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Abstract 1 

The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and 2 

subsequent introduction of the so-called PIP25 index for semi-quantitative 3 

descriptions of sea ice conditions has significantly advanced our understanding of 4 

long-term paleo Arctic sea ice conditions over the past decade. We investigated the 5 

potential for classification tree1 (CT) models to provide a further approach to paleo 6 

Arctic sea ice reconstruction through analysis of a suite of highly branched 7 

isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. 8 

Four CT models constructed using different HBI assemblages revealed IP25 and an 9 

HBI triene as the most appropriate classifiers of sea ice conditions, achieving a 10 

>90% cross-validated classification rate. Additionally, lower model performance for 11 

locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of 12 

this climatically-sensitive region. CT model classification and semi-quantitative PIP25-13 

derived estimates of spring sea ice concentration (SpSIC) for four downcore records 14 

from the region were consistent, although agreement between proxy and 15 

satellite/observational records was weaker for a core from the west Svalbard margin, 16 

likely due to the highly variable sea conditions. The automatic selection of 17 

appropriate biomarkers for description of sea ice conditions, quantitative model 18 

assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index 19 

are key attributes of the CT approach, and we provide an initial comparative 20 

assessment between these potentially complementary methods. The CT model 21 

should be capable of generating longer-term temporal shifts in sea ice conditions for 22 

the climatically sensitive Barents Sea.  23 

                                                           
1 Non-standard abbreviations: 
CT – Classification tree 
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1. Introduction 24 

Arctic sea ice is an important regulator of the ocean-atmosphere heat, gas 25 

and moisture fluxes (Smedsrud et al., 2013) and serves as an expansive habitat for 26 

a diverse ecosystem (Derocher et al., 2011; Vancoppenolle et al., 2013). Further, 27 

sea ice reflects up to 85% of incoming solar shortwave radiation (Perovich and 28 

Polashenski, 2012). The complex system of physical and thermodynamic 29 

interactions with the ocean and the atmosphere control the physical properties of sea 30 

ice, making it a sensitive indicator of global climate (Perovich and Richter-Menge, 31 

2009; Meier et al., 2014, and references therein). During formation, sea ice expels 32 

brine, resulting in oceanic convection that facilitates formation of North Atlantic Deep 33 

Water (Bitz et al., 2006). In contrast, ice melt induces freshening and stratification of 34 

the upper water column, which limits convection and facilitates the development of 35 

primary productivity blooms, which occur along the receding sea ice edge, frequently 36 

referred to as the Marginal Ice Zone (MIZ; Wassmann et al., 1999).  37 

The introduction of satellite-mounted passive microwave sensors has allowed 38 

regular monitoring of Arctic sea ice since the late 1970’s (e.g. Fetterer et al., 2016). 39 

The recent decline in Arctic sea ice extent (Stroeve et al., 2012) is unprecedented 40 

within the instrumental record (Divine and Dick, 2006; Walsh et al., 2017) and is 41 

thought to be influenced by anthropogenic warming (Hansen et al., 2010; Kinnard et 42 

al., 2011) and amplified by positive feedback mechanisms (Perovich and 43 

Polashenski, 2012). To better understand and predict modern sea ice trends, 44 

however, it is important to reconstruct longer-term sea ice variability throughout 45 

geological time using proxy measurements (de Vernal et al., 2013).  46 
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Recently, a C25 Highly Branched Isoprenoid (HBI) alkene, labelled IP25 (Ice 47 

Proxy with 25 carbon atoms; Belt et al., 2007), has been shown to be a suitable 48 

biomarker proxy of Arctic seasonal sea ice (Belt and Müller, 2013). The selectivity of 49 

IP25 towards seasonal sea ice cover is supported by its 13C isotopic signature (Belt et 50 

al., 2008) and production by certain sympagic diatoms (e.g. Haslea and Pleurosigma 51 

spp.; Brown et al., 2014b) during the spring primary productivity bloom (Brown et al., 52 

2011, 2014b; Belt et al., 2013). Further, investigations of IP25 in pan-Arctic surface 53 

sediments have revealed a consistent presence, primarily at seasonally ice-covered 54 

locations (Méheust et al., 2013; Stoynova et al., 2013; Weckström et al., 2013; Xiao 55 

et al., 2013, 2015a; Belt et al., 2015; Ribeiro et al., 2017). Within paleo records, IP25 56 

has been identified in downcore records from all Arctic regions spanning a range of 57 

timeframes extending back to the late Miocene (e.g. Massé et al., 2008; Müller et al., 58 

2009, 2012; Vare et al., 2009, 2010; Cabedo-Sanz et al., 2013; Knies et al., 2014, 59 

2017; Müller and Stein, 2014; Cabedo-Sanz and Belt, 2016; Hoff et al., 2016; Polyak 60 

et al., 2016; Stein et al., 2016, 2017; Berben et al., 2017; Hörner et al., 2017).  61 

A limitation of sea ice reconstructions based on sedimentary IP25 alone is the 62 

difficulty in distinguishing between perennial sea ice cover and ice-free conditions, as 63 

it is usually absent in both scenarios (Belt and Müller, 2013). However, it has been 64 

reported in sediments from regions of near-permanent sea ice cover (Xiao et al., 65 

2015a). To address this possible ambiguity, Müller et al. (2009) first proposed 66 

concurrent analysis of certain phytoplankton biomarkers (e.g. brassicasterol) that are 67 

characteristic of open water (pelagic) conditions (Volkman, 1986, 2006). 68 

Subsequently, the combining of phytoplankton biomarker and IP25 concentrations to 69 

calculate a Phytoplankton–IP25 index (PIP25) was used to obtain semi-quantitative 70 

descriptions of sea ice conditions (Müller et al., 2011). Sterol-based PIP25 indices 71 
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have since been utilised in several studies of both surface and downcore 72 

sedimentary records (e.g. Fahl and Stein, 2012; Müller et al., 2012; Cabedo-Sanz et 73 

al., 2013; Navarro-Rodriguez et al., 2013; Stoynova et al., 2013; Weckström et al., 74 

2013; Xiao et al., 2013, 2015a, 2015b; Berben et al., 2014, 2017; Müller and Stein, 75 

2014; Belt et al., 2015; Hoff et al., 2016; Polyak et al., 2016; Hörner et al., 2017; 76 

Pieńkowski et al., 2017). The adoption of a uniform scale (0–1) with the PIP25 index 77 

allows for more consistent comparisons of inferred sea ice conditions from different 78 

datasets, especially considering the variability of sedimentary IP25 concentration for 79 

regions of similar sea ice cover (Stoynova et al., 2013; Xiao et al., 2015a). However, 80 

several challenges are associated with sterol-based PIP25 indices. First, sterols are 81 

not particularly source-specific, being produced by a variety of marine and 82 

terrigenous sources (Volkman, 1986, 2006; Yunker et al., 2005; Rampen et al., 83 

2010), including sympagic algae (Belt et al., 2013), which likely adds bias to PIP25 84 

values in some settings. Second, a consequence of such ubiquity is a considerable 85 

discrepancy between the typical concentration ranges of sterols and IP25, 86 

necessitating the use of a concentration balance factor, or c-factor, which can be 87 

adversely affected by, amongst other things, downcore concentration distributions 88 

and potential differential degradation of biomarkers in paleo-records (Belt and Müller, 89 

