relationship proposed in the Markov model between SP velocity and SP du-

ration, as defined by the constraint in eq. 5.3, is the only nonlinear component

that we have allowed for during the development of the model. This is because

PCA is only capable of analysing the linear relationships (correlations) between

parameters. The analysis performed here is important in determining the validity

of this imposed constraint, and indicates that not only do the distributions pre-

dicted by the Markov model provide a good fit to the SP duration distribution,

they are also a significanlty better fit than a number of other PDFs that have

been proposed to fit this distribution.
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Chapter 8

Proposal for a cost model of OKN: does

OKN minimise the error in tracking a

moving target?

This chapter proposes that mean SP velocity is optimal for some function given the

constraints of the Markov model, and despite the apparently low gains observed

in the data. I investigate three possible cost functions that the system might

attempt to minimise: the cost of retinal slip, the cost of saccadic blind time, and

the cost of error in tracking a moving target. We solve the problem of finding the

optimal mean SP velocity that minimises the proposed functions, and illustrate

that the observed mean SP velocity is near optimal for minimising the cost of

error in tracking a moving target.

8.1 The cost of retinal slip.

The OKR is generally considered a reflex whose primary aim is to minimise retinal

slip. If this is the case then we would expect the mean SP velocity to remain close

to the OKN stimulus speed, in order to keep retinal slip close to zero. We can

propose a cost function to describe this, where cost is zero when retinal slip is zero

and the cost increases linearly as retinal slip increases in magnitude. We define

192



8.1. THE COST OF RETINAL SLIP.

this cost function:

JRS1 = α
∣∣VS − V ∣∣ (8.1)

where VS is the stimulus speed and V is the mean SP velocity.

However, we might suppose that the reason that OKN is attempting to minimise

retinal slip is to maximise the contrast of the visual image. As discussed in chapter

2, the peak contrast sensitivity for a stimulus of a given spatial frequency is non-

zero, and the contrast sensitivity function decays approximately logarithmically

at speeds greater than the optimal value. We assume that the system is either

attempting to maximise the contrast sensitivity for the spatial frequency content

of the visual scene, or that it is attempting to maximise the contrast of high spatial

frequency content.

The width of the bars used for the OKN stimulus in experiment 1 were 5◦. On

a log-log plot a function of the form y = axb will appear as a straight line in

which b will be the slope of the line and a will be the y value corresponding to

x = 1. Approximating from fig. 2.1 (pg. 8) we find that the slope of the decaying

contrast function as image motion increases is ≈ −1.5, and the x = 1 intercept is

≈ 9000. The slope of the decay as image motion decreases is ≈ 0.5, and the x = 1

intercept is ≈ 30. The intercept of these two lines is at [
√

300, 30(3000.25)], thus

the velocity at the peak of the contrast sensitivity curve is ≈ 17◦/s. This seems

quite a good match to the peak on the contrast sensitivity curve for a bar of 2.9◦

so is a slightly conservative estimate for bars with a width of 5◦(fig. 2.1). As with

our cost function for retinal slip, we set zero cost to be at the retinal slip speed

that gave the optimal contrast. We define this cost function as:
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JRS2 = α


30(3000.25)− (30

∣∣VS − V ∣∣0.5) if
∣∣VS − V ∣∣ < √300

0 if
∣∣VS − V ∣∣ =

√
300

30(3000.25)− (9000
∣∣VS − V ∣∣−1.5) if

∣∣VS − V ∣∣ > √300

(8.2)

If the system is attempting to maximise the contrast of high spatial frequency

content we would anticipate that the optimal retinal slip speed would be much

closer to zero. We extrapolate from fig. 2.1 a second contrast sensitivity function

that has an intercept at [
√

10, 50(100.25)], thus the velocity at the peak of the

contrast sensitivity curve is ≈ 3◦/s. We define this cost function as:

JRS2 = α


50(100.25)− (50

∣∣VS − V ∣∣0.5) if
∣∣VS − V ∣∣ < √10

0 if
∣∣VS − V ∣∣ =

√
10

50(100.25)− (500
∣∣VS − V ∣∣−1.5) if

∣∣VS − V ∣∣ > √300

(8.3)

8.2 The cost of saccadic blind time.

In chapter 6 we demonstrated the effect that SP velocity has on QP duration

and SP duration, and illustrated how increasing mean SP velocity resulted in a

logarithmic increase in the mean saccadic blind time. Harris (1995) investigated

the possibility that saccadic undershoot is an economical strategy for maximising

the period of clear vision, by minimising saccadic flight time. Here, we consider

the possibility that the OKN system is also attempting to maximise the period of

clear vision by minimising the duration of QPs. We assume a mean QP duration

of zero has zero cost, and define the cost function by substituting eq. 6.17 into
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eq. 5.10:

JMS = β18.5
∣∣−0.17V − 0.79s̄+ 0.41q̄

∣∣0.54 (8.4)

We take s̄ and q̄ to be the mean values of ŝ and q̂ estimated from all forty trials in

experiment 1. We do not include estimates of ŝ and q̂ from experiments 2 and 3

for simplicity, as the spatial frequency content of the stimulus in these trials was

variable, and we intend to investigate only the mean SP velocity that is optimal

for a given stimulus speed and cost function. We found the values of s̄ and q̄ to

be 0.925 and -2.635 respectively.

8.3 The cost of target error.

In chapter 2 we discussed the possibility that foveal tracking plays an important

part in maintaining OKN gain. Here, we consider the case where a visual target

is moving at a constant speed over a period of time Ti, from a position p to q

in space (fig. 8.1a), and an eye movement attempts to follow the target with an

initial eye position error and a constant (linear) eye velocity. We define the eye

movement start position as x and the end position as y, this is illustrated in

figure 8.1b, where x 6= p and y 6= q. It is possible to consider the relative position

of the eyes to the target by subtracting the value of p from the start position of

both the target movement and the eye movement, and the value of q from the

end position of both movements, such that we consider the relative position of

the target as zero (fig. 8.1c). We then consider the total positional error (TPE)

