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Underwater stereo–video systems are widely used for counting and measuring fish in aquaculture, fisheries, and conservation management.
Length measurements are generated from stereo–video recordings by a software operator using a mouse to locate the head and tail of a fish
in synchronized pairs of images. This data can be used to compare spatial and temporal changes in the mean length and biomass or frequency
distributions of populations of fishes. Since the early 1990s stereo–video has also been used for measuring the lengths of fish in aquaculture
for quota and farm management. However, the costs of the equipment, software, the time, and salary costs involved in post processing im-
agery manually and the subsequent delays in the availability of length information inhibit the adoption of this technology.
We present a semi-automatic method for capturing stereo–video measurements to estimate the lengths of fish. We compare the time taken
to make measurements of the same fish measured manually from stereo–video imagery to that measured semi-automatically. Using imagery
recorded during transfers of Southern Bluefin Tuna (SBT) from tow cages to grow out cages, we demonstrate that the semi-automatic algo-
rithm developed can obtain fork length measurements with an error of less than 1% of the true length and with at least a sixfold reduction in
operator time in comparison to manual measurements. Of the 22 138 SBT recorded we were able to measure 52.6% (11 647) manually and
11.8% (2614) semi-automatically. For seven of the eight cage transfers recorde,d there were no statistical differences in the mean length,
weight, or length frequency between manual and semi-automatic measurements. When the data were pooled across the eight cage transfers,
there was no statistical difference in mean length or weight between the stereo–video-based manual and semi-automated measurements.
Hence, the presented semi-automatic system can be deployed to significantly reduce the cost involved in adoption of stereo–video
technology.

Keywords: automated measurement, fish tracking, fisheries management, Southern Bluefin Tuna, stereo matching, stock assessment,
underwater stereo–video, video sequences.
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Introduction
The sustainability of wild fish stocks is of universal concern

(Pauly et al., 2002) because fish protein is a major contributor to

the human diet in many regions of the world. Total catch effort is

increasing world-wide to support the ever growing human popu-

lation, with declines in the abundance and size of some targeted

species. It has been demonstrated that the disturbance of keystone

species in an ecosystem can have unpredictable and sometimes

catastrophic outcomes (Pauly et al., 2002). Accurate and reliable

relative abundance and length information are important for

monitoring fish populations and assemblages to facilitate the

early detection of impacts from natural and anthropogenic activ-

ities such as fishing, climate change and pollution. Accurate and

reliable fish length data are not only useful in fish stock assess-

ment but also an important indicator of the health of wild fish

stocks (Jennings and Polunin, 1997; Jennings and Kaiser, 1998).

With declining fish stocks, aquaculture is increasingly becom-

ing an important source of dietary protein (Duarte et al., 2009).

The aquaculture industry has flourished world-wide, based on

species such as tuna, salmon, and tilapia (Naylor et al., 2000). In

Australia, the most commonly farmed species are Southern

Bluefin Tuna (SBT; Thunnus maccoyii) and Atlantic Salmon

(Salmo salar). Data on the mean length and length frequency of

aquaculture fish are a fundamental tool for farmers and man-

agers. This generates data on fish growth and food conversion

rates allowing farmers to optimize feeding and harvest strategies.

Length data can also be used to estimate fish weight, enabling

management agencies to assess the total biomass of fish that have

been captured (Harvey et al., 2003).

Invasive methods of sampling fish to measure length or bio-

mass that involve capturing and handling fish before releasing

them can adversely affect fish health, growth rates and the quality

of the harvested product as a result of injury and stress (Ramsay

et al., 2009). This is especially true for SBT because capture insti-

gates an instantaneous flight response that can cause injury to the

fish or handlers.

Underwater stereo–video has been used to make accurate and

precise, non-invasive measurements of fish length (Harvey and

Shortis, 1995; Steeves et al., 1998). Stereo–video systems are now

used to monitor the relative abundance and length of shallow

(Bornt et al., 2015; Langlois et al., 2015; McLaren et al., 2015),

deep-water demersal (Zintzen et al., 2012; McLean et al., 2015),

and pelagic (Santana-Garcon et al., 2014a, b, c) fishes. Underwater

stereo–video systems have a longer history of use in aquaculture

(Naiberg et al., 1993; Petrell et al., 1997; Shieh and Petrell, 1998;

Harvey et al., 2003; Costa et al., 2006).

Most operational stereo–video measurement systems rely on a

human operator using a mouse to locate and click on the snout

and tail of a fish in both the left and right images on a computer

screen. These locations are converted to stereo-image measure-

ments in order to determine the 3D Euclidian length by intersec-

tion (Shortis et al., 2009). Manual measurement is slow and

delays the availability of length data. The initial cost of the equip-

ment and software, combined with the ongoing costs of image

processing and the delays in data availability, discourages the up-

take of stereo–video systems by fisheries scientists, ecologists,

managers and researchers involved in aquaculture and natural re-

source management. Of those who do use stereo–video systems,

many choose to restrict the number of measurements to a

percentage of the total possible in an effort to reduce the time

and salary cost of operations (Phillips et al., 2008).

