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Abstract 

The primary culture of fish gill cells can provide functional, cell diverse, model in vitro platforms able to tolerate an aqueous exposure 

analogous to in vivo tissues. The utility of such models could be extended to a variety of longer term exposure scenarios if a method 

could be established to extend culture viability when exposed to water for longer periods. Here we report findings of a series of 

experiments to establish increased longevity, as monitored by culture transepithelial electrical resistance (TEER) and concurrent 

histological developments. Experimental cultures improved TEER during apical freshwater for a mean of twelve days, compared to 

previous viabilities of up to 3 days. Cultures with larger surface areas and the use of trout serum rather than foetal bovine serum 

(FBS) contributed to the improvement, while perfusion of the intact gill prior to cell harvest resulted in a significantly faster preparation. 

Detailed scanning electron microscopy analysis of cultures revealed diverse surface structures that changed with culture age. 

Cultures grown on membranes with an increased porosity, collagen coating or 3D structure were of no benefit compared to standard 

membranes. Increased culture longevity, achieved in this study and reported for the first time, is a significant breakthrough and opens 

up a variety of future experimentation that has previously not been possible. The extended viability facilitates exploration of in vitro 

chronic or pulse-exposure test paradigms, longer term physiological and environmental monitoring studies and the potential for 

interactive co-culture with other organoid micro-tissues. 
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Introduction 

Rainbow trout (Oncorhynchus mykiss) gill cells can be extracted from primary tissue and grown on the permeable membranes of 

microplate inserts to form an in vitro gill cell culture. The initial methodology grew cells in a culture flask before transfer to the insert 

in a single stage (SSI; Wood and Pärt (1997)). This was later developed into directly seeding cells onto the insert, either once (SDSI; 

Wood et al. (2003)) or a double seeding of cells from separate fish, 24h apart (DSI; Fletcher et al. (2000)). The DSI method produces 

cultures that are polarised, electrically tight and contain pavement, mitochondria-rich (MR) and mucus cells in similar proportions to 

in vivo. (Fletcher et al. 2000; Leugen et al. 2007; Perry and Laurent 1993). Culture development through time is typically monitored 

using the determination of Trans-Epithelial Electrical Resistance (TEER). This is a non-destructive, quantitative measure of electrical 

impedance across the culture that can be used as an indicator of culture quality (Chen et al. 2015; Srinivasan et al. 2015). Culture 

TEER values through time reveal the formation of an extremely ‘tight’ culture which maintains a very high TEER for several weeks 

when maintained in media (Wood et al. 2002; Walker et al. 2007). Once established, the cultures are also able to tolerate an 

immediate switch from media to freshwater on the apical side and hence can accurately model the in vivo situation. TEER dynamics 

post water addition (PWA) can be variable and depend on the state of the culture at that time (Fletcher et al. 2000) but typically show 

a brief spike and return to previous levels before a collapse after 24 - 72 h (Wood et al. 2002; Walker et al. 2007). This time window 

when the culture has water on the apical side, culture media on the basolateral side and a stable high TEER provides a model in vitro 
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platform with the potential to provide data that can reduce the required number of in vivo experiments and avoid the potential animal 

suffering of direct exposure to contaminants (Reduction and Refinement of 3R’s principles; Burden et al. 2015). These models have 

been proposed to have direct applications in regulatory assessments (Lillicrap et al. 2016a,b) and have already been used in the 

fields of physiology and toxicology (Bury et al. 2014; Stott et al. 2015; Schnell et al. 2016) and is robust enough to take to the field for 

use in environmental monitoring (Minghetti et al. 2014). 

Despite these promising applications, a major limitation of the available model is the relatively short (24 - 72 h) culture viability PWA. 

It would be advantageous to be able to extend this time window to study longer term processes in a gill model without the interacting 

complications, costs and ethical considerations involved with in vivo work. Similarly, it is problematic to use short term model data to 

inform decisions for chemical environmental risk assessment, particularly when the standard in vivo tests for acute exposures have 

been designed to last 96 h (OECD 2012). An extension of the model viability would open up numerous avenues for future research, 

for example, we have also developed a trout hepatic spheroid model (Baron et al. 2012; 2017) and are working on combing these 

tissues from different organs together into a co-culture to obtain a holistic evaluation of potential in vivo conditions. Since the liver 

spheroids remain viable for several weeks in culture, the limiting factor for length of co-culture viability is also the viable time of gill 

cultures PWA. These considerations led to an experimental aim in this study to increase the time beyond the 24 - 72 h that DSI 

cultures remain viable after addition of apical freshwater.  
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Previous studies have successfully developed slight variations of the standard DSI culture to suit certain requirements, e.g. metal-

sensitive cultures (Walker et al. 2007) inverted culture (Schnell et al. 2016) and cell selective seeding (Galvez et al. 2008) but the 

standard model and methodology remains essentially unchanged from Fletcher et al. (2000), and has been recently summarised 

(Schnell et al. 2016). Attempts have been made to improve the active ion transport of the culture by trialling various media additives 

(summarised in Bury et al. 2012) but with limited success. With these existing limitations we aimed to primarily investigate 

methodological protocol alterations, to seek a more fundamental change in culture physiology, or general health that might enable 

the cultures to tolerate a prolonged exposure to water. We decided to utilise daily TEER monitoring as an indication of culture quality 

and viability and report four experiments conducted to extend the longevity of the DSI gill cultures when freshwater is introduced to 

their apical side. 

