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Abstract

Proliferating cell nuclear antigen seems to exist as a single form in higher eukaryotic cells and plays multiple roles in nucleic acid

metabolism. We have identified a second additional proliferating cell nuclear antigen (PfPCNA2) in Plasmodium falciparum on the basis of

several lines of evidence. (1) PfPCNA2, consisting of 264 amino acid residues with a predicted molecular mass of 30.2 kDa, shares only 29%

identity and 53% similarity with PfPCNA1 at the amino acid level. (2) Southern blot analyses revealed that the hybridisation pattern of the

Pfpcna2 gene is completely different from that of the Pfpcna1 gene. (3) Chromosomal localisation studies showed that Pfpcna2 is located on

chromosome 12 while Pfpcna1 is located on chromosome 13. Northern blot analyses revealed two different transcripts of Pfpcna2, one

expressed in both asexual and sexual erythrocytic stages, while the other existed only in the sexual stage, implying that PfPCNA2 may play

multiple roles in DNA metabolism in different stages of the parasite. Recombinant protein of PfPCNA2, overexpressed in Escherichia coli,

has been purified to near homogeneity and shown to form an oligomer, probably a trimer, as revealed by a size-exclusion chromatography

and a native gel electrophoresis, suggesting that PfPCNA2, like its higher eukaryotic counterparts, may serve as a sliding platform which is

capable of interaction with diverse proteins and regulation of their activities. q 2002 Australian Association for Parasitology Inc. Published

by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Malaria kills between one and three million humans,

mostly children, every year, making it one of the leading

causes of death from an infectious disease (Marshall, 2000).

The lack of an effective vaccine and the development of

Plasmodium resistance to many existing antimalarial

drugs have aggravated the situation. It is therefore impera-

tive that our understanding of the fundamental biology and

biochemical processes at different stages of the parasite be

improved, to facilitate the identification of new targets for

the development of novel drugs and vaccines. DNA replica-

tion represents such a key process of the parasite. There are

at least five distinct points in the parasite life cycle when

DNA replication occurs (White and Kilbey, 1996), two of

which take place in the human host, i.e. in the hepatocytes

and in the erythrocytes, and the remainder occurs in the

mosquito vector. The selective blocking of DNA synthesis

in the parasite should inhibit both the disease and the para-

site transmission.

DNA replication proceeds in two sequential stages which

appear highly conserved in eukaryotes. At the initiation

stage, the origin recognition complex (ORC) composed of

six subunits (ORC1–ORC6) binds to replication origins

during most or all of the cell cycle and serves as an initiator

(Kelly and Brown, 2000). Cdc6/Cdc18 and Cdt1 function as

loading factors which cooperate with ORC to recruit six

different but related polypeptides known as the mini-chro-

mosomal maintainence (MCM) proteins onto the origins

(Kelly and Brown, 2000; Maiorano et al., 2000; Nashitani

et al., 2000). MCM has DNA helicase activity that may be

responsible for unwinding the double-stranded DNA

(dsDNA) producing a single-stranded DNA (ssDNA)

(Labib and Diffley, 2001). During the elongation stage,

the ssDNA-binding protein, replication protein A (RPA),

binds and stabilises ssDNA at the replication fork (Wold,

1997). DNA polymerase a (pol a)/primase, consisting of

four subunits, then interacts with the RPA bound on

ssDNA. The primase subunit of pol a/primase generates

an RNA primer and the polymerase subunit adds a stretch

of deoxyribonucleotides to the RNA primer (Waga and
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Stillman, 1998). Replication factor C (RFC), a complex of

five subunits (RFC1–RFC5), gains access to the primer–

template junction by binding the RPA and serves as a

clamp loader (Mossi and Hübscher, 1998). Proliferating

cell nuclear antigen (PCNA) then binds to the RFC–DNA

complex in the presence of adenosine triphosphate (ATP)

and forms a homotrimeric complex (Cox, 1997; Kelman,

1997). Next, DNA polymerase d (pol d) interacts with

PCNA, which functions as a sliding clamp holding the poly-

merase on the primer terminus. The clamped DNA polymer-

ase is highly processive, adding thousands of nucleotides to

the 3 0 end of the RNA–DNA primer (Waga and Stillman,

1998). The initiator RNA primers are then removed by

RNase H1 and Fen1 nucleases (Lieber, 1997). Finally, the

daughter DNA fragments are sealed by DNA ligase I (Waga

and Stillman, 1998). The process of DNA replication is

highly coupled to cell cycle progression and to DNA repair

to maintain genome integrity.