While automatic identification, tracking, and measurement of

objects such as vehicles and pedestrians are well established above

water (Lipton et al., 1998; Stauffer and Grimson, 2000; Bloisi and

Iocchi, 2009; Chan and Vasconcelos, 2012), the loss of contrast

from attenuation through the water and the dynamic environ-

ment makes the implementation of an automated solution for

fish sizing problematic (Shortis et al., 2013). Nevertheless, auto-

mation of some aspects of the process has been established in

controlled environments for at least 15 years (Lines et al., 2001).

Recent research in automated analysis of underwater videos has

shown promising results for detection, counting, and species iden-

tification of fish of interest in partially or fully uncontrolled envir-

onments (Charalampidis et al., 2012; Boom et al., 2014;

Ravanbakhsh et al., 2015; Salman et al., 2016; Shafait et al., 2016;

Shortis et al., 2016). However, in general, these systems are not

capable of fully automated operation or do not attempt length

measurement, as they have been developed for single camera oper-

ations with the primary aim of identifying and counting species of

interest. Further, the systems that do estimate the size of fish are

based on a bounding region (Tillett et al., 2000; Charalampidis

et al., 2012; Boom et al., 2014) rather than identification of specific

landmarks such as the tip of the snout and the fork of the tail.

While the full automation of the complete process of fish de-

tection, tracking, species identification, and size measurement in

uncontrolled environments may appear to be unrealistic at the

time of publication, incremental approaches to automate individ-

ual components in isolation are desirable to demonstrate the

feasibility of the concept and speed up the process of fish sam-

pling. For example, Spampinato et al. (2008) performed auto-

matic detection, tracking, and counting of fish achieving 85%

accuracy. Salman et al. (2016) and Shafait et al. (2016) have per-

formed fully automatic identification of fish species reporting

over 95% accuracies on the ImageCLEF data set (http://groups.

inf.ed.ac.uk/f4k/).

SBT is a highly migratory species inhabiting open oceans at

mid-latitudes in the southern hemisphere. In the past, this species

has supported pole and long-line commercial fisheries for Japan

and Australia, and to a lesser extent Taiwan, New Zealand,

Indonesia and Korea. In response to the imposition of a quota in

1988, the SBT industry in Australia shifted from wild catch to sea

ranching in order to maximize the value of the harvested fish. In

2016, sea ranching operations based at Port Lincoln in South

Australia accounted for more than 98% of the Australian total

catch quota of 5665 tonnes.

In South Australian sea ranching operations, SBT are caught at

sea in purse-seine nets and transferred to a tow cage. Fish are

towed to waters near Port Lincoln where they are transferred to

grow out cages. To determine the contribution toward quota, a

sample of fish is caught and weighed to determine the mean fish

weight. Fish are then transferred through a gate between the tow

cage and grow out cage. Using an underwater video camera, the

SBT are counted and the count multiplied by the mean weight to

determine the quota caught.

Previous trials have demonstrated that an underwater stereo–

video system can non-invasively and accurately measure the

length of SBT being transferred into grow out cages (Philips

et al., 2008; Harvey et al., 2011). The accuracy and precision of

the mean of three or more measurements of the same fish have

been shown to be significantly improved compared with a single
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measurement, resulting in snout to tail measurements with an

error of less than 1% of the real length (Harvey et al., 2003). As

discussed above, delays in the availability of length data are one

of the negatives of using stereo–video and making manual meas-

urements. Up to 1.5 min per fish is required to count and success-

fully measure a fish (Harvey et al., 2011). This incorporates the

time involved in counting every SBT and measuring a predeter-

mined percentage, including measurements that are rejected. The

total time involved depends on the number of fish in a tow cage,

the proportion to be measured (e.g. 10 or 20%) and the number

of analysts working simultaneously to measure fish that have

been transferred. For example, a cage containing 3000 SBT with a

requirement for 20% of the fish to be measured could take 15 op-

erator hours before measurements were completed. There is a

real world need to decrease image analysis costs and speed up the

availability of length data making them an ideal focal species for

incremental automation of stereo–video image analysis.

This research had three objectives: (1) to develop algorithms

which, with minimal user input, can track an individual fish

through sequential video frames and acquire multiple length

measurements of the same fish; (2) to validate the algorithms by

comparing the results of semi-automatic measurements to man-

ual measurements made of the same fish; (3) to estimate the pro-

portion of fish that can be measured using the proposed semi-

automatic approach, as compared to the manual approach.

Material and methods
Imagery collection
This study is based on stereo–video imagery of SBT recorded in

Port Lincoln, South Australia between January and April in 2011.