2013).  90 

To try and alleviate these limitations, Belt et al. (2015) compared the spatial 91 

distribution of IP25 in Barents Sea surface sediments to that of a tri-unsaturated HBI 92 

(III; Fig. 1) thought to be only biosynthesised by certain open-water diatoms 93 

belonging to the Pleurosigma and Rhizosolenia genera (Belt et al., 2000; Rowland et 94 

al., 2001) – including some species present in mixed phytoplankton communities 95 

from western Svalbard (Belt et al., 2017) – and thus likely to provide a more selective 96 
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representation of the pelagic environment than many other biomarkers. Since the 97 

contribution of Pleurosigma spp. and Rhizosolenia spp. to many pelagic diatom 98 

assemblages and the proportion of IP25-producing sympagic diatoms in sea ice are 99 

generally similar (ca. 1–5%; von Quillfeldt, 2000; Ratkova and Wassmann, 2005; 100 

Brown et al., 2014b), it was also hypothesized that sedimentary concentration 101 

ranges of III and IP25 would be comparable. Consistent with this background, an 102 

inverse relationship between IP25 and III was found for regions of contrasting sea ice 103 

cover, while PIIIIP25 indices (i.e. PIP25 based on IP25 and III) exhibited a vastly 104 

reduced influence of the c-factor on downcore profiles compared to those of PBIP25 105 

(i.e. PIP25 based on IP25 and brassicasterol), due to similar sedimentary 106 

concentrations of IP25 and III, as predicted (Belt et al., 2015). Using the same 107 

dataset, Smik et al. (2016) demonstrated a positive linear correlation between PIIIIP25 108 

and spring sea ice concentration (SpSIC), thus providing a regional calibration, 109 

which has since been used to obtain semi-quantitative SpSIC estimates in downcore 110 

records (Cabedo-Sanz and Belt, 2016; Berben et al., 2017). However, several 111 

challenges inherent to the PIP25 index persist. Objective selection of optimal 112 

biomarkers that best describe spring sea ice conditions remains problematic, while 113 

the broad PIP25 thresholds previously used to classify regions of variable sea ice 114 

conditions, ranging from open water (PIP25 <0.1) to extensive sea ice cover (PIP25 115 

>0.75) have not been based on a reproducible classification procedure, but instead 116 

determined using approximate data ranges obtained via linear regression of PIP25 117 

and SpSIC (Müller et al., 2011; Smik et al., 2016). The application of a robust 118 

statistical procedure for multivariate HBI analysis could conceivably address these 119 

challenges and validate (or otherwise) the PIP25 approach for reconstructing paleo 120 

sea ice conditions. 121 
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Computational data mining algorithms incorporate a variety of parametric and 122 

non-parametric methods for multivariate analysis to characterise and visualise data 123 

structure (for reviews, see Rokach and Maimon, 2005; Sammut and Webb, 2017). 124 

Parametric algorithms, including cluster and factor analyses (e.g. Reimann et al., 125 

2002; Templ et al., 2008), make distributional assumptions, such as data normality. 126 

However, geochemical data are seldom normally distributed due to strong spatial 127 

dependence, presence of statistical outliers, and missing data (Reimann and 128 

Filzmoser, 2000). In contrast, non-parametric methods, such as classification trees 129 

(CTs), make no significant distributional assumptions and often allow for intuitive 130 

visual interpretation of implicit trends (Aitchison, 1986; Vayssières et al., 2000; 131 

Vermeesch, 2006), an attribute not generally shared by parametric methods (Bunge, 132 

1963).  In essence, CTs are an example of a non-parametric technique used to 133 

determine the outcome of a categorical target (dependent) variable based on 134 

decisions made on a multivariate set of descriptive (independent) variables (e.g. 135 

Breiman et al., 1984; Quinlan, 1986,1993). A detailed review of decision tree 136 

methods is available from various authors (Rokach and Maimon, 2005; Hastie et al., 137 

2009; Sammut and Webb, 2017), and an overview of the CT approach and 138 

associated terminology is included as part of Electronic Annex 1. 139 

The principal aim of the current investigation, therefore, was to ascertain 140 

whether a CT model based on the variable distribution of certain biomarkers in 141 

marine sediments from across the Barents Sea could be used to accurately classify 142 

the overlying sea ice conditions and thus provide a novel and potentially more 143 

reliable approach to paleo sea ice reconstruction. To address this aim, CT models 144 

were constructed using relative abundances of six HBI biomarkers (Fig. 1) in ca. 200 145 

surface sediments spanning the Barents Sea and neighbouring regions (Fig. 2a). An 146 
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optimized CT model was then used to reconstruct sea ice conditions in four well-147 

dated short sediment cores retrieved from sites of contrasting sea ice conditions 148 

within the study region, and for which observational sea ice records covering recent 149 

centuries were also available (Divine and Dick, 2006; Vare et al., 2010; Walsh et al., 150 

2017). Finally, the CT model results were compared to SpSIC estimates obtained 151 

from regionally calibrated PIIIIP25 indices. 152 

2. Regional setting 153 

The Barents Sea is a marginal area of the Arctic Ocean and is both the 154 

largest and deepest among the Arctic continental shelf regions. Detailed overviews 155 

of Barents Sea oceanography can be found in Loeng (1991) and Loeng et al. (1997). 156 

Briefly, Barents Sea hydrography is characterised by three distinct water masses 157 

(Fig. 2b): northward inflow of warm and saline Atlantic Water (AW), fresher and 158 

colder Arctic Water (ArW) flowing southwest, and brackish coastal water 159 

topographically steered along the Norwegian coast by the Norwegian Coastal 160 

Current (NCC) (Sakshaug et al., 2009).  161 

 Ice formation in the Barents Sea begins in October, reaching maximum 162 

extent in March–April. The direct inflow of AW (Loeng et al., 1997; Besczynska-163 

Möller et al., 2012; Smedsrud et al., 2013) profoundly affects seasonal sea ice 164 

variability (Sorteberg and Kvingedal, 2006), keeping the region almost entirely ice-165 

free at the September minimum, while the western Spitsbergen margin remains 166 

largely ice-free throughout the year (Walczowski and Piechura, 2011). The boundary 167 

where AW and ArW meet, known as the Polar Front (PF), defines the maximum 168 

winter ice extent and that of the highly productive MIZ (e.g. Wassmann et al., 1999). 169 

