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Abstract 9 

Prediction of the potential impact of an extreme storm-sequence on coastal resilience and the 10 

subsequent rate of post-storm recovery is a fundamental goal for coastal scientists, engineers and 11 

managers alike. This paper presents a methodology for forecasting shoreline change over annual 12 

time-scales, including the prediction of the potential impact of storm sequences and the subsequent 13 

post-storm recovery. The methodology utilises an archive of measured or modelled wave data to 14 

produce multiple (≈103) synthetic hydrodynamic forcing time-series to drive an equilibrium 15 

shoreline model in a Monte Carlo simulation. A Generalised Extreme Value (GEV) analysis is 16 

conducted on the resulting shoreline forecasts in order to evaluate the magnitude of shoreline 17 

displacements for predefined return probabilities. Three shoreline displacement bands are defined 18 

in a ‘traffic light’ system, to aid the interpretation of results; a green (normal) band characterising 19 

shoreline responses within the typical annual recurrence probability, an amber (high) band defining 20 

events with recurrence probabilities outside the annual recurrence threshold but within 1/100 of 21 

this value, and a red (extreme) band designed to encompass the limit of the shoreline forecasts. 22 

The methodology was tested on two field sites with distinctly contrasting wave climates and tidal 23 

regime. The first was Perranporth in the UK with a strong seasonal variability in both the wave 24 

climate and shoreline response. The second was Narrabeen, Australia, with a much smaller 25 

seasonal variability and more storm-dominated wave climate and shoreline response. In both cases 26 

an equilibrium shoreline model (ShoreFor) was calibrated using measured shoreline data and 27 

complementary wave data. The forecasting methodology was found to be mildly sensitive to the 28 

temporal range of the wave data used, with at least 15-years of data required to achieve consistent 29 

classification of the magnitude of storm erosion and recovery. Two extreme storm sequences were 30 

targeted to test the forecasting methodology, the Pasha Bulker storm sequence recorded at 31 
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Narrabeen in June 2007 and the extreme storm sequence which impacted the UK during the winter 32 

period of 2013/14. All wave and shoreline time-series recorded in this period were left unseen in 33 

model calibrations and subsequent forecasts, in order to provide a rigorous test of the methodology. 34 

In all cases the forecasting approach presented here was able to predict both storm erosion and 35 

subsequent recovery and give a clear indication of the intensity of the shoreline displacement. Both 36 

storm sequences studied had shoreline displacements with occurrence probabilities of ≈1/1200 and 37 

rapid post-storm recovery rates. The impact of extreme storms on shoreline recession and 38 

subsequent post storm recovery is predictable at these energetic cross-shore transport dominated 39 

sites, promising the potential for a new coastal management tool. 40 

 41 

1.  Introduction 42 

Arguably the ‘holy grail’ for coastal scientists and engineers is to derive sufficient knowledge and 43 

understanding of coastal systems to be able to forecast coastal erosion and accretion with a level 44 

of confidence and lead time to permit effective coastal management decisions to be made regarding 45 

the use, development and protection of coastal environments. Important coastal management 46 

questions addressed here are: What are the potential storm impacts on the coastline? Will the coast 47 

recover from the prior violent storm(s) and how long will this recovery take?  48 

 49 

In spite of the development of sophisticated process models with demonstrable skill in hindcasting 50 

coastal hydrodynamics, the complexities and non-linearity of sediment transport and 51 

morphodynamic processes mean that our ability to hindcast (let alone forecast) coastal erosion and 52 

recovery at a seasonal time-scale remains limited at the present time. Indeed, our ability to forecast 53 

beach recovery with physics-based models has proved to be particularly illusive [1, 2]. The 54 

forecast horizon of these detailed process-models is limited not only by computing speed but also 55 

their long-term stability and model skill [3]. 56 

 57 

Common coastal state indicators used by managers to assess the current health of the coastline and 58 

resilience to coastal erosion and flooding frequently include some measure of beach volume or 59 

shoreline position [4, 5]. So, in this contribution, a ‘simpler’ methodology appropriate to 60 

forecasting these indices is investigated, rather than the complex time-varying and 3-dimensional 61 

structure of the beach surface. Although shoreline prediction is the focus of this study, intertidal 62 



3 

beach volumes have been shown to be coherent with shoreline evolution [6, 7, 8] and therefore the 63 

approach developed here is expected to be transferable. 64 

 65 

Recently, models of ‘reduced complexity’ [6, 10] have been shown to provide skilful hindcasts of 66 

coastal change on both cross-shore [11, 12, 13, 14, 15] and longshore transport dominated [16, 17, 67 

18, 19, 20] coastlines. The simplicity and stability of such models unlocks the exciting potential 68 

for much longer-term (months-years-decades) hindcasts and even forecasts of coastal change.  69 

 70 

Skilful hindcasting of coastal evolution with known forcing conditions is a necessary precursor to 71 

forecasting of future coastal change. Short-term deterministic forecasts with a 5- to 10-day 72 

prediction horizon can be achieved with the aid of accurate forecasts of wave forcing derived from 73 

physics-based weather models [21]. However, at prediction horizons in excess of this one must 74 

fall back on climatological/statistical approaches to forecasting. The latter approach is the subject 75 

of the present paper, which develops forecasts up to (and potentially beyond) one year. 76 

Climatological approaches can be particularly skilful in predicting weather, when there is a strong, 77 

coherent seasonal variability, for example, annual fluctuations in air temperature or wind speed. 78 

Although there are some examples of climatological shoreline forecasting (e.g. [22]), this research 79 

area is still in its infancy. 80 

   81 

In this contribution multiple synthetic wave time series are derived from a pool of measured data 82 

and subsequently used to force a Monte Carlo shoreline simulation using a simple equilibrium 83 

model. Monte Carlo methods have been implemented for the prediction of shoreline change in the 84 

past (e.g. [12, 23, 24]), however the approach taken here is somewhat different. A robust statistical 85 

generalised extreme value (GEV) analysis is used to predict the magnitude of shoreline 86 

displacement for pre-defined recurrence probabilities. Details of the two field sites with contrasting 87 

wave climates and tidal regimes, which are used to test the forecasting methodology are given is 88 

section 2. This is followed by an overview of the forecasting methodology in section 3, including 89 

a description of the shoreline model, the method of generating multiple synthetic wave records 90 

using measured or modelled data and finally the method of generalised extreme value analysis 91 