over the period of the movement to be the absolute relative position of the two

movements integrated over the period of the movement (fig. 8.1d).
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Figure 8.1: An illustration of (A) a target moving at constant speed from posi-
tion p to position q, and (B) an eye movement attempting to follow
the moving target at a constant speed, but starting from a differ-
ent position to the target. (C) Relative position measured over the
course of the movement is defined as zero for the target movement,
and so (D) the relative start position of the eye movement is x− p
and the relative end position of the eye movement is y − q. The
shaded area between these two lines represents the TPE (total po-
sitional error) over the period of the movement.
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There are six fundamentally different patterns of eye movements that can occur in

tracking a moving target when we consider this arrangement. The first, is perfect

tracking, where the saccade to the target is exact and the velocity of the following

movement is also exact (fig. 8.2a). The second, is velocity error only, where the

saccade to the target is exact but the velocity of the following movement is not

exact (fig. 8.2b). The third, is positional error only, where the saccade to the

target is not exact but the velocity of the following movement is (fig. 8.2c). The

fourth, is positional error with non-compensating velocity, where the saccade to

the target is not exact and the velocity error brings the eyes even further from

the target over the duration of the movement (fig. 8.2d). The fifth, is positional

error with compensating velocity, where the saccade to the target is not exact

and the velocity error brings the eyes closer to the target over the duration of

the movement (fig. 8.2e). The sixth, is positional error with over-compensating

velocity, where the saccade to the target is not exact and the velocity error brings

the eyes back to the target during the movement but then continues past the

target for the remainder of the movement (fig. 8.2f).

We can consider this movement to be a QP made to a target position and the

following SP. We define the cost due to not remaining on target during the SP to

be proportional to the positional error between the eye and the target, integrated

over the course of the SP. We assume that the velocity of the target is always

equal to the OKN stimulus speed, and that eye velocity is always constant during

a SP. In the case where the trajectory of the eye and the trajectory of the target

do not cross this is given by:

JTPE = γ

∣∣∣∣∫ t0+Ti

t0

(VSt+ pi)− (V t+ xi)dt

∣∣∣∣ (8.5)

197



8.3. THE COST OF TARGET ERROR.

Figure 8.2: Illustration of six different patterns of eye movements when track-
ing a moving target, which generate different patterns of positional
error. (A) The eyes follow the target exactly. (B) The eyes start in
the correct position but over the course of the movement drift away
from the relative position of the target. (C) Eye position starts with
an initial error, and over the course of the movement they move at
the same speed as the target. (D) Eye position starts with an initial
error, and over the course of the movement they drift further away
from the relative position of the target. (E) Eye position starts with
an initial error, and over the course of the movement drift closer to
the relative position of the target. (F) Eye position starts with an
initial error, and over the course of the movement drifts passed the
relative position of the target.The shaded area between these two
lines represents the TPE over the period of the movement.
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where γ is the proportional cost of the TPE, t0 is the time when the movement

begins, Ti is the duration of the movement, VS is the stimulus speed, pi is the

start position of the target during that movement, V is the eye velocity during

that movement, and xi is the start position of the eye during that movement.

In the case where the trajectory of the eye and the trajectory of the target do

cross this is given by:

JTPE = γ

(∣∣∣∣∣
∫ (x−p)/(VS−V )

t0

(VSt+ pi)− (V t+ xi)dt

∣∣∣∣∣
+

∣∣∣∣∫ t0+Ti

(x−p)(VS−V )

(VSt+ pi)− (V t+ xi)dt

∣∣∣∣) (8.6)

8.3.1 Constraints of the Markov model.

We examine the cost due to positional error numerically by simulating 2.5·105

OKN cycles, consisting of a QP followed by a SP, and we make some assumptions

about each OKN cycle here, based on the Markov model that we have developed.

We will consider a mean position from which all QPs are made:

y0 = 0.017V + 1.78s̄+ 1.28q̄ (8.7)

where y0 is the average QP start position. We assume that a target, with velocity

VS has a start position defined by the difference between y0 and the mean QP

amplitude defined by the Markov model:
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pi = y0 − (−0.164V − 0.389y0 + q̄) (8.8)

The QP amplitude during each cycle is given by:

Qi = pi − y0 + εq(i) (8.9)

where εq is a normal random variable with zero mean, and a standard deviation

σq that varies from cycle to cycle (generated with the Matlab function: randn).

This sequence of variables is not strictly independent and identically distributed

due to signal dependent noise causing the standard deviation to change during

each cycle such that σq(i) is proportional to Qi:

σq = 0.23(pi − y0) (8.10)

The start position of each SP is defined as:

xi = y0 −Qi (8.11)

We constrain the SP amplitude to be always positive, and define it as:
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Si = −0.282xi + 0.127V + s̄+ εs(i) if− 0.282xi + 0.127V + s̄+ εs(i) ≥ 0

Si = 0 if− 0.282xi + 0.127V + s̄+ εs(i) < 0

(8.12)

where εs is a normal random variable with zero mean, and a standard deviation

σs that varies from cycle to cycle (generated with the Matlab function: randn).

This sequence of variables is not strictly independent and identically distributed

due to signal dependent noise, as σs is proportional to the Si such that:

σs = 0.23Si (8.13)

We define the SP duration as:

Ti = Si/V (8.14)

In this definition of the model we have not added a constant component of noise

to either σq or σs. However, we shall investigate the effect of changing the level

of constant noise in the results.

We then simulate the 2.5·105 OKN cycles and calculate the cost JTPE for each

cycle using equations 8.5 and 8.6, and find the mean cost across all SPs in order

to calculate our cost function for JTPE
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8.4 Cost model results.

In order to determine if SP velocity is optimised for a given cost function we first

consider the observed values of SP velocity in experiment 1, where the spatial

frequency of the stimulus was not changed. The mean values of SP velocity were

8.6 (SD=1.2), 14.4 (SD=3.2), 18.5 (SD=4.9) and 20.7◦/s (SD=8.1) when stimulus

speeds were 10, 20, 30 and 40◦/s respectively. Note that retinal slip increases with

stimulus speed such that mean SP gain was 0.86 (SD=0.12), 0.72 (SD=0.16), 0.62

(SD=0.16), and 0.52 (SD=0.24) at each speed respectively. We now investigate

whether the mean SP velocity that minimises each cost function is equivalent to

the observed values of SP velocity.

