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ABSTRACT 15 

Young animals must learn to forage effectively to survive the transition from parental provisioning 16 
to independent feeding. Rapid development of successful foraging strategies is particularly 17 
important for capital breeders that do not receive parental guidance after weaning. The intrinsic 18 
and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. 19 
Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site 20 
after a brief suckling phase, and must develop foraging skills without external input. We collected 21 
location and dive data from recently-weaned grey seal pups from two regions of the United 22 
Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during 23 
their first months of independence at sea. Dive duration, depth, bottom-time, and benthic diving 24 
increased over the first 40 days. The shape and magnitude of changes differed between regions. 25 
Females consistently had longer bottom-times, and in the Celtic and Irish Seas they used shallower 26 
water than males. Regional sex differences suggest that extrinsic factors, such as water depth, 27 
contribute to behavioural sexual segregation. We recommend that conservation strategies consider 28 
movements of young naïve animals in addition to those of adults to account for developmental 29 
behavioural changes.  30 
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Introduction 31 

Transition from dependence on parental provisioning to independent feeding is a critical time in the life of 32 
all animal species that receive parental care. For slow-maturing species, the first months of independent 33 
life are crucial in determining survival to recruitment, and therefore sustaining stable populations1–3. 34 
Survival depends on developing the ability to successfully find, compete for, capture and handle food 35 
resources whilst avoiding predation4,5. Juvenile behaviour, and its relationship with the development of 36 
successful feeding strategies, is receiving increasing research interest given the influence of early life 37 
survival on population dynamics1,3,6–9. Unpicking the intrinsic and extrinsic factors that affect the 38 
development of foraging skills is key to understanding population trajectories and identifying critical 39 
habitat for species during their most vulnerable life stages. 40 

For air-breathing marine diving predators, such as marine mammals, sea turtles, and seabirds, the 41 
challenge of developing effective foraging strategies is particularly acute. Individuals must locate and 42 
exploit patchily-distributed prey resources in a dynamic environment, within the physiological constraints 43 
of breath-hold diving10. Studying ontogeny in wild marine predators is problematic, not least because a 44 
considerable proportion of their lives is spent at sea, often underwater, where direct observations of 45 
behaviour are difficult or impossible7. Acoustic, satellite and Global System for Mobile communication 46 
(GSM) telemetry devices have allowed ecologists to track diving predators at sea, building an increasingly 47 
clear picture of their movements and dive behaviour11,12. Logistical and practical constraints, such as high 48 
mortality rates and low re-encounter probability, mean that behavioural datasets for young animals are 49 
sparse13. Pinnipeds and seabirds are dependent on terrestrial habitat for reproduction, and young animals 50 
are large enough to carry biologging devices, therefore providing tractable opportunities to record location 51 
and behavioural data spanning the initial months of independence13. 52 

Many pinniped species, including otariids and walruses (odobenids), are income breeders14: they have 53 
protracted dependency periods, during which the young learn diving and foraging skills before weaning15,16. 54 
The nursing period may last many months, or even years14. Other pinnipeds (phocids), exhibit a range of 55 
breeding strategies. Some small phocids, such as harbour seals (Phoca vitulina), are also income breeders, 56 
but, in contrast to otariids, pups can dive within hours of birth. Despite short dependency periods (< 1 57 
month17), harbour seal pups can develop diving skills during suckling and may accompany their mothers 58 
on foraging excursions18. Synchronous diving of mothers and pups during lactation also occurs in some ice-59 
breeding phocids19. Larger phocid species, such as elephant (Mirounga spp.), hooded (Cystophora cristata) 60 
and grey (Halichoerus grypus) seals, are usually capital breeders, and pups are abruptly abandoned at the 61 
natal site after a brief nursing period14. Grey seals, for example, suckle for 15-21 days20. Pups then undergo 62 
a post-weaning fast, usually on land, of between nine and 40 days, during which time they lose up to 25% 63 
of their body mass21,22. After departure from the natal colony, they must learn to dive and find food without 64 
maternal provisioning, or the benefit of observing the foraging behaviour of their mother23. Furthermore, 65 
they must do this before their remaining blubber and protein reserves are depleted to critical levels and 66 
terminal starvation begins24. 67 
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Swimming in cold water and diving to depth is energetically costly, and seal pups have a higher surface 68 
area to volume ratio, higher mass-specific metabolic rate and lower mass-specific oxygen storage capacity 69 
than adults25,26. In contrast to adults, young seals repeatedly dive up to their physiological limits and 70 
foraging efficiency is therefore lower because they must spend longer at the surface to recover15,27. 71 
Maximum diving capability increases in grey seal pups during the first months at sea24, but little is known 72 
about the development of their routine behaviours. First year mortality is high and variable between years 73 
for grey seals28–30, which has a profound effect on population dynamics31. Moreover, first year survival 74 
probability appears to be three times greater for females than males, regardless of body condition at 75 
weaning29. Differences in survival between male and female pups could be linked to development of sex-76 
specific diving behaviour, leading to the sex difference in foraging strategies underpinned by sexual size 77 
dimorphism in adults32. In general, adult grey seals make repeated, short duration (3-10 days) foraging 78 
trips offshore within shelf seas, diving to the bottom to exploit benthic and demersal prey, and returning 79 
to coastal ‘haul-out’ sites33,34. Most research has focussed on adult movements and foraging strategies. 80 
Whilst some work has investigated foraging in grey seal juveniles and YOY35,36, and others have studied pup 81 
behaviour on and around the colony37,38, only Bennett et al.24 have examined the ontogeny of at-sea 82 
behaviour in recently-weaned pups across their first months of nutritional independence. Previous studies 83 
have demonstrated sex differences in the foraging behaviour of grey seal adults (seals of reproductive 84 
age)32,36, juveniles (> 12 months old)36, and young-of-the-year (YOY; 5 months old)35. Sex differences in 85 
behaviour thus emerge from an early age35, but the timing of their onset is unknown. Development of diving 86 
and learning of successful foraging behaviour is also likely to be shaped by local experience, and the 87 
environment that pups encounter when they first go to sea. Oceanographic conditions and prey availability 88 
vary among regions, presenting different challenges for different subpopulations. Together, these factors 89 
may confer regional differences in the ontogeny of diving behaviour and thus the development of successful 90 
foraging strategies for grey seal pups. 91 

The United Kingdom (UK) is home to ~38% of the world grey seal population39 and has an obligation under 92 
European Union (EU) legislation to maintain this population in favourable conservation status (FCS)40. As 93 
part of this obligation, critical habitat must be identified for this species both on land and at sea to assess 94 
and mitigate anthropogenic disturbance. Current UK conservation management for grey seals at sea is 95 
largely based upon observations of adult movement39. Foraging behaviour has not yet been described for 96 
grey seal pups, however, given that they undergo profound physiological development during their initial 97 
months of independent life24,25, coupled with a need to explore their environment and develop knowledge 98 
of potential foraging areas, we should not expect their behaviour and habitat requirements to be the same 99 
as for adults. As pups develop diving skills, grow larger and acquire knowledge of their surroundings, we 100 
might expect that their behaviour begins to converge on that of adults, since adult behaviour represents 101 
successful foraging patterns. The main aim of this study, therefore, was not to quantify foraging in grey seal 102 
pups, but to investigate changes in at-sea behaviours relevant to the development of successful foraging 103 
skills during their first four months of independent life at sea. We used a unique, large (n = 52 individuals) 104 
animal-borne satellite and GSM telemetry dataset of location and dive (time-depth) data from recently-105 
weaned pups born at six different colonies around the UK (Table 1). Ontogeny of foraging behaviour has 106 
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been characterised in young seals by reductions in trip metrics (duration and distance), and increases in 107 
dive metrics (depth, duration, proportion of dives that are benthic, bottom time and proportion of day spent 108 
diving) with age15,24,41,42. Such changes in these metrics are indicative of an individual’s ability to maximise 109 
foraging opportunities within individual dives and/or over foraging trips, and are thus representative of 110 
greater foraging efficiency15,24,41,42. Thus, using generalized estimating equations in a generalized additive 111 
model framework (GEE-GAM), we investigated how these variables changed over time and compared the 112 
trajectories between the sexes and two distinct geographic regions (Celtic and Irish Seas (hereafter CIS) 113 
and North Sea (hereafter NS); Fig. 1). Furthermore, sexual segregation of foraging habitat may be 114 
manifested in the depth of water where males and females dive35. We therefore examined differences in 115 
the bathymetric depth of dive locations in the same way. 116 