(GEV), which gives shoreline displacements for specified recurrence probabilities. In section 4 the 92 

results of this procedure are presented for both the storm and recovery period of two major storms 93 
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experienced at two contrasting sites. The finding of this research and future developments are 94 

summarised in sections 5. 95 

 96 

2. Site Description 97 

Two extensive shoreline datasets and complementary wave measurements at highly contrasting 98 

environments (Table 1) are used to provide a rigorous test of a shoreline forecasting methodology. 99 

Both environments are energetic, cross-shore transport dominated, swash-aligned coastlines, but 100 

each has very different temporal variability in their wave climate and shoreline response. 101 

Specifically, the two sites are: Perranporth, with a highly seasonal wave climate, located on the 102 

exposed Atlantic west coast of Cornwall in the UK [25] and Narrabeen, with a storm dominated 103 

wave climate, located on Sydney’s northern beaches on the eastern seaboard of Australia [26], 104 

(Figure 1). A summary plot showing the seasonal succession of ensemble-averaged parameters 105 

that will be subsequently used to force the shoreline model and the measured shoreline responses 106 

for both Perranporth and Narrabeen are shown in Figure 2. The forcing parameters include wave 107 

power and dimensionless fall velocity, Ω=Hb /ωT [27], where Hb is the breaker height, ω is the fall 108 

velocity of the beach sediment and T is the peak wave period.  109 

 110 

The Perranporth wave data in Figure 2 is based on a 65-year record of hourly Wave Watch III 111 

modelled offshore (73 m depth) significant wave height and period data for the location of the 112 

Sevestones Lightship [28] and a complementary time-series of the cross-shore position of the 113 

shoreline, extracted from GPS surveys conducted over an 8-year period [29]. The Narrabeen data 114 

used here includes a 36-year record of hourly offshore wave statistics, measures at Sydney’s wave 115 

rider buoy (depth 74 m) and a complementary 8-year time-series of shoreline displacements. For 116 

consistency, shorelines at both sites were centred on the mean high-water contour line, which was 117 

averaged over a 400 m longshore distance and sampled at monthly time intervals. 118 

 119 

2.1 Perranporth, UK 120 

Perranporth, is a 3.5 km long, macrotidal (mean spring tidal range 6.5 m) beach situated on the 121 

northern coast of the UK’s southwest peninsula (Figure 1a).   It is directly exposed to normally 122 

incident, energetic and highly seasonal swell waves generated by anticyclones propagating on a 123 

general westerly track across the northern Atlantic Ocean. This seasonality in the wave climate is 124 
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shown clearly in the monthly-averaged wave power, where energetic, long-period swell waves 125 

arriving during the November to January are ≈5.5 times higher than the (June-August) summer 126 

months (Figure 2a). 127 

 128 

Beach sediments are comprised of quartz sand with average D50 of 0.33 mm and a fall velocity of 129 

0.04 m/s [30]. Monthly-averaged dimensionless fall velocities at Perranporth are in the range (4.5-130 

6) indicating intermediate to dissipative beach states which are consistent with observations. The 131 

modal classification at Perranporth is low-tide bar and rip according to the classification of 132 

Masselink and Short [31]. However, winter periods are often typified by highly dissipative beach 133 

states. 134 

 135 

The shoreline response at Perranporth (Figure 2e) shows high variance at annual time-scales, with 136 

shoreline erosion commonly evolving smoothly over the November to February fraction of the 137 

year in response to a succession of erosive storms, rather sharp step-like displacements relating to 138 

individual storm events (Figure 2). During this winter storm season the horizontal displacement of 139 

the mean high water contour can be very large, exceeding 70 m. Beach recovery begins in late 140 

March and proceeds at a much slower rate (≈ 1/4) than the erosion, often persisting until October.   141 

 142 

Interannual variability in the wave climate is dominated by the North Atlantic Oscillation index 143 

with more positive values being indicative of stronger westerly winds and waves [29], although 144 

the direct link with shoreline erosion and morphology remains unsubstantiated [32]. 145 

 146 

2.2 Narrabeen, Australia 147 

Narrabeen is a microtidal (mean spring tidal range ≈ 1.5 m), 3.5 km long, embayment, situated on 148 

Sydney’s northern beaches (Figure 1b).  The Narrabeen wave climate is dominated by two 149 

principle components. The first is a moderate to high energy condition which prevails from the 150 

S/SE with a mean period and wave height of Tp ≈10 s and Hs ≈ 1.6 m respectively and is generated 151 

by mid-latitude cyclones propagating over the Tasman Sea [33, 34]. The second component are 152 

storm events (Hs >3 m) which represent 6% of the observed wave field [35]. Storms vary 153 

seasonally, with most storms occurring in winter (39%), fewest storms occurring in summer (12%) 154 

and transitional periods observed in autumn (26%) and spring (23%) [34]. Winter storms are 155 
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characterized by high power waves from a S/SE direction generated by mid-latitude cyclones from 156 

the south and east coast low pressure systems. Notice however that the maximum monthly-157 

averaged offshore wave power at Narrabeen is only a third of that observed at Perranporth (Figure 158 

2b and c). The summer wave climate is dominated by NE short period waves generated by a local 159 

sea breeze [33]. Interannual variability in the Sydney wave climate is influenced by the Southern 160 

Oscillation Index, in particular the La Niña phase is associated with an increase in storm frequency 161 

and duration with a dominant NE/E direction, whereas El Niño phase is characterized by milder 162 

SE/S wave conditions [36, 34].  163 

 164 

Narrabeen is characterised by coarser sand than Perranporth (D50≈0.4 mm), and monthly-mean 165 

dimensionless fall velocities (Ω=3.4-3.8) that are indicative of the range of intermediate beach 166 

states that are observed, including both welded and detached bar states. Interestingly, 167 

dimensionless fall velocities are lowest in the Austral winter even though winter waves are more 168 

energetic. This factor relates to the longer wave periods associated with the winter swell.  169 

 170 

The surfzone width at Narrabeen is relatively narrow compared to Perranporth, leading to efficient 171 

sediment transport between the beach face and sandbars and more rapid shoreline displacements, 172 

which typically proceed at monthly (storm) time-scales. In spite of this rapid shoreline response 173 

there is also a significant seasonal signal at Narrabeen, with erosion during the months of April to 174 