The cost functions JRS1, JRS2 and JRS3 are illustrated in fig. 8.3 for stimulus speeds

of 10, 20, 30 and 40◦/s when α = 1. It is quite clear that for each individual cost

function, the optimal value of mean retinal slip will remain the same regardless

of stimululs speed. For JRS1 this value is zero, and for JRS2 and JRS3 it is an

absolute value of retinal slip that is equivalent to the image motion that produces

peak contrast sensitivity: ≈ ±17◦/s for JRS2, and ≈ ±3◦/s for JRS3. We also note

that the optimal value of SP velocity for minimising JRS2 at a stimulus speed of

10◦/s is much higher than the stimulus speed. As the optimal value of retinal

slip is ≈ ±17◦/s for minimising this cost function, the lower value of SP velocity

that would minimise cost would actually be negative, and made in the opposite

direction to stimulus motion. In the data we find that retinal slip increases with

stimulus speed and does not remain the same, and certainly does not remain at

zero. Therefore, the observed mean SP velocity is not optimal for minimising

JRS1, JRS2 or JRS3.

The cost function JMS is illustrated in fig. 8.4. As stimulus speed does not effect
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Figure 8.3: Illustration of the cost functions (A and B) JRS1 (retinal slip), (C
and D) JRS2 (negative contrast sensitivity for low spatial frequency
bars), and (E and F) JRS3 (negative contrast sensitivity for high
spatial frequency content) as a function of mean SP velocity, for
α = 1. For clarity, left panels illustrate the cost function at stimu-
lus speed 10◦/s, and right panels illustrate the cost function at all
stimulus speeds. Bold line, 10◦/s; dotted line, 20◦/s; dash-dot line,
30◦/s; dashed line, 40◦/s. Circles illustrate minimum cost. Where
the minimum cost occurs at two different values of mean SP velocity
we mark the function at the lower value of SP velocity for clarity.
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Figure 8.4: Illustration of the cost function JMS as a function of mean SP ve-
locity for β = 1. Stimulus speed has no effect on QP duration
independent of changes in SP velocity, so all stimulus speeds pro-
duce the same cost function and the same minimum cost. Circle
illustrates minimum cost.

QP duration independently of changes in SP velocity, all stimulus speeds produce

the same cost as a function of SP velocity. The mean SP velocity that minimises

this cost function is zero. In the data we find that mean SP velocity is always

above zero, so the observed mean SP velocity is not optimal for minimising JMS.

The results of these analyses are not surprising, but are useful in illustrating

that the observed mean SP velocity is not optimal for minimising these plausible

cost functions. We also investigate the possibility that SP velocity is optimal

for minimising a combination of these cost functions. Figure 8.5 illustrates the

combination of the cost functions JMS + JRS1 for stimulus speeds of 10◦/s and

40◦/s, and for different values of β. Across the range of values tested we find

that for each stimulus speed there are two possible optimal values of SP velocity.

Both of these values represent the optimal value of SP velocity for minimising

each individual cost function without considering the other. It appears that the

optimal value of SP velocity in this case will be determined by the relative weight

of each cost function, such that if β is above a critical value then the optimal

value will be determined solely by JMS and if β is below that critical value then

the optimal value will be determined solely by JRS1. As we have already noted
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Figure 8.5: Illustration of the cost functions (A) JMS for α = 1000 and (B)
JMS + JRS1, JMS , and JRS1 (from top to bottom) for α = 1 and
β = 1000. (C) JMS + JRS1 for α = 1 and β =500, 750, 1000,
1250 and 1500 (from bottom to top) for stimulus speed 10◦/s. (D)
JMS + JRS1 for α = 1 and β =500, 750, 1000, 1250 and 1500 (from
bottom to top) for stimulus speed 40◦/s. Bold lines, JMS + JRS1;
solid lines, JMS ; dotted line, JRS1; Circles, minimum cost.
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Figure 8.6: Illustration of the cost functions (A) JMS for α = 1000 and (B)
JMS + JRS3, JMS , and JRS1 (from top to bottom) for α = 1 and
β = 2000. (C) JMS + JRS1 for α = 1 and β =1000, 2000 and 3000
(from bottom to top) for stimulus speed 10◦/s. (D) JMS + JRS1
for α = 1 and β =7000, 8000 and 9000 (from bottom to top) for
stimulus speed 40◦/s. Bold lines, JMS + JRS1; solid lines, JMS ;
dotted line, JRS1; Circles, minimum cost.

that the observed mean SP velocity is not optimal for minimising either of these

cost functions then it cannot be optimal for minimising the sum. We find the

same result when we attempt to minimise the combination of the cost functions

JMS + JRS3 (fig. 8.6)

The cost functions for JTPE are illustrated in fig. 8.7 for stimulus speeds of 10, 20,

30 and 40◦/s. Here, we find some interesting results. The optimal values of mean

SP velocity for minimising this function are 8.9, 15.4, 20.9 and 25.7◦/s, which

not only indicate an increasing retinal slip, but a decreasing gain, with stimulus

speed. The values of gain are 0.89, 0.77, 0.70 and 0.64 for stimulus speeds of 10,
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Figure 8.7: Cost function (A and B) JTPE (tracking a moving target) for γ = 1.
For clarity (A) illustrates the cost function at stimulus speed of
10◦/s, and (B) illustrates the cost function at all stimulus speeds.
Bold line, 10◦/s; dotted line, 20◦/s; dash-dot line, 30◦/s; dashed
line, 40◦/s. Circles illustrate minimum cost.

20, 30 and 40◦/s respectively. This pattern is very similar to that observed in the

data (0.86, 0.72, 0.62 and 0.52). Although the values of gain are slightly higher

than observed, this cost model does much better at predicting the observed SP

velocity, and the corresponding increase in retinal slip with increasing stimulus

speed.

If we examine the shape of the cost functions we can see that when SP velocity is

low they are dominated by a hyperbolic component which appears to result from

an increased SP duration, that will tend to∞ as SP velocity→ 0. As SP velocity

increases the cost function is dominated by a gradual increase which appears to

result from an increase in targetting error. This increase in targetting error is due

to a combination of SP velocity becoming faster than stimulus velocity and the

targetting error on QPs increasing due to SP velocity increasing the magnitude of

QPs. The minimum cost falls between these two extremes in a basin that becomes

more shallow with increasing stimulus speed. This is an interesting result in itself,

as if the OKN system was attempting to “search” for an unreferenced optimum

SP velocity it may wander further along a more shallow basin than a more steep
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Figure 8.8: Cost function JTPE (tracking a moving target) for γ = 1 and stim-
ulus speed 40◦/s. (A) Adding contant noise on QP amplitude with
a standard deviation of 1, 2, 3 and 4◦/s (represented by lines from
bottom to top) and multiplicative noise with a standard deviation
of 0.23|Qi|. (B) Adding multiplicative noise on QP amplitude with
a standard deviation of 0.1, 0.2, 0.3 and 0.4|Qi| (represented by
lines from bottom to top), and no constant noise. Circles illustrate
minimum cost.

basin. This would result in a more variable SP velocity for higher stimulus speeds.

