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Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense
laser pulse. We present scaling laws for the electron-beam energy loss, the γ -ray spectrum, and the positron yield
and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate
that by employing the collision of a > GeV electron beam with a laser pulse of intensity >5 × 1021 W cm−2,
today’s high-intensity laser facilities are capable of producing O(104) positrons per shot via light-by-light
scattering.
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I. INTRODUCTION

Electron-positron pair creation by the interaction of light
with light is one of the simplest processes in quantum
electrodynamics (QED). Thus far, however, the two-photon
process has not been detected in experiment [1–3], and
the observation of multiphoton pair creation could only be
accomplished by colliding the high-energy electron beam of
the SLAC facility and an intense laser pulse [4–6]. It is ex-
pected that the next generation of high-intensity lasers [7–10]
will create electromagnetic fields of sufficient magnitude
such that the nonlinear analog of the Breit-Wheeler process
becomes dominant [11] (see also [12,13]). As such fields are
only otherwise found in extreme astrophysical environments
[14–17], the prospect of studying plasma dynamics under these
conditions in the laboratory has attracted considerable interest
[18–20].

High-power laser facilities are already used to gener-
ate positrons via the Bethe-Heitler process, which converts
bremsstrahlung photons produced by the deceleration of elec-
trons in high-Z material. The energetic electrons themselves
are generated via direct illumination of the solid target [21–23]
or by laser-wake-field acceleration [24–26]. In the case that the
target electromagnetic field should be provided purely by light,
Bell and Kirk [27] proposed an advantageous setup of electrons
accelerated by counterpropagating, circularly polarized lasers,
which is anticipated to create critical-density pair plasmas
for laser intensities >7 × 1023 W cm−2 [28–32]. High-energy
positrons may also be generated by the irradiation of a solid
[33] or near-critical target [34,35] with a laser of similar
intensity.

Even though the highest intensity reached by currently
available laser systems (1 × 1022 W cm−2 [36]) does not reach
this level, it is still possible to explore nonlinear Breit-Wheeler
pair creation in these facilities by employing the head-on
collision of a high-energy electron beam and an intense laser
pulse. This is because, in the rest frame of the electrons, the
laser electric field amplitude is boosted by a factor γ � 1.
As the electron propagates through the laser pulse, it loses
energy by the emission of photons, which themselves interact

*tom.blackburn@chalmers.se

with the laser fields to produce pairs [37,38], as shown in
Fig. 1. The experimental setup can be made entirely optical
if the necessary ultrarelativistic electron beam is obtained by
laser-wake-field acceleration [39–41]. Such a configuration
has already been used to generate MeV γ rays via nonlinear
Thomson scattering [42,43] and has been studied as a probe
of quantum radiation reaction [44–47].

Here we consider the collision of a GeV electron beam
with a laser pulse of intensity >1 × 1021 W cm−2 and present
a set of analytical scaling laws for the electron energy loss,
the photon spectrum, and the number and energy of positrons
produced. This investigation complements the existing liter-
ature as it bridges the gap between analytic calculations in
QED [48–55] and the use of large-scale particle-in-cell (PIC)
simulations [56,57] that include QED processes by Monte
Carlo sampling of rates evaluated in the locally constant field
approximation [58,59].

The paper is organized as follows. First we derive an
approximation for the pair-creation probability of a single
high-energy photon colliding with an intense laser pulse in
Sec. II. Then we consider producing these γ rays via the
inverse Compton scattering of an electron beam. We show in
Sec. III A that high-energy photon production is maximized in
the leading edge of the pulse near a point we call the “effective
center”; identifying this region lets us estimate the electron
energy loss in Sec. III B and derive an expression for the
photon spectrum that accounts for radiation reaction in Sec.
III C. We present scaling laws for the number and mean energy
of the positrons arising from pair creation of these photons in
Secs. IV A and IV B, respectively. Finally, we show how the
colliding beams’ finite sizes and offset affect the positron yield.
Natural units h̄ = c = 1 are used throughout.

II. PAIR-CREATION PROBABILITY
FOR A SINGLE PHOTON

The importance of QED effects when photons and electrons
interact with a strong electromagnetic field is governed by the
quantum nonlinearity parameter [60–62]

χ = e
√

−(Fp)2

m3
. (1)
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FIG. 1. Ultrarelativistic electrons (blue) collide with a counter-
propagating laser pulse (magenta, green) and lose energy by emitting
photons (yellow). Positrons (red) are created when photons undergo
the nonlinear Breit-Wheeler process.

Here e and m are the electron charge and mass, F is the electro-
magnetic field tensor, and p the particle four-momentum. (χ is
used to refer to electrons only; χγ and χ+ are used for photons
and positrons, respectively.) χ compares the magnitude of the
electric field in the electron rest frame to that of the critical
field of QED: Ecrit = m2/e = 1.326 × 1018 V m−1 [63]. Even
though the equivalent intensity, 3 × 1029 W cm−2, is beyond
our present capability, it is possible to reach χ ∼ 1 by colliding
ultrarelativistic particles with weaker fields.