This imagery was part of a commercial trial of stereo–video that

aimed to record 10% of the catch for the 2011 season (Harvey

et al., 2011). Eight transfers from three tow cages were recorded

with stereo–video (a total of 22 138 SBT). For the purpose of this

study, the transfers have been labelled as A to H. The SBT were

recorded as they swam from the tow cage to a grow out cage

through a 3� 3 m transfer gate connecting the two cages. The

camera system was mounted 1.2 m beyond the gate with fish

measurements ranging from 1.6 to 4.63 m.

Description of the camera system
Stereo–video imagery was recorded with an AM100 camera sys-

tem (www.aq1systems.com.) The AM100 uses two Pulnix TMC

1327 Gigabit Ethernet (GigE) cameras, positioned approximately

700 mm apart and aligned with an inward convergence of 6� to

optimize stereo overlap within the field of view. The cameras,

power converter, and an Ethernet switch are mounted in a single

integrated underwater housing. The housing was mounted on the

wall of the grow out cage adjacent to the transfer gate. The

AM100 cameras were connected to the logging computer on a

vessel positioned close to the transfer gate. An umbilical cable

supplied power to the cameras, transferred imagery to the logging

computer and enabled control of the camera synchronisation and

exposure. The image brightness was manually set (through gain

and shutter speed adjustments) to produce a consistent exposure

level for the stereo–video images. Images were recorded in com-

pressed Audio Video Interleaved (AVI) file format directly onto

the computer hard drive.

AM100 camera calibration
Prior to field recordings the stereo–video camera system was cali-

brated in a swimming pool following the technique described by

Harvey and Shortis (1995, 1998) and Harvey et al. (2002, 2003).

The calibration was performed by recording imagery of a 1 m by

1 m by 0.5 m purpose-built calibration frame and processing the

images using the CAL software package (Version 1.33) (www.sea

gis.com.au/bundle.html.)

Camera calibration validation
Manual measurements (see section below) of three different

length measurements (513.8, 750.7, and 1264.6 mm) on a scale

bar were taken immediately following the calibration. These

lengths encompass the range of lengths recorded for the SBT.

Each length was measured twelve times over a range of distances

(1.3–4.3 m from the camera system) using the centroiding func-

tions in the measurement software. Measurements of the scale

bar provide an independent validation of the calibration integrity

of the system and give an indication of the best possible measure-

ment accuracy and precision the AM100 can achieve.

Camera calibration stability
To monitor the calibration of the camera system throughout the

duration of the trials (both within and between recordings), a set

of calibrated reference targets were positioned on tabs mounted

at the back and front of the transfer gate and measured at regular

time intervals during the recordings (Figure 1).

Manual measurements
Manual measurements of the lengths of SBT were made by a sin-

gle operator using EventMeasure Stereo software (www.seagis.

com.au/event; Version 3.08). Two AVI files containing image se-

quences from the left and right cameras were imported into the

software and paired images were synchronized by frame number.

Measurements of the fork length were made by an operator

manually locating the tip of the snout and the fork of the tail of

the target SBT within the left and right synchronized video

streams using a mouse as shown in Figure 1. The two pairs of

image coordinates are converted into coordinates in 3D object

space using stereo intersection. To obtain length measurements,

the Euclidean distance between the 3D measurements is com-

puted automatically. An estimator of the quality of the measure-

ments, the root mean square residual also known as RMS error or

RMS residual parallax (Harvey and Shortis, 1998), and the preci-

sion of the length measurement is automatically logged. The dis-

tance and angle of the mid-point of the fish to the central point

between the camera lenses are also automatically computed and

logged (Figure 1).

Semi-automated measurement
The goal of the semi-automatic measurement strategy was to

minimize the time required to make manual length measure-

ments. It was also a goal to keep the measurement error below

1% of the true body length. This level of error was agreed between

the Australian SBTIndustry Association and the Australian

Fisheries Management Authority as a threshold that should be

reached for the acceptance of any stereo–video-based measure-

ment system. Additionally, it was agreed that each SBT had to be

measured at least three times on different frames in the video
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sequence and that the standard deviation of measurements across

the three or more frames should not exceed 20 mm (see Harvey

et al., 2011).

The first logical step in automation is a minimalistic input ap-

proach in which the operator marks the snout and tail fork of the

fish to be measured in only one frame (for instance, the left

image) of the stereo pair. The remainder of the measurements for

that fish in subsequent frames of the video, as well as the corres-

ponding measurements in the counterpart frame (i.e. the right

image) of the stereo pair could be performed automatically using

the computer vision algorithms described below. In theory, this

would reduce the number of mouse clicks from four per image

(the snout and fork of the fish in both the left and right image) or

12 for three repeated measurements of the same fish through

three different frames, to a maximum of two clicks achieving a

sixfold reduction in operator time and effort.

Template matching
Template matching is one of the most widely used methods to

find an object of interest with known shape and texture in the

given image. First, a template (usually a rectangular image region

centred on the point of interest) representing the appearance of

the target object is extracted from a sample image. Then, the

similarity is computed between the template and different candi-

date locations in a new image where the object might be present.