The position of the PF in winter is relatively constant in the western and central 170 
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Barents Sea (Loeng and Drinkwater, 2007) such that the MIZ experiences relatively 171 

low inter-annual variability. Sea ice in the eastern Barents Sea ice experiences 172 

increased seasonal and inter-annual variability due to the mixing of ArW and the 173 

North Cape Current (NCaC) inflow of AW. Sea ice in the Barents Sea, overall, has 174 

decreased by >50% since the beginning of satellite monitoring in 1979 (Fetterer et 175 

al., 2016), and a negative trend since 1850 has also been reported (Divine and Dick, 176 

2006). This retreat and the seasonal amplitude of sea ice extent are likely 177 

accelerated by a combination of increasing inflow and temperature of the NAC 178 

(Årthun et al., 2012) and various positive feedback mechanisms (e.g. Smedsrud et 179 

al., 2013). 180 

3. Materials and methods 181 

3.1 Surface sediment material 182 

198 surface sediment sub-samples were taken from a range of multicores, box 183 

cores and gravity cores reflecting regions of variable sea ice cover (Fig. 2a). Most of 184 

the sediment material has been described elsewhere (Knies and Martinez, 2009; 185 

Navarro-Rodriguez et al., 2013; Belt et al., 2015; Smik et al., 2016). 55 samples 186 

described previously (Navarro-Rodriguez et al., 2013) and 96 further sediments from 187 

the MAREANO program (http://www.mareano.no; Thorsnes, 2009) were re-extracted 188 

using fresh material sub-sampled at the Geological Survey of Norway. These were 189 

supplemented by 47 surface sediments from other sources (Belt et al., 2015), 190 

including material collected during the Centre for Arctic Gas Hydrate, Environment, 191 

and Climate (CAGE; UiT–Arctic University of Norway) cruises 15-2 and 16-5 aboard 192 

the RV Helmer Hanssen in 2015 and 2016, respectively (n=10). Upon arrival, all 193 

samples were freeze-dried (0.001 mbar; -80°C; ca. 24h) and stored in plastic bags at 194 

-20°C to avoid HBI degradation. A depth interval of 0–1 cm was sampled for the 195 
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majority of the sediments (n=188), while variable depths ranging from 0–3 cm were 196 

only used for 10 samples. Detailed grain size distributions were not available for 197 

every sample, although published data from the MAREANO programme (Knies et 198 

al., 2006) for 73 sediments indicate that most samples from the central and northern 199 

Barents Sea included a variable (40–85%) mud fraction (summed silt and clay 200 

particles ≤63μm), while sediment coarsening was observed towards coastal areas 201 

along the northern and north-western Norwegian coast, where silt and clay fractions 202 

were as low as 5%. Sampling locations and biomarker data are available from 203 

PANGAEA (www.pangaea.de) 204 

 

3.2 Downcore sediment material 205 

Downcore data were obtained from four short sediment cores (Fig. 2a) 206 

described elsewhere (Vare et al., 2010; Cabedo-Sanz and Belt, 2016). Cores 207 

BASICC 1 (73.13°N, 25.63°W; 425 m water depth), BASICC 8 (77.98°N, 26.83°W; 208 

136 m water depth), and BASICC 43 (72.54°N, 45.74°W; 285 m water depth), 209 

henceforth referred to as cores 1, 8, and 43, were recovered aboard the RV Ivan 210 

Petrov in August 2003 as part of the `Barents Sea Ice Edge in a Changing Climate` 211 

(BASICC) project (Cochrane et al., 2009). Previously reported grain-size distributions 212 

indicated high mud content for cores 1 and 8 (ca. 89% and 77% summed silt and 213 

clay fraction, respectively), while core 43 exhibited a higher proportion of sand (ca. 214 

47%; Cochrane et al., 2009). The age models for all three cores have been 215 

described elsewhere (Vare et al., 2010) and span the last ca. 250–300 years. Core 216 

MSM5/5-712-1 (78.92°N, 6.77°W; 1490.5 m water depth), hereafter referred to as 217 

core 712, was collected in 2007 on board the RV Maria S. Merian during the 218 

MSM5/5 cruise, and was described previously (Spielhagen et al., 2011; Cabedo-219 
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Sanz and Belt, 2016). The uppermost 7.5 cm of core 712 analysed herein consist of 220 

fine-grained mud, with a consistently low content (ca. 5±1%) of sediment coarser 221 

than 0.63 µm (Werner et al., 2011). The age model spans the last ca. 2000 years 222 

(Spielhagen et al., 2011). The cores were chosen to represent open water (core 1), 223 

as well as intermediate (cores 43, 712) and extensive (core 8) seasonal sea ice 224 

conditions, at least during recent centuries (Divine and Dick, 2006; Walsh et al., 225 

2017). Sedimentation rates for cores 1, 8 and 43 ranged from 1.1–1.3 mm y-1, and 226 

were considerably lower (0.18 mm y-1) for core 712, resulting in respective temporal 227 

resolutions of ca. 8–9 years and 56 years per 1.0 cm horizon. Downcore biomarker 228 

data are available from PANGAEA (www.pangaea.de). 229 

 

3.3 Analysis of HBI biomarkers 230 

The extraction of HBI lipids (I–VI; Fig. 1) was carried out according to methods 231 

described previously (Belt et al., 2012; Cabedo-Sanz and Belt, 2015). Internal 232 

standard (9-octylheptadec-8-ene; 0.1 µg) was added to freeze-dried sediments (ca. 233 

1.5–2.5 g), which were then extracted (×3) by ultrasonication using 234 

dichloromethane/methanol (2:1 v/v, 2 mL) to obtain Total Organic Extracts (TOEs). 235 

Solvent was evaporated from the TOEs (N2 stream, 25°C) and elemental sulphur 236 

was removed as described by Cabedo-Sanz and Belt (2015). The non-polar fraction 237 

containing HBI lipids was collected using open column silica chromatography (ca. 1 238 

g silica; 6–7 mL hexane; Belt et al., 2012). Hexane was partially evaporated from the 239 

HBI-containing fractions (N2 stream, 25°C), leaving ca. 200–300 µL. Further 240 

purification of the extracts was carried out using Ag-ion column chromatography 241 

(Supelco Discovery® Ag-Ion; 0.12 g), separating the extracts into saturated 242 

hydrocarbons (1 mL hexane) and HBIs (2 mL acetone). Analysis of HBI-containing 243 

“ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.”   