We have also examined the effect that adding and increasing constant noise to

the QP amplitude has on the cost function (fig. 8.8). It appears that increasing

the constant noise component changes the shape of the cost function such that

the optimum value of SP velocity decreases, as does increasing the multiplicative

noise component, but with some subtle differences as seen in the figure.

8.5 Discussion of results.

These results indicate that the observed SP velocity is not optimal for minimising

retinal slip or maximising visual contrast. The observed retinal slip increases with

stimulus speed but the optimal retinal slip for each of these cost functions always

remains the same. The results also demonstrate that SP velocity is not optimal for

minimising the duration of QPs, as this cost model always predicts a SP velocity

of zero in order to make QPs as small as possible (and thus shorter in duration
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via the main sequence). Even when these cost functions are combined they are

unable to explain the low values of SP gain observed in terms of a minimising

retinal slip or maximising visual contrast.

The most interesting results are from the cost function that models OKN as

optimising SP velocity to minimise the TPE in tracking a moving target over

the course of a SP. It is capable of predicting optimum values of SP velocity

that are very near the observed mean SP velocity found over a range of stimulus

speeds, from experiment 1. We have also found that increasing the constant and

multiplicative noise components in the QP amplitude causes the shape of the cost

function to change, such that the optimum SP velocity decreases. This raises the

interesting possibility that some participants may have a lower gain than others

due to an increased amount of noise in the QP amplitude.
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Chapter 9

Summary and conclusion.

The primary aim of the series of research presented in this thesis was to demon-

strate the remarkable variability of individual OKN parameters, and to find an

underlying structure in the relationships between OKN parameters that could be

used to develop a mathematical model to describe how and why OKN behaves as

it does.

9.1 Summary of findings.

In chapters 4 to 8 I have presented a range of results, both from analysis of eye

movement data recorded from participants during OKN stimulation, and from

extensive investigation of proposed models of the OKN system.

The results of RM-ANOVA performed on eye movement data during OKN stim-

ulation illustrate that the most obvious effects on OKN parameters were from

stimulus speed, which had a significant main effect on almost all parameters. The

only parameters tested that were not affected were the standard deviation of SP

gain, and the mean values of the SP start and end positions.

An interesting finding was that the spatial frequency and the type of stimulus

pattern used also had a main effect on the mean SP velocity. Increasing the

spatial frequency of the stimulus, or using a random grid pattern rather than a

square wave pattern, both resulted in an increase in SP velocity such that gain
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was increased and retinal slip was reduced. A related result was found in a study

by Wester et al. (2007) where the maximum stimulus velocity at which an OKN

response could be elicited in visually impaired patients was negatively related to

the log spatial frequency of the stimulus. Also, Watanabe et al. (1994) observed

differences in the OKN response using two different types of stimulus patterns (a

wide interval stripe and a random dot pattern), but in their study no attempt

was made to control patterns for their spatial frequency content.

One possibility for the dependence of SP velocity on the spatial frequency of the

stimulus is that the peak contrast sensitivity for low spatial frequency gratings

occurs at increased levels of retinal slip (Burr & Ross 1982). Therefore, when

viewing an OKN stimulus with a low spatial frequency grating, increased levels of

retinal slip would be allowed without adversely effecting the contrast of the image.

The effect of changing the stimulus pattern is more difficult to explain, as the

spatial frequency content of the image constantly changes but the average spatial

frequency content remains the same. However, it is an important consideration

for OKN in the natural environment, where spatial frequency content is likely to

change during locomotion. I believe that in the case that low spatial frequency

content of the visual stimulus is interspersed with high spatial frequency content,

it is better to maintain minimal retinal slip in order to preferentially maximise

the resolution of the high spatial frequency content.

The most unexpected result found in the data was that SP velocity randomly

fluctuated between SPs to such a remarkable degree that during any given trial

the SP gain might reach values much higher or much lower than the mean gain.

The degree of the variability in SP velocity over long periods is rarely reported,

and the study by Kolarik et al. (2009) is the only study that I am aware of

that has investigated the variability of SP velocity over such a timescale. In our
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investigation we have found a significant main effect of stimulus speed on the

standard deviation of SP velocity and retinal slip, in agreement with the results

of Kolarik et al. (2009) who illustrated that variation in SP velocity between SPs

was a linear function of stimulus speed. One possible explanation for this is that a

variable gain in the neural pathway that generates OKN (e.g. as part of a forward

or feedback loop) could lead to multiplicative noise that is dependent on the

stimulus speed. A variable gain element shared by both the VOR and the OKR

has been proposed to explain changes in steady state OKN gain after long term

VOR adaptation in cats (Demer 1981), and VOR pathology in humans (Baloh &

Demer 1993), although this variable gain element is thought to adapt over long

periods of time rather than fluctuate from cycle to cycle. Another possibility

results from our proposed cost model that the OKN system is searching for an

unreferenced optimum value of SP velocity from cycle to cycle, and at higher

stimulus speeds there is a wider basin to search resulting in a wider range of SP

velocity.

The results of PCA performed on OKN parameters illustrates how the eigenvectors

and eigenvalues of the underlying principal components contribute to the correla-

tion of OKN parameters within and across adjacent OKN cycles, and indicate that

the remarkable variability in OKN parameters observed in the different correlation

matrixes of OKN parameters between trials is the result of varying eigenvalues

and not varying eigenvectors. Eigenvectors, and thus the coefficients of the linear

relationships between parameters, remain predominantly similar across cycles and

even across participants and stimulus conditions.