Although considerable knowledge of DNA replication in

eukaryotes has been obtained from studies on the SV40 in

vitro replication system, very little is known about DNA

replication in the malaria parasite. To date, only two

proteins associated with replication initiation and four

components involved in DNA elongation have been identi-

fied and isolated from Plasmodium falciparum (White and

Kilbey, 1996). These include MCM4 (Li and Cox, 2001),

ORC1 (Li and Cox, 2002), PCNA (Kilbey et al., 1993),

DNA primase (Prasartkaew et al., 1996), DNA pol a

(Abu-Elheiga et al., 1990; Choi and Mikkelsen, 1991;

White et al., 1993) and DNA pol d (Fox and Bzik, 1991;

Ridley et al., 1991). We are interested in DNA replication in

P. falciparum. As a part of our efforts, in this paper we

describe a second P. falciparum-proliferating cell nuclear

antigen (PfPCNA2).

2. Materials and methods

2.1. Parasite and parasitic materials

Plasmodium falciparum clones T996 and 3D7A were used

in this study. Parasite DNA and total RNA were extracted from

cultures of P. falciparum 3D7A as described previously (Li et

al., 1996). The first-strand cDNA was generated from 1 mg of

total RNA using the random hexamer primer in the rapid-

amplification-of-5 0-cDNA-ends system of synthesis (Gibco)

with DNase I (Li and Baker, 1997).

2.2. Oligonucleotides

Oligonucleotides PC1 (5 0-CCTTGCACCAAAAATAG-

GAGACTAC-3 0, 1121–1145), PC2 (5 0-ACCTAAAACG-

CAATTTTTATCACACC-3 0, 532–557), PCB (5 0-

CGGGATCCCATATGTTTGAATGCAGAATAG-3 0, 240–

258) containing BamHI and NdeI restriction sites and PCE

(5 0-CCCAAGCTTAGTAGTCTCCTATTTTTG-3 0, 1129–

1148) containing HindIII site were ordered from Genosys

and used for either Vectorette PCR (PC1 and PC2) to screen

Vectorette libraries (Li et al., 1996) or construction of the

expression vectors (PCB and PCE) to produce recombinant

proteins. The Vectorette primer was obtained from Cambridge

Research Biochemicals.

2.3. Construction and screening of Vectorette libraries

Vectorette libraries were constructed from P. falciparum

3D7A genomic DNA as described previously (Li et al.,

1996). With a specific primer and a universal Vectorette

primer, PCR was used to screen Vectorette libraries (Li et

al., 1996). PCR products were cloned into the pGEM-T vector

(Promega) and sequenced using an ABI PRISM (model 377)

automatic sequencing facility in this department.

2.4. Southern and Northern blot analyses

Approximately 4 mg of genomic DNA (clone 3D7A)

digested with a number of restriction enzymes was used

for Southern blotting and approximately 10 mg of total

RNA extracted from both asexual and sexual erythrocytic

stages of P. falciparum 3D7A was employed for Northern

blotting (Li et al., 1996). The Hybond N 1 nylon membrane

blots containing DNA or RNA were probed with a 32P-

labelled PCB–PCE fragment as described previously (Li et

al., 1996). Filters were washed at 568C in 1 £ SSC/0.1%

SDS for 40 min and then in 0.5 £ SSC/0.1% SDS for 30 min

and autoradiographed at 2808C.

2.5. Pulse-field gel electrophoresis

Preparation of the agarose blocks containing chromoso-

mal DNA, gel electrophoresis using a Bio-Rad CHEF DRII

system, and treatment of the blotted membrane were carried

out as described previously (Li and Baker, 1997). The blot

was hybridised with the PCB–PCE DNA probe and

processed further as described above.