 

We initially made investigations into reducing the time it takes to get the cells into culture. We considered that a reduction in time that 

the cells are being processed might result in cells with an improved health status going into culture. One of the longest stages in the 

protocol is the 3 wash stages designed to remove as much blood as possible from the gills before further processing. It is a relatively 

simple operation to perform an in situ ventral aortic perfusion which clears the blood from the gill vasculature prior to excision (Perry 

et al. 1984). The cleared gill arches can be excised, briefly washed and put directly into the trypsin digestion, thereby reducing the 

processing time. The removal of blood from the tissues might also be a benefit to culture by elimination of blood cell physical 

interference during attachment and chemical interference during degradation. After some optimisation a viable method was 
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developed, so Experiment 1 was designed to test for differences in DSI culture parameters from cells produced using the standard 

primary and new perfused methodology.  

 

Secondly, we thought it likely that recent developments in membrane technology might provide insert materials that are better able 

to support a more realistic gill culture. The existing method uses a polyethylene terephthalate membrane containing 1.6 x 106 0.4 µm 

pores/cm2 which appears to have remained unchanged since first used in this field when became available (Wood and Pärt 1997). A 

‘high density’ version of the same material with 1 x 108 0.4 µm pores/cm have also been previously used for SSI, but with no difference 

reported (Wood and Pärt 1997). Numerous other insert materials and coatings are available and we hypothesised that these 

membranes, with a higher porosity or altered surface chemistry might produce a culture with better attachment, or scope for higher 

transport and hence be more similar to the in vivo state. Experiment 2 was designed to compare culture growth on these different 

membranes. 

We were interested in exploring the possibility of using autologous trout serum (TS; from the same donor fish) to later supplement 

the gill cell cultures. A literature survey revealed a related experiment had been previously carried out using fresh plasma from larger 

donor conspecifics to supplement in vitro cultures (Wood et al. 2003). No differences in TEER were observed in fresh plasma and 

previously frozen plasma reported as toxic to cells. In our preliminary trials, we saw some evidence of improvements in TEER when 
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using a heat-inactivated TS preparation (i.e. not plasma) from both fresh (unfrozen) autologous TS and frozen group-batched TS. 

We therefore conducted Experiment 3 to specifically test for culture TEER differences under these various serum preparations. 

Finally, to further explore the results of Experiment 3, we investigated if the size of culture vessel made a difference to culture TEER. 

This work was based on previous observations of apparently higher TEER when using larger 4.2 cm2 inserts compared to the usual 

0.9 cm2 format. We therefore performed Experiment 4 to test culture TEER of cells from the same stock, cultured under the same 

conditions and seeding densities but grown in the 4.2, 0.9 or 0.3 cm2 inserts produced varying culture TEER.  

 

A key idea in Experiments 3 and 4 is defining what constitutes a viable culture, both before and after water addition. Viability has 

previously been defined for short term cultures by the maintenance of ≥50 % the TEER value pre water addition (Wood et al. 1998) 

and then added to by Fletcher et al. (2000) to also require a minimum 10 KΩ cm2 starting TEER. From this, a TEER value of 5 KΩ 

cm2
 has been interpreted as a threshold to indicate cultures are ‘tight’ and suitable for experimentation (Walker et al. 2007; 2008; 

Minghetti et al. 2014). This value has also been shown to have significance experimentally based on observed ion fluxes (Wood et 

al. 1998) and mannitol permeability (Stott et al. 2015). We have used it as a working definition of viable culture here. 

 

Materials and methods 

Experimental animals  
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Female rainbow trout (Oncorhynchus mykiss) with mean bodyweight ± S.E.M. = 273 ± 9 g were obtained from a local commercial 

supplier and held at University of Plymouth aquarium facilities. Typical husbandry conditions were groups of 10-30 fish in 200L holding 

tanks on a recirculating system of aerated, dechlorinated tap water, with temperature (15 – 16 ºC), pH (6.5 - 6.8), dissolved oxygen 

(95 – 98 %) and photoperiod 12h: 12h. Fish were fed twice daily at 2 % body weight/day and not starved before experiments. 

Experiments used fish held between June 2015 and October 2016. To collect primary tissue, fish were killed by Schedule 1 procedure 

under UK Home Office regulations which constitutes a blow to the head and destruction of the brain. Fish were then weighed and 

used immediately. 

Laboratory chemicals 

Leibovitz’s medium (L-15), FBS, Dulbecco's Phosphate-Buffered Saline (PBS), Gentamycin (10 mg/mL), Penicillin-

Streptomycin (5000 U/mL) and Amphotericin B (250 µg/mL) were obtained from Life Technologies (UK). Trypsin-EDTA (0.25 %), 

Trypan Blue (0.4 %), and all other chemicals and reagents were obtained from Sigma-Aldrich (UK).  

DSI culture preparation 

Detailed methods of the standard method have been previously published (Kelly et al. 2000; Schnell et al. 2016). Briefly, all 8 gill 

arches were excised, filaments cut from arch and washed three times in an antibiotic (200 U/mL Penicillin-Streptomycin, 400 µg/mL 

Gentamycin) and antimycotic (2.5 µg/mL Amphotericin B) PBS solution. Cells were isolated by EDTA-trypsin digestion, washed, 

counted and seeded into media-conditioned inserts. Cultures were maintained in L-15 media supplemented with 5% serum and 
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antibiotics (100 U/mL Penicillin-Streptomycin, 200 µg/mL Gentamycin) in an air environment incubator at 15 ºC.  After 24 ± 2 h the 

cultures were washed to remove cellular debris, mucus and cells prepared from a second fish were then seeded on top of the existing 

attached cells from the first fish. After a further 24 ± 2 h the cells were washed again and TEER monitored daily and media renewed 

3 times per week. Known deviations from the published methods were the use of antibiotic solutions in media throughout culture, 

larger fish and 15ºC rather than 18ºC for culture incubation. 