 117 

Results 118 

Trip behaviour 119 

All pups remained within the limits of the continental shelf, but NS individuals had a much wider dispersal 120 
pattern, and several pups travelled along the shelf break (Fig. 1). Although NS pups travelled far from their 121 
natal colonies on individual trips, all returned to haul-out locations on the east coast of Scotland and 122 
England. No pup crossed the shelf break into waters > 200 m deep. However, one male from the Isle of May 123 
travelled between the UK and Norway on multiple occasions, diving to the bottom of the Norwegian Trench 124 
(Fig. 1b; > 200 m). In general, pups from both regions explored new areas before settling into repeated trip 125 
behaviour, hauling-out in one or more locations and commuting back and forth to foraging grounds, as 126 
observed in adults34 (Fig. 2). Many NS pups undertook a prolonged exploratory phase shortly after leaving 127 
the colony, with 69% of pups (n=24) spending > 20 days offshore without returning to the coast, and some 128 
individuals exceeding 60 days offshore, which is substantially greater than typical trip durations seen in 129 
adults34. Only 18% of CIS pups (n=3) performed a trip with duration > 20 days. CIS pups remained much 130 
closer to land, generally dispersing along the coast of Wales and the Republic of Ireland (Fig. 1a). One female 131 
travelled south towards the north coast of France before returning to the south coast of England. Some 132 
individuals made repeated trips into the middle of the Celtic Sea, while others remained within 30 km of 133 
the coastline, and never travelled > 50 km from their natal colony (Fig. 3). 134 

Trip duration increased significantly with time after leaving the colony for pups from both regions (Table 135 
2; GEE-GAM; χ23 = 15.2, p = 0.002), peaking at around 70 days before declining (Fig. 4a-b). However, trip 136 
duration was significantly longer for NS pups than CIS pups (Fig. 4a-b; GEE-GAM; χ21 = 66.1, p < 0.001). 137 
There was no significant difference in trip duration between males and females in either region (GEE-GAM; 138 
χ21 = 1.4, p = 0.233). Trip distance was also significantly affected by time since departure for pups from both 139 
regions (Table 2; GEE-GAM; χ23 = 8.2, p = 0.042), peaking at around 70 days then declining (Fig. 4c-d). 140 
However, there was a significant effect of an interaction between region and sex on trip duration (Fig 4d; 141 
GEE-GAM; χ21 = 4.73, p = 0.03); NS pups travelled consistently further than CIS pups. CIS males travelled 142 
further than females, whilst there was no obvious sex difference in trip distance for NS pups. 143 
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 144 

Dive behaviour 145 

A three-way interaction between time since departure, region and sex best explained variation in daily 146 
mean maximum dive depth (Table 2; GEE-GAM; χ23 = 13.6, p = 0.003). Pups increased their dive depth 147 
rapidly over the first 40 days, except for CIS females, which showed a prolonged, more moderate increase 148 
(Fig. 5a-b). Sex differences in the change in dive depth over time were apparent in CIS pups, with males 149 
diving significantly deeper than females from 20-60 days after leaving the colony (Fig. 5b). The population 150 
mean maximum depth for CIS males during this period reached ~40 m, whilst females achieved ~25 m. 151 
Throughout the time series, NS pups dived significantly deeper than CIS pups, with both males and females 152 
reaching a maximum daily mean of ~50 m.  153 

A three-way interaction between time since departure, region and sex best explained variation in daily 154 
mean bathymetric depth of dive locations (Table 2; GEE-GAM; χ23 = 10.4, p = 0.016). NS pups and CIS males 155 
dived in increasingly deep water over the first 40 days after departure from the colony (Fig. 5c). CIS females 156 
remained in shallower water than males throughout the first four months at sea, averaging depths of ~30 157 
m whilst mean bathymetric depth for male dives reached up to ~60 m (Fig. 5d). No significant sex difference 158 
was evident in bathymetric depth of dive locations for NS pups. Both male and female NS pups dived in 159 
significantly deeper water than CIS pups, reaching a maximum daily mean of ~80 m.   160 

The daily mean proportion of dives that were benthic changed with time since departure, and the dynamic 161 
of this change was different between the regions (Table 2; GEE-GAM; χ23 = 13.1, p = 0.004). Pups from both 162 
regions increased the proportion of benthic dives rapidly over the initial 40 days. This reached an 163 
asymptote for NS pups (Fig. 5e), but continued to increase for CIS pups (Fig. 5f). The trend showed some 164 
evidence of a decline in the latter half of the time series for NS pups, but confidence intervals were wide 165 
(Fig.5e). Females performed a greater proportion of benthic dives than males throughout the time series 166 
in both regions (GEE-GAM; χ21 = 5.2, p = 0.023). The daily mean proportion of benthic dives reached a peak 167 
at ~0.5 for NS females, ~0.6 for CIS females, ~0.4 for NS males, and ~0.5 for CIS males. Confidence intervals 168 
for the sexes overlapped in both regions. The effect of bathymetric depth on the proportion of dives that 169 
were benthic is presented in Supplementary Information (Supplementary Results: Effects of bathymetric 170 
depth on benthic diving). 171 

Daily mean dive duration was best explained by an interaction between time since departure and region 172 
(Table 2; GEE-GAM; χ23 = 16.4, p < 0.001). There was no significant effect of sex on this metric (GEE-GAM; 173 
χ21 = 2.5, p = 0.117).  Similar to dive depth and bathymetric depth, pup dive duration increased rapidly over 174 
the initial 40 days at sea for both regions, before declining over the following 60 days (Fig. 6a-b). Peak mean 175 
dive duration for NS pups was marginally longer than for CIS pups (NS: ~140 s, CIS ~130 s).  176 

Temporal patterns in bottom time differed between regions (Table 2; GEE-GAM; χ23 = 14.9, p = 0.002). CIS 177 
pups showed a strong increase in bottom time over the initial 40 days at sea, before levelling off, then a 178 
further increase at ~100 days. NS pups showed a moderate increase over the whole time series, with 179 
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bottom time remaining between 40-50% of dive duration (Fig. 6c-d). In addition, sex differences in bottom 180 
time differed between the regions (GEE-GAM; χ21 = 9.3, p = 0.002). In both regions, females achieved higher 181 
bottom times than males (although 95% confidence intervals overlapped for NS pups; Fig. 6c). The 182 
difference between males and females was more pronounced in CIS pups: females achieved a maximum 183 
mean of ~70% of the dive spent in the bottom phase, whilst males achieved a maximum mean of ~55% 184 
(Fig. 6c-d).  185 

Time spent diving per day varied significantly with time since departure, and the shape of this relationship 186 
was affected by sex (Table 2; GEE-GAM; χ23 = 13.9, p = 0.003) and region (GEE-GAM; χ23 = 15, p = 0.002). 187 
The sex difference was comparable between both regions (GEE-GAM; χ21 = 0.02, p = 0.885). NS pups began 188 
diving ~14 hrs per day, then reduced time spent diving in the third month to ~10 hrs for males and ~12 189 
hrs for females (Fig. 6e). CIS females initially spent ~11 hrs diving per day, which rose steadily to ~13 hrs 190 
in the third month (Fig. 6f). CIS males initially spent ~10 hrs per day diving, which rose steeply to ~13 hrs 191 
in the first month before declining back to ~11 hrs in the third month (Fig. 6f). 192 