We consider a linearly polarized electromagnetic wave with
Gaussian temporal profile as a simple model of a laser pulse,
with amplitude E = (mω0a0/e) sin φ exp(− ln(2)φ2/(2π2n2))
at phase φ. Here a0 is the usual dimensionless strength
parameter, ω0 = 1.24 eV/(λ/μm) is the wave frequency, and
n is the number of cycles corresponding to the pulse duration
τ , defined to be the full width at half maximum (FWHM) of
the intensity profile. For now we consider only collisions with
plane waves. We introduce a finite size for both the electron
beam and the laser pulse to reach our final result in Sec. IV C.

In electromagnetic fields with a0 � 1, the formation length
of QED processes is much smaller than the characteristic
length scale of the external field, and we may use the
locally constant field approximation (LCFA) [61]. This permits
probabilities and rates to be calculated in an equivalent system
of constant fields that have the same local value of χ . It
underlies numerical studies of highly intense laser-plasma
interactions, where the electromagnetic fields have complex
spatial and temporal structure that make direct analysis from
strong-field QED unfeasible [58,59]. The field structure we
consider here is much simpler, so the LCFA is key to keeping
all our results analytical.

When a photon collides with an intense laser pulse,
the dominant QED process is nonlinear Breit-Wheeler pair
creation, which is first order in the fine-structure constant α

but all orders in the coupling a0 to the strong background
field. The probability per unit phase of electron-positron pair
creation for a photon with energy ω and nonlinearity parameter
χγ is

dP±
dφ

= W±
2ω0

= αm2χγ T (χγ )

2ω0ω
, (2)

where (see Appendix A for details) we follow Erber [60] and
adopt the approximation T (χγ ) � 0.16

χγ
K2

1/3( 4
3χγ

), with Kν(x)
a modified Bessel function of the second kind. The probability
in Eq. (2) is strongly suppressed for χγ � 1.

We determine the probability that a photon pair-creates
when colliding with an intense laser pulse, P±, in the following
way. Starting from Eq. (2) we integrate over φ and use a
saddle-point approximation to determine the contribution to
the pair-creation probability at each local maximum, calling
this Pi . Then given P± = ∑

i Pi we replace the sum over i

with an integral and evaluate it using another saddle-point
approximation.

Let φi be the phases at which the wave amplitude is (locally)
maximized and χi ≡ χγ (φi) the associated photon nonlinear-
ity parameter. Then the contribution to the probability from
phases near φi is, using Eq. (2),

Pi = 0.16
√

3παm2

√
8ω0ω

√−χ ′′
i

[
χ2

i K5
1/3

(
4

3χi

)
K2/3

(
4

3χi

) + K4/3
(

4
3χi

)
]1/2

, (3)

where χ ′′
i ≡ χ ′′

γ (φi). In a monochromatic plane wave, or
a pulse with sufficiently slowly varying envelope, we have
φi = π/2 + iπ and χ ′′

i = −2a0ω0ω/m2. Provided that n, the
number of pulse cycles corresponding to FWHM duration,
satisfies n > 2, we can use these relations to determine Pi as
an analytical function of the index i. To evaluate the sum,
we replace

∑
i → ∫

di and perform the integration using the
Laplace method, noting that the dominant contribution arises
for i = −1/2, at the pulse center.

We find that the total probability for pair creation when
a photon with energy ω collides with a linearly polarized
laser pulse that has strength parameter a0, frequency ω0, and
(FWHM) number of cycles n is

P± � αa0nR
(

2a0ω0ω

m2

)
, (4)

where we have introduced an auxiliary function R that is a
function only of the photon nonlinearity parameter. R may be
expressed analytically in terms of Airy functions, but as the
underlying rate is being treated approximately, we introduce
the following functional fit for compactness:

R(x) = 0.453K2
1/3

(
4

3x

)
1 + 0.145x1/4 ln(1 + 2.26x) + 0.330x

. (5)

This fit is accurate to the analytical expression to within 1%.
We compare the scaling law in Eq. (4) to the result

of numerical integration of Eq. (2) in Fig. 2. Agreement
is excellent across the full range of explored parameters:
we capture the superexponential rise with increasing laser
peak intensity and photon energy, that the pair yield scales
linearly with pulse length, and that it does not scale with
wavelength [provided that the wavelength is smaller than
the pulse FWHM—the drop in positron yield in Fig. 2(b)
for λ � 5 μm is an effect of the carrier phase]. This is
consistent with a complete calculation from strong-field QED
of the pair-creation probability by Meuren et al. [52], which
concluded that P± scales linearly with a0 at constant χ and
approximately linearly with n for a0 � 1.