Transepithelial electrical resistance (TEER) measurements 

TEER was monitored at least daily through experiments and more frequently as required for water addition experiments. TEER was 

measured using a STX-2 chopstick and EVOM2 epithelial volt/ohm meter then blank corrected and resistance normalised to area (Ω 

cm2) (Srinivasan et al, 2015). Blank values were generated from spare wells in plates and recorded daily for symmetrical cultures. 

For asymmetrical cultures the initial immediate (un-mixed) value was used for the subsequent culture. This was because the water 

in blank cultures quickly mixes with the underlying media (~2 hours for 4.2 cm2 membranes) and falsely alters the blank correction 

value in comparison to cultured inserts where the cell layer largely blocks mixing (while facilitating some ion transport). 

 

Water exposure 

Artificial freshwater was used in all experiments for consistency. US EPA moderately hard water was prepared following standard 

guidelines US EPA (2002) and filter sterilised (0.22 µm PES membrane, Millex GP Millipore Ireland) before use. Basolateral media 
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was removed before apical media was replaced with water via pipette and repeated 4 times to ensure no residual media remained. 

Water was conditioned to culture temperatures before use. 

Scanning Electron Microscopy (SEM) 

Inserts were removed from the well with forceps, emptied and membranes removed by scalpel. Inserts were individually fixed in a 

2.5 % glutaraldehyde, 0.1 M sodium cacodylate buffer (pH 7.2; 4 ºC) for 4 h. Fixed samples were rinsed in sodium cacodylate buffer, 

dehydrated in stepwise ethanol washes, dried in a critical point drier (Emitech K850, UK) and sputter coated with gold (Emitech K550, 

UK).  Analysis was conducted using a JEOL JSM-5600LV (JEOL Ltd., UK) SEM using settings appropriate for the samples. 

 

Gill pre-perfusion (Experiment 1) 

Fish to be used in Experiment 1 had blood cleared from gills by a ventral aortic perfusion in a 15 ºC temperature controlled laboratory. 

A 50 cm length of fine bore polythene tubing was attached to a 20 mL syringe containing ambient temperature PBS. Fish were 

supported ventral side up and an incision made to open body cavity then held open with wound spreaders. A further incision into 

pericardium revealed the heart which was then gently pulled upwards using forceps around the aorta on its underside. The upper 

half of the heart was cut away and the syringe tubing was fed downwards through the lower half of the heart and into the aorta (~1 

cm) where it was grip sealed by forceps. The syringe was then depressed by hand to push PBS through the vasculature and clear 

blood from the gills (see Figure 1). After perfusion the gill arches were excised and treated as for the primary preparation but with the 

repeated wash stages omitted. Cells were instead rinsed once in wash solution then put into the trypsin-EDTA stage.  Experimental 
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design used the 4 combinations of culture seeding from primary and perfused cell preparations in the 4.2 cm2 inserts; 1st and 2nd 

seed primary; 1st seed primary 2nd seed perfused, 1st seed perfused 2nd seed primary, 1st and 2nd seed perfused. 

 

Effect of membrane material (Experiment 2) 

Standard Falcon inserts were compared in direct trial experiments using the same seeding protocol as in Experiment 2 with 

corrections for growth area. The 6 well formats were typically used and comparisons made with cells of biological replicates. The 

types of membrane trialled were: 

1. Standard: Falcon, 1.6×106 0.4 µm pores/cm2, 4.19 cm2 growth area 

2. Falcon HD, 1×108 0.4 µm pores/cm2, 4.19 cm2 growth area 

3. GBO Thincert, transparent, 2×106 0.4 µm pores/cm2, 4.52 cm2 growth area 

4. GBO Thincert, translucent, 1×108 0.4 µm pores/cm2, 4.52 cm2 growth area 

5. GBO Thincert, collagen type 1, 1×108 0.4 µm pores/cm2, 4.52 cm2 growth area 

6. Reinnervate Alvetex strata, highly porous polystyrene scaffold, 3-D growth area 

Supplementation of trout serum (Experiment 3) 

In order to generate enough serum for culture, trout in 250 - 350 g range were selected. Fish were bled by caudal vasculature using 

hypodermic needles without heparin. Blood from individual fish was collected in a 15 mL tube and left overnight in the fridge (4 ºC). 
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Tubes were centrifuged at 750 × g for 10 min and serum transferred to a fresh tube. Serum compliment was heat inactivated by 

immersing tube in a 45 ºC water bath for 30 min then rapidly cooled on ice and filter sterilised (0.22 µm PES membrane, Millex GP 

Millipore Ireland). The serum from the first fish was stored in the fridge (4 ºC) and combined with the serum from the second fish 

before filter sterilisation to reduce losses in the filters. A separate, larger batch of TS (~100 mL) was prepared by combining together 

the blood collected from 20 trout from the same cohort into a single batch and processed as above but stored frozen in aliquots until 

required.  