12 
 

fractions was carried out using gas chromatography–mass spectrometry (GC–MS) in 244 

total ion current (TIC) and single ion monitoring (SIM, m/z 346 (HBIs III–V), 348 (II 245 

and VI) and 350 (I)) modes using an Agilent 7890 series gas chromatograph (HP5MS 246 

fused silica column; 30 m × 0.25 mm i.d., 0.25 µm film thickness) coupled to an 247 

Agilent 5975 mass spectrometric detector (Belt et al., 2012). HBIs were identified by 248 

comparison of retention indices (RIHP5-MS) and mass spectra to those of authentic 249 

standards. Quantification of HBIs (ng g-1 dry sed.) was carried out by comparing 250 

mass spectral intensities of molecular ions to that of the internal standard, and 251 

normalising for differences in mass spectral fragmentation efficiency and sediment 252 

mass. Chromatographic data from sediment material described by Belt et al. (2015) 253 

were re-examined to quantify HBIs not measured previously.  254 

 

3.4 Statistical procedure 255 

3.4.1 Data preparation 256 

SpSIC data (April–June, 1988–2007) were obtained from Nimbus-7 SMMR 257 

and DMSP SSM/I-SSMIS passive microwave datasets (Cavalieri et al., 1996). The 258 

same dataset was used previously for biomarker-based pan-Arctic and regional sea 259 

ice calibrations via the PIP25 index (Xiao et al., 2015a; Smik et al., 2016). Sediment 260 

sampling dates and regional accumulation rates supported the selection of an 261 

appropriate time interval covered by the satellite data. The majority of surface 262 

sediment material was collected from 2003–2006 (Navarro-Rodriguez et al., 2013; 263 

Belt et al., 2015), while Barents Sea sedimentation rates in ice-covered regions are 264 

typically 0.7±0.4 mm y-1 (e.g. Zaborska et al., 2008), but can reach 1.1±0.4 mm y-1 265 

(Maiti et al., 2010). A 20-year time interval was therefore chosen for satellite-derived 266 

SpSIC to represent accumulation of 1.0 cm of sediment at 0.5 mm y-1, the median of 267 
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the 0.2–0.8 mm y-1 range reported for the seasonal sea ice zone around Svalbard 268 

(Zaborska et al., 2008). PIIIIP25 indices were calculated using Eq. 1, with HBI III 269 

(defined as III in Eq. 1) as the pelagic biomarker counterpart to IP25, and a regional 270 

c-factor (c=0.63) determined from a previous calibration (Smik et al., 2016). Square 271 

brackets denote absolute HBI concentrations (ng g-1 dry sed.) in all equations. 272 

Estimates of SpSIC (%) and associated standard errors were calculated using Eq. 2 273 

and the root-mean-square error (RMSE) of the regional calibration, respectively 274 

(Cabedo-Sanz and Belt, 2016; Smik et al., 2016). 275 

         
      

                   
     

          
                 

      
     

Prior to classification tree induction, the optimal number of classes 276 

representing different sea ice conditions was determined via complete linkage 277 

Agglomerative Hierarchical Clustering (AHC; Sørensen, 1948) of satellite-derived 278 

SpSIC estimates and coordinates of surface sediments (Fig. A.1, Electronic Annex 279 

1). Squared Euclidean distance was used as a mathematical distance measure. 280 

Thus, three classes representing marginal (0–10%), intermediate (10–50%) and 281 

extensive (50–100%) SpSIC were identified (Fig. 3a). HBI concentrations were 282 

converted into relative abundances (0–100%) via separate normalisation to four HBI 283 

assemblages (Eq. 3). 284 

        
     

                
           

The four HBI assemblages used for calculation of relative abundances are 285 

shown in Eq. 4–7. Biomarkers I–IV were included in all four assemblages (A to D) 286 

due to the likely contrasting influences of sea ice conditions on their production. 287 
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Thus, HBIs I (IP25) and II have known sympagic diatom sources (Brown et al., 2014b; 288 

Belt et al., 2016), while III and IV are often co-produced in ubiquitous pelagic diatoms 289 

(Belt et al., 2000; Rowland et al., 2001). HBI IV has also been reported in sea ice 290 

(Belt et al., 2007; Brown, 2011; Ringrose, 2012). For Assemblage B, HBI V was also 291 

included as it has been identified in Arctic sea ice (Belt et al., 2007). An additional 292 

pelagic influence was investigated using VI (Assemblage C), an HBI reported in the 293 

diatom Berkeleya rutilans, a species abundant within (at least) brackish coastal 294 

waters (Brown et al., 2014a). The combined effect of V and VI on sea ice conditions 295 

was tested in Assemblage D. 296 

                                             

                                                  

                                                   

                                                       

3.4.2 Classification tree induction from sedimentary HBI composition 297 

CT models were used to develop a predictive model for discrimination of discrete 298 

classes of sea ice cover (the target variable), using relative abundances of HBIs 299 

(descriptive variables). CT models were built from the surface sediment dataset 300 

following the method of Breiman et al. (1984). Specifically, the ‘rpart’ (Therneau et 301 

al., 2015), ‘caret’ (Kuhn et al., 2016), ‘rpartScore’ (Galimberti et al., 2012), ‘rpart.plot’ 302 

(Milborrow, 2017), ‘MLmetrics’ (Yan, 2016), ‘readr’ (Wickham et al., 2017), and 303 

‘DMwR’ (Torgo, 2010) libraries were utilised as part of the R Statistical Package (R 304 

Core Team, 2017) for induction and performance evaluation of four CT models using 305 
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HBI assemblages A–D as descriptive variables (Eq. 3–7), and classes of sea ice 306 

cover assigned to each sample using satellite SpSIC data (Fig. 3a) as the target 307 

variable. First, fully-grown trees were induced using no stopping criteria and 308 

information gain (Quinlan, 1986) as the splitting criterion. Subsequently, cost-309 

complexity pruning and the 1-SE rule were applied to each CT model to counter 310 

overfitting, reduce tree complexity and improve interpretability. To avoid positive bias 311 

in model performance due to class imbalance, precision and sensitivity metrics were 312 

calculated for each class of sea ice conditions (Electronic Annex 1). Precision 313 

represented the percentage of accurate predictions, while sensitivity indicated the 314 

proportion of correct classifications in the training set. The F-1 score was calculated 315 

as the weighted average of precision and sensitivity. Finally, Cohen's Kappa statistic 316 

was used to confirm that model accuracy was significantly better than that obtained 317 

by random chance, with values >0.80 indicating "excellent" classification 318 

performance (Landis and Koch, 1977). The HBI assemblage that best classified sea 319 

ice conditions was chosen based on the expected performance of each pruned tree 320 

on unseen data (i.e. new samples not used in model construction) using repeated 321 

10-fold cross validation (n=5; Breiman et al., 1984), the variables selected for 322 

splitting rules, as well as model complexity and interpretability. The annotated R 323 

script used for tree induction and class prediction is available in Electronic Annex 2. 324 

