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iii. Abstract Candidate: Thomas Oliver Mansfield 

Thesis Title: Data Communications in Navigation

Mobile devices with wireless networking capabilities are used in a wide range of 

environments. Geolocation information increases the value of the data generated by a device 

and is vital in the development of a wide range of applications from autonomous vehicles to 

the Internet of things. Systems that generate signals specifically for geolocation have become 

widely adopted but, due to fundamental constraints, lack coverage and accuracy in complex 

urban and indoor environments. In addition to this, the reliance on a single signal source is 

not desirable in many applications that value the integrity of the geolocation estimate. A 

direction of research aiming to improve geolocation in indoor and urban environments 

measures signals of opportunity in order to generate a more robust estimate. While this 

approach improves signal availability, the unpredictable nature of these variable and 

uncontrolled signals leads to poor geolocation estimates, which are typically not suitable for 

use in many applications. 

This project aims to improve on the accuracy, resilience and integrity of a geolocation estimate 

obtained from signal of opportunity measurements in indoor and urban environments while 

reducing hardware requirements. This has been achieved by efficiently coupling signals of 

opportunity within the radio environment with other system signals, such as those from an 

inertial measurement unit. Research has been carried out to optimise the coupling of these 

data sources resulting in techniques to allow the identification and removal of key error drivers 

from both the radio environment and other system sensors. 

This thesis proposes a specifically designed extended Kalman filter to improve on the signal 

coupling. The filter aims to optimise the accuracy of radio environment measurements while 

also providing the ability to identify signal error sources in urban and indoor environments, 

leading to both greater accuracy and resilience of the geo-location estimate. Further, the 

proposed extended Kalman filter may use the radio environment as a source of geolocation 

data. The ability of the filter to recognise and mitigate leading radio environment error sources 

such as multipath and interference allowed the design of filters to obtain detailed and accurate 

signal strength and time of arrival information. 

The thesis also presents a thorough set of simulation and modelling experiments to 

investigate and optimise the efficiency of the proposed solutions in a range of environments. 

Validation testing confirmed that in the urban and indoor environments, the average error of 

geo-location estimates has been reduced from 10 m to 3 m without improvement to the 

hardware surrounding infrastructure. 

The improvements presented in this thesis allow networked devices to improve the value of 

their data by incorporating the context that comes from increased geolocation accuracy and 

resilience. In turn, this allows the development of a wide range of new location based 

applications for mobile devises in indoor and urban environments. 
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Figure 1 - RF Navigation Information Source Summary 

Each of these techniques are discussed throughout this section. 

2.1.1 Time Difference of Arrival (TDoA) 
Time difference of arrival (TDoA) system measure the difference in time taken for a signal to 

travel from a range of transmitters to a receiving node. Difference in time taken is assumed 

proportional to the distance between the nodes allowing a location to be calculated. This 

technique is perhaps the most commonly applied and mature geolocation technique available 

with applications common in many everyday systems. While general algorithms for 

quantifying the navigational performance of the system are available [FISHER 2005], two key 

application areas of this technique, radio and satellite systems, will be discussed to provide 

further detail of the techniques strengths and shortcomings. 

2.1.1.1 Beacon TDoA Systems 
Early electronic navigation systems involved building a system of radio transmitters in 

locations where external navigation services were required. These systems started as far 

back as world war two with aircraft positioning beacons. The systems described in this section 

developed from these early systems and became the first widely adopted electronic global 

navigation systems. 
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The LOng RAnge Navigation (LORAN) system was introduced by the United States (US) 

Coast Guard to provide position and timing information to ships and aircraft in many locations 

around the world [COAST GUARD, 1994]. A system of radio transmitters to transmit a 

synchronised pulse that could be used by a user to locate themselves with a typical error of 

400m in the X and Y planes. A network of transmitters has been developed by the US coast 

guard around the world’s busiest shipping lanes in North America, Europe and the Middle 

East. A Russian system compatible with LORAN, Chayka, has made available around 

northern Europe and the Baltic. User devices are interoperable with both the US and Russian 

systems and have led to the use of the term LORAN-C to describe the combined network 

[COAST GUARD 2012].  

Based on a 100 kHz carrier signal, a series of increasing analogue signal pulses are 

generated by each transmitter every 30 microseconds allowing users within range of several 

transmitters to compare the pulse patterns and derive their location in two axes. 

The LORAN-C transmitters were switched off in January 2010 following 52 years of serviceto 

be replaced by the enhanced LORAN (eLORAN) system. 

eLORAN is a system that, like LORAN, provides positioning, navigation and timing 

information to users throughout the world  [LORAN 2007]. eLORAN has been designed to 

improve and replace the existing LORAN system with a number of upgrades. The main 

improvement in eLORAN is the addition of a data channel in the transmitted pulse signal. This 

data channel contains signal integrity information that allows signal corrections to be made to 

account for multipath propagation, allowing improved accuracy and improved estimate error 

predictions to be made. The accuracy provided by the eLORAN system is less than 20 meters 

99% of the time. While remaining independent of global navigation satellite systems, eLORAN 

and GPS share a synchronised time source, allowing users to mix the signals when both 

systems are operational and in range. 

[S. BASKER, et. al. 2007] describes the physical system that provides signals in the low 

frequency range of 90-110 kHz. Coverage is provided around the US, parts of Europe and 

the Middle East via a system of transmitters up to 500 miles apart. Due to the physical location 

constraints of the radio transmitters, the successful operation of the system relies on the 

cooperation of a worldwide network of countries, presenting a challenge for system reliability 

in regions of political instability.  

Table 1 – Beacon System Summary 

Technology LORAN eLORAN 

Centre Frequencies 90 – 110 kHz (LF) 90 – 110 kHz (LF) 

Multiplexing Method NA NA 

Signal Authentication  None None 
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Technology LORAN eLORAN 

Error Detection or 
Correction 

None Signal integrity data 
message 

Target Accuracy <0.25 miles (≈400 m) < 20 m 

Operational Status Retired Fully Operational 

2.1.1.2 GNSS Systems 
This section of the review will summarise the current and planned satellite navigation systems 

and look at ways to mitigate any remaining issues with this technique. 

Although terrestrial systems have achieved good coverage around many of the world’s 

busiest air and water ways, it is not possible to receive good quality signals in very remote or 

physically complex locations. The additional issue of international ownership and operation 

of the transmitters presents many users, such as the military, with undesirable robustness 

concerns. These problems provided the key requirements for a global positioning system that 

can be controlled by a single global owner. The solution for these issues was identified in the 

form of a space based system. 

Global Navigation Satellite System (GNSS) is a generic term for all satellite systems primarily 

used for navigation. The most commonly used GNSS systems available today are the US 

Department of Defence (DoD) Global Positioning System (GPS) and the Russian Military 

GLObal NAvigation Satellite System (GLONASS). Although these systems have been 

continually upgraded since their introduction in the 1980s, they have so far remained largely 

unchanged. This section will review the main components and key operating principles of 

both the GPS and GLONASS systems allowing the capabilities and shortcomings of each of 

these widely used systems to be discussed. 

GPS has been developed by and is controlled by the United States DoD. [DANA 2013]. The 

system consists of three segments; The space segment, the ground segment and the user 

segment. [BONNOR 2012] 

The space segment of the GPS system currently consists of 24 satellites at an altitude of 

approximately 20,000 km from the earth’s surface. Each satellite orbits the earth every 12 

hours. The satellites are arranged around 6 orbital planes, each spaced 60º apart. This 

constellation provides a user with between five and eight visible satellites almost anywhere 

on earth. The only areas with coverage of less than 5 satellites are extremely high and low 

latitudes around the poles [DANA 2013]. Each satellite in the space segment transmits 

information on 2 separate channels.  
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The channels are known as the L1 (civilian) and L2 channels (military). The L1 channel is 

transmitted at 1575.42MHz and the L2 channel is transmitted at 1227.6MHz. The main 

difference between the information transmitted on each channel is the robustness of the data 

and the encryption methods used. [BONNOR 2012]. Both the L1 and L2 signals are 

transmitted to achieve a minimum reception power level of -160dBw and -166dBw at the 

earth’s surface respectively [NAVSTAR 1995]. Using Eq 1, the reception power on the earth’s 

surface can be as low as 1x10-13 mW. 

𝑃𝑃𝑊𝑊 =  10(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑10 ) Eq 1 

 The L1 carrier for the standard precision signals (SPS) are Bipolar-Phase Shift Key (BPSK) 

modulated by the navigation data Modulo-2 added to the C/A code.[NAVSTAR 1995]. The 

signals from all satellites use are centred on the same L1 and L2 carriers and use Code 

Division Multiple Access (CDMA) to allow the user segment to differentiate between satellites 

using each satellites individual PRN code [NOVATEL 2013]. The L1 channel has a 

Coarse/Acquisition (C/A) code applied to provide CDMA coding. The CDMA code is different 

for each satellite and allows the user to determine the source of each received signal. This 

C/A code is a 1.023MHz Pseudo Random Noise (PRN) code sequence that is applied to the 

ranging signal [NAVSTAR 1995].  Error detection in the GPS messages are in the form of a 

CRC check and parity bit at the end of each 276 bit message[NAVSTAR 1995]. The second 

ranging signal on the L2 channel is used to provide the precise positioning service (PPS). 

The ranging data provided by the L2 signal is encrypted by a classified encryption algorithm. 

It is possible, though not confirmed by any publicly released US interface control document, 

to include forward error correction (FEC) and signal authentication to provide a more robust 

and reliable service.[NAVSTAR 1995] 

The ground segment for the GPS is used for system maintenance and long term error 

removal. The ground segment comprises of the master control station, monitor stations and 

ground antennas. The master control station is the central node for the worldwide GPS ground 

segment and is based in a US Air Force base in Colorado, USA. The master control station 

uses a worldwide network of monitor stations and ground antennas to continually monitor the 

performance of the space segment. [NAVSTAR 1995].  The data gained from tracking the 

space segment satellites is used to calculate the required corrections to the satellite clocks 

which are updated via a data link on a regular basis. [DANA 2013].  

Finally, the user segment is the part of the GPS system that most civilian users would 

recognise. Four satellites are required to be in view from the user segment to provide full 3 

dimensional data to the user. Three satellites are required to provide the X, Y and Z positional 

information and the 4th satellite is used to provide accurate timing information.[DANA 2013]. 

Early GPS user devices were used for ship navigation and, as they did not require altitude 

positioning, could work with only 3 visible satellites providing X, Y and time information. 

[BONNOR 2012]. 
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GPS officially met its initial operating capability in 1993, the positional performance has met 

and exceeded expected performance levels of horizontal accuracy of 3 meters or better and 

vertical accuracy of 5 meters or better 95% of the time. [US DoD 2008]  

GLONASS has been developed in parallel to the US GPS systems by the Russian military. 

Like GPS, the system consists of space, ground and user segments [BONNOR 2012]. The 

GLONASS space segment is designed to consist of 24 satellites but, despite being 

commissioned in the early 1980s no more than 18 satellites have ever been simultaneously 

serviceable. The system is not believed to have ever reached its positional requirements of 

less than 20 m in altitude and less than 10 m in coordinate position 95% of the time. 

[NOVATEL 2013]. 

The full constellation would use three orbital planes 68.4º apart. This provides a slightly lower 

level of coverage than GPS at high latitudes around the poles but positions the satellites at a 

higher angle in the sky at other latitudes increasing reliability in complex terrain [BONNOR 

2012]. The satellites orbit at a nominal altitude on 19,140km above the earth’s surface, slightly 

lower than that of GPS [NOVATEL 2013]. The space segment transmits ranging information 

using a frequency divisional multiple access (FDMA) system with 10 channels to allow the 

user to differentiate between satellites.[NOVATEL 2013]. 

Like GPS, the ground segment consists of a network of tracking stations and a central control 

system. This system is spread across Russia and allows a twice daily update of navigation 

and timing data to each satellite[NOVATEL 2013]. GLONASS has a wide range of military 

and civilian user segments that track and receive satellite signals. As the satellites use FDMA, 

the user segment must be able to track and process at least 4 signal frequencies 

simultaneously[NOVATEL 2013]. Again, like GPS, each satellite in the GLONASS space 

segment transmits on two, L1 and L2 channels. An SA code is added to the L1 channel to 

degrade its performance for civilian use. [NOVATEL 2013]. 

 Each satellite visible to the user transmits the same code on both channels, but on a different 

carrier frequency. The frequency allocation is set by the ground segment and is separated 

above and below 1602 MHz by multiples of 0.5625 MHz, allowing a 562.5 kHz guard band 

between each satellite [NOVATEL 2013]. The messages transmitted by each of the satellites 

consists of the position, velocity and acceleration of the satellite, synchronisation bits, satellite 

health, timing information and almanac data of all other GLONASS satellites[NOVATEL 

2013]. The message is transmitted at 50 bits per second and contains a contains a hamming 

code for error correction every 30 seconds [SCIENTIFIC INFO CENTRE 1998]. The expected 

positional accuracy of the GLONASS system is less than 20 m in altitude and less than 10 m 

in coordinate position 95% of the time [SCIENTIFIC INFO CENTRE 1998]. 
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Both GPS and GLONASS have similar system architectures with space, ground and user 

segments. Although there are differences in the methods used to provide ranging information 

and the satellites constellation in the sky, a similar range of shortcomings are found in both 

systems. The shortcomings fall into two distinct categories of technical and political 

susceptibility. One particular technical challenge of both GPS and GLONASS systems stem 

from the weak signals present on the earth’s surface. These tiny signals can be easily jammed 

or obstructed with low power devices. Due to the low power required intentional or 

unintentional jamming is easily implemented and difficult to mitigate. Further, common 

obstructions such as building materials, vehicles and vegetation and completely obstruct the 

user segments ability to receive a signal. While both GPS and GLONASS could provide 

excellent global coverage, signal obstruction leads to a coverage problem in many 

applications. In urban, indoor wooded and mountainous regions, GNSS coverage is poor. 

While the higher GLONASS constellation improves performance, it is not enough to mitigate 

the issue successfully in many applications. A second technical challenge is the presence of 

multipath at the user segment. Both existing GNSS systems rely on TDoA signal analysis. 

The frequencies used by moth systems are susceptible to multipath in a range of 

environments, including those found in indoor and urban areas. This multipath reduces the 

accuracy of the estimated location and is not commonly detected by the user segment. Non-

technical shortcomings come from the fact that there are a finite number of GNSS systems 

that are controlled by single political sources. Further, both GPS and GLONASS have integral 

systems designed to degrade the provide location estimate. The ability for the service to be 

degraded or removed by a single source at any time is not desirable in many applications. As 

seen in the GLONASS system, unintentional system degradation may occur due to other 

political challenges such as an unwillingness or inability to maintain the expensive space 

segment over a period of several decades. 

Motivated partly by a desire to overcome these shortcomings, there is currently a move from 

these 1st generation GNSS systems (GNSS-1) to a second generation called GNSS-2. This 

second generation will consist of upgraded GPS and GLONASS systems as well as new 

European (Galileo), Chinese (Compass), Japanese (QZSS) and Indian (INRSS) systems 

[BONNOR 2012] 

2.1.1.3 GNSS-2 Systems 
The second generation of GNSS systems is currently under development. The next decade 

will see GPS and GLONASS modernized and upgraded as well as many other parallel 

systems come on-line as several countries aim to operate their own GNSS systems. An 

overview of these planned systems will be described in this section, providing an overview of 

the next 10 to 20 years of GNSS architecture. 
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The second generation of GPS systems shall be backwards compatible with the current 

generation of GPS allowing the first generation of user segments to remain operational. It will 

however contain two new carrier signals. The new carrier signals are known as L2C and L5. 

L2C will be a signal designed for civilian use, but carried in the current military only L2 carrier. 

The ability to monitor three signals at different frequencies will allow improved accuracy as 

environmental effects on the signals can be more accurately compensated by the user. The 

L5 signal is broadcast in the aviation safety frequency band, at 1176MHz, so should be free 

from interference throughout the world. The addition of a third carrier adds redundancy, allows 

further correction for environmental effects and jamming resistance and could allow sub 1-

meter accuracy to civilian users [NATIONAL COORDINATION OFFICE 2013]. 

The upgraded GLONASS system, known as GLONASS-CDMA is based on the existing 

GLONASS system and still contains the FDMA L1 and L2 signals. The network has recently 

begun transmitting an L3 signal that is CDMA multiplexed and centred around 1207.14MHz 

[GMV 2013]. The CDMA signal aims to provide better accuracy, multipath resistance and 

greater interoperability with GPS and Galileo systems [GMV 2013] 

Galileo is the European Union GNSS system that is currently in an initial operational state. 

When fully operational, Galileo navigation signals will be transmitted in 4 separate frequency 

bands centred at 1176.45MHz, 1207.14MHz, 1278.75MHz and 1575.42MHz. The lower 

frequency band coincides with the improved GPS L5 signal and the upper band coincides 

with the existing GPS L1 signal [GALILEO 2010]. The signals are CDMA encoded and provide 

a ground receive level of between -157 and -155dBW [GALILEO 2010]. The transmitted 

signals also include forward error correction (FEC) via a convolutional coding scheme and 

include a cyclic redundancy check (CRC) for error detection and correction [GALILEO 2010]. 

The accuracy of the civilian Galileo signal is expected to be comparable with existing GNSS 

systems [GALILEO 2010]. 

Compass is the Chinese GNSS system that started development in 2000 and aims to be fully 

serviceable, providing worldwide coverage in 2020 [CHINA SAT NAV OFFICE 2011].  The 

system space segment consists of 14 satellites, including 5 geostationary (high altitude) 

satellites, 5 in inclined geosynchronous (medium-high) satellite and 4 satellites in medium 

earth orbit. All satellites provide a minimum user power level of -163dBW at the earth surface 

[CHINA SAT NAV OFFICE 2011]. The system comprises of a single CDMA multiplexed 

channel at 1561.098 MHz [CHINA SAT NAV OFFICE 2011]. Little reliable information has 

been released about the data structure or any error detection or correction capability within 

the ranging message. 

India and Japan are both creating their own satellite navigation systems that will provide 

coverage of their local regions using typical GNSS techniques. There are currently no plans 

for either system becoming a global navigation system.  
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While these systems have attempted to address some of the shortcomings observed in the 

first generation of GNSS systems, the improvements have only been evolutionary and 

challenges still exist. The first improvement is the increase in signals strengths. Although 

signal strengths in GNSS2 systems are 3 to 4 times stronger than those found in the first 

generation of the systems, with a reception signal strength approximately 4x10-13 mW, they 

still remain incredibly weak when compared to terrestrial transmissions. While an increase in 

the number of frequencies are available, signal jamming and obstruction still remains a 

significant risk. While an increase in the number of satellites also allows improved line of sight 

in many applications, urban and indoor environments with limited or no direct view of the sky 

will still not receive coverage from second generation systems. The advent of second 

generation GNSS systems has also seen a broadening of systems available, reducing the 

political dependency on only 2 national governments. The provision of GNSS still however 

remains in the control of a small number of political entities still limiting the robustness of the 

system for many users.  

While the second generation of GNSS systems has been developed to mitigate the technical 

and political shortcomings of the system, the fundamental nature of many of the issues means 

that any improvements expected will be relatively minor. While these shortcomings exist, 

GNSS has become vital to many aspects of modern life and provides an indication as to the 

potential use of improved geo-location services in urban and indoor environments. Key 

technical information and an indication of the performance achieved by GNSS systems can 

be seen in Table 2. 

Table 2 – GNSS Summary 

Technology GPS GLONASS Improved 
GPS 

GLONASS 
CDMA 

Galileo Compass 

Centre 
Frequencies 

(MHz) 

1227.6 

1575.42 

1562 to 
1642 

1176.0 

1227.6 

1575.42 

1562 to 1642 
and 1207.1 

1176.45 

1207.14 

1278.75 

1575.42 

1561.098 

Multiplexing 
Method 

CDMA FDMA CDMA FDMA and 
CDMA 

CDMA CDMA 

Signal 
Authentication 

None in 
civilian 
signals 

None in 
civilian 
signals 

None in 
civilian 
signals 

None in 
civilian 
signals 

Unknown Unknown 

Error Detection 
or Correction 

CRC and 
Parity 
Check 

Hamming 
Code 

CRC and 
Parity 
Check 

Hamming 
Code 

FEC via 
convolutional 
coding and 
CRC 

Unknown 

Target 
Accuracy 

< 5 m < 10 m < 1 m < 5 m < 1 m Currently    
< 20 m 
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Technology GPS GLONASS Improved 
GPS 

GLONASS 
CDMA 

Galileo Compass 

Operational 
Status 

FOC IOC IOC 
Planned 
2015 

IOC IOC Planned 
2015 

FOC 
Planned 
2020 

2.1.1.4 Augmented GNSS 
Despite the shortcomings highlighted in the previous chapters, GNSS systems have 

revolutionised navigation based services all over the world. GNSS services have even begun 

to be used in safety systems, requiring greater robustness. This has led to a significant area 

of research, looking into ways of mitigating GNSS shortcomings. Due to the inability of users 

to influence the ground or space segments of the system, this research has concentrated on 

implementing system improvements to the user segment in an attempt to improve accuracy, 

reliability and robustness in hostile environments.  

Some of the key systems that have been developed to augment GNSS are summarised in 

the following section, along with a review of their additional infrastructure, requirements and 

inputs. 

Differential GNSS (DGNSS) techniques use the basic principle that if a user can receive a 

GNSS signal at a receiver with a fixed and known location, the offset added to the GNSS 

signal can be corrected. [Dana 2013]. 

Two main approaches have been developed to implement this principle. The first is a Wide 

Area Augmentation System (WAAS). A WAAS uses a wide range of reference stations spread 

over a large national or continental area to each receive GNSS signals and apply corrections 

that are possible to their own accurately known positions. These corrections are then 

broadcast via a second set of satellites to provide users with further information to correct 

their GNSS data [PULLEN Et. al. 2002] 

A second augmentation system uses a similar principle of correcting GNSS signals using 

receivers at known locations, but only provide corrections in the local area, typically less than 

50m, around the receiver. These systems are known as Local Area Augmentation Systems 

(LAASs). These local systems can produce centimetre accuracy of relative receivers, even 

with an SA code enabled GPS signal by comparing the signal received at each terminal via 

a data link. [PULLEN Et. al. 2002] 

A selection of competing communication satellite systems exists, providing two way 

communications between satellites and user terminals. To allow low power user terminals, 

the satellites orbit in a low earth orbit, just 780km above the surface of the earth[RABINOWITZ 

Et. al. 2013] 
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The Iridium satellite constellation consists of 66 Low Earth Orbit (LEO) satellites in six orbital 

planes orbiting the earth in 100 minutes. This allows each satellite to be visible to a user for 

approximately 10 minutes. Each satellite footprint is overlapped, providing global coverage. 

At least 2 satellites can be seen by most users at any given time. Towards the poles, a larger 

number of satellites can be seen at any one time.[IRIDIUM 2013]. 

One of the commercial satellite communication systems, Iridium, also provides a uni-

directional ring alert channel at 126.27MHz. This ring alert channel provides a powerful signal 

on a TDMA architecture that allows the user to receive incoming call notification, even indoor 

with the user device antenna stowed. The carrier for this signal is tightly controlled, with 

1.5ppm frequency stability.[ VEENEMAN 2013] 

This paging channel could provide a very useful reference signal for navigation in indoor and 

other areas with poor GNSS signal coverage. No practical application using the Iridium ring 

alert channel for navigation can be found. 

2.1.2 Time of Arrival (ToA) 
GNSS and other TDoA systems are not the only methods for providing gei-location estimates 

from radio signals. As well as recording the time difference of arrival from a selection of 

transmitting nodes, a user can accurately find ranging information from one or more known 

locations if they can calculate the absolute time taken for the data to travel from the transmitter 

to receiver. If the receivers distance from three or more locations can be found they can locate 

themselves in three dimensions to a level of accuracy that is relational to the accuracy of the 

time measurements, assuming the time travelled to be related directly to the distance at the 

speed of light, ignoring the effects of multipath. 

ToA information can be provided by a range of data communication systems. If the network 

can provide either round trip timing or single hop duration information, it is possible to 

calculate the relative position from the changes in the required transfer time taken, assuming 

a direct and single propagation path from one node to another. A review of common network 

data communication timing systems that could be applied in this scenario is reviewed in the 

following section. 

While the absolute time synchronisation of a network is key to its ability to provide range 

information, the jitter in the time signals is important to calculate the relative motion of a node. 

It is assumed in this review that the jitter if the system is relative to its accuracy or that the 

effects of jitter can be removed by averaging the data over a sufficiently long period. 

The most mature ToA application is the JTIDS system. The Joint Tactical Information 

Distribution System (JTIDS) is a military network designed to share data and voice 

information between aircraft and other large military units. Commonly known as JTIDS, the 

official NATO name of the complete data link system is ‘Link 16’. The network runs on a TDMA 

infrastructure to synchronise transmissions. Each node of the network is allocated a number 

of timeslots to transmit its data. [3SDL 2009]. 
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A relative navigation system has been integrated into the JTIDS system using the tight time 

control in the network to provide relative distance information for each node. The difference 

in the time of arrival (ToA) of each message and the start of the allocated timeslot are 

compared. This provides a ranging calculation to be made from the sender to receiver. As the 

transmitted data contains information about the transmitting nodes own locations and its 

confidence in those locations, a navigation position can be calculated for the receiving node. 

[FRIED 1978] 

The accuracy of the system is hard to define as it depends on how many nodes are in the 

network and their own positional confidence. However, an accuracy of around 0.25 miles is 

typical in many situations [FRIED 1978}  

2.1.3 Angle of Arrival (AoA) 
IN addition to timing based systems, positional information can also be derived from 

calculating the relative bearing of the received signal to a node. If the relative bearing can be 

found from several known locations, an intersect can be derived that will provide the receivers 

location. Several of the key techniques of achieving angle of arrival data are discussed in the 

following sections. 

2.1.3.1 Sectored Antennas 
Several commercially available antennas arrays are used by a wide range of communication 

systems. These sectored antennas are used for two primary reasons; 

Sectored antennas allow a higher gain antenna to be developed with a limited power source 

or receive sensitivity. The fact that the antenna field of view is lower than that of an 

omnidirectional antenna allows the equivalent of high gain antenna amplification without the 

limited azimuth field of view. 

Sectored antennas allow traffic management in congested wireless networks. The sectors in 

the antenna can be used to add capacity to a mobile phone cell by allowing multiple channels 

to operate within each cell. This increases the user capacity within a cell. 

A schematic of the benefits discussed can be seen in Figure 2.  
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The difference in received phase at each of the known antenna locations allows the relative 

direction of the signal source to be identified. This technique has been used to derive received 

angles of a few degrees [Roxin et. al. 2007]. 

This method is used to calculate the direction of a client in the IEEE802.11ac protocol. The 

same carrier phase technique is also used to generate and steer the transmitted signal, 

increasing the range for a specified power and antenna gain and allowing an increase in 

capacity via Space Division Multiple Access (SDMA) technique 

While cost effective low power hardware has been produced to enable the implementation of 

the 802.11ac protocol, transferring the technique to other transmission hardware would be 

require considerable technical effort. 

2.1.4 Frequency of Arrival (FoA) 

2.1.4.1 Doppler Shift Geolocation 
A series of data gathering [Lee et. al. 2007] and data analysis [Gai, et. al. 2007] techniques 

have been discussed for their use in using Doppler shift effect to be used for geolocation. 

This technique utilises the frequency shift obtained by a transmitter and receiver moving in 

relation to each other. If a component of the motion moves the transmitter and receiver apart, 

a frequency shift is seen at the receiver. This frequency shift directly relates to the speed at 

which the nodes are moving apart. If multiple receivers are used an estimation of the 

transmitter location can be derived. Alternatively, if the receiver is on a movable platform, 

such as an aircraft, techniques can be used to determine the location of the transmitter by 

moving around and generating Doppler shifts. 

This technique does though have several drawbacks. On its own it cannot determine the 

range between the transmitter and the receiver but could feed into higher level algorithms to 

allow this. More importantly however, the method for accurately gaining the frequency of the 

received signal is problematic. If the nodes are not fast moving or are only moving at an 

oblique angle to one another the frequency shifts are very small. The hardware required to 

accurately record these small shifts can be expensive, bulky and unsuitable for many 

deployable applications. Another problem with using the often small frequency shift estimation 

technique is the fact that the technique cannot easily cope with frequency modulated 

transmissions and suffers from the frequency shift multipath effects. 

2.1.4.2 Interferometry 
Interferometric geolocation is a location method that uses the beat frequency between two 

transmitters as the source of a signal for carrier phase analysis. This method has been 

discussed by [MAROTI ET. AL. 2005] as a novel way of obtaining carrier phase information 

using rugged commercial hardware. This technique has then been successfully applied to 

tracking wireless nodes in open indoor environments, such as sports stadia [Kusy et. al. 

2007]. 
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This technique is vulnerable to multipath techniques corrupting the results. If the process is 

repeated using a pair of radios at a drastically different frequency, the number of possible 

locations caused by multipath is drastically reduced, this is known as stochastic 

interferometry. [DIL HAVINGA 2011] 

One variable that that is not considered in the RIPS system is the effect of Doppler shift. If 

any of the nodes are moving the received phase will be altered by the Doppler shift leading 

to an error in the calculated position. A correction for Doppler shift has been proven [Szilvasi 

Et. al. 2012].. As a node moves the received frequency will shift in relation to its speed. 

Analysis of the resulting frequency at multiple points in the network will allow the user to 

determine the speed and direction of the node. If the original location was known, the new 

location of the node can be calculated from the monitored motion, although this will be subject 

to drift over time as measurement inaccuracies sum together. 

This Doppler caused frequency shift technique has been achieved on the same COTS 

hardware that was used to calculate the received phase shift in the previously discussed RIPS 

system [Szilvasi Et. al. 2012]. 

The system has been proven to work well in open environments with few RF propagation 

variations. In ideal conditions the system has produced location errors as low as 3 cm at a 

range of greater than 160 m using low SWAP radio hardware. Experimentation results with 

the RIPS system do however indicate that the system suffers significant degradation when 

used in areas that contain multipath [Maroti et. al.2005 ]. This is caused by the four signal 

paths, showm in Figure 3, may suffer difficult to predict apparent phase corruption, degrading 

the accuracy of the resulting location. This currently limits the potential applications for the 

RIPS technology due to the fact that it is unsuitable for use in dense urban environments 

where multipath is common. 