 193 

Discussion 194 

This study reveals that sexual segregation of behaviour can be exhibited as early as nutritional 195 
independence in capital breeders. Female pups from both regions spent more time diving per day than 196 
males. CIS females made shorter distance trips than males, diving in shallower water and achieving a higher 197 
proportion of the dive duration in the bottom phase. The same level of sexual segregation in depth, 198 
proportion bottom time and trip duration was not observed in NS pups, suggesting that sex differences in 199 
the ontogeny of foraging behaviour may be mediated by extrinsic factors. In both regions, pup behaviour 200 
changed rapidly: dive duration, depth, bottom time and benthic diving increased over the first 40 days after 201 
leaving the colony. These findings are important in the context of both foraging ecology and conservation 202 
management, as we outline below. 203 

Grey seal adults exhibit substantial sexual size dimorphism23, which is thought to drive differences in 204 
feeding areas32. Grey seal pups are not size-dimorphic24, but seal pups and juveniles may experience 205 
differences in energy requirements before overt size and body composition differences emerge43. Kelso et 206 
al.43 found that male northern elephant seal (M. angustirostris) pups had higher rates of energy expenditure 207 
than females during the post-weaning fast, but were more effective at sparing protein reserves. These 208 
differences are likely related to the development of sex-specific metabolic strategies required for successful 209 
breeding43. Differences in metabolic demand during the ontogeny of foraging behaviour could therefore 210 
drive sex-specific feeding strategies and habitat requirements. Our findings support this possibility; we 211 
found that females from both regions spent longer performing behaviours consistent with foraging across 212 
two different temporal scales (individual dives and 24 h period). At the individual dive scale, time in the 213 
bottom phase is indicative of time at potential foraging depth, with the descent and ascent phases of the 214 
dive representing the transit to and from any potential prey patch10. Despite the lack of sex difference in 215 
total dive duration, females spent longer in the bottom phase than males relative to total dive duration. At 216 
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the 24 h scale, females spent on average 2 h more diving than males in both regions. We also found a 217 
moderate sex difference in the proportion of dives that reached the seabed, with females performing more 218 
benthic dives than males. Females may therefore have increased chance of prey capture during individual 219 
dives, which could represent an energetic advantage10,44, and contribute to higher survival probability of 220 
female pups29. However, we cannot exclude the possibility that females spend more time diving because 221 
they are searching and are unsuccessful. Using direct observations of prey capture (i.e. stomach 222 
temperature telemetry, accelerometers or video cameras) to ground-truth putative foraging as identified 223 
from location and dive data would help to evaluate foraging success45, and draw links between differences 224 
in ontogeny of foraging behaviour and survival probability. 225 

Sex differences in bottom time, proportion of benthic dives, and time spent diving per day may be related 226 
to differences in the type and quality of prey items consumed by male and female pups. For example, if 227 
females target lower energy prey items, they will need to spend longer foraging than males for the same 228 
energetic gain. Grey seals adults are benthic foragers with a broad diet that varies between the sexes46,47. 229 
Beck et al.47 used quantitative fatty acid analysis to investigate niche breadth in grey seals in the northwest 230 
Atlantic. They found that the diet composition of YOY animals was significantly broader than that of adults, 231 
but found no sex differences for young animals. However, grey seal diet varies regionally and seasonally46,47, 232 
and therefore extrinsic factors unique to certain locations may shape sex differences in diet for young 233 
animals. No specific information currently exists on the diet of recently-weaned grey seal pups in the UK 234 
once they have left the colony due to the logistical constraints of collecting tissue and/or faecal samples 235 
specifically from this age-class. However, a recent study of stable isotope ratios obtained from the teeth of 236 
older juvenile grey seals in the North Sea suggests that they feed on a wide variety of low trophic level, 237 
benthic prey close to shore48. The sharp increase in proportion of benthic dives over the first 40 days, and 238 
the subsequent reduction in trip distance, may therefore be indicative of pups learning to exploit benthic 239 
prey, and finding foraging grounds closer to shore where they can effectively reach the bottom. Additional 240 
dive analysis also suggests that shallow waters < 20 m deep may represent important foraging habitat for 241 
grey seal pups (see Supplementary Results: Effects of bathymetric depth on benthic diving). 242 

Water depth is an important regulating factor in foraging behaviour and habitat preference in older grey 243 
seals49,50. Breed et al.35 reported that adult and YOY females in the northwest Atlantic population forage in 244 
shallower water than males. Our data from CIS pups, showing that females dived in significantly shallower 245 
water than males, support these findings and suggest that water depth may play a key role in the 246 
development of habitat (and possibly diet) segregation among the sexes in some regions. We also found a 247 
moderate sex difference in trip distance for CIS pups, with males travelling further than females. Given that 248 
there was no sex difference in trip duration, this may mean that CIS males travel further offshore to forage 249 
compared to females, accessing deeper water, and potentially spending longer travelling per unit time 250 
spent foraging than females. CIS females performed a greater proportion of benthic dives in shallow water 251 
(<20 m) than males (see Supplementary Results: Effects of bathymetric depth on benthic diving). The fact 252 
that CIS pups dived in shallower water than NS pups likely means that they were able to achieve greater 253 
dive bottom time and proportion of benthic dives as they spent less time in the ascent and descent phases 254 



 

9 
 

of the dive. Sex differences in trip distance and water depth of dive locations were not strongly evident for 255 
NS pups. As with other metrics, sex differences may be mediated by extrinsic factors that vary among 256 
regions, such as prey distribution, physical oceanography, and the diversity of available habitats. In general, 257 
the North Sea is a more homogeneous ecosystem, with less variation in bathymetry and habitat types than 258 
the Celtic and Irish Seas51, which may reduce sexual niche separation in NS pups. 259 

Intra and inter-specific competition may impact trip distance and duration in central place foragers. 260 
Juvenile grey seals in the northwest Atlantic travel further and for longer on foraging trips than adults, 261 
likely as a result of competitive exclusion from the best foraging grounds closer to shore52. Age-related 262 
segregation has also been reported for other phocid species53. We found that NS pups travelled further 263 
offshore and performed longer trips than CIS individuals. Population density of grey seal adults is much 264 
higher on the east coast of Scotland compared to the Celtic and Irish Seas39,54. Moreover, Russell et al.36 265 
showed that adult males in the North Sea reduce their time spent travelling to foraging locations in winter, 266 
whilst juveniles show an increase. Given that NS pups leave the colony during the winter months, and we 267 
see the longest trips performed during this time, competitive exclusion by conspecifics may be a feature of 268 
movement patterns specifically during the winter, forcing pups to make longer trips further offshore. In 269 
addition, harbour seals are present in coastal regions of the North Sea, but not in the Celtic and Irish Seas54. 270 
Inter-specific competition may also contribute to NS pups travelling further offshore than CIS pups. 271 

Our results show that NS pups can make trips of over two months in duration, travelling greater distances 272 
than commonly observed in adult foraging trips and hauling out less frequently34. We also found that pups 273 
significantly reduced their trip duration and distance in the third month (Fig. 2). A similar temporal 274 
dynamic has been observed in other phocids, with young seals reducing trip duration after an initial 275 
increase41, and may be indicative of an increase in foraging efficiency, or a change in foraging strategy as 276 
pups age. Moreover, the higher initial trip duration and distance may represent an exploration phase in the 277 
development of NS pups. Votier et al.55 found that immature northern gannets (Morus bassanus) develop 278 
knowledge of foraging grounds during early-life exploratory trips. This may also be the case for grey seal 279 
pups, as, like gannets, they receive no parental guidance in the location of foraging resources. Furthermore, 280 
we found that some pups returned to forage repeatedly in areas that they had previously discovered during 281 
their initial exploratory trip (Fig. 2). Exploration may therefore be an important behaviour in determining 282 
future foraging success8. 283 