 325 

4. Results 326 

4.1 Classification tree models 327 

CT models created from HBI assemblages A–D are henceforth referred to as 328 

models A–D, respectively. Models A–D yielded a high classification rate for the 329 

training data, with 186–188 samples classified correctly (ca. 94–95%; Table 1; Fig. 330 
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3b). Similarly, comparably high accuracy was observed following repeated (n=5) 10-331 

fold cross validation (92 ± 5–6%; Table 1). All models exhibited identical tree 332 

structure and low complexity (2 splits and 3 leaf nodes; Fig. A.2) following cost-333 

complexity pruning via the 1-SE rule. In all cases, only IP25 and IV were used as 334 

primary splitting variables (Fig. 4 and A.2), and good separation of the three sea ice 335 

classes was achieved (Fig. 5). Biomarkers II and III were chosen by the models as 336 

surrogate split variables to substitute for IP25 and IV, respectively, for cases where 337 

either may not have been measured; however, there were no such cases in the 338 

current dataset. HBIs V and VI contributed little descriptive and predictive power to 339 

the model and exhibited low relative importance (Fig. 6). Upon examining 340 

performance for individual classes of sea ice conditions, the lowest sensitivity (73–341 

79%) and precision (65–69%) were observed for samples with intermediate SpSIC. 342 

The loss of sensitivity corresponded to 4–7 samples being misclassified into both 343 

marginal (n=3–5) and extensive (n=2) sea ice classes. Similarly, precision suffered 344 

due to the misclassification of 7–10 samples from the marginal to the intermediate 345 

sea ice class. In contrast, locations with marginal and extensive SpSIC were 346 

correctly classified with higher confidence, exhibiting sensitivity values of 94–95% 347 

(marginal SpSIC) and 91–96% (extensive SpSIC), as well as corresponding 348 

precision values of 97–98% and 84–85%. Class-averaged performance of the 349 

models was also comparable, with sensitivity and precision ranges of 87–89% and 350 

85–87%, respectively. The highest overall sensitivity of 89% was observed for model 351 

D, while model A was the most precise (87%). Overall, all trees showed comparable 352 

(high) performance and interpretability, with identical splitting variables (Table 1 and 353 

Fig. A.2). 354 
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4.2 CT and PIIIIP25–based sea ice estimates for downcore records 355 

Due to the highly comparable cross-validated model performance (Table 1), 356 

identical tree structure and split variables (Fig. 3a and A.2), and low relative 357 

importance of biomarkers V and VI (Fig. 6), model A was chosen to predict discrete 358 

sea ice conditions for cores 1, 8, 43 and 712 (Fig. 7). Within the time period 359 

represented by the core sub-samples (ca. 1750 AD–present) and a 95% accuracy 360 

confidence interval of 91–94%, all horizons from cores 43 and 712 were classified 361 

into the intermediate sea ice class (10–50% SpSIC), while cores 1 and 8 were 362 

characterised as having experienced marginal (<10%) and extensive (50–100%) sea 363 

ice cover, respectively. PIIIIP25-based SpSIC estimates also showed that extensive 364 

sea ice cover (84–85%) was inferred throughout core 8, while ice-free conditions 365 

prevailed at the core 1 site (Fig. 7). In contrast, cores 43 and 712 were characterised 366 

by intermediate and more variable SpSIC (13–30% and 29–41%, respectively). 367 

Further, a gradual decline in SpSIC was apparent for core 43 after ca. 1900 AD and 368 

core 712 after ca. 1850 AD (Vare et al., 2010; Cabedo-Sanz and Belt, 2016).  369 

 370 

5. Discussion 371 

5.1 Rationalising CT model outcomes 372 

The identification of IP25 as a primary splitting variable in all CT models to 373 

differentiate ice–covered and ice–free settings (Fig. 5) is consistent with its sympagic 374 

source (Belt et al., 2007; Brown et al., 2014b). Additionally, locations characterised 375 

by intermediate (extensive) sea ice cover were effectively classified using high (low) 376 

contribution from the pelagic HBI biomarker IV (Fig. 5). Based on 10-fold cross 377 

validation performance (Table 1), decision rules derived from IP25 and IV accounted 378 

for most of the predictive power of models A–D, with no other HBI percentage 379 
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contributions used as primary split variables. Nonetheless, comparable importance 380 

of variables IP25, II, III and IV was observed for all models (Fig. 6). The high 381 

importance of II and III was attributed to their use as surrogate split variables 382 

(Breiman et al., 1984) in case either IP25 or IV could not be measured, and is 383 

consistent with their sympagic and pelagic sources, respectively. Conversely, 384 

relatively negligible descriptive power was contributed by HBIs V and VI (Fig. 6). This 385 

is perhaps to be expected since the coastal pelagic diatom source of VI entails 386 

elevated abundances in brackish coastal areas, such as fjords (Brown et al., 2014a), 387 

while V has previously been in in sea ice (Belt et al., 2007) and in ice-free temperate 388 

regions (He et al., 2016), and is thus not especially environment-specific. 389 

More specific classification outcomes predicted by the CT models can be 390 

rationalised through consideration of sea ice dynamics and their impacts on primary 391 

productivity during the spring and summer blooms. For example, locations that 392 

experience extensive SpSIC in our dataset are characterised by a bloom of 393 

sympagic algae within the sea ice itself, triggered primarily by the rapid increase of 394 

solar radiation and favourable light incidence angle in March–April (Strass et al., 395 

1996; Signorini et al., 2009; Leu et al., 2011). In the Barents Sea, such blooms are 396 

likely supported by upwelling of nutrient-rich AW (Ivanov et al., 2012) and are 397 

dominated by diatoms (Wassmann et al., 1999), likely explaining the higher relative 398 

abundances of IP25 (Fig. 5), which accumulates mostly in March–April, at least in the 399 

Canadian Arctic (Brown et al., 2011). Conversely, the productivity of pelagic 400 

phytoplankton remains low during this time, and instead follows the highly stratified 401 

waters within 20–50 km of the receding ice edge during the ice melt season in May–402 

July, starting approximately two months after the ice algal bloom (Signorini et al., 403 

2009; Leu et al., 2011; Janout et al., 2016). However, although pelagic 404 
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phytoplankton productivity is also possible beneath dense sea ice cover and can be 405 

initiated by light penetration through leads and polynyas in the Barents Sea (Willmes 406 

and Heinemann, 2016), the highly-productive ice edge conditions do not reach north 407 

and east of Svalbard until ca. July–August (Fetterer et al., 2016). This shortens the 408 

pelagic bloom duration in these areas, prior to the October ice advance, and 409 

probably explains the low relative abundance of IV (Fig. 5). Similarly, high model 410 

performance for the marginal sea ice class attests to the source specificity of IP25, 411 

which was absent at nearly all ice-free locations, and in relatively low abundance at 412 

locations with <10% SpSIC. Such source selectivity permitted the separation of most 413 

samples belonging to the marginal class with a single CT decision rule (Fig. 5). The 414 

high range of HBI IV relative abundance in this area (Fig. 5) reflects the regional 415 

productivity variability (e.g. Olsen et al., 2003; Signorini et al., 2009), including the 416 

well-known enhancement proximal to the stratified waters of the MIZ (Wassmann et 417 

al., 1999).  418 

The majority of samples belonging to the intermediate SpSIC class were also 419 

correctly classified. In such settings, HBI composition, with lower relative contribution 420 

of IP25 compared to the extensive sea ice cover sites, is consistent with a short 421 

duration of the under-ice algal bloom before the onset of ice melt in May, whereupon 422 

the meltwater discharge triggers strong stratification of the upper water column and 423 

the initiation of an intense pelagic phytoplankton bloom (Janout et al., 2016) leading 424 

to increased IV (and III; Belt et al., 2015). Lower performance was observed for the 425 