2.1.5 Signal Strength 
A common area of research in using radio signals for localisation is to use the received signal 

strength of a variety of networks. This technique has been applied using a variety of networks 

to provide the signal, from GSM to Wi-Fi [CHEN KOBAYASHI 2002]. 

The most basic principle is to use a mobile RF receiver and a single RF transmitter. If the 

received signal strength falls, it can be assumed that the receiver is moving away from the 

transmitter. If the signal strengthens, it is assumed that the receiver is moving closer to the 

transmitter. Due to the complex nature of RF signal propagation the accuracy of this technique 

severely limits its accuracy in such a simple application. 

The accuracy of the system does however improve if multiple transmission sources are used 

[DERENICK et. al. 2013]. This scenario allows a range of calculations to be made to infer the 

range from each transmitter. As many ranges are calculated, the aggregated combination of 

information sources can significantly improve the reliability and accuracy of the system, even 

in indoor or urban environments. 
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The drawback of many of the systems used by both Derenick et. al. and Kobayashi is that 

the location of the transmitters must be known in advance, so the technique is not suitable 

for areas where the locations are not known prior to arrival or in situations where the 

transmitters are mobile. 

Work has been carried out [MERRY et. al. 2010] to develop a solution to this limitation that 

uses a mathematical algorithm, known as Simultaneous Localisation And Mapping (SLAM) 

to deduce where the local transmitters are while simultaneously calculating the receivers 

position. This has also been applied to allow the receiver to learn not only where it is in relation 

to the transmitters, but also to allow a map of the physical environment to be built. 

The signal strength map obtained from the signal strength mapping process provides some 

features that are highly beneficial to a geo-location system. These unique benefits come from 

the fact that the complex multipath environment, rather than hampering the mapping process, 

actually enhances it. The more complex and difficult the multipath and general RF 

environment, the more features there are to map. This property could be of vital significance 

to many likely system users. 

2.1.6 Signal Fingerprinting 
Traditional SLAM techniques based solely on signal strength [MERRY et. al. 2010] struggle 

when calculating transmitter positions over multiple cells. The issue is based on the fact that 

in most RF networks, cells are distributed in clusters. 
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Figure 4 - Typical RF Cell Structure with Example Mobile Receiver Path 

When the receiver travels from one cell cluster to another, it has no way of knowing whether 

the received signal is from the original cell of from a new cell. This problem can be seen in 

Figure 4 where the mobile receiver node path is denoted by the red line. The receiver starts 

in cell 1 and can receive signals from all cells in the centre cluster.  
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As the receiver moves from the start to point ‘a’, the signals from transmitters with the cell ID 

of “1”, “2”, “4” then “3” will dominate with the strongest received signals. This allows the 

receiver to estimate its position relative to these cell transmitters. As the receiver moves from 

point ‘a’ to the end, it has no way of knowing whether it is moving towards the cell “4” it’s 

already passed or moving away to another cell outside the cluster with the same cell ID. This 

behaviour is a significant problem for many SLAM systems.  

To overcome this, other information identifying the cell can be taken from the transmission. 

This other information comes from the RF transmission features that are likely to be unique 

to the transmitter used. This includes signal rise times, signal noise, frequency non-linearities, 

jitter and clock inaccuracies. This technique has been well described for system security 

[Daniels et. al 2005] where it is used to detect unknown and spoof nodes in a wireless 

network. 

If this technique were applied in a navigation environment, as the user moves from point ‘a’ 

to the end, it can verify whether the signal transmitted from cell ‘4’ is the same as the already 

passed cell or if it’s an entirely new cell on its journey solely by looking at the ‘fingerprint’ of 

the transmitter and not solely its centre frequency. 

2.1.7 Combined Radio Sources 
So far in this section, we have concentrated on using only physical layer properties for 

geolocation. While this has several important benefits, such as being able to use encrypted 

data as a source of information, extra information sources may be available from higher level 

data analysis. 

Common civilian wireless data communication networks such as WiMAX, GSM, DAB, DVB 

and 3G all contain cell ID information, transmission time stamps, centre frequency and other 

useful data. If this data can be decoded by the receiver, it is possible for them to calculate 

their bearing, speed, location or even all three. Using the Cell ID is a common method for 

rough geolocation [Bshara et. al. 2009] and can be developed further by combining other cell 

ID sources. One specific application of this is the centre frequency transmission information 

used in the GSM protocol. If the transmitted centre frequency is known it can be compared to 

the received frequency. The offset is likely to be caused by Doppler shift directly relates to 

the speed and bearing of the receiver. Combined with the cell ID data that can often be 

compared to a central registry of all cell IDs in the local area would allow the user to determine 

its location down to a single possible point on earth. 

The possibilities of research in this area are considerable and are limited only by the number 

of wireless systems present in the area. Due to this fact and that navigation by any of these 

systems is easily prevented by the user encrypting their data or changing their protocol, it is 

considered that is area of research is outside of the scope of this project as it is unlikely to be 

able to be applied to a hostile environment that requires the use of encrypted data. 
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2.1.7.1 NAVSOP® – A Commercial Signals of Opportunity System 
The current leading commercial RF based navigation system is the BAE Systems navigation 

via signals of opportunity (NAVSOP®) [BAE 2013]. This commercial system is based largely 

on the work carried by BAE Systems and the Australian Centre for Field Robotics [Merry et. 

al. 2010]. This work used many of the techniques discussed so far in this literature review, 

such as time of arrival, time difference on arrival, cell ID, signal strength, fingerprinting and 

carrier phase technique and applied them to simulations of real world systems and transmitter 

configurations. 

The work used common civilian networks as the transmitter network for the receiver to 

navigate from. The location of the transmitters was known to the receiver prior to the start of 

navigation. The simulation attempted to recreate the transmitter locations and urban 

complexity of central Sydney, Australia. 

The paper details and compares the experimental results of using medium wave (MW) radio 

signals, GSM signals, Digital Audio Broadcasting (DAB) signals and 3G signals. It was seen 

that many of the tested data sources have their own strengths and weaknesses. Perhaps the 

most significant finding was the relatively good results found when carrier phase analysis was 

applied to MW radio transmissions this is combined with the beneficial range propertied of 

MW transmissions that allow the technique to be applied hundreds of kilometres from the 

transmitter locations. These results were hampered by the fact that there are very few 

transmitters in the test area and the fact that MW radio transmissions are due to be 

discontinued around the world in favour of more power and bandwidth efficient DAB radio 

signals. 

3G data transmission was also a good source of information due both to the fact that dense 

urban environments contain a large number of transmitters and the fact that the data sent 

across the network contains cell ID, centre frequency and timing information, allowing high 

level data analysis to be carried out to provide an estimate of range from known transmitter 

locations. This technique is again hampered by changing technologies as the widely adopted 

CDMA technique limits the number of transmitters that can be located to the number of 

separate operator networks available. 

As no one technology yielded the best results the paper also described the effects of 

combining received signals to use the strengths of one signal source in an area where another 

signal source may have been weak. Good results were gained from combining MW, DAB and 

3G data to provide sub 1m accuracy even in a wide range of very harsh urban environments. 

[FARAGHER 2010]. 
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2.1.8 Radio Geolocation Summary 
 Table 3 – Radio Geolocation Technique Comparaison 

 
 
 

Technology 
Time 

Difference 
of Arrival 

Time of Arrival Angle of Arrival Frequency of Arrival 
Signal 

Strength 
Signal 

Fingerprinting 

Higher 
Level 
Data 

Analysis NTP PTP Sync-E Sectored 
Antennas 

Carrier 
Phase 

Doppler 
Shift Interferometry 

System 
Maturity Very High Very 

High Medium Low Very High High Medium Low Medium Low Low 

Accuracy < 1 m < 230 
Km < 23 m < 0.23 

m < 1 ° < 1 ° < 5 m < 1 m < 10 m < 10 m < 10 m 

Implementat
ion 

Difficulty 
Very High Low High High Very Low Medium Medium Medium Low Medium Medium 

Resistance 
to RF 

Effects 
(Multipath 

etc) 

Low Low Low Low Medium Medium Medium High High High High 

Suitability 
for inclusion Low Low High Medium Medium High High High Medium High Medium 
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A considerable range of technologies and techniques are available that show the potential to 

address some the shortcomings of current navigation techniques. This chapter has covered 

the key active areas of research and technology development aiming to allow navigation 

using wireless communication networks. The key research projects that have applied these 

technologies to mitigate the issues presented by the current established navigation systems 

have also been discussed. 

A summary and comparison of all of the key technologies that could enable data 

communication networks to be used for navigation can be found in Table 3. Each technology 

has its own strengths and weaknesses. It is considered likely that the project to develop a 

navigation system based on these technologies will use a combination of techniques as, 

unsurprisingly, no single technology has been demonstrated to sufficiently fulfil the project 

requirements. 

TDoA technologies were the first to be discussed in this chapter. They have been found to 

already by of a very mature nature and this is not an area that has received much novel 

research, except of course for recent advancements in providing small, localised and portable 

systems. These systems have the same drawbacks as larger TDoA networks, such as 

eLORAn and GNSS systems and have little potential to provide the solution to this project for 

the reasons discussed in previous sections. 

It is worth noting however, that a useful navigation entropy formula has been developed for 

TDoA networks [Fisher 2005]. It may be desirable to expand on this entropy formula for 

evaluating and comparing other wireless navigation techniques later in this project. 

Deriving ranging information from ToA techniques, such as those developed by the CERN 

White Rabbit system, does provide some interesting capabilities. The key variable in this area 

is the transition to a wireless physical layer that, while the technologies were developed with 

this in mind, makes a significantly more complicated scenario [HE et. al. 2013]. The RF effects 

of the physical layer will certainly make the ranging calculations more inaccurate, but the very 

accurate measurements made by the White Rabbit system do allow a large level of 

degradation possible while still obtaining useful results. As discussed previously, it is unlikely 

that this technology will be able to provide the solution on its own, but it could provide an 

additional source of information to aid the final system. 

Similarly, several angle of arrival techniques provide a useful potential addition to a final 

system. Carrier phase analysis in particular, as demonstrated by the 802.11ac protocol, 

provide a widely used COTS implementation of a complex system. This system is likely to be 

already in use in several potential applications for a RF based geo-location system and, like 

ToA ranging information, could provide data to aid the complete system. 
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Perhaps one of the key pieces of research in recent years has been that of the interferometry 

systems discussed in the frequency of arrival chapters. This technique seems to perfectly suit 

several of the key applications for this project. The complex RF environment that this project 

aims to provide a navigational solution for will be a good source of interfering signals. It seems 

likely that the constructive and deconstructive interference found in a complex RF 

environment with many different, competing systems will provide the raw data required by 

interferometric systems. This is one of the systems covered by this review that, as the RF 

environment gets more complicated and causes problems for many RF geo-location 

techniques, this system will have more sources of information. These sources of information 

can be used in a stochastic manor to mitigate the remaining detrimental RF effects. 

A similar property can be found with the signal strength approach. Again, in this scenario as 

the RF environment gets more and more complicated and congested the systems has more 

to use as it’s map source and is able to achieve a higher level of accuracy. 

Signal fingerprinting also could provide some useful features to the system; however the 

proposed implementation of this in a system that consists of existing COTs hardware seems 

to cause significant issues. 

Higher level data analysis has been largely omitted from this project as although very good 

performance has been found and the scope of systems suitable for integration into the system 

is considerable, the fact that the source of the data is unlikely to be reliable is a major issue. 

This assumption is made as the system will be using data that is likely to be encrypted, 

generated by rapidly developing protocols or commercial in nature. These dependencies are 

unlikely to create an elegant solution to the problem posed. 

Great potential can be seen in the field of collaborative navigation. It has been demonstrated 

that systems with physically separated nodes can use information in a more efficient way than 

single nodes. The exact methods and algorithms used to enable this need to be discussed 

further. 

This section of the literature review has provided a summary of a wide range of information 

sources. It is considered likely that further work will needed to be carried out to investigate 

and simulate the performance of interferometry and signal strength mapping, as these 

techniques appear to be strongest in the hostile environments typical to the environments this 

system is likely to encounter. 

It also seems likely that these systems will not provide the answer alone and will need to be 

combined with several other techniques, such as ToA, AoA and cooperative navigation 

techniques. The methods for combining these technologies, other established technologies 

such as inertial sensors and the benefits of collaborating between multiple nodes will be 

discussed in the following mathematical modelling section. 
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These theoretical results are only likely to provide relatively poor positional estimations, 

expected to be at least 1 order of magnitude wore than indicated, due to the complications of 

the RF environment and the temporary nature of many data communication systems. This 

section has highlighted some of the possible mitigation steps that can be taken to improve 

the system level positional estimate by either filtering the raw RF data or combining and 

coupling many navigational systems. 

The navigational filters discussed both have their individual merits depending on the 

application. Many application specific filters that extend the discussed operation have been 

developed and should be research further as the project develops to allow the resulting 

navigation system to be as efficient in complementing other systems as possible. The Kalman 

filter in particular has also been used not only to combine navigational sensors but also to 

mitigate some of the error sources in RF transmissions, particularly when ToA or TDoA 

systems are used [THOMAS et. al. 2002] [FAULKNER 2001]. 

It is possible that, depending on the operational scenario, that RF navigation may only provide 

a few nodes in a network with the ability to reduce the error of a few coupled sensors and will 

not be able to provide a robust navigational system on its own. It has been shown however 

that via a navigational filter, this occasionally accurate source of navigational information may 

be able to greatly increase the positional estimate of a node. This in turn, via cooperative 

navigation and SLAM techniques, could allow an entire swarm of systems to gain a good 

navigational estimation with relatively low grade, lightweight and low-power sensors if the 

information is combined successfully. 

As the project develops it should be noted that, if the system is co-located with other 

navigational aids, the resulting RF navigation technique does not need to provide an accurate 

position all of the time on all of the system nodes to be able to provide a very useful system 

improvement. 

This idea should be considered further as we look at the available networks, application and 

environments intended to be used on the system. 
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2.2.1.3 Ultra Tightly coupled INS 
Closer coupling allows the GNSS system to provide information, even in areas of very poor 

GNSS signal or during jamming events. The Kalman filter is again developed to receive data 

from the GNSS carrier signal, as well as the usual GNSS packet data.[FAULKNER 2001]. 

During periods of poor GNSS signal reception, the data contained within the GNSS signal is 

often unobtainable. It is still possible however to conduct phase shift analysis on the carrier 

signal from one or more satellites. This is particularly useful in the FDMA GLONASS signals 

and multi-frequency GNSS-2 systems. To achieve this, the Kalman filter must calibrate the 

IMU during periods of good GNSS signal, as in the tightly coupled scheme. When the GNSS 

signal level falls, the IMU is used as the primary source of navigation, but the bias errors from 

the gyros and accelerometers can still often be corrected by looking at phase shifts in the 

weak satellite carrier frequencies. Even if only 1 satellite signal is received, it is still possible 

to make corrections to several IMU parameters. This method allows for longer periods of high 

quality IMU data between high quality GNSS updates being received.[FAULKNER 2001] 

2.2.2 External Information Sources 
While INS based systems utilise internally generated sensor signals, external signals other 

than radio signals are also available to systems. Several mature approaches have been 

developed to utilise a range of inputs. These approaches are summarised in the following 

sections. 

2.2.2.1 Visual Odometery 
Visual odometery is the technique of utilising an optical sensor to measure and monitor the 

environment surrounding a mobile device in order to determine its geolocation. This area of 

research has been active for a significant number of years but has not achieved widespread 

adoption in developed systems [SCARAMUZZA 2011]. The strengths of the technique are 

the ability for it to operate passively, without a requirement for any transmissions from the 

mobile device. This passive operation makes the system difficult to jam or interfere with in 

any way. There are however a number of significant drawbacks that limit the practical 

applications of the technique. The first is the robustness of the system in a range of lighting 

and environmental conditions. The technique does not perform well in areas of poor lighting 

or lack of contract. The second key shortcoming of visual odometery is the processing power 

required to analyse the video stream. Despite work carried out to optimise the process 

[SIRTKAYA 2013], the processing power and associated power consumption required to 

analyse image data in real time systems is a key concern in many target applications. Finally, 

the difficulty in comparing visual maps remains a significant limitation on the accuracy and 

robustness of the technique. Developing algorithms that enable the ability to recognise 

objects from different angles, in varying lighting conditions and with different sensors remains 

a significant challenge that is yet to be resolved in a mature manner. 
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2.2.2.2 Terrain Referencing 
The terrain referencing technique builds on many of the principles of visual odometery with 

the addition of a transmitted range finder to survey a mobile platform’s surroundings. The 

data obtained from this sensor is used to compare observed terrain profiles with a database 

of recoded terrain profiles. One of the most common systems in use is the proprietary UTC 

Aerospace Systems TERPROM system. 

In areas where no other navigation data is available, the TERPROM system can maintain an 

accuracy of 15-30 meters by combining an IMU and monitoring the terrain surrounding the 

aircraft. The terrain profile, recorded by a radar altimeter is compared with a database of 

terrain profiles in the surrounding area. To reduce processing time and increase accuracy, 

the search in the database is constrained by the inertial data provided by the IMU. 

[GOODRICH 2013] 

The system is used solely in aircraft applications due to the requirement to quickly map 

comparatively large areas of terrain to provide an accurate positional fix. [GOODRICH 2013]. 

2.2.3 Non-Radio Geolocation System Conclusions 
Table 4 – Non-Radio Geolocation System Comparison 

Technology 
Radio 

Navigation 
Systems 

GNSS Augmented 
GNSS 

JTIDS 
Relative 

Navigation 

Inertial 
Navigation 

System 
Visual 

Odometery 
Terrain 

Referencing 
Navigation 

Global 
Coverage No Yes No 

Yes 

(If required) 
Yes No Yes 

Accuracy < 20 m < 10 m < 1 m < 400 m Unlimited 
drift < 1 m < 30 m 

Resistance to 
Interference 

and Jamming 
Low Very Low Low High Very High Very High Very High 

Typical 
Applications 

Shipping 

Aircraft 

Shipping 

Aircraft 

Rail 

Personal 
Devices 

Aircraft 

Rail 

Large 
military 
devices 

Shipping 

Aircraft 
Robot 
Localisation Aircraft 

 
Radio navigation systems have provided an accurate and robust navigation system for 

military and civilian users for several decades. The most popular system, LORAN, was retired 

in 2010. This system used a worldwide chain of terrestrial transmitters to allow users to locate 

their position with a comparatively high level of accuracy is most of the worlds most congested 

air and water ways. 
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This network was less well suited to military users due to the facts that large parts of the globe 

had no coverage and that the control of the transmitters was governed by local governments 

around the world. During times of conflict, the coverage and operation of the system could 

not be guaranteed by a single nation.  

The desire for centralised control of a global navigation solution is one of the major 

contributing factors to the development of the world’s GNSS systems. Providing coverage 

almost everywhere in the world these systems have become a vital source for military and 

civilian navigation systems. Even stand-alone IMU devices almost always use GNSS systems 

to correct drift errors in practical applications. 

The planned upgrades to a GNSS-2 network as well as several new GNSS systems indicate 

that GNSS is expected to dominate navigation for the next few decades. 

One of the main reasons for the emergence of several parallel GNSS systems is perhaps the 

main drawback of relying on GNSS systems – political control. As seen with radio navigation 

systems, political control of the network is a very important issue for military users. The 

difficulties LORAN and eLORAN have experienced with worldwide cooperation needed to 

ensure system reliability have been replaced by the problem of GNSS networks being 

controlled from a single source. 

The only currently fully operational GNSS system is the US DoD GPS system. While GPS 

currently provides a civilian C/A channel without the addition of an SA code to artificially 

degrade the signal, the GPS performance standard [US DoD 2008] still permits its re-

introduction if desired by the US DoD. This prevents the adoption of GPS as a core reliable 

source of navigation information in many safety critical applications. While this risk is being 

mitigated by several countries that plan to launch their own GNSS systems, the patchy history 

of the Russian GLONASS system demonstrates the high cost, engineering difficulty and 

political commitment required to keep the system fully operational. 

GNSS systems are also vulnerable to a range of threats due to the nature of the space 

segment signals. The signals are very weak at the earth’s surface, with a maximum received 

signal strength of -155dBW, and require a line of sight between the space and user segments. 

This makes the system vulnerable to disruption in complex urban and mountainous 

environments where a line of sight with at least 4 satellites cannot be guaranteed. The weak 

received signals also make them susceptible to natural disruption from atmospheric effects 

and malicious disruption from low powered jamming and spoofing systems. 

Addressing these shortcomings is the major focus of GNSS-2 systems. While these effects 

can be partially mitigated with additional satellites, channels and increased power levels, this 

second generation of GNSS systems will still be too vulnerable to disruption for many safety 

and military applications. 
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2.3.1.1 Recursive Filters 
Recursive averages are commonly used in navigation systems to produce a low noise and 

low latency location estimate from a noisy measurement input [FAULKNER 2001]. In order to 

provide an efficiently filtered output, the measurement system that populated the recursive 

filter must provide not only a measurement value, but also a dynamic confidence indicator. 

When using a simple threshold detection algorithm to detect the leading edge of a received 

signal, the only information that can be provided to the navigation filter is the time when a 

received value is greater than the selected threshold [FARAGHER et. al. 2010]. If this 

information is available for each FHSS channel, a simple un-weighted recursive filter shown 

in (5) can be constructed to update the users filtered location based on the its previous 

position and the latest sensor data where, as commonly used in filter notation, x̂  represents 

the filter output, x  represents the previous state and  x~  represents the latest sensor value. 

The measurement confidence is represented by α. 

xxx ~)1(ˆ αα −+=  Eq 3 

The filter represented in (5) may be tuned by adjusting the value of α by a predetermined 

value.  

A value of α < 0.5 reduces the noise of the filter output at the expense of a higher latency if 

the receivers true location changes. A value of α > 0.5 generates a more responsive, lower 

latency filter output but the filter output noise will be adversely affected. Both of these options 

are unsuitable for many system applications. 

2.3.1.2 Kalman Filtering 
One of the key set of equations used in navigational data fusion was created in 1960 and is 

known as the Kalman filter [KALMAN 1960]. The Kalman filter is a generic filter that is 

commonly used to smooth noisy data signals. It achieves this by combining a recursive filter 

with an additional estimation stage. The Kalman filter is also commonly used to combine 

several data sources during the measurement stages, using each measurement to update 

the state estimation. A schematic representation can be seen in Figure 5. 
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The H Matrix represents the translational measurement accuracy of the sensor. This defines 

the ability of the sensor to accurately measure the transition from the last calculated state. 

The sensor provides the relative estimate of its position confined by the known accuracy of it 

in its pervious state. 

The fact that the Kalman filter takes sensor data in these basic R and H matrix formats allows 

the filter to be applied in a computationally efficient manner to a wide range of sensors, as 

anything from an IMU to a visual odometry system can produce estimated in a R and H matrix 

form and be at least loosely coupled together [Ebcin, Veth 2007]. The ability for systems to 

gain tighter coupling is also possible in the Kalman filter. This has been an active area of 

research since the creation of the Kalman filter in the 1960s and is commonly achieved via 

two main methods. 

Firstly, if a sensor performance if known to vary depending on the state of a system, the 

Kalman filter can be provided with a lookup table that alters the H matrix depending on the 

system state. This technique is known as an extended Kalman filter [Simon 2006]. An 

example of why this may be required is if the IMU and visual odometery system is considered 

on an aerial platform in an outdoor environment. If the camera providing visual odometer is 

facing down, it is assumed that it will provide good odometery information, so the H matrix 

defines a very small measurement accuracy. If the aerial platform is then inverted so that the 

camera is no longer pointing down, the H matrix of the sensor will be radically different. As 

the camera is likely to unable to track any motion the H matrix constraints need to be altered. 

The visual odometery system itself may have no knowledge of the platform attitude so the 

Kalman filter that has been monitoring the system state must now use a different H matrix for 

the data. This attitude specific data can be found in a pre-loaded lookup table that produces 

an H matrix value that varies with platform attitude.  

A second method for tighter coupling in a Kalman filter is also available. If we again consider 

the coupling of a visual odometery system and an IMU, there is a possibility that when the 

visual odometery system is in a state that provides a very accurate translational estimate, the 

other sensors in the system may have their errors removed [FAULKNER 2001]. IMU systems 

typically have bias errors that are stable when the IMU is powered up, but include an unknown 

turn on bias. This method could allow the IMU in the system to have its turn-on biases 

removed by the visual odometery system when the camera is looking down via a Kalman filter 

comparison during operation. This can be achieved within the Kalman filter by comparing 

data that has a high integrity H matrix with the other sensors in the system. Even if this high 

integrity H matrix is only available for a comparatively short time, the ability to measure the 

offsets in the other sensors may allow the Kalman filter to provide an improved positional 

estimate for a prolonged period. 
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The drawback of these systems is that extended Kalman filters scale poorly when they are 

used to map an input, requiring rapidly increasing processing power as the mapped 

environment grows. Whether mapping with feature recognition or sensor fingerprints, the 

maintenance of the mapped environment requires considerable processing power. In almost 

all research papers reviewed the results were calculated by post processing collected data. 

Very few research examples exist where the mobile system has been capable of mapping 

the environment in real-time.  

2.3.1.3 Particle Filters 
Particle filters, occasionally known as Sequential Monte Carlo (SMC) filters, have several 

uses in navigation [GUSTAFSSON 2002] and signal processing application [DJURIC et. al. 

2003]. The applications that are commonly addressed by particle filters are those that need 

the type of functionality provided by a Kalman filter but don not have Gaussian distributed 

sensor systems feeding the filter. 

Like Kalman filters, a particle filter requires information about the measurement error of each 

sensor, but not specifically the sensor noise and transformation accuracy. The particle filter 

also maintains state, so that the sensor coupling techniques similar to those discussed in 

section 2.3.1.2 are still possible to implement. 

Where the particle filter differs from the Kalman filter is in the method of estimating position 

from the system sensors. The Kalman filter sums the Gaussian distribution of the inputs to 

reduce the computational effort to produce a Gaussian distributed positional estimation. The 

Particle filter does not require its sensor data to have a Gaussian distribution. Instead the 

particle filter carries out a recursive Monte Carlo calculation of its position with each piece of 

received sensor infuriation. This produces a particle cloud that can be used to estimate the 

platforms position, with the platform likely to be at the densest part of the particle cloud. 

This recursive Monte Carlo approach to positional calculation can be very computationally 

intensive and is the main drawback of the technique when compared to the Kalman filter. This 

often leads to a trade off when deciding how has to run the particle filter in many 

implementations. A high frequency filter produces many particles that provide a good 

navigation solution, but is computationally intensive. Reducing the number of particles 

reduces the computational load, but also the positional accuracy. 

Work has been carried out to try to improve particle filters with extra system information [Lin 

Chang 2008] leading to application specific examples that can begin to provide Kalman filter 

type of efficiency without the need for Gaussian distributed senor inputs. 
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2.3.2 Radio Filters for Multipath Mitigation 
Extended Kalman filtering has been used successfully to help mitigate the effects of multipath 

in a range of RF applications [Thomas et. al. 2002] and even calculate the position of the 

transmitting node from the spread of multipath signals in a known physical environment. 

[Popescu Rose UNKNOWN]. 

The application of a Kalman filter has been used to address the problem in many RF 

navigation systems and TDoA systems in particular, that while the distance between line of 

sight transmitters and receivers can be accurately measured, in many environments the 

measurement is dominated by the multipath environment and the received signal does not 

follow a line of sight path. 

The multipath effects are removed by feeding the symbol receive times as a noisy data source 

(H and R matrices) into a biased Kalman filter. From this the Kalman filter can estimate the 

true time of arrival of the signal. This Kalman filter aims to remove several time of arrival 

errors including non-line of sight errors, quantisation errors and noise. A bias is added to the 

Kalman filter as non-line of sight errors are always positive and the filter is biased to the low 

end of the Gaussian distributed data. This filter was shown to reduce the mean location errors 

of a time of arrival system using a 3G mobile phone signal in an urban environment by an 

order of magnitude. 

The same biased Kalman filter technique could be applied to virtually any RF based time of 

arrival system. 

2.3.3 Cooperative Navigation Techniques 
A key to almost all of the discussed navigation systems in this thesis is the requirement to 

have at least one part of the system at a known location. The signals transmitted or received 

from this known location then allow the user to calculate their position. A different approach 

is required in systems where no local nodes know their exact location. 

Cooperative navigation is a very active area of research in alternative navigation techniques. 

The basic concept utilises the fact that if a group of independent nodes each calculate their 

own position, the confidence of their estimation and the circular error probability estimation of 

each node can be reduced. 

In its simplest form the technique can be used to remove some of the physical payload from 

autonomous systems, using separate navigation only nodes to calculate their position and 

share it with the rest of the local nodes. [Wilcox et. al. 2006]. This concept also allows a single 

nominated navigation node to break away from a semi stealthy configuration, update its 

position via an external source and inform the other local nodes. 
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A more advanced corporative navigation system allows mathematical analysis to be carried 

out between the nodes. The aim of which is to use the nodes that have a good positional 

confidence to provide relative range data to aid nodes that have poor positional confidence, 

this allows the network to limit drift and maintain a higher level of accuracy at each node than 

can be achieved alone.  

[Wilcox et. al. 2006] has shown that underwater systems can generate relative positional 

information between each node, meaning that only one node on the extent of the network 

need to acquire a firm GNSS fix and can allow the other nodes in the system to remain 

submerged. Other research [Sand et. al. 2013] has shown that some nodes in a cooperative 

system may also be able to carry different equipment sensing equipment and share their 

navigational estimates with each other. These estimates may allow the network to obtain a 

very accurate positional estimate even if no single node knows its exact location or contains 

the equipment to determine its position alone. 

This research has combined visual odometry, RF and inertial navigation, SLAM algorithms 

and extended Kalman filtering to realise very good positional accuracy across a connected 

system of separate nodes. Although the system uses relatively simple and inaccurate RF 

ranging techniques it is a good example of how many systems can operate together in an 

application specific navigation filter to achieve very good navigational performance. 

2.3.4 Simultaneous Localisation and Mapping 
Simultaneous Localisation and Mapping (SLAM) has become a very large field of research in 

autonomous system navigation. Already briefly described in section 2.3.3, SLAM allows a 

user with no predetermined information about their location to determine both the position of 

markers of interest around them, such as visual markers [Lategahn et. al. 2011] or RF 

antennas [Anwar et. al. 2013]. 