CIS pups also performed exploratory trips, although their duration and distance was lower than those 284 
performed by NS pups. Individuals from NS colonies are not as geographically constrained as CIS pups by 285 
the proximity of land and shelf edge and therefore have more marine space to explore. Upon leaving the 286 
colony, CIS pups are more likely to encounter coastline, and therefore suitable haul-out locations, than pups 287 
in the North Sea. Alternatively, the offshore phase could be driven by environmental variables not 288 
measured in this study. For example, tidal currents may direct pups further from land in the North Sea. The 289 
reduction in trip distance after 60 days for NS pups may therefore be related to a seasonal change in 290 
physical oceanography, or an increase in their ability to resist surface currents as muscle strength improves. 291 
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Grey seals are known to rest at sea36, and this study provides further evidence that they do not need to 292 
return to shore to rest, even when very young. 293 

Our results show that pup movements can change rapidly throughout the initial months at sea. Therefore, 294 
accurately quantifying foraging effort from these data may require extension of current analytical 295 
techniques, such as state-space models (SSMs)45, to account for temporal changes in movement patterns. 296 
Moreover, as a priority for future work, analysis of pup foraging habitat preference may allow us to infer 297 
potential prey species based on habitat features such as substrate type, and further assess the implications 298 
of early-life sexual segregation in movement patterns for foraging ecology. 299 

In addition to ontogenetic changes in muscular and cardio-vascular systems, oxygen storage capacity and 300 
metabolic rate, and the development of knowledge of profitable foraging areas, there are likely to be 301 
seasonal changes in foraging habitat and prey distribution which may further explain differences in pup 302 
behaviour over time. Given that pups leave the colony on different dates in both regions (see 303 
Supplementary Note: Colony departure dates), local conditions may dictate some of the patterns observed 304 
here. Bennett et al.56 have shown that maximum dive depth of adult southern elephant seals may by 305 
regulated by seasonally-mediated factors, however, due to a paucity of tracking data from post-breeding 306 
adult grey seals in the UK, seasonal changes in at-sea behaviour are unclear. It was therefore not possible 307 
to disentangle ontogeny from seasonal effects on pup behaviour. Furthermore, some of the variance in 308 
early-life behavioural ontogeny may be explained by the fact that post-weaning fast duration varies among 309 
individuals24, and age at the point of departure from the colony is not equal for all pups. Natal and weaning 310 
dates were not known for all pups in this study, and time since departing colony was therefore used as a 311 
measure of at-sea experience. Future research should aim to achieve simultaneous tagging of adults, 312 
juveniles and pups, coupled with colony-based monitoring, which will allow us to further tease apart 313 
intrinsic and extrinsic drivers of variation in grey seal foraging behaviour and investigate the potential for 314 
competitive exclusion36. 315 

Investigating the factors that affect the ontogeny of early-life behaviours is key to understanding how 316 
populations may respond to natural and anthropogenic threats. Bennett et al.22 suggested that grey seal 317 
pups have an average of 36 days in which to find food after leaving the colony before their protein reserves 318 
are critically depleted and starvation occurs. Our results show that profound changes in pup behaviour 319 
happen during the first 40 days after departure from the colony, indicating this initial period at sea is likely 320 
of particular importance for development of effective foraging strategies. Consequently, pups may be most 321 
vulnerable to disturbance from a number of growing anthropogenic activities, such as increased vessel 322 
traffic57, intensive fishing practices58 and offshore construction59 during this period, with substantial 323 
consequences for survival. Given the importance of early-life survival for maintaining stable populations31, 324 
and the rapid development of key behaviours during this period, conservation managers should make 325 
special considerations for pups during their initial months at sea to effectively mitigate these threats and 326 
avoid population-level impacts. With continuing development of biologging technology and analytical 327 
techniques, further work is urgently needed to fully explore and describe the ontogeny of fundamental 328 
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behaviours in naïve marine predators and identify critical habitat for young animals during their most 329 
vulnerable life stage. 330 

 331 

Methods 332 

Instrumentation 333 

Two different telemetry device models were deployed on 52 recently-weaned grey seal pups at six UK 334 
breeding sites in 2001 and 200224, and in 2009 and 201060 (Table 1). Earlier deployments (2001-2002; 335 
n=21) were Argos Satellite Relay Data Loggers (SRDL; Sea Mammal Research Unit, UK), and later 336 
deployments (n=31) were Fastloc® GPS-GSM tags (GPS phone tags; Sea Mammal Research Unit, UK). 337 
Individuals were captured post-weaning for device application. When anaesthesia was required (due to 338 
additional procedures not related to this study; CIS 2010 and all Isle of May deployments), pups were 339 
administered with 0.025 mg kg-1 intravenous Zoletil100® (Virbac, France)24,60. Following McConnell et al.34, 340 
a tag was glued to cleaned, dried fur at the base of the skull using RS Quick-Set Epoxy Adhesive (RS 341 
Components Ltd., UK; 2001-2009), or Loctite® 422™ cyanoacrylate adhesive (Henkel, UK; 2010). All 342 
experimental protocols were carried out with UK Home Office approval under project licences #60/2589 343 
(2001-2002), and #60/4009 (2009-2010), in accordance with the Animals (Scientific Procedures) Act 1986. 344 
In total, 7057 days of data were recorded from 52 pups (for information on tag duration see Supplementary 345 
Note: Tag duration). 346 

 347 

Telemetry data processing 348 

Horizontal movement data 349 

Whilst both SRDL and GPS-GSM devices transmitted location data at irregular intervals, mean number of 350 
location fixes achieved per day was much higher for GPS-GSM tags (Table 1). Argos-derived location 351 
estimates from SRDLs also carry a greater spatial error, ranging from 50 m to > 2.5 km61. Erroneous Argos 352 
location observations were eliminated using the standard technique of filtering with a maximum speed 353 
threshold of 2 ms-1; 62. Remaining locations were then processed with a Kalman filter to improve location 354 
accuracy54. Kalman filter observation model parameters were taken from Vincent et al.61, and process 355 
model parameters were based on average speeds of 142 seal GPS tracks54. Erroneous GPS locations were 356 
identified and excluded using residual error thresholds and number of satellites36. 357 

Devices also recorded dive and haul-out data derived from integrated conductivity and pressure sensors. 358 
Following Russell et al.36, a seal’s location during a haul-out event was taken as the mean of all latitude and 359 
longitude estimates during the time hauled-out. If no location estimates were recorded during the haul-out 360 
interval, the location was derived using linear interpolation to a midpoint between the pre and post 361 
observed location fixes. Interpolated haul-out locations were flagged as unreliable if there was no adjacent 362 
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observed location within 6 h. The location data were then restricted to discrete ‘trips’ between haul-out 363 
events. Trips were only included in the analysis if they had a reliable haul-out location on land at both the 364 
beginning and end. One individual hauled-out repeatedly on an offshore oil rig in the central North Sea > 365 
250 km from land; these haul-outs were classed as on land and the associated trips were included in the 366 
analysis. Seals often wait in the water between haul-out events for tidal sites to become available, when 367 
they may sleep either on the seabed or at the surface63. To exclude this behaviour, as it is not relevant to 368 
foraging, trips < 8 hr in duration and with a maximum distance < 500 m from the coast were also omitted 369 
from the analysis64. Finally, as tag duration varied between individuals (from 13 to 337 days; see 370 
Supplementary Note: Tag duration), data were clipped at 120 days after leaving the colony to ensure a 371 
robust sample size throughout the time series for statistical analysis65. Sample sizes are presented 372 
alongside rug plots (Fig. 4). The resulting dataset comprised location and haul-out data from 52 individuals; 373 
23 males and 29 females (Table 1; Fig. 1; 836 trips). The duration and total distance of each trip was 374 
calculated alongside days since first leaving the natal colony at the mid-point of the trip. Total distance was 375 
calculated as the sum of all step lengths between successive location fixes during a trip, regularised to 30 376 
min intervals. Days since leaving colony was used to give a measure of the at-sea experience of the pup. 377 