In this testing a normalized correlation coefficient was used as the

similarity measure (Mahmood and Khan, 2012). The location in

the image that yields the highest similarity score with the tem-

plate is regarded as the best match for the template. The manually

marked locations of the tip of the snout and tail fork of the fish in

one frame serve as the centre points of the image templates that

capture the appearance of the snout and tail of the fish to be

measured. These templates are then used for matching, and hence

locating, the snout and tail in the corresponding frame of the

stereo pair, as well as in subsequent frames of the same video.

Joint shape-motion templates
The detection accuracy of template-based methods degrades in

the presence of abrupt, spatially non-uniform changes in illumin-

ation, variability in the background and proximity of other

similar-looking objects (Mahmood and Khan, 2010). To illustrate

these challenges, an example of a stereo pair of frames is shown in

Figure 2. Note that, due to the different viewing location and

angles of the two cameras, the tails of the leftmost as well as the

rightmost fish appear on substantially different backgrounds in

the left camera and the right camera images. In this circumstance,

the reliability of the match is affected and the success rate of the

template matching declines. To circumvent these problems, the

frame difference image as shown in Figure 3 is used as the basis

for computing and matching templates. The frame difference

image not only reduces the effect of variations in background and

non-uniform illumination across the two frames in the stereo pair

but also helps in encoding the swimming speed of the fish into

the template. Hence, slow moving fish, or fish farther away from

the camera can be distinguished from fast moving fish or those

closer to the camera, resulting in more reliable matches. These

joint shape–motion templates are also matched using normalized

correlation coefficients.

Semi-automated single measurement
To robustly match the snout and tail templates across the stereo

frames, a filtering mechanism is needed to automatically discard

incorrect matches that occur due to the presence of other fish

with a similar shape and texture as the target fish. In a stereo

camera system, a point in one camera frame can only appear on a

corresponding line, known as an epipolar line (Gruen and

Baltsavias, 1988) in the frame of the other camera. For a cali-

brated stereo camera system, the epipolar lines can be accurately

calculated and hence the search for corresponding points can be

constrained to a narrow search space to efficiently achieve reliable

results. This search space is defined by an envelope centred on the

Figure 1. A screen capture of the software showing a measurement of a marked up fish and the resulting data. Targets for calibration
stability testing are placed at the far end of the transfer gate and are visible in the images.
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epipolar line corresponding to the marked snout and tail points

(see Figure 4). Once the correct correspondence is automatically

established between the snout and tail points of the fish in the left

and the right images, 3D locations of the snout and tail fork of

the fish are computed using stereo intersection. The length meas-

urement of the fish resolves to a simple 3D Euclidean distance be-

tween the snout and the tail fork. Compared to the manual

method, this approach alone should result in a twofold reduction

in measurement effort, since there is no need to manually locate

the snout and tail fork in both frames of the image pair.

Automated repeat measurements
Once the locations of the snout and tail fork in both frames of

the stereo pair have been determined, they are used to track the

fish in the subsequent frames for repeated length measurements.

Since the direction of motion of the fish is known, the region of

interest (ROI) in the next frame can be estimated based on the

snout and tail fork location in the current frame. After ROI esti-

mation, joint shape-motion templates are extracted from the cur-

rent frame for both snout and tail. These templates are matched

within the ROI to compute the new location of the snout and

tail. A straightforward technique to compute these locations is to

assign the location of the best matching scores as the snout and

tail in the next frame. However, due to partial occlusion, sudden

changes in illumination and the proximity of other fish, the best

matching scores sometimes do not correspond to the true loca-

tions. Based on the observations that fish length and swimming

direction does not abruptly change between two consecutive

frames of a video, constraints on the length and orientation are

used to prune the matching scores to find the most plausible new

locations. Thresholds on the score are employed to discard the

measurement if the similarity of the best match is too low.

This case usually arises when the snout or tail is partially

occluded, or a part of the snout goes out of the field of view of

the camera. The threshold determines the sensitivity of the

Figure 2. A stereo pair of frames in which snout and tail of the fish to be measured is shown in the left frame with black squares, where the
squares represent the image region used for template matching. Note that due to different perspectives of the camera, the background
changes significantly between the two images. Two sample tails in each frame are marked with black ellipses to illustrate this effect.

Figure 3. A sample Frame Difference Image used as the basis for computing a joint shape-motion template.
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proposed semi-automatic length measurement approach. If the

threshold is low, a larger number of fish are measured, but with a

relatively high mean error on length measurement. Setting the

threshold to a higher value results in fewer, but more accurate

measurements. For this case study on SBT, the threshold is set to

a high value (0.9 on a scale from 0 to 1, where 1 indicates a per-

fect match) to meet the strict accuracy requirements of the end-

users.

