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Abstract  

The in situ effects of ocean acidification on zooplankton communities 

remain largely unexplored. Using natural volcanic CO2 seep sites around tropical 

coral communities, we show a three-fold reduction in the biomass of demersal 

zooplankton in high-CO2 sites compared to sites with ambient CO2. Differences 

were consistent across two reefs and three expeditions. Abundances were 

reduced in most taxonomic groups. There were no regime shifts in zooplankton 

community composition and no differences in fatty acid composition between 

CO2 levels, suggesting ocean acidification affects the food quantity but not the 

quality for nocturnal plankton feeders. Emergence trap data show that the 

observed reduction in demersal plankton may be partly attributable to altered 

habitat. Ocean acidification changes coral community composition from 

branching to massive bouldering coral species, and our data suggest that 

bouldering corals represent inferior daytime shelter for demersal zooplankton. 

Since zooplankton represent a major source of nutrients for corals, fish, and 

http://dx.doi.org/10.1038/nclimate3122
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other planktivores, this ecological feedback may represent a novel mechanism of 

how coral reefs will be affected by progressive ocean acidification. 

Main text  

Increased levels of anthropogenic CO2 in the atmosphere catalyze 

processes that can collectively impact zooplankton communities. Concurrent with 

ocean warming, absorbed carbon dioxide changes the ocean chemistry by 

reducing seawater pH, carbonate ion concentrations, and saturation states of 

calcium carbonate in a process called ocean acidification1–4.  

Although the ramifications of ocean acidification on zooplankton 

communities are poorly understood, their impacts are potentially far-reaching due 

to their pivotal role in marine ecosystems and the carbon cycle. Zooplankton are 

a major food source for planktivores, and they also support bacterial and 

phytoplankton production through their excretion of nitrogen and phosphorus 

compounds5. Furthermore, they contribute to the biological pump as consumers 

of CO2-fixing phytoplankton6. The subsequent sedimentation and burial of fecal 

pellets and zooplankton carcasses act as a sink for CO2 that may help mitigate 

CO2 emissions. Thus, in order to support predictions of the future effects of 

ocean acidification on marine benthic and pelagic ecosystems and CO2 fluxes, it 

is essential to understand the effects of ocean acidification on zooplankton 

communities. 

Ocean acidification studies of zooplankton have primarily focused on 

single-species laboratory experiments, with very few of the >7000 described 

species7 having been studied to date. Studies have reported severe direct effects 
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on some calcifying plankton8–10,  attributable to the increased energy 

requirements needed to acquire carbonate ions as building blocks for 

calcification.  In contrast, existing studies suggest that non-calcifiers like 

copepods are generally not directly affected by ocean acidification11–14. Although 

single-species experiments advance our understanding of the underlying 

mechanisms governing the direct effects of elevated CO2 on organisms, they 

have limited capacity to predict the effect of ocean acidification on entire 

communities15. This is particularly true for zooplankton considering that calcifying 

species usually comprise a small proportion of the communities, and many of the 

non-calcifying species evaluated were generalists that are naturally found under 

wide ranges of environmental conditions and hence tolerate laboratory 

conditions16–19.Therefore, to understand how ocean acidification may impact 

zooplankton in the future, entire communities need to be evaluated in situ under 

ocean acidification conditions. 

The long-term effects of elevated carbon dioxide on marine ecosystems 

and entire communities have been studied at a few unique submarine volcanic 

CO2 seeps. We used two such volcanic seeps in Papua New Guinea as natural 

laboratories, which release nearly pure CO2 into tropical fringing coral reefs. 

Coral reefs are highly vulnerable to ocean acidification because of the sensitivity 

of their foundation species, namely corals and crustose coralline algae, and the 

dissolution of reef carbonate substrata at reduced pH20–22. If the zooplankton that 

live in coral reefs are impacted by ocean acidification too, this could further strain 

the already jeopardized coral reefs.  
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The bulk of zooplankton in coral reefs are demersal, meaning the 

organisms live on or above substrata during the day and migrate into the water 

column at night23,24. We compared zooplankton communities residing near CO2 

seeps with communities living at control sites. Seawater at the high-CO2 seeps 

averaged 7.8 pHT (pH at total scale; for spatial and temporal variability see 

Supplementary Fig. 1), while at the adjacent control sites (without seep activity) it 

averaged 8.0 pHT (refs. 20,25). All study sites had similar seabed topography, 

depth 2-3 m, tidal range <0.9 m, and longshore currents 2-4 cm s-1, with an 

average water residence time of ~2.5 hrs over all seeps. We compared demersal 

zooplankton abundances, biomass, and community compositions along high-CO2 

and control sites at CO2 seeps on Dobu and Upa-Upasina reefs using horizontal 

surface net tows and emergence traps on three separate expeditions. 