The main advantage of SLAM algorithms in particular is the ability to calibrate a range of 

sensors in an unknown environment. This is achieved by a systems travelling around an 

unknown environment and recording its surroundings. The system then tries to return to a 

position it has already sampled. When the system returns to that position, it can perform loop 

closure and update the recently built map. This action makes it possible to remove many of 

the previously unknown sensor biases and errors, updating the navigation filter appropriately. 

This method has been successfully applied to RF navigation via radio waypoints, radio and 

visual integration [Anwar et. al. 2013] and via the signal strength techniques [MERRY et. al. 

2010]. The conclusions from this work is that SLAM algorithms tend to work best in very 

complex RF environments where there are many ‘contours’ in the received signal properties. 

A novel area of improvement that may need to be carried out during the course of this degree 

is the application of SLAM techniques to available military networks and complex hostile 

environments in particular. 
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2.3.5 Sensor Fusion Summary 
We have shown that there are many techniques that could in theory provide very good 

positional estimates from data communication systems. These theoretical results are only 

likely to provide relatively poor positional estimations, expected to be at least 1 order of 

magnitude wore than indicated, due to the complications of the RF environment and the 

temporary nature of many data communication systems. This section has highlighted some 

of the possible mitigation steps that can be taken to improve the system level positional 

estimate by either filtering the raw RF data or combining and coupling many navigational 

systems. 

The navigational filters discussed both have their individual merits depending on the 

application. Many application specific filters that extend the discussed operation have been 

developed and should be research further as the project develops to allow the resulting 

navigation system to be as efficient in complementing other systems as possible. The Kalman 

filter in particular has also been used not only combine navigational sensors but also to 

mitigate some of the error sources in RF transmissions, particularly when ToA or TDoA 

systems are used. It is possible that, depending on the operational scenario, that RF 

navigation may only provide a few nodes in a network with the ability to reduce the error of a 

few coupled sensors and will not be able to provide a robust navigational system on its own. 

It has been shown however that via a navigational filter, this occasionally accurate source of 

navigational information may be able to greatly increase the positional estimate of a node. 

This in turn, via cooperative navigation and SLAM techniques, could allow an entire swarm 

of systems to gain a good navigational estimation with relatively low grade, lightweight and 

low-power sensors if the information is combined successfully. 

As the project develops it should be noted that, if the system is co-located with other 

navigational aids, the resulting RF navigation technique does not need to provide an accurate 

position all of the time on all of the system nodes to be able to provide a very useful system 

improvement. This idea should be considered further as we look at the available networks, 

application and environments intended to be used on the system.
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Figure 7 - Frequency Hopping 

The frequency selected for each timeslot is calculated by a shared secret algorithm. This 

allows the transmitting and receiving node to be in synchronisation. This provides anti-jam 

resistance when it is considered that the frequency channels used may be over a wide range 

of frequencies. The only way for the system to be completely jammed is if all channels are 

jammed simultaneously. Jamming this many channels would require a high power jamming 

signal. Such a high power signal would be comparatively easy to detect and disable in many 

hostile environments. Several frequency hopping systems also maintain a record of the link 

quality for each channel used and can prevent the use of jammed channels on the fly [3sdl, 

2009].  

2.4.3.2 Carrier Frequency Jitter 
To prevent attempts being made to receive, decode or spoof signals of the above systems, 

many also use a variable jitter on the carrier frequency [3sdl, 2009]. This system adds a 

pseudo random jitter on the carrier frequency to provide a further layer of security. As the 

length of each bit varies in a seemingly random manner, it prevents an unauthorised user 

from collecting messages and attempting to decode them either in real-time or during post 

processing. The jitter algorithm is derived from a shared secret algorithm between authorised 

nodes. 
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2.4.3.3 Spread Spectrum Techniques 
Direct sequence spread spectrum (DSSS) is a TSEC technique that ‘hides’ a narrow 

bandwidth signal in a wide bandwidth transmission. This allows anti-jamming in a similar way 

to frequency hopping, in that it prevents the use of low power, narrow bandwidth jamming 

equipment. In addition the technique makes detecting the transmission harder, preventing 

unauthorised users knowing a transmission is taking place. To achieve spread spectrum 

transmission, the signal to be transmitted is combined with a pseudo noise (PN) code. This 

code is again most likely to be a shared secret algorithm. Again, little information is available 

about the codes used, but may be similar to the 4 phase Barker sequence, developed at a 

similar time to many NATO spread spectrum technologies. [R Turyn,1974]. 

Frequency hopping spread spectrum (FHSS) is commonly used in military (link 16) [3sdl, 

2009] and civilian (802.22) networks. FHSS switches between a range of low bandwidth 

channels in a pseudo-random manner to provide many of the benefits of DSSS networks. 

FHSS does not require a pseudo noise code to modulate the data, but instead used a shared 

secret algorithm to choose the order of the channel hoping. The hopping rate can be up to 

111 channels per second making it prohibitively difficult to follow the transmission to jam them. 

2.4.3.4 Satellite Communications 
NATO currently uses the Paradigm Skynet 5A satellite communications system [Paradigm, 

2014] for the majority of its satellite communications. The system was launceh in 2007 and is 

designed to provide a robust satellite data-link in hostile battlefield environments.  

The Skynet system uses a TCP/IP system to provide interoperability and message security 

to allow nodes to collect over a global, fibre-optic back-haul network with an RF satellite final 

hop to remote nodes. 

The RF satellite link component provides a range of X-band (8 GHz to 12 GHz) data links 

offering a range of bandwidths from 20 MHz to 40 MHz. Each satellite can provide a wide 

range data link as well as an unspecified number of directional data links. The satellites 

operate in a global constellation, using geostationary orbits. The high altitude of the satellites 

is countered by their high power 160 W RF transponders that are able to provide steerable 

beams for high bandwidth directional data links providing 56 dBW signal strength. The system 

is likely to use a wide range of transmission security techniques to provide battle hardness. 

2.4.4 Robust Network Conclusions 
This section has provided an overview of the most commonly used radio security and 

encryption techniques. These techniques are likely to be applied in any developmental or 

future data link systems and provide a valid summary of the challenges presented by current 

military networks when viewed from a navigation point of view. 
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The 2nd generation of GNSS systems are currently being rolled out by a limited number of 

nations and promise to improve the reliability and coverage of the signal. This will undoubtedly 

increase the widespread adoption of GNSS services by a wide range of products even further. 

May applications will still not be served by this new generation of GNSS system, in particular 

systems that rely on operation in areas with poor visibility of the skies or those that do not 

wish to rely on a very small number of governments for their continued ability to operate 

correctly. The inability for even 2nd generation GNSS systems to operate in dense urban 

environments due to the continuation of weak reception signal at ground level, mean those 

applications cannot rely on it in locations that are most in need of navigational aids, where 

dense populations of users and service providers are in close contact. This application area 

is one that is fuelling considerable research and is considered to be one of the significant 

contributors enabling the future success of the internet of things and urban advertising 

technologies. The second significant and continued shortcoming of GNSS systems is the 

limited selection of third parties that are able to provide the signals for the system. The signal 

provider can easily stop, encrypt, add offsets or errors to the system that are difficult to detect. 

This is a major concern for many important and safety critical applications, limiting the 

adoption of GNSS even in areas of good reception. This particular concern was emphasised 

by the panel at the industry interview. Creating a system that does not rely on such a limited 

set of service providers was highlighted as being a significant development that could be very 

appealing to industry. 

To mitigate these shortcomings promising work has been carried out to combine GNSS 

signals with other systems. DGNSS effectively combines GNSS with fixed position radio 

navigation towers. In areas of good coverage by both GNSS and fixed radio navigation 

towers, the system works very well. The coverage of these systems is however very limited 

and their widespread adoption is very unlikely. The combination of GNSS and other sensors, 

such as INS also shows good promise. The resilience of the receiver to poor GNSS signal is 

greatly improved and short time periods without sufficient GNSS signal can be coped with 

well. Longer periods without GNSS signal however result in comparatively rapid system 

accuracy degradation as INS errors integrate together. To allow sufficient time periods without 

GNSS signal the sophistication, and so size and cost, of the INS device required makes the 

technique impractical in real world applications.  

TRN shows excellent robustness and reliability as a navigation technique. The key to the 

benefits of the system are that the system relies on prior knowledge of environmental features 

that cannot be controlled by any small number of 3rd part operators. Clearly the terrain of an 

environment is outside of the control of the system that is navigating within it, but the wide 

availability of terrain maps from a large number of sources mean that reliance on it is 

acceptable to many systems.  
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This is an important concept that should be considered throughout the research required for 

this project; although the reliance on a 3rd party for the navigation system is not desirable, if 

the 3rd party infrastructure is not controlled by only a few providers, it does allow reliable 

systems to be built upon it. The drawbacks of TRN is that it only works well on a large scale 

as mapping information below a certain scale is either unavailable or too transient to be used 

reliably, making it a poor choice for indoor and urban navigation where common systems are 

on a smaller scale.  

While the altimeters and topological maps required for TRN are unlikely to work at the small 

scale of indoor navigation, RF receivers and a rich seam of radio level navigation data is likely 

to be available.  The wide range of detectable RF effects that are at their most adverse in 

indoor and urban environments are likely to provide a robust resource of radio topology. With 

a highly accurate radio receiver, indoor areas may be mapped with a very wide range effects 

including signal strength, angle of arrival, time of flight and frequency shifts. Varying effects 

across the frequency range add further information to the data that can be collected. The 

availability of such a wide range of information seems to be an area that provides a very 

significant opportunity. The progress made by research into signals of opportunity has begun 

to show promise, but much further research could be carried to find the limits of what 

navigation information can be gained, particularly in indoor and urban environments. To allow 

the extraction of information from this area, two areas will need to be researched by this 

project. The first is to identify what effects should be monitored in the RF and which RF signals 

these effects should be monitored. There are a very wide range of RF transmission effects in 

most indoor and urban environments. Those deemed to be obtainable and of use in 

generating navigation estimates have been initially characterised and tested in signal of 

opportunity research papers. Detailed testing with a range of RF effects in urban 

environments is less well documented. In addition to this, the literature review has highlighted 

the common application of spread spectrum techniques that require the receiver to monitor a 

very wide range of frequencies. Again, much research has been published about how the 

different propagation of this wide range of frequencies can be analysed to increase 

transmission reliability and data rates. Significantly less research exists that has been carried 

out to analyse whether this data contains additional information about the receivers local 

environment.  

Once the selected RF effects to be monitored have been identified, filtering techniques will 

be required to extract the required information. Much work has been carried out to filter radio 

signals in indoor and high multipath networks to obtain the communication data contained 

within it. Less research exists to analyse and filter the received signals to determine to what 

degree multipath has affected it. This data could be of use in determining the character of the 

received signal, potentially revealing information about the receiver’s surroundings. 
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The efficient combination of sensors ranging from visual odometery to INS and GNSS 

systems is a well-documented field of research. Very mature papers, such as the 

development of the Kalman filter, date back more than 50 years. Development has led to 

specific interfaces for each type of sensor data into a range of navigation filters. The 

developed filters allow very efficient use of even small data sets, providing the end user with 

robust and reliable navigation solutions. While this is a generally well-documented area, the 

integration of signals of opportunity systems is not mature. Work has been carried out to 

loosely couple signals of opportunity data, but ultra-close coupling between raw RF sensors 

and other data streams in a generic system has not been documented. 

This review of the current state of the art has completed the initial aim of the project; to identify 

the shortcomings of the current state of the art for indoor and urban geo-location. Further to 

this, a number of research opportunities have also been identified. 

2.6.2 Research Opportunities 
Recent studies demonstrate the potential of coupling data streams to produce information 

that neither system could produce in isolation. This is well demonstrated with the ultra-tight 

coupling of GNSS and INS systems. It is anticipated that typical systems that will need to 

navigate around urban and indoor environments will contain a wide range of sensors as is 

particularly demonstrated with recent developments with smart phones that contain a wide 

range of inertial, optical and radio sensors. The review of current research has led me to 

identify an opportunity that a range of radio sensors, typical to many systems to provide data 

communications connectivity, may be used to provide an improved geolocation estimate. This 

improvement could be achieved by efficiently analysing the existing sensor data streams 

without the addition of any extra hardware. This elegant approach will provide the system 

designer with additional information with no trade-off for power, space or weight. 

To achieve this output, further research is required throughout a series of radio sensor layer 

stacks. The first is in researching the correlation of specific RF effects with geo-location 

change. This research is required to the raw data that will build up through the system. There 

are a wide range of RF effects that may be monitored by radio receivers, further research into 

what geo-location data can be gained from the effects is to be carried out. The raw data is 

suitable for use in typical systems as it is likely to be from a range of sources, providing multi-

spectral reliability and removing the reliance on a single RF data provider which limits the 

application of many current systems. 

A second area of research is required. This area needs to build upon current data processing 

filtering techniques and find ways of analysing the data required with common data 

communications hardware. The limitations provided by the hardware are commonly around 

timing accuracy and frequency ranges. It is likely that the ability to accurately detect the 

required RF effects will need to be investigated as they may vary from those commonly 

required to receive data communications.  



    
    

  

  Page 67 

Novel filtering techniques will be required to overcome hardware limitations, enabling the geo-

location information to be received. 

In addition to the identification and sampling of the raw RF information, higher level navigation 

filtering schemes will need to be designed to allow the efficient integration of the new 

information at a higher level. Using filtering schemes such as Kalman filters should allow the 

information obtained from the RF environment to be used efficiently. Further, the design of 

efficient integration modules into a Kalman filter could allow improvement back into the RF 

reception and filtering through a scheme of close coupling. 

The development of each of the three layers, to enable a higher level geo-location estimate 

to be achieved, will be described in the following chapters of this thesis, as detailed in Figure 

8. 

 

 

 

 

 

 

 

 

 

Figure 8 - The Three Principle Stages of Location Estimation 

It is clear from the review of the current state of the art that opportunities exist to build upon 

sensor fusion techniques applied to inertial and optical navigation in the area of radio signals 

of opportunity. A hypothesis has been formed that raw RF data can be sampled and filtered 

with common data communications hardware and efficiently integrated into a higher level 

system, even if strict hardware limits are assumed. This approach shows the potential to allow 

many of the shortcomings of current applications to be overcome, providing a wideband 

navigation solution in indoor and urban environments that does not rely on any single radio 

signal provider. 
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This limiting factor needs to be addressed to allow a closely coupled approach to be 

developed for use in generic systems where detailed knowledge of the properties of each 

data stream are not needed. The ability to minimise system complexity and provide a scalable 

solution that utilises a wide range of sources is one of the significant drivers this design 

approach and is investigated further in this thesis. Dead reckoning using the output of an 

inertial measurement unit can be used to maintain the user’s location, allowing the 

development of a scalable system. As described in the literature review, section 2.2.1, inertial 

sensing systems are common in almost all mobile platforms with low size and power gyro 

and accelerometer chips are mass produced and low cost. Further, inertial sensing systems 

are commonly deployed in existing mobile systems for a wide range of applications from 

screen orientation checks to camera stabilisation. 

Specific benefit comes from coupling an IMU with radio signal based ranging estimates. As 

described section 2.1 of the literature review ,these estimates are commonly achieved via 

time-based and signal strength methods. Time based ranging estimates may be efficiently 

used in conjunction with other geo-location data to provide an improved geo-location estimate 

as shown in Figure 10. 

 

 

Figure 10 – Geo-location example optimised with the addition of a ranging estimation. 

The example in Figure 10 shows that the IMU dead reckoning approach provides a circular 

error probability that has diverged from the true location. The provision of a ranging system 

allows a multiplication of the INS and ranging probability distributions to provide an improved 

geolocation estimate. The provision of two or more ranging systems further enhances the 

capability of providing an accurate geolocation estimate by calculating the intersect of the two 

ranging estimates Signal strength topology estimates provided an update in a similar manner 

when observable signal strength contours are recorded, as shown in Figure 11. 
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To enable the second design aim, allowing the filtering of sensor data to be optimised by a 

process of tightly coupling data streams to be achieved, the filter is required to integrate 

closely with the IMU calibrating rate and accelerations on the fly. To enable the final design 

aim, minimising hardware requirements, the filter must be able to cope with a wide range of 

sensor inputs from a wide range of sensors that are unlikely to have been designed for 

geolocation. To enable this, the filter is also required to obtain information from a diverse 

range of senor inputs, using its own geolocation estimate to remove errors, filter the inputs 

and derive an improved geo-location estimate. 

Literature review section 2.3.1.2 revealed that Kalman filters can be efficiently used to 

optimise the coupling of IMU errors with other data streams. While many Kalman filters 

provide a generic approach to allowing the combination of data sources and feature 

recognition, few have been optimised for combining signals of opportunity data in hardware 

constrained systems. Specifically, research has not provided an ability to monitor the user’s 

surroundings and generate a geo-location estimate in hardware constrained applications. 

This thesis will continue onto researching an approach to generating a Kalman filter based 

signals of navigation solution that can use feature recognition to provide a geo-location 

estimate. This thesis will carry out research that will enable a geolocation estimate to be 

maintained that will scale well to allow long term accuracy with minimal hardware 

requirements. As discussed previously in this chapter, an opportunity exists to allow the 

efficient coupling of a wide range of radio sources with a central IMU. Using an IMU as a 

central point within the system will allow a dead reckoning integration approach to be taken 

with an extended Kalman filter used to minimise the integration of error. To allow this 

approach to be successful, the development of an extended Kalman filter that will integrate a 

varied and unknown set of signals of opportunity geolocation data is required. 

One key principle that makes the proposed Kalman filter based solution unique is the fact that 

the data central to the position estimate is generated by the IMU hardware. The benefit of this 

is that the geolocation estimate can be obtained simply by integrating the recorded 

acceleration and rate messages. The drawback of this approach is that accumulated error 

increases rapidly in low power IMUs. To mitigate accumulated drift errors, the IMU will be 

calibrated on the fly by removing the errors calculated by a Kalman filter that will be optimised 

to track and monitor any available physical layer radio data. To carry out the IMU calibration 

operation, only the covariance of the estimate is maintained by the Kalman filter. When the 

covariance is below a set threshold, the errors generated by the IMU can be estimated 

accurately and removed, calibrating the IMU on the fly. It is anticipated that, following further 

developments to obtain accurate geo-location data from the radio environments, this 

operation can maintain an accurate position estimate while limiting the hardware 

requirements of the host system. 
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The developed Kalman filter will also be truly generic, applicable to any source or selection 

of sources depending on the radio sensors present. Further, as an improvement to many 

existing radio geo-location techniques, using a Kalman filter to maintain the latest 

measurements, estimates and covariance’s provides significant robustness against 

temporary and transient multipath effects, common in indoor and urban environments, while 

still using the IMU data to provide a low latency geo-location estimate. 

While radio signals of opportunity come from a varied set of sensors and a variety of 

parameters can be observed, the presence of sinusoidal patterns in the received data are 

common. Radio transmissions frequently utilise a sinusoidal carrier frequency. Being able 

record and predict this carrier frequency value can be carried out with phase analysis. This 

technique is called carrier phase analysis and is discussed in section 2.1.3.3 of the literature 

review. Tracking this characteristic of the signal with a Kalman filter in an urban or indoor 

environment would be very desirable. Comparing the recorded signal phase to the estimated 

value would allow sub-meter geo-location accuracy. The comparison between the predicted 

and measured step would also allow the user to identify a wide range of signal characteristics 

that are of interest to mobile systems. These characteristics include the ability to identify 

signal distortion due to multipath reflection, interfering signals and propagation through 

obstacles. While this approach is extremely desirable when considered in a theoretical sense, 

the practical implementation of such a system is considered impossible due to the required 

accuracy of system clocks, with a required clock stability and resolution  significantly higher 

than  2 times greater than the carrier frequency to prevent distortion due to the Nyquest effect. 

A second limiting factor is the availability of this information from the sensors themselves. 

Raw carrier frequency data is not commonly output from commercially available sensors.  

While it is possible to obtain this information from sensors that monitor lower frequency 

signals, a requirement to use this data would severely limit the number of data streams 

available to the Kalman filter in the described architecture, preventing the benefits that come 

from combining a wide range of data sources.  

While requiring carrier phase analysis would prevent the coupling of a wide range of sensors, 

it is possible that many of the benefits of the technique could be realised if interferometric 

phase analysis was carried out. Interferometery, described in section 2.1.4.2 of the literature 

review, allows the low frequency beat between two interfering signals to be monitored. Urban 

and indoor environments frequently contain congested radio environments, making signal 

interference common. This is particularly true in the lightly licences and unlicensed radio 

bands that are commonly available to mobile systems. Monitoring  changes in the 

interferometric radio environment will still allow the radio features of multipath, congestion 

and NLOS that are desirable when calculating geo-location to be monitored.  

The significant benefit of this approach is that that low frequency interferometric phase 

analysis does not require highly accurate clocks. Further, observations are possible in 

measurements that are made available by all radio sensors such as signal strength. 
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This data allows the filter to make intelligent decisions about the data and alter its weightings 

appropriately, producing a more accurate and robust geolocation estimate. 

The optimised Kalman filter has been created in two stages, one to predict the phase at the 

next step and a second to record data and combine it with the estimation. The filter has been 

designed to update a ranging estimate at each filter iteration.  Matrices have been created to 

maintain state within the Kalman filter as well as pass information into and out of the Kalman 

filter. The implementation of these matrices are described in Eq 4 to Eq 9. 

The Φ matrix maintains the translation matrix for a sinusoidal system. 

Φ =� cos (𝜔𝜔𝜔𝜔) sin (𝜔𝜔𝜔𝜔)
𝜔𝜔

−𝜔𝜔sin (𝜔𝜔𝜔𝜔) cos (𝜔𝜔𝜔𝜔)
� Eq 4 

The P matrix maintains the initial state covariance. As the location of the first reading is 

unknown, the following P matrix is typically applied. 

P = �1𝑒𝑒
6 0

0 1𝑒𝑒6
� Eq 5 

The measurement noise is represented in the Q matrix. 

Q = �1𝑒𝑒
−4 1𝑒𝑒−4

1𝑒𝑒−4 1𝑒𝑒−4
� Eq 6 

The system noise is represented in the R matrix. 

R = [1𝑒𝑒−4] Eq 7 

And the measurement matrices are represented by the H and I matrices. 

H = [1 0] Eq 8 

I = �1 0
0 1� Eq 9 

The estimation step is completed by carrying out the Riccatti equations as described below. 

The estimation step is carried out for each filter iteration: 

M = Φ*P*Φ’+Q Eq 10 

Hmtrinv = (H*M*H’+R)-1 Eq 11 

K = M*H’*Hmtrinv Eq 12 

Kh = K*H Eq 13 

P = I-Kh*M Eq 14 

Following the estimation for the current filter step, the measurement can be made and 

combined into the estimated location using the maintained Kalman gain, K. Again the 

measurement stage, shown in Eq 15 to Eq 18, is run at each iteration of the Kalman filter. 



= Xs Xh cos ( ) sin( )
= cos( ) + sin( )+ ( , )= sin( ) + cos( ) + ( , )
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H = �1 0
1 0� Eq 19 

F = [1 �𝑥𝑥2 + 𝑦𝑦2 ∗ sin (𝜔𝜔𝜔𝜔)] Eq 20 

Upon each time separation iteration of the Kalman filter, the H matrix is multiplied by the 

corresponding F and then Z matrix. 

Z = [a b] Eq 21 

The Z matrix is updated at each iteration, depending upon what fresh measurement data is 

available from the system. When a raw RF data measurement is available, a = 1 and b = 0, 

if a GNSS measurement is available, a=0 and b=1. 

This implementation allows the Kalman filter to be updated with all available data. The 

covariance of the H matrix is maintained by Kalman filter, providing additional robustness to 

multipath effects. Erroneous RF signals are identified by a lowering in the covariance values 

in the Kalman filters P matrix and will have limited effect on the maintained phase estimate. 

Following the integration of the additional navigation sensors an additional stage of ultra-close 

coupling is possible using conventional methods of using an X matrix to convert the range 

update back into a known position estimate for each sensor. The advantage of this technique 

for the proposed system is that further robustness to indoor and urban RF effects is provided, 

allowing a highly robust phase estimate to be maintained by the Kalman filter due to 

accurately maintained measurement covariance’s in the P matrix. 

The system architecture described so far is applicable to any signals of opportunity source, 

where the location of the transmitter is either known in advance or can be calculated using 

simultaneous localisation and mapping techniques. The system uses only the RF carrier 

signal, so can be used without knowledge of any of the data on the link. Even encrypted data 

links can be used to provide a ranging estimate.  

The movement of many robotic systems is controlled by an RF data-link. This data-link is 

likely to provide an ideal RF data source from a known transmitter location and could be 

utilised in many systems. In systems that use the control datalink as the RF input to the 

system, the data contained within the data-link can be decoded, providing the commanded 

system motion. This commanded motion can be, via a control matrix (B), used to update the 

prediction estimate made by the Kalman filter.  The B matrix is multiplied with the Φ matrix, 

allowing the prediction part of the Kalman filter to account for the motion expected by the 

system. The B Matrix must have a prior knowledge of the system dynamics that will apply 

following any commanded motion input. Once again, the addition of an improved prediction 

estimate within the Kalman filter will provide additional robustness to measurement 

uncertainty. The ability for the system to command data in this way is a unique benefit that 

comes from using signal of opportunity inputs into a sinusoidal Kalman filter architecture. 
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Figure 18 – Simple Signal Degradation Model in an 
Open Environment 

 

Figure 19 - Simple Signal Degradation with Hardware 
Measurement Uncertainty 

The quantised recorded WiFi RSSI can be used as a filter input. The same approach can be 

taken for any other available radio inputs, such and command links, allowing the quantised 

signal strength value to be used by the filter. 

A second data stream available to the filter is a carrier phase analysis. While this technique 

is possible in any frequency range, specialist hardware is required to carry out the technique 

at frequencies of more than approximately 100 MHz. This hardware is not commonly available 

in mobile devices. Even lower frequency carrier phase analysis requires an accurate and 

stable time source to allow accurate sampling of the carrier signal. Two proposed sources of 

low frequency, high carrier frequency stability, radio signals have been identified. The first is 

the short wave digital Digital Radio Mondiale (DRM) signal. The DRM radio service is a 

shortwave radio service that uses a modulated carrier wave frequency of 5-6 MHz, providing 

a wavelength of approximately 50 m. Due to the commercial nature of the DRM service, 

transmitter location is optimised in urban environments to allow good population coverage. 

The second source of low frequency and high stability carrier phase data is in the unlicensed 

27 MHz band. This band is commonly used to enable low bandwidth links to robotic sensors 

due to its worldwide unlicensed status. These data links are common in automated and 

robotic systems to provide a control link and to allow the system to report system test results 

to a local ground station. 

Many small autonomous systems still rely on a local low-bandwidth data link to communicate 

command and report system statuses. This link commonly uses the unlicensed 27 MHz band. 

Where this project requires the analysis of time of flight data, a two way, low bandwidth 27 

MHz amplitude modulated data-link will be assumed. 
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Figure 21 – Time Lapse Performance of Typical IMU Error Growth 

As  discussed in 2.2.1, generic example of IMU based systems shown in Figure 21 

demonstrates the integration of errors resulting in a geolocation estimate that decays in 

certainty  over time. The error will continue to grow indefinitely in the absence of an external 

correction from another geo-location source. Higher grades of IMU with improved bias and 

noise parameters will reduce the drift rate but will not limit the final geolocation error. 

The first available external source that can be considered can be obtained from analysing the 

ToA of signals on a radio data communications link. The time of arrival from two or more 

transmitters can be recoded to provide an estimate of the receiver’s location. While this can 

work well in open environments, as described in section 2.1.2 of the literature review, 

multipath effects prevent it’s correct operation in urban and indoor environments. The effects 

of multipath produce signals that look acceptable to the receiver, but contain an error in their 

apparent receive time. This leads to a location estimate that provides a last known location 

only where the error around the uncertainty cannot be known. The performance typical to this 

technique can be seen in Figure 22. 
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Figure 22 - Time Lapse Performance of Typical  ToA Estimate 

It is possible to combine the IMU and ToA estimates to limit the IMU dead reckoning error. 

Combining the ToA result with that of the IMU with a simple probability density multiplication 

will result in the IMU error growth being limited by the maximum error due to multipath. While 

this provides a benefit, the maximum uncertainty discussed in section 2.1.2 of the literature 

review remains in at levels of more than 20 m which this thesis aims to improve upon. 

A third common source of information is signal strength analysis. The degradation of signal 

over area, along the motion of a user is shown in a simplified example in Figure 23. 
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Figure 23 - Time Lapse Performance of Typical Signal Strength Estimation 

Figure 23 shows geolocation information available from a quantized signal strength 

measurement. While the geo-location estimate available from a single radio source is very 

course, it has two key features that may be used by the system. The first is that there are 

specific areas with a high contrast in signal strength at the boundaries of each signal strength 

quantization step. At points where these boundaries are traversed, a more accurate reference 

of location may be made. The second key feature is the stability of the measurement. As with 

ToA estimates, signal strength estimates are significantly affected my multipath in urban and 

indoor environments. This may become a positive feature when using signal strength 

measurements for geolocation as the number of signal strength boundaries increases, even 

in a quantized environment. The second key feature of this information source is that signal 

strength environments changes little over time in most scenarios providing a relatively stable 

data source. 

The combination of these three data sources will now be considered. Again, a simple 

probability multiplication approach may be taken, providing an improved geolocation estimate 

than any single data source could provide a more robust estimate. This approach could be 

achieved by using an recursive filter as described in literature review section 2.3.1.1. An 

example of this approach can be seen in Figure 24. 

 



    
    

  

  Page 89 

 

Figure 24 - Probability Density Approach for Sensor Combination 

While this approach provides a more robust geolocation estimate than any of the information 

sources may provide on their own, the error sources associated with each information source 

are not known. The lack of this information allows the geolocation estimate to become 

corrupted with erroneous measurements. Further, as the IMU error continues to grow with 

time, its usefulness to the geo-location reduces and the probability distribution from this 

source effectively carries less weighting with time. 