July and beach recovery predominantly in the subsequent November to March period (Figure 2f). 175 

Maximum shoreline displacements at Narrabeen are half (≈ ±20 m) that observed at Perranporth 176 

and the seasonal range less than a quarter (≈ ±10 m, Figure 2e and f). Splinter et al., [15] 177 

characterised the relative seasonal to storm dominance by the ratio of the yearly- and monthly- 178 

average standard deviations in dimensional fall-velocity, whereby values significantly greater than 179 

1.0 typify highly seasonality.  The storm dominance at Narrabeen is again highlighted by the 180 

observed value of σΩ365/σΩ30 = 1.07, which is some 13% lower than that observed at Perranporth 181 

(1.22). Due to this storm dominance it might be expected that the shoreline dynamics of this Pacific 182 

east coast site will be the most challenging to forecast meaningful shoreline responses due to the 183 

episodic nature of the storms. 184 

 185 
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2.3 Extreme Storms 186 

In this section, we focus on two notable extreme storm sequences recorded at Perranporth and 187 

Narrabeen. At Perranporth the extreme storms in the November-February period of 2013/14 188 

produced the most powerful sequence of waves observed in the past 65-years causing over 70 m 189 

of shoreline recession. Masselink et al., [37] reported that 22 storms (each >1% exceedance in 190 

offshore significant wave height) were observed in this period. At Narrabeen the model will be 191 

tested on a powerful sequence of extreme storms recorded during the La Niña year in June 2007, 192 

which caused the bulk tanker Pasha Bulker to run aground on a beach north of the site and resulted 193 

in over 35 m of shoreline recession at Narrabeen [38], hereafter referred to as the ‘Pasha Bulker 194 

storm’. 195 

 196 

3. Forecasting methodology 197 

This section briefly describes the equilibrium shoreline model that is used to derive the shoreline 198 

forecasts. A detailed description of the model is avoided here and instead the Reader is directed to 199 

Davidson et al., [39] and Splinter et al., [15] for a more thorough description and validation of the 200 

model. After the brief description of the model, details of the calibration and validation are given. 201 

This is followed by a description of the simulation of the synthetic wave forcing parameters that 202 

are used to force the shoreline model in a Monte Carlo fashion and form the basis of the generalised 203 

extreme value analysis.   204 

 205 

3.1 ShoreFore - Model Description 206 

The shoreline change with time is expressed as a function of the incident wave power (P) and the 207 

disequilibrium in the dimensionless fall velocity ∆Ω. 208 
!"
!#
= 𝑐±𝑃(.*∆Ω          (1) 209 

Here c is the response rate coefficient that controls the magnitude of the shoreline response per 210 

measure of wave power [m/(W/m)0.5]. The response rate parameter takes different values 211 

depending on whether the shoreline is eroding or accreting. The sign of the shoreline displacement 212 

is controlled by the disequilibrium in the dimensionless fall velocity (∆Ω), which is given by: 213 

ΔΩ = .
/
Ω0 − Ω           (2) 214 
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Here Ω is the instantaneous dimensionless fall velocity and Ωφ is a weighted average of the 215 

antecedent dimensionless fall velocity by the following weighting function [40]. 216 

Ω0 = 1045/070
58.

4.
Ω51045/0

70
58.        (3) 217 

and σ is the standard deviation of (Ωφ-Ω), such that ∆Ω has unit standard deviation and primarily 218 

controls the sign of the shoreline change. The model predicts erosion when incident waves are 219 

steeper than the weighted average (antecedent) conditions and visa-versa for accretion. A strong 220 

hysteresis in the shoreline behaviour is implicit in this model, whereby future change is highly 221 

dependent on the antecedent forcing conditions. Thus, forecasts of shoreline position are not just 222 

a function of the future forcing conditions, they are also strongly influenced by the antecedent 223 

conditions. The parameter φ is measured in days and controls the decay in the weighting function 224 

which has a value of one at the prediction time, decaying to 0.1 and 0.01 at φ and 2φ days 225 

respectively before the prediction time. The value of φ effectively controls the frequency of the 226 

shoreline response with values >>102 days producing a dominantly seasonal shoreline response 227 

(given some seasonality in the observed wave climate), typical of dissipative beaches, whilst 228 

values <102 days produce a higher frequency storm response, typical of more intermediate beaches 229 

[15]. Note that for a given site with consistent grainsize, the variability in the forcing parameters 230 

(P and Ω) is controlled only by hydrodynamic variables (Hb and T). We require synthetic values 231 

of these parameters, which reflect the observed seasonal statistics of the wave field, in order to 232 

generate the shoreline forecasts.  233 

 234 

3.2 Model Calibration 235 

Figure 3 shows the wave power time-series alongside the respective model calibrations and 236 

validations for both the Perranporth and Narrabeen data sets. Here the two major storm sequences 237 

have been omitted from the model calibration and have been used here to validate the models 238 

capacity to hindcast two major storm events, using measured forcing parameters. These storms are 239 

the Pasha Bulker storm sequence in June 2007 at Narrabeen and the extraordinary storm sequence 240 

which struck the exposed energetic coastlines of the north Atlantic during the winter of 2013/14. 241 

These storms will be used later to test the forecasting method and the true wave forcing for these 242 
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periods will remain unseen for both the model calibration and the later forecasts in order to provide 243 

a rigorous test of the methodology. 244 

 245 

As shown in Figure 3, model hindcasts are highly skilful at matching observations for both 246 

calibration (r = 0.92 Perranporth; r = 0.87 Narrabeen) and validation (r = 0.98 Perranporth;  r = 247 

0.89 Narrabeen) subsets of the data at both sites. It is noted that the model optimised φ values for 248 

both sites are 15 days for Narrabeen, typical values for a storm-dominated intermediate beach, in 249 

contrast to 450 days for Perranporth, in keeping with this contrasting site exhibiting a seasonally-250 

dominated dissipative beach. 251 

 252 

3.4 Generating Synthetic Time-series 253 

A quasi-Monte Carlo simulation method is adopted here for forecasting the shoreline climatology. 254 

A similar method of shoreline forecasting was suggested by Davidson et al., [12], who 255 

implemented the method of Borgman and Scheffner [41] to generate synthetic wave series based 256 

on the monthly, statistical variability in wave height, period and direction in the measured wave 257 

field. This contribution moves on from this work by implementing a different method of synthetic 258 

wave generation, and the application of a more sophisticated GEV analysis of the model output.  259 