 

Loss of reef-associated demersal zooplankton due to ocean acidification 

 At night, when the demersal zooplankton emerged, zooplankton had 

consistently higher biomass (mg m-3) at the control sites compared to the high-

CO2 sites. Across the two reefs (Dobu and Upa-Upasina) and all three 

expeditions, control sites had on average 2.83 (SE = 0.19) times greater 

zooplankton biomass than high-CO2 sites (range: 1.45 - 4.85, N = 24; Fig. 1a). At 

each reef, zooplankton biomass was low and similar between CO2 regimes 

during the day. On average, control sites had 9.33 (SE = 1.25) times more 

zooplankton biomass at night than during the day, whereas for the high-CO2 sites 

that ratio was 3.14 (SE = 0.39). There was no difference in zooplankton biomass 
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during the day or at night between the offshore control and offshore high-CO2 

sites. Offshore sites were ~200-300 m from the coastline at water depths of 50-

70 m. At night, biomass at the offshore sites averaged 3.66 (SE = 1.15) times 

less than the control sites, confirming that the bulk of the zooplankton were 

indeed resident to the reefs. The zooplankton composition also differed between 

offshore waters and the reef. Biomass of bulk zooplankton at control sites 

remained higher than at high-CO2 sites throughout the entire night, and the 

diurnal migration patterns were similar between control and high-CO2 sites (Fig. 

1b).  

For individual zooplankton taxa, our analyses revealed significant (p < 

0.05) reductions in abundances (individuals m-3) at the high-CO2 sites compared 

to control sites for most taxa, and no taxon preferred the high-CO2 sites (Fig. 2). 

For example, for the copepod family Pontellidae, abundance at the high-CO2 

sites was 0.17 of that at the control sites with a 95% confidence interval of (0.09, 

0.32). Additional to the CO2 effects, abundances of some taxa also varied 

significantly between sites or between expeditions. A few taxa (Centropagidae, 

Oithonidae, Cumacea) remained unaffected by CO2 (ratios >1.0, but standard 

errors including 1.0). For all other taxa, the values and 95% confidence intervals 

remained below 1.0, with taxonomic groups at the high-CO2 sites reduced. 

Abundances for copepod taxa at the high-CO2 were between 12-71% of those at 

the control sites, and for non-copepod taxa this decline in abundances at the 

high-CO2 sites ranged between 19-48%. A ranking of the sensitivity of taxa 

showed that 10% of the taxa at the high-CO2 sites had declined to <20% of the 
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control abundances, while 84% of the taxa had declined to <50%. The most 

sensitive copepod taxa were Monstrilloda and Pontellidae (abundance ratios = 

0.12 and 0.17, respectively), and amphipods and ostracods were the most 

sensitive non-copepod taxa (abundance ratios = 0.19 for both).  

Most resident copepod taxa were reduced in abundance, including those 

families predicted by laboratory experiments to be resilient to ocean acidification. 

One of the dominant copepod families was Acartiidae, a widely distributed group 

that is also known to reside demersally within coral reefs16. Acartiidae abundance 

was 14 times higher at the control than the high-CO2 sites, despite previous 

short-term CO2 exposure laboratory experiments suggesting that the survival, 

body size, developmental speed, egg production, and hatching rates of 

Acartiidae are negligibly affected by the magnitude of seawater pH change 

expected by the end of the century11,26,27. This discrepancy of results highlights 

the need for field observations to validate laboratory predictions of direct and 

indirect impacts of rising CO2 levels. 