 

Since autologous TS was not ready for use in culture until Day 2, in order to maintain cells until this time we needed to use FBS 

media (5 %) for insert conditioning, cell processing and culture until Day 2. After this wash the apical compartment was either 

maintained with FBS or autologous TS media (5 %) depending on the treatment. Due to volume limitations the basolateral 

compartment was maintained with FBS media for both treatments. Cultures were maintained under this regime with 3 media changes 

in the week leading up to apical water addition. During set up of the asymmetrical phase the basolateral compartment was replaced 

with either fresh TS or FBS media. The osmolality of media containing FBS and TS were both measured using an Osmomat 030 

(Gonotec) to confirm equal values (data not shown). No media or water renewals were performed during the asymmetrical phase. 

 

Effect of membrane area (Experiment 4) 
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Falcon inserts and companion plates (BD Biosciences, USA) were purchased in 4.2, 0.9 and 0.3 cm2 formats corresponding to 6, 12 

and 24-well, respectively. Working volumes for apical and basolateral compartments were chosen from the recommended ranges 

suggested by suppliers. For the basolateral compartment a volume in the middle of recommended range was chosen of 3.0, 1.8 and 

0.8 mL for 4.2, 0.9 and 0.3 cm2 inserts, respectively. The upper limit of suggested working volumes were chosen for the apical 

compartment to both maximise nutrients and ensure a positive hydrostatic gradient was maintained during culture (2.5, 1 and 0.35 

mL for 4.2, 0.9 and 0.3 cm2, respectively; the apical media/water level was higher than the basolateral level). In order to seed cells 

at the same density for each insert size, a single stock was diluted to contain a minimum 4.19 million cells/mL in media, and then 

1000, 208 and 76 µL seeded into 4.2, 0.9 and 0.3 cm2 inserts, respectively. This seeded a minimum of 1 million cells/cm2 in each 

well. The range of cell concentrations used was 1 - 2 million cells/cm2, but always in proportion within a given experiment. 

Data analysis 

All data are expressed as means ± S.E.M. The number of biological (separate pairs of donor fish) and experimental (separate repeat 

runs) replicates used during each experiment is detailed in the results. Data normality and variance were assessed and group 

differences, through time where appropriate were assessed by comparing data using standard or repeated measures ANOVA. If 

required, post hoc testing was performed to find specific differences. The level of statistical significance for all analyses was P <0.05. 

Analyses were performed using R software (v3.1.3; www.r-project.org). 

 

Results 
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Gill pre-perfusion (Experiment 1) 

The perfusion experiment consisted of 5 separate runs between July 2015 and March 2016, using a total of 11 biological replicates, 

each cultured in 3 - 6 wells. Mean ± S.E.M. wet weight of the 22 fish was 269 ± 13 g. An example gill arch after primary and perfused 

preparation is shown in Figure 1. Occasionally the perfusion would not work satisfactorily, as judged by visual inspection of the gills, 

in which case those gills were not used in this experiment. The TEER values for the 4 combinations of perfused or primary (standard) 

preparation techniques for the double seeding technique are shown in Figure 2. No significant differences in TEER between the 

treatments through time were observed. The 4 treatments follow a typical pattern of slow TEER increase until Day 5, then a linear 

increase until Day 11 then a plateau at around 20 KΩ cm2. This data is from symmetrical cultures only and does not include a water 

addition element. 

 

Effect of membrane material (Experiment 2) 

When compared to the standard membrane (1), cells seeded onto Falcon HD inserts (2), GBO translucent (3), transparent (4) and 

collagen type 1 (5) inserts all failed to establish TEER above background after 10 days of growth (data not shown). Phase contrast 

microscopy of in situ cultures and scanning electron microscopy (SEM) of fixed membranes revealed that cell layers were incomplete 

or that few cells had attached. These trials were repeated for 3 - 6 wells at least 3 separate times. Cultures from the same cells 

seeded on standard inserts produced cultures with a typical TEER profile. Cells seeded onto Reinnervate Alvetex strata membranes 
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could not be accurately assessed by TEER as they were not fully compatible with the chopstick electrodes, but the data that could 

be collected suggested little or no difference in TEER from background. SEM imaging of the membrane surfaces are shown in Figure 

3. 

  

Supplementation of trout serum (Experiment 3) 

We compared autologous fresh TS against FBS in a series of 6 separate runs between February and September 2016, using a total 

of 13 biological replicates, each cultured in 3 - 6 wells. Mean ± S.E.M. wet weight of the 26 fish was 303 ± 19 g. The TEER data is 

displayed in Figure 4. Cultures receiving the TS media showed a significant increase in TEER compared to those receiving FBS 

media from Day 5 to 7. Both culture types reached a similar TEER by Day 9 when the apical water addition occurred. Immediately 

PWA, the mean TEER of both culture types rapidly increased and then declined fairly consistently over the following 2 weeks. 

Interestingly, the FBS cultures maintain a significantly higher TEER than the TS on Days 10 - 12. The remaining time points do not 

show any significant differences in mean TEER, but the TS is above the FBS value from Day 14 onwards. 