2.6. Recombinant protein expression and purification

The PCB–PCE fragment of Pfpcna2 was amplified from

cDNA and cloned into the pGEM-T vector. The resulting

pGEM-T-PfPCNA2 construct was sequenced to verify the

insert cDNA sequence. An NdeI–HindIII fragment was

released from pGEM-T-PfPCNA2 and subcloned into either

an NdeI/HindIII-digested pT7.7 vector or modified pET-11

vector (containing a histidine tag) to generate naked or His-

tagged fusion protein in Escherichia coli. pET-11-

PfPCNA2 encoding a 264 amino acid protein fused with

MetHis8 at its N-terminus was transformed into E. coli

[BL21-CodonPlusTM (DE3)-RIL] competent cells. After

induction with 0.5 mM isopropyl-b-thiogalactopyranoside

(IPTG) at 378C for 4 h, the bacterial cells were collected

by centrifugation, the pellet resuspended and sonicated in

ice-cold 25 mM Tris–HCl (pH 7.4) containing 250 mM

NaCl, 1 mM DTT, 0.1% Triton X-100, and a protease inhi-

bitor mixture (Boehringer Mannheim). The lysate was
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centrifuged at 40,000 g for 60 min at 48C to remove solid

particles. The resulting supernatant was subjected to nickel

chelate affinity chromatography. The nickel column was

equilibrated with five bed volumes of 15 mM imidazole in

50 mM Tris–HCl pH7.4, 250 mM NaCl. The protein sample

was loaded onto the column and washed with 15 bed

volumes of the same buffer containing 40 mM imidazole.

Elution was performed with an imidazole gradient of 50–

1000 mM in the same buffer applied over 10 bed volumes.

Fractions of 1 ml were collected and dialysed against dialy-

sis buffer consisting of 50 mM Tris–HCl pH7.4, 250 mM

NaCl, 1 mM dithiothreitol (DTT), 1 mM b-mercaptoetha-

nol and stored in 25% glycerol at 2708C.

2.7. Western blotting

The protein extracts were subjected to SDS-PAGE on

12% gels followed by electrotransfer of the proteins to a

nitrocellulose membrane (Hybond-C super, Amersham).

PCNA was detected by a mouse monoclonal anti-histidine

tag antibody (Sigma) or a rabbit polyclonal antibody (3009)

raised to a synthetic peptide (15-mer) of the C-terminus of

human PCNA. Immunoreactive proteins were visualised

using ECLe reagents (Amersham).

2.8. Size-exclusion chromatography

A fast protein liquid chromatography (FPLC) system was

used to determine the size of PfPCNA2. Recombinant

PfPCNA2 (4 mg) was loaded onto the 7 ml Superdex 200

column (Pharmacia) which was then washed with 13 ml

buffer (50 mM Tris–HCl pH7.4, 250 mM NaCl, 1 mM

DTT). Fractions were collected using an Akta FPLC system.

Protein peaks were determined by absorption at 280 nm and

by western blotting using the monoclonal anti-histidine tag

antibody.

3. Results

3.1. Identification of the Pfpcna2 gene and characteristics of

its deduced protein

Two DNA fragments (tags 1352m3 and 1013m3) were

found in the P. falciparum database encoding an overlap-

ping protein fragment with a high sequence homology to

maize PCNA (López et al., 1995). To obtain the remainder

of the gene, two specific primers, PC1 (walking in the 3 0

direction) and PC2 (walking in the 5 0 direction), were

constructed on the basis of the 1352m3 sequence and used

in PCR to screen Vectorette libraries (Li et al., 1996). Two

fragments (PC1-RsaI and PC2-BclI) were obtained and

sequenced. To confirm the sequence obtained from the over-

lapping fragments, an independent PCR fragment (PCB–

PCE) was amplified from the parasite (3D7A) genomic

DNA and sequenced on both strands (Fig. 1). The sequence

derived from overlapping tag and PCR fragments consists of

1,461 bp and contains an intron that consists of 114 nucleo-

tides and interrupts the coding region, starting with the

conserved dinucleotides GT and terminating with AG. To

verify the size and location of the presumed intron, reverse

transcriptase (RT)-PCR (Li and Baker, 1997; Li et al., 2000)

was performed using PCB and PCE primers (data not shown).

Sequencing of the RT-PCR product confirmed the precise

exon–intron boundaries.