MIZ west of Svalbard, however, an area at the boundary between marginal and 426 

intermediate SpSIC (Fig. 3b, 3c and Table 1). This is potentially attributable to the 427 

highly variable sea ice conditions that characterise the region. While the continental 428 

slope remains ice-free throughout the year due to the direct inflow of warm AW with 429 
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the WSC, sea ice is present on the shelf during winter due to the topographically-430 

steered inflow of colder ArW with the ESC, resulting in a density gradient preventing 431 

significant AW intrusion to the shelf (Fig. 2b; Walczowski and Piechura, 2011). 432 

Similar conditions characterise Whalers Bay north of Svalbard, which is often ice-433 

free, even in February (Ivanov et al., 2012). Such influence of contrasting water 434 

masses and sea ice regimes favours production of both sympagic and pelagic 435 

biomarkers (e.g. Søreide et al., 2013; Belt et al., 2015; Smik et al., 2016; Smik and 436 

Belt, 2017). Accordingly, our dataset shows high relative abundances of both IP25 437 

and IV in western Svalbard locations (Fig. 5). Elevated abundance of IP25 may also 438 

result from allochthonous input from the Svalbard shelf (e.g. via ice rafting) to the 439 

relatively ice-free margin, as seen with some terrigenous organic matter (Knies et al., 440 

2007; Knies and Martinez, 2009). Southward transport of drift ice from the Nansen 441 

Basin into the Barents Sea represent a further potential allochthonous source of 442 

sympagic material (Kwok et al., 2005).  443 

Some misclassification, although less prominent, was also observed in the 444 

eastern part of the study region (Fig. 3c), potentially due to an increase in seasonal 445 

and annual sea ice variability in this area compared to the MIZ of the central Barents 446 

Sea. Thus, the oceanic fronts in the eastern Barents Sea are defined by separate 447 

salinity and temperature gradients due to considerable influence of AW inflow with 448 

the NCaC, resulting in higher sea ice variability (Oziel et al., 2016) with 449 

consequential influence on the balance between sympagic and pelagic production. In 450 

fact, the more frequent misclassification of samples located along the highly dynamic 451 

sea ice edge, more generally, is likely a result of spatial shifts in sympagic and 452 

pelagic productivity regimes, and underlines the difficulty in identifying and 453 

characterising the MIZ using geochemical biomarkers alone.  454 
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On the other hand, the use of different coring techniques, as well as variable 455 

sediment accumulation rates and diverse depositional settings observed in the 456 

Barents Sea (e.g. Boitsov et al., 2009; Knies and Martinez, 2009; Maiti et al., 2010) 457 

potentially represent additional sources of misclassification error in CT model output. 458 

For example, several surface sediments in the current dataset were collected via 459 

gravity coring, which is a potential cause of uppermost sediment distortion (Leonard, 460 

1990). Additionally, integrated proxy signals from surface sediments correspond to 461 

variable timescales, which are potentially different from the 20 years covered by our 462 

database of satellite-derived SpSIC, at least in some locations. While sediment 463 

accumulation rates in the seasonal sea ice zone around Svalbard are typically 464 

0.7±0.4 mm y-1 (Zaborska et al., 2008), they may reach up to 1.1±0.4 mm y-1 closer 465 

to the sea ice edge (Maiti et al., 2010), and are higher in fjords and areas of 466 

sediment erosion south of Spitsbergen (Boitsov et al., 2009). Thus, a sediment depth 467 

of 1.0 cm may represent ca. 5–30 years of deposition. Further, a low number of 468 

sediments in the current dataset (n=10) were sampled at variable depths (ranging 469 

from 1–3 cm). Thus, some surface sediment data described herein may not be 470 

equally representative of the 20-year satellite SpSIC record. In practice, achieving 471 

complete temporal comparability of surface sediment signals is problematic without 472 

detailed accumulation rates for all locations. Nevertheless, the distribution of certain 473 

individual HBIs (IP25 and III) in Barents Sea sediments has been shown previously to 474 

be broadly consistent with modern sea ice conditions (Navarro-Rodriguez et al., 475 

2013; Belt et al., 2015; Smik et al., 2016).  476 

5.2 Downcore class predictions and comparison to the PIP25-based SpSIC estimates 477 

Our downcore records represent regions of contrasting modern sea ice 478 

conditions. Site 8 has consistently experienced extensive SpSIC (ca. 80%) for the 479 
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last 300 years (at least), in stark contrast to site 1, which has been ice-free during 480 

this period (Divine and Dick, 2006; Vare et al., 2010). Site 43 is located in the south-481 

eastern Barents Sea at the modern winter sea ice margin, while site 712, despite 482 

being located farther north, is influenced by direct northward inflow of warm Atlantic 483 

Water from the WSC and therefore also experiences low SpSIC. The downcore 484 

semi-quantitative SpSIC estimates derived from PIIIIP25 indices (Smik et al., 2016) 485 

reflected this variability of modern sea ice conditions, with high values for core 8, 486 

similarly low values for cores 43 and 712, and ice-free conditions inferred for core 1 487 

(Fig. 7). Further, the decline in PIIIIP25-derived SpSIC estimates seen for cores 43 488 

and 712 from ca. 1900 yr AD and 1850 yr AD, respectively (Vare et al., 2010; 489 

Cabedo-Sanz and Belt, 2016) is also consistent with observational sea ice records 490 

for the region (Divine and Dick, 2006; Walsh et al., 2017). 491 

The downcore PIIIIP25-derived SpSIC estimates (Fig. 7) were also consistent 492 

with the marginal, intermediate and extensive sea ice classes obtained using CT 493 

model A (Fig. 3b–3c) and the other CT models (Fig. A4). However, due to the 494 

broader scale of sea ice classifications, CT model A did not capture the gradual 495 

decline of sea ice cover observed in the PIIIIP25-derived SpSIC record of cores 43 496 

and 712 (Fig. 7). Despite this, the sea ice classes inferred for downcore records are 497 

entirely consistent with both the overlying sea ice conditions and the classification of 498 

surface sediments (Fig. 3b–3c), where model A correctly classified the majority of 499 

samples representing extensive sea ice conditions near east and north Svalbard, the 500 

highly-variable intermediate sea ice cover of the MIZ in the central Barents Sea, and 501 

the open water and marginal ice conditions south of ca. 75°N.  However, both 502 

PIIIIP25- and CT-based methods somewhat overestimated the sea ice cover near site 503 