The positron yield predicted by Eq. (4) always increases
with the laser amplitude a0, the pulse length n, and the
photon energy ω. Of these three, it is the amplitude (or peak
intensity) that is the most important as there is a dependence
on a0 in the prefactor and within the nonlinearly increasing
function R(χγ ).
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FIG. 2. Number of positrons, N+, produced in a collision between
a beam of Nγ photons with energy ω and a linearly polarized laser
pulse that has peak intensity I22 × 1022 W cm−2, wavelength λ, and
FWHM τ . Results from our scaling law in Eq. (4) (black) are
compared with numerical integration of the full pair-creation rate
(dashed yellow).

At the high laser intensities necessary to probe QED effects,
one method to explore positron generation which guarantees
overlap between the seed photons and the laser pulse is to use
the following two-stage process. First, a high-energy electron
beam is collided with the pulse in order to generate high-energy
photons (within the pulse) by nonlinear inverse Compton
scattering. The generated photons can then go on to create
pairs by interaction with the laser. In order to estimate the
number of positrons produced in this configuration, we now
discuss a scaling law for the spectrum of photons produced in
nonlinear Compton scattering.

III. γ -RAY PRODUCTION BY AN ELECTRON BEAM

A. The effective center of the laser pulse

As the electron propagates through the intense laser pulse it
loses energy through the emission of radiation. When χ � 0.1
this emission must be treated quantum mechanically, as then
the energy of a single photon can be a significant fraction of
the electron energy. The following quantum corrections must
be included for our results to be predictive: the reduction in the
average radiated power by a factor g(χ ) [64], the explicit form
of which is given below, and the stochasticity of the emission
process [28,65,66]. The former arises because classical theory
fails to preclude the emission of photons with more energy than
the electron; correcting the shape of the spectrum to guarantee
ω < γm alters the scaling of the radiated power from χ2 to
χ2g(χ ).

Here we consider typical behavior, in the sense that the
energy loss, γ spectra, and positron yields we predict always
implicitly refer to those quantities averaged over an ensemble

FIG. 3. φc, the phase at which χ is maximized, as given by
Eqs. (7) and (8) for electrons colliding with laser pulses that have
FWHM 30 fs, wavelength 800 nm (1.55 eV), and peak intensity
(a) 1 × 1023 W cm−2 (yellow) and (b) 1 × 1021 W cm−2 (blue). Solid
lines are calculated including g(χ ); dashed lines have been calculated
in the classical limit g(χ ) = 1.

of electrons with the same initial γ . Therefore, the most
important of the two corrections is the factor g(χ ), and
we adopt a semiclassical approach with a modified, but
deterministic, equation of motion. Furthermore, we neglect
energy gain from the laser fields, requiring γ � a0, such
that the evolution of the electron γ (φ) is determined only
by radiative losses:

dγ

dφ
= P

m
= αmχ2g(χ )

3ω0
, (6)

where P is the power radiated per unit phase and g(χ ) �
[1 + 4.8(1 + χ ) ln(1 + 1.7χ ) + 2.44χ2]−2/3 [62].

As χ ∝ | sin φ|, Eq. (6) contains an overall fluctuating
factor sin2 φ. The most important phase dependence is the
envelope, so we average over this fast oscillation, introducing
an overall factor of 1

2 into Eq. (6). Hereafter, χ refers to the
envelope of the electron’s χ (φ) such that

χ = 2γ (φ)a0ω0

m
exp

(
− ln(2)φ2

2π2n2

)
. (7)

Differentiating Eq. (7) with respect to φ lets us determine the
phase φc at which χ is maximized. This will prove particularly
significant, as it is where the radiated power is greatest and
where the highest-energy photons are emitted. Let χc ≡ χ (φc),
which satisfies the following closed relation:

[
χ2

c g(χc)
]2 = 72 ln(2)

π2α2

(γω0

nm

)2
ln

(
2γ a0ω0

mχc

)
. (8)

This defines φc through Eq. (7). It seems we have made little
progress though, as both χc and φc carry a dependence on
γ , the electron energy at φc, which we do not know a priori.
However, the presence of the correction factor g(χ ) means that
Eq. (8) has a remarkable property: to a good approximation,
it implies that χc scales linearly with γ and therefore that φc

is independent of γ . In other words, φc depends only upon the
laser pulse parameters.

In Fig. 3 we show the φc predicted by Eqs. (7) and (8)
for various γ and fixed laser pulses. It does appear that φc

is independent of the chosen γ to a good approximation. To
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FIG. 4. Top: Color scale, the probability density Pχ,φ that
a stochastically radiating electron reaches a maximum quantum
parameter χ at phase φ; solid blue curve, the χ of an electron that
loses no energy; dashed blue curve, the χ of an electron that loses
energy according to Eq. (6); and circle, the χc and φc given by Eqs. (7)
and (8). Observe that the region of maximum emission probability
is correctly identified by the predicted φc. Bottom: Color scale, the
probability density Pω,φ that a photon is emitted with energy ω at
phase φ and (vertical line) φc. (See text for collision parameters.)