The open reading frame resulting from the removal of the

intron encodes a protein of 264 amino acids (Fig. 2A) with a

predicted Mr of approximately 30.2 kDa and an isoelectric

point 4.87. Database searches revealed that the amino acid

sequence of the predicted protein shares 43–56% similarity

and 19–36% identity with proteins in the PCNA family. The

predicted protein shares only 53% similarity and 29% iden-

tity with the known P. falciparum PCNA (Kilbey et al.,

1993) (hereafter called PFPCNA1). Accordingly, we desig-

nated our protein PfPCNA2. As shown in Fig. 2, PFPCNA2
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Fig. 1. A schematic representation of a partial restriction map of the Pfpcna2 gene and the overlapping fragments used to determine its nucleotide sequence.

The open boxes indicate the exon coding regions of the Pfpcna2 gene and the black box represents the intron. The fragments of 1352m3 and 1013m3 were

obtained from the Plasmodium falciparum tag database. The fragments of PC1-RsaI and PC2-BclI were derived from the Vectorette PCRs. PCB–PCE (gDNA)

and PCB–PCE (cDNA) were amplified from genomic DNA and cDNA, respectively.
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Fig. 2. Characteristics of the PfPCNA2 protein. (A) Sequence alignment of Saccharomyces cerevisiae, human and Plasmodium falciparum PCNAs. The

GenBanke/EMBL/DDJB database accession numbers are as follows: S. cerevisiae ScPCNA, P15873; Homo sapiens HsPCNA, P12004; P. falciparum

PfPCNA1, P31008; and P. falciparum PfPCNA2, AF056205. Sequences were aligned with the CLUSTAL W (1.60) multiple sequence alignment programme.

The amino acid residues are numbered to the left of the sequence. Identical residues are indicated with asterisks and conservative changes indicated with dots.

The second structures based on the yeast PCNA (Krishna et al., 1994) are labelled on top of the sequence. (B) Phylogenetic comparisons of the eukaryotic

PCNA proteins. The database accession number of each member is as follows: Cricetulus griseus CgPCNA, P57761; Homo sapiens HsPCNA, P12004; Mus

musculus MmPCNA, P17918; Rattus norvegicus RnPCNA, P04961; Coturnix japonica CjPCNA, AJ301669; Gallus gallus GgPCNA, AB053163; Anguilla

japonica AjPCNA, AB025357; Xenopus laevis XlPCNA, P18248; Bombyx mori BmPCNA O01377; Drosophila melanogaster DmPCNA, A34752; Daucus

carota DcPCNA1, Q00268; Nicotiana tabacum NtPCNA, Q82793; D. carota DcPCNA2, Q00265; Zea mays ZmPCNA1, S52115; Z. mays ZmPCNA2,

U87949; Oryza sativa OsPCNA, S14415; Catharanthus roseus CrPCNA, P24314; Arabidopsis thaliana AtPCNA1, Q9M7Q7; A. thaliana AtPCNA2,

Q9ZW35; Schizosaccharomyces pombe SpPCNA, Q03392; P. falciparum PfPCNA1, P31008; Toxoplasma gondii TgPCNA1, AF242301; P. falciparum

PfPCNA2, AF056205; T. gondii TgPCNA2, AF242302; and S. cerevisiae ScPCNA, P15873.



has almost all conserved motifs including the potential

DNA-binding domain (R60CDKNCVLGISINFMLKILS79 )

that displays up to 75% similarity to the corresponding

region in either human or Saccharomyces cerevisiae

PCNA, pol d and RFC putative binding sites

(D40CSHVS45), and the C-terminal region (F255FLAPK260)

that was thought to be essential for proper folding and inter-

action with several binding proteins in humans (Kelman,

1997; Jónsson et al., 1998). Structure-based alignment

showed that each of the strands and helices are also

preserved. However, PfPCNA2 contains two unique

sequence inserts (one with four amino acids located just

before the bH1 region and another with seven amino

acids positioned before the bI2 region) and a four-residue

deletion after the bC2 motif (see Fig. 2A). Phylogenetic

analysis of the eukaryotic PCNAs indicated that while verte-

brates appear to have only one PCNA, the Apicomplexa

protozoa and some plants may use more than one type of

PCNA to carry out different types of nucleic acid metabo-

lism such as DNA replication and repair. As shown in Fig.

2B, PfPCNA2 and TgPCNA2 fall into the same group while

PfPCNA1 and TgPCNA1 group together.