 378 

Dive data 379 

GPS-GSM tags classified dives as periods when the pressure sensor recorded depths > 1.5 m for > 8 s. These 380 
devices recorded depth readings at 4 s intervals throughout a dive, which were then abstracted to 11 381 
inflection points by an algorithm onboard the device before data transmission66. Although SRDLs also 382 
recorded dive data, tag parametrisation was different to that of GPS-GSM tags (SRDLs only recorded dives > 383 
6 m depth with four inflection points). Furthermore, the lower frequency of successful transmissions and 384 
higher spatial error of concomitant Argos-derived location estimates meant that SRDL dive data could not 385 
be accurately matched to a location, and thus to bathymetric depth, and were therefore excluded from all 386 
dive analyses. For GPS-GSM dive data, the maximum dive depth and total dive duration were extracted for 387 
each dive. A dive was treated as any time below the depth threshold (1.5 m). Devices also transmitted two-388 
hourly summaries of data, detailing the proportion of time the device was in either “haul-out”, “dive” or 389 
“cruise” (device is wet and above 1.5 m) mode. These data were used to calculate the total number of hours 390 
spent diving per individual per day. Only days with data for all twelve summary intervals were used. 391 

To investigate changes in the proportion of benthic dives performed by pups, and the bathymetric depth of 392 
dive locations, dives were first matched to adjacent location fixes in time using the mid-point between dive 393 
start and end times. The location for each dive mid-point was then calculated using linear interpolation 394 
between prior and post location fixes. Interpolated dive locations with no adjacent observed location fix 395 
within 15 min could not be accurately matched with bathymetric depth data and were therefore excluded 396 
from the analysis. Bathymetric depth was extracted for each dive location from the harmonised 1/8 arc 397 
minute * 1/8 arc minute (~230 m) gridded Digital Terrain Model (DTM) for European Waters which is 398 
freely-available through the European Marine Observation and Data Network (EMODnet) Portal for 399 
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Bathymetry67. Benthic dives were classified following Ramasco et al.68, using a mixture distribution model 400 
approach (see Supplementary Methods: Classification of benthic dives). The bathymetric depth range of 401 
the study area is shown in Fig. 1. After filtering, a number of dives (15%) recorded a null or positive 402 
bathymetric depth value, due to interpolated dive locations falling too close to the coast, and were 403 
subsequently removed. As with trip data, the resulting dive dataset was clipped to 120 days after leaving 404 
the colony to ensure a robust sample size throughout the time series. Sample sizes are presented alongside 405 
rug plots (Figs. 5-6). Lastly, as seals may perform successive shallow dives while resting close to haul-outs, 406 
and this is not related to foraging behaviour, any dive with a maximum depth < 5 m was excluded. The final 407 
dataset comprised 102,800 dives from 31 individuals (Table 1). 408 

 409 

Statistical analysis 410 

Trip (duration and distance) and dive metrics (depth, bathymetric depth of dive locations, proportion of 411 
dives that were benthic, duration, bottom time and proportion of day spent diving) were analysed using 412 
generalised estimating equations within a generalized additive model framework (GEE-GAMs) using the 413 
“geepack” and “splines” packages69 in R70. The GAM approach allows the inclusion of smoothed terms to 414 
investigate non-linear relationships71. However, GAMs are not robust to the serial autocorrelation within 415 
individuals that is inherent in longitudinal telemetry datasets. GAMs can be extended to include 416 
autocorrelation structures and random effects, however the GEE approach allows the inclusion of an 417 
unstructured correlation coefficient, which is more appropriate for telemetry data as it estimates all 418 
correlations between within-individual observations independently72. Furthermore, this method allows 419 
the prediction of population mean responses by averaging across individuals. This approach has been 420 
previously applied to study temporal movement trends in seal telemetry datasets36. 421 

We investigated ontogeny in pup dive behaviour using a number of metrics, at a temporal resolution of one 422 
day by calculating daily means per individual per day. As pups grow, their muscular and cardio-vascular 423 
systems develop, and they convert blubber into lean mass, becoming less buoyant25,73. Their ability to dive 424 
to, and remain at depth should therefore increase over time24. Daily mean dive maximum depth and 425 
duration were used to track changes in diving ability over time. For air-breathing benthic foragers, the 426 
depth of water in which dives occur is also relevant to their ability to dive to and remain at foraging depth. 427 
The bathymetric depth of water where dives occurred was also modelled in the same way. Optimal diving 428 
theory (ODT) suggests that benthic foragers will maximise time at the seabed (and therefore probability of 429 
successful foraging), and minimise time spent in the ascent and descent phases of a dive and at the surface74. 430 
We therefore investigated changes in the proportion of dives that were benthic, and in dive bottom time 431 
(the proportion of a dive’s duration spent at > 80% of the maximum dive depth; a measure of time spent at 432 
foraging depth relative to descent and ascent phases of a dive)75. Lastly, pups may maximise time spent 433 
underwater (and therefore foraging opportunities) over bouts of short dives, rather than individual long 434 
dives10,44. We therefore investigated changes in the mean proportion of time spent diving per individual 435 
per day (24 h period). 436 
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Pup behaviour may change through time, and the dynamics of this change may differ between the sexes, 437 
and/or geographic regions (due to differences in habitat features such as coastal geography, prey 438 
availability and bathymetry). Therefore, response variables were analysed in separate models as a function 439 
of time since leaving colony (days; as a smoothed term), sex (as a categorical term) and region (as a 440 
categorical term) in a three-way interaction. Model selection was performed by backwards hypothesis 441 
testing from GEE-based p-values until arriving at a minimum adequate model. Colonies were assigned to 442 
one of two geographic regions (Table 1; North Sea or Celtic and Irish Seas). There was considerable spatial 443 
overlap of areas used by pups from colonies within each of the two wider geographic regions (Fig. 1), such 444 
that region rather than colony was used in the models for the sake of parsimony, and to maximise statistical 445 
power. 95% confidence intervals around model-predicted means were calculated by parametric 446 
bootstrapping using GEE-based uncertainty parameters54. Scale-corrected Pearson’s residuals were 447 
checked for normal distribution by visual inspection in all models. For models with continuous response 448 
variables (all except bottom time, benthic diving and proportion of day spent diving), Gamma and Poisson 449 
error structures were considered to improve normality, but in all cases a Gaussian error structure with log-450 
link function proved superior. Bottom time, proportion of dives that were benthic and proportion of day 451 
spent diving (proportion data) were modelled with a binomial error structure with logit-link function. 452 

 453 

Data availability 454 

The datasets used in the current study are available from DJFR; dr60@st-andrews.ac.uk. 455 

 456 

References 457 

1. Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 458 
(1999). 459 

2. Sæther, B.-E. et al. How life history influences population dynamics in fluctuating environments. 460 
Am. Nat. 182, 743–759 (2013). 461 

3. Orgeret, F., Weimerskirch, H. & Bost, C.-A. Early diving behaviour in juvenile penguins: 462 
improvement or selection processes. Biol. Lett. 12, 20160490 (2016). 463 

4. Daunt, F., Afanasyev, V., Adam, A., Croxall, J. P. & Wanless, S. From cradle to early grave: juvenile 464 
mortality in European shags Phalacrocorax aristotelis results from inadequate development of 465 
foraging proficiency. Biol. Lett. 3, 371–374 (2007). 466 

5. Sullivan, K. A. Predation and starvation : age-specific mortality in juvenile juncos (Junco 467 
phaenotus). J. Anim. Ecol. 58, 275–286 (1989). 468 

6. Riotte-Lambert, L. & Weimerskirch, H. Do naive juvenile seabirds forage differently from adults? 469 
Proc. R. Soc. B 280, 20131434 (2013). 470 

7. Shillinger, G. L. et al. Tagging through the stages: technical and ecological challenges in observing 471 
life histories through biologging. Mar. Ecol. Prog. Ser. 457, 165–170 (2012). 472 

mailto:dr60@st-andrews.ac.uk


 

15 
 

8. de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses 473 
of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017). 474 

9. Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult 475 
white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016). 476 