 260 

Generation of synthetic waves involves the assembly of a large number of forcing time-series, 261 

used later to drive the shoreline model. The key forcing parameters for the ShoreFor model are 262 

wave power (P) and dimensionless fall velocity (Ω) time-series. These synthetic series must reflect 263 

the measured or modelled statistical properties for the prediction site. Each of the resulting forcing 264 

series are used to generate a shoreline forecast using the calibrated ShoreFor model detailed in the 265 

previous section. Typically, N=103 synthetic time-series are generated for the Monte Carlo 266 

simulations. The number of simulations is easily extended given the computational efficiency of 267 

the method, but 103 estimates was found to provide stable, consistent forecasts. A rigorous 268 

statistical GEV analysis of the resulting shoreline data is then used to compute the magnitude of 269 

both shoreline accretion and erosion corresponding to specified recurrence probabilities. 270 

 271 

In the present contribution, we restrict our forecast horizon to one year. This is done because a 272 

meaningful multiyear forecast requires additional knowledge of the likely inter-annual variability. 273 
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The forecasting methodology used here does not include this, although work is currently in 274 

progress to extend the predictions in this direction. 275 

 276 

A pool of either modelled (i.e. Perranporth), measured or a combination of these (i.e. Narrabeen) 277 

wave data is used to generate new times series of both P and Ω. This is done by building multiple, 278 

annual time-series of P and Ω on a month-by-month basis, by selecting an equivalent month of 279 

data from the available wave data corresponding to a randomly selected year. As each month is 280 

incremented a different random year is selected each time. This method is simple but very effective 281 

in conserving the monthly evolution of the statistical properties in the observed wave field, as well 282 

as accurately preserving the sequencing of waves. The size of the wave data pool for Perranporth 283 

and Narrabeen examples were 63 years and 36 respectively. The impact of the size of the data pool 284 

on predictions is examined later in this section. 285 

 286 

In order for the test to be rigorous, the data pool used to generate the synthetic time-series must 287 

exclude the forecasting period, even if the data are in fact known (i.e. hindcast). The data pool 288 

must also be consistent with the wave data used to calibrate and validate the model (same source 289 

or statistically similar).  290 

 291 

Future modifications of the wave climate, due to climate change for example, are not included in 292 

these tests; a reasonable assumption for an annual time-scale of the forecasts presented here. It is 293 

assumed that the wave data 2φ-years prior to the prediction date (t0) is known (equivalent to the 294 

maximum width of filter function window, equation 3) in order to evaluate the appropriate 295 

antecedent conditions, (Figure 4). Each of the new synthetic time-series are concatenated on the 296 

end of these 2φ-years of observed data (Figure 4). It is the combination of the known antecedent 297 

conditions and unknown future wave conditions which will determine the nature of the forecast. 298 

 299 

Figure 5 shows an example of the resulting 103 Monte Carlo shoreline predictions corresponding 300 

to the synthetic forcing series. Notice that these simulations were started on the 1st October 2013, 301 

just prior to the extreme storms at Perranporth. Thus, the distribution shows an initial tendency for 302 

erosion (negative mean displacements), with recovery beginning in April and returning to near 303 

zero mean displacement by the end of the year. Notice also the spread in shoreline predictions for 304 
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each month of the year, a distribution that will be characterised by the Generalised Extreme Value 305 

(GEV) analysis detailed in the next section. 306 

 307 

3.5 Generalised Extreme Value (GEV) Analysis  308 

Here we extract from the shoreline prediction matrix the independent, extreme values of shoreline 309 

position (for both erosion and accretion) for each simulation, corresponding to a regular time 310 

interval in the forecasts. Care is taken to use only unique shoreline series as the random generation 311 

method for the forcing series used here can potentially produce identical forcing and therefore 312 

replica shorelines. Typically, monthly intervals are used here, although this window duration can 313 

easily be varied.  These monthly extremes from each of 103 simulations are plotted as histogram 314 

and a GEV probability distribution function (PDF) is fitted to the data. The GEV analysis used 315 

here focusses on accurately fitting the tails (extremes) of the distribution (rather than the peaks) 316 

and allows the data to instruct which of three distribution options is most appropriate to the 317 

observations [42]. These options are controlled by a shape function k which dictates the decay 318 

structure at the limits of the distribution. Here an exponential decay is selected for k=0 (e.g., 319 

normal, Gumbel, [43]), a polynomial for k>0 (e.g. student’s t-test, Fisher and Tippett, [44]), or k<0 320 

if the extreme is finite (e.g. Weibull, [45]). The form of the extreme value distribution PDF is: 321 

 322 

𝑦 = 𝑓 𝑥|𝑘, 𝜇, 𝜎 = .
/
𝑒𝑥𝑝 −𝑒𝑥𝑝 − "4C

/
− "4C

/
        for k=0  (4) 323 

or 324 

𝑦 = 𝑓 𝑥|𝑘, 𝜇, 𝜎 = .
/
𝑒𝑥𝑝 − 1 + 𝑘 "4C

/

4EF 1 + 𝑘 "4C
/

4.4EF  for k≠0  (5) 325 

 326 

Here µ is the mean and σ is the standard deviation. Conveniently, users of Matlab will find that 327 

the statistical toolbox has a useful function for achieving the optimised fit to observations. The 328 

methodology was found to be most successful and very robust when fitting to the negative of the 329 

observed shoreline distribution (i.e. negative accretion and positive erosion) and then accounting 330 

for the change in sign later (reverting to the positive accretion and negative erosion convention) in 331 

the subsequent analysis and figures.  332 

 333 
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The classification of appropriate thresholds in order to define storms or events is non-trivial and 334 

usually effects the ultimate prediction of return magnitudes and periods of the series being 335 

analysed [46]. Additionally, wave and shoreline time-series are fundamentally different, for 336 

example extreme storms may have annual occurrences of O(101), occurring in multiple months, 337 

whereas shoreline series typically have single annual maxima/minima occurring in just one month 338 

of the year. This fact means that it is potentially erroneous to borrow established thresholding 339 

techniques which have been established for wave data and apply them directly to morphological 340 

time-series.  341 

 342 

As is the case with storm-wave thresholds, magnitude-based thresholds for shoreline displacement 343 