3.2. Structural organisation of the Pfpcna2 gene

To determine the copy number of the Pfpcna2 gene in the

P. falciparum genome, 3D7A genomic DNA was digested

with various restriction enzymes and analysed by Southern

blotting. Hybridisation of the PCB–PCE DNA probe (see Fig.

1) revealed a single band in digests with BamHI or BclI, for

which there is no restriction site in the PCB–PCE fragment,

and two bands in digests with EcoRV or HincII, for which

only one restriction site exists in the probe (Fig. 3A).

However, there are two bands (one predominant and the

other faint) on digestion with EcoRI, inconsistent with the

J.-L. Li et al. / International Journal for Parasitology 32 (2002) 1683–1692 1687

Fig. 3. Southern blot analysis of the Pfpcna2 gene. Genomic DNA, 4 mg,

from Plasmodium falciparum clone 3D7A was digested with restriction

enzymes, electrophoresed on a 1.0% agarose gel, transferred onto a nylon

membrane, and probed with (A) the Pfpcna2 gene (the PCB–PCE fragment)

and (B) the Pfpcna1 gene, respectively. Lanes 1–6 correspond to digests

with BamHI, BclI, EcoRI, EcoRV, HincII and RsaI. The sizes of 1-kb DNA

markers (M) are given in kilobase pairs to the left.

Fig. 4. Chromosomal localisation of the Pfpcna2 gene. Parasite chromosomes from Plasmodium falciparum 3D7A and T996 were separated by pulse-field gel

electrophoresis, stained with ethidium bromide (A), blotted onto a nylon membrane and hybridised with the Pfpcna2 gene (B), the Pforc1 gene (C) and the

Pfpcna1 gene (D), respectively. Based on the yeast chromosome markers and hybridisation of several P. falciparum chromosome marker genes, the positions

of chromosome 10, 11, 12, 13 and 14 were identified on the ethidium bromide-stained gel. Both Pfpcna2 and Pforc1 hybridised to chromosome 12, while

Pfpcna1 hybridised to chromosome 13.



restriction map that does not contain any EcoRI-restriction

site. The faint band decreased gradually with higher strin-

gency washing conditions, indicating the presence of a PCB–

PCE-related gene in the parasite genome. To investigate if

the faint band represents the Pfpcna1 gene (Kilbey et al.,

1993), a DNA fragment corresponding to the whole coding

region of Pfpcna1 was used to probe the same blot and a

different hybridisation pattern was obtained (Fig. 3B).

These results suggest strongly that there are two distinguish-

able PCNA genes in the malaria parasite.

To investigate the chromosome location of the Pfpcna2

gene, P. falciparum (3D7A and T996) chromosomes were

resolved on the CHEF gel system, blotted onto a nylon

membrane and hybridised with the PCB–PCE probe. A single

band was detected corresponding to chromosome 12 (Fig.

4B). The result was repeated by hybridising another blot

with the same probe (data not shown) and further confirmed

by probing these blots with control probes derived from the

Pforc1 gene (Fig. 4C) and the Pfpcna1 gene (Fig. 4D),

which are known to be located on chromosomes 12 (Li

and Cox, 2002) and 13 (Kilbey et al., 1993), respectively.

The results further support the conclusion that two unique

PCNA genes exist in P. falciparum.

3.3. Stage-specific expression of the Pfpcna2 gene

To obtain information on how Pfpcna2 mRNA levels are

regulated during parasite development and differentiation, a

Northern blot containing equal amounts of total RNA

prepared from cultures enriched in stages III–V gameto-

cytes and from mixed asexual erythrocytic stages was

probed with the PCB–PCE cDNA fragment (see Fig. 1).

Two transcripts with sizes of approximately 1,800 and

2,500 nucleotides, respectively, were detected (Fig. 5A).

The smaller transcript exists in both asexual and sexual

stages, migrating ahead of 18S ribosomal RNA band,

whereas the larger transcript occurs only in the sexual

stage. As a contol, the same blot was also hybridised with

the Pfpcna1 probe. As shown in Fig. 5B, two transcripts

with sizes of 1,600 and 2,200 nucleotides were also detected

by Pfpcna1. The 1,600 nucleotide-band is expressed predo-

minantly in the asexual stage and weakly in the sexual stage.