demonstrate that the origin of this effect is the inclusion of
g(χ ), we also show φc for the classical condition g(χ ) = 1. In
this case, by contrast, φc increases with increasing γ . Let us
justify this phenomenon by differentiating Eq. (8) with respect
to γ to study the quantity ∂ ln χc/∂ ln γ . We find that[

2

χc

+ ∂ ln g(χc)

∂χc

]
∂χc

∂ ln γ
− 1 = Aγ 2

2χ4
c g(χc)2

(
1 − ∂ ln χc

∂ ln γ

)
,

(9)

where A = 72 ln(2)ω2
0/(παnm)2 is the coefficient of γ 2 on the

right-hand side (RHS) of Eq. (8). The factor in square brackets
on the left-hand side (LHS) of the above relation bears study.
Classically (or, equivalently, in the limit χc � 1) it becomes
2/χc; combining this with the fact that A � 1 we find that
χc scales approximately as γ 1/2 for χc � 1. However, for
χc � 0.1, it is very close to 1/χc and therefore χc ∝ γ , giving
dφc/dφ � 0 as suggested in Fig. 3.

This linear scaling only holds for “reasonable” values of χc,
but we emphasize that because our results depend on the locally
constant field and rigid-beam approximations, we begin by
assuming γ � a0 � 1, and so for all realistic laser–electron-
beam collisions we have χ � 0.1. We may therefore replace
γ in Eqs. (7) and (8) with γ0, the Lorentz factor of the electron
before the collision. φc is still the phase where χ is maximized
and χc becomes the χ of an electron that has reached that phase
without losing energy. This is possible in the quantum radiation
reaction regime due to straggling (quenching) [65,66].

Figure 4 compares the predicted φc and χc to the results of
a single-particle Monte Carlo simulation of quantum radiation
reaction. The initial energy of the electron is 1 GeV and
the laser pulse has wavelength 0.8 μm, FWHM 30 fs, and
peak intensity 1 × 1022 W cm−2 (γ0 = 1957, ω0 = 1.55 eV,
n = 11.2, and a0 = 68.3). For each electron we track the
maximum χ experienced along its trajectory, as well as the

phase at which this occurred. The probability density Pχ,φ

that an electron reaches χ at phase φ is plotted in the upper
panel of Fig. 4; to aid the eye, the χ (φ) of a nonradiating and
semiclassically radiating electron are plotted as well. We see
that φc accurately captures the point at which the electron χ is
maximized, in both the semiclassical and the stochastic case.
Comparison with the probability density Pω,φ that a photon
is emitted with energy ω at phase φ, plotted in the lower
panel, shows that φc also characterizes the region where the
highest-energy photons are emitted.

B. Energy loss of the electron beam

We now derive a scaling law for the energy loss of an
electron in the quantum-radiation-reaction-dominated regime.
Of course, we could simply solve Eq. (6) given the pulse
parameters, but as g(χ ) has no simple analytical form, those
results would necessarily be numerical. Instead we use the
results of Sec. III A to guide us toward an approximate, but
analytical, scaling law. We expect that χ and the radiated power
are strongly peaked in the region around φ = φc, so we use
the Laplace method (i.e., the saddle-point approximation) to
estimate the radiated energy in the absence of recoil. Then we
employ the single-photon recoil correction � → �/(γm −
�) to obtain a recoil-corrected estimate of both χc and the
final electron energy.

The Laplace method for the integral
∫
P(φ) dφ effectively

replaces the integrand with a Gaussian with peak Pc and
variance σ 2 = −Pc/P ′′

c , these being evaluated at the point
φc where P ′ vanishes. Here primes denote differentiation with
respect to φ. Then the integral is [2πP3

c /(−P ′′
c )]1/2. We have

that

Pc = αm2χ2
c g(χc)

6ω0
(10)

using the results of Sec. III A. The second derivative

P ′′
c = Pc

[
2

χc

+ ∂ ln g(χc)

∂χc

]
χ ′′|φ=φc

, (11)

where

χ ′′|φ=φc
= − ln(2)χc

π2n2

[
1 + 2 ln

(
2γ0a0ω0

mχc

)]
. (12)

Equation (11) contains the same factor in square brackets as
Eq. (9); as before, we replace it with 1/χc. Then we find that
the radiated energy (in the absence of recoil) is

� =
√

2πγ0m

[
2 ln

( 2γ0a0ω0

mχc

)
1 + 2 ln

( 2γ0a0ω0

mχc

)
]1/2

. (13)

The argument of the logarithms is always � 1; the equality
would correspond to φc = 0 and χc taking on its largest pos-
sible value at the pulse center. Therefore, 0 � � �

√
2πγ0m.