The application of the extended filter proposed by this thesis is predicted to counter these 

shortcomings, further improving the geolocation estimate. The correction of IMU errors on the 

fly prevents the growth of its associated 3σ geolocation estimate. This updated IMU estimate 

allows the proposed extended Kalman filter to recognise and omit erroneous ToA estimates, 

while increasing the weighing of ones that occur within the expected results. Further, the 

extended Kalman filter is able to utilise its improved geolocation estimate to extract further 

information form the radio environment. ToA and signal strength measurements that have 

varied due to multipath and other propagation effects will have their respective quality rating 

lowered, providing further mitigation against effects common in indoor and urban radio 

environments. An example of the anticipated extended Kalman filter output with the inputs 

discussed throughout this section can be seen in Figure 25. 
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This data set if transmitted added to the signal in a recurring loop for the duration of the 

simulation. The simulation user can set the transmitted signal amplitude and duration to 

simulate real user inputs into a control channel. Following the generation of a sine wave that 

includes amplitude modulated data, magnitude noise is added to the signal. The noise added 

is Gaussian white noise, tuneable with a 3 σ amplitude value and a -3 dB value for a 2nd order 

low pass filter which can be set by the user. To generate a noise effect that may be 

representation of a real system, the -3 dB value of the low pass filter should be set to a value 

at least ten times greater than the carrier wave frequency. Following the addition of magnitude 

noise, a phase noise is added with a dynamical tuneable delay function. The delay function 

allows the user to tune the average delay offset, the amplitude of the jitter and the low pass 

filter of the jitter noise. The noise generated by this function is a normally distributed delay 

around the offset value. To prevent an advance being set by this function, the minimum value 

of the output is set to zero. Finally, the signal is modified with a quantization error where the 

output value is rounded according to the user defined step size. 

The output of this model is a data set, saved to the Matlab workspace, that represents the 

output of a signal generator for a period of time. This output is then transformed by the free 

space and physical interaction blocks. 

3.6.1.2 Free Space Propagation Model 
The simulation environment utilises common signal propagation techniques for free space 

propagation losses. 

The first equation used to estimate the free space losses is the simplified Friis transmission 

formula shown in Eq 27 [K. LAASONEN, 2003], where d represents the distance between the 

transmitter and the receiver and λ represents the wavelength. In addition to this, the 

simulation also uses the standard multipath simulation model [ALSINDI, 2004] shown in Eq 

24 where Lp is the number of multipath components, α is the complex attenuation and τ is 

the propagation delay. 
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Eq 24 

 

Where the free space propagation block as more than one signal input, for instance following 

the physical interaction model where diffracted, refracted, reflected and direct signal paths 

are present, the free space model is applied to each of the signal inputs. 
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For each of the main propagation path loss methods, the losses for the arriving signal are 

calculated based on information from the environmental model. Each path loss effect is 

represented by the generation of a signal sub-path that contains information about the 

affected signal. These signal sub-paths will be analysed for further free space losses by the 

free space loss model before their combined effects are considered in the receiver model as 

shown in Figure 27. To generate the correct signal sub-path the attenuation and, if applicable, 

phase shift is calculated and then subtracted from the received signal. A lower limit is applied 

to ensure that negative signals cannot be present. The calculations carried out by each of the 

modelled loss mechanism use industry standard simplified equations. A description of each 

can be found in the following paragraphs. 

The direct path signal attenuation is calculated to estimate the signal that passes through the 

simulated object on a straight line from the transmitter to the receiver. This block affects the 

gain and, due to the change in propagation velocity in different materials, a phase shift. The 

losses incurred by passing through an object are modelled using the International 

Telecommunications Union (ITU) model for indoor attenuation shown in Eq 29 [ITU, 2017]. 

28loglog20 1010 −++= fPdNfL
 Eq 25 

Where f is the transmission frequency, d is the distance, N is the power loss coefficient and 

Pf is the object loss factor. 

The diffraction losses model allows the effects the signal passing through a gap between 

objects or though other narrow gaps to be simulates. The parameters required by the the 

class are the gap width and the angle to the receiver. These parameters are provided by the 

physical environment model. The diffraction loss model uses refraction principles to calculate 

the content of the signal sub-path. The diffraction affects only the amplitude of the signal. 

The Refraction Model allows the effects of the radio signal moving from one medium to 

another, such as when the signal passes through a wall or other obstacle, to be simulated. 

The model uses the Snell formula, shown in Eq 30, to calculate the change in phase of the 

resulting sub-signal.  
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Eq 26 

 

The Reflection model uses two empirical coefficients to estimate the effects on signal 

strength. The coefficients relate to the main causes of signal degradation during reflection 

events; absorption, scatter. The effects on phase shift are calculated from the change in angle 

that comes with knowing the angle of the arriving signal to the angle of the object. This 

information is provided by the environmental model. 
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3.6.2 Model Application 
The full system model is validated against hardware test as a complete system in later 

chapters of this thesis. Full details of the test are provided in section 7. The simulation is used 

at stages throughout this thesis to aid discussion and to help illustrate the effects of the key 

error drivers discussed throughout the research. The simulation model used throughout this 

research has been set to simulate the performance of the proposed system with typical low 

size weight and power system components in a simulated urban environment. 

The simulated performance of the proposed system over time in an urban test environment 

is demonstrated in Figure 31 to Figure 34. The performance of the proposed Kalman filter 

architecture is compared to both the performance obtained from a probability density estimate 

[WENDLANDT et. al 2005] obtained from the same senor inputs and the true motion of the 

simulated robotic platform. 

 

Figure 31 - Urban environment simulation 1, t = 0. 
 

Figure 32 - Urban environment simulation 2, t = 10. 
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Figure 33 - Urban environment simulation 1, t = 30. 

 

Figure 34 - Urban environment simulation 1, t = 50. 

The simulation results show that the geolocation estimate obtained from the extended Kalman 

filter matches the truth data better than using a probability density approach in the range of 

environments tested.  The simulation results for the Kalman filter based system and that from 

a probability density method have been tabulated and compared in Table 6. 

Table 6 - Designed Architecture Performance Summary 

Simulation Simulation 
Stage 

Time 
from 
Start (s) 

Max Probability 
Density Position 
Error (m) 

Max Kalman 
Filter Position 
Error (m) 

Improvement 
[Degradation] 
(m) 

1 – Typical 
Urban 
Environment 

1 0 N/A N/A N/A 

2 1 to 10 1 7 [-6] 

3 11 to 30 5 4 1 

4 31 to 50 8 2 6 
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The simulation has demonstrated the expected performance of the designed architecture 

over time in an urban environment. The performance shown demonstrates the key features 

discussed in the architecture analysis and key error drivers discussed in sections 3.4 and 3.5. 

The architecture analysis predicted an improvement in performance from the proposed 

Kalman filter based system compared to that obtained from a probability density estimate. 

The data shows that the final position estimate error has seen an 75 % improvement, reducing 

from an error of 8 meters to just 2 meters. The simulation is also likely to have demonstrated 

the effects of the previously discussed key error drivers, particularly early in the simulation 

where the proposed Kalman filter method showed degraded performance when compared 

with other techniques. As anticipated, the error drivers shown are likely to be from the 

identified sources; the presence of unidentified multipath, poor signal strength resolution and 

a poorly optimised measurement error model in the Q matrix. 

The first error drivers to be confirmed are the linked to the radio environment effects of 

multipath and poor signal strength resolution. As shown in Table 6, the performance of the 

Kalman filter position estimate was worse in simulation stages 2 and 3 than was obtained at 

stage 4 of the simulation. The degraded performance at stages 2 and 3 of the simulation may 

be correlated to 2 main effects. The first is the presence of structures and so multipath effects. 

The second is the change in performance of the filter over time. The analysis of the extended 

Kalman filter performance and identification of key error drivers predicted that this error is 

likely to be correlated to the radio environment with less correlation to the time from the start 

of the simulation. To confirm this prediction, the simulation is to be re-run with the mobile 

device moving at 25 % of the speed in the original simulation, detailed in Table 6. The output 

of the filter is expected to correlate well with that of simulation 1 at the corresponding 

simulation coordinates. The performance of the filter in a slower moving mobile device can 

be seen in Figure 35 to Figure 38. 
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Figure 35 - Urban environment simulation 2, t = 0 

 

Figure 36 - Urban environment simulation 2, t = 40. 

 

Figure 37 - Urban environment simulation 2, t = 120. 

 

Figure 38 - Urban environment simulation 2, t = 200. 

Tabulated simulation 2 results with a comparison against simulation 1 is presented in Table 

7. 
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Table 7 - Error Driver Confirmation Test 1 Results 

Simulation Simulation 
Stage 

Time 
from 
Start (s) 

Max EKF 
Simulation 1 
Position Error (m) 

Max EKF 
Simulation 2 
Position Error (m) 

Improvement 
[Degradation] 
(m) 

2 – Slow 
Movement 
in an Urban 
Environment 
Simulation 

1 0 N/A N/A N/A 

2 1 to 40 7 6 1 

3 41 to 
120 4 5 [-1] 

4 121 to 
200 

2 2 0 

Moving through the environment at a significantly lower velocity has had no noticeable effect 

on the accuracy of the filter. This indicates that, as predicted, the leading extended Kalman 

filter system error drivers are caused by fixed environmental effects rather than by changes 

to the filter state over time. The confirmation that the performance of the filter over time does 

not change significantly also allows the improvement in performance from simulation stage 2 

and 3 to that seen in at simulation stage 4 to be analysed. The significant improvement in 

performance between stage 4 and the others is likely to be because of the comparative lack 

of multipath in the later stages of the simulation. This provides further indications that as 

anticipated, the leading error drivers in the system are caused by the multipath effects 

common to urban environments. 

Simulation 2 has also confirmed that unlike the extended Kalman filter technique developed 

as part of this thesis, existing probability density solutions do degrade over time as expected. 

The presented simulation model has confirmed the key features discussed in the analysis of 

the design architecture. Specifically, the simulation has validated the assessment findings 

that the use of the filter design can provide an improved geolocation estimate over existing 

techniques in urban signal of opportunity environments. Further, the simulation as provided 

some evidence that that likely error drivers identified in the design analysis are present and 

have a significant effect on the resulting geolocation estimate. The following sections of this 

thesis will carry out further research into the identified leading error drivers. Methods for 

mitigating these error drivers will be presented, leading to filter design updates to build in 

resilience to their prescience in the radio environment. 
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Analysis of the filter performance has been discussed with signal strength and ToA signal of 

opportunity estimates. Error drivers in these typical environments have been identified and 

discussed in section 3.5. The error drivers in the radio environment have been identified as 

incorrect but consistent ToA measurements caused by multipath effects and a lack of 

resolution in the signal strength environments. Further, short term errors at start-up due to 

the use of signal noise estimates that are not optimised for the specific radio environment 

were have been discussed. 

The operation of the proposed architecture design has been simulated in an urban 

environment to confirm that the performance improvements expected over existing methods 

are present. The simulation has also provided evidence that the anticipated error drivers are 

the dominant error drivers on the geolocation estimate.  

The simulation identified a 75 % reduction in geolocation error over existing signal of 

opportunity geolocation techniques in the simulated environment. The following sections of 

this thesis will investigate these error drivers further and will provide techniques to allow 

mitigation against them. The operation of the mitigation techniques will be analysed before 

the simulation is re-run with any mitigation techniques included. The final simulation model 

will then be benchmarked with practical test  in an urban environment. Section 4 of this thesis 

will investigate method to mitigate the susceptibility of the filter to prolonged and constant 

ToA errors. Section 5 will research techniques to mitigate the lack of signal strength contrast 

while section 6 will investigate methods to optimise the filter start-up time in unknown 

environments. 
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4.2.1 ToA Detection Filter Design 
Although multipath signals may be the largest received signal, a direct path signal, however 

low the signal to noise ratio, will travel the shortest distance and be received by the user first. 

This is however not the case, due to the potential presence of deconstructive interference 

from the multipath signals. It is likely that, in high multipath environments, the first symbols of 

a message will be destroyed by deconstructive multipath, resulting in the inability to detect 

the direct path signal at the physical layer. A simulated example of this can be seen in Figure 

39. 

 

Figure 39 – A simulation of Typical Multipath Effects on a Transmitted Message 

The red diamond in the figure demonstrates where the detecting start of a received message 

has been identified. The receiver has no way of knowing if this is accurate, as deconstructive 

interference, seen throughout the message, may have obfuscated the start of the message 

too. It is however possible to record the raw RF at the receiver at a high data rate with little 

computational load. This may provide opportunities to still obtain fingerprinting information 

from the RF environment around the receiver if a suitable higher level filtering scheme can 

be developed. 

The drawback of this method is that recording and mapping the environment around the 

receiver is a very complex task with high rate measurements required. This is likely to provide 

a significant computational load on the recording system, requiring hardware that is unlikely 

to be found in mobile and portable devices. Work will need to be carried out at a higher level 

to reduce this requirement with efficient filtering and location state estimation.  
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Search-back algorithms improve on the ToA accuracy by analysing the received packet and 

performing a search-back to determine physical layer properties of the message to determine 

the time of arrival more robustly. These algorithms require prior knowledge of the multipath 

environment, which cannot be provided in many applications.  

The UWB signal processing uses a signal as an input and includes the following stages. If 

h(t) represents the received signal in the time domain, it is first passed through a rectified 

moving average filter as shown in Eq 27. 

∑
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Eq 27 

 

The averaged signal y[t] is then passed through two filters of sizes n1 and n2 which return the 

maximum value from a sliding window, as shown in Eq 28 and Eq 29. 

 Eq 28 

)...max(][max_
22 tnt yytn −=  Eq 29 

A binary indicator of whether a leading edge has been detected can be obtained from Eq 30. 
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Eq 30 

 

When using this technique, the threshold detection level, thresh, will be set to 3σ of inter-

message in-channel received signal noise. This value has been picked to limit false alarms 

as far as practical during the testing while allowing a rapid response to abnormal events. 

These UWB signal-processing techniques utilise the wide frequency range of the received 

signals to provide an improved ToA estimate. The analysis of the full frequency range 

available allows the user to determine frequency specific multipath variations and make an 

improved estimation of the true ToA reading. Further research into these UWB signal-

processing techniques has been carried out to allow the extended Kalman filter described in 

section 3 to detect the leading edge of a signal obtained from a wide bandwidth transmission. 

It has been selected for further development due to the fact that the running filters applied to 

the raw data may provide additional data to the user following further analysis.  A comparison 

of edge detection seen by employing UWB signal processing techniques to each narrow 

bandwidth channel as opposed to simple threshold detection is shown in Figure 40. 
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Figure 40 - Comparison of threshold based and UWB signal processing leading edge detection 
methods. 

Analysis shows that the Poisson distribution of the UWB signal has a variance λ value of 17 

for the threshold detection algorithm and an improved λ value of 5 for the UWB threshold 

detection. The received estimates across the range of networks not only have less average 

error but also a greater distribution density than can be obtained from simple threshold 

detection alone. As well as a significant improvement in the Poisson distribution, the UWB 

based edge detection algorithm removes the erroneous outliers seen at ≈ 0.7 m and ≈ 1.1 m 

error in the threshold detection algorithm. 

4.2.2 ToA Detection Filter Analysis 
A simulated radio frequency (RF) environment has been modelled in Matlab and Simulink, 

using the basic architecture described in Appendix D - System Test Plan, to evaluate the 

effectiveness and performance of the proposed data source. The simulation uses the 

standard multipath simulation model, Eq 31, where Lp is the number of multipath components, 

α is the complex attenuation and τ is the propagation delay. 
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Eq 31 
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The simulation assumes that an idealised transmitter generates a single frequency modulated 

pulse; for validation, the FHSS network parameters included 100 20 kHz channels evenly 

spaced from 3 GHz to 5 GHz. Modelled propagation and receiver distortions are applied to 

produce a received signal for analysis. The resulting signal includes simulated effects of 

multipath with the use of separate propagation channels. The simulations evaluated 

throughout this stage of the project will consider a LoS propagation path of 10 m with several 

multipath reflection paths with an apparent time path from the transmitter to the receiver 

consistent with 10.1 m to 11.2 m propagation distances. 

This simulated environment has been used to ascertain the performance of a simple threshold 

detection algorithm in a Monte Carlo based simulation of a wide range of FHSS channels in 

a fixed geometry. An example of a typical single transmitted message and the received signal 

patterns in a high multipath environment can be seen in Figure 41. 

 

Figure 41 - Transmitted (top) and received (bottom) pulse with the location of the detected leading 
edge of the pulse marked by the red symbol. 

This threshold detection algorithm simulation assumes a static receiver and transmitter 

across a range of FHSS channels to benchmark the simulation. The results in Figure 41, 

show the properties that are expected in multipath environments. These properties include 

the loss of definition in the leading edge, constructive and deconstructive interference. These 

effects cause varying and seemingly unpredictable changes to the signal strength through 

the receipt of the message. This behaviour accounts for the high multipath uncertainty seen 

in commonly applied techniques that use leading edged detection to estimate either a ToA 

and range estimate. 

The mechanisms that cause these errors are shown in more detail in Figure 42Figure 41, a 

magnification of the area of interest in Figure 41, and will be discussed in further detail. 
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Figure 42 - UWB leading edge detection of pulse in a noisy multipath environment (Area of 
interest).   

Areas of constructive and deconstructive multipath effects can be seen throughout the 

[34ns:42ns] interval, where a non-multipath signal would be expected to produce a stable 

series of 1 V peaks. The UWB algorithms discussed in section 2.3.2 of the literature review 

produce a significant improvement over threshold detection when providing ToA estimation 

in high multipath FHSS networks when only a single narrow bandwidth channel can be 

analysed at a time. 

While the application of this UWB edge detection technique will provide an improvement in 

ranging estimates in many applications, additional data available in the developed extended 

sinusoidal Kalman filter again allows a closely coupled architecture to be built building further 

robustness into the error driver mitigation technique. The structure of the closely coupled 

Kalman filter and UWB leading edge detection estimates will now be discussed. 

4.2.3 Closely Coupled ToA Detection Filter Design 
The equation described in Eq 30 utilises a pre-set value for the threshold limit thresh. The 

availability of an estimated signal arrival time allows the pre-set threshold value of 3σ of the 

in-channel noise, set to prevent false alarms in non-coupled operation to be reduced to 

provide a more agile response with the same chance of a false alarm being triggered. The 

value at which the thresh can be set is based on a chi-squared probability density function 

approach where the confidence of the measured trigger and be foud depending in the 

sinusoidal Kalman filter confidence in its estimation step, determined by the value of the K 

matrix (Eq 12). The equation to determine the applicable value of thesh that will provide 3 σ 

false laram protection as a function of K detailed in Eq 32. 
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4.2.4 Closely Coupled ToA Detection Filter Analysis 
This thesis will next consider the effects of this improved leading edge detection performance 

when both non-coupled and closely coupled approaches are applied to the addition of the 

UWB edge detection algorithms. The analysis of both methods will stages will allow the 

improvement associated with closely coupling the systems to be discussed and the benefits 

of the sinusoidal Kalman filter architecture to be shown. 

The analysis will use the simulation environment discussed earlier in this chapter in a 

multipath environment. The first scenario considered is a static system that sweeps through 

100 FHSS channels over a 5-second period.  

 

Figure 44 - The raw and filtered output from the threshold detection algorithm with a pre-selected 
static confidence interval. 

A plot showing the ranging error from the UWB technique in coupled and uncoupled scenarios 

is shown in Figure 44. Table 8 provides a quantified measure of the  improvements achieved. 

Table 8 - Threshold Detection Performance Improvements 

 
Ranging Error from 
Uncoupled UWB ToA 
Estimates 

Ranging Error from 
Closely Coupled UWB 
ToA Estimates 

Improvement Provided by 
the System Coupling 

Max Error (m) 3.2 0.9 72 % 

Mean Error (m) 0.24 0.23 4 % 
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The results presented in table Table 10 summarise the improvements obtained to 2 

parameter that are key to geo-location systems. The first is the maximum error received 

during the simulation which may be important to agile systems that cannot carryout extensive 

averaging or filtering of data. The addition of closely coupled data from the sinusoidal Kalman 

filter has led to a 72 % reduction of error, clearly showing measurement integrity benefits from 

using data made available by the designed architecture. While the maximum error is 

important for some agile systems, the majority of higher-level systems are likely to be able to 

mitigate these temporary errors with filtering schemes. The majority of users will be 

concerned with the mean error of the system over a period of several seconds. In this aspect 

of the ranging error performance, there has been significantly less benefit from closely 

coupling the signals. This low level of benefit is likely to stem from the fact that over a range 

of frequencies, multipath errors do not accumulate and a true range to the transmitter can be 

obtained. 

While the mean error improvement over the full simulation time is modest in the closely 

coupled technique, this only considers a static test where the receiving node is not moving, 

which is unlikely to be typical of a system requiring geolocation estimates. A more likely 

scenario is that the receiving node is moving in its environment during the sweep across the 

UWB channels. 

The effect of receiver motion on the ranging estimate will be estimated in an rerun of the initial 

simulation with the addition of receiving node motion. The simulation has been re-run starting 

with a stationary period for 1.2 seconds before applying a 1 m range change between the 

transmitting and receiving nodes. To simplify the simulation the motion applied to the 

receiving was a step change to minimise the Doppler effects associated with a change in 

velocity of the receiving node and, to remove noise from the results, a the performance of 

single channel will be considered.    

The results of the simulation are shown in Figure 45, with a change in receiver location 

occurring 1.2 seconds into the simulation.  
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The system level simulation has been repeated with the addition of the filtered leading edge 

detection technique. In the simulation, the developed error mitigation technique has been 

applied to the data command link as designed in Figure 43. The effect of improving the 

accuracy and robustness of ToA estimates in a multipath environment in the closely coupled 

system will increase the accuracy of the geo-location estimate, providing a smaller error 

distribution around the true location without adding latency to un-anticipated changes in 

location.  The error mitigation technique has been designed to produce a reduction of errors 

in range measurement, most clearly detectable as a reduction of error in the first stages of 

the simulation where ranging errors at this stage were the dominant error symptom in the first 

set of simulations. A summary visualisation of the simulation output is shown in Figure 46. 

 

Figure 46 - Simulated Performance with the Addition of Leading Edge Detection Improvements. 

The simulation results, shown graphically in Figure 46 are summarised and compared to 

previous simulation results in Table 10. 

Table 10 - Summary Effects of Improved Leading Edge Detection 

Simulation 
Stage 

Time from 
Start (s) 

Max EKF 
Simulation 2 
Position Error (m) 

Max EKF with Addition of 
Improved Leading Edge Detection 
Filter Position Error (m) 

Improvement 
[Degradation] 
(m) 

1 0 N/A N/A N/A 

2 0 to 10 6 4 2 

3 10 to 30 5 4 1 





    
    

  

  Page 117 

The following chapters will detail the research and design of techniques that will mitigate the 

remaining sinusoidal Kalman filter system level error drivers. 
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Utilising signal strength maps from systems such as Wi-Fi and Bluetooth is a common method 

of determining a user’s location. As highlighted in the literature review section 2.1.5, 

generating Wi-Fi signal strength maps is an active areas of current research. This research 

typically aims to generate signal strength maps with corresponding SSID tags. These maps 

are used to construct world models of many urban and indoor locations. A limitation on 

commonly researched signal strength mapping techniques is that the generated map, even 

in complex indoor locations, have few contours. Due to the significant quantization effects on 

the measurement of RSSI, much of the simulated environment receives the same signal 

strength measurement leading to few topological boundaries.  An example of RSSI 

measurement quantization in a simplified radio environment is shown in Figure 47. 

 

Figure 47 - Example of a Quantized Signal Strength Map 

 To obtain knowledge of where the user may be, the receiver must move a considerable 

distance through the mapped environment, crossing at least one contours, to allow a 

matching system to build up knowledge of the user’s location. The additional knowledge and 

computing to allow the user to be tracked over a large difference means that considerable 

computing power is required, often running particle filter systems. Another limitation of current 

research is the ability to deal with poor environmental stability. Changes in the radio signal 

environment can be cased by a wide range of physical changes. These changes are 

particularly common in indoor and urban environments where changes in the environment 

such as doors opening, large vehicles passing and large number of mobile transmission 

devices will cause significant changes to the RSSI map. 

Poor environmental stability combined with the requirement to monitor the environment for 

long periods means that current research techniques do not provide a reliable, robust or 

accurate data source for the sinusoidal Kalman filter architecture. Two possible mitigation 

paths are available; either the stability of the radio environment could be improved or the 

frequency of contour changes could be increased. Either of these improvements would allow 

an improvement to the quality of the information obtained.  

Transmitter Location 
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This  analyses the relative carrier phase for the signal strength at the measured location and 

uses multiple transmitters to generate a low frequency and long wavelength beat signal. The 

first step is to select the transmission frequency and power of the mobile node. Typical low 

size weight and power (SWAP) hardware polls the RSSI no faster than twice a second due 

to power conservation. These settings are typically written into the device firmware and are 

not easily changed. Ideally, this provides a requirement for the transmission signal to be 

matched to the received signal to an accuracy of greater than 1 Hz for the full beat to be 

observed. This equates to an error less than 0.1 parts per million (ppm) and isn’t considered 

practical in hardware. While this type of full interferometry isn’t possible, the use of 

interferometer to generate noise does not require the beats to be monitored at any particular 

update rate. This allows the selection of the beat frequency to be arbitrarily set by hardware 

errors, typically in the region of 25 ppm, meaning that the user must simply select the same 

transmission frequency as that received. It is desirable that the beat frequency of the received 

signal varied between a SNR of 0 and twice that of the received signal to provide an optimised 

RSSI range. To achieve this, the transmitted signal should match that of the received signal 

in the location that the mobile node is receiving the signal. Again, this principle dictates that 

the transmitted signal strength should simply match the received signal strength as no further 

optimisation is possible. These features provide a relatively simple to implement approach to 

determining the transmitted signal characteristic, summarised for frequency (f) and amplitude 

(A) in Eq 33 and Eq 34.  

RxTx ff ≈  
Eq 33 

RxTx AA ≈
 

Eq 34 

As the errors in the hardware are used to provide the required separations in frequency and 

amplitude, the two competing signals may be considered approximately equal and require no 

specific additional hardware requirements. 

To integrate the signals into the extended Kalman filter architecture, a tailored SLAM 

technique has been designed. This design uses a modified fingerprint extended Kalman filter 

(FEKF) to analyse received signal strength indicator (RSSI) ‘fingerprints’ in an area to 

produce a real time map of the RF environment. The accuracy achieved by the SLAM 

technique increases as the signal strength topology becomes increasingly complex as typical 

in high multipath environments.  The fingerprint extended Kalman filter defines a fingerprint 

to be a vector of N received signal strength (RSS) measurements from N distinct radio 

transmitters. The Kalman filter Z matrix is populated with the fingerprint data, shown in Eq 35. 

T
nt RSSRSSRSSw=z ]...,[ 21=

 Eq 35 

The predicted value matrix, h, values are drawn from any populated values in the signal 

strength map, M. 
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T
Nt yxMyxMyxM=h )],(),...,(),,([ 21  Eq 36 

The measurement noise matrix, R, is populated form the variance of the noisy RSS 

measurements, R, and the variance of the predicted measurements, V , as shown in Eq 37. 

I=R
NN VRVRVR ]...,,[ 222222

2211
σσσσσσ +++

 Eq 37 

The measurement matrix, H, is populated from the loop-up coordinates shown in Eq 38. 

),()1,( , yxJ=iH xi  
Eq 38 

),()2,( , yxJ=iH yi  

The advantage of the map is that, as the number of contours in the SLAM map increases, the 

accuracy of the estimated location and the reliance to unrealistically large geo-location jumps 

increases. 

The accuracy of the SLAM algorithm is increased as the resolution of the maintained RF map 

increases. The technique described in this investigation uses the inputs from the 

interferometric signal in a multipath environments as the source of the data for the FEKF 

SLAM technique.  

BeatSignalN RSSRSS =
 Eq 39 

The interferometric RSSN values are used as the input to the Kalman filter w matrix. In high 

multipath environments, the phase offset will have many contours due to the varying level of 

multipath in each of the contributing signals. In multipath environments, the RSSI of the beat 

signal has many times more contours in that in of a set of separate channel RF transmitters 

these contours can be monitored at a low frequency, allowing low SWAP hardware to 

maintain a high resolution topology map of the environment. The remainder of the FEKF 

matrices are dynamic and will maintain their state efficiently in a range of conditions. No 

further modifications will be required when transitioning from single channel to interferometric 

signal strength analysis. 

The following section of this thesis will apply the designed interferometric noise injection 

system into the extended Kalman filter architecture simulation to demonstrate the achieved 

improvement in performance. 
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Simulation 
Stage 

Time 
from 
Start (s) 

Max  Position Error (m) 
with Improved Leading 
Edge Detection Filter  

Max Position Error (m) 
with Improved Leading 
Edge Detection Filter and 
Signal Strength 
Contouring 

Improvement 
[Degradation] 
(m) 

2 0 to 10 4 3 1 

3 10 to 30 4 3 1 

4 30 to 50 2 2 0 

 

The error driver mitigation makes the most significant improvement in the initial stages of the 

simulation where multipath effects are the most significant. Again, as expected, there is no 

recordable improvement in areas with less multipath effects. 

The simulation also shows that significant error exits in areas due to the ambiguous nature of 

the signal strength contours. No data is available from the IMU and signal strength sources 

that is able to provide a single centre point to the possible geo-location estimates. To improve 

this system, the addition of a known distance from a reference point would greatly improve 

the position estimate by allowing the removal of many false geo-location estimates. 

The simulations summarised in Figure 50 and Table 11 has confirmed that the error drivers 

identified in section 3.5 have been correctly identified and can be mitigated. Perhaps more 

significantly, the simulation has indicated that it is possible to provide a geolocation estimate 

with an error of less than 3 m in urban and indoor locations. While this level of accuracy is an 

improvement over other geolocation systems available in indoor and urban environments 

GNSS navigation systems are able to provide improved geolocation accuracy in more open 

environments. Improvements to the system could benefit from using the improved accuracy 

of GNSS systems in open environments, transitioning to the proposed system when the user 

moves to an indoor or urban environment when the GNSS signals become too weak to use. 

The ability for the system to transition from one system to another efficiently will be developed 

in the following section of this thesis. 
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Demonstrations of the sinusoidal Kalman filter, discussed in section 5.3, highlighted a trade-

off within the Kalman filter implementation between system accuracy and start-up time. The 

simulated indoor environment in section 5.3 demonstrates that the noise of the measured 

input is competitively high, resulting in a large values in the associated Q matrix. Lower noise 

in the measured radio values will reduce the required Q matrix values and will improve the 

geo-location performance of the system. The only trade-off for geolocation performance 

improvement is to increase the sampling time, leading to a longer  start-up time of the system. 