Quality control of length measurements
Harvey et al. (2003) describe how the error and precision of

stereo–video measurements of SBT length stabilized after five re-

peated measurements from five sequential images of the same

fish. Measurements were made as the fish was ‘gliding’ in a rea-

sonably straight line rather than when the fish was turning or

swimming strongly. This avoided length under-estimation due to

sinusoidal changes in body shape associated with vigorous swim-

ming. SBT can only be measured if both the snout and fork are

visible in the left and right images of a stereo pair. The number of

frames available for measurement is also dependent on the swim-

ming speed of the fish. SBT can swim at burst speeds of up to 70

kmph (Blank et al., 2007). To avoid the elimination of many

SBT from the measurement processes, but still retain the confi-

dence of repeated measurements, a less restrictive minimum of

three replicate measurements of each fish from different video

frames was adopted. Where possible, larger numbers of

repeated measures were made, especially for the semi-automatic

measurement.

Apart from excluding fish which had less than three manual or

semi-automated measurements of length, other quality control

measures were implemented to reject average fish lengths if there

were large differences in the lengths from the three (or more in

the case of the semi-automated measurements) repeated meas-

urements. SBT lengths were deemed unacceptable if the average

of the three or more replicate measurements of any one fish had a

standard deviation greater than 20 mm. Phillips et al. (2008)

demonstrated that it was possible to obtain accuracies of over

99% of the real length of a fish when the standard deviations

from 3 or more measurements were less than 20 mm.

Measurements to the snout or fork that had standard deviations

of 20 mm or greater, or RMS error values (calculated by the soft-

ware) of 10 mm or greater were rejected. The RMS error provides

an estimate of measurement quality, and a threshold of 10 mm

has been established from past experience of validation trials with

objects of known lengths (Harvey and Shortis, 1995; Harvey

et al., 2002, 2010).

Statistical analysis
Mean length and weight
A one-way analysis of variance (ANOVA) was used to test for dif-

ferences in the mean length and mean weight between manual

and semi-automated measurements for each transfer. Prior to the

ANOVA, a Levene’s test (Levene, 1960; Anderson et al., 2008)

was conducted to check the homogeneity of variance of the length

data. Where data were heterogeneous, the data were Log trans-

formed. A two-way general linear model ANOVA was performed

on the data pooled across transfers (Technique and Cage were

fixed factors). All univariate analyses were conducted with

Minitab (V16).

Length frequency
A Kolmorgrov-Smirnov test (Siegel, 1956) was used to find differ-

ences between the length frequency distributions (p ¼ 0.05) be-

tween manual and semi-automated measurements for each

transfer. This test calculates the maximum difference between a

size class for the cumulative frequency distributions of two data

sets (Bell et al., 1985). Length frequency has been expressed as a

percentage of the total number of fish sampled.

Converting length to biomass
Differences in mean weight were also compared statistically.

Weight estimates are usually based on species-specific regression

analysis of length versus weight (Pienaar and Thomson, 1969;

Kohler et al., 1995). In this case, the mean length of an individual

SBT was converted to a weight using a regression equation pro-

vided by the Australian Department of Agriculture, Forestry and

Fisheries (Harvey et al., 2011). The equation used was:

Weight ¼ 0:000015588� Length3:0124

The regression was applied to SBT lengths in units of centi-

metres (Harvey et al., 2011).

Figure 4. An illustration of search range restriction using epipolar geometry. The left image shows the marked points to be matched in the
right stereo pair. White lines overlaid on the image depict epipolar lines corresponding to the marked snout and tail location in the left
image. White rectangles show the regions of interest for locating the marked points based on the epipolar line. Note that lens distortions
computed as part of the calibration of the stereo camera system results in curved epipolar lines.
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Results
System calibration
The stereo–video camera system was calibrated with a network

precision of 1:16 000 and an RMS image residual of 0.12 pixels,

which is commensurate with previous research (Boutros et al.,

2015). The relative orientation parameters derived from the cali-

bration are shown in Table 1. The base separation is the distance

between the left and right camera perspective centres and deter-

mines the scale of all subsequent measurements. The parameters

x, p, and j are Euler angles that denote the relative orientation of

the left and right cameras with respect to the base line. The left

and right p values indicate the design for a 10� convergence of

the camera optical axes in order to optimize the stereo coverage

(Harvey et al., 2010). The values of the parameters are in reason-

able accord with the specifications for the AM100 system. The

precision levels are commensurate with previous experience with

the AM100 and similar systems (Harvey and Shortis, 1998).

Scale bar measurements
The three lengths (513.8 mm; 750.7 mm; 1264.6 mm) on the scale

bar that were measured after the initial calibration had accuracies

and precisions better than 1 mm (514.0 6 0.6 mm; 751.6 6

0.9 mm; 1265.0 6 0.4 mm) when compared to the known

lengths over the 12 measurements made at varying distances.

These results are commensurate with previous experience with

similar systems (Harvey and Shortis, 1995; Harvey et al., 2002,

2003).

Camera calibration stability
Measurements of the targets mounted on the front and the back

of the transfer gate were made at five different times during each

transfer. The mean measurement in each case was taken from the

average of three replicate measurements in the same manner as

the criteria set for measurements of the SBT. The average error

across all transfers and all times was 0.34%. The mean measure-

ment error did not exceed 1% of the total length between targets

(see Table 2).