Let �rr be the total energy emitted in photons when we
do account for the electron recoil, i.e., radiation reaction.
Were we to assume that only one photon is emitted, the first-
order correction would give �rr = �/(1 + �/γ0m) [67,68].
However, as the electron emits many photons, this is not a very
good approximation. We are guided instead by the fact that the
radiated energy should be approximately symmetric around
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the point φ = φc. This is exactly true for the Laplace method
because the fitted Gaussian is centered at φ = φc. It will still
be true after we account for recoil because φc is independent
of γ and must still mark the point of maximum radiated power.
We have, by our argument for the symmetry of the radiated
energy, that the electron loses �/2 during the interval φ > φc;
therefore, its Lorentz factor and recoil-corrected χ at φc satisfy

γc

γ0
= χc,rr

χc

�
(

1 + �

2γ0m

)−1

. (14)

Repeating the process for the interval φ < φc, the electron final
Lorentz factor is then

γf � 2γ0m − �

2γ0m + �
γ0. (15)

This is positive only if � < 2γ0m; as we saw earlier, � is
bounded by

√
2πγ0m � 2.51γ0m. Nevertheless, as we seek a

scaling law for the photon spectrum, it is more important that
both γc and χc,rr are correctly bounded by zero from below,
which they indeed are.

We can also estimate the electron Lorentz factor and χ as
a function of phase, using that the radiated power and χ as
functions of phase are approximately Gaussian in form:

γ (φ) � γf + γ0�

2γ0m + �

[
1 + erf

(
φ − φc√

2σ

)]
, (16)

χ (φ) � χc

1 + �
2γ0m

exp

(
− (φ − φc)2

2σ 2

)
, (17)

where

σ 2 = π2n2

ln(2)

[
1 + 2 ln

(
2γ0a0ω0

mχc

)]−1

. (18)

Comparison between Eq. (17) and numerical solutions to
the equation of motion [Eq. (6)] are given in Fig. 5, for
experimental parameters corresponding to Gemini [Fig. 5(a)],
the Berkeley Lab Laser Accelerator (BELLA) [Fig. 5(b)],
SLAC [Fig. 5(c)], and ELI [Fig. 5(d)]. There is excellent
agreement with respect to the maximum χ , the phase at which
it is reached, and the distance over which it is sustained.
This demonstrates the importance of accounting for radiation
reaction, as without doing so we would overestimate χ .

C. Photon energy spectrum

Figure 4 confirms that the region near φc, where χ is
maximized, is the origin of the highest-energy photons. We
propose that the spectrum may be approximated by assuming
that the electron has χ as given by Eq. (17) and energy γ � γ0

at this point; the latter is our way of accounting for straggling
(quenching). As we are interested in the high-energy tail of the
spectrum, we expand the double differential rate of emission
for χγ ∼ χ :

∂2Nγ

∂t∂χγ

� αm

2
√

πγ

exp
( − 2χγ

3χ(χ−χγ )

)
√

χ − χγ

, (19)

which may be converted into an integral over phase and photon
energy using that φ = −2ω0t and ω/(γm) = χγ /χ . Then we
use the Laplace method again with Eqs. (12) and (17), with

FIG. 5. For a collision between an electron beam with energy
E0 and a linearly polarized laser pulse with peak intensity I21 ×
1021 W cm−2, wavelength λ, and FWHM τ , left, the electron quantum
nonlinearity parameter χ as a function of phase φ, as predicted
by Eq. (17) (dashed yellow curves), solution to equation of motion
[Eq. (6)], and in the absence of radiation reaction (dotted red curves);
right, energy spectra (normalized per electron) of the emitted photons,
as predicted by our scaling [Eq. (20), solid black curves] and Monte
Carlo simulation with stochastic radiation reaction (dashed yellow
curves) and no radiation reaction (dotted red curves).

the result that

dNγ

dω
�

√
3παFhe√
2 ln(2)

a0n√
E0

χc,rr/χ0√
1 + 2 ln(χ0/χc)

×
exp

( − 2ω
3χc,rr(E0−ω)

)
√

3χc,rr(E0 − ω) + 4ω
(20)

for E0 = γ0m, χ0 = 2γ0a0ω0/m, and χc,rr related to χc via
Eq. (14). Now, as not every emission qualifies as “high energy,”
this overestimates the number of hard photons. To account for
this we multiply Eq. (20) by a correction factor Fhe which is
the ratio of the number of photons emitted for φ > φc to the
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total number of photons:

Fhe = 1

2

[
1 − erf

(√
2 ln(2)φc

2πn

)]
. (21)

This works because, as we showed in Sec. III B, the electron
loses most of its energy for φ � φc; only for larger phases can
it be said still to be “high energy.”

We compare the predicted scalings with simulation data in
Fig. 5 (for consistency, pair creation and therefore secondary
photon emission were disabled). The logarithmic scaling of
the vertical axes admittedly flatters the comparison, but we
find good agreement between the stochastic data and our
simple scaling. It captures the shape of the high-energy tail, the
absolute number of photons, and the reduction in both caused
by radiation reaction.

IV. POSITRON PRODUCTION BY AN ELECTRON BEAM

A. Number of pairs

The number of positrons produced by a laser–electron-
beam collision may be determined by convolving the pair-
creation probability [Eq. (4)] with the photon spectrum
[Eq. (20)]. Strictly, this requires that the contribution to the
probability P± from the region φ > φc is negligible, as the
daughter photon beam is actually created within the laser pulse
near φ = φc.