 

If using a TEER of >5 KΩ cm2 threshold to define a viable culture PWA, then both culture types extend far beyond the ~24 - 72 h 

viability previously reported, with mean TEER values for both treatments remaining >5 KΩ cm2 until Day 21 (= Day 12 PWA; Figure 

4). The variation in duration of viability is however, high, with the TEER of individual cultures responding very differently to water 

addition between experimental runs.  
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We also conducted a smaller scale experiment (single run) to compare the TEER of the two types of trout serum (fresh autologous 

serum (Autologous TS) and frozen batch-prepared serum (General TS)). Two biological replicates were set up, each of which had 6 

wells for each treatment. Mean ± S.E.M. wet weight of the 4 fish was 291 ± 15 g. The data is displayed in Figure 6. There was no 

significant difference in TEER between the serum types through symmetrical culturing or during water addition on Day 8. There was 

some evidence of Autologous TS treated cultures having a higher TEER than General TS during later stages (Days 15 and 16 

significantly different (p<0.05)). No evidence of toxicity was observed in cultures treated with either serum type, as has been 

previously reported.  

 

Typical culture development from initial seeding, through confluence, apical water addition and eventual degradation and typical cell 

surface structures is shown by SEM imaging in Figure 5. Initially, the cells quickly attach and form a monolayer after initial seeding 

and a confluent layer after the second seeding (Figure 5a - b). The microridge surface morphology takes a few days to appear and 

fully differentiate and remain present post water addition (Figure 5b - d). Culture surface morphology appears to diversify with culture 

age to include suspected MR cells with different microridge surface morphologies (Figure 5g - i). After a longer duration water 

exposure the microridges appear reduced and another, larger scale surface pattern emerges (Figure 5e) before the culture layer 

loses integrity (Figure 5f). 
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The maintenance of high TEER (>5 KΩ cm2) for a mean of 12 days PWA (Figure 4) was encouraging, if unanticipated. Since we had 

primarily been using the larger 4.2 cm2 inserts rather than the standard 0.9 cm2 we wondered if the larger 4.2 cm2 insert size was 

contributing to the apparent improved performance, so tested this hypothesis in Experiment 4. 

 

Effect of membrane area (Experiment 4) 

Experiment 4 consisted of 4 separate runs between July and November 2016, using a total of 10 biological replicates, each replicated 

in 3 - 6 wells. Mean ± S.E.M. wet weight of the 20 fish was 235 ± 7 g. Experiment 4 data collection was inhibited by the maximum 

range of the TEER instrument being 20 KΩ. A raw TEER measurement has a blank value subtracted and is then multiplied by the 

membrane area in cm2 to get by the Ω cm2 units (Srinivasan et al. 2015). For the 0.9 and 0.3 cm2 inserts, the 20 KΩ limits the 

maximum recordable range of these inserts to approximately 18 and 6 KΩ cm2, respectively (e.g. instrument measures its maximum 

20KΩ in a 12 well 0.9 cm2 insert, minus blank value of 300Ω = 19700Ω × 0.9 cm2 = 17730 Ω cm2). With all TEER data above this 

range excluded, the 0.3 cm2 format range is Days 2-6 and 25-27 and the 0.9 cm2 format range is Days 2-5 and 23-27. The whole 4.2 

cm2 inserts data set is available, but we show Days 2-6 and 23-27 for comparison in Figure 7. In the symmetrical phase, the 4.2 cm2 

and 0.9 cm2 formats have similar TEER values, and both are significantly higher than the 0.3 cm2 format on Days 4, 5 (and Day 6 for 

4.2 cm2 inserts). PWA there were no significant differences between the formats. 
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Since the complete TEER profile is not available, another way to analyse this data is to compare the number of days that individual 

cultures remained viable (TEER >5 KΩ cm2) PWA. This data is displayed in Figure 8. All three formats produced cultures that lasted 

for at least 12 days, but there was a significant increase in mean duration for the 4.2 cm2 above the 0.9 cm2 and the 0.9 cm2 above 

the 0.3 cm2 formats.  

 

Discussion 

Gill pre-perfusion (Experiment 1) 

No significant differences were found between the TEER of the four combinations of perfused and primary prepared cells throughout 

an extended symmetrical culture. Despite this we do consider the perfusion method to add value to this model in terms of reduced 

preparation time and reduced materials cost. We have not compared the primary and perfusion methods following a water addition 

stage, but based on the similarity of the methods under symmetrical culture, we think it is unlikely to be the cause of the large scale 

increases in asymmetrical culture viability reported in Experiments 3 and 4.  We recommend the use of the gill perfusion method in 

DSI gill preparations and encourage other users to consider this methodology. The method was successfully used in the subsequent 

experiments. 

 

Effect of membrane material (Experiment 2) 
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Despite the wide range of use of these membrane types in cell culture with other species, the use for gill cells in this application was 

not a success. Standard and HD membranes yield a theoretical total porous area of ~0.2% and 13% respectively and visually 

resemble a flat surface with occasional, or numerous pores (see Figure 3). Since trout gill cells readily attach and grow on the solid 

surface of a culture flask (Wood and Pärt 1997), though possibly not as well as a standard membrane (Leguen et al. 2007), it must 

be the higher density of pores, or a consequence of, that have caused the lack of suitable cell attachment in this case. Given the 

relatively large pavement cell size (~10 µm; Wilson et al. 2002; Figure 5a) in comparison to the pores (0.4 µm diameter) it is surprising 

that they show such an acute sensitivity to an increase in pore density. Previous studies have reported similar difficulty in growing a 

SSI culture on the HD pore inserts and report no benefit when a successful culture was achieved (Wood and Pärt 1997). Whatever 

this problem is for attachment, it seems likely that it would be increased when cells are seeded onto the Reinnervate Alvetex strata 

membrane given its highly porous nature and lack of flat solid substrate for attachment. The use of a collagen coating to the membrane 

surface has also been successfully used in other applications, but the GBO membrane used here with a collagen type 1 coating also 

failed to establish a viable culture. This is perhaps not surprising given the same membrane without collagen also failed. It would be 

interesting to test a collagen-coated standard (Falcon) insert if one became available, given the favourable growth observed using 

this coating in other cell types.  