would necessarily differ from site-to-site, depending on the size of the observed shoreline 344 

variability. Here we seek a common methodology that will be equally applicable to all sites, 345 

irrespective of the size of the observed shoreline variability. For this reason, a probability of 346 

occurrence threshold has been applied to the shoreline forecasts. Notice also, that unlike wave 347 

forecasts, which seek to apply only a storm threshold to isolate the highest waves, a bi-directional 348 

threshold is sort here to separate normal from high erosion and accretion events. Since we are 349 

dealing here with both erosion and accretion, it is also inappropriate to define shoreline 350 

displacements above threshold as storms, therefore we will refer to shoreline displacements which 351 

exceed threshold value as events in the following text. 352 

 353 

This methodology defines three erosion and three accretion bands using the cumulative GEV PDF 354 

function, which has been fitted to the model forecast data. Erosion and accretional bands are 355 

defined by Pr and (1 - Pr) respectively, where Pr is the probability threshold for the band. Here 356 

we characterise the intensity of the cross-shore shoreline displacements with a colour-coded traffic 357 

light system. These three bands are normal (green), high (amber) and extreme (red) and described 358 

in detail below:  359 

1) Normal (green): This band includes predictions which typify annual shoreline 360 

displacements. Predictions in this band are not characterised as events and have recurrence 361 

probabilities constrained by the event probability (Prthreshold), whereby, the 362 

erosion/accretion limits of this band are: Prthreshold < Normal band limits < 1-Prthreshold. 363 
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2) High (amber): These are predicted shoreline displacements which are classified as events 364 

having recurrence probabilities lying outside of the green band but constrained within:  365 

Prthreshold/100 < High band limits < 1 - (Prthreshold/100). Thus, the outer limits of this band 366 

typify the probability of a 1/100 recurrence event. 367 

3) Extreme (red): This band defines extreme events with probabilities outside of the high band 368 

but encompassing the extremes of the predictions. In these simulations, this condition was 369 

satisfied by setting the erosion/accretion limits at: Prthreshold/107 < Extreme band limits < 1 370 

– (Prthreshold/107). Where the factor of 107 is an arbitrarily selected high value. 371 

 372 

The erosion and accretional bands are separated by the mean (central tendency, µ) of the shoreline 373 

forecasts, which is also a bi-product of the GEV PDF fit to data (equations 4 and 5). Much like 374 

any other extreme value analysis the traffic light system used here is sensitive to the threshold 375 

value (Prthreshold). Here we have elected to use a recurrence probability rather than an amplitude 376 

threshold on the grounds that this methodology should be less site specific. Nonetheless, the 377 

methodology is sensitive to the value of event threshold selected. We examine this sensitivity in 378 

the results section by varying the threshold between one month per year (Prthreshold=1/12) and one 379 

day per year (Prthreshold=1/365). 380 

 381 

The inverse of the fitted GEV PDF is used to return shoreline positions corresponding to the pre-382 

mentioned probability values and define the limits of these three bands. Example histograms for 383 

Monte Carlo shoreline forecasts, extracted from the data in Figure 5 for the time intervals marked 384 

a-f are shown in Figure 6 (also labelled a-f). The traffic light coding and PDF fits to the data are 385 

also shown in these figures. Notice how well the GEV PDFs fit the tails of the distributions (amber 386 

and red bands). Encouragingly, the pre-mention bands encapsulate both the extremes of the data 387 

and the range shoreline displacements categorised as normal correlate well with the observed time-388 

series.  389 

 390 

3.6 Sensitivity of model forecasts to the duration of the wave pool 391 

Figure 7 shows an example predictions for the severe 2013/14 storms observed at Perranporth, 392 

UK. The GEV PDF and traffic light system have been presented here as a background for the 393 

observed data. Note that the probability threshold defining an event Prthreshold has been set to 1/12 394 
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in these examples. This is annual forecast starting at the beginning of October 2013 and running 395 

through the extreme storm sequence and subsequent recovery period. Also presented in Figure 7, 396 

is the sensitivity of the forecasts to the total duration of the wave data pool used to generate the 397 

synthetic forcing for the model. Here we progressively reduce the data pool at Perranporth from 398 

60-years to just 10-years prior to the sample date. It can be seen from these plots that in all cases 399 

the observations fall within the predicted limits of the extreme (red) band.  400 

 401 

The forecast which utilised 60-years of wave data (Figure 7a), shows that the shoreline response 402 

to the winter storms is on the boundary between the high-range and extreme range with an expected 403 

event recurrence probability close to 1/100, for this prediction starting 2-months prior to main 404 

shoreline recession. This classification remains consistent within the uncertainty of the data, for 405 

wave pool sizes of at least 20-years but changes to an extreme classification (red) for a wave pool 406 

size of just 10 years. Based on this and other tests (not shown) the authors suggest that the wave 407 

pool size should exceed 15-years in order to achieve consistent forecast classifications, although a 408 

firm conclusion on this point will probably require experimentation at additional sites.  409 

  410 

4. Results 411 

4.1 Perranporth, UK 412 

Figure 8 shows both the forecast and measured shoreline impact and subsequent recovery of the 413 

2013/14 winter storms at Perranporth (Prthreshold=1/12). In order to capture a complete season of 414 

recovery-erosion-recovery, forecasts start 7-months prior to the main storm impacts on the 1st May 415 

2013 during the beach recovery phase and proceeds with start times (t0) incrementing in two-month 416 

intervals through the storm and up to the start of the post-storm recovery. In doing so we are able 417 

to answer two key coastal management questions, namely: Can we predict the likely impact of the 418 

next extreme storm sequence? And, can we forecast beach recovery after the impacts of an extreme 419 

storm sequence? 420 

 421 

Figure 8a shows the shoreline forecast during the recovery period, prior to the main storm. The 422 

forecast predicts a narrow range of potential shoreline projections over the coming six-months. It 423 

is not until the onset of the winter storms, when there is a tendency for erosion that the predicted 424 

range in shoreline responses widens significantly. Inspection of the measured data in this plot 425 
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shows that shoreline recovery in this example (Figure 8) is slow initially, remaining in the lower-426 

amber range during the period leading up to the storms, but reaching the low-normal (green) range 427 

by December 2013.  428 

 429 

Pre-storm shoreline positions were at the shoreward-extreme of the normal range prior to the 430 

storms (i.e. somewhat eroded for the time of year). In all cases the data are effectively captured 431 

within the prediction band and the range of the predictions is not so excessive as to be of limited 432 

value. This example (Figure 8a) shows that for this seasonally dominated site, shoreline recovery 433 

is indeed predictable and can be forecast. 434 

 435 

The classification of the observed 2013/14 storm impact (see arrow in Figure 8a), starting 11 436 

months before the maximum observed erosion is extreme (red). This rating has an event return 437 

probability of less than 1/100. This extreme (red) classification of the storm reduces to the outer 438 

limit of the high (amber) band, seven months prior to the maximum storm erosion t0 = 1st 439 