Abundances of all non-copepod zooplankton taxa were also reduced 

under ocean acidification, except for cumacean crustaceans. Also, zooplankton 

taxa that remain planktonic their entire lives (e.g. all copepods, amphipods, 

isopods, mysids, ostracods), and larval zooplankton that grow into larger 

organisms (e.g. decapod larvae, echinoderm larvae), were all reduced under 

ocean acidification, although to varying degrees.  
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No major shifts in zooplankton communities were caused by ocean 

acidification 

Community analyses showed that there was no species turnover between 

the control and high-CO2 sites. There was neither species replacement nor any 

taxon that proliferated in the high-CO2 environment. There were, however, slight 

shifts in the percent composition of the already present taxa within the 

community since each taxon had a slightly different sensitivity to ocean 

acidification, but no new groups filled the niche or replaced other taxa in the CO2-

impacted habitat. Zooplankton communities were distinct between Upa-Upasina 

and Dobu reefs and between expeditions, but all had similar reactions to ocean 

acidification: all taxonomic groups present in the control sites persisted in the 

high-CO2 sites, albeit at much lower abundances (Fig. 3).  

There were also no major shifts in the biochemical composition of the 

zooplankton community. Specifically, the fatty acid content of bulk zooplankton 

samples was not different between the control and high-CO2 sites during the 

second expedition (permanova: p = 0.440), although it did vary between the two 

reefs (p = 0.001). Zooplankton predators, including carnivorous plankton, corals 

and fishes, are thus likely to encounter quantitative but not biochemical changes 

in zooplankton food between high-CO2 and control sites.  

 

Reduced habitat complexity causes abundance loss for some zooplankton 

taxa 
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The causes of reduced zooplankton abundances at high-CO2 could be 

due to physiological, behavioral, or ecological effects, including habitat loss and 

changes in the food web. At the high-CO2 sites, coral cover is maintained with 

31% and 33% hard coral coverage at the control and high-CO2 sites, yet the 

composition of coral communities shifts from branching corals to massive 

bouldering corals with massive bouldering corals more than doubling (from 

10.7% at the control sites to 24.9% cover at the high-CO2 sites), while the 

structurally complex corals were reduced three fold (from 12.9% to 4.3% 

cover)20. Coral rubble remained similar with 3.0% cover at the control sites and 

2.6% cover at the high-CO2 sites. Such loss in complexity has consequences for 

the organisms that rely on corals as habitat28. To determine substrata 

preferences of the various zooplankton taxa for their daytime residence, 

emergence traps were placed over 1.0 m squares dominated by three different 

reef substrata (branching coral, massive boulder coral, and coral rubble). 

Emergence traps captured demersal zooplankton at night during their vertical 

migration when they swam into dimly illuminated (3 lumens) codends. Traps 

were retrieved 2-3 hours after dark, yielding a mean of 13,677 (SE = 1,948) 

individual zooplankton per trap at the control sites and 6,504 (SE = 787) at the 

high-CO2 sites. The exact composition of the substrata within these squares was 

determined from photographs, distinguishing seven substrata types (branching 

coral, massive boulder coral, and coral rubble, sand, macro algae, turf, and 

other).  
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Data from the emergence traps showed that 16 of the 19 most common 

taxa of zooplankton showed reduced abundances under increased CO2. 

Additionally, the abundances of 11 of the 19 taxa were positively correlated with 

the cover of coral rubble or branching coral (Fig. 4), of which branching coral was 

reduced at the high-CO2 sites.  

Nine zooplankton taxa were negatively correlated with massive boulder 

coral (which are abundant at high CO2), sand, macro algae, and/or turf algae. 

Sand, macro algae, and turf algae were never dominant substrata in the squares 

at either high-CO2 or control sites (max. 15% cover), and yet they appeared to 

provide shelter for some taxa (e.g. Oithonidae and Pontellidae) but were 

negatively associated with others (e.g. Arietellidae, Paracalanidae, 

Sapphirinidae). Only four zooplankton taxa showed no substratum preference. 

This suggests that reduced availability of branching corals at the high-CO2 sites, 

and increased presence of massive bouldering corals, contributed to the 

reduction of several zooplankton taxa at the high-CO2 sites.  

 

Other causes for abundance loss 

Altered habitat quality is one explanation for reduced zooplankton 

abundance, however other direct and indirect causes also likely contribute. 