By contrast, the 2,200 nucleotide-transcript is expressed

mainly in the sexual stage and weakly in the asexual

stage. As internal controls for hybridisation to the asexual

and sexual stage mRNA, the same blot was hybridised with

Pflammer, a sexual stage-specific gene (Li et al., 2001), and

Pfpkac, an asexual stage-specific gene (Li and Cox, 2000)

(Fig. 5C and D).

3.4. Overexpression and purification of recombinant

PfPCNA2

To determine whether the open reading frame of the

malarial gene truly encodes the PfPCNA2 protein, a

cDNA fragment corresponding to the whole coding region

was subcloned into the pT7.7 and pET-11 expression

vectors. PfPCNA2 was overexpressed in E. coli as a soluble

protein and purified to near homogeneity by nickel chelate

affinity chromatography. Analysis by SDS-PAGE of the
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Fig. 5. Northern blot analysis of the Pfpcna2 gene. Total RNA, 10 mg, extracted from the asexual erythrocytic stage (A) and the sexual erythrocytic stage (S) of

Plasmodium falciparum (3D7A) was fractionated in a denaturing formaldehyde gel, blotted onto a nylon membrane and hybridised to radiolabeled probes. The

positions of P. falciparum rRNA subunits (18S and 28S) are indicated by arrows. Autoradiographs of the membrane probed with the Pfpcna2 gene (the PCB–

PCE fragment) (A), the Pfpcna1 gene (B), the Pflammer gene (C) and the Pfpkac gene (D). The Pfpcna2 probe detected two transcripts of approximately 1,800

and 2,500 nucleotides: the smaller transcript exists in both asexual and sexual stages while the larger transcript occurs only in the sexual stage. Pfpcna1 gave

rise to two bands of approximately 1,600 and 2,200 nucleotides, respectively, in both asexual and sexual stages; Pflammer hybridised with a band of

approximately 3,800 nucleotides in the sexual stage; and Pfpkac hybridised with a transcript of approximately 1,800 nucleotides in the asexual stage.



homogeneous protein revealed a single band of approxi-

mately 33 kDa (Fig. 6A), consistent with the predicted Mr

(31.4 kDa) of the His-tagged PfPCNA2. Human PCNA has

a predicted Mr of 29.6 kDa but runs aberrantly on SDS-

PAGE at 36 kDa (Kelman, 1997). The identity of the puri-

fied recombinant protein was verified by Western blotting

probing with the monoclonal anti-histidine antibody (Fig.

6B) and further confirmed with the polyclonal anti-human

PCNA antibody 3009 raised against the C-terminal 15

amino acid residues of human PCNA (Fig. 6C). The 3009

antibody cross-reacted only with PfPCNA2 but not with

PfPCNA1 (data not shown).

3.5. Oligomeric properties of PfPCNA2

In order to characterise the quaternary structure of the

PfPCNA2 protein, we initially carried out size-exclusion

chromatography. Approximately 4 mg of the His-tagged

PfPCNA2 was loaded onto a 7-ml Superdex 200 column

and washed with 13 ml buffer. Fractions were collected

and subjected to SDS-PAGE. After blotting, the membrane

was then probed with monoclonal anti-histidine antibody.

As shown in Fig. 7A, a peak with an Mr of approximately

83 kDa was obtained. The identity of PfPCNA2 in the peak

was verified by Western blotting probing with the anti-histi-

dine antibody (Fig. 7B). Human PCNA was used as a

control and eluted with an Mr of approximately 92 kDa,

consistent with trimers. Although on the basis of the Mr

we cannot rule out completely that PfPCNA2 might form

a dimer in solution, we favor the hypothesis that PfPCNA2

has a trimeric structure by homology with human and S.

cerevisiae PCNA, as revealed by molecular modelling

(data not shown). Analysis of PfPCNA2 on native gel elec-

trophoresis gave a similar result to those from the gel filtra-

tion (data not shown). Thus, we concluded that PfPCNA2

may exist as a trimer in the parasite.