September 2013 (Figure 8c). This is likely due to the fact that the beach levels were already 440 

uncharacteristically low for the time of year, just prior to the main storm sequence. This 441 

classification then remains consistent right up to the start of the main storm sequence starting in 442 

November 2013 (Figure 8d). These results (and threshold selection, Prthreshold=1/12), suggest that 443 

the Perranporth storm sequence of 2013/14 had an event return probability of ≈ 1/100. This 444 

classification even remains consistent through the storm (Figure 8e).  445 

 446 

The post extreme-storm recovery is predicted after the 2013-14 storms, starting t0 = 1st March 2014 447 

in Figure 8f. It can be seen in this second recovery example, that once again, the forecast is tight 448 

and accurate. Unlike the pre-storm recovery (Figure 8a), the post recovery is much more rapid, 449 

proceeding in the upper-amber range. This was somewhat unexpected as the offshore survey data 450 

(not included here) showed that the eroded beach sand had been moved to an offshore bar, located 451 

1 km offshore of the high-tide shoreline position. This extreme translation of sand does not seem 452 

to have stunted beach recovery at all. Notice however, that there is quite a bit of uncertainty in the 453 

measurements, represented by the error bars in the data during this recovery phase as the beach 454 

gets more 3-dimensional in the longshore direction as the sand moves from the offshore sandbar 455 

towards beach. Again, Figure 8f supports the notion that beach recovery is indeed predictable at 456 
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this site. Notice also that the methodology used here may forecast different outcomes for the same 457 

month in different years, due to importance and potentially different antecedent hydrodynamic 458 

conditions. 459 

 460 

4.2 Narrabeen, Australia 461 

Perhaps a more challenging test for this forecasting methodology is application to a distinctly 462 

storm dominated wave climate, with a weaker seasonal signal, where shoreline responses are more 463 

rapid. The Narrabeen dataset provides the opportunity to do this. Like the previous Perranporth 464 

example, Figure 9a starts during the natural recovery-phase on the 1st October 2006, prior to the 465 

Pasha Bulker storm sequence. An identical methodology to that used in the previous example at 466 

Perranporth has been applied here to an extreme storm sequence at Narrabeen (Prthreshold = 1/12). 467 

 468 

It can be seen that the forecast for Narrabeen still provides a useful estimate of shoreline recovery, 469 

even in this storm dominated environment (Figure 9a). Comparison with the measured data shows 470 

that unlike Perranporth the recovery At Narrabeen prior to the storm is high, lying entirely within 471 

the upper end of the normal range (upper-green/amber boundary). This healthy recovery led to a 472 

healthy shoreline accretion prior to the inception of the Pasha Bulker storm sequence.  473 

 474 

Notice also that the maximum storm erosion, indicated by the arrow, is in all of the pre-storm 475 

forecasts (Figures 9a-e), consistently on the erosional amber-red boundary, indicating that 476 

shoreline displacement due to the Pasha Bulker storm sequence, like the Perranporth example, has 477 

an event probability of ≈1/100. Interestingly, shoreline positions and beach volumes along the New 478 

South Wales coastline were not observed to have eroded excessively and certainly would have not 479 

been at 1/100 year low after this storm sequence. It is important to make two important points here. 480 

Firstly, this methodology is characterising shoreline displacement, rather than absolute shoreline 481 

position. Whilst these two measures are similar, large erosion events should correlate with an 482 

eroded shoreline, they are not the same thing. In this example, the pre-storm shoreline was quite 483 

strongly pro-graded, thus, in spite of considerable storm erosion, the post-storm shoreline was not 484 

excessively eroded. The second point to make is that classifications used here (normal, high and 485 

extreme) will vary with the somewhat subjective choice of the event threshold (Prthreshold). This 486 

latter point is explored in the next section. 487 
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 488 

Shoreline recovery after the Pasha Bulker storm is forecasted in Figure 9f. Like the post storm 489 

Perranporth example, beach recovery is well forecasted at Narrabeen and is rapid, skirting both 490 

the amber (high) red (extreme) intersection.  491 

 492 

Sensitivity to the event threshold (Prthreshold) 493 

Most extreme value analysis methods are sensitive to the threshold which defines an event. In the 494 

previous examples, we have avoided a site-specific amplitude threshold, instead defining a 495 

probability of occurrence threshold of 1 month in 1 year (Prthreshold =1/12) to define a shoreline 496 

displacement events which are likely to be outside the typical annual range. This forms the basis 497 

of the traffic light characterisation presented here with outer limit of the high band limited to 1/100 498 

event displacement (Pr =1/1200). Although, the event threshold has been intelligently selected, 499 

based on the observation that shoreline time-series reach their minimum and maximum values 500 

during just one month of the year, this value is still somewhat subjective.  501 

 502 

In order to investigate the sensitivity to the event threshold probability, in figure 10 and 11 we 503 

follow an identical methodology to that used to create figures 8 and 9 respectively, but have 504 

adjusted the event probability threshold from the reasonable maximum value (1/12) to the likely 505 

minimum extreme, 1 day in 1 year (Prthreshold =1/365). Inspection figures 10 and 11 shows that the 506 

main impact of reducing the event threshold is to broaden the green (normal) band of the traffic 507 

light system with at the expense of the amber and red regions. Because of the shape of the P.D.F 508 

functions, the limits of the high and extreme bands (amber and red) are only displaced outward a 509 

relatively small amount. The resulting patterns are very similar but the characterisation of the 510 

shoreline displacements in figures 10 and 11 are generally downgraded away from the extreme 511 

classification and towards the normal band. It is not clear from the analysis exactly what the best 512 

threshold setting is, application of the methodology to more storms and more sites will be required 513 

in order to establish this. However, this test does serve to illustrate the sensitivity of the 514 

classification (normal, high, extreme) to the threshold value.  515 

 516 
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5. Concluding Remarks  517 