 

Supplementation of trout serum (Experiment 3) 
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The TS supplemented cultures in this experiment attained a higher TEER than the FBS cultures during culture establishment (Figure 

4, Days 5 - 7). This finding might be of value to future research as these cultures attained the 5 KΩ cm2 threshold a day or so sooner 

than those cultured with FBS. Due to costs, ethics and possible health issues using bovine serum, fish serums and those from other 

animals have been investigated as suitable alternatives to FBS. A variety of fish (Kocal et al. 1988; Hashimoto et al. 1997; Rathore 

et al. 2001; Rosa et al. 2010) and mammalian cell types (Fujiwara et al. 2010) have benefited by being grown using fish serum, or a 

mixture, rather than FBS. Fish serum is also now available commercially (El-Dakhly et al. 2015), can be repeat-harvested from large 

stock fish (Wood et al. 2003), and has even been successfully used after recovery from the waste stream of a fish processing factory 

(Zakaria-Runkat et al. 2006). The cost-benefit analysis of use of fish serum would depend on individual experimental aims, but there 

is clearly potential for use in more applications in the future. For example, we plan to utilise autologous TS for future proteomic 

investigations to eliminate the variation observed in proteome between individual fish. Using a mixture of TS and FBS might be a way 

to gain the same benefits using smaller total volumes of serum. 

 

In the current study there were no significant advantages to using TS PWA (Figure 4). However, the mean data masks the variation 

observed in TEER profiles between runs. PWA, we observed runs where both TS and FBS significantly outperformed each other in 

terms of TEER scale and duration. Despite the large sample size, this variation makes it difficult to definitively recommend one type 

over another, though TS can be considered, on average, at least as good as FBS in terms of TEER. We speculate that the source of 

variation between runs could be seasonal changes in the fish leading to serum or cell differences, but our analysis cannot discern 
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this. Methodological inconsistencies were also considered and minimised as far as possible in experimental design. For serum, FBS 

from the same batch was used and TS was harvested in a standardised manner. Cortisol, or serum from stressed fish has been 

shown to have some small effects on this and other similar models (Zhou et al. 2003; Kelly and Wood 2001; Kelly and Wood 2002), 

but not to the scale of the observed variation here. The rapid collection method should also have negated the prospect of serum 

contamination with stress response constituents. Seasonal changes leading to variation in TEER have been previously reported 

(Kelly et al. 2000; Bury et al. 2014) but it is difficult to propose a satisfactory explanation when fish maintenance and culturing regimes 

are both under constant environmental conditions. The experimental methods were also well practiced and dependable by the time 

of experimentation. 

 

When comparing the two trout serum preparations we found some evidence of a higher TEER being maintained in asymmetrical 

cultures receiving fresh autologous TS, rather than the frozen batch-prepared TS (Figure 6). It is therefore possible that the freezing 

process does inhibit certain constituents, but it is difficult to conclude if they are fish specific or if the same TEER increases would be 

present in ‘fresh’ FBS if it was available.  

 

The frozen TS did also produce viable cultures (Figure 6) but there was no evidence of cell toxicity when using this serum type as 

has been previously reported for native plasma (Wood et al. 2003; Pärt et al. 1993). We suspect that the serum preparation method 

utilised is important and recommend both removing the coagulation factors in the clot (overnight in the fridge (4 ºC)) and using a heat 
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inactivation stage. As well as the heat inactivation of serum compliment, this process itself can have a beneficial effect on the resulting 

serum by an increase in cell growth (Fujiwara et al. 2009). The frozen serum aliquots appeared to store well at -20 ºC as were used 

for over 6 months with similar success. 

 

Perhaps the key finding in this experiment was that both the culture types grown using FBS or TS maintained a mean TEER >5 KΩ 

cm2 for 12 days PWA (Figure 4). Previous studies were limited to short term experimental durations of 6 – 48 h (Wood et al. 2002) 

due to collapse of culture integrity, recorded by TEER, after this time. One exception is the report of Walker et al. (2007, Figure 4) 

where cultures maintain >5 KΩ cm2 for 96 h PWA (despite a large drop in TEER at 72h PWA). Clearly, the cultures in this experiment 

are lasting much longer than reported in previous works. We do not have a satisfactory explanation for why this is. The methodology 

has lots of scope for subtle differences in fish husbandry, cell harvest and culture, but we have first considered the known protocol 

deviations from the Schnell et al. (2016) published methods, which include pre perfusion of gills (see Experiment 1), media antibiotics, 

donor fish size and incubation temperature. Previous works using SSI concluded there was no difference in maintaining antibiotics 

in the media throughout culture and water addition (Gilmour et al. 1998). We therefore suggest this would have least impact on the 

culture duration other than reducing the chance of infection. 

 

We have previously observed differences in primary cell culture from differing fish sizes and optimised the weight of fish for best 

results (Baron et al. 2012). The recommended weight of fish used to prepare the DSI cultures are 80 - 150 g (Kelly et al. 2000) or 
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<100 g (Schnell et al. 2016), although there are also occasional reports of fish up to 200 g being used successfully (Fletcher et al. 