With these results and the results of linear regression I have developed a linear and

stochastic model of OKN with three uncorrelated sources of noise affecting the

SP velocity, the threshold for triggering a QP, and the amplitude of the returning
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QP during each OKN cycle. The SP velocity was determined by the SP velocity

in the cycle before, and not on the SP velocity during any previous cycles, i.e. it

was a 1st order Markov process. This explained the variability in SP velocity from

SP to SP, as SP velocity wanders in a Markov fashion often far above or below

the mean gain. However, this behaviour is difficult to reconcile with the common

model of OKN as a deep closed-loop feedback servomechanism. The threshold for

triggering a QP was determined by the start position of the SP and the SP velocity

during that cycle. These results indicate that a position threshold is not enough

to explain when QPs are triggered and that there is also a velocity component to

the trigger, as similarly observed in vestibular nystagmus (Lau et al. 1978) and as

indicated by the correlation between SP amplitude and SP velocity observed by

Watanabe et al. (1994). The amplitude of the returning QP was determined by

a linear relationship with the start position of the QP, as also observed in turtles

(Balaban & Ariel 1992), and the SP velocity during that cycle.

Solving the equations of the system in order to determine the autonomous update

dynamics for each parameter demonstrated that all the OKN parameters analysed

depended on their value only in the previous cycle, and also on the SP velocity

in the previous cycle. The OKN parameters were all correlated with each other

through a common dependence on SP velocity and the three noise sources of the

S-, Q-, and V-components. This has important consequences for the behaviour of

OKN, as it indicates that SP velocity does not only contribute to the compensatory

SPs of OKN, but also the QP component.

The investigation into how QPs were affected by SP velocity illustrated that sac-

cadic blind time was a function of SP velocity, and that there was a position

towards which QPs were targetted that was also dependent on SP velocity. QPs

to this target appear to consistently undershoot with a saccadic gain as low as
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0.38. While there is a known undershoot bias for saccades to visual targets, the

undershoot is considered to be approximately 10% of the target distance and does

not explain why QPs would undershoot their target to such a degree. One possi-

ble explanation is that the visual system is not able to fully compensate for the

movement made away from the target location during short latency SPs, as has

also been observed when memory guided saccades were made during a period of

vestibular rotation (Daye et al. 2010). However, it has also been proposed that

the saccadic undershoot bias minimises saccadic flight time, as smaller magnitude

saccades would have a smaller end point variance due to signal dependent noise in

the motor command and would thus require fewer corrective saccades in total, and

a greater amount of signal dependent noise would lead to this optimal undershoot

bias being even greater (Harris 1994). In this case low saccadic gain occurs due to

a speed-accuracy tradeoff, and the undershoot is even larger for QPs than visually

guided saccades possibly due to an even greater amount of signal dependent noise

in the motor command for QPs. Neither one of these possibilities excludes the

other, so it is possible that both a lack of compensation for the SP movement and

a saccadic undershoot bias are in effect.

Comparing the magnitude of SP and QP amplitudes with the standard devia-

tion of the S and Q-components revealed that the noise in both components was

linearly proportional to the magnitude of both movements i.e. signal dependent

noise was present in QPs and SPs. The presence of signal dependent noise in

the Q-component was not unexpected as it is well-known that larger amplitude

saccade to static visual targets have larger errors (van Beers 2007). However, it

was surprising that the constant of proportionality was so high. Examining the

residuals of the S, Q, and V-components revealed that the noise processes were

not all strictly Gaussian, but had a tendency to be slightly leptokurtic. It is not
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entirely clear what mechanism generates this noise but the excess kurtosis found

in the residuals may be a product of the signal-dependent noise process.

An investigation of the transient response of OKN parameters predicted by the

model illustrated that both SP velocity and the start position of SPs have a fast

transient response, taking just over 2 cycles to reach 63% of the simulated steady

state value, a result that has been illustrated empirically by Abadi et al. (2005).

The results of fitting SP duration histograms with a range of PDFs found that two

possible PDFs predicted by the Markov model (the FRD and DRTN) gave very

good fits to the data. Not only that, but they could give significantly better fits to

the data than any other distribution tested when all histograms were combined,

and were not significantly different to each other. The RND gave significantly

worse fits to the data than all other PDFs tested, even to individual histograms

in agreement with a similar study performed by Trillenberg et al. (2002), and I

do not recommend using the RND to fit the histograms of OKN SP duration in

any future models.

Crucially, the significantly good fit of the two ratio distributions to the histograms

of SP duration is in good agreement with the hypothesis that SP duration is

determined by the ratio of a variable amplitude threshold and variable SP velocity.

This in stark contrast to most studies on OKN that have modelled or assumed

that SP duration is a fundamental variable of OKN and that it is determined

by some interval generator process such as the accumulator models tested in this

thesis (Balaban & Ariel 1992, Carpenter 1993, 1994, Anastasio 1996). While

these accumulator models have been successful in describing the distribution of

voluntary saccade latency to stationary targets (Carpenter 1999, Smith & Ratcliff

2004) during OKN the eyes are primarily in a state of continuous motion in the

direction of optic flow and as QPs apparently act to redirect the eyes to a more
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central location it seems likely that the threshold for triggering a QP is dependent

on the position of the eyes in the orbit, as described by the Markov model.

The results of our proposed cost model of OKN have been very interesting, al-

though it is a preliminary model and still requires more thorough testing. SP

velocity does not appear to be optimal for minimising retinal slip or QP duration,

nor does it appear to be optimal for maximising contrast sensitivity. The results

of the cost analysis indicate that SP velocity is optimal for minimising the po-

sitional error in tracking a moving target integrated over the course of each SP,

indicating that foveal tracking plays a vital role in OKN and that positional error

may play a more important part than previously considered in determining SP

velocity.

Miles (1998) has noted a functional distinction between the rotational and trans-

lational VOR, as a single rotational eye movement cannot stabilise the entire

visual field on the retina during translational motion whereas a single rotation

of the eyes can stabilise the entire visual field during rotational motion. As sta-

bilisation of the entire visual field is not possible, it has been proposed that the

translational VOR preferentially stabilises images on the fovea and the amplitude

of translational VOR eye movements depends on the gaze direction (Tomko &

Paige 1992, Angelaki & Hess 2001), which appears to agree with this hypothe-

sis. It has also been previously observed that the 3D kinematic properties of the

OFR are similar to those of smooth pursuit and the translational VOR, which

exhibit an eye-position dependent torsional component as predicted by Listing’s

law (Adeyemo & Angelaki 2005). The kinematics of rotational and translational

OKN also appear to differ in the same manner as the kinematics of rotational and

translational VOR (Tian et al. 2007) so it seems plausible that translational OKN,

much like the translational VOR, preferentially stabilises images on the fovea as
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the entire visual field cannot be stabilised during pure translational motion.