Numbers of fish measured
Of the 22 138 SBT recorded during the trial, it was possible to

make three or more repeat length measurements of 11,647 SBT

(52.6%) manually and 2,614 SBT (11.8%) semi-automatically.

Time required to measure the lengths of fish
The time required to measure the fish associated with each trans-

fer varied depending on the number of fish transferred and the

number of operators. On average, slightly more than 1 min was

required to measure a fish manually three or more times and

make the appropriate annotation. To manually measure the aver-

age fraction of 56% of the SBT per transfer required a duration of

19–30 person hours depending on the number of fish in the

transfer.

In comparison, the semi-automated measurement process

required between 6 and 16 s to make three or more acceptable

measurements of a fish, including the initial two point-and-click

identifications by the operator. The variation in measurement

time was a result of differences in imaging and transfer condi-

tions. Overall, computations took longer to run when the scene

was cluttered due to a number of fish entering the gate at the

same time. The total time elapsed was less than 3 h to process

each transfer.

Length estimates
Of the eight transfers, there was only one transfer (Transfer E)

where the mean lengths were significantly statistically different

for manual (113.38 cm) and semi-automated (111.79 cm) meas-

urements. There was no statistical difference in the mean lengths

when all the transfers were pooled (108.07 cm manual vs.

107.5 cm semi-automated) (see Table 3). The same pattern was

observed with weight, with the same transfer (E) having signifi-

cant differences in weight, but again there was an insignificant

difference of 1.25% when all weights were pooled (21.59 kg man-

ual compared with 21.20 kg semi-automated).

Length frequency
There were no significant differences in the length frequencies of

measurements made manually or semi-automatically for seven of

the eight transfers, with good agreement between manual and

semi-automatic measurements in the percent allocated to each

5 cm length class bin (Figure 5).

Discussion
Underwater stereo–video is widely used in aquaculture, marine

ecology and fisheries management. The delay in the availability of

length information associated with the time required to manually

measure the lengths of fish in video images is a major disadvan-

tage and inhibits many potential users from adopting this tech-

nology (Harvey et al., 2003, 2011; Phillips et al., 2008; Shortis

et al., 2009, 2013).

This research has demonstrated that it is possible to semi-

automate length measurements of SBT reducing the number of

operator interactions. This is achieved using an interactive pro-

cess in which an operator first locates the tip of the snout and

fork of the tail of a fish in one image of a stereo pair. Using epipo-

lar geometry, the algorithm matches the snout and tail of a fish in

the other image of the stereo pair and then tracks the fish through

the proceeding video sequence images. The average length meas-

urement is then calculated from three or more measurements and

accepted or rejected based on whether the standard deviation ex-

ceeded 20 mm. Measurements with an RMS value of 10 mm or

greater were rejected. The time required to measure one fish in

one frame decreases from over one minute for manual measure-

ments to approximately 6–16 s for semi-automated measure-

ments. Additionally, once a fish is marked, the algorithm tested

can track the fish automatically through the subsequent video se-

quence and continue to make repeated measurements of the

same individual. In some cases, up to 25 measurements were

Table 1. Relative orientation parameters for the AM100 stereo–
video system.

Item Value Precision

Base separation 703.4 mm 1.5 mm
Delta x �0.271� 0.005�

Left p �5.106� 0.047�

Left j �3.293� 0.099�

Right p 5.844� 0.037�

Right j �2.998� 0.095�

Towards automating underwater measurement of fish length 7

Deleted Text: 4. 
Deleted Text: C
Deleted Text: -
Deleted Text: ,
Deleted Text: omega
Deleted Text: phi
Deleted Text: kappa
Deleted Text: phi 
Deleted Text: optimise 
Deleted Text: B
Deleted Text: M
Deleted Text: C
Deleted Text: S
Deleted Text: F
Deleted Text: M
Deleted Text: ,
Deleted Text: R
Deleted Text: M
Deleted Text: L
Deleted Text: F
Deleted Text: one
Deleted Text: ute
Deleted Text: -
Deleted Text: econds
Deleted Text: three 
Deleted Text: ours
Deleted Text: E
Deleted Text: ersus
Deleted Text: to 
Deleted Text: F
Deleted Text: 5. 
Deleted Text: -
Deleted Text: six to sixteen
Deleted Text: econds


captured, depending on the number of video frames in which the

fish was recorded, accounting for the range in measurement time

per fish. Taking the average of a greater number of measurements

should result in greater measurement accuracy and precision,

however there was no pattern in the standard deviation.

Recording a greater number of measurements increases the prob-

ability that a fish is not gliding with a straight body, but a greater

number of repeat measurements is associated with slower, less

vigorous swimming.

With the exception of one transfer, the mean length measure-

ments did not differ between the manual and semi-automated

measurements. When measurements were pooled across all trans-

fers, there was no statistically significant difference in the mean

lengths or weight, or the length frequencies.