2000; Farkas et al. 2011). Larger fish were used throughout this study (overall mean ± S.E.M. = 273 ± 9 g). This was either by design 

(in order to harvest a useable volume of serum for comparison in Experiment 3), or simply due to availability. It might be worthwhile 

comparing similar fish at different weights, but age and seasonal differences of fish from the same stock or fish differences between 

different stocks could complicate interpretation of results. If we compare the TEER data from this study with the range of fish sizes 

used across all experiments here (155 – 510 g), there is no correlation (data not shown). Since larger fish generally yield more cells, 

there could be the benefit of creating more replicate cultures than if smaller individuals were used. 

 

Incubation temperature is also a possible contributing factor. We chose to maintain cells at 15 ºC as this matched the fish holding 

conditions, but is 3 ºC cooler than the typically recommended temperature. While incubation temperature can be optimised in cell 

culture towards the experimental aim, e. g. Tollefsen (2008), and temperature changes as small as a few degrees Celsius can cause 

different cell responses (Pawlowski et al. 2000), it seems unlikely in this case to have caused such a profound change to the cultures. 

A contributing factor might be a delayed or inhibited culture degradation at the lower temperature, but similarly, the scale of the 

change observed here makes this explanation unlikely.  

 

Another interesting condition within our culture system is the relationship between the fish holding water and the synthetic water 

added to the cultures. Due to local geology, the holding water in Plymouth is particularly soft, with previously reported mean ion 
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concentrations of Ca2+, 0.30; K+ 0.02; Mg2+ 0.04; Na+ 0.39 (mmol l−1; Boyle et al. 2014) which are all lower, up to 12× for Mg2+, than in 

US EPA moderately hard water (nominal mmol l−1; Ca2+, 0.35; K+ 0.051; Mg2+ 0.49; Na+ 1.13; US EPA 2002). A theory to explain the 

observed culture durations here could be that the animal holding conditions are able to later influence the performance of the cell 

cultures. In this case that is donor fish adapting their regulatory systems to low ion conditions which later yields gill cells that are 

better able to cope with an ionoregulatory challenge (apical water addition) when in culture. While it is well known that fish can 

remodel their gill cellular structure, such as increasing MR cell density, as part of an adaptation to soft water (Perry and Laurent 1993; 

Perry 1997), it is not known if such changes would be passed on to subsequent primary culture. Understanding how whole animal 

physiology and its life history are linked to cellular function is a current topic in the study of stress and aging (Alper et al. 2015). There 

is evidence that individual life history can lead to alterations that are maintained in metabolic cell responses when in subsequent 

primary culture (Jimenez et al. 2014). This challenges the existing theory that cells grown in culture media lose the in situ scaling 

parameters provided by their position within a tissue and individual (West et al. 2003). It would be particularly interesting to further 

explore such adaptations in fish, both for cell type proportion and function, given the numerous demanding physiological processes 

the gills are tasked with. 

 

The SEM analysis of culture surface morphology during formation and asymmetrical experimentation (Figure 5) reveals the high 

diversity, both in terms of surface structure and changes through time displayed by the DSI cultures. The attachment and growth and 

appearance of suspected MR cells observed is in line with previous descriptions (Wood et al. 2002). The microridge diversity observed 



25 
 

is arguably higher than previously described and shows similar morphological characteristics to in vivo gill cells of rainbow trout and 

other freshwater species (Iftikar et al. 2010; Matey et al. 2011). The culture surface changes during longer water additions have not 

previously been described, but include an apparent reduction in microridge height and the emergence of a larger scale ridge structure 

(Figure 5e). It is unclear what the significance of this larger ridge structure is but it appears to vary in scale on neighbouring cells and 

was present when culture TEER remained high. No quantitative assessments have been carried out on these images and they are 

included only to illustrate the clear diversity of cell surface morphology and changes through time. 

 

Effect of membrane area (Experiment 4) 

A working theory as to the improvements observed in culture longevity was that the larger cell numbers supported by the 4.2 cm2 

inserts created a culture that was better able to support a high TEER. This idea was investigated in Experiment 4. The experimental 

TEER data was impacted by a technical limitation of our TEER instrument. We do not know the peak resistance or that sustained 

over the experimental period. Despite this, we were able to show apparent differences in cells from the same stock but cultured on 

different insert sizes (Figure 7). Interestingly, all three of the insert sizes produced cultures that lasted >10 days PWA (Figure 8), but 

such cultures were much more common in the larger well size. This suggests some methodological variation in culture maintenance, 

which is in agreement with our experience in the laboratory of washing the cultures. The plates containing the 4.2 cm2 inserts can be 

gently swirled on the bench a few times, causing the apical media within the inserts to rotate. This circular movement is enough to 

dislodge any debris and mucus on the culture, and the rotation moves it to the centre where it can be easily removed by pipette. This 



26 
 

is not the case for 0.9 and 0.3 cm2 inserts where the surface tension of the media within the smaller well stops a swirl forming and 

the culture must be manually ‘washed’ with successive rinses of PBS via pipette. Washing by pipette is time consuming due to its 

ineffectiveness, increases contamination risk by having the lid off for prolonged periods, and is also inconsistent due to variation in 

pipetting speed. This speed variation risks disruption of the cell layer by an excessively strong jet from the pipette which would cause 

a delay or failure in culture confluence.  