It is important to consider that positional error is of significant importance in

primates due to the existence of the fovea, which is capable of resolving much

higher spatial frequency images than the peripheral retina. In animals with less

retinal specialisation, the significance of positional error becomes much less pro-

found as all areas of the retina possess similar visual acuity. Indeed, it is possible

that the differences in the distribution of retinal cells may account for some of the

differences in the gain and time course of OKN in different species.

While the classical systems engineering approach to investigating OKN often ig-

nores the QP component of OKN and considers only the neural correlates of the

velocity signal to be important in determining SP gain, the results of this series

of investigations indicates that accounting for positional error may be crucial in

effectively modelling SP gain in humans.

9.2 Future research.

One concern of the Markov model is that the PCA methods used to develop it

were only designed to find components that are linear combinations of OKN pa-

rameters. However, nonlinear generalisations of PCA are available (e.g. Gorban

et al. (2007)), and could be applied in a similar manner to the methods used

in this thesis in order to determine if the “principal curves” are the same as the

principal components. Nonlinear extensions to the model might allow the rela-

tionships between OKN parameters to be investigated in more detail, such as the

proposed hyperbolic relationship between SP velocity and duration, or to explain

complications of the model.

One complication does occur with the model when SP velocity reaches (or begins)

at a value of 0◦/s, and causes the SP duration to become infinite. In the Markov
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model, SP velocity updates only after each QP, but if the value of SP velocity

reaches 0◦/s an infinitely long duration SP would occur and SP velocity would

be unable to update. There are three possible solutions to this complication.

One possibility is that another system, outside the scope of this model, generates

a new QP in order to allow the SP velocity to update. This is not entirely

without evidence, as Cheng & Outerbridge (1974) found that histograms of SP

duration can range in shape from unimodal to multimodal form, although we

did not observe this in our data. A second possibility comes from considering

possible nonlinear SPs, where SP velocity is allowed to update in time and not

just between SPs. This is certainly very likely at the very start of OKN stimulation

where it appears the ocular following response begins within 80ms, without first

generating a QP. A third possibility is that SPs never reach a SP velocity of 0◦/s.

This is the constraint that is currently implemented in the model (eq. 5.8), but

it is unsatisfactory as extremely long SPs can still occur. An investigation of

the nonlinearity of SPs would clarify whether SP velocity updates in real time,

between cycles, rather than simply settling to a new SP velocity after every QP.

While SPs are classically considered linear, variation in eye velocity during SPs

has been reported (Kolarik et al. 2009).

It is also necessary to consider the type of OKN stimulus used. In the natural

environment visual scenes are complicated, and do not have constant spatial fre-

quency content, unlike the alternating black and white bars of the typical OKN

stimuli used in these experiments. A necessary step in verifying the Markov model

would be to compare how well it predicts the behaviour of OKN when different

patterns of OKN stimuli are used and different instructions given to participants.

A comparison of the values of the constants a, b, c and d from the model, when ap-

plied to OKN parameters recorded while participants are viewing different types
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of stimulus patterns would further verify the results presented in this thesis. Of

particular interest to this author is whether a pure retinal slip signal, using limited

lifetime dot stimuli, has an effect on the Markov model parameters or predictive

power of the cost model.

The approach that I have taken in this thesis could be applied to other forms of

physiological nystagmus such as the vestibular nystagmus of the VOR, or even

pathological forms of nystagmus such as congenital or acquired nystagmus. The

cause of congenital nystagmus is still not currently known, and an understanding

of the threshold at which QPs are triggered, and to where they are targetted,

could feasibly help us understand more about the mechanism that causes this

condition. However, the SPs of pathological nystagmus are notably non-linear,

specifically they accelerate in congenital nystamgus and decelerate in manifest

latent nystagmus (Abadi & Bierre 2002). It would be necessary to use non-linear

methods to analyse these SPs adequately, or at the very least to transform the

data into parameters where linear methods might be effective.

9.3 Conclusion.

In this thesis I have examined the loading patterns of components extracted from

OKN parameters and found that only parameters from within a single cycle of

OKN load highly on to any given component, with no evidence for long term cor-

relations over multiple cycles. I have developed a model that describes OKN as

a purely stochastic process with three sources of noise affecting SP velocity, QP

triggering, and QP amplitude: a triple 1st order Markov process. The random fluc-

tuations in SP velocity as it wanders in Markov fashion from SP to SP is difficult

to reconcile with the common assumption of OKN as a simple servomechanism. I

propose that SP velocity may minimise the positional error over the course of the
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9.3. CONCLUSION.

SP in order to stabilise the visual field on the retina preferentially at the fovea, as

the entire visual field cannot be fully stabilised during pure translational motion.

As such, future models of OKN should consider the positional components of the

system as well as the usual velocity components, in order to adequately predict

SP gain.
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Appendix A

Heuristics for sorting components.

Here I give the heuristics for sorting the principal components in to their respec-

tive categories after extraction using PCA, based on the loading patterns of the

components rather than their eigenvalue. I have included the heuristics for all

categories that have been illustrated in this thesis. Heuristics are given in pseu-

docode format and parameters are labelled as they were illustrated in figures 5.2

- 5.6, and 5.9.

A.1 Heuristics for sorting the three principal components from one

cycle of OKN parameters, not including SP velocity and SP du-

ration.

FOR components 1 to 3

IF the absolute value of Yi is greater than 0.4 THEN

Category = “X”

IF Yi is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Qi+Xi+1 is greater than 0.4 THEN

Category = “Q”
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A.2. HEURISTICS FOR SORTING THE FOUR PRINCIPAL COMPONENTS
FROM ONE CYCLE OF OKN PARAMETERS, INCLUDING SP VELOCITY AND
SP DURATION.

IF Qi is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Si is greater than 0.4 THEN

Category = “S”

IF Si is less than 0 THEN

Loadings = -Loadings

END IF

END IF

END FOR

A.2 Heuristics for sorting the four principal components from one

cycle of OKN parameters, including SP velocity and SP duration.