712 (western Svalbard). Specifically, semi-quantitative SpSIC estimates for site 712 504 
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were higher relative to site 43, which experiences similarly low modern sea ice 505 

concentration, while model A misclassified the majority of surface sediments in close 506 

proximity to site 712 from marginal to the intermediate sea ice class (Fig. 3b–3c), 507 

probably due to the highly variable sea ice dynamics that characterise the west 508 

Svalbard margin, as outlined earlier. As such, on the basis of the data presented 509 

here, the PIIIIP25- and CT-based methods may be more suitable for regions (or 510 

downcore temporal windows) where sea ice conditions are more consistent in terms 511 

of seasonal or annual advance/retreat cycles, including areas of relatively stable 512 

winter maximum sea ice extent and PF position in the central Barents Sea (Loeng 513 

and Drinkwater, 2007).  514 

5.3 General comparison between CT models and PIP25 methods 515 

The suitability of CT models as a complementary approach to PIP25-based 516 

methods for paleo-reconstruction of sea ice conditions is discussed briefly here and 517 

summarised in terms of an initial assessment of perceived advantages and potential 518 

limitations of both methods (Table 2).  The principal advantage of the PIP25 approach 519 

is the ability, in some cases, to provide more precise SpSIC information and hence 520 

identify relatively subtle trends in temporal data as shown here for cores 43 and 712 521 

(Fig. 7). However, as a univariate measure, PIP25 is dependent on the c-factor (Eq. 522 

2), whose magnitude is sensitive to both the individual pelagic biomarker and its 523 

concentration range, which itself varies between regions and temporal windows 524 

within downcore records (e.g. Müller et al., 2011; Belt and Müller, 2013; Belt et al., 525 

2015; Cabedo-Sanz and Belt, 2016). While the latter limitation has been 526 

circumvented to some extent in the Barents Sea by using a fixed value c-factor 527 

(Smik et al., 2016), objective choice of an appropriate pelagic biomarker in other 528 

Arctic regions potentially remains a challenge. Additionally, the value of the c-factor 529 

“ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.”   



24 
 

for the Barents Sea (Smik et al., 2016) is unlikely to extend to other Arctic regions, 530 

given the large circum-Arctic variability of biomarker concentration ranges in regions 531 

of similar sea ice concentration (e.g. Stoynova et al., 2013; Xiao et al., 2015a). 532 

Further regional calibrations, potentially based on IP25 and HBI III, are needed before 533 

this aspect can be fully resolved.  534 

In contrast, classification trees, while only able to provide discrete categorical 535 

output, automatically select descriptive variables most relevant to the classification 536 

(IP25 and IV in the current study; Fig. 4 and A.2), and do not use redundant variables 537 

(i.e. V and VI; Fig. 6). Further, CT models are not dependent on the c-factor due to 538 

their multivariate nature, and provide performance metrics that may be used to 539 

assign a confidence level to classification. In contrast, categorisation of sea ice 540 

conditions using PIP25 indices remain largely qualitative and subject to interpretive 541 

bias. Consequently, classification trees can potentially provide outcomes that are 542 

more compatible when making comparisons between downcore records located 543 

within a geographical region of the model training dataset, and offer intuitive 544 

visualisation of trends (Fig. 4a and 5) even when used with datasets containing 545 

statistical outliers or redundant variables (Breiman et al., 1984). In addition, classes 546 

of sea ice conditions may be assigned to new samples, such as those from 547 

downcore records described herein (Fig. 7), with a certain degree of mathematical 548 

certainty derived from model evaluation (Table 1).  549 

CT models are not without limitations, however, some of which may be 550 

amplified by the data structure used in the current study. The conversion of absolute 551 

HBI concentrations to relative abundances (Eq. 3 to 7) was used to confine the data 552 

to a uniform scale and make classification of temporal data possible, since the data 553 

ranges of absolute HBI concentrations in downcore records may not be represented 554 
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in modern settings and are likely to exhibit a strong regional dependence (Belt and 555 

Müller, 2013; Stoynova et al., 2013; Xiao et al., 2015a). However, CT models based 556 

on compositional data can be less stable, since relatively small changes within the 557 

training data can significantly impact tree structure (e.g. Aluja-Banet and Nafria, 558 

2003). As such, like with PIP25, separate models should probably be constructed on 559 

a regional basis. Since the same limitations apply with missing data, it is 560 

recommended, therefore, that sea ice class predictions are only carried out for 561 

samples where all biomarker data have been recorded. The potentially lower stability 562 

of CT models when using compositional data (Aitchison, 1986; Aluja-Banet and 563 

Nafria, 2003) also highlights the importance of excluding variables that are 564 

redundant to the classification task, despite the capacity of classification trees for 565 

automatic variable selection (Breiman et al., 1984). In the current context, this was 566 

achieved by using different combinations of biomarkers with known sympagic or 567 

pelagic diatom sources (i.e. HBIs I–VI; Eq. 4–7) as classifiers of ice cover, 568 

subsequent exclusion of redundant variables (V and VI; Fig. 6), and selecting the 569 

simplest combination of HBIs (CT model A; Fig. 4) without compromising 570 

classification performance (Table 1). For the same reason, other biomarkers of lower 571 

source specificity, including sterols (e.g. Belt et al., 2015; Cabedo-Sanz and Belt, 572 

2016), were excluded from the outset. 573 

6. Conclusions 574 

CT models based on the HBI biomarker content in surface sediments from the 575 

Barents Sea and neighbouring regions provide a useful proxy method for 576 

characterising Arctic sea ice conditions. Outcomes from four CT models constructed 577 

using different HBI assemblages revealed that the sea ice diatom biomarker IP25 and 578 

a pelagic HBI triene counterpart (IV) were the most appropriate variables used for 579 
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classification of sea ice conditions. Further sympagic (II) and pelagic (III) biomarkers 580 

were identified as surrogate variables should IP25 or IV data be unavailable in future 581 

samples. A cross-validated mean classification rate of >90% was obtained from all 582 

models. PIIIIP25-based estimates of SpSIC in four downcore records provided 583 

reasonable spatial and temporal agreement with known sea ice trends obtained from 584 

satellite and observational records, and with CT model outcomes. However, 585 

compared to the main Barents Sea sites, the agreement between the proxy and 586 

observational records was poorer for a core from the west Svalbard margin, and the 587 

qualitative predictions of broad-scale sea ice variability obtained from the CT model 588 

did not capture subtle trends of known sea ice decline over the last ca. 150 years 589 

that could be identified via the PIIIIP25 approach. Despite some potential limitations of 590 

the CT approach, the automatic selection of appropriate HBI biomarkers for 591 

description of sea ice conditions, the quantitative model assessment via performance 592 

metrics, and the insensitivity to the c-factor (PIP25) and statistical outliers, make it a 593 

potentially useful tool for providing discrete categorical assessment of paleo sea ice 594 

conditions archived in marine sediment cores.  595 
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Figure Legends 602 