10. Boyd, I. L. The behavioural and physiological ecology of diving. Trends Ecol. Evol. 12, 213–217 477 
(1997). 478 

11. Ropert-Coudert, Y., Beaulieu, M., Hanuise, N. & Kato, A. Diving into the world of biologging. 479 
Endanger. Species Res. 10, 21–27 (2009). 480 

12. Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. 481 
Science 348, 1255642 (2015). 482 

13. Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. 483 
Mar. Ecol. Prog. Ser. 457, 221–240 (2012). 484 

14. Boness, D. J. & Bowen, W. D. The evolution of maternal care in pinnipeds. Bioscience 46, 645–654 485 
(1996). 486 

15. Fowler, S. L., Costa, D. P., Arnould, J. P. Y., Gales, N. J. & Kuhn, C. E. Ontogeny of diving behaviour in 487 
the Australian sea lion: trials of adolescence in a late bloomer. J. Anim. Ecol. 75, 358–367 (2006). 488 

16. Jeglinski, J. W. E., Werner, C., Robinson, P. W., Costa, D. P. & Trillmich, F. Age, body mass and 489 
environmental variation shape the foraging ontogeny of Galapagos sea lions. Mar. Ecol. Prog. Ser. 490 
453, 279–296 (2012). 491 

17. Thompson, P. M. & Wheeler, H. Photo-ID-based estimates of reproductive patterns in female 492 
harbor seals. Mar. Mammal Sci. 24, 138–146 (2008). 493 

18. Bekkby, T. & Bjørge, A. Diving behaviour of harbour seal Phoca vitulina pups from nursing to 494 
independent feeding. J. Sea Res. 44, 267–275 (2000). 495 

19. Sato, K., Mitani, Y., Naito, Y. & Kusagaya, H. Synchronous shallow dives by weddell seal mother-pup 496 
pairs during lactation. Mar. Mammal Sci. 19, 384–395 (2006). 497 

20. Pomeroy, P. P., Fedak, M. A., Rothery, P. & Anderson, S. Consequences of maternal size for 498 
reproductive expenditure and pupping success of grey seals at North Rona, Scotland. J. Anim. Ecol. 499 
68, 235–253 (1999). 500 

21. Noren, S. R., Boness, D. J., Iverson, S. J., McMillan, J. & Bowen, W. D. Body condition at weaning 501 
affects the duration of the postweaning fast in gray seal pups (Halichoerus grypus). Physiol. 502 
Biochem. Zool. 81, 269–277 (2008). 503 

22. Bennett, K. A., Speakman, J. R., Moss, S. E. W., Pomeroy, P. P. & Fedak, M. A. Effects of mass and 504 
body composition on fasting fuel utilisation in grey seal pups (Halichoerus grypus Fabricius): an 505 
experimental study using supplementary feeding. J. Exp. Biol. 210, 3043–3053 (2007). 506 

23. Hewer, H. R. British Seals. The New Naturalist 57. (HarperCollins, 1974). 507 
24. Bennett, K. A. et al. Effects of age and body mass on development of diving capabilities of gray seal 508 

pups: costs and benefits of the postweaning fast. Physiol. Biochem. Zool. 83, 911–923 (2010). 509 
25. Noren, S. R., Iverson, S. J. & Boness, D. J. Development of the blood and muscle oxygen stores in 510 

gray seals (Halichoerus grypus): implications for juvenile diving capacity and the necessity of a 511 
terrestrial postweaning fast. Physiol. Biochem. Zool. 78, 482–490 (2005). 512 



 

16 
 

26. Burns, J. M. & Castellini, M. A. Physiological and behavioral determinants of the aerobic dive limit 513 
in Weddell seal (Leptonychotes weddellii) pups. J. Comp. Physiol. B 166, 473–483 (1996). 514 

27. Burns, J. M. The development of diving behavior in juvenile Weddell seals: pushing physiological 515 
limits in order to survive. Can. J. Zool. 77, 737–747 (1999). 516 

28. Hall, A. J., McConnell, B. J. & Barker, R. J. The effect of total immunoglobulin levels, mass and 517 
condition on the first-year survival of grey seal pups. Funct. Ecol. 16, 462–474 (2002). 518 

29. Hall, A. J., McConnell, B. J. & Barker, R. J. Factors affecting first-year survival in grey seals and their 519 
implications for life history strategy. J. Anim. Ecol. 70, 138–149 (2001). 520 

30. Hall, A. . J., Thomas, G. O. & McConnell, B. J. Exposure to persistent organic pollutants and first-year 521 
survival probablility in gray seal pups. Environ. Sci. Technol. 43, 6365–6369 (2009). 522 

31. Harwood, J. & Prime, J. H. Some factors affecting the size of British grey seal populations. J. Appl. 523 
Ecol. 15, 401–411 (1978). 524 

32. Beck, C. A., Bowen, W. D., McMillan, J. I. & Iverson, S. J. Sex differences in the diving behaviour of a 525 
size-dimorphic capital breeder: the grey seal. Anim. Behav. 66, 777–789 (2003). 526 

33. Thompson, D., Hammond, P. S., Nicholas, K. S. & Fedak, M. A. Movements, diving and foraging 527 
behaviour of grey seals (Halichoerus grypus). J. Zool., Lond. 224, 223–232 (1991). 528 

34. McConnell, B., Fedak, M., Lovell, P. & Hammond, P. Movements and foraging areas of grey seals in 529 
the North Sea. J. Appl. Ecol. 36, 573–590 (1999). 530 

35. Breed, G. A., Bowen, W. D. & Leonard, M. L. Development of foraging strategies with age in a long-531 
lived marine predator. Mar. Ecol. Prog. Ser. 431, 267–279 (2011). 532 

36. Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and 533 
harbour seals. Oikos 124, 1462–1472 (2015). 534 

37. Kovacs, K. M. Maternal behaviour and early behavioural ontogeny of grey seals (Halichoerus 535 
grypus) on the Isle of May, UK. J. Zool., Lond. 213, 697–715 (1987). 536 

38. Jenssen, B. M., Åsmul, J. I., Ekker, M. & Vongraven, D. To go for a swim or not? Consequences of 537 
neonatal aquatic dispersal behaviour for growth in grey seal pups. Anim. Behav. 80, 667–673 538 
(2010). 539 

39. SCOS. Scientific advice on matters related to the management of seal populations. Main Advice 540 
Report. (2016). 541 

40. Council of the European Communities. Council Directive 92/43/EEC of 21 May 1992: on the 542 
conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities 1–9, 17 543 
(1992). 544 

41. Blanchet, M.-A., Lydersen, C., Ims, R. A. & Kovacs, K. M. Making it through the first year: ontogeny 545 
of movement and diving behavior in harbor seals from Svalbard, Norway. Mar. Mammal Sci. 32, 546 
1340–1369 (2016). 547 

42. Baylis, A. M. M. et al. The ontogeny of diving behaviour in New Zealand fur seal pups 548 
(Arctocephalus forsteri). Can. J. Zool. 83, 1149–1161 (2005). 549 

43. Kelso, E. J., Champagne, C. D., Tift, M. S., Houser, D. S. & Crocker, D. E. Sex differences in fuel use and 550 
metabolism during development in fasting juvenile northern elephant seals. J. Exp. Biol. 215, 551 
2637–2645 (2012). 552 



 

17 
 

44. Sparling, C. E., Georges, J.-Y., Gallon, S. L., Fedak, M. & Thompson, D. How long does a dive last? 553 
Foraging decisions by breath-hold divers in a patchy environment: a test of a simple model. Anim. 554 
Behav. 74, 207–218 (2007). 555 

45. Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain 556 
waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. 557 
Mov. Ecol. 4, 25 (2016). 558 

46. Hammond, P. S., Hall, A. J. & Prime, J. H. The diet of grey seals around Orkney and other island and 559 
mainland sites in north-eastern Scotland. J. Appl. Ecol. 31, 340–350 (1994). 560 