A new methodology for forecasting shoreline displacement has been detailed in this contribution. 518 

The methodology includes: generating multiple forcing time-series based on measured or modelled 519 

wave data, the implementation of an established shoreline model [39] to drive a Monte Carlo 520 

forecast of shoreline behaviour and characterising these shoreline responses with a generalised 521 

extreme value (GEV) analysis. Results presented here indicate that it is indeed possible, at least 522 

on these exposed, swash-aligned sites, to provide genuine forecasts of the limits of: 523 

a) Shoreline recession due to the impact of a storm sequence. 524 

b) Shoreline recovery after the passage of an extreme storm erosion events. 525 

The methodology provides a probabilistic forecast (P.D.F.) of shoreline displacements, up to a 526 

year in advance of the prediction start date and provided a simplistic ‘traffic light’ classification 527 

based on the recurrence probability of an event. Shoreline forecasts are classified as normal (likely 528 

to be observed in a typical year), high (events outside the typical annual recurrence probability) 529 

and extreme (events outside the 1/100 event-recurrence probability). 530 

 531 

Although the methodology has been tested on time-series of high-water shoreline displacement, it 532 

could easily be transferred to the prediction of other definitions of the shoreline position or indeed 533 

intertidal beach volumes. Here we use an established shoreline model, ShoreFor [39], but 534 

acknowledge that the same methodology could be equally well implemented with other fast and 535 

robust models of this genre. The present model is restricted to coasts dominated by cross-shore 536 

sediment transport, but other modelling approaches could be combined with this general 537 

forecasting methodology, including one-line models, in order to overcome these limitations. 538 

 539 

In both applications presented here the models showed highly skilful hindcasts. This is an essential 540 

pre-requisite of this forecasting approach. Poor model hindcasts are likely to lead to unreliable 541 

forecasts. Here we recommend the model-data calibration coefficients (r) (comparisons between 542 

observations and model results) exceed 0.8 for accurate forecasts. Weaker correlations could lead 543 

to forecasts that under-predict the magnitude of the shoreline response. 544 

 545 

This contribution used measured shoreline data to calibrate the shoreline model. However, the 546 

availability of shoreline data is not necessarily a limit to application of this particular model. 547 
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Splinter et al., [15] showed that ShoreFor model free parameters can be estimated using easily 548 

available environmental parameters including wave climate and sediment properties.  549 

 550 

A provisional sensitivity analysis shows that the minimum size of the pool of wave data required 551 

to produce accurate and consistent forecasts of shoreline response is approximately 15-years, 552 

although it is recommended that all the available data are used. In the simulations used here we 553 

have implemented forecasts with both modelled (Perranporth) and a mixture of 554 

measured/modelled (Narrabeen) wave data, both provided good forecasts of shoreline behaviour.  555 

Since the use of commonly available modelled wave data seems to provide robust shoreline 556 

predictions, the application of this methodology could potentially be quite widely used to the 557 

prediction of extreme shoreline erosion and subsequent beach recovery. 558 

 559 

The forecasts produce accurate representations of the observed shoreline behaviour. The 560 

characterisation of the shoreline behaviour (normal, high or extreme) is sensitive to the event 561 

probably threshold. Although the precise choice of event threshold remains somewhat ambiguous, 562 

provisional results suggest that the most appropriate descriptions of shoreline displacements were 563 

achieved by setting event recurrence threshold in the region Prthreshold ≈1/365 to 1/12. More 564 

widespread application of the methodology to different environments will be required in order to 565 

converge on the most appropriate event threshold.  566 

 567 

Recent studies indicate that climatic indices can be skilfully predicted a year in advance [46]. The 568 

fact that climate indexes (e.g. NAO and ENSO) have been linked to storminess and shoreline 569 

change (e.g.  Robinet et al., 2016), indicates that it may be possible to make more accurate 570 

predictions for the forthcoming year and perhaps beyond, if the synthetic waves used to force the 571 

shoreline predictions were based only on past wave data with climate indexes similar to those 572 

projected for the forecasting period.   573 

 574 
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List of Figures 716 

Figure 1. Location map for a) Perranporth, Cornwall, UK and b) Narrabeen, NSW, Australia.  717 

Figure 2. Monthly ensemble averages offshore wave power (top), dimensionless fall velocity 718 

(middle) and shoreline displacement (bottom) for Perranporth, UK (left) and Narrabeen, 719 

Australia (right). Ensemble means are presented with 95% confidence interval bars in all cases. 720 

The number of years of wave data in the ensembles for Perranporth and Narrabeen are 63 and 721 

36 years respectively. For both sites over 8-years of shoreline data have been ensemble 722 

averaged.  723 

Figure 3. The top two plots (a and b) show the 9-year wave power and associated shoreline 724 

displacements (mean high-tide contour) recorded at Perranporth. Also shown are the model 725 

calibrations hindcasts and the unseen storm-validation hindcasts for the 2013/14 storms. The 726 

lower two plots are the equivalent series for Narrabeen (c and d). Notice that the Pasha Bulker 727 

June 2007 storm series has been used for the unseen model validation. 728 
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Figure 4. An example of the synthetic forcing time-series (wave power [top] and dimensionless 729 

fall velocity [bottom]) used to drive the shoreline forecast. This is an annual forecast starting 730 

on the 1st October 2013 (dotted vertical line). Noticed that each record starts with 6-years of 731 

observed antecedent measurements to which 1000 different, year-long, synthetic series are 732 

appended.   733 

Figure 5 This figure shows the 1000 resulting shoreline estimates generated from applying the 734 

forcing series in figure 4 to the ShoreFor model. The ensemble-mean tendency is shown by the 735 

solid black line, illustrating the seasonal trend in shoreline erosion and accretion. The letters 736 

and arrow represent the shoreline data shown in the figures 6 a to f. (Prthreshold=1/12) 737 

Figure 6. Histograms of the shoreline data for different months after the start of the forecast t0 =1 738 

October 2013. All shoreline positions are relative to the starting location at t0. Also shown is 739 

the extreme value analysis probability density function fitted to the data (solid black line). The 740 

traffic light system represents the normal (green), high (amber) and extreme range (red). 741 