This problem will be particularly severe in scenarios where the user transitions slowly from 

open areas with little signals of opportunity data, where GNSS is likely to be available, to 

areas with a greater number of signals to monitor. This trade off can be seen when the Kalman 

filter K matrix value that corresponds to the IMU vectors is plotted over time when a GNSS 

location fix unexpended becomes unavailable 2 seconds from the start of the log. A simulation 

of this performance is show in Figure 51. 

 

Figure 51 - Kalman Filter Reaction To Loss of GNSSS 

While the filter recovers comparatively quickly from the start up errors, resulting in long term 

degradation, an uncertainty occurs in the filter as it starts up. The scenario of the user 

transitioning from current geo-location systems such as GNSS to the proposed techniques is 

commonly encountered in typical urban environments. To allow the trade-off to be overcome 

and to provide an accurate geo-location estimate in a timely manner, novel techniques have 

been researched further. The specific areas of research have been to build upon the 

techniques described in the literature review, section 2.1, and are discussed in the following 

sections of this thesis. 
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The required data sources can be found in urban environments, allowing an accurate location 

estimate may be achieved, but several key challenges in indoor and urban environments 

need to be addressed. Most significantly, the signal path of both the low frequency signal 

under analysis and the clock signal will be affected by multipath refection’s and NLOS issues 

[FARAGHER et. al. 2010]. 

6.2.1 Carrier Phase Performance Analysis 
This section will develop an understanding of the researched carrier phase technique’s 

potential. The accuracy of the technique and the key limitations of the data sources will be 

analysed. 

The application of the technique requires two data sources, the amplitude of the carrier phase 

value and the external timing data. Error sources are present for each of these data sources. 

In indoor and urban environments, the key error driver for carrier phase analysis is multipath 

interference, where the received signal my amplified or attenuated when combined with signal 

reflections. Transmission errors will also be present in the transmitted signal, these 

transmission effects are dominated by jitter in the transmitting signal. Other platform specific 

error drivers include the accuracy of the sampling hardware and local attenuation effects. 

These groups of errors have mutually exclusive sources, as such a root sum of the squares 

(RSS) approach has been taken to the calculation of errors. The resulting equation for carrier 

phase accuracy is shown in Eq 40. 

222 )()()( tMeausurmentJittertMultipathtm EXEXEXX −+−+−=
 Eq 40 

Where Xm is the measured phase amplitude and Xt is the transmitted phase amplitude. 

In addition to these error sources, there are also timing errors associated with the eternal 

clock source. These errors are dominated by the path length effects of multipath, which may 

be considered insolation. Effects such as amplitude errors will not significantly the time 

received and transmission jitter is considered negligible due to the intended GNSS uses of 

the signal. A summary of the clock signal error is provided in Eq 41. 

Multipathtm ECC −=
 Eq 41 

The susceptibility of this effect to multipath and the low SNR nature of GNSS signals mean 

that the technique will not provide significant information for the sinusoidal Kalman filter in 

indoor or dense urban environments. The reduction of information required in the GNSS 

signal does however mean that it can be used in areas of poor GNSS coverage, effectively 

extending the range of the GNSS signal and providing additional data to the sinusoidal 

Kalman filter in the low multipath areas to improve it accuracy and robsutness. 
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The performance of the technique with anticipated error sources, combined in the method 

discussed in this chapter has been demonstrated in a simulation. The aim of the simulation 

is to demonstrate the anticipated performance of the technique with normally distributed 

values for the error terms described in Eq 40 and Eq 41. The simulation has conducted a 

Monte Carlo error estimates with scaled and normally distributed error inputs. The anticipated 

ranging accuracies predicted by the model are shown in Figure 53. 

 

 

Figure 53 –Phase Analysis and GNSS Ranging Estimates in an Urban Environment. 

The performance observed in Figure 53 is summarised in Table 12. 

Table 12 - Summary of Ranging Estimates in an Urban Environment 

Technique Max Error (m) Mean Error (µ) (m) 3 Sigma Error (µ + 3σ) (m) 

Carrier Phase Estimate 5.5 3.2 6.0 

GNSS Estimate 17.5 13.1 20.0 

As expected, the Monte Carlo simulation has demonstrated that even with the discussed 

urban environment error sources, the carrier phase estimate provides a significant 

improvement over using a low SNR GNSS signal. The estimation error has reduced to 30 % 

of that provided by GNSS alone.  

This initial simulation has demonstrated that improved accuracy levels may be achieved in 

urban environments without the requirement for accurate clock hardware on the receiving 

node. This additional information can be used by the previously discussed sinusoidal Kalman 

filter in areas of low GNSS SNR or where less than three GNSS transmitters are visible. While 

this performance improvement is not available in many of the sinusoidal Kalman filters 

intended environment, it does provide an improved data source when handing over from open 

environments with good GNSS signal coverage to areas of non-GNSS geolocation 

estimation. 

Carrier Phase Estimate 

GNSS Signal Estimate 
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The performance improvement associated with the improved filter performance is again 

demonstrated by adding the technique to the simulation described in Appendix B – Simulation 

Environment. Re running this simulation will allow the improvement in performance at the 

start of the simulation be demonstrated and discussed. The performance obtained from the 

system is demonstrated in Figure 50. 

 

Figure 55 - Simulated Performance with GNSS Hand Over. 

The simulation results, shown graphically in Figure 50 are summarised and compared to 

previous results in Table 13. 

Table 13 - Summary Effects of GNSS Hand Over 

Simulation 
Stage 

Time 
from 
Start (s) 

Max Position Error (m) 
with Improved Leading 
Edge Detection Filter and 
Signal Strength 
Contouring 

Max Position 
Error (m) 
following the 
addition of GNSS 
Handover 

Improvement 
[Degradation] 
(m) 

2 0 to 10 3.2 2.5 0.7 

3 10 to 30 4 3 0 

4 30 to 50 2 2 0 
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A few meters into the urban environment past the start point, there is no discernible GNSS 

signal data to use as a carrier phase clock. As discussed during the research into the start up 

data source, there are no long-term improvements from the addition of this data source. There 

are however two significant areas of interest shown in this demonstration. The first is that 

there is a small improvement in the geolocation estimate in the first few seconds of operation. 

This improvement is available in an area that had comparatively large errors in previous 

demonstrations. The second important note is that, despite the addition of a data source that 

will perform poorly in many indoor environments, the sinusoidal Kalman filter has not shown 

a degradation to it’s performance in these areas, where other information sources are 

emphasised by the filter implementation. 

This thesis has discussed research into an integrated system architecture that allows 

improved  geolocation estimates in indoor and urban environments. The discussion 

describing the design, architecture and error driver mitigation within the filter has been 

articulated  and demonstrated with the use of a simulation environment described in Appendix 

B – Simulation Environment. This thesis will now evaluate the appropriateness of this 

simulation environment and will benchmark several of the simulations with test data to verify 

the validity of the discussed designs. 
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In addition to the hardware shown, the SDR receiver data was logged using open source 

software called SDR# [AIRSPY, 2016]. The tool was used to log the raw I and Q channels 

from the SDR hardware. The logged values were recorded to a timestamped file. The key 

settings used in the SDR# software for collecting the data during the trail can be seen in Table 

14. Further information about the software configuration used and an example of the data 

collected can be found in Appendix C – Test Environment Details.  

Table 14 - Key SDR# Data Logger Configuration Settings 

Key Parameter 
in the Logging 

Software 
Selected 
Setting Notes and Rationale for Selection 

Centre 
Frequency 

27 MHz Selected to match the centre frequency of the transmitter used 
to control the vehicle from the base station. 

Data source RTL-SDR 
USB 

The USB SDR radio shown in Figure 58 was used to capture 
the data.  

Radio 
Modulation 

Amplitude 
Modulated 

Selected to match the modulation of the transmitter used to 
control the vehicle from the base station. 

Filter 20 kHz, 2nd 
order. 

This setting was determined from the simulation environment. 
The 2 kHz 2nd order filter has been selected to maintain a low 
ripple in the region of interest which may not exist with high 
order or lower bandwidth filters. The high frequency noise 
selected will not significantly affect the designed filter which has 
a significantly lower bandwidth. 

Use AGC Off With the AGC on the logged signal amplitude will remain 
roughly constant over the logging period. The signal amplitude 
is one of the parameters of interest to the Kalman filter so 
should not be corrected by the logging software. In this case, 
the lowest gain is automatically used by the logging software to 
limit saturation at close range. 

Data format 32 bit IEEE 
float 

The highest precision data format used. Note: The data files 
collected during the trail were very large. It may be possible to 
select other data types. 

Record 
Baseband 

Checked The baseband data file is processed by the filter to determine 
location. 

 

The test hardware and the test environments were configured to represent the simulations 

carried out to demonstrate the anticipated performance of the designed geolocation 

architecture. The key aspects selected to match the simulated environment were the locations 

of the transmitters and receivers, the power, frequency and antenna properties of the 

transmitting and receiving nodes as well as the size, shape and material of the objects within 

the environment. 
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The drone was configured to record a multi-GNSS signals so that the performance of existing 

drone navigation techniques can be used for comparison. The multi GNSS receivers available 

to the drone system allow the reception of both civilian GPS and civilian GLONASS signals. 

A constellation of eight satellites were available to the drone throughout the test. 

The software used to capture the GNSS data was GPSLogger for Andriod [MENDHAK 2017]. 

The default settings were used to collect timestamped GNSS data in a KML format. An 

example of the collected data can be seen in Appendix C – Test Environment Details. 

To allow the collection of data for use in the sinusoidal Kalman filter implementation, the drone 

logged sensor data from all available MEMS accelerometers and gyros. The received signal 

strength and phase readings of the 27 MHz command link were also logged. The de-coded 

control inputs from the command link were also time stamped and logged. The logged data 

was post processed by the designed system architecture. 

To simplify the control inputs required during the simulation the drone’s altimeter was set to 

maintain an altitude of 1.5 m above the ground at all times. This altitude was selected to 

minimise ground reflection effects in any received radio signals. Prior to starting the tests, all 

equipment was allowed to thermally stabilise. 

The flight path from the start point to the finish point, shown in Figure 56, has been flown at 

a constant velocity along the path represented in the design simulation tests. 

Summarised results of the initial test flight compared with the results of the architecture 

simulation have been presented in Table 15. 

Table 15 – Summarised Hardware Test Error 

Simulation 
Stage 

Time 
from 
Start (s) 

Max Hardware 
Test Position 
Error (m)  

Max Simulated EKF 
Position Error (m) (Table 
13) 

Difference 
(m) 

1 0 N/A N/A N/A 

2 0 to 10 3 5 2 

3 10 to 30 3 4 1 

4 30 to 50 2 4 2 

 



    
    

  

  Page 141 

The summary of results in Table 15 show good similarity with those obtained from hardware 

test. The results obtained from the initial test flight shows that better than expected geo 

location accuracy has been obtained. The practical testing showed that, while the multipath 

effects were enough to prevent GNSS working accurately, the signal of opportunity data 

received was of a higher quality and considerably less corrupted by multipath than simulated. 

This is likely to be because the simulation carried out simulated worst-case multipath effects 

from idealised signal to object interactions. In contrast, initial practical testing has inferred that 

additional noise and signal absorption may have led to a cleaner and more ordered radio 

environment. 

The initial simulation test carried out was in a simplified test environment with a controlled 

number of significant error sources. While this approach allows the operation of the system 

to be compared to the simulation environment, it prevents a detailed analysis of the 

contribution of individual error drivers and an analysis of the performance of the filter in each 

error driver environment to be made. 

Further to the initial hardware test to verify the simulation, additional hardware testing has 

been carried out in a rage of scenarios. The tests have been designed to exercise the error 

drivers described in section 3.5. The tests have been designed using a design of experiments 

approach to gradually build up the contribution of non-normally distributed ToA errors, signal 

strength variation due to multipath effects and varying start conditions. The method used to 

derive the test profiles and the error drivers exercised are described in Appendix D - System 

Test Plan. 

The ability of the designed system to cope with the presence of the error drivers in both 

simulated and hardware test environments is summarised in Table 16. 

Table 16 – Summarised Hardware Test Plan Results 

Test (As defined 
in Appendix D - 
System Test 
Plan) 

Test 
Description 

Validated Error 
Driver 

Mean 
Simulation 
Position 
Error (m) 

Mean 
Hardware 
Test 
Position 
Error (m) 

Difference 
Between 
Simulation 
and Test 
Result (m) 

Test 1 Static Test Baseline Test  3 4 1 

Test 2 Open 
Space Baseline Test 4 4 0 

Test 3 Reflected 
Multipath ToA Errors 4 5 1 

Test 4 
Multipath 
and 
Obstruction 

Signal Strength 
Errors and 
Unknown Start-
Up Environment 

5 8 3 
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Test (As defined 
in Appendix D - 
System Test 
Plan) 

Test 
Description 

Validated Error 
Driver 

Mean 
Simulation 
Position 
Error (m) 

Mean 
Hardware 
Test 
Position 
Error (m) 

Difference 
Between 
Simulation 
and Test 
Result (m) 

Test 5 Corridor 
Effect 

ToA Errors and 
Unknown Start-
Up Environment 

6 9 3 

 

The testing carried out and the results obtained have been summarised in Table 16. The 

baseline tests, 1 and 2, measuring the performance of the system in areas of little 

environmental interaction have shown good similarity between the simulation and the 

hardware tests. As the same data processing and filtering tools have been used to analyse 

both sets of data, these tests demonstrate that the signal transmission simulations do 

accurately reflect the tested hardware. These tests validate the signal transmission error 

models used in all subsequent tests. These tests also validate the attempts to maintain an 

altitude in order to reduce ground reflection effects as far as practicable possible. 

Test 3 simulates a controlled addition of multipath effects. This test applies the multipath 

effects in a controlled manner from a single source. Again, throughout the test good similarity 

between the simulated results and those from practical testing has been observed. This test 

provides confidence that both the applied multipath effects are simulated correctly and that 

the designed filter architecture I successfully mitigating the effects of the error driver. 

Test 4 allows the gross geo-location errors caused by both signal strength variations and filter 

start-up in multipath environments. Again practical test showed god similarity with the 

simulated environment further validating the simulated environments. Further the test 

analysis confirms for the first time in this thesis that, in built environment’s, the location 

estimate obtained is better than could be expected from existing systems such as GNSS 

where, as discussed throughout literature review section 2.1.1.2, errors of greater than 10 m 

are common. 

Test 5 shows the performance of the filter in more complex multipath environments. Again, 

good similarity has been observed between the simulation results and the results obtained 

form practical test. This test also demonstrates that the proposed filter architecture has 

mitigated complex environmental errors and continues to provide an improved geolocation 

estimate over existing geolocation techniques such as GNSS. 
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Reception points A to E were selected to allow performance analysis in areas of high and low 

multipath by selecting areas of comparatively high and low building density. To validate and 

benchmark the filter performance, the proposed method has been tested with the same 

hardware used to validate the model in section 7 at each test location. At each test location, 

30 second flight was carried out with the mobile drone hardware. A controlled flight path was 

executed. An overview of the validation flight can be found in Appendix D - System Test Plan. 

The method that has been benchmarked against, [FARAGHER 2010], has been carried out 

using the ‘Medium Wave’ techniques described in the paper. Details of the data collected and 

the hardware used can be found in Table 17. 

Table 17 - FARAGHER 2010 Key Parameters 

Signal 
Logged 

Hardware Used and 
Key Settings Notes 

MW Hardware used: SDR 
RTL Dongle 

Frequency: 693 MHz 

Modulation: Amplitude 

The test location for the trail was in Plymouth 
city centre. Throughout the trial, three MW 
transmissions were expected to be seen, 
although as discussed in [FARAGHER 2010], 
this cannot be verified from the collected data. 

 The geolocation estimate obtained throughout the flight has been obtained at each of the 

five map locations. The average error from the true location throughout the flight was 

calculated and recorded. A summary of the geolocation accuracies obtained at each of the 

test stages is shown in Table 18. 

Table 18 - Tabulated Range Estimate Averages 

Test 
Location 

Building 
Density 

Average Error (m) Proposed 
Method 

Improvement 
(%) 

[FARAGHER 
2010] 

Method 
Proposed 
Method 

A Low 6.7 5.8 13 

B Medium 17.3 15.3 12 

C Low 4.7 3.9 17 

D High 33.2 10.8 67 

E Low 2.0 0.7 65 
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An improvement in geolocation estimate has been obtained at all test locations. As expected, 

due to the Kalman filter receiving additional information in areas of increased signal distortion, 

the greatest improvements in geolocation accuracy have been made in areas of relatively 

high multipath, with the method designed in this thesis producing an average error 

improvement during the flight of up to 67 % over the exiting methods developed for use in the 

same environment. The test area that showed the most significant improvement over exiting 

methods was test location D. This test location was the most densely urban city centre 

location tested. To gain a further understanding of how the designed filter performed during 

the trial and to further validate the discussed filter function, this thesis will further analyse the 

performance of the filter during this test stage. 

As previously described, the test stage was in an area with buildings surrounding the trial. A 

clear view of the sky above the trial was present, although sight was limited by tall buildings 

on all sides allowing a GPS receiver at the test location to receive data from a constellation 

of five satellites. As was carried out at each of the test locations, the flight profile consisted of 

the four main steps. The flight profile carried out at test location D is shown in context with its 

surroundings in Figure 61. 

 

 

Figure 61 – Test Point D Trial Flight Map 

1. Start/End point and 
transmitter location. A 10 
second stationary hover carried 
out at the start and end of the 
flight. 

3. 20 second hover including 
180° turn 30 m from the 
transmitter 

2. 20 second flight away from 
transmitter. 

4. 20 second flight towards the 
transmitter 
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The flight profile and environment was selected to test the system in a high multipath ‘corridor’ 

environment with sources of signal path interference on both sides of the trail area. This 

environment has been highlighted by literature review section 2.1.2 to be the most challenging 

for existing urban and indoor navigation geo-location systems. The selected flight profile, 

described in Appendix D - System Test Plan, environment exercises all of the suspected 

system error drivers with the proposed approach and have been chosen to stress the system. 

Analysis has been carried out on each of the data sources influence on the geolocation 

estimate throughout the trial. By design, the applied flight profile exercised the y, or ranging, 

axis throughout the test. To allow a comparison of performance of each of the data sources, 

the range accuracy from the control transmitter location will be analysed and discussed 

further. 

All flight data was collected in separate files to allow post processing of the data and further 

analysis of the contribution of each data source. Post processing has been carried out on the 

data recorded by each of the trial sensors. Raw IMU and GPS data has been collected.  

This section will analyse the performance of the designed filtering scheme in a practical test. 

Prior to this the thesis will discuss the raw adat collected, validating that the test environment 

has produced the errors anticipated in an urban environment. The raw data sources available 

to the designed filter throughout the trial have been plotted against the elapsed trial time in 

Figure 62. 

 

Figure 62 – Ranging estimate from the raw data sources. 

The data summarised in Figure 62 shows the ranging data available from the inertial systems, 

GPS receiver and the raw radio data. Figure 62 also shows the true range of the mobile 

receiver from the transmitting system throughout the trial. A summary of the key 

measurement points are shown in Table 19. 
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Table 19 - Key Test Measurements 

Time from the 
Start of the 
Test (s) 

Accumulated Error (m) 

GPS Inertial 
Measurement 

20 27 5 

40 34 11 

60 15 17 

80 18 29 

 

The data presented in Figure 62 and Table 19 shows the challenges faced by many systems 

navigating in an urban environment. The first challenge is the poor fidelity of the GPS location 

provided in a dense urban environment; it is hard to determine any component of the flight 

during the trial by analysing the GPS estimate data in Figure 62 alone. The poor performance 

of the GPS is typical when receiving signals in urban environments with low size, weight, and 

power receivers. The inertial data presented by the INS system shows that the stages of the 

flight can be determined; however the significant drift of up to 29 meters at the end of an 80 

second flight presents the second challenge of error integration. The inertial drift will continue 

to accumulate for the entirety for the mission without the aid of an external data source. Whilst 

this project aims to use the RF signal present in the systems control datalink to provide an 

external source of navigation data, it is hard to see how this data source could provide 

information when the time domain RF amplitude data is plotted. Due to the limited flight range 

and the fact that the datalink contains an automated gain control loop, the amplitude of the 

raw RF data does not appear to provide any useful ranging information. The raw data 

obtained from the flight appears to show that accurate, low drift navigation for a drone system, 

using only the existing hardware will be a very challenging task. These challenges were 

discussed throughout the literature review. The raw data collected from the trail has validated 

this discussion. The raw data has also shown that the test environment has produced the 

anticipated errors that the filtering techniques in this thesis have been designed to mitigate. 

The filtering techniques proposed by this project shall now be applied in stages to show that 

the discussed error drivers are successfully mitigated and that the contribution of each 

mitigation technique can be used to build an accurate drift free navigation solution. 

The first mitigation technique will be to setup the Kalman filter to analyse the raw RF carrier 

signal. As discussed in section 3.2 of this thesis, the phase of this low noise sinusoid is 

analysed and shifts in the maintained phase estimate have been be used to estimate a 

change in range from the transmitter to the recording receiver mounted on the drone. 

Analysing the data’s phase shift with a sinusoidal Kalman filter provides the ranging estimate 

shown in Figure 63.  



    
    

  

  Page 148 

 

Figure 63 – Ranging estimate from the RF post sinusoidal Kalman filter processing. 

Figure 63 again shows the truth and raw inertial data shown in Figure 62. In addition, the 

output of the sinusoidal Kalman filter following analysis of the raw RF data is also presented. 

A summary of the key results are detailed in Table 20. 

Table 20 - Key Test Measurements after Initial RF Analysis 

Time from the 
Start of the Test 
(s) 

Initial Kalman 
Filter (KF) 
Range Estimate 
Error (m) 

20 1 

40 12 

60 3 

80 1 
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It can be seen that by comparing the estimates from the low noise sinusoidal Kalman filter a 

low drift range estimate can be seen throughout the 80 second flight. This low drift ranging 

estimate was able to track the range changes with low latency throughout the flight, resulting 

in a good localisation estimate throughout the flight. As predicted, errors in the recordings 

throughout the flight don’t integrate together and the estimate accurately follows the true 

location at the stationary points in the data. The limitation of the processed RF data is that 

there that range estimation errors of up to 12 m are present for periods of several seconds. 

This are likely to have been caused by other lower level error drivers such as ground multipath 

effects in the RF data caused by the test being carried out at low altitude in a dense urban 

environment. The observed performance is significantly better than existing navigation 

systems, reducing ranging errors to less than 1 m at the end of the 80 second test. This 

improvement provides evidence that the using the sinusoidal Kalman filter at the core of the 

system provides a significant benefit when analysing sensor of opportunity data streams. 

The next analysis proposed by this thesis is designed to remove these short term errors by 

closely coupling the RF data with that of a low noise, but high drift INS system as described 

in section 3.4. This technique has been carried out and is presented in Figure 64. 

 

Figure 64 – Ranging estimate from the processed RF and ultra-closely coupled IMU data 

Figure 64 displays both the output of the closely coupled Kalman filer estimate and the inertial 

measurement error obtained after the calibration improvements obtained from closely 

coupling the IMU to the Kalman filter have been estimated. 
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Table 21 - Key Test Measurements after Initial RF Analysis 

 

Time from 
the Start 
of the Test 
(s) 

Kalman Filter Performance Inertial Sensor Performance 

Initial 
Kalman 
Filter (KF) 
Range 
Estimate 
Error (m) 

Closely 
Coupled 
Kalman 
Filter (KF) 
Range 
Estimate 
Error (m) 

Kalman Filter 
Range 
Improvement 
(%) 

Uncoupled 
IMU Range 
Estimate 
Error (m) 

Coupled 
IMU 
Range 
Estimate 
Error (m) 

Inertial 
Range 
Improvement 
(%) 

20 1 1 0 5 2 60 

40 12 1  92 11 6 45 

60 3 3 0 17 10 41 

80 1 1 0 29 17 41 

 
Table 21 shows that ultra-closely coupling the Kalman filter and IMU system has improved 

the Kalman filter estimate. This improvement has occurred as the IMU error drift, also 

summarised in Table 21 has reduced throughout the test. The integrated inertial error at the 

end of the flight has reduced by 41 %. The magnitude of the IMU error reduces significantly 

during the stationary periods in the flight profile. During these stationary periods, the Kalman 

filter covariance experiences a period of convergence on the present system errors, allowing 

them to be estimated and accurately compensated.  

In many systems the RF signal recorded by the mobile equipment is not controlled by the 

system operator. This limitation is commonly found in signal of opportunity systems where 3rd 

party RF networks are used as the data source. In these scenarios, no further navigation data 

is available from the techniques proposed in this project. The results presented in Figure 64 

would show the performance of the system with commonly available inertial, and data link RF 

signals of opportunity. When this performance is compared with the GPS ranging estimate 

shown in Figure 62 and Table 19, a drastic performance improvement has been achieved 

with the ranging error reduced from 18 m to 1 m at the end of the test. Even if the GPS data 

were to be combined with the INS data also shown in Figure 62, no accurate ranging estimate 

during the flight would have been provided; The GPS signal obtained in an urban environment 

was of such poor quality that the INS estimate could not have been improved by coupling it 

with the GPS signal with existing techniques. Coupling the INS data to the output of the 

proposed system has reduced the maximum error observed throughout the test from 12 m to 

3 m, a 75 % improvement in max error. 
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Further to this already considerable improvement in performance over existing INS coupling 

systems, the drone system under test is controlled by a frequency modulated transmitte. This 

transmitter is operated by the system designer and the data contained within the transmitted 

message, allowing the drone to manoeuvre as commanded, is also available to the system. 

This data may also be integrated into the Kalman filter, providing an additional signal of 

opportunity soured of information using the methods developed and described in section 3.3 

of this thesis. This data is used to identify the stop, forward, backwards, turn left and turn right 

commands in the control data link. This is decoded by the on-board RF receiver. Another 

aspect that is available to the system designer in most applications is a basic kinematic model 

representation of the drone. The following information about the kinematic model is known 

and is captured in Table 22. 

Table 22 - Kinematic Model Parameters 

Typical Maximum Velocity 5 m/s 

Typical turn rate 90 °/s. 

The resulting ranging estimate from using the encoded command data and with knowledge 

of the basic kinematic data is presented in Figure 65. 

 

Figure 65 – Ranging including data obtained from the encoded data. 

Figure 65 displays both the closely couples IMU dead reckoning estimate and the ranging 

estimate obtained from generating a dead reckoning estimate by integrating the commanded 

movements with the know system dynamics. The resulting Kalman filter estimate, generated 

by coupling these inputs is also shown. 
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Table 23 - Summary ranging estimate including encoded data 

 

Time from 
the Start of 
the Test (s) 

Kalman Filter Performance 

Kalman 
Filter (KF) 
Range 
Estimate 
Error (m) 
excluding 
encoded 
data 

Closely 
Coupled 
Kalman Filter 
(KF) Range 
Estimate 
Error (m) 
including 
encoded data 

Kalman Filter 
Range 
Improvement 
(%) 

20 1 0.5 50 

40 1 0.5 50 

60 3 3 0 

80 1 0.5 50 

 
The addition of the encoded data into the Kalman filter reveals further detail about the system 

behaviour. The first thing to note is the fact that the assumed kinematic model described in 

Table 27 appears to be incorrect. The system appears to have not correctly measured the 

180° yaw command at the turning point half way through the trial. Despite this, the Kalman 

filters estimated range remains accurate. The benefit of adding the decoded command data 

is seen in the first 10 seconds of the trial where the covariance matrix is converging. The 

addition of the stop command information has allowed the Kalman filter to better remove the 

IMU biases. This has reduced the integrated IMU drift at the end of the trial from 1 m to 0.5 

m. This will again further increase the systems resilience to multipath and other urban and 

indoor RF effects. 
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This thesis has developed a technique that allows the application of a sinusoidal Kalman filter 

to a system containing several data inputs of opportunity. This addition of this filter allows the 

the system to respond efficiently to the signal strength environment around the radio receiver 

have also been developed. Using only the RSSI value in a simulated WiFi environment, 

commonly provided by COTS hardware, the system could significantly reduce the 

accumulated IMU errors and provide a significant improvement to the geo-location estimate, 

reducing errors down to between 1 m and 2 m . Research in this area led to the novel 

application of monitoring interfering signals to increase the resolution of the available 

topology. This technique further improved the accuracy of the resulting geo-location estimate 

while simultaneously providing additional robustness to the system in typically challenging 

transmitter dense indoor and urban environments. The combined use of ToA measurements 

and enhanced signal strength monitoring has been demonstrated to show that they can 

provide a suitable geo-location estimate in an indoor location. The identification and 

simulation of these data sources is considered to have satisfied the second key aim of this 

project. 

Further to the initial aims set out for this project to achieve, a trade-off between filter accuracy 

and start-up time was identified during system simulation. The identification of this trade-off 

required  further research to identify techniques that could allow the seamless transition from 

GNSS positioning to an indoor geo-location system. 

The identification of a trade-off between system start-up time and system accuracy led to 

further work to assess the suitability of applying techniques in a novel manner to overcome 

the proposed problems. The research showed that there is a viable method to transition from 

GNSS systems as they degrade when the user transitions into dense urban or indoor 

environments. The ability to improve the robustness of carrier phase analysis in multipath 

environments to a suitable level has been simulated to provide a proof of concept. The 

research in this area is considered to have satisfied the identified aim and will allow the 

developed Kalman filter system to be trialled and utilised in real-world applications. 

The research carried out as part of this thesis has developed a multi-input system that can 

utilise any available radio data sources to improve the dead reckoning estimate from an 

inertial measurement unit. While each of the key inputs of the system may have considerable 

error limits associated with them, the architectural design of the system is designed to prevent 

the accumulation of error in the final geo-location estimate. 
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While the architecture minimises the the effect of error source, there are two potential 

environments that would still drive errors into the resulting geo-location estimate. The first 

error driver is caused by the accumulation of error in the IMU outputs in certain environments. 