47. Beck, C. A., Iverson, S. J., Bowen, W. D. & Blanchard, W. Sex differences in grey seal diet reflect 561 
seasonal variation in foraging behaviour and reproductive expenditure: evidence from 562 
quantitative fatty acid signature analysis. J. Anim. Ecol. 76, 490–502 (2007). 563 

48. Hanson, N., Jones, E. L. & Harris, R. N. Multi-decadal and ontogenetic trophic shifts inferred from 564 
stable isotope ratios of pinniped teeth. Oikos 10.1111/oik.04441 (2017). 565 

49. Austin, D., Bowen, W. D., McMillan, J. I. & Iverson, S. J. Linking movement, diving, and habitat to 566 
foraging success in a large marine predator. Ecology 87, 3095–3108 (2006). 567 

50. Aarts, G., MacKenzie, M., McConnell, B., Fedak, M. & Matthiopoulos, J. Estimating space-use and 568 
habitat preference from wildlife telemetry data. Ecography 31, 140–160 (2008). 569 

51. EMODnet Seabed Habitats Consortium. EMODnet European Seabed Habitat Maps. (2016). at 570 
http://www.emodnet-seabedhabitats.eu/default.aspx/ (Date accessed: 15-02-2017) 571 

52. Breed, G. A., Bowen, W. D. & Leonard, M. L. Behavioral signature of intraspecific competition and 572 
density dependence in colony-breeding marine predators. Ecol. Evol. 3, 3838–3854 (2013). 573 

53. Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Coastal habitat use by ringed seals Pusa 574 
hispida following a regional sea-ice collapse: importance of glacial refugia in a changing Arctic. 575 
Mar. Ecol. Prog. Ser. 545, 261–277 (2016). 576 

54. Jones, E. L. et al. Patterns of space use in sympatric marine colonial predators reveal scales of 577 
spatial partitioning. Mar. Ecol. Prog. Ser. 534, 235–249 (2015). 578 

55. Votier, S. C. et al. Effects of age and reproductive status on individual foraging site fidelity in a 579 
long-lived marine predator. Proc. R. Soc. London B Biol. Sci. 284, 10.1098/rspb.2017.1068 (2017). 580 

56. Bennett, K. A., McConnell, B. J. & Fedak, M. A. Diurnal and seasonal variations in the duration and 581 
depth of the longest dives in southern elephant seals (Mirounga leonina): possible physiological 582 
and behavioural constraints. J. Exp. Biol. 204, 649–662 (2001). 583 

57. Jones, E. L. et al. Seal-shipping encounters: quantifying population risk and individual exposure to 584 
vessel noise. J. Appl. Ecol. 10.1111/1365-2664.12911 (2017). 585 

58. Bjørge, A., Øien, N., Hartvedt, S. & Bøthun, G. Dispersal and bycatch mortality in gray, Halichoerus 586 
grypus, and harbor, Phoca vitulina, seals tagged at the Norwegian coast. Mar. Mammal Sci. 18, 587 
963–976 (2002). 588 

59. Hastie, G. D. et al. Sound exposure in harbour seals during the installation of an offshore wind 589 
farm: predictions of auditory damage. J. Appl. Ecol. 52, 631–640 (2015). 590 

60. Thompson, D. Assessment of risk to marine mammals from underwater marine renewable devices in 591 
Welsh waters. Annex I: Movements and diving behaviour of juvenile grey seals in areas of high tidal 592 



 

18 
 

energy. Sea Mammal Research Unit report to Welsh Government. (2012). 593 
61. Vincent, C., McConnel, B. J., Ridoux, V. & Fedak, M. A. Assessment of Argos location accuracy from 594 

satellite tags deployed on captive gray seals. Mar. Mammal Sci. 18, 156–166 (2002). 595 
62. McConnell, B. J., Chambers, C. & Fedak, M. A. Foraging ecology of southern elephant seals in 596 

relation to the bathymetry and productivity of the Southern Ocean. Antarct. Sci. 4, 393–398 597 
(1992). 598 

63. Thompson, P. M. Seasonal changes in the distribution and composition of common seal (Phoca 599 
vitulina) haul-out groups. J. Zool., Lond. 217, 281–294 (1989). 600 

64. Russell, D. J. F. Changes in at-sea foraging trips of harbour seals and grey seals in south-east 601 
Scotland. Sea Mammal Research Unit report to Scottish Government. (2015). 602 

65. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical 603 
problems. Methods Ecol. Evol. 1, 3–14 (2010). 604 

66. Fedak, M. A., Lovell, P. & Grant, S. M. Two approaches to compressing and interpreting time-depth 605 
information as collected by time-depth recorders and satellite-linked data recorders. Mar. 606 
Mammal Sci. 17, 94–110 (2001). 607 

67. EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM). (2016). at 608 
http://doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238/ (Date accessed: 15-02-609 
2017) 610 

68. Ramasco, V., Barraquand, F., Biuw, M., McConnell, B. & Nilssen, K. T. The intensity of horizontal and 611 
vertical search in a diving forager: the harbour seal. Mov. Ecol. 3, 15 (2015). 612 

69. Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for Generalized Estimating Equations. J. 613 
Stat. Softw. 15, 1–11 (2006). 614 

70. R Core Team. R: A language and environment for statistical computing. (2016). at http://www.r-615 
project.org/ (Date accessed: 20-09-2016) 616 

71. Wood, S. N. Generalized additive models: an introduction with R. (CRC Press, 2006). 617 
72. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. in Mixed Effects Models and 618 

Extensions in Ecology with R (eds. Gail, M., Krickeberg, K., Samet, J., Tsiatis, A. & Wong, W.) 295–619 
321 (Springer, 2009). doi:10.1007/978-0-387-87458-6 620 

73. Hall, A. J. & McConnell, B. J. Measuring changes in juvenile gray seal body composition. Mar. 621 
Mammal Sci. 23, 650–665 (2007). 622 

74. Carbone, C. & Houston, A. I. The optimal allocation of time over the dive cycle: an approach based 623 
on aerobic and anaerobic respiration. Anim. Behav. 51, 1247–1255 (1996). 624 

75. Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) 625 
dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 626 
74–87 (1999). 627 

  628 



 

19 
 

Acknowledgments 629 

We are grateful to Scottish Natural Heritage (SNH), Natural Resources Wales (NRW) and the Royal Society 630 
for the Protection of Birds (RSPB) for permission to work on seal colonies. Special thanks to Simon Moss 631 
and Matthew Bivins (Sea Mammal Research Unit; SMRU), Greg and Lisa Morgan (RSPB), and all others who 632 
assisted in field work. Tags, and their deployments, were funded by the Welsh Assembly Government 633 
(Welsh colonies; project no. JER3688), Marine Scotland (Stroma and Muckle Green Holm; project no. 634 
CR/2009/48), the Natural Environment Research Council (NERC) (Isle of May) and SMRU Instrumentation 635 
(Isle of May). MIDC studentship is co-funded by Plymouth University School of Biological & Marine Sciences 636 
and NERC. DJFR, CJB & DT are supported by National Capability funding from NERC to SMRU (grant no. 637 
SMRU1001). We are grateful to Dr Yuuki Watanabe and an anonymous reviewer, whose comments 638 
improved the manuscript. 639 

 640 

Author contributions statement 641 

Conceived the study: MIDC, DJFR, CBE, KAB. Wrote the manuscript: MIDC. Contributed data: DT, KAB. 642 
Processed the data: MIDC, DJFR, CJB. Analysed the data: MIDC. Advised data analysis: DJFR, CBE, PJH. All 643 
authors reviewed and edited the manuscript. 644 

 645 

Additional information 646 

The authors declare no competing interests, financial or otherwise.  647 



 

20 
 

Tables 648 

Table 1: Device deployment summary information. Tagged pup sample sizes and tag duration by 649 
deployment site and year. Trip and dive numbers given are those included in the analysis after data 650 
cleaning and restriction to 120 days after leaving the colony. Although SRDL devices recorded dives, these 651 
could not be matched to bathymetric depth data and so were excluded from dive analysis. Colonies were 652 
assigned to two geographic regions; NS = North Sea, CIS = Celtic and Irish Seas. 653 