(Prthreshold=1/12) 742 

Figure 7. Sensitivity analysis on the duration of the wave pool used to generate the synthetic wave 743 

time-series. Data are shown with error bars representing +/- two standard deviations in the 400m 744 

longshore shoreline contour, which have need averaged to give the shoreline estimates [open 745 

circles]. Notice that the classification of the storm remains unchanged until the wave pool is 746 

decimated to 10-years. (Prthreshold=1/12) 747 

Figure 8: Six forecasts of shoreline displacements for Perranporth Beach, UK (seasonally 748 

dominated system), starting during the pre-storm recovery period in May and progressing in 2-749 

mothly intervals until the post-storm recovery period in March 2014. The arrow indicates the 750 

maximum shoreline recession due to the storm in each case. (Prthreshold=1/12) 751 

Figure 9 Forecasted shoreline response for Narrabeen, Australia (storm dominated system). 752 

Forecasts start with t0 at the pre-storm recovery phase in October 2006 and progress at two-753 

monthly intervals through the main storm sequence in June 2007 and to the post-storm recovery 754 

starting in August 2007. (Prthreshold=1/12) 755 

Figure 10. Similar Perranporth example plot to Figure 8 with a modified event probability 756 

threshold of Prthreshold=1/365. 757 

Figure 11. Similar Narrabeen example plot to Figure 9 with a modified event probability threshold 758 

of Prthreshold=1/365. 759 
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List of Tables 761 

Table 1. Comparative data/site characteristics for Perranporth and Narrabeen, including annual 762 

average deep-water wave characteristics and sediment properties. σΩ360/σΩ30 is a seasonality 763 

index (Splinter et al., [15]) describing the ratio of the average annual to monthly standard 764 

deviation in dimensionless fall velocity, higher values indicating increased seasonality. Notice 765 

that seasonality at Perranporth is some 20% higher than Narrabeen and that dimensionless fall 766 

velocities are double a Perranporth indicating more dissipative beach states. 767 



 
 

Site Hs 
[m] 

Tp 
[m] 

Ω D50 
[mm] 

 
[m/s] 

Ω360 

/Ω30 

Survey 
Method 

(interval) 

Wave 
data 
[Yrs] 

Wave 
Measurement 

(type) 

Depth 

Perranporth 1.98 8.3 5.30 0.33 0.04 1.22 Survey 
(monthly) 

63 Sevenstones 
(modelled) 

73 

Narrabeen 1.62 9.6 3.67 0.40 0.05 1.07 Video 
(weekly) 

36 Sydney 
(measured) 

74 

 
Table 1. Comparative data/site characteristics for Perranporth and Narrabeen, including 

annual average deep-water wave characteristics and sediment properties. Ω360/Ω30 is 
a seasonality index (Splinter et al., 2014) describing the ratio of the average annual to 
monthly standard deviation in dimensionless fall velocity, higher values indicating 
increased seasonality. Notice that seasonality at Perranporth is some 20% higher than 
Narrabeen and that dimensionless fall velocities are double a Perranporth indicating 
more dissipative beach states.  
 



 
Figure 1. Location map for a) Perranporth, Cornwall, UK and b) Narrabeen, NSW, Australia. 
  



 
Figure 2. Monthly ensemble averages offshore wave power (top), dimensionless fall velocity (middle) and shoreline 

displacement (bottom) for Perranporth, UK (left) and Narrabeen, Australia (right). Ensemble means are presented with 
95% confidence interval bars in all cases. The number of years of wave data in the ensembles for Parranporth and 
Narrabeen are 63 and 36 years respectively. For both sites over 8-years of shoreline data have been ensemble 
averaged.  

  



 
Figure 3. The top two plots (a and b) show the 9-year wave power and associated shoreline displacements (mean high-

tide contour) recorded at Perranporth. Also shown are the model calibrations hindcasts and the unseen storm-
validation hindcasts for the 2013/14 storms. The lower two plots are the equivalent series for Narrabeen (c and d). 
Notice that the Pasha Bulker June 2007 storm series has been used for the unseen model validation. 

  



 
Figure 4. An example of the synthetic forcing time-series (wave power [top] and dimensionless fall velocity [bottom]) used 

to drive the shoreline forecast. This is an annual forecast starting on the 1st October 2013 (dotted vertical line). Noticed 
that each record starts with 6-years of observed antecedent measurements to which 1000 different, year-long, synthetic 
series are appended.   

  



 
Figure 5 This figure shows the 1000 resulting shoreline estimates generated from applying the forcing series in figure 4 to 

the ShoreFor model. The ensemble-mean tendency is shown by the solid black line, illustrating the seasonal trend in 
shoreline erosion and accretion. The letters and arrow represent the shoreline data shown in the figures 6 a to f. 
(Prthreshold=1/12) 

  



 
Figure 6. Histograms of the shoreline data for different months after the start of the forecast t0 =1 October 2013. All 

shoreline positions are relative to the starting location at t0. Also shown is the extreme value analysis probability density 
function fitted to the data (solid black line). The traffic light system represents the normal (green), high (amber) and 
extreme range (red). (Prthreshold=1/12). 

  



 
 
Figure 7. Sensitivity analysis on the duration of the wave pool used to generate the synthetic wave time-series. Data are 

shown with error bars representing +/- two standard deviations in the 400m longshore shoreline contour, which have 
need averaged to give the shoreline estimates [open circles]. Notice that the classification of the storm remains 
unchanged until the wave pool is decimated to 10-years. (Prthreshold=1/12) 

 



 
Figure 8: Six forecasts of shoreline displacements for Perranporth Beach, UK (seasonally dominated system), starting 

during the pre-storm recovery period in May and progressing in 2-mothly intervals until the post-storm recovery period 
in March 2014. The arrow indicates the maximum shoreline recession due to the storm in each case. (Prthreshold=1/12). 

  



 
 
 
Figure 9 Forecasted shoreline response for Narrabeen, Australia (storm dominated system). Forecasts start with t0 at the 

pre-storm recovery phase in October 2006 and progress at two-monthly intervals through the main storm sequence in 
June 2007 and to the post-storm recovery starting in August 2007. (Prthreshold=1/12). 

  



 
Figure 10. Similar Perranporth example plot to Figure 8 with a modified event probability threshold of Prthreshold=1/365. 
  



 
Figure 11. Similar Narrabeen example plot to Figure 9 with a modified event probability threshold of Prthreshold=1/365. 
 