IMU error is a significant error driver in dead-reckoning solutions causing large errors to 

accumulate over time. The proposed architecture improves on existing techniques by using 

time separated external measurements to calculate and remove IMU integration errors, 

allowing the IMU to be re-calibrated and future errors minimised. This approach does however 

rely on the presence of external signals. In areas where there are no external signals and 

where the IMU calibration may alter rapidly, such as in significant thermal changes, the 

system is still likely to quickly integrate error. The only available option to mitigate this is to 

increase the accuracy of the IMU in changing environments, which may add cost and 

additional hardware into the mobile device. It is considered that, in most urban environments, 

signal availability will be sufficient for the system to function as required.  

The second scenario that may drive errors into the system is in scenarios where multipath 

symmetry provides false leading edge detection. Multipath symmetry is particularly common 

in physical environments such as corridors and narrow city streets. The effect of this 

phenomenon on hardware is difficult to model as, even slight variations in the two propagation 

paths will create destructive interference and remove the possibility of a false leading edged 

detection with the filters described in this thesis. It is considered unlikely that this effect will 

occur with enough regularity to alter the performance of the Kalman filter. Partly due to the 

complexity of simulating this error driver, hardware testing in the environment described has 

been carried out and the results analysed. 

The performance of the developed geolocation system has been demonstrated in section 7 

of this thesis. While a limited comparison has been made between the researched system 

performance and the benchmark of [BAE 2013], this section of the thesis compares the 

achieved performance with the researched technique against that of all identified leading 

technology estimates in urban and indoor environments. 

As described in section 2.2 of this thesis, mature systems exist that closely couple INS and 

GNSS data to enable an improved geo-location estimate. GNSS does not provide a suitable 

external coupling partner for INS systems in these systems. Research has also been carried 

out, summarised in section 2.1.7 of this thesis, into using signals of opportunity to provide a 

ranging estimate. These systems are adversely affected by multipath in urban environments 

or require prior knowledge of 3rd party data-links to provide a ranging estimate. 
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The design architecture was founded on the principle of cross correlating differing information 

sources to gain a robust and reliable set of information. The principle allowed only small 

amount of strategic information to be required, fundamentally building in resilience to many 

of the effects found in indoor and urban environments. This approach allows many of the key 

concerns highlighted by the industry interview to be addressed, allowing a multi spectral 

interface with no single third party control. 

This initial architecture offers the ability to build a geo-location estimate from small amounts 

of data. Extracting the data from a noisy radio environment with COTS hardware still presents 

a significant challenge. The radio hardware alone is unlikely to be able to filter and separate 

out useable geo-location data with such significant limitations. To maximise the ability of 

useful information to be gained, the radio reception equipment needs external assistance. 

Existing art in other fields of navigation have shown that closely coupling sensors improves 

the robustness of data extraction in an efficient manner. A novel Kalman filter, suited to radio 

navigation with the addition of a sinusoidal plant, has been researched for use in such 

scenarios. IMUs are commonly found in small mobile devices, leading to work to research the 

possibilities of efficiently coupling the sinusoidal Kalman filter to an IMU. The Kalman filter 

also allowed the efficient coupling of other available data sources, such as control link data 

and data from more traditional navigation sources, such as GNSS, if available. 

Research showed that this implementation allowed navigation data to be obtained from the 

radio environments. The results were significantly improved in areas where large observable 

shifts in the radio environment were visible. Simulation also showed that while the system 

performed well in specific areas there were too few contours in typical urban and indoor areas. 

The research investigated potential ways of increasing the number of areas where the system 

performed well be generating specific channels of interference in the areas of interest. The 

generation of the interfering signals used only common hardware and no additional 

processing complexity. Simulation showed that this approach significantly increased the 

performance of the system in typical environments. 

Further simulation demonstrated that the proposed system could provide a localised geo-

location estimate, but could not locate a user within a wider field of reference. At this point, a 

system designer could integrate the system with prior signal mapping data or with a SLAM 

implementation to gain a wider geo-location context. Both of these approaches have 

drawbacks in real world implementations. Prior mapping data needs to be collected and 

maintained, a task that is not trivial in dynamic and changeable indoor and urban 

environments. SLAM generation requires a prolonged training period to generate a wider map 

and even when complete, may not provide an absolute geo-location estimate. The research 

looked for alternative methods to provide information of the users location with reference to 

a known landmark.  
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8.4.1 Map Integration 
An opportunity exists to allow the designed architecture to be closely coupled with a prior 

knowledge of mapping information. The filter architecture researched by this thesis has been 

designed to contain a common, expandable and adaptable data input interface. The proposed 

uses for the designed filter is in urban and indoor environments. Map information for these 

environments is often available and could provide an additional source of information in many 

environments. To optimise the application of this data, a particle filter approach may be taken 

to the resulting Kalman filter estimates, eliminating locations that the user cannot exist in and 

redistributing the remaining error likelihoods. Examples of this approach are typical for GPS 

and are explained in section 2.3.1.3 of the literature review. The efficient integration of this 

data into a coupled system will also provide an improvement in the ability of the filter to 

maintain a geolocation estimate in areas of low SNR GNSS signals providing improved start-

up performance as well as lower long accumulation of errors in certain environments. 

8.4.2 SLAM Map Development 
Developing further from the integration of mapping information. An opportunity exists to utilise 

the information in the filter architecture developed as part of this thesis to generate maps 

using SLAM techniques discussed in section 2.3.4 of the literature review. The information 

that may be used to improve these techniques comes form the users ability to monitor the 

Kalman filters confidence values associated with each of the inputs. Further research into 

both the effects of physical features on the radio environment and the effects of this on the 

Kalman filter confidence in-puits for specific data sources will provide the user information 

about the physical environment surrounding the receiver. This information could then be used 

in existing SLAM techniques to generate maps. Further, these techniques are likely to allow 

forms of remote sensing, allowing SLAM maps of the surrounding area to be quickly and 

efficiently generated. Additional research could also explore the possibility of closely coupling 

the data, further in proving the range of radio environment techniques that can be monitored 

by the architecture researched by this thesis. 

8.4.3 GNSS Anti-Jam and Anti-Spoofing 
A final promising area for the application of this research as well as further investigation has 

been identified is using the additional physical layer information obtained from the designed 

system  for increasing the robustness and security of GNSS signals. Specific threats against 

GNSS signals are spoofing and jamming [VOLPE 2001]. These threats are commonly 

mitigated by monitoring the signal to noise ratio as well as the angle of arrival of the incoming 

signals [BORIO et. al. 2014]. 
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The filter architecture detailed in this thesis maintains an estimate of the expected GNSS 

physical layer phase and amplitude. Unanticipated and prolonged changes to these 

properties are able to be detected quickly and clearly, even in indoor and urban environments. 

Future work could research a quantified trigger based on the information provded by the filter 

to trigger when spoofing or jamming events take place. Building on the work carried out in 

this thesis to determine GNSS attacks could bring significant benefits to many GNSS 

applications.  
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9. Appendix A- Industry Interview Findings 
Industry Interview Method 
The industry interview event was broken into three sections. Each section followed the same 

format where I, as the event host, asked the panel an open ended question. The panel were 

then left, undisturbed by the host, to discuss what was meant by the question and discuss 

answers. The host recorded each answer on a ‘Post-It®’ note and attached it to the wall. The 

3 questions were designed to be very open ended at the start and more specific at the end. 

The structure of the even was designed to allow the expert team share their views without 

being influenced any pre-conceived project ideas held by the host. 

The following three questions were asked in the event: 

• What do you value in navigation products? 

• Why do customers need GNSS denied navigation? 

• What scenarios require GNSS denied navigation? 

Answers for all of the questions were colour coded so that they could be associated with each 

question and collected for further analysis. In all 63 answers were received from the panel.   

Following the collection of the answers results were analysed to provide a simple weighted 

reference to help for the project scope. This analysis was carried in three stages. The first 

stage was to group the answers. The groups do not need to be in any specific order, the aim 

is to simply put together the answers that appear to be related. The second stage is to provide 

titles to these groups. Again the titles are not specified, but should describe the contents of 

the group in a few words, the resulting groupings were: 

• Shortcomings of Current Technology 

• Low Level Technical Requirements 

• Business Requirements 

• Environments the product could be used in 

• Potential Applications 

• System Level Requirements 

The third stage of the analysis was to carry out a Facts, Assumptions, Issues and 

Requirements (FAIRs) review on the data to provide a concise list of priorities. The analysis 

involves listing the answers provided in each group and comparing their relevance to any key 

performance parameters that have been provided by the panel’s answers. The resulting table 

can be seen in Table 25. 
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Industry Interview Results 
Table 25 – Industry Interview Analysis 

 
 

The importance to the success of the project of each of the provided answers can be seen in the Priority row. Any decision points in the project, such as 

devising a project scope, devising the required contents of the literature review or providing a course of action when confronted with multiple paths shall 

reference the Impact Matrix to ensure the project continues along it desired route 
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Industry Interview Analysis 
The industry interview revealed that there are indeed shortcomings of current industry 

products, preventing the development of navigation technology in indoor and urban 

environments. Key unaddressed areas have been highlighted in Table 25. Each of the high 

priority areas are discussed further in the following sections. 

Collaborative Navigation 
The industry interview revealed a desire for advancement of ‘collaborative’ navigation. When 

collaborative navigation was discussed with the industry panel, the conversation was 

predominantly around current hardware limitations of single devices. There is recognition 

within industry that there is a √𝑛𝑛 improvement in inertial navigation accuracy is n sensors can 

communicate and share their geo-location estimates. The collective improvement was of 

particular interest as all of the generated data can be generated by the system operator, with 

no 3rd party external operator. 

Multi-Spectral Interface 
The dependence on a single data source is perceived to lead to a lack of robustness in the 

navigational output. Anecdotal evidence was provided by the panel about the use of a visual 

odometer system that failed to provide any useful data in adverse weather conditions such 

as fog. The ability to combine sensors to provide a robust system was cited as a clear 

aspiration. 

Covert 
Several use cases were presented by the industrial panel that required the system to be 

passive and not transmit any detectable energy. Military reconnaissance applications for 

uraban and indoor navigation systems are anticipated to be based around reconnaissance 

and intelligence applications. These tasks must be carried out without 3rd party detection to 

maximise the effectiveness of the data collected. 

No 3rd Party Infrastructure Control 
Following questioning in the shortcomings of current GNSS systems, in addition to the limited 

reception in urban and indoor environments, the panel were keen to highlight the 3rd party 

control that is required by many nations. Few nations control their own GNSS systems, most 

have tp rely on the American GPS or Russian GLONASS systems. If a nation such as the UK 

wanted to use a national asset that relied on GPS in a military operation it would in effect 

need the permission of the United States to use this. This dependency was seen as one of 

the major reasons for developing reliable alternative navigation systems. 
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Once the mapped environment has been configured, the user can select the sensor data that 

will be made available to the Kalman filter. This data is typically selected to represent that 

available from commercial sensors to represent data likely to be available in a practical 

implementation. The simulation model builds the simulated environment  Finally, the model 

runs the Kalman filter discussed in section 3.2 with the following function. 

 

function [ArrayT, ArrayXH] = Run_Kalman_Filter(TsRf, RawRfData, IMUTime, IMURange, 

PlotsRequired) 

%RUN_KALMAN_FILTER Summary of this function goes here 

% 

%   Draft 1A. Updated 29th Oct 15.  

  

ORDER=2; 

W=TsRf*7; %Source signal 

TS=TsRf; 

XH=0.; 

XDH=0.; 

SIGNOISE=0.01;  

IDNP=eye(ORDER); 

  

PHI=  [cos(W*TS) sin(W*TS)/W ;... 

    -W*sin(W*TS)  cos(W*TS)]; 

  

P = [99999999      0;... 

        0      999999999]; 

  

Q=zeros(ORDER)+0.0001; 

  

RMAT=SIGNOISE^2; 

  

HMAT=[1 0]; %How does the prediction model update with relation to the measured input. 
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HT=HMAT'; 

PHIT=PHI'; 

count=0; 

[r, ~] = size(RawRfData); 

SimTime = r*TsRf; 

ImuStep = 1; 

x = 1; 

  

FMAT = [x sin(W*(x/3e8))];  

ZMAT = [1 0]; 

  

ArrayT = zeros(1,((SimTime-2)/TsRf)+1); 

ArrayX = zeros(1,((SimTime-2)/TsRf)+1); 

ArrayXH = zeros(1,((SimTime-2)/TsRf)+1); 

  

for T=1:TsRf:SimTime-1 

    count=count+1; 

     

    PHIP=PHI*P; 

    PHIPPHIT=PHIP*PHIT; 

    M=PHIPPHIT+Q; 

    HM=HMAT*M; 

    HMHT=HM*HT; 

    HMHTR=HMHT+RMAT; 

    HMHTRINV=inv(HMHTR); 

    MHT=M*HT; 

    K=MHT*HMHTRINV; %#ok  

    KH=K*HMAT; 

    IKH=IDNP-KH; 
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    P=IKH*M; 

  

    x = RawRfData(count); %This is the input (z) matrix (A column vector of the input data 

sources.). 

    FMAT = [x sin(W*(x/3e8))]; 

    XS = FMAT*ZMAT'; 

                

    if rem(T/IMUTime(ImuStep),1) == 0; %If new IMU data is available... 

        ImuStep = ImuStep+1;     

         

        x = sin(W*(IMURange(ImuStep)/3e8)); %Provides the amplitude 

         

        FMAT = [x sin(W*(x/3e8))]; 

        ZMAT = [0 1]; %Change Z Mat to use IMU data. 

         

        XS = FMAT*ZMAT'; 

         

        ZMAT = [1 0]; %Change it back for the next RF input. 

         

    end 

         

    XHOLD=XH; 

    RES=XS(1)-XH*cos(W*TS)-sin(W*TS)*XDH/W; 

    XH=cos(W*TS)*XH+XDH*sin(W*TS)/W+K(1,1)*RES; 

    XDH=-W*sin(W*TS)*XHOLD+XDH*cos(W*TS)+K(2,1)*RES; 

             

    ArrayT(count)=T; 

    ArrayX(count)=XS(1); 

    ArrayXH(count)=XH(1);    
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end 

 

To allow further analysis of the radio environment, an intuitive mapping function was 

developed. This intuitive mapping function allowed the user to visualise the main signal sub-

paths on a coloured map. An example of the output can be seen in Figure 66  with the code 

shown below. 

 

Figure 66 - Example of the Mapping Interface 

 

%Make the Z map to colour 

Z = T1W + T2W + T3W + R1W + R2W + R2WA + R3W + R3WA; 

% Colour the obsticles as a solid colour (The lowest value of the matrix) 

Z(Obs_1_location(1):Obs_1_location(1)+O1row,Obs_1_location(2):Obs_1_location(2)+O1c

ol) = min(Z(:)); 

Z(Obs_2_location(1):Obs_2_location(1)+O2row,Obs_2_location(2):Obs_2_location(2)+O2c

ol) = min(Z(:)); 

Z(Obs_3_location(1):Obs_3_location(1)+O2row,Obs_3_location(2):Obs_3_location(2)+O2c

ol) = min(Z(:)); 

figure; 

surface(X,Y,Z,'EdgeColor','none'); xlim([-100 100]); ylim([-100 100]); xlabel('Distance (m)'); 

strY(1) = {'Distance (m)'};  ylabel(strY); 

text(Transmitter_1_location(2),Transmitter_1_location(1),'\leftarrow  Tx 

1','FontWeight','bold','FontSize',8,'BackgroundColor',[1 1 .6]); 

text(Transmitter_2_location(2),Transmitter_2_location(1),'\leftarrow  Tx 

2','FontWeight','bold','FontSize',8,'BackgroundColor',[1 1 .6]); 
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Model Simulation 
Block Parameter Value Rationale for the Value Used 

Transmitter 
Model 

Data Signal Duration 30 
seconds 

The minimum amount of data 
required to allow the final 
navigation result to settle at its 
final value in all attempted 
simulations. Note: At the 
frequencies simulated this 
duration produced very large 
data files. 

Transmitter 
Model 

Data Signal Amplitude 0.1 V Nominally set to 10 % of the 
carrier wave 

Transmitter 
Model 

Magnitude 
White Noise 

3σ Amp 0.01 V Nominally set to 10 % of the 
signal. This value was varied 
significantly during testing as it is 
a key parameter that affects the 
accuracy of the results. 

Transmitter 
Model 

Magnitude 
White Noise 

-3 dB freq 20 kHz Noise adjusted with a low pass 
filter to be within the region of 
interest on the data signal. 

Transmitter 
Model 

Phase Noise 3σ Delay 20 ns Approx 0.5 x 1/27 MHz chosen 
to bound the maximum phase 
noise on the transmission. 

Transmitter 
Model 

Phase Noise Offset 0.1 s Design of experiments approach 
taken to prove that the absolute 
delay is not important. Time 
chosen to prevent negative 
delay with noise. 

Transmitter 
Model 

Quantization 
Error 

Step Size 0.001 V Quantization set to 1% of the 
data signal value. 

Physical 
Interaction 
Model 

Reflection 
Losses 

Absorption 
Coeff 

20 Empirically selected value that is 
thought to match painted steel 
surfaces. 

Physical 
Interaction 
Model 

Reflection 
Losses 

Scatter 
Coeff 

15  

Physical 
Interaction 
Model 

Reflection 
Losses 

Arrival 
Angle 

NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Reflection 
Losses 

Surface 
Angle 

NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Refraction 
Loss 

V1 1 Reference Value to reflect the 
speed of electromagnetic 
propagation in air. 
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Model Simulation 
Block Parameter Value Rationale for the Value Used 

Physical 
Interaction 
Model 

Refraction 
Loss 

V2 0.9 This is an estimated figure that 
represents the relative speed of 
propagation in steel. This 
parameter was analysed with a 
design of experiments approach 
to estimate it’s criticality on the 
final performance of the system. 
While small changes to this 
value did affect the final 
performance in some scenarios, 
these effects were mitigated 
where the receiving node was 
mobile. As the receiving node is 
mobile is all key examples 
throughout his thesis, the 
importance of this parameter is 
not considered to be critical. 

Physical 
Interaction 
Model 

Refraction 
Loss 

Arrival 
Angle 

NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Refraction 
Loss 

Surface 
Angle 

NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Diffraction 
Losses 

Gap Width NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Diffraction 
Losses 

Arrival 
Angle 

NA Angle set by the user in the 
creation of the environment. 

Physical 
Interaction 
Model 

Direct Path 
Losses 

Power 
Loss Coeff 

28 Recommended in ITU guidance 
[ITU, 2017] 

Physical 
Interaction 
Model 

Direct Path 
Losses 

Loss 
Factor 

30 Recommended in ITU guidance 
[ITU, 2017] 

Physical 
Interaction 
Model 

Direct Path 
Losses 

Distance NA Angle set by the user in the 
creation of the environment. 

Receiver 
Model 

Quantization 
Error 

Step Size 0.0001 V Value set to 1 % of the 
transmitted signal value. 

Receiver 
Model 

Phase Noise 3σ Delay 20 ns Approx 0.5 x 1/27 MHz chosen 
to bound the maximum phase 
noise on the transmission. 
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Model Simulation 
Block Parameter Value Rationale for the Value Used 

Receiver 
Model 

Phase Noise Offset 0.1 s Design of experiments approach 
taken to prove that the absolute 
delay is not important. Time 
chosen to prevent negative 
delay with noise. 
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12. Appendix D - System Test Plan 
Approach 
The initial stage of system testing has provided encouraging results. However, the complex 

nature of the test environment and flightpath does not allow for individual error drivers to be 

identified. 

This testing will first identify the key error drivers that are likely to be present in the 1st trial. A 

design of experiments approach will be undertaken to individually identify the key error drivers 

in as few flight trials as possible. 

Highlighted Error Drivers 
The potential error drivers in the first trial have been identified by analysis of the environment 

and are explained in section 3.5 of the thesis. As summary of the key error drivers that are to 

be stimulated and analysed by hardware test are summarised in Table 27. 

Table 27 – Identified Error Drivers 

Identified Error Drivers Error Cause 

ToA Errors Non-normally distributed ToA 
errors. 

Signal Strength Errors Multipath propagation effects. 

Unknown Start 
Conditions 

Poorly weighted confidence 
values in unknown starting 
conditions. 

  

 To allow a series of test profiles to be determined, a list of controllable variables and 

observable parameters have been identified. The identified variables and measureable 

parameters are summarised in Table 28 and Table 29 

Table 28 – Environmentsal Variables 

Variables 

Time from start-up 

Range 

Velocity 

Angle 

Multipath (Reflected) 

Multipath (Corridor) 

Obstacles 
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Table 29 – Observable Parameters 

Parameters 

Noise 

Range 

Velocity 

Obstacles Present 

Multipath Present 

Obstacles 

Weighting 

 

The controllable variables are used to develop a series of hardware test scenarios. In each 

of these test scenarios, all controllable environmental variables will be applied using a 

controlled design of experiments approach, allowing the performance effects of each 

environmental variable to be isolated from the combined error measurements and analysed. 

The identified variables stimulated in a controlled manner through a set of 5 tests. All tests 

will allow the monitoring of the parameters shown in Table 29. 

Test profiles 
The design of experiments approach has identified 5 test profiles are required to identify the 

effects of the identified variables. Throughout testing a constant altitude and velocity will be 

maintained unless otherwise stated, isolating the results from these additional variables as 

far as practicable. 

Test 1 
This test identifies the effects of range and velocity. The aim of this test is to determine a 

performance baseline of the system in low multipath areas. The applied flight profile is shown 

in Figure 73. 
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Abstract 

Future disaster and emergency management requirements are currently under 
discussion in the US and Europe that will require mobile phone network operators to 
locate their subscribers to a high level of accuracy within a short time period. Current 
deployed mobile phone geo-location systems are required to locate the caller to 
within 125 m. Future systems will require an order of magnitude better accuracy.  

This paper proposes a method to achieve improved location accuracy with the 
addition of carrier phase analysis and accurate time of flight techniques to current 
systems. The resulting combination of technologies has been analysed using a 
simplified model to benchmark and compare the subscriber location estimate against 
existing solutions. 

The system described in this paper shows the potential to meet the emerging disaster 
and emergency management requirements in complex radio frequency environments. 

Keywords 

Geo-location, SyncE, IEEE1588 PTP, RF navigation, carrier phase analysis. 

1. Introduction 

Current disaster and emergency management applications require mobile phone 
network providers to locate the physical position of their subscribers if they contact 
the emergency services; in the case of US, the enhanced emergency alert (E911) 
legislation requires the network providers to locate the caller to within 125 m 67 % 
of the time [3]. Next Generation 911 (NG911) is likely to require more accurate and 
more reliable position estimation of the user calling the emergency services, likely to 
be < 10 m up to 95% of the time [7]. This legislation will lead to a requirement for 
network operators to be able to quickly locate subscribers in many challenging 
environments. 



One of the main challenging environments of operation is likely to be locating users 
in dense urban environments and urban canyons1. These areas typically have very 
dense subscriber populations and complex radio frequency (RF) environments. 

Typical RF problems encountered in dense urban environments include high 
multipath effects, poor line of sight (Including poor GPS coverage), localised areas 
of low signal strength and considerable inter-channel interference. 

This paper will investigate the viability of combining mature and developing 
technologies in order to provide a more accurate subscriber location estimate over a 
wider range of environments than can be obtained from any single technology. 

The remainder of this paper is broken into the following sections. Section 2 reviews 
the current deployed capability for mobile phone geo-location. Section 3 provides a 
summary of the commonly applied approaches to coupling mature technologies to 
provide geo-location services. Section 4 provides an overview of a novel system that 
could be deployed in addition with current geo-location systems to provide an 
increased level of system accuracy. Method of overcoming the main challenges of 
this system are described in section 5. Section 6 details the simulation work carried 
out to verify the described approach. The results obtained from this simulation are 
provided in and section 7. Sections 8 and 9 provide information on future work and 
conclusions gained from the paper. 

2. Current Deployed Capability 

Current E911 compliant geo-location based systems are largely based on time 
difference of arrival (TDoA) systems. The most accurate and widely deployed 
system currently used is the AT&T uplink TDoA (U-TDoA) system. [1].  

This system relies on sensitive time synchronised location measurement units 
(LMUs) located at each base station. The LMUs monitor each subscriber’s uplink 
data channel when placing a call. The individual LMUs are time synchronised by 
GPS and communicate over the inter-base station network to calculate a subscribers 
position. This system commonly provides geo-location accuracy of around 50 m 
when the subscriber has a line of sight view of at least 3 network base stations. [True 
Position, 2011]. 

3. Current Research Areas 

The current state of the art in mobile phone subscriber geo-location can be separated 
into three main areas: RF based, peripheral device based and hybrid of both systems. 
Many peripheral and hybrid systems require the use of ancillary sensors within the 
subscriber’s handset. Due to a lack of standardisation in the peripheral devises 

                                                           

1 Ground level urban areas with very limited direct visibility of the sky/satellites. 



available on any mobile phone and the high coverage required to meet the emerging 
requirements, this review will cover RF based systems which use typical mobile 
phone RF devices only. 

The network based approach relies on using the characteristics of both the mobile 
phone network and other RF systems, such as Wi-Fi, to provide a geo-location 
estimate. 

Perhaps the most commonly applied technique to provide a geo-location estimate for 
subscribers within a mobile phone network is to use timing based techniques such as 
time of arrival (ToA) [11] or time difference of arrival (TDoA) [10]. All time based 
systems however suffer from several drawbacks. Firstly in areas with poor line of 
sight from the transmitter to the receiver, the signal cannot take a direct path. This 
causes significant error at the receiver. Additionally, the reflection of signal produces 
a multipath environment and associated reading, leading to further measurements 
errors. 

Another approach to network based geo-location is to use an angle of arrival (AoA) 
approach. This approach commonly requires the calculation of the angle that a signal 
is received from [12]. If the angle of the subscriber is known from three or more base 
stations, the users location can be calculated by creating an intersect. Again this 
approach has several inherent problems, firstly a non-line of sight signal path will 
cause intersect errors. Secondly, the method of accurately locating the angle of 
arrival is not trivial and involves the use of sectored, rotation or electronically 
steerable antennas, all of which have considerable angular measurement errors. 

Frequency and carrier phase analysis may also be used to estimate a subscriber’s 
location [14]. Frequency based analysis typically relies on the motion of the 
subscribers to allow the Doppler shifts in their signals to be tracked. The drawback to 
this method is the fact that the location of slow moving or stationary subscribers will 
drift over time. Meanwhile, carrier phase analysis relies on the monitoring of the 
carrier signal phase of a source RF signal. The drawbacks of this technique are that 
the signals monitored need an accurate clock to provide reliable phase analysis and 
that the carrier signal can be affected lowering positional accuracy. 

Another RF based approach that can be taken is to monitor certain network 
properties, from generic signal strength to data recognition, including such as cell 
IDs or signal fingerprinting [13]. This family of approaches has one main drawback: 
The subscriber system must have either a pre-determined database of network 
topology data or have acquired it via a lengthy simultaneous localisation and 
mapping (SLAM) procedure. Both of these approaches are difficult to implement in 
practical scenarios where either RF topology changes rapidly without the network 
operators knowledge or there is no time to build up a complex SLAM calibration 
scheme. 

GPS receivers are currently integrated on many mobile phones. The task of relaying 
the GPS information over the network to the network operator is trivial. There are 
however limitations to using GPS in urban environments. To operate successfully, 



the receiver needs a clear line of sight view of at least 4 GPS satellites. In most 
locations, this requires a wide field view of the sky, which is not available in many 
urban canyon environments. It is worth noting at this point that, although there are 
many urban areas where there are less than 4 satellites in direct line of sight, many 
densely populated areas are likely to still allow visibility of 1 or more satellites due 
to the good constellation spread of existing GPS satellite networks. 

Success has been made in combining a single GPS receiver with ToA and carrier 
phase analysis to determine a geo-location estimation [9]. This approach combines 
mobile phone network ToA and carrier phase analysis to provide a position estimate 
in the absence of a full set of GPS satellites. Due to limitations in the measurement 
accuracy of the phone network component of this system, location estimates only 
provided an uncertainty of 345 m 95% of the time.  

The concept of combining GPS and terrestrial RF systems can be improved selecting 
a terrestrial signal with better transmission properties than those found in mobile 
phone networks. 

4. Improving U-TDoA Resolution with Short Wave Radio Phase 
Analysis 

The proposed method relies on several layers of techniques with varying accuracy 
levels that complement each other in a typical urban environment, starting with U-
TDoA for coarse acquisition and adding in other techniques to provide added 
robustness and accuracy. 

The system assumes that a U-TDoA system is in operation and can achieve a 
positional accuracy of < 50 m in good conditions with a clear line of sight to the 
subscribers. It is also assumed that the area has a good level of coverage from a short 
wave digital Digital Radio Mondiale (DRM) signal. The DRM radio service is a 
shortwave radio service that uses a modulated carrier wave frequency of 5-6 MHz 
[8], providing a wavelength of approximately 50 m. Due to the commercial nature of 
the DRM service, transmitter location is optimised in urban environments to allow 
good population coverage. 

It is possible in non-multipath environments, with GPS clock accuracy, to carry out 
phase analysis on the recovered transmission carrier wave with a phase noise of <10 
% [4]. This provides a location accuracy of ≈ 5 m if a clear signal is received.  

It has been mentioned that the carrier phase technique requires a GPS level clock 
accuracy of ≈ 100 ns [5]. This only requires visibility of 1 GPS satellite. This 
external time source may also be provided in indoor environments by a GPS time 
repeater system.  

It can be seen that DRM carrier phase analysis, supported by the GPS clock pulse, 
can be overlaid onto the existing U-TDoA system and can improve the locational 
accuracy by an order of magnitude. 



The problem still remains that the system would provide poor results in an area of 
high multipath propagation of the DRM signal. 

5. Combatting Multipath 

To combat the effects of multipath in the signal, an extra layer of geo-location 
techniques is required in the system. A typical multipath environment is considered 
in Figure 2. 

 

Figure 1: Typical Urban Environment with Multiple Signal Paths 

It can be seen in Figure 1 that subscriber 1 does not have a direct line of sight with 
the DRM transmitter and is receiving both a reflection and a refraction of the 
transited signal. Receiving both signals, with a slight time delay increases carrier 
phase noise and makes the position estimation within the DRM signal less accurate. 

If the phase analysis is carried out sufficiently frequently (at least 8 samples per sine 
wave), the subscriber system can calculate the quality of the carrier phase analysis. 
In the scenario shown in Figure 2, subscriber 2 has a good line of sight with the 
DRM transmitter, so consequently could easily determine that it has a good Gaussian 
distributed positional accuracy. Conversely subscriber 1 knows that it has a poorly 
distributed carrier phase signal and is likely to have a poor positional accuracy 
distribution. 