Phytoplankton is food for herbivorous and omnivorous taxa (e.g. Acartiidae, 

Centropagidae, Harpacticoida, Oithoniidae, Oncaeidae, Paracalanidae, 

Pontelidae, Gastropoda larvae, Polychaeta, and Pteropoda). However, total 

organic carbon, total nitrogen, chlorophyll a, and phaeophytin concentrations did 
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not differ between the high-CO2 and control sites (p > 0.05 for all phytoplankton). 

Supplementary Tables 2 and 3 show mean phytoplankton biomass values, and 

the significance of CO2, reef, and time (day versus night) on affecting 

phytoplankton biomass). This suggests that food limitation did not control the 

abundances of the herbivorous and omnivorous taxa. Changes in density or 

nutritional quality of phytoplankton in response to high-CO2 (ref. 29) are unlikely 

due to the short residency time, although elevated carbon dioxide can promote 

phytoplankton production30. The observed reductions in herbivorous and 

omnivorous zooplankton suggest that per capita phytoplankton availability may 

even increase. In contrast, zooplanktivorous zooplankton (e.g. the carnivorous 

Arietellidae, Corycaeidae, Sapphirinidae, Amphipoda, Decapoda larvae, Isopoda, 

Mysida, Ostracoda, Chaetognatha, and fish larvae) are likely to experience 

diminished food abundances, with potential flow-on effects on their abundances.  

The impact of ocean acidification on zooplankton swimming behavior is 

unstudied. Zooplankton motility is a requisite for feeding, avoiding predators, and 

vertical migration. Our finding that migration behavior was unaffected by high-

CO2 levels at the high-CO2 sites suggests their ability to access resources and 

evade predation appears to remain intact. Nevertheless, behavioral responses of 

individual taxa to high-CO2 cannot be excluded as a contributing mechanism. For 

example, high-CO2 disrupts discriminatory and swimming behaviors in response 

to olfactory cues in some tropical reef fish species31,32, and similarly unexpected 

results are possible for some zooplankton taxa. 

Zooplankton migration against vertical currents can enrich zooplankton 
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near reefs33. Although the horizontal tows were not conducted directly over the 

bubble streams, gas bubbles at the seep sites should have enhanced vertical 

currents and, hence, zooplankton densities particularly for the fast-swimming 

larger zooplankton. The consistently lower zooplankton densities near the seep 

sites, for all taxa, suggest that vertical currents played no major role for 

explaining the observed differences in zooplankton biomass between high-CO2 

and control sites.  

 

Biological consequences for coral reefs and marine ecosystems 

Reduced zooplankton abundances may have far-reaching consequences 

for marine ecosystems and fisheries. In coral reefs, planktivores are an important 

trophic guild that includes many reef associated adult and larval fish and the reef 

building corals. Corals rely on heterotrophy for essential nutrients not acquired 

through their symbionts for tissue and skeletal growth34,35,36. Increasing 

heterotrophy is one mechanism for some coral species to compensate for the 

increased energy demand for calcification under ocean acidification37,38, and yet 

this option may be diminished if zooplankton abundances are severely reduced. 

Of note is that we only investigated macrozooplankton abundances, not 

microzooplankton or microbes in the water column. Thus, corals that feed on 

smaller organisms or those few coral species that continually feed during the day 

and not just at night39 may still fare well under reduced abundances of 

macrozooplankton40,41, which may be the case for the massive bouldering corals 

that are present at the high-CO2 sites in high abundances since they appear to 
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not be negatively affected by the documented reduction in macrozooplankton 

abundances. 

We showed that reduced abundances of demersal zooplankton were in 

part related to indirect ecological effects of ocean acidification, including changes 

in their day-time habitat, as branching corals and coral rubble were replaced by 

massive bouldering corals at high-CO2. This indirect effect is specific to reef-

associated zooplankton and not relevant for oceanic plankton. However, 

ecological changes (habitat quality and food web structures) due to ocean 

acidification may also alter demersal zooplankton communities in other coastal 

marine ecosystems.   

In addition to acidification, increased atmospheric CO2 is warming the 

oceans42, driving some zooplankton species poleward43, enlarging oxygen 

minimum zones, and restricting vertical migration and distribution of some 

zooplankton taxa44,45. Stratification is becoming more pronounced, suppressing 

vertical mixing and prompting up-welled waters to shoal, which through 

reductions in nutrients and production can also reduce zooplankton by as much 

as 80%46. Our findings outline an additional pathway how zooplankton can be 

affected by CO2, suggesting that coral reefs and other coastal ecosystems may 

be more vulnerable than expected to the rising CO2 levels if the very basis of 

their food webs is diminished. 