FOR components 1 to 4

IF the absolute value of Yi is greater than 0.4 THEN

Category = “X”

IF Yi is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Qi+Xi+1 is greater than 0.4 THEN

Category = “Q”

IF Qi is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Si is greater than 0.4 THEN
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A.3. HEURISTICS FOR SORTING THE THIRTEEN PRINCIPAL COMPONENTS
FROM FOUR CYCLES OF OKN PARAMETERS, INCLUDING SP VELOCITY
AND SP DURATION.

Category = “S”

IF Si is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Vi is greater than 0.4 THEN

Category = “V”

IF Vi is less than 0 THEN

Loadings = -Loadings

END IF

END IF

END FOR

A.3 Heuristics for sorting the thirteen principal components from

four cycles of OKN parameters, including SP velocity and SP

duration.

FOR components 1 to 13

IF the absolute value of Y1-Q1 is greater than 0.9 THEN

Category = “1”

IF Q1 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q1+X2+Y2-Q2 is greater than 1 THEN

Category = “2”

IF Q2 is less than 0 THEN

Loadings = -Loadings
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A.3. HEURISTICS FOR SORTING THE THIRTEEN PRINCIPAL COMPONENTS
FROM FOUR CYCLES OF OKN PARAMETERS, INCLUDING SP VELOCITY
AND SP DURATION.

END IF

ELSE IF the absolute value of Q2+X3 is greater than 0.8 AND

the absolute value of Q2-Y2 is less than 1.2 THEN

Category = “3”

IF Q2 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q3+X4 is greater than 0.7 THEN

Category = “4”

IF Q3 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q4+X5 is greater than 0.8 THEN

Category = “5”

IF Q4 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S1+V1+T1> is greater than 0.8 THEN

Category = “6”

IF S1 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S2+V2+T2+Y2-X2 is greater than 1 AND

the absolute value of Q2-Y2 is less than 0.8 THEN

Category = “7”

IF S2 is less than 0 THEN
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A.3. HEURISTICS FOR SORTING THE THIRTEEN PRINCIPAL COMPONENTS
FROM FOUR CYCLES OF OKN PARAMETERS, INCLUDING SP VELOCITY
AND SP DURATION.

Loadings = -Loadings

END IF

ELSE IF the absolute value of S3+V3+T3+Y3 is greater than 0.8 THEN

Category = “8”

IF S3 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S4+V4+T4+Y4 is greater than 0.8 THEN

Category = “9”

IF S4 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of V1-T1 is greater than 1 THEN

Category = “10”

IF V1 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of V2-T2 is greater than 0.8 THEN

Category = “11”

IF V2 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of V3-T3 is greater than 0.8 THEN

Category = “12”

IF V3 is less than 0 THEN

Loadings = -Loadings

225



A.4. HEURISTICS FOR SORTING THE TEN PRINCIPAL COMPONENTS WITH
THE LARGEST EIGENVALUES FROM FOUR CYCLES OF OKN PARAMETERS,
INCLUDING SP VELOCITY AND SP DURATION.

END IF

ELSE IF the absolute value of V4-T4 is greater than 0.8 THEN

Category = “13”

IF V4 is less than 0 THEN

Loadings = -Loadings

END IF

END IF

END FOR

A.4 Heuristics for sorting the ten principal components with the largest

eigenvalues from four cycles of OKN parameters, including SP

velocity and SP duration.

FOR components 1 to 10

IF the absolute value of Y1-Q1 is greater than 0.7 THEN

Category = “1”

IF Q1 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q1+X2+Y2-Q2 is greater than 0.7 THEN

Category = “2”

IF X2 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q2+X3 is greater than 0.6 AND

the absolute value of Q2-Y2 is less than 0.9 THEN
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A.4. HEURISTICS FOR SORTING THE TEN PRINCIPAL COMPONENTS WITH
THE LARGEST EIGENVALUES FROM FOUR CYCLES OF OKN PARAMETERS,
INCLUDING SP VELOCITY AND SP DURATION.

Category = “3”

IF Q2 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q3+X4 is greater than 0.6 THEN

Category = “4”

IF Q3 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of Q4+X5 is greater than 0.6 THEN

Category = “5”

IF Q4 is greater than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S1+T1> is greater than 0.8 THEN

Category = “6”

IF S1 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S2+T2+Y2-X2 is greater than 1 AND

the absolute value of Q2-Y2 is less than 0.8 THEN

Category = “7”

IF S2 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S3+T3+Y3 is greater than 0.8 THEN
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A.4. HEURISTICS FOR SORTING THE TEN PRINCIPAL COMPONENTS WITH
THE LARGEST EIGENVALUES FROM FOUR CYCLES OF OKN PARAMETERS,
INCLUDING SP VELOCITY AND SP DURATION.

Category = “8”

IF S3 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE IF the absolute value of S4+T4+Y4 is greater than 0.8 THEN

Category = “9”

IF S4 is less than 0 THEN

Loadings = -Loadings

END IF

ELSE Category = “10”

IF V1+V2+V3+V4 is less than 0 THEN

Loadings = -Loadings

END IF

END IF

END FOR
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Appendix B

Table of free variables from experiment

one.

In Chapter 5, I presented the results of analysis performed on Monte Carlo sim-

ulated data that had been created using the constants a = −0.25, b = 0.158,

c = −0.478, and d = −0.166, and the free variables e, ŝ, q̂, v̂, σs, σq and σv.

Here I present the values of the free variables used to create the simulated data.

The variables e, v̂, σs, σq and σv were found using a weighted least squares linear

regression model. The variables ŝ and q̂ were calculated by substituting the mean

values of the relevant OKN parameters for that trial and the constants a, b, c and

d into eq. 5.4 and 5.5 respectively.