In this case, subscriber 1 can gain a relative position from subscriber 2. This is 
possible by using the IEEE 1588 precession time protocol (PTP) in conjunction with 
ITU Synchronous Ethernet (SyncE) standard. The combination of the PTP time plane 
and SyncE frequency plane to estimate ToA can provide timing accuracies of ≈ 4.5 
ns. [M. Ouellette et. al. 2011] proving a relative positional accuracy of < 2 m 
between the two users. From this relative navigation solution, it is possible for 
subscriber 2 to maintain a geo-location with an estimation error of < 10 m, even in an 
area of high multipath and poor line of sight with any external reference. 

6. Simulation Details 

The aim of the simulation is to calculate the positional estimation accuracy of 
subscribers in a system where carrier phase analysis and ToA geo-location are used 



simultaneously to determine a user’s geo-location in areas of both low and high 
multipath. 

The following major limitations and assumptions have been applied to the simulation 
model; the subscribers are not moving; During reflections and refractions there is no 
frequency shift to the affected signal; The received signal strength is suitably high 
and free from interference, including atmospheric effects, throughout the simulation; 
Subscriber 1 and 2 are free to share their positional estimate in real time with each 
other. While these limitations may have minimal impact in certain environments, 
these limitations are likely to affect the simulation accuracy when compared with 
most real world environments. The accuracy results derived from the model should 
be considered a ‘best case’ example. 

The case environment to be simulated is that shown in Figure 2. The simulation will 
assign typical signal generation errors [8] and free space delays to estimate the 
positional accuracy and confidence level in a multipath environment. The simulation 
will be broken into two stages. Stage 1, as shown in Figure 3, will simulate the 
system relying on DRM phase analysis alone. The second stage of the simulation, as 
shown in Figure 4, will add the layer of system that relies on relative geo-location 
between subscriber 1 and 2. This will allow the final positional estimate of subscriber 
2 to be calculated after combing the uncertainty of subscriber 1 and the uncertainty 
of the relative position of subscriber 2 from subscriber 1. 

 

Figure 2 –Simulink Simulation of DRM Phase Analysis System 

Figure 4 simulates the maximum likely geo-location accuracy of the DRM based 
system in an area of good RF line of sight to subscriber 1 and while in an area of 
high multipath, as seen by subscriber 2. The DRM transmitter, comprising of a 
carrier wave with amplitude and phase noise added is shown in green. The red blocks 
calculate typical errors of free space transmission in direct path, reflection and 
refraction environments. The black and blue blocks simulate the receiving and time 
stamping errors of subscriber 1 and 2 respectively.  



 

Figure 3 –Simulink Simulation of SyncE and PTP Link 

Figure 4 shown the simulation model used to estimate the ToA jitter during relative 
geolocation via a combination of SyncE and PTP. The red blocks simulate typical 
errors expected from the free space transmission after the corrections applied by 
SyncE have been applied. The black blocks attribute the reception, processing and 
transmission errors expected from the subscriber 1 hardware. Subscriber 2, 
represented by the blue blocks, simulates the appropriate hardware transmission and 
reception errors of the system. In addition to this, subscriber 2 also monitors the jitter 
and delay in the system by comparing the difference in the network layer 
transmission and reception of a pre-determined packet header. 

7. Simulation Results 

7.1. DRM Phase Analysis 

The simulation shown in Figure 3 was run by Simulink®. The resulting carrier phase 
analysis noise can be seen in Figure 5. 

 

Figure 4 - Comparison of Subscriber 1 and Subscriber 2 with DRM Carrier 
Phase Geo-Location Only 



It can be seen in Figure 5 that subscriber 2, the subscriber that is coping with 
multipath signals, has a significantly wider spread of signal noise. Analysis of the 
data revealed that the 3σ estimate of position was 4.41 m for subscriber 1 and 16.31 
m for subscriber 2. 

7.2. PTP and SyncE 

The simulation shown in Figure 4 was run. The resulting ToA jitter, causing 
positional uncertainty in the relative position of subscriber 2 from subscriber 1, can 
be seen in Figure 6. 

 

Figure 5 - PTP and SyncE Message Timing Jitter 

The PTP and SyncE message jitter has been plotted in Figure 6. The 3σ error of the 
system between subscriber 1 and 2 is 25.489 ns. This equates to a 3σ relative 
location error of 7.45 m. 

As the absolute positional accuracy of subscriber 2 is a combination of the 
uncertainty of subscriber 1 and the relative position of subscriber 2, the resulting 
probability density functions (PDFs) have been multiplied together to produce the 
distribution shown in Figure 7. 

 

Figure 6 - Subscriber 2 Absolute Positional Accuracy 

This provides subscriber 2 with a 3σ geo-location accuracy of 10.52 m. 

 



7.3. Summary 

Table 1 - Simulation Results Summary 

Subscriber 1 DRM Geolocation Estimate (3σ) (m) 4.4 

Subscriber 2 DRM Geolocation Estimate (3σ) (m) 16.3 

Subscriber 2 Combined relative and DRM Geolocation Estimate (3σ) (m) 10.5 
 

It can be seen in Table 1 that the DRM phase analysis, in the absence of multipath, 
can provide an order of magnitude improvement over the existing U-TDoA systems 
used in current E911 systems and could provide the coverage required by NG911 
legislation in the simulated environment. In the multipath environment at subscriber 
2, the system alone does improve on the existing U-TDoA systems, but is unlikely to 
provide accurate enough readings for future NG911systems alone. 

With the addition of the PTP and SyncE relative geo-location technology, the 
positional accuracy of subscriber 2 after combining all system uncertainties provides 
an absolute uncertainty that is significantly better than that found in existing 
subscriber geo-location systems and may well provide the coverage required by 
NG911 legislation 

8. Future Work 

There is potential for the simulation model to be improved by working to remove 
some of the significant limitations described in section 6. 

9. Conclusion 

It has been demonstrated that combining several layers of complimentary geo-
location techniques that are either in existence on mature products or emerging from 
research NG911 geo-location accuracy in dense urban environments could be 
achieved. 

Although each of the technologies used in isolation have significant drawbacks in 
their ability to provide a geo-location estimate, combining several layers of 
techniques may allow users to estimate their location in a range of complex 
environments. 
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Abstract: Network based geographic localisation has been widely researched in recent years due to the need to locate 

mobile data communication nodes to a level of accuracy equivalent to that provided by global navigation 

satellite systems (GNSS) in multipath urban and indoor environments. This paper investigates whether 

direct sequence spread spectrum (DSSS) signal processing can be applied to narrow-band radio channels to 

improve the ranging estimates. The DSSS signal processing application is then developed further to provide 

a method of deriving a measurement confidence indicator, allowing the optimisation of time separated 

measurements in a dynamic signals of opportunity radio environment. A set of validation tests demonstrates 

that the proposed method provides a significant improvement in the accuracy and robustness of the ranging 

estimate compared to simple threshold analysis in multipath environments.  

1 INTRODUCTION 

Radio positioning systems have achieved common 

use in a diverse range of systems. The most 

commonly used radio positioning systems are global 

navigation satellite systems (GNSS). These systems 

use signals received from satellite to calculate the 

position of the user to within 4m during 95% of the 

time [1]. GNSS systems rely on a line of sight (LoS) 

view of at least 4 satellites. This requirement cannot 

however, be guaranteed in urban or indoor 

environments where ‘urban canyons’ and roof cover, 

block sight to much of the surrounding sky. 

Research has been carried out into using signals of 

opportunity for localisation in such environments, 

particular success has been achieved by using time 

of arrival (ToA) systems to derive a user’s location 

[1], even in urban or indoor environments where 

multipath propagation is one of the main sources of 

system error [2]. Constructive and deconstructive 

interference between the non-line of sight (NLoS) 

propagating signals can destroy or obscure the LoS 

signal that is required to derive an accurate ToA 

estimate. 

Ultra wide band (UWB) signal analysis techniques, 

originally developed for low emission radar [3], 

have achieved promising results when applied to 

localisation in wide bandwidth direct sequence 

spread spectrum (DSSS) networks [4][5]. These 

techniques rely on the differing multipath properties 

of the wide spread of frequencies to provide an 

improved leading edge time of arrival (ToA) 

estimate and to achieve GNSS levels of accuracy in 

wide bandwidth multipath environments.  

This paper builds on the use of prior art wide 

bandwidth signal processing techniques and 

investigates their use in signals of opportunity 

networks that commonly collect time separated 

narrow bandwidth measurements such as frequency 

hopping spread spectrum (FHSS) networks. FHSS 

networks are typical to military [6] and civilian [7] 

systems and challenges remain to use them to 

achieve GNSS levels of location accuracy in 

multipath environments [8] due to the time separated 

nature of the received signals. 

This paper proposes a method that allows the system 

to use time separated ToA estimates and, without 

prior training or additional data collection, generate 

a low latency and high bandwidth filtered ranging 

estimate. The benefits of the proposed method are 

verified through simulation. The accuracy and 

responsiveness of the ranging estimate shall be 

analysed in both static and mobile receiver 

environments. 



 

This paper is organised as follows; Section 2 

discusses the prior art. Section 3 proposes a method 

to use the leading edge detection algorithm to extract 

the data required to weight the values in a recursive 

filter. Section 4 provides details of the simulation 

environment and evaluates the ranging estimate 

performance. Section 5 concludes and discusses 

further work. 

2 PRIOR ART  

2.1 Leading Edge Detection 

Basic ToA detection systems commonly use simple 

threshold based leading edge detection [2], which 

relies on the assumption that the LoS message will 

arrive first via the shortest direct path. In many 

situations however, the LoS component may be 

heavily attenuated by deconstructive multipath 

interference providing a leading error driver for 

indoor or urban ranging system accuracy. 

Search-back algorithms improve on the ToA 

accuracy by analysing the received packet and 

performing a search-back to determine physical 

layer properties of the message to determine the time 

of arrival more robustly [9]. These algorithms 

require prior knowledge of the multipath 

environment which cannot be provided in many 

applications.  

The Multiple Signal Classification (MUSIC) 

algorithm [10] extends the analysis to allow 

multipath signals to be used as a further information 

source and has become widely used in research. This 

algorithm requires a substantial training period to 

determine the number of multipath signals present to 

achieve better performance than relying on leading 

edge detection alone. Again, a training period is not 

practical in many applications where the device is to 

be used to navigate around an unknown area. 

UWB signal processing techniques utilise the wide 

frequency range of the received signals to provide an 

improved ToA estimate. The analysis of the full 

frequency range available allows the user to 

determine frequency specific multipath variations 

and make an improved estimation of the true ToA 

reading. A widely implemented example of an 

existing UWB signal processing technique, 

described in [5], has been selected for further 

development in this paper. This technique was 

developed to detect the leading edge of a signal 

obtained from a wide bandwidth transmission. It has 

been selected for further development due to the fact 

that the running filters applied to the raw data may 

provide additional data to the user following further 

analysis.  

The UWB signal processing technique is applied to 

any wide band received data as follows: if h(t) 

represents the received signal in the time domain, it 

is first passed through a rectified moving average 

filter as shown in (1). 
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The averaged signal y[t] is then passed through two 

filters of sizes n1 and n2 which return the maximum 

value from a sliding window, as shown in (2) and 

(3). 
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A binary indicator of whether a leading edge has 

been detected can be obtained from (4). 
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The threshold detection level, thresh, is typically set 
to 3σ of inter message in-channel received signal 
noise. 

2.2 Application Considerations for 

Navigation Filters 

Recursive averages are commonly used in 
navigation systems to produce a low noise and low 
latency location estimate from a noisy measurement 
input. In order to provide an efficiently filtered 
output, the measurement system that populated the 
recursive filter must provide not only a measurement 
value, but also a dynamic confidence indicator. 
When using a simple threshold detection algorithm 
to detect the leading edge of a received signal, the 
only information that can be provided to the 
navigation filter is the time when a received value is 
greater than the selected threshold. If this 
information is available for each FHSS channel, a 
simple un-weighted recursive filter shown in (5) can 
be constructed to update the users filtered location 
based on the its previous position and the latest 
sensor data where, as commonly used in filter 



 

notation, x̂  represents the filter output, x  
represents the previous state and  x~  represents the 
latest sensor value. The measurement confidence is 
represented by α. 
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The filter represented in (5) may be tuned by 
adjusting the value of α by a predetermined value.  
A value of α < 0.5 reduces the noise of the filter 
output at the expense of a higher latency if the 
receivers true location changes. A value of α > 0.5 
generates a more responsive, lower latency filter 
output but the filter output noise will be adversely 
affected. Both of these options are unsuitable for 
many system applications. 

3. PROPOSED METHOD 

The leading edge detection algorithm described in 
section 2.1 has been developed for wide band signal 
processing and analyses all of the data from the wide 
frequency range with each measurement. 
The receiver system to be developed by this paper 
makes a ranging estimate upon detection of the 
leading edge of a received signal using the signal 
processing technique described in section 2.1. The 
process of running the n2 filter (3) to return the 
maximum value in the longer sliding window 
continues for the duration of the first message in the 
current FHSS channel. The data obtained from the 
maximum value sliding windows is placed into a 
column vector and a standard deviation taken to 
determine the presence and magnitude of multipath 
present throughout the message. This is then 
correlated to provide a numerical confidence value.  
The process is represented in equations (6) and (7). 
The standard deviation, σ, is first calculated in (6) 
with n2 as the filter length, xi is each iterative filter 
value and xa is the current filter average. This 
standard deviation is then normalised in (7) to 
produce a dynamic measurement confidence, α.  
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α represents a confidence factor with a weighted 
value between 0 and 1 for low to high confidence 
measurements respectively. This confidence 
measure can then be used to dynamically tune the 

filter shown in (5) to generate a recursive filter input 
that benefits from both low noise and low latency. 
This has been achieved by providing a high 
weighting value to ranging estimates received with 
good confidence and a low weighting to estimates 
with a low confidence, even if there has been true 
movement by either the transmitter or receiver. 
The ability to achieve this from a multipath data 
source dynamically and without prior knowledge is 
of a key benefit in higher level navigation systems, 
as discussed in section 2.2. This confidence 
weighting has been achieved without the use of any 
additional information or averages over the ones 
implemented to allow the improved leading edge 
detection. 

4. SYSTEM VALIDATION 

4.1 Simulator Validation 

A simulated radio frequency (RF) environment was 

modelled in Matlab® and Simulink® to evaluate the 

effectiveness and performance of the techniques 

discussed in section 3. The simulation uses the 

standard multipath simulation model [11] shown in 

(8) where Lp is the number of multipath 

components, α is the complex attenuation and τ is 

the propagation delay. 
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The simulation assumes that an idealised transmitter 

generates a single frequency modulated pulse; for 

validation, the FHSS network parameters included 

100 20 kHz channels evenly spaced from 3 to 5 

GHz. The transmitted pulse is then subjected to 

empirically derived propagation and receiver 

distortions to produce a received signal for analysis. 

The resulting signal includes simulated effects of 

multipath with the use of separate propagation 

channels, the number of which can be set by the 

user. The simulations evaluated throughout this 

paper will consider a LoS propagation path of 10 m 

with several multipath reflection paths with an 

apparent time path from the transmitter to the 

receiver consistent with 10.1 m to 11.2 m 

propagation distances. 

This simulated environment has been used to 

ascertain the performance of a simple threshold 

detection algorithm in a Monte Carlo based 

simulation of a wide range of FHSS channels in a 



 

fixed geometry. A typical single transmitted 

message and the received signal patterns in a high 

multipath environment can be seen in Fig 1. 

 
Fig. 1.  Transmitted (top) and received (bottom) pulse 

with the location of the detected leading edge of the 

pulse marked by the red symbol. 

 

The threshold detection algorithm has been 

simulated assuming a static receiver and transmitter 

across a range of FHSS channels to benchmark the 

simulation. The results can be seen in Fig. 2 and 

shows properties that are expected in multipath 

environments, as seen in [1] and [2]. The similarity 

to data collected by practical test in previous 

research provides confidence that the simulation is 

representative. 

4.2 Technique Validation 

A comparison of edge detection seen by employing 

UWB signal processing techniques to each narrow 

bandwidth channel as opposed to simple threshold 

detection can be seen in Fig. 2. 

 
Fig. 2.  Comparison of threshold based and UWB 

signal processing leading edge detection methods. 

Analysis shows that the Poisson distribution 

variance has a λ value of 17 for the threshold 

detection algorithm and an improved λ value of 5 for 

the UWB threshold detection. The received 

estimates across the range of networks not only have 

less average error but also a greater distribution 

density than can be obtained from simple threshold 

detection alone. As well as a significant 

improvement in the Poisson distribution, the UWB 

based edge detection algorithm removes the 

erroneous outliers seen at ≈ 0.7 m and ≈ 1.1 m error 

in the threshold detection algorithm. This behaviour 

may account for the high multipath uncertainty seen 

in [12] where a simple threshold detection algorithm 

was used to detect the ToA to estimate range. 

Detail of the detected trigger timing at the leading 

edge of a signal with light multipath is shown in Fig. 

4. 

 
Fig. 3. UWB leading edge detection of pulse in a noisy 

multipath environment.   

 

Figure 3 is a magnification of the area of interest, 

related to the transmission pulse as shown in Fig. 2. 

Areas of constructive and deconstructive multipath 

effects can be seen throughout the 34 ns to 42 ns 

region where a non-multipath signal would be 

expected to produce a stable series of 1 V peaks. 

The simulation has shown that the evaluation tests 

for the UWB algorithms discussed in section 2.1 

produce a significant improvement over threshold 

detection when providing ToA estimation in high 

multipath FHSS networks when only a single narrow 

bandwidth channel can analysed at a time. 

Further to the improvement shown in ToA estimates 

in a high multipath environment, the application of 

the additional data available, described in section 3, 

to a recursive navigation filter is analysed in the 

remainder of this section. 

The application of threshold analysis data, where no 

weighting data is available for the new samples, into 

the simplified recursive filter leads to a noisy and 

poorly filtered position estimate. Fig 4. compares  a 

plot of the raw measured and filtered ranging 

estimate obtained from a simulation of a static 



 

system that sweeps through 100 FHSS channels over 

a 5 second period. 
 

 
Fig. 4.  The raw and filtered output from the threshold 

detection algorithm with a pre-selected static confidence 

interval. 

 

The results displayed in Figure 4 verify that the 

filtered position estimate from an un-weighted 

recursive filter is comparatively noisy and produces 

a large filtered error in the event of a multipath x~  

leading edge detection received from the sensor, as 

seen approximately 0.2 seconds into the simulation.  

The application of the position estimates and the 

relative variance derived using the method described 

in section 3 has been applied to a weighted 

navigation filter. The application of this navigation 

filter in the simulation leads to improved stability to 

the position estimate which, combined with the 

improvement in leading edge detection reliability 

and the absence of outliers, leads to a greatly 

improved position estimate over the threshold 

detection algorithm, as shown in Fig. 5. 

 

 
 
Fig. 5. The raw and filtered output from the navigation filter with 

UWB leading edge detection and dynamically obtained 

confidence interval. This should be compared with Fig 6 to see 

the improvement achieved. 

 

In a physically static system, as simulated in Fig 4 

and Fig. 5, where the relative position of the 

transmitter and receiver does not change, the 

sensitivity to erroneous data could be mitigated by 

weighting the raw sensor data by a pre-determined 

factor of  <1 depending on sensor noise. While this 

will limit the filter error in the event of erroneous 

multipath readings and produce a more accurate 

location estimate, it also introduces high latency if 

the receiver or transmitter truly moves location. The 

application of a dynamically weighted recursive 

filter prevents an erroneous multipath ToA reading 

from causing filter noise. If however, the system 

truly moves, a new filter input with a new position 

estimate with a high weighting will be received and 

the filter output will respond with little latency. 

A further simulation was run to evaluate the effect of 

a true receiver motion on the filter output. To 

simplify the simulation, a single narrow bandwidth 

channel with no frequency hopping was used 

throughout the experiment.   After approximately 

1.2s into the simulation, the receiver node 

instantaneously moves 1m within a multipath 

environment and remains static for the remainder of 

the simulation. 

Fig. 6 shows a comparison of the filter response to 

the applied motion with both threshold detection and 

UWB detection inputs.  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6. The response of the filters to an instantaneous 1 m 

movement of the receiving node.   

 

The threshold detection filter still has a greater error 

before and after the 1 m move of the receiver node 

than the UWB filter, as expected. The area of 

interest highlighted by this simulation is the 

difference in time taken for the filter output to 

identify the change in location. The dynamic 

weighting to x~  allows the UWB filter to respond 

with minimal latency in the event of true receiver or 

transmitter movement. The improvement seen in Fig 



 

6 is due to both the improved UWB ranging 

estimate, shown in Fig 2 and the ability to weight the 

measurements. These contributing factors have not 

been analysed separately due to the fact that the 

weighted recursive filter may be implemented 

without any additional data collection and should 

always be used to provide an optimised solution. 

5. CONCLUSIONS AND 

FURTHER WORK 

 

This paper proposed a set of algorithms and 

application techniques that improve narrow 

bandwidth channel ranging estimates in signals of 

opportunity environments. The novel application 

and further development of DSSS signal processing 

techniques to provide not just an improved ranging 

estimate but, by re-analysing existing data, an 

additional confidence weighting. 

By re-analysing the available data, a filter 

confidence factor can be obtained that can be 

calculated dynamically without the need for a 

training period and without any prior knowledge of 

the radio system and environment. More 

specifically, the use of UWB signal processing 

techniques provided an approximately 4 times 

improvement in ranging estimation over simple 

threshold detection even in narrow bandwidth 

channels, including a better Poisson distribution and 

higher resilience to false detections.  

The main benefit of applying this technique is that a 

filtered ranging estimate can be obtained that is 

more accurate, lower noise and lower latency than 

can be obtained by using simple threshold detection 

techniques to detect the leading edge of a message. 

The analysis of the proposed technique performance 

throughout this paper has been carried out only in 

multipath environments. It is anticipated that the 

benefits of the technique will be significantly less 

apparent in less hostile environments.  

Future work should include the physical test of this 

system to verify the model. The integration of the 

algorithm into higher level systems is also required 

to verify the higher level benefits shown during 

simulation. The close coupling of this system with 

higher level navigation systems, in particular 

Kalman filtering schemes may also allow the 

development of a significantly improved signal of 

opportunity based localisation system. 
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Abstract – Interferometric navigation systems have shown that 
they can produce accurate geo-location estimates with minimal 

hardware requirements. They are not however suited to urban 
and indoor environments where multipath effects corrupt the 
geo-location estimate. Interferometric systems may however 

provide an improved data source for simultaneous localisation 

and mapping techniques, increasing geo-location estimate 

accuracy while simultaneously reducing hardware requirements 
and processing load. 

This short paper proposes a method to combine the these existing 
geo-location techniques, providing an accurate geo-location 

estimate in urban and indoor environments. Proof of concept is 
demonstrated via simulation and initial hardware testing. 

Keywords — Radio positioning, SLAM, urban and indoor 

navigation, network geo-location 

 

I.  INTRODUCTION 

Radio navigation in urban in indoor environments continues to 

present several challenges to researchers. The ability to use 
radio frequency (RF) signals to calculate and maintain an 

accurate geo-location indoors is available today via pre-known 

RF mapping databases, such as those provided Skyhook [1]. 

The dependence on a 3rd party database is not desirable in 

many applications. Instead, many users would prefer to build 

their own RF mapping data in real time and use this to 

determine their location. Simultaneous localisation and 

mapping (SLAM) techniques tailored for low size weight and 

power (SWAP) devices such as smart phones as presented by 

Faragher et. al. [2]. 

Low SWAP hardware has also been used to enable an accurate 

geo-location estimate for long range localisation, as presented 

by the radio interferometric positioning system (RIPS) 

research [3]. This system allows accurate long range 

localisation in optimal, non-multipath environments, but does 

not perform well in urban or indoor environments where 

multipath dominates. The multipath interference measured by 

the RIPS system in urban environments provides an ideal data 

source for a SLAM system. An opportunity exists to combine 

the available RIPS and SLAM systems to improve the 

accuracy of the geo-location estimate in urban environments 

while simultaneously reducing hardware requirements. This 

paper presents methods that will allow the SLAM and RIPS 
techniques to be combined efficiently to obtain these 

improvements. The proof of concept is then demonstrated by 

simulation, using widely accepted simulation techniques. 

 

II. SUMMARY OF PRIOR ART 

The combination of two RF geo-location techniques has been 

proposed. This section will describe the key operation 

parameters of each system required to allow later integration. 

The RIPS system [3] analyses the relative carrier phase for the 

signal strength at the measured location and uses multiple 

transmitters to generate a low frequency and long wavelength 
beat signal. The system has been proven to work well in open 

environments with few RF propagation variations. In ideal 

conditions the system has produced location errors as low as 3 

cm at a range of greater than 160 m using low SWAP radio 

hardware. Received signal strength analysis allows the relative 

location of an unknown transmitter to be calculated using the 

formula below (1). 
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Experimentation results with the RIPS system does however 

indicate that the system suffers significant degradation when 

used in areas that contain multipath. This is caused by the 4 

signal paths may suffer difficult to predict apparent phase 

corruption, degrading the accuracy of the resulting location. 

This currently limits the potential applications for the RIPS 

technology due to the fact that it is unsuitable for use in dense 

urban environments where multipath is common. 

One major benefit of this system is that the phase offset, 

calculated from several high frequency RF signals, produces a 

low frequency beat frequency measurement, typically at 100 



 

 

Hz to 400 Hz. The phase of the RSSI offset has been 

demonstrated to be accurately recorded with low SWAP 

hardware. In addition, only a single channel has to be 

monitored by the hardware for the system to operate. 

The second RF geo-location to be considered is the low 

SWAP tailored SLAM technique. This technique uses a 

modified fingerprint extended Kalman filter (FEKF) to 

analyse received signal strength indicator (RSSI) ‘fingerprints’ 

in an area to produce a real time map of the RF environment. 

The accuracy achieved by the SLAM technique increases as 

the signal strength topology becomes increasingly complex as 

typical in high multipath environments.  

The fingerprint extended Kalman filter defines a fingerprint to 

be a vector of N received signal strength (RSS) measurements 

from N distinct radio transmitters. The Kalman filter Z matrix 

is populated with the fingerprint data, shown in (2). 
 

T
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The predicted value matrix, h, values are drawn from any 

populated values in the signal strength map, M. 
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The measurement noise matrix, R, is populated form the 

variance of the noisy RSS measurements, R, and the variance 

of the predicted measurements, V , as shown in (4). 
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The measurement matrix, H, is populated from the loop-up 

coordinates shown in (5), where J related to the Jacobian 

derivative map. 

),()1,( , yxJ=iH xi  
(5) 

),()2,( , yxJ=iH yi  

The advantage of the map is that, as the number of contours in 

the SLAM map increases, the accuracy of the estimated 

location and the reliance to unrealistically large geo-location 

jumps increases. 

 

III. PROPOSED TECHNIQUE 

The accuracy of the SLAM algorithm is increased as the 

resolution of the maintained RF map increases. The technique 

described in this paper uses the inputs from the interferometric 

signal in a multipath environments as the source of the data for 

the FEKF SLAM technique.  

  

BeatSignalN RSSRSS =  
(6) 

The RIPS interferometric RSSN values are used as the input to 

the Kalman filter w matrix (2). In high multipath 

environments, the phase offset will have many contours due to 

the varying level of multipath in each of the contributing 

signals. In multipath environments, the RSSI of the beat signal 

has many times more contours in that in of a set of separate 

channel RF transmitters these contours can be monitored at a 

low frequency, allowing low SWAP hardware to maintain a 

high resolution topology map of the environment. The 

remainder of the FEKF matrices are dynamic and will 

maintain their state efficiently in a range of conditions. No 

further modifications will be required when transitioning from 

single channel to interferometric signal strength analysis. 

 

IV. SIMULATION AND TEST 

A typical SLAM map has been modelled to demonstrate the 

contour resolution available to the FELF filter for both 

interfering and non-interfering signal analysis. 

The model has been generated in Matlab® using simple signal 

generation techniques.  

The simulation uses the standard multipath simulation model 

[4] shown in (7) where Lp is the number of multipath 

components, α is the complex attenuation and τ is the 

propagation delay. 
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The resulting SLAM map available to the FEKF filter in each 

scenario can be seen in Figure 1 and Figure 2.  

 

 
Figure 1 - SLAM Map Simulation with Non-Interfering 

WiFi Signals as the Measurement Source. 



 

 

 
Figure 2 - SLAM Map Simulation with RIPS System 

as the Measurement Source.  

 

As location accuracy is dominated by the available contour 

resource, the simulation results shown in Figure 1 provide a 

contour resolution of around 10 m to 15 m . This is in line 

with the test results reported from previous FEKF simulations 

[2][5][6]. The addition of the RIPS system in Figure 2 shows 
that the potential location accuracy in a multipath environment 

is likely to be in the region of 1 m to 2 m. 

The concept demonstrated by the simulation modelling has 

been further proved by initial testing with practical hardware. 

Low SWAP hardware has been used as both the transmitter 

and receiver. The transmitters used are low bandwidth 27 

MHz radio transmitters and the receiver is a modified software 

defined radio receiver. Both devices are shown in Figure 3. 

 

 
 

Figure 3 - Software Defined Radio Receiver and 27 
MHz transmitter 

The transmitters and receiver have been configured as 

simulated in Figure 2. Initial testing, aimed at providing a 

level of confidence in the simulation results, consists of taking 

spot measurements of the RSS at the simulated locations. A 

comparison of the RSS spot measurements can be seen in 

Figure 4. 

 
Figure 4 - Normalised RSS Spot Measurements 

The comparison of the hardware test and simulation RSS 

measurements has provided confidence in the simulation 

environment, adding further weight to the initial proof of 

concept. 

V. CONCLUSIONS AND FURTHER WORK 

This short paper has proposed a method to combine two 

existing urban and in door geo-location techniques to provide 

an improved geo-location estimate. The dynamic and efficient 

fingerprint Kalman filtering scheme, designed for use on low 

SWAP hardware provides a mechanism for efficiently using 

signal strength data to generate a real-time SLAM map. This 

system, often limited by a lack of contrast in the signal 

strength input can be enhanced with the addition of 

interferometric data. The addition of interferometric data 

provides a rich resource, providing additional geo-location 

resolution while simultaneously reducing the required 

processing load on the target hardware by reducing the 
number sensing channels. 