Overall, 52.6% of the total SBT were measured manually, al-

though many fish were rejected because the imagery or measure-

ments did not meet the quality control criteria that have been set

in place. It was reported by the image analyst that rejected fish

were often not straight enough to be measured three times with a

standard deviation less than 20 mm. Approximately, one third of

the missed fish had a snout or a tail obscured by another fish.

Another 20% were swimming too rapidly for the video camera,

preventing measurements in the minimum of three different

video frames.

For the semi-automatic approach, the number of fish success-

fully measured was substantially lower than that of the manual

approach due to additional rejections, primarily caused by low

image matching confidence as a result of occlusion, spatially non-

uniform illumination and other image disturbances. While the ef-

fects of spatially non-uniform illumination and other image dis-

turbances could possibly have been decreased by having closer

camera separations and having the stereo cameras parallel rather

than inwardly converged, an engineering change of this nature

would have an adverse impact on the area of stereo coverage for

the camera system and would compromise measurement accur-

acy and precision (Boutros et al., 2015), potentially to a level

where it would not meet the measurement accuracy and precision

thresholds set by the Australian industry and government. When

a large number of fish simultaneously swim through the camera’s

field of view, partial occlusion of the fish as well as errors in

matching snout/tail through image analysis substantially increase.

These result in an increased number of automatic rejections of

Table 2. The absolute percentage error for scale bar measurements mounted on the transfer gate for each of the eight transfers.

Transfer A (%) Transfer B (%) Transfer C (%) Transfer D (%) Transfer E (%) Transfer F (%) Transfer G (%) Transfer H (%)

F0 0.00 0.50 0.68 0.60 0.43 0.21 0.07 0.05
F25 0.00 0.57 0.65 0.70 0.67 0.14 0.18 0.04
F50 0.03 0.39 0.66 0.49 0.71 0.13 0.15 0.08
F75 0.04 0.49 0.58 0.55 0.60 0.10 0.10 0.12
F100 0.06 0.40 0.72 0.54 0.67 0.11 0.12 0.05
B0 0.68 0.04 0.10 0.02 0.03 0.69 0.55 0.70
B25 0.50 0.01 0.02 0.14 0.00 0.48 0.67 0.40
B50 0.68 0.13 0.04 0.09 0.00 0.77 0.75 0.44
B75 0.77 0.12 0.07 0.12 0.01 0.73 0.78 0.29
B100 0.97 0.12 0.07 0.05 0.05 0.66 0.62 0.54

F ¼ targets mounted on the front of the gate, B¼ targets mounted on the back of the gate (see Figure 1). 0 ¼ measurements taken at the start of the trans-
fer, 25 ¼ measurements taken a quarter of the way through the transfer, 50 ¼ measurements taken halfway through the transfer, 75 ¼ measurements taken
three quarters of the way through the transfer, 100 ¼ measurements taken at the completion of the transfer.

Table 3. Comparison of semi-automatic length measurement accuracy with that of the manual measurement for each transfer.

Transfer A B C D E F G H Mean

Mean length (cm) Manual 105.07 106.00 108.10 113.12 113.40 106.52 104.91 106.59 108.07
Mean length (cm) Semi-automatic 105.54 106.31 107.92 112.72 111.81 105.26 105.53 107.02 107.50
One Way ANOVA length No diff No diff No diff No diff Sig. diff No diff No diff No diff No diff
Maximum length (cm) Manual 139.93 134.62 135.97 154.32 145.45 144.97 142.99 145.95
Maximum length (cm) Semi-automatic 135.53 130.89 137.18 189.22 138.53 133.75 139.72 144.56
Minimum length (cm) Manual 56.43 55.44 76.84 74.53 84.54 63.01 76.05 75.30
Minimum length (cm) Semi-automatic 76.80 79.79 84.52 80.87 90.27 71.21 76.14 76.86
Kolmorgrov-Smirnov length

frequency test
No diff No diff No diff No diff No diff No diff No diff No diff No diff

Mean weight (kg) Manual 19.96 20.32 21.45 24.88 24.72 20.71 19.64 20.51 21.59
Mean weight (kg) Semi-automatic 20.13 20.38 21.69 24.84 23.68 19.99 19.99 20.72 21.20
One Way ANOVA Weight No diff No diff No diff No diff Sig. diff No diff No diff No diff
# SBT measured Manual 1459