While the pair-creation probability is always (nonlinearly)
increasing with increasing photon energy, the photon number
is always decreasing because of the exponential factor in
Eq. (20). Therefore, the probability spectrum P±

dNγ

dω
is peaked

for some ωc < γ0m. (If one considers the ensemble of
positrons emerging from the laser-beam collision and looks
at the energy distribution of their parent photons, ωc will
be most probable.) Let us consider the threshold regime for
pair creation, which is currently accessible, where the yield is
dominated by the conversion of the highest-energy photons.
Then we may expect the combination of our scaling laws for
the photon spectrum and pair probability to be predictive.

First we derive a relation for ωc. Let S(ω) be the last factor
in Eq. (20), the only part that depends on the photon energy.
Then the product P±

dNγ

dω
is maximized for ω = ωc satisfying

R′(χγ )

R(χγ )

∂χγ

∂ω
= |S ′(ωc)|

S(ωc)
, (22)

where χγ = 2a0ω0ωc/m2 and R was introduced in Eq. (5).
We expect ωc to be near E0, so we take only the leading-
order term in (γ0m − ω) from the RHS. The LHS depends on
the properties of R but we find that for χγ � 10, R′/R �
2.75/χ2

γ . Therefore, we have

ωc � γ0m

√
2χc,rrm

a0γ0ω0

1 +
√

2χc,rrm

a0γ0ω0

. (23)

We use this point as the origin of a saddle-point approxi-
mation to the integral

∫
P±

dNγ

dω
dω, which gives us the positron

yield arising from a high-energy electron beam. We take only
the leading-order term in (γ0m − ωc) as before. Leaving out
the details, we find that the number of positrons produced per

FIG. 6. Number of positrons, N+, produced in a collision between
a beam of Ne electrons with energy E0 and a linearly polarized
laser pulse that has peak intensity I21 × 1021 W cm−2, wavelength λ,
and FWHM τ . Results from our scaling law [Eq. (24), solid black
curve] and simulations using the full pair-creation rate (dashed yellow
curve).

electron is

N+ � 3
√

πP±(ωc)χc,rr√
2

(γ0m − ωc)2

γ0m

dNγ

dω

∣∣∣∣
ω=ωc

(24)

using the recoil-corrected χc,rr from Eq. (14), P± from Eq. (4),
and the photon spectrum from Eq. (20).

The results of this calculation are compared with the yield
obtained from Monte Carlo simulation in Fig. 6, for collision
parameters that are within the scope of present-day laser
facilities. We find that it is accurate to within a factor of 2
to 3 across the range of explored parameters, with a tendency
to underestimate the yield. This is because the approximate
spectrum in Eq. (20), while accurate for the high-energy tail,
underestimates the number of low- to mid-energy photons.
At lower intensities, positron production is dominated by the
high-energy tail of the spectrum so our prediction is accurate.
As χγ exceeds 1, pair creation is possible for photons across a
wider energy range, and our prediction will undershoot.

Increasing γ and a0 for fixed pulse length n always increases
the positron yield. However, for fixed γ0 and a0, we see from
Fig. 6(a) that there is a laser pulse length where the positron
yield is maximized. This may be understood by considering
the competing factors of P± and χc,rr in Eq. (24). The former
favors increasing pulse length as photon decay becomes more
probable. The latter accounts for the sensitivity of the yield
to the pulse rise time (which increases with n), as increased
energy loss of the electron beam in the rising edge suppresses
growth of χ and consequently hard photon emission. This
is why our scaling underestimates the yield for τ � 40 fs:
the photon spectrum in this region is dominated by low- to
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mid-energy photons which the scaling in Eq. (20) does not
capture.

B. Mean positron energy

Now we consider the effect of secondary photon emission
on the positron energy. To produce large numbers of pairs we
need χγ � 1, implying a positron initial χ+ � 0.5 which lies
within the quantum radiation reaction regime. We assume that
the positron (equivalently, the electron) is created at φ = 0
with half the energy of the parent photon. We take this to
be the most probable parent photon energy ωc, as given by
Eq. (23). The procedure to determine the final energy of the
positron is similar to that outlined in Sec. III B. Both χ+ and
the radiated power are maximized at φ = 0 and decrease with
decreasing φ. Given this, we integrate the radiated power from
φ = −∞ to φ = 0 using the Laplace method to determine
radiated energy without recoil, then apply the single-photon
correction. We find that the postcollision Lorentz factor of the
positron is

γ+ � ωc

2m

[
1 + π3/2α

3
√

2 ln(2)

na2
0ω0ωc

m2
g
(a0ω0ωc

m2

)]−1

. (25)

Comparison with Monte Carlo simulation, shown in Fig. 7,
shows that this scaling law accurately predicts the mean
positron final energy. Nevertheless, we see it breaking down for
γ0m larger than a GeV, as the initial positron spectrum for χγ >