4. Discussion

PCNA plays many different roles in nucleic acid metabo-

lism. It is an essential component of the DNA replication

machinery and is required for DNA repair, recombination

and transcription, as well as several other cellular processes

(Cox, 1997; Kelman, 1997; Tsurimoto, 1998). Originally

identified as a nuclear antigen in proliferating human cells

(Miyachi et al., 1978), PCNA has been found in widely

diverse organisms including P. falciparum (Kilbey et al.,

1993). It has been thought that there is only one PCNA

species in higher eukaryotic cells. In this study, we have

identified a second PCNA in P. falciparum on the basis of

several lines of evidence. Firstly, at the amino acid level

PfPCNA2 only shares 29% identity and 53% similarity with

PfPCNA1 (Fig. 2). In addition, Southern blot analyses

revealed that the hybridisation pattern of Pfpcna2 is

completely different from that of Pfpcna1 (Fig. 3). More-

over, chromosomal localisation studies showed that

Pfpcna2 is located on chromosome 12 while Pfpcna1 is

located on chromosome 13 (Fig. 4) (Kilbey et al., 1993).

Existence of two PCNA species within the same organism is
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Fig. 6. Expression and purification of PfPCNA2. The recombinant protein was expressed from the pET-11-PfPCNA2 vector in Escherichia coli BL21-

CodonPluse(DE3)-RIL and purified with a nickel chelate affinity chromatography as described in the section of experimental procedures. After IPTG

induction, samples of lysate (lane 1), supernatant (lane 2) and purified protein (lane 3) were subjected to SDS-PAGE. The gel was stained with Coomassie

brilliant blue (A) or Western blotted onto a nitrocellulose membrane and probed with 1:4,000 anti-histidine monoclonal antibody (B) or with 1:2,000 anti-

hPCNA 3009 polyclonal antibody (C).



quite unusual and, up to date, has occurred only in a few

species (Fig. 2B) including the thermoacidophilic archaeon

Sulfolobus solfataricus (De Felice et al., 1999), the chlorella

virus Paramecium bursaria (Lu et al., 1995; Li et al., 1997),

the Apicomplexa protozoa Toxoplasma gondii (Guerini et

al., 2000), the carrot plant Daucus carota (Hata et al., 1992),

the maize plant Zea mays (López et al., 1995, 1997) and the

plant Arabidopsis thaliana (Lin et al., 1999; Theologis et al.,

2000). Therefore, the identification of the second PCNA in

P. falciparum may provide an opportunity that can be

utilised to explore the biological consequence of two

PCNA species in one eukaryotic organism.

Analysis of the amino acid sequences revealed that

PfPCNA2 consists of two similar domains and contains

almost all motifs conserved in the PCNA family, suggesting

that PfPCNA2 may possess essential functions like the

human homologue (Kelman, 1997). However, compared

with human and S. cerevisiae PCNA, PfPCNA2 contains

two unique amino acid sequence inserts (one located just

before the bH1 region and another positioned before the

b12 region) and a sequence deletion after the bC2 motif

(see Fig. 2A), suggestive of a different subset of functions

in PfPCNA2. It is worth noting that PfPCNA1 also

possesses an amino acid insert with nine residues at the

same position as in PfPCNA2, near the C-terminus (see

Fig. 2A). The C-terminal region of PCNA has been reported

to be essential for interaction with its binding proteins such

as DNA pol 1, RFC, Fen1, GADD45, p21 and DNA methyl-

transferase (Tsurimoto, 1998; Kelman and Hurwitz, 1998).

Therefore, the amino acid insert near the C-terminus (before

bI2) may affect the interaction of PfPCNA2 with some of

the binding proteins.

PCNA is functionally analogous to the b-subunit of E.

coli DNA polymerase III (pol III) and the T4 bacteriophage

gene 45 protein which function as DNA sliding clamps

(Kelman, 1997). Both human and yeast PCNA have been

shown to form homotrimers in solution (Bauer and Burgers,

1990; Yao et al., 1996), and crystallised as a trimeric ring
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Fig. 7. Analysis of recombinant PfPCNA2 by a size-exclusion chromatography. (A). Trace shows UV absorbance at 280 nm of eluted fractions for PfPCNA2

(green line), human PCNA (hPCNA) (blue line) and protein standards (red line). (B). Fractions, 10 ml, from PfPCNA2 elution were subjected to SDS-PAGE,

blotted onto a nitrocellulose membrane and probed with 1:1,000 anti-histidine monoclonal antibody. PfPCNA2 was eluted at 83 kDa and hPCNA at 92 kDa.