Figure 1. Structures of C25 Highly-Branched Isoprenoid (HBI) biomarkers utilised in 603 

the current study. 604 

Figure 2. Maps of the Barents Sea showing the study region and sample locations. 605 

(a) The locations of surface sediments (black circles) and downcore records (black 606 

squares) evaluated in the current study. Cores are identified by white numbering; (b) 607 

A simplified representation of the surface currents carrying major water masses 608 

(NAC: North Atlantic Current; WSC: West Spitsbergen Current; NCaC: North Cape 609 

Current; ESC: East Spitsbergen Current; PC: Persey Current; NCC: Norwegian 610 

Coastal Current). The average position of spring sea ice extent (April–June, 1988–611 

2007; Cavalieri et al., 1996) corresponding to a 15% SpSIC threshold is shown by 612 

solid black lines, while the sea ice edge corresponding to a 0% SpSIC threshold is 613 

shown by the dashed black line for map (a) only. Maps were produced using the 614 

Ocean Data View software package, version 4.7.10 (Schlitzer, 2017). 615 

Figure 3. Maps showing the distribution of categorical sea ice concentration (SpSIC) 616 

classes in surface sediments: (a) Assigned using threshold SpSIC values from 617 

satellite data; (b) Classified using CT model A on the training dataset; (c) Classified 618 

by CT model A following 10-fold cross validation. Samples with marginal, 619 

intermediate, and extensive overlying SpSIC are shown by red, yellow, and green 620 

dots, respectively. For (b) and (c), white dots represent misclassified samples from 621 

CT model A. The average position of sea ice extent (15% SpSIC threshold) and sea 622 

ice edge (0% SpSIC threshold) for April–June (1988–2007; Cavalieri et al., 1996) are 623 

shown by solid and dashed black lines, respectively. 624 
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Figure 4. Pruned tree structure for CT model A showing two splitting rules, 625 

corresponding relative HBI abundance thresholds, and final SpSIC classes assigned 626 

to terminal (leaf) nodes. Sensitivity values for each class are also shown. Left and 627 

right branches represent cases where a splitting condition is true and false, 628 

respectively. 629 

Figure 5. Scatter plot showing the distribution of surface sediments within the data 630 

space of CT model A. Classes of marginal, intermediate, and extensive sea ice 631 

conditions determined using satellite SpSIC data (Fig. 3a) are shown by red circles, 632 

yellow squares, and green triangles, respectively. The coloured regions represent 633 

areas within the data space classified by CT model A as marginal (red), intermediate 634 

(yellow), and extensive (green) sea ice conditions. The regions are separated by 635 

model-determined decision boundaries (annotated black lines), which show the 636 

chosen HBI biomarkers and corresponding relative abundance thresholds used for 637 

splitting rules. Misclassified samples are represented by diamond symbols and 638 

correspond mostly to sites from west Svalbard. 639 

Figure 6. Relative variable importance for SpSIC classification. Only results for 640 

model D are shown, since models A–C did not use all six HBI biomarkers. Variable 641 

importance values are based on the summed reduction of the loss function 642 

calculated from the model splitting rules, and take surrogate variables into account 643 

(Breiman et al., 1984). 644 

Figure 7. Comparison of PIIIIP25- and CT model-derived sea ice conditions from four 645 

dated short cores (cores 1, 8, 43 and 712) from the study region representing 646 

contrasting modern-day sea ice cover (Fig. 2). The magnitude of each data point 647 

(left-hand axis) corresponds to the PIIIIP25-derived SpSIC and associated standard 648 
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error estimates based on the regional calibration of Smik et al. (2016). The colours of 649 

each data point indicate the CT model A predictions of marginal (red), intermediate 650 

(yellow) and green (extensive) sea ice conditions (Fig. 3). Note the consistent 651 

agreement between PIIIIP25-derived SpSIC (left-hand axis) and categorical CT 652 

model-based sea ice classifications (right-hand axis). A period of SpSIC decline after 653 

1850 is shown by the annotated arrow. 654 

 655 

  656 
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Tables 657 

Table 1. Summary of performance metrics for classification tree (CT) models A–D. 658 

Abbreviations represent classes of sea ice conditions based on satellite SpSIC (Fig. 659 

3a): MAR = marginal; INT = intermediate; EXT = extensive. 660 

Model 

Training 

Accuracy 

(%) 

10-fold CV 

accuracy 

(%; n = 5) 

Per-class sensitivity 

(%) 
Mean 

sensitivity 

(%) 

Per-class precision 

(%) 
Mean 

precision 

(%) F1 score Kappa MAR INT EXT MAR INT EXT 

A 94 92 ± 6 95 72 96 87 ± 11 97 69 85 87 ± 12 0.9 ± 0.1 0.8 ± 0.1 

B 95 92 ± 5 94 73 94 87 ± 12 97 67 84 85 ± 12 0.9 ± 0.1 0.8 ± 0.1 

C 94 92 ± 6 94 75 91 87 ± 12 97 65 84 87 ± 11 0.9 ± 0.1 0.8 ± 0.2 

D 95 92 ± 6 94 79 94 89 ± 12 98 67 84 86 ± 12 0.9 ± 0.1 0.8 ± 0.1 

 

             

 661 

  662 
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Table 2. Summary of advantages and limitations of PIP25- and CT-based methods 663 

for estimating spring sea ice conditions. 664 

Method Advantages Limitations Selected references 

PIP25 Intuitive scale (0–1), 

transferable between 

study sites; 

 

Provides semi-quantitative 

sea ice concentration 

estimates, including 

SpSIC (%) in some cases; 

 

Potentially able to capture 

subtle changes in sea ice 

conditions; 

 

Requires quantification of 

two variables only 

Calculation and 

interpretation can be 

problematic when IP25=0 or 

both biomarkers absent; 

 

Univariate measure 

affected by regional and 

downcore variability of the 

c-factor; 

 

Objective selection of an 

appropriate pelagic 

biomarker can be 

challenging 

Belt and Müller, 2013 

Belt et al., 2015 

Müller et al., 2011 

Smik et al., 2016 

 

 

Classification 

Trees 

 

 

Multivariate method that is 

not affected by c-factor 

variability; 

 

Automatic selection of the 

most appropriate 

variables for classification; 

 

Model performance on 

future samples can be 

quantitatively estimated 

 

 

Provides discrete 

qualitative SpSIC class 

predictions only; 

 

Requires quantification of 

multiple variables; 

 

Model structure can be 

affected by small changes 
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