Par VS e ŝ q̂ v̂ σs σq σv

1 10 0.41 -0.32 -2.84 5.35 0.95 2.39 1.10

1 20 0.61 0.03 -2.88 6.60 1.29 2.86 2.30

1 30 0.85 -0.11 -3.05 2.17 1.58 2.33 3.48

1 40 0.81 -0.34 -2.80 2.58 1.31 2.55 4.61

2 10 0.27 2.52 -3.40 6.81 2.08 2.64 1.28

2 20 0.51 2.12 -3.11 6.15 2.65 3.65 4.95

2 30 0.47 2.61 -2.17 6.86 2.95 4.45 5.31

2 40 0.32 4.33 -4.05 8.47 3.76 4.51 4.10

229



3 10 0.33 0.81 -2.46 4.25 1.21 2.14 1.97

3 20 0.65 3.38 -0.24 4.63 2.10 2.12 3.32

3 30 0.66 2.72 -1.08 7.25 2.29 2.32 4.91

3 40 0.53 2.69 -0.95 13.72 2.47 3.04 4.70

4 10 0.08 1.79 -0.76 9.22 1.42 1.15 0.81

4 20 0.27 1.50 -1.30 14.08 1.81 1.74 1.23

4 30 0.75 1.43 -0.58 6.32 2.05 2.03 3.73

4 40 0.55 0.73 -1.24 7.79 1.50 1.80 7.01

5 10 0.74 2.95 -0.97 2.30 1.76 1.96 2.07

5 20 0.86 0.89 -1.67 1.53 1.25 1.29 3.10

5 30 0.72 0.91 -1.18 5.97 1.55 1.26 2.85

5 40 0.69 1.99 -1.98 7.94 2.11 1.57 6.80

6 10 0.12 1.01 -3.30 7.88 0.82 1.22 0.86

6 20 0.43 1.56 -3.52 9.32 1.32 1.92 2.29

6 30 0.71 1.28 -4.33 4.59 1.70 1.76 3.59

6 40 0.59 1.82 -3.21 7.91 1.75 2.17 5.64

7 10 0.44 1.71 -2.21 5.18 1.59 2.91 1.13

7 20 0.55 -0.25 -6.26 6.31 1.53 2.50 2.46

7 30 0.65 3.10 -2.41 8.82 3.04 3.20 3.59

7 40 0.58 3.79 -2.04 13.66 3.45 3.70 4.11

8 10 0.42 -1.18 -4.34 4.75 0.71 0.93 1.01

8 20 0.90 -1.08 -3.91 1.00 0.78 1.13 2.07

8 30 0.78 -0.48 -3.60 2.67 0.93 1.28 2.78

8 40 0.86 -0.39 -3.52 1.46 0.93 1.21 2.47

9 10 0.37 1.11 -0.91 4.37 1.03 0.92 0.93

9 20 0.36 0.58 -1.43 6.95 1.37 1.86 2.49
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9 30 0.29 0.41 -2.38 10.98 1.78 2.12 4.39

9 40 0.13 0.87 -1.82 11.02 1.44 2.05 6.33

10 10 0.09 -0.45 -5.61 8.38 1.22 1.92 1.00

10 20 0.24 0.00 -4.54 14.56 1.68 2.38 1.64

10 30 0.69 -0.66 -4.88 7.52 1.87 2.08 3.54

10 40 0.50 -1.07 -4.53 15.99 2.51 2.29 5.01

231



Appendix C

The PDF of the ratio of truncated (and

untruncated) normal random variables.

The PDF of the ratio of two Normal random variables, x and y, is given by:

z = x/y (C.1)

From basic probability theory, the PDF of z is given by:

fz(z) =

∫ ∞
−∞
|y| fxy(yz, y)dy (C.2)

where f(x, y) is the bivariate Normal PDF. If x and y are left truncated at zero,

then the PDF of z becomes:

fz(z) =

∫ ∞
0

yfxy(yz, y)dy (C.3)

The bivariate Normal PDF f(x, y) is given by the normalised two-dimensional
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Gaussian, G(x, y):

f(x, y) =
1

k
G(x, y) (C.4)

where

G(x, y) = exp

(
− 1

2(1− ρ2)

[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

])
(C.5)

and k is a normalising constant such that the area under G(x, y) is unity for the

quadrants considered. For all quadrants:

k =

∫ ∞
−∞

∫ ∞
−∞

G(x, y)dxdy = 2πσxσy
√

1− ρ2. (C.6)

For the ratio of truncated Normals

k1 =

∫ ∞
0

∫ ∞
0

G(x, y)dxdy (C.7)

and is found numerically.

We can expand the Gaussian in eq. C.5 in the form:
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G(zy, y) = exp(ay2 + by + c) (C.8)

where

a =
−1

2(1− ρ2)
z2σ2

y − 2zρσxσy + σ2
x

σ2
yσ

2
x

< 0 (C.9)

b =
1

2(1− ρ2)
2zµxσ

2
y + 2µyσ

2
x − 2zρµxσxσy

σ2
yσ

2
x

(C.10)

c =
−1

2(1− ρ2)
µ2
xσ

2
y − 2ρµxµyσxσy + µ2

yσ
2
x

σ2
yσ

2
x

(C.11)

Now consider the integral

fz(z) =
1

k1

∫ ∞
0

yG(zy, y)dy =
1

k1

∫ ∞
0

y exp(ay2 + by + c)dy (C.12)

With integration by parts:

fz(z) = −exp(c)

2ak1

(
1 + b

∫ ∞
0

exp(ay2 + by)dy

)
(C.13)
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and substituting u = y
√
−a− b/2

√
−a, we have

fz(z) = −exp(c)

2ak1

[
1 + b

√
π

−4a
exp(−b2/4a)erfc(−b/2

√
−a)

]
(C.14)

For all quadrants, we have

fz(z) =
1

k

∫ ∞
−∞
|y| exp(ay2 + by + c)dy (C.15)

= −exp(c)

2ak

[
1 + b

√
π−4a exp(−b2/4a)erfc(b/2

√
−a)

]
(C.16)
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Glossary.

CDF Cumulative distribution function

CV Coefficient of variation

DOF Degrees of freedom

DRTN Distribution of the ratio of two truncated normal variables

DTN Dorsal terminal nucleus of the accessory optic system

FRD Fieller’s ratio distribution

GD Gamma distribution

IGD Inverse Gaussian distribution

LND Lognormal distribution

LTN lateral terminal nucleus of the accessory optic system

MLE Maximum likelihood estimate

MTN medial terminal nucleus of the accessory optic system

NOT Nucleus of the optic tract

OKN Optokinetic nystagmus

OKR Optokinetic response

PCA Principal component analysis

PDF Probability density function

QP Quick phase

RM-ANOVA Repeated measures analysis of variance

RND Recinormal distribution
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RNMD Recinormal mixture distribution

SP Slow phase

TPE Total positional error

VOR Vestibulo-ocular reflex
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