 Another potential difference between the culture sizes is the variation in ratios of surface area to media volumes used within 

each format. These characteristics within our experimental volumes are shown in Table 1. The media replacements in symmetrical 

phase are designed to negate any nutrient deficits. Given the 4.2 cm2 format have the lowest media volume per unit area of culture, 

the lower TEER observed in the other formats is unlikely to be limited by nutrient availability. Conversely, the 4.2 cm2 format also 

have the largest surface area to volume ratio. While it is possible that oxygen concentration in the apical media or water is better 

maintained in this format, particularly after media changes cease PWA, experimental trials with anoxic water suggested no differences 

in culture TEER (data not shown). These considerations lead to a question of media renewal when in asymmetrical phase. This has 

not previously been an issue due to the short time periods involved (up to 72 h). However, for these longer lasting cultures (routinely 

12 days), it might well be that the viable duration could be further extended, or the TEER values maintained at a higher level by 

replenishing the basolateral media throughout asymmetrical culture.  
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Overall, our study details methodological investigations which deliver a significant improvement in culture viability time from 

three to twelve days post water addition, as evidenced by TEER measurements and morphological developments. This is an 

important breakthrough and facilitates a large range of future experiments using this improved model, particularly longer term, chronic 

toxicity tests that are currently lacking from cell culture models.  In addition, the continued use and development of this model is in 

line with the principles of the 3Rs in animal experimentation, as it facilitates a Reduction in the number of live fish used and offers a 

Refinement of the existing exposure protocols. There is scope for the continued development of similar models in other species, and 

this gill model could also be combined with other types of organoid cultures to provide novel co-cultures with a higher degree of 

relevance to the in vivo state. 
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Figure Legends 

Figure 1. Image of perfused (top) and primary (bottom) gill arch after preparation and dissection for comparison. Note one central 

filament in perfused arch has not cleared. 

 

Figure 2. comparison of mean ± S.E.M. TEER from symmetrical cultures using 4 combinations of Primary and Perfusion cell 

preparation techniques to supply the cells for first and second seeding. No significant differences were observed between the 4 

culture seeding combinations. 

 

Figure 3. S.E.M. imaging of different membrane surfaces for comparison. Note different scales; A = standard Falcon 1.6 × 106 0.4 

µm pores/cm2 (scale bar = 10 µm); B = Falcon HD 1 × 108 0.4 µm pores/cm2 (scale bar = 5 µm); C = Reinnervate Alvetex strata (scale 

bar = 50 µm).  

 

Figure 4. Comparison of mean ± S.E.M. TEER from DSI cultures using FBS or TS as the media serum. Water was added to apical 

compartment on Day 9. Significant differences between groups at individual time points are indicated by *(P <0.05), ***(P <0.001). 

 

Figure 5. SEM photographs of typical DSI culture surface structure and morphology from cultures grown in 4.2 cm2 inserts using 5% 

FBS in L-15. A - F culture development through symmetrical (A - C) and asymmetrical (D - F) conditions using apical US EPA 

moderately hard synthetic water. Cells attached to membrane 24 h post initial seed (A), confluent layer with smooth surface 24 h post 
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second seed (B), and clearly defined cell junctions and a range of surface microridge morphology at 7 days old (C). At 2 days post 

water addition (PWA) culture displays broad range of surface morphology and structures (D). At 10 days PWA with a high TEER 

maintained, cell junction definition and surface microridges are both reduced but other surface morphology has developed (E). At 18 

days PWA TEER has reduced and surface layer shows clear degradation and loss of viability (F). Higher magnification of typical cell 

surface morphologies (G; magnified region from D) and different example (H) of suspected MR cells with finger-like apical microridge 

projections. An apical crypt-like structure (I; magnified from region in C). Scale bars represent 5 – 100 µm, see individual image 

information. 

 

Figure 6.  Comparison of mean ± S.E.M. TEER from DSI cultures using Autologous or General TS in culture media. Water was added 

to apical compartment on Day 8. Significant differences between groups at individual time points are indicated by *(P <0.05). 

 

Figure 7. Comparison of mean ± S.E.M. TEER measurements from DSI cultures grown in the 4.2, 0.9 and 0.3 cm2 format inserts. 

Only data with an uncorrected TEER of <20 KΩ shown, hence the omitted middle section. Significant differences from the 0.3 cm2 

format are denoted by *(P <0.05) and ***(P <0.001). 

 

Figure 8. Comparison of the number of days TEER >5 KΩ cm2 in cultures grown in the 4.2, 0.9 and 0.3 cm2 format inserts after the 

addition of apical water. Whole dataset presented for transparency, with individual data points as circles and group means as 
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rectangle. Significant differences between the groups are denoted by *(P <0.05) and ***(P <0.001). Graph template downloaded from 

Weissgerber et al. (2015). 
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Maunder et al.  

Table 1 Characteristics, culture volumes and comparisons of three different sized microplate insert format.  

 

 

 

Insert 
format 

Insert 
area (cm2) 

Seeding 
ratio 

Apical 
media  
(vol. mL) 

Basolateral 
media vol. 
(mL) 

Apical media 
per cm2 (mL) 

Surface area: Volume 
(ratio of apical 
compartment) 

4.2 cm2  4.19 1 2.5 3 0.24 1.7:1 

0.9 cm2 0.87 0.208 1 2 1.11 0.9:1 

0.3 cm2 0.32 0.076 0.35 0.8 2.67 0.9:1 