1, while still symmetric around mγ+ = ωc/2, is much broader
and stochastic effects are more pronounced. The positron

FIG. 7. Color scale, energy spectra of positrons emerging from a
collision between an electron beam with energy E0 and a laser pulse
with peak intensity I21 × 1021 W cm−2, wavelength λ, and FWHM τ ;
black lines, the characteristic energy predicted by Eqs. (23) and (25);
and black circles, the mean energy of the simulated spectra.

spectrum is unchanged as the wavelength increases until
n = cτ/λ � 2, at which point carrier-phase effects become
significant. The laser pulse we consider has phase dependence
sin φ, so this means the pair creation is switched off as the pulse
FWHM shrinks. In general the width of positron spectrum
increases with increasing electron-beam energy and decreases
with increasing pulse intensity and duration.

C. Prospects for experimental observation

We have seen that the optimal pulse length for pair creation
from GeV electron beams and laser pulses with intensity in the
high 1 × 1021 W cm−2 is approximately 30 fs, which is close
to the characteristic duration of current high-intensity lasers.
Therefore, we show in Fig. 8 the number and characteristic
energy of positrons produced in such a collision, taking the
wavelength of the light to be 1 μm and the FWHM of the
pulse to be 30 fs. The positron yield increases substantially
with both increasing electron-beam energy and laser intensity.
Laser wake fields typically accelerate bunches of charge 100
pC, implying that to produce more than 100 positrons in a
single shot requires a laser intensity I0 and beam energy E0

that satisfy (
I0

1 × 1021 W cm−2

)(
E0

2 GeV

)2

� 1. (26)

This condition can be met in present-day high-intensity
laser facilities, where we expect measurable quantities of
>100 MeV positrons to be produced. However, to be confident
that this is the case, we extend our results to account for the
fact that both laser and electron beam have finite size.

Consider a beam of Ne,b electrons with spherically symmet-
ric Gaussian charge density (size R), offset from the laser axis
by a distance �. Without loss of generality we may choose that
offset to be in the x direction. The peak laser intensity each
electron encounters depends upon that electron’s spatial and
temporal offset from the laser focus. Let (x,y) be the position
at which an individual electron encounters the peak of the
laser pulse. Then the effective a0 of the pulse for that electron
becomes

a � a0 exp

(
−x2 + y2

w2
0

)
, (27)

where w0 is the laser waist. The number of electrons that
encounter the pulse peak at (x,y), experiencing an effective a0

given by Eq. (27), is

dNe = Ne,b

πR2
exp

(
− (x − �)2 + y2

R2

)
dx dy. (28)

The total number of positrons produced by a beam is N+,b =∫
N+(x,y) dNe, where N+(x,y) is obtained by replacing the

a0 in Eq. (24) with a as given by Eq. (27).
We take as an example the collision between a 2-GeV

electron beam (total charge 100 pC, spherically symmetric
FWHM 10 μm, R = 6 μm) and laser pulse with peak intensity
5 × 1021 W cm−2, wavelength 0.8 μm, FWHM 30 fs, and waist
2 μm and compare our predictions to the result of full-scale
three-dimensional (3D) PIC simulation (see Appendix B for
details). Were we to take this as a plane-wave interaction, we
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FIG. 8. Left: log10-scaled yield (per electron). Right: Typical energy in MeV of positrons produced in the collision of an electron beam
with energy E0 and a laser pulse with peak intensity I0, wavelength 1 μm, and FWHM 30 fs, as predicted by Eq. (24).

would predict a positron yield of 6.9 × 105 using Eq. (24). Ac-
counting for beams’ finite sizes by integrating

∫
N+(x,y) dNe

numerically using Eqs. (24) and (27), we find N+,b � 10 500.
This is in good agreement with N+,b � 10 000 from simulation
and should be assessed in light of the nonperturbative growth in
the pair-creation probability shown in Fig. 8. We find also that
the final energy of the positron beam predicted by Eqs. (25)
and (23), 320 MeV, is consistent with the spectrum shown
in Fig. 9. With the addition of a perpendicular offset of 5
μm between the beams, numerical evaluation predicts that the
positron yield should be reduced to 5300; we find N+,b = 4700
in PIC simulation.

To provide an approximate analytical scaling for the number
of positrons produced by an electron beam of finite size, we
evaluate the integral

∫
N+(x,y) dNe with the Laplace method,

assuming that R � w0 and that the dominant contribution is

FIG. 9. The energy spectra of photons (solid blue curve),
positrons (dashed yellow curve), and beam electrons (dotted green
curve) emerging from a collision between an electron beam with
energy 2 GeV and a laser pulse with peak intensity 5 × 1021 W cm−2

(see Sec. IV C for details). The positron energy predicted by Eqs. (25)
and (23) is indicated by a yellow arrow.

that of the region near x = y = 0 where the field amplitude
is largest. The fastest dependence on a (and therefore x,y) in
Eq. (24) is that of the auxiliary functionR, so we keep all other
factors constant when evaluating the Hessian of N+(x,y). We
find the number of positrons produced by an R-radius beam
of Ne,b electrons colliding with a laser pulse of waist w0 with
perpendicular offset � to be

N+,b � 0.727a0ω0ωc

m2

w2
0e

−�2/R2

R2
N+Ne,b (29)

for w0 < R and N+ given by Eq. (24). The leading factor
may be taken to be roughly 0.25, because, to have substan-
tial pair creation at all, ωc must be sufficiently large that
2a0ω0ωc/m2 � 1. For the collision parameters given above,
Eq. (29) predicts N+,b � 18 600 and 9300 for an offset of 0
and 5 μm respectively, accurate to within a factor of 2.