 

Methods  
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Zooplankton Sampling and Laboratory analysis  

 Zooplankton biomass, abundances and community composition were 

compared between CO2 regimes (control and high-CO2 sites), each at two reefs 

(Dobu and Upa-Upasina; Milne Bay Province, Papua New Guinea), and 

expeditions (1,2,3). Samples were collected at night (2100-0200 hours local time) 

and mid-day (1200-1400 hours) for a total of 24 days during three separate 

expeditions (17 to 27 January 2013, 24 May to 9 June 2013, 29 March to 2 April 

2014), using a 100 μm Nansen plankton net (aperture: 70 cm). Horizontal tows 

were conducted along 30 m transects at both CO2 sites and reefs, both over the 

reef (2-3 m depth) and offshore (50-70 m water depth). At the high-CO2 sites, 

transects were located along the edge of the seeps but not in the bubble streams 

to prevent sampling where zooplankton might be disturbed by the bubbles, and 

to not fill the net with gas bubbles. A hand-held GPS and a HydroBios flowmeter 

recorded tow distance to determine the volume of water filtered. Three replicate 

transects were collected at each location. Bulk zooplankton from additional net 

tows were frozen at -80°C and analyzed for their fatty acid composition using gas 

chromatography47,48. 

To compare diurnal patterns, horizontal tows were additionally conducted 

over a 24-hour period at the high-CO2 and control sites of Upa-Upasina during 

the third expedition once per week for four weeks, with tows every three hours 

during daylight hours and every 2 hours during the night.  

Daytime habitat preference for three dominant substrata (branching coral, 

coral rubble, and massive bouldering coral) was tested with emergence traps.  
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The traps consisted of nine custom made pyramid-shaped tents (100 μm mesh 

net, LxWxH: 1 m x 1 m x 0.75 m) with detachable codends that had light (3 

lumens) fixed inside to attract zooplankton. Three traps were placed over each of 

the three types of substrata (>50% branching coral, coral rubble, or bouldering 

coral) during the third expedition at Upa-Upasina. Over the course of 10 days, 

the 9 traps were placed in random locations over the different substratum types 

alternating between the high-CO2 and the control site. The high-CO2 site and the 

control sites were both sampled 5 days each. A photo was first taken of the 1.0 

m2 quadrat of substratum before the trap was placed over it. Emergence traps 

were tethered unsealed to the reef substrata with nylon string. Contamination 

from external zooplankton was expected to be low (a few organisms per trap per 

night), since demersal zooplankton emerge upward and are unlikely to crawl 

under a physical barrier, i.e. the trap. Emergence traps were deployed during 

daylight hours (1300 hrs) before zooplankton emerged into the water column, 

and the codends were retrieved 3-4 hours after dark (2100-2200 hrs). 

From both the horizontal tows and the emergence traps, the contents of 

the codends were stored in a 4% formaldehyde-seawater solution. Later, 

replicate subsamples were analyzed in the laboratory. Copepods were identified 

to family level, and non-copepods were identified to class or order. After 

identification, samples were split in half with a Folsom splitter and half of the 

sample was placed onto pre-weighed and pre-combusted GF/F 47 mm filters and 

Aluminum tins. Samples were dried at 60°C for 24 hours before weighing to 

obtain biomass data (mg dry weight m-3). 
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Seawater Chemistry 

The seawater chemistry at Upa-Upasina and Dobu reefs has been 

documented previously20,25. The pH at the total scale (pHT) averaged 8.0 at the 

control sites and 7.8 at the high-CO2 sites. The control sites are exposed to a 

relatively stable pHT level whereas the high-CO2 sites experience more variable 

pHT levels. Water samples were collected during the expeditions and fixed with 

mercuric chloride solution and later analyzed for their dissolved inorganic carbon 

(DIC) and total alkalinity (AT) using a Versatile Instrument for the Determination 

of Total Inorganic Carbon and Titration Alkalinity (VINDTA 3C). DIC and AT were 

used to calculate other seawater parameters (Supplementary Table 1), including 

pH at total scale (pHT), partial pressure of carbon dioxide (pCO2: μatm), 

bicarbonate (HCO3
-: μmol kg-1), and carbonate (CO3

2-: μmol kg-1) using the Excel 

macro CO2SYS49 under the constraints set by Dickson and Millero50. 