(65.7%)
1118

(47.7%)
1386

(81.3%)
1616

(55.4%)
1430

(71.8%)
1757

(52%)
1291

(35.8%)
1590

(40%)
1455.8

(52.6%)
# SBT measured Semi-automatic 323

(14.5%)
191

(8.1%)
82

(4.8%)
202

(6.9%)
450

(22.6%)
416

(12.3%)
543

(15.1%)
407

(10.2%)
326.8

(11.8%)
Number of SBT counted 2222 2344 1705 2915 1993 3376 3607 3976 2767.2
Time Manual Measurement (min) 1380 1034 1362 1438 1260 1943 1434 1488 1417.4
Computation Time Semi-automatic

measurement (min)
58 124 31 46 114 138 165 98 96.8
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Figure 5. Length frequency histograms for manual and semi-automated measurements from eight transfers.
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the length measurement based on the filtering criteria discussed

in Section 2. Hence, the percentage of fish measured by the semi-

automatic system decreases in this scenario. Inspection of the re-

sults revealed that Transfer E (see Table 3) had the highest per-

centage of fish measured by our system since a major proportion

of the fish passed through the gate in isolation. Hence, measures

taken to reduce the number of fish passing simultaneously

through the gate (e.g. reducing gate size) will increase the per-

centage of fish measured by the system.

To be able to determine the total biomass of fish caught in a

cage requires not only lengths of a statistically valid number of

fish but also requires counts of the number of fish in a cage.

Presently, counting is done manually. Phillips et al. (2008) sug-

gest that at least 10% of a population or cage should be sampled.

Counts are initially done in real time at sea to gain an approxi-

mate estimate of the number of fish being transferred into a cage

to prevent overstocking as part of efficient farm management.

Counts are done on land in a rigorous manner by representatives

of the Australian government and company to enumerate the

quota caught by a particular operator. Developing a fully auto-

mated system for counting SBT is challenging due to occlusions

of one fish behind another, the rapid speed at which some fish

swim through the transfer gate and changing light during a trans-

fer, caused by changes in the position of the sun, boat, or changes

in cloud cover. It is possible to reduce the speed at which fish

swim and the number of fish coming through the gate simultan-

eously by not forcing them out of the tow cage by ‘drying’ the net

out. It may be possible to gain greater control over the lighting by

modifying the design of the gate and by implementing guidelines

on camera location relative to the orientation of the sun. It may

also be possible to develop an interactive fish counting system,

where the image processing software identifies areas in a record-

ing where occlusion may be occurring and an observer must

count the number of fish manually.

A key question is whether this semi-automated measurement

approach which has been developed for SBT in sea ranching

could be adapted for surveys of wild fishes? Both diver operated

stereo–video and baited remote (McLaren et al., 2015) systems

are becoming increasingly popular techniques for sampling de-

mersal (Bornt et al., 2015) and pelagic fishes (Santana-Garcon

et al., 2014a). It is possible that this approach could be used to de-

crease the measurement time, but for wild fish surveys the major

component of analysis time is spent identifying species. Variable

lighting, moving camera (for diver operated, drift and ROV

stereo–video systems) and moving background (for example, kelp

or seagrass in a temperate shallow water benthic habitat) will

make the tracking and template matching particularly challeng-

ing. This is an area that needs to be prioritized for future research

(Shortis et al., 2016).

Conclusions
This paper has presented a method for, and the results of experi-

ments in, the semi-automatic measurement of the lengths of fish.

Based on imagery recorded using an underwater stereo–video sys-

tem during transfers of SBT from tow cages to grow out cages, it

has been demonstrated that the semi-automatic algorithm pro-

duces fork length measurements with an error of less than 1% of

the true length and with at least a sixfold reduction in operator

time when compared to manual measurements. For the majority

of the transfers recorded, there were no statistical differences in

the mean length, weight or length frequency between manual and

semi-automatic measurements. Pooled data across all eight trans-

fers show no statistical differences between the mean length and

total biomass estimates from the two methods.

However, there are three limitations of the existing system: (i)

the camera frame rate is not high enough to capture fast swim-

ming fish, (ii) the lighting conditions pose difficulties for low dy-

namic range of the cameras, and (iii) some fish are swimming so

strongly that their body deforms from a linear shape as they flex

their muscles to drive themselves forwards quickly. The first two

limitations can be addressed by using newer, faster, 12 bit cam-

eras. The latter requires better models of the three dimensional

deformations of the fish. All are tractable and will ensure that

semi-automatic SBT surveys will provide improved results and

replace manual methods in the future.

Notwithstanding these issues and the limitations of current

technology and algorithms, fully automated systems, including

the identification of species in the wild and counts of fish in aqua-

culture, remains a desirable and achievable aim (MacLeod et al.,

2010; Shortis et al., 2016). Future systems for underwater fish

measurement and biomass estimation will see advancement in

the complete processing pipeline, starting from improved video

cameras that are optimized for the task in terms of signal to noise

ratio and frame rate, more accurate detection algorithms to ini-

tialize the tracking templates, and tracking algorithms that can

more accurately predict the location of the fish snout and tail

based on swimming action. The latter is also expected to improve

stereo matches and the complete system will eventually provide a

greater number of measurements per fish and thereby more ac-

curate length estimates. When combined with species identifica-

tion, in the future fully automated systems will be integrated with

a variety of stereo–video systems in a variety of different environ-

ments and will be rapidly adopted for population monitoring in

fisheries and for conservation management in the wild.
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