Equation (29) indicates that the accuracy of alignment
between the electron beam and the laser pulse must be about
the size of the electron beam itself. It suggests further that it
is advantageous to focus the laser pulse as tightly as possible,
increasing a0 at the expense of w0. The latter only enters the
scaling quadratically, whereas N+ grows much faster with a0

through its dependence on R [Eq. (5)]. Analytical work on
the effect of tight focusing has already begun [54,55], going
beyond the plane-wave approximation to explore the effect
of wave-front curvature on the positron yield. Nevertheless,
as near-term experiments are likely to focus the intense laser
with optics with f number closer to 2, the effects of finite size
and alignment errors are more significant.

V. SUMMARY

The collision of an intense laser pulse with a high-energy
electron beam is a promising experimental geometry for the
production of high-energy photons and positrons. We have
presented analytical expressions for the electron beam’s energy
loss, quantum nonlinearity parameter, and self-consistent
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emission spectrum. Our scaling law for the number of positrons
produced by the emitted γ rays demonstrates good agreement
with full-scale PIC simulation even when the finite sizes of
the colliding beams are accounted for. We have shown that
a near-term experiment employing the collision of a 2-GeV
electron beam and laser pulse of intensity 5 × 1021 W cm−2

will produce a positron beam with energy 300 MeV and
particle number 1 × 104. Experimental detection of this beam
will provide unambiguous evidence of pair creation via the
nonlinear Breit-Wheeler process.
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APPENDIX A: PAIR-CREATION RATE

The probability rate of pair creation, W±, for a photon
with energy ω and quantum nonlinearity parameter χγ =
e
√

−(Fk)2/m3 is conveniently expressed as

W± = αm2χγ T (χγ )

ω
(A1)

using the auxiliary function [60,62]

T (χγ ) = 1

6
√

3πχγ

∫ ∞

1

8u + 1

u3/2
√

u − 1
K2/3

(
8u

3χγ

)
du. (A2)

(The integrand cannot be interpreted as a spectrum.) It has
limits

T (χγ ) �
⎧⎨
⎩

3
√

3
16

√
2

exp
( − 8

3χγ

)
, χγ � 1

0.37961
χ

1/3
γ

, χγ � 1,
(A3)

and the following approximation from Erber [60] works well

across the full range of χγ :

T (χγ ) � 0.16

χγ

K2
1/3

(
4

3χγ

)
. (A4)

APPENDIX B: SIMULATIONS

In Secs. III and IV A we compare our theoretical prediction
with the results of single-particle Monte Carlo simulations,
using the same code developed for and described in [45,69].
Each electron is followed along its trajectory through the
laser pulse and QED events are sampled at every time step
using the standard Monte Carlo approach [28]. The electron
momentum is updated at every time step assuming that the
external fields are constant and crossed, but the particle push
is simplified to ballistic propagation at the speed of light. This
requires γ � a0 and restricts use of the code to collisions
with externally imposed electromagnetic waves, but these
approximations permit substantial speedup over conventional
PIC codes.

In Sec. IV C we compare our theoretical predictions
to the results of simulations performed with the 3D PIC
code EPOCH [70]. The first-order QED processes of photon
emission and pair creation are implemented via Monte Carlo
sampling of rates calculated in the locally constant field
approximation. The simulation domain is −10 < x/μm < 10,
−10 < y/μm < 10, and −10 < z/μm < 30, resolved with
(20,20,40) cells per micron in the x, y, and z directions,
respectively. The time step is set by the Courant-Friedrichs-
Lewy condition, as there are sufficient cells to ensure that
the probability of multiple QED events in a single time step
is negligible [58]. The electron beam is initialized with a
Gaussian charge density profile (FWHM 10 μm) centered at
x = �, y = 0, and z = 24μm (where � is an offset between
the beams) and represented with eight macroelectrons per cell
for a total of 9.9 × 108 particles. The laser pulse is represented
by a paraxial Gaussian beam (waist 2 μm, wavelength 0.8
μm), is polarized along x, propagates towards positive z with
Gaussian temporal profile (intensity FWHM 30 fs), and is
timed to reach focus when the electron beam center arrives at
z = 0. Final energy spectra for the collision parameters given
in Sec. IV C are shown in Fig. 9.
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