Initial simulations show good similarity with previous 

practical test data and with initial hardware testing in a 

controlled environment. While the simulation has 

demonstrated the proof of concept, further work is required to 

conduct more detailed practical testing to provide quantitate 

results of the combined techniques in a range of indoor and 

urban environments. 
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Abstract Motivated by the geolocation requirements of fu-
ture mobile network applications such as portable internet of
things (IoT) devices and automated airborne drone systems,
this paper aims to provide techniques for improving device
geolocation estimates in urban and indoor locations. In these
applications low size, weight and power are vital design con-
straints. This paper proposes methods for improving the
geolocation estimate available to a system in indoor and urban
environments without the need for addition sensing or trans-
mitting hardware. This paper proposes novel system applica-
tion techniques that enable the integration of signals of oppor-
tunity, providing a robust geolocation estimate without any
additional hardware. The proposed method utilises a sinusoi-
dal Kalman filter architecture to analyse raw radio frequency
(RF) signals that surround a system in urban and indoor envi-
ronments. The introduced techniques efficiently analyse the
raw RF data from any signal of opportunity and combine it
with higher level geolocation sensors to provide an improved
geolocation estimate. The improvements achieved by the sys-
tem in a range of environments have been simulated, analysed
and compared to the results obtained using the prior art. These
improvements have been further validated and benchmarked
by hardware test. The results obtained provide evidence that
the efficient use of signals of opportunity coupled with com-
mon navigation sensors can provide a robust and reliable
geolocation system in indoor and urban environments.

Keywords Signals of opportunity . Kalman filtering . Radio
navigation and geolocation

1 Introduction

Distributed networks of mobile and autonomous devices are
likely to become increasingly common as the expected wide-
spread adoption of both internet of things (IoT) and autonomous
mobile robotic systems continues. As people spend approximate-
ly 90% of their time indoors [1], these systems will be predom-
inantly located in indoor and urban environments. The indoor
environment is likely to become crowded with large numbers of
portable, low power, small size andwirelessly connected devices.
The increasingly busy radio spectrum is expected to be filled
with wireless communications from vast numbers of transmitting
devices. While this increasingly congested RF spectrum is a
concern for many system designers, it does provide a potentially
valuable resource for an accurate device geolocation estimate.
Geolocation estimates are vital to many system designers for
two main reasons; the first is to enable devices to navigate their
environment. The second benefit, particularly in IoTapplications,
is to be able to tag any generated data with a geographical loca-
tion. This commonly increases the value of the information that
can be gained from the vast array of data produced.

Global navigation satellite systems (GNSS) and low cost
inertial navigation systems (INS) are commonly used to pro-
vide geolocation estimates. While significant work has been
carried out to closely couple GPS and INS systems to mitigate
their respective error drivers, these coupled systems are unable
to provide accurate geolocation estimates in urban and indoor
environments where GPS updates may be unavailable for ex-
tended periods of time. A review of current research has re-
vealed an opportunity to couple data link RF signal analysis
into the INS system, allowing the rich RF resource found in
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urban and indoor environments to maintain geolocation esti-
mates where existing systems encounter their greatest errors.

This paper presents a set of novel techniques aiming to
improve the accuracy of geolocation estimates for a wide
range of systems. A key principle of the proposed techniques
is the ability to monitor the phase estimate of surrounding RF
signals to provide a ranging estimate from the transmitter. A
sinusoidal Kalman filter is proposed that allows an accurate,
low latency and low noise phase estimate to be maintained by
the system. The resulting ranging estimation does not drift
with time and lends itself to close and ultra-close coupling
with INS and other system level geolocation systems, tech-
niques for which are also presented in this paper.

The proposed methods are analysed and compared to
existing methods through simulation. The obtained simulation
results are further validated with a set of practical tests using
data link devices typical to proposed IoT and autonomous
mobile systems. The results demonstrate that, with even lim-
ited prior knowledge of the wireless data link environment, an
accurate geolocation estimate is maintained for prolonged pe-
riods in urban environments.

Section 2 discusses existing system capabilities. Section 3
discusses the proposed system implementation. Section 4 pre-
sents simulation and test results. Section 5 discusses the key
findings, conclusions and further work.

2 Current geolocation solutions

GNSS systems, such as the global positioning system (GPS),
are commonplace in cars, mobile phones and a wide range of
timing systems. All applications suffer the same significant
limitation: current receivers are not sensitive enough and
transmissions are not strong enough to operate the system in
indoor environments. Even in urban environments such as city
centres, GNSS systems frequently provide poor coverage due
to the limited line of sight from the satellites to users at ground
level when surrounded by tall buildings [2].

An alternative form of geolocation, not requiring an exter-
nal input, is to use an INS to provide a dead reckoning esti-
mate. INS systems provide information about changes in ve-
locity or angular rate, allowing a user to calculate their posi-
tion relative to a known starting point. The major drawback of
this approach is that the dead reckoning technique integrates
errors over time, causing the users calculated position to drift
with respect to their actual position. Many grades of INS are
available, with differing rates of drift related to the INS’s ac-
celerometer and gyro biases during operation. Small, low
power systems often have larger biases which cannot be cal-
ibrated out for a particular measurement [3].

Coupled IMU and GNSS systems apply the input from
both systems into a navigation filter, such as a Kalman filter
[4]. Coupled systems have been developed to use the poten-
tially intermittent GNSS system to remove the integration er-
rors accumulated in the continually available IMU data [5]. As
detailed in Fig. 1, the provision of an externally generated
ranging estimate allows the multiplication of the two proba-
bility distributions to provide an improved geolocation
estimate.Closer coupling through an extended Kalman filter
allows benefits to both the IMU by removing bias errors and
the GNSS system by allowing an improved ability to track
weak signals [6]. Research has also been carried out to enable
extended Kalman filters to carry out feature recognition that, if
compared to a known map, allows the Kalman filter to recog-
nise features and objects in a mapped environment. Upon the
recognition of a known feature, an external ranging estimate
can be calculated. This allows both an improved location es-
timate and the ability to calculate and remove errors from
other system sensors [7, 8].

Recent research has been carried out on the ability to use
existing RF signals to provide a feature recognition, with pro-
posed solutions commonly referred to as signals of opportu-
nity systems. System applications use signal strength finger-
printing [9], message content [10] or message flight time [11,
12] to derive geolocation data from the RF signals of oppor-
tunity. These systems each have their own limitations; how-
ever, the need for prior signal mapping information and poor

Circular error probability estimate 
from a typical INS/GNSS system.

Ranging probability estimate.

The high combined probability at
the intersect reveals the true 
location with a high degree of 
confidence.
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Fig. 1 Geolocation example
optimised with the addition of a
ranging estimation
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performance in multipath environments [13, 14] are limita-
tions in all systems [15].

Estimating the phase in signals of navigation has also been
proposed [16]. This technique has produced very encouraging
results in low multipath environments with errors of less than
2 m achieved in low latency systems; however, as with other
techniques, a vulnerability to multipath interference severely
limits its accuracy in indoor and urban environments. While
work has been carried out to mitigate this vulnerability with
multiple RF channels at separated frequencies [17], no solu-
tion has been found that allows the system to operate in mul-
tipath while retaining the ability for the system to work on low
latency mobile systems.

Following analysis of currently available techniques,
geolocation error estimates have been identified for an auto-
mated system in a dense urban environment and presented in
Table 1.

3 Proposed system development

Current geolocation solutions provide good geolocation accu-
racy in areas of low multipath interference; this is not possible
in areas of multipath such as indoor and urban environments.
This paper introduces a novel method for utilising existing RF
sources in order to produce a more accurate ranging
geolocation estimate in multipath environments.

The proposed technique mitigates the effects of multipath
by using a sinusoidal Kalman filter to track the received RF
signal. This filter maintains an estimate of the expected signal
phase and uses the raw RF data as a measurement input. Using
a Kalman filter to maintain the latest measurements, estimates
and covariance’s provides significant robustness against mul-
tipath effects, which tend to be temporary in mobile systems,
while still allowing low latency feature recognition.

The filter is designed to update the ranging estimate at each
filter iteration. The Kalman filter will be created in two stages,
one to predict the phase at the next step and a second to record
data and combine it with the estimation. Matrices are created

to maintain state within the Kalman filter as well as pass in-
formation into and out of the Kalman filter. The proposed
implementations of these matrices are described in Eqs. 1 to 6.

The Φ matrix maintains the translation matrix for a sinu-
soidal system.

Φ ¼ cos ωτð Þ sin ωτð Þ
ω

−ωsin ωτð Þ cos ωτð Þ

" #
ð1Þ

The P matrix maintains the initial state covariance. As the
location of the first reading is unknown, the following P ma-
trix is typically applied.

P ¼ 1e6 0
0 1e6

� �
ð2Þ

The measurement noise is represented in the Q matrix.

Q ¼ 1e−4 1e−4

1e−4 1e−4

� �
ð3Þ

The system noise is represented in the R matrix.

R ¼ 1e−4
� � ð4Þ

And the measurement matrices are represented by the H
and I matrices.

H ¼ 1 0½ � ð5Þ

I ¼ 1 0
0 1

� �
ð6Þ

The estimation step is completed by carrying out the
Riccatti equations [18] as described below. The estimation
step is carried out for each filter iteration:

M ¼ Φ*P*Φ’þ Q ð7Þ
Hmtrinv ¼ H*M*H’þ Rð Þ−1 ð8Þ
K ¼ M*H ’*Hmtrinv ð9Þ

Table 1 Estimated geolocation
accuracy of existing systems in a
dense urban environment

Technique Typical error
(3σ) (m)

Notes

WiFi SLAM [9] 10 Prior knowledge of third party infrastructure required.

Coupled signal of
opportunity [13]

20 The most widely adopted technique in current research if no
environmental prior knowledge is available.

Phase estimation [16] 30 Single multipath source discussed. A lower level of
accuracy is anticipated in urban and indoor environments.

GNSS [1] 40 Not available indoors.

INS [3] 100 Accuracy related to operational time due to integration of error.

ToA estimation [13] 300 Quoted performance is only for ‘mid-urban’ environments.
Dense urban likely to be worse.
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Kh ¼ K*H ð10Þ
P ¼ I−Kh*M ð11Þ

Following the estimation for the current filter step, the mea-
surement can be made and combined into the estimated loca-
tion using the maintained Kalman gain,K. Again the measure-
ment stage, shown in Eqs. 12–15, is run at each iteration of the
Kalman filter.

xhold¼xh ð12Þ

r ¼ Xs−Xh*cos ωτð Þ−sin ωτð Þ*xdh
ω

ð13Þ

xh ¼ cos ωτð Þ*xh þ xdh*sin ωτð Þ
ωþ K 1;1ð Þ*r

ð14Þ

xdh ¼ −ωsin ωτð Þ*xhold þ xdh*cos ωτð Þ þ K 2;1ð Þ*r ð15Þ

This initial Kalman filter provides the coupling from an RF
source to the resulting range estimate as shown in Fig. 2.

This initial implementation will provide a ranging estimation
from an RF source that is resilient to the signal interference
common in indoor and urban environments. The use of a sinu-
soidal Kalman filter also allows the system to have low latency,
resulting in a minimised risk of drift due to phase cycle slip. The

lack of estimate drift over time makes the resulting ranging esti-
mate an ideal signal to be coupled to higher level INS based
navigation systems. The use of a sinusoidal Kalman filter offers
the opportunity for the proposed technique to become the core of
a complete navigation system, with any other available naviga-
tion systems coupling directly to enhance the accuracy of each
subsystem. This paper will continue to present a series of
methods for efficiently integrating other navigation sensors into
a closely coupled system. Figure 3 shows the three stages of
system architecture required for coupled and closely coupled
navigation system integration as well as control data link data
decoding. The complete system has the sinusoidal Kalman filter
at its core, maximising the information that can be obtained from
the raw RF data.

The method for integrating the proposed sinusoidal Kalman
filter based system consists of three stages. Stage 1 will be the
initial close coupling of additional navigation sensors into the
sinusoidal Kalman filter, improving the robustness of the RF
phase estimation. Stage 2 is the addition of a feedback loop.
This allows the ultra-close coupling of the system, improving
the performance of surrounding navigation sensors. Stage 3 is
the addition of control link data from systems where the motion
of the system is controlled via a RF data link.

Stage 1 of the system is an open loop closely coupled system
where the sinusoidal Kalman filter measurements come from all
available navigation sensors. Although methods exist for close-
ly coupling navigation sensors to provide an improved
geolocation estimate, the novel application of a sinusoidal
Kalman filter to maintain an estimation of phase allows the
additional data to be used to further improve the robustness of
the system to multipath and other urban and indoor RF effects.

Fig. 2 Basic system configuration

Fig. 3 Three stage system
integration with additional higher
level navigation sensors. The
figure describes the architecture
required for closely coupled
integration, ultra-closely coupled
integration and a method for
utilising encoded data in a control
data link
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The system requires an update to the Kalman filter H matrix
and the addition of an F and Z matrix. The updated H matrix
relates to the measurements received from each sensor. The F
matrix converts the measured sensor reading into a phase esti-
mate based on the calculated range from the transmitter. An
example updated H and Fmatrix for a typical data stream with
RF and GNSS data can be seen below.

H ¼ 1 0
1 0

� �
ð16Þ

F ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
*sin ωτð Þ

h i
ð17Þ

Upon each time separation iteration of the Kalman filter the
H matrix is multiplied by the corresponding F and then Z
matrix.

Z ¼ a b½ � ð18Þ

The Z matrix is updated at each iteration, depending upon
what fresh measurement data is available from the system. In
the below example, if a raw RF data measurement is available,
a = 1 and b = 0. If a GNSSmeasurement is available, a = 0 and
b = 1.

This implementation allows the Kalman filter to be updated
with all available data. The covariance of the H matrix is
maintained by Kalman filter, providing additional robustness
to multipath effects. Erroneous RF signals are identified by a
lowering in the covariance values in the Kalman filters P
matrix and will have limited effect on the maintained phase
estimate.

Following the integration of the additional navigation sen-
sors, an additional stage of ultra-close coupling is possible
using conventional methods of using an X matrix to convert
the range update back into a known position estimate for each
sensor. The advantage of this technique for the proposed sys-
tem is that further robustness to indoor and urban RF effects is
provided, allowing a highly robust phase estimate to be main-
tained by the Kalman filter due to accurately maintained mea-
surement covariance’s in the P matrix.

The system architecture described so far is applicable to
any signals of opportunity source, where the location of the
transmitter is either known in advance or can be calculated
using simultaneous localisation and mapping techniques. The
system uses only the RF carrier signal, so it can be used with-
out knowledge of any of the data on the link. Even encrypted
data links can be used to provide a ranging estimate.

The movement of many robotic systems is controlled by an
RF data-link. This datalink is likely to provide an ideal RF
data source from a known transmitter location and could be
utilised in many systems. In systems that use the control
datalink as the RF input to the system, the data contained
within the datalink can be decoded, providing the commanded

Fig. 4 Urban environment with simulated reception points

Fig. 5 Simulated range estimate
provided at points B to E with
respect to point A for two ranging
methods
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system motion. This commanded motion can be, via a control
matrix (B), used to update the prediction estimate made by the
Kalman filter. The B matrix is multiplied with the Φ matrix,
allowing the prediction part of the Kalman filter to account for
the motion expected by the system. The B matrix must have a
prior knowledge of the system dynamics that will apply fol-
lowing any commanded motion input. Once again, the addi-
tion of an improved prediction estimate within the Kalman
filter will provide additional robustness to measurement un-
certainty. The ability for the system to command data in this
way is a unique benefit that comes from using signal of op-
portunity inputs into a sinusoidal Kalman filter architecture.

4 Simulation and experiment

4.1 Simulation

The performance of the proposed sinusoidal Kalman filter
based system will be simulated in a typical urban environ-
ment. The aim of the simulation is to allow an analysis of
the proposed approach alongside that of the most widely
adopted prior art [13], enabling a comparison of performance
to be made. The simulation has created a radio fingerprint of
the dense urban environment shown in Fig. 4 with signals
generated from point A.

Reception points B to E have been selected to allow per-
formance analysis at both near and long range and, to simulate
performance in areas of high and low multipath, areas of high
and low building density. The results are show in Fig. 5 and
Table 2.

While the greatest improvements have been made in areas
of relatively low multipath, greater ranging accuracy has been

achieved at all reception points with the average error reduc-
ing from 14.8 m with the prior art to 8.2 m with the proposed
method.

4.2 Hardware benchmarking

To validate and benchmark the system improvements obtain-
ed, the proposed method has been tested with hardware at the
point shown in simulation to be the most challenging, recep-
tion point D. The system has been tested in the incremental
stages outlined in Section 4. Each stage has been tested to
validate the proposed technique and to provide evidence that
the anticipated performance has been achieved. All testing has
been carried out with a drone, modified to be controlled with a
27 MHz amplitude modulated transmitter. The flying drone
contains a microelectromechanical system (MEMS) IMU
with three accelerometers and three gyros. The Single RF
channel has been recorded using a low power software de-
fined radio (SDR) receiver attached to the drone The test ap-
paratus can be seen in the photographs below. A smart phone
GPS receiver has been added to the drone to provide compar-
ative GNSS geolocation data (Figs. 6, 7 and 8).

The test area was in a densely populated urban city centre
location with tall buildings surrounding the trial. A clear view
of the sky above the trial was present, although sight was
limited by tall buildings on all sides. The test consists of a
60 s drone flight at a constant altitude of 6 ft. The flight profile
consisted of the 4 steps shown in Fig. 9.

All data has been collected in separate files for post pro-
cessing. Post processing has been carried out on the data re-
corded by each of the trial sensors. Raw IMU and GPS data
has been collected. These raw data sources, available to

Table 2 Tabulated range
estimate averages Reception point Reception environment True range (m) Average error (m) Improvement (%)

Range Building
density

Prior art
method

Proposed
method

B Near High 40 6.7 5.8 13

C Long Low 100 33.2 10.8 67

D Long High 110 17.3 15.3 12

E Near Low 25 2.0 0.7 65

Fig. 6 Drone system Fig. 7 SDR receiver
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typical automated robotic systems, have been plotted through-
out the test trial in Fig. 10.

The data presented in Fig. 10 shows the challenges faced
by many systems navigating in an urban environment. The
first challenge is the poor fidelity of the GPS location provided
in a dense urban environment; it is hard to determine any
component of the flight during the trial. The poor performance
of the GPS is typical when receiving signals in urban environ-
ments. The inertial data presented by the INS system shows
that the stages of the flight can be determined; however, the
significant drift of approximately 30 m at the end of an 80 s
flight presents the second challenge of error integration. The
inertial drift will continue to accumulate for the entirety for the
mission without the aid of an external data source. Whilst this
paper aims to use the RF signal present in the systems control
datalink to provide an external source of navigation data, it is
hard to see how this data source could provide information
when the time domain RF amplitude data is plotted. Due to the
limited flight range and the fact that the datalink contains an
automated gain control loop, the amplitude of the raw RF data
does not appear to provide any useful ranging information.
The raw data obtained from the flight appears to show that

accurate, low drift navigation for a drone system, using only
the existing hardware will be a very challenging task The
techniques proposed by this paper shall now be applied in
stages to show the contribution of each technique in building
an accurate drift-free navigation solution.

As described in Section 4, the raw RF data will be fed
though the Kalman filter to create a low noise sinusoid of
the raw RF carrier signal. The phase of this low noise sinusoid
is analysed and shifts in the maintained phase estimate have
been be used to estimate a change in range from the transmit-
ter to the recording receiver mounted on the drone. Analysing
the data’s phase shift with a sinusoidal Kalman filter provides
the ranging estimate shown in Fig. 11.

It can be seen that by comparing the estimates from the low
noise sinusoidal Kalman filter, a low drift range estimate can
be seen throughout the 80 s flight. This low drift ranging
estimate was able to track the range changes with low latency
throughout the flight, resulting in a good localisation estimate
throughout the flight. As predicted, errors in the recordings
throughout the flight do not integrate together and the estimate
tends towards the true location at the stationary points in the
data. The limitation of the processed RF data is that there is
that range estimation errors of up to 12 m present for periods
of several seconds. This may have been caused by multipath
effects in the RF data due to the test being carried out at low
altitude in a dense urban environment. The cause of this devi-
ation will be determined in later testing but, even with this
deviation, the observed performance is significantly better
than existing navigation systems, providing evidence that
using the sinusoidal Kalman filter at the core of the system
provides a significant benefit.

The next analysis proposed by this paper is designed to
remove these short-term errors by ultra-closely coupling the
RF data with that of a low noise, but high drift INS system.
This technique has been carried out and is presented in Fig. 12.

It can be seen in the data provided that ultra-closely cou-
pling the Kalman filter and IMU system has had an effect. The
largest effect can be seen in the IMU drift. The integrated error
at the end of the flight has reduced from 28m in the uncoupled

Fig. 8 27 MHz transmitter

1. Start/End point and 
transmitter location. A 10 
second stationary hover carried
out at the start and end of the 
flight.

3. 20 second hover including 
180° turn 30 m from the 
transmitter

2. 20 second flight away from 
transmitter.

4. 20 second flight towards the
transmitter

Fig. 9 Test flight map
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trial to 17 m in the coupled trial. The magnitude of the IMU
following coupling is strongly linked to the Kalman filter es-
timate in the stationary period in the first 10 s of the trial where
the Kalman filter P matrix experiences a period of conver-
gence on the present system errors. Another key observation
is that the output from the Kalman filter has changed very
little, and the deviations of up to 12 m remain. This suggests
that the deviations are not in fact caused by multipath and
another unknown error source is dominating the Kalman filter
errors. Although the identification of this error source is pro-
posed as further work, the systems resilience to multipath is
likely to have been proven.

For many systems where the RF signal recorded by the
drone mounted equipment is not controlled by the system
operator, as found in many signal of opportunity systems
where third party RF networks are used as the data source,
no further navigation data is available from the techniques

proposed in this paper. The results presented in Fig. 12 will
be the final performance of the system. When this perfor-
mance is compared with the GPS ranging estimate shown in
Fig. 10, a drastic performance improvement has been
achieved. Even if the GPS data were to be combined with
the INS data also shown in Fig. 10, no accurate ranging esti-
mate during the flight would have been provided; The GPS
signal obtained in an urban environment was of such poor
quality that the INS estimate could not have been improved
by coupling it with the GPS signal with existing techniques.
Coupling the INS data to the output of the proposed system
has reduced the error at the end of the 80 s flight considerably.

Further to this already considerable improvement in perfor-
mance over existing INS coupling systems, the drone system
under test is controlled by a frequency modulated command
signal which is operated by the system designer. This com-
mand signal is used to provide the stop, forward, backwards,

Fig. 10 Ranging estimate from
the raw data sources

Fig. 11 Ranging estimate from
the RF post sinusoidal Kalman
filter processing
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turn left and turn right commands to the drone and is decoded
by the on-board RF receiver. This data can be made available
to the filter along with a basic kinematic model representation
of the drone. The following information about the kinematic
model is known and is captured in the trial B matrix:

Forward motion is typically 5 m/s
Turn rate is typically 90 °/s.

The resulting ranging estimate from using this data as de-
scribed in Section 4 is presented in Fig. 13.

The addition of the encoded data reveals further detail
about the system behaviour. The first thing to note is the fact
that the assumed kinematic model appears to be incorrect. The
system appears to have not correctly measured the 180° yaw
command at the turning point half way through the trial.
Despite this, the Kalman filters estimated range remains accu-
rate. The benefit of adding the decoded command data is seen

in the first 10 s of the trial where the P matrix is converging.
The addition of the stop command information has allowed
the Kalman filter to better remove the IMU biases. This has
reduced the integrated IMU drift at the end of the trial from 17
to 5 m. This will again further increase the systems resilience
to multipath and other urban and indoor RF effects.

The Kalman filter errors throughout the hardware test has
been analysed. The average error between truth and the
Kalman filter estimate was recorded to be 3.3 m with a 3σ
error prediction of 12 m. The performance of the proposed
technique, compared against existing methods in a similar
environments, as described in Section 3, can be seen in
Table 3.

Hardware test of the geolocation techniques researched in
this paper have provided a reduction in geolocation error in-
door and urban environments over existing techniques. While
the system has proven resilient to the presence of an erroneous
kinematic model in the test, further optimisation of this

Fig. 12 Ranging estimate from
the processed RF and ultra-
closely coupled IMU data

Fig. 13 Ranging including data
obtained from the encoded data
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parameter is likely to allow the achieved performance to
match that of systems that can utilise prior knowledge of the
environment, overcoming a common system application
constraint.

5 Conclusions

Mature systems exist that closely couple INS and GNSS data
to enable an improved geolocation estimate. Initial testing in a
typical urban environment has showed that, as predicted,
GNSS performance is limited by a combination of poor line
of sight view of the sky, multipath effects and poor perfor-
mance of low size, power and weight GNSS receivers com-
mon to many small robotic and IoT systems produce consid-
erable geolocation errors. GNSS does not provide a suitable
external coupling partner for INS systems in these systems.
Research has also been carried out into using signals of op-
portunity to provide a ranging estimate. These systems are
adversely affected by multipath in urban environments or re-
quire prior knowledge of third party datalinks to provide a
ranging estimate.

This paper has presented novel techniques for using a sin-
gle RF data source to maintain a ranging estimate by compar-
ing the predicted output of a sinusoidal Kalman filter with a
noisy recorded RF signal. This comparison allows a low la-
tency ranging estimate to be produced that provides resilience
to the adverse effects of multipath. Testing has shown that in a
typical urban environment this ranging estimate can be
coupled to the output of an INS to produce a high fidelity
and robust ranging estimate. Further, an addition to the basic
technique allows for closer coupling of the signals of oppor-
tunity system, and the existing INS system can be made if the
contents of the datalink message can be decoded by the target
system.

This paper has presented a significant improvement on the
resilience and robustness of signals of opportunity systems
and allows them to provide a reliable external source of infor-
mation for ranging systems without the need for any addition-
al system hardware. Further, this technique effectively
removes a common design constraint that previously limited
geolocation performance in many applications. This will en-
able system designers to gain more information from their

mobile robotic and IoT data, enabling the next generation of
advanced urban information networks.

The testing carried out in this paper is extremely encourag-
ing but limited to a single 80 s flight in an urban environment.
Further work is required to characterise the performance of the
system in a range of environments and test scenarios.

References

1. Klepeis NE et al. (2001), The National Human Activity Pattern
Survey (NHAPS): a resource for assessing exposure to environ-
mental pollutants. US National Library of Medicine

2. Air Commodore Norman Bonnor (2012) A brief history of global
navigation satellite systems,^ Royal Institute of Navigation Journal
of Navigation vol. 65

3. Novatel, IMU Errors and Their Effects 2014. Novatel bulletin, 21st
February 2015. http://www.novatel.com/assets/Documents/
Bulletins/APN064.pdf. Accessed 17th December 2015

4. Kalman R (1960) A new approach to linear filtering and prediction
problems. Transactions of the ASME Journal of Basic Engineering
82:35–45

5. Salmon DC, Bevly DM (2014) An exploration of low-cost sensor
and vehicle model Solutions for ground vehicle navigation
Published in IEEE PLANS 2014, 5–8 May 2014

6. Li Tet al. 2010Ultra-tight Coupled GPS/Vehicle Sensor Integration
for Land Vehicle Navigation. University of Calgary. Navigation 57,
4:248–259

7. Negenborn R (2003) Robot Localization and Kalman Filters–On
finding your position in an noisy world. Thesis, Utrecht University,
1st September 2003

8. Kong F, Chen Y, Xie J and Zhang G (2006) Mobile robot localiza-
tion based on extended Kalman filter 2006. 2006 6th World
Congress in Intelligent Control and Automation (Volume 2)

9. Papapostolou A and Chaouchi H (2011) Scene analysis indoor po-
sitioning enhancements. Ann. Telecommun. 2011

10. Roxin A, Gaber J, Wack M, Nait-Sidi-Moh A (2007) Survey of
wireless geolocation techniques 2007. UTBM, France. IEEE
Globecom Workshop

11. N. A Alsindi Performance of TOA estimation algorithms in differ-
ent indoor multipath conditions PhD Thesis, Worcester Polytechnic
Institute, April 2004

12. Selmi I and Samama N (2014) Indoor positioning with GPS and
GLONASS-like signals use of new codes and a repealite-based
infrastructure in a typical museum building Ann. Telecommun.
2014

13. Faragher RM, Duffett-Smith PJ (2010) Measurements of the effects
of multipath interference on timing accuracy in a radio positioning
system. IET Radar, Sonar and Navigation 4(6):818–824

Table 3 Estimated geolocation
accuracy comparison in a dense
urban environment

Technique Typical error (m) Notes

Proposed technique 12 12 m (3σ) error achieved with hardware test. No prior
knowledge of a third party system required.

WiFi SLAM [9] 10 Prior knowledge of third party infrastructure required.

Coupled signal of
opportunity [13]

20 The most widely adopted technique in current research
if no environmental prior knowledge is available.

154 Ann. Telecommun. (2017) 72:145–155

http://www.novatel.com/assets/Documents/Bulletins/APN064.pdf
http://www.novatel.com/assets/Documents/Bulletins/APN064.pdf


14. Faragher RM (2007) Effects of multipath interference on radio po-
sitioning systems Ph.D. dissertation, Dept. Physics., University of
Cambridge, Cambridge, UK

15. Reed JH, Krizman KJ, Woerner BD, and Rappaport TS (1998) An
overview of the challenges and progress in meeting the E-911 re-
quirement for location service. Virginia Tech, 1998. Published in
the IEEE Communications Magazine

16. Arnitz D, Witrisal K and Muehlmann U (2009) Multifrequency
continuous-wave radar approach to ranging in passive UHF

RFID. IEEE transactions on microwave theory and techniques
Vol. 57 No 5

17. Pelka M, Bollmeyer C and Hellbruck H (2014) Accurate radio
distance estimation by phasemeasurements withmultipole frequen-
cies. International Conference on Indoor Positioning and Indoor
Navigations, 27th October 2014

18. Arnold WF, Laub AJ (1984) Generalized Eigenproblem algorithms
and software for algebraic Riccati equations. Proc IEEE 72:1746–
1754

Ann. Telecommun. (2017) 72:145–155 155