 

Phytoplankton in the water column 

Phytoplankton quantity in the water column were compared between 

control and high-CO2 sites at Dobu and Upa-Upasina reefs to determine the 

amount of food available to herbivorous zooplankton. Water samples were 

collected at midnight (0000 hr) and midday (1200 hr) using a Niskin bottle. 

Onboard the M/V Chertan, 3 L of water was immediately filtered through 47 mm 

GF/F filters and stored in liquid nitrogen. Later in the laboratory, pigments were 

dark-extracted in 100% acetone and samples were placed in a fluorometer and 
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measured for the quantity of total oceanic carbon (TOC, μg L-1), total nitrogen 

(TN, μg L-1), chlorophyll a (μg L-1), and phaeophytin (μg L-1). Mean TOC, TN, chl 

a, and phaeophytin values are presented in Supplementary Table 2. Generalized 

linear models (GLMs) were used to determine the statistical significance of 

environmental factors (CO2, reef, time, and interaction terms) on the 

phytoplankton levels (Supplementary Table 3). 

 

Statistical Analysis 

Abundance data were averaged across replicate transects (or emergence 

traps) within CO2 levels, reefs and nights. Log ratios (high-CO2/control) of 

zooplankton abundance (individuals m-3) for each zooplankton taxon were 

estimated with generalized additive mixed models (GAMM) with log link function 

and quasipoisson distribution using the predictors CO2 (high-CO2, control), reef 

(Upa-Upasina, Dobu), and expedition (1,2, 3; Supplementary Table 4).  

 Redundancy analysis (RDA) was used to assess the relationship between 

zooplankton communities and environmental variables (CO2, reef, and 

expedition). Zooplankton abundances were 4th-root transformed. Permutation 

tests were used to determine the statistical significances of the environmental 

variables between the zooplankton communities.  

 To determine substratum preference of each zooplankton taxon, the 

photos were digitally adjusted for tilt and size. The percent coverage was 

estimated for the targeted substrata (coral rubble, branching coral and bouldering 

coral), as well as for other co-existing groups including sand, macroalgae, and 
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turf algae. The influence of the percent coverage of each substratum category, 

CO2, reef, and expedition on the abundance of each zooplankton taxon was also 

evaluated using generalized linear models (GLMs) using a log link function and 

quasipoisson distribution. 
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Figure Legends 

Figure 1: Differences in zooplankton biomass between control and high-CO2 

sites, derived from horizontal net tows. Zooplankton biomass (a) at the two reefs 

(Dobu and Upa-Upasina) and three expeditions at night, and (b) a 24-h sampling 

campaign showing the persistence of nightly vertical migration at both the high-

CO2 and control site of Upa-Upasina reef. Control sites are represented in blue, 

and high-CO2 sites are represented in red. 

 

Figure 2. Abundance ratios (high-CO2/control) for selected zooplankton taxa. The 

circles and bars represent the means and 95% confidence intervals respectively. 

The ratios of abundances of zooplankton taxa between the control and the high-

CO2 sites are significantly different at the 5% level if their error bars do not 

include the value 1.0.  

 

Figure 3. Differences in communities of nocturnal reef-associated zooplankton 

between control and high-CO2 conditions at two reefs (Dobu and Upa-Upasina) 

across three expeditions. The vectors of the redundancy analysis biplots 



 24 

represent the directions of increased abundance (individuals m-3) of the various 

taxa. Dots represent average values across three net tows per night and CO2 

condition (blue: control, red: high-CO2).  

 

Figure 4. Influences of CO2, Reef, Date, and substratum on dominant 

zooplankton taxa from emergence traps. Substrata are percent cover of: CR = 

coral rubble, BC = branching coral, MC = massive (bouldering) coral, SA = sand, 

MA = macro algae, and TA = turf algae. ‘**’ indicates <0.001 significance, ‘*’ 

indicates <0.05 significance, and empty boxes indicate ‘none significance’. For 

CO2 and the substrata, green and purple boxes indicate positive and negative 

relationships, respectively. 

 

 

 

 

 

 

 