with a six-fold axis of symmetry derived from two globular

domains per monomer (Krishna et al., 1994; Gulbis et al.,

1996). However, the pol III b-subunit exists as a dimeric

ring, each consisting of three repeating units in six-fold

symmetry (Kong et al., 1992). It is therefore quite possible

that eukaryotic PCNA may also exist as a homodimer. It has

been known that two distinct PCNA genes are expressed in

carrot (Hata et al., 1992), one encoding a typical size PCNA

(264 amino acids) that might form a trimer and the other

coding for a longer form (365 amino acids) that might form

a dimer (Kelman, 1997). In addition, apart from the 36 kDa

protein, a 43 kDa peptide can also be recognised by an anti-

PCNA antibody during Xenopus laevis oogenesis (Leibovici

et al., 1990). By using both size-exclusion chromatography

and native gel electrophoresis, we have shown that recom-

binant PfPCNA2 protein seems to form a trimer in solution

(Fig. 7). Molecular modelling studies based on the struc-

tures of human and yeast PCNA (Krishna et al., 1994;

Gulbis et al., 1996) suggest that PfPCNA2 may form a

trimeric ring. Therefore, we propose that PfPCNA2 may

serve as a sliding platform which is capable of interaction

with a wide array of proteins and stabilises associations of

these proteins with DNA template, and consequently regu-

lates their activities.

Northern blot analyses revealed two transcripts with sizes

of 1,800 and 2,500 nucleotides, respectively. The former is

expressed in both asexual and sexual stages, whereas the

latter is specifically expressed in the sexual stage, suggest-

ing that PfPfPCNA2 may play an essential role in DNA

metabolism at different stages of the parasite. It is worth

noting that the Pfpcna1 gene also produced two transcripts

with sizes of 1,600 and 2,200 nucleotides, respectively

(Kilbey et al., 1993), which were probably accumulated in

the trophozoite stage (Horrocks et al., 1996). Accordingly,

to exclude the possibility that Pfpcna2 may cross-react with

Pfpcna1 in Northern blotting, the same blot was hybridised

with the Pfpcna1 probe. Interestingly, the smaller transcript

is expressed predominantly in the asexual stage and weakly

in the sexual stage; in contrast, the larger transcript is mainly

present in the sexual stage and weakly in the asexual stage

(see Fig. 5), implying that PfPCNA1 may have broader

functions than originally thought (Kilbey et al., 1993;

Horrocks et al., 1996), that is, it functions not only in the

asexual stage but also in the sexual stage. The quantity of

DNA in mature gametocytes of P. falciparum has been

shown to reach the diploid value (Janse et al., 1988), imply-

ing either complete genome duplication or selective gene

amplification per haploid genome. Upon activation, the

microgametocyte develops rapidly in the mosquito midgut

(gametogenesis). Three successive rounds of genome repli-

cation are completed within 10 min, raising the DNA

contents to octoploid values just before exflagellation, indi-

cating that the genome duplication rate of the malaria para-

site is extremely high, probably among the highest recorded.

Assuming that the rate of replication fork movement in

Plasmodium is similar to that in other eukaryotes, at least

1,300 origins of replication would be needed to achieve this

rate of replication (Janse et al., 1986). The high level expres-

sion of PfPCNAs in both asexual and sexual stages of P.

falciparum, therefore, is consistent with their potential role

in DNA replication during the erythrocytic cycle and the

sexual stage development, particularly during gametogen-

esis. However, the fact that both PCNA species are

expressed in both asexual and sexual stages gives rise to

more curious questions. The two molecular species may

play the same role in DNA replication of the parasite but

have different functions at different stages of the parasite in

DNA repair, recombination and transcription, as well as

other cellular processes such as cell cycle control and main-

tenance of chromosome structures (Kelman, 1997; Shiba-

hara and Stillman, 1999). Identification of novel PfPCNA-

interacting proteins will help afford new insights on biolo-

gical functions of these two PCNA species in the human

malarial pathogen.

Nucleotide sequence data reported in this paper are avail-

able in the GenBankTM, EMBL and DDJB databases under

the accession number AF056205.
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