Deployment site (year) 
 

Region Device type 

No. tagged seals Mean no.  
locations  
day-1 ± SD 

Total 
no. trips 

Total no. 
dives f m Total 

Isle of May (2001) NS SRDL 5 6 11 4.5 ± 2.3 109 N/A 

Isle of May (2002) NS SRDL 5 5 10 5.2 ± 1.7 67 N/A 

Bardsey (2009) CIS GPS-GSM 2 0 2 35.5 ± 5.4 23 3871 

The Skerries (2009) CIS GPS-GSM 1 2 3 33.1 ± 5.7 141 9373 

The Skerries (2010) CIS GPS-GSM 4 1 5 57.2 ± 13.8 212 46589 

Ramsey (2010) CIS GPS-GSM 3 4 7 37.3 ± 9.7 162 27609 

Muckle Green Holm (2010) NS GPS-GSM 4 3 7 22.5 ± 9.6 38 7417 

Stroma (2010) NS GPS-GSM 5 2 7 24.4 ± 4 84 7941 

  Total: 29 23 52  836 102800 

 654 
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Table 2: Model output. Results of model simplification using backwards hypothesis testing with GEE-GAMs. Significant (p < 0.05) terms are shown with “*”. 655 
Interactions between variables are denoted by “:”. Where a variable was significant in an interaction, the significance of component interactions and/or individual 656 
fixed effects is not reported. 657 

 
Predictor Variables 

Response Variables  
Trips Dives (daily means)  

Duration 
(Fig. 4a-b) 

Distance 

 (Fig. 4c-d) 
Max. Depth 
(Fig. 5a-b) 

Bathy. Depth 
(Fig. 5c-d) 

Prop. Benthic 
(Fig. 5e-f) 

Duration 
(Fig. 6a-b) 

Prop. Bottom Time 
(Fig. 6c-d) 

Prop. Time Diving 

(Fig. 6e-f) 

Time χ23 = 15.2, p = 0.002* χ23 = 8.2, p = 0.042* - - - - - - 

Sex χ21 = 1.4, p = 0.233 - - - χ21 = 5.2, p = 0.023* χ21 = 2.5, p = 0.117 - - 

Region χ21 = 66.1, p < 0.001* - - - - - - - 

Time : Sex χ23 = 3.9, p = 0.268 χ23 = 6.2, p = 0.1 - - χ23 = 1.1, p = 0.774 χ23 = 3.1, p = 0.369 χ23 = 3.1, p = 0.378 χ23 = 13.9, p = 0.003* 

Time : Region χ23 = 4.1, p = 0.254 χ23 = 3.3, p = 0.346 - - χ23 = 13.1, p = 0.004* χ23 = 16.4, p < 0.001* χ23 = 14.9, p = 0.002* χ23 = 15, p = 0.002* 

Region : Sex χ21 = 2.7, p = 0.099 χ21 = 4.7, p = 0.03* - - χ21 = 0.1, p = 0.767 χ21 = 0, p = 0.875 χ21 = 9.3, p = 0.002* χ21 = 0.02, p = 0.885 

Time : Region : Sex χ23 = 0.8, p = 0.852 χ23 = 1.4, p = 0.708 χ23 = 13.6, p = 0.003* χ23 = 10.4, p = 0.016* χ23 = 1.3, p = 0.74 χ23 = 1.9, p = 0.591 χ23 = 7.24, p = 0.065 χ23 = 4.5, p = 0.215 

 658 
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Figure Captions 659 

 660 

Figure 1: Pup tagging sites and trips at sea. Pups were tagged at six colonies in the United Kingdom (UK). 661 
Colonies were assigned to one of two geographic regions; (a) Celtic and Irish Seas (CIS), and (b) North Sea 662 
(NS). Tracks show pup trips (n=836) during the initial four months after leaving the colony. Maps created 663 
in Esri ArcMap™ 10.2.2 (http://desktop.arcgis.com/en/arcmap/). 664 

 665 

http://desktop.arcgis.com/en/arcmap/
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 666 

Figure 2: Changes in NS pup trip behaviour with time since departing the colony. Map shows initial 667 
exploratory trip of a pup from Muckle Green Holm, Orkney Isles (black dot), during which it did not haul-668 
out for 64 days (green track). During the following 56 days, the pup performed repeated short-duration (5-669 
14 days) foraging trips (gold tracks), travelling between the haul-out site and specific putative foraging 670 
areas. Map created in Esri ArcMap™ 10.2.2 (http://desktop.arcgis.com/en/arcmap/). 671 

 672 

http://desktop.arcgis.com/en/arcmap/


 

24 
 

 673 

Figure 3: Differences in dispersal of CIS pups. Maps show trips of two pups from The Skerries over the 674 
first 4 months of independence. Pup (a) remains in areas adjacent to the colony (black dot) for ~50 days 675 
before dispersing to the southeast coast of Ireland, hauling-out at a popular grey seal haul-out site, and 676 
subsequently making repeated trips to putative foraging grounds on the edge of the Celtic Deep. Pup (b) 677 
remains in areas adjacent to the colony (black dot) for the entire 4 months. Maps created in Esri ArcMap™ 678 
10.2.2 (http://desktop.arcgis.com/en/arcmap/). 679 

 680 

http://desktop.arcgis.com/en/arcmap/


 

25 
 

 681 

Figure 4: Sex and region differences in ontogeny of trip behaviour. Model-fitted values for trip 682 
duration (a-b) and trip distance (c-d) over time since leaving the colony. Solid lines show population mean 683 
responses by region (North Sea (NS) left, Celtic and Irish Seas (CIS) right), with associated GEE-based 95% 684 
confidence intervals (shaded areas). Pup trip behaviour changed significantly with time since departure. 685 
NS pups performed longer duration trips than CIS pups, however there was no sex difference (a-b). CIS 686 
males (d; blue) travelled further than females (red). Rug plots top and bottom show the distribution of data, 687 
colour-coded by sex, and associated numbers indicate pup sample size. 688 

 689 
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 690 

Figure 5: Sex and region differences in ontogeny of dive depth. Model-fitted values for daily mean 691 
maximum dive depth (a-b) and bathymetric depth of dive locations (c-d) over time since leaving the colony. 692 
Solid lines show population mean responses by region (North Sea (NS) left, Celtic and Irish Seas (CIS) right), 693 
with associated GEE-based 95% confidence intervals (shaded areas). Pups increased their dive depth 694 
rapidly over the initial 40 days (a-b), except for CIS females (b). NS pups dived in deeper water throughout 695 
(c). Sex differences in bathymetric depth of dive locations emerged from the outset in CIS pups, as females 696 
(red) dived in shallower areas (d). The proportion of dives that were benthic increased rapidly for all pups 697 
over the initial 40 days. However, females recorded marginally higher mean values than males in both 698 
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regions (e-f). Rug plots top and bottom show the distribution of data, colour-coded by sex, and associated 699 
numbers indicate pup sample size.  700 

 701 

 702 

Figure 6: Sex and region differences in ontogeny of dive duration. Model-fitted values for daily mean 703 
total dive duration (a-b), bottom time (as proportion of total dive duration; c-d), and time spent diving (as 704 
proportion of 24 h period; e-f) over time since leaving the colony. Solid lines show population mean 705 
responses by region (North Sea (NS) left, Celtic and Irish Seas (CIS) right), with associated GEE-based 95% 706 
confidence intervals (shaded areas). Pups increased their dive duration rapidly over the initial 40 days (a-707 
b), and there was no sex difference in dive duration. Females (red) had higher bottom time than males (blue) 708 
(c-d), although this was more marked in CIS pups (d). Females spent more time diving than males in the 709 
third month (e-f). Rug plots top and bottom show the distribution of data, colour-coded by sex, and 710 
associated numbers indicate pup sample size. 711 


