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Abstract  

Background. Frontal cortico-subcortical dysfunction may contribute to fatigue and 

dual-task impairment of walking and cognition in progressive multiple sclerosis (PMS).  

Purpose. To explore the associations among fatigue, dual-task performance and 

structural and functional abnormalities of frontal cortico-subcortical network in PMS.  

Methods. Brain 3T structural and functional MRI sequences, Modified Fatigue Impact 

Scale (MFIS), dual-task motor and cognitive performances were obtained from 57 PMS 

patients and 10 healthy controls (HC). The associations of thalamic, caudate nucleus and 

dorsolateral prefrontal cortex (DLPFC) atrophy, microstructural abnormalities of their 

connections and their resting state effective connectivity (RS-EC) with fatigue and dual-task 

performance were investigated using random forest.  

Results. Thirty-seven PMS patients were fatigued (F) (MFIS≥38). Compared to HC, 

non-fatigued (nF) and F-PMS patients had significantly worse dual-task performance 

(p≤0.002). Predictors of fatigue (out-of-bag [OOB]-accuracy=0.754) and its severity (OOB-

R2=0.247) were higher Expanded Disability Status scale (EDSS) score, lower RS-EC from 

left-caudate nucleus to left-DLPFC, lower fractional anisotropy between left-caudate nucleus 

and left-thalamus, higher mean diffusivity between right-caudate nucleus and right-thalamus, 

and longer disease duration. Microstructural abnormalities in connections among thalami, 

caudate nuclei and DLPFC, mainly left-lateralized in nF-PMS and more bilateral in F-PMS, 

higher RS-EC from left-DLPFC to right-DLPFC in nF-PMS and lower RS-EC from left-

caudate nucleus to left-DLPFC in F-PMS, higher EDSS score, higher WM lesion volume, and 

lower cortical volume predicted worse dual-task performances (OOB-R2 from 0.426 to 0.530). 

Conclusions. In PMS, structural and functional frontal cortico-subcortical abnormalities 

contribute to fatigue and worse dual-task performance, with different patterns according to the 

presence of fatigue. 
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Introduction 

Fatigue is a frequent and disabling symptom of multiple sclerosis (MS), affecting up to 

80% of patients, especially those with progressive (P) forms of the disease (PMS), with highly 

detrimental impact of their daily-life activities and quality of life [1]. Functional magnetic 

resonance imaging (MRI) studies in MS patients reporting fatigue have consistently revealed 

an abnormal recruitment of several brain regions, mainly involving fronto-parietal cortices 

and the basal ganglia, which are part of the sensorimotor network [2-4]. Growing evidence 

has also highlighted the role of focal white matter (WM) lesions, microstructural WM 

abnormalities and gray matter (GM) atrophy of networks including prefrontal cortices, 

thalamus and caudate nucleus in the pathogenesis of MS-related fatigue [2-4].  

Dual-task is the ability to perform two activities (e.g., motor and cognitive) 

simultaneously [5-9]. Due to ‘cognitive-motor interference’, dual-task is typically 

characterized by a decline of performance compared to single-task conditions [5-9], which 

might be due to limitations in brain capacity allocated to perform different activities during 

more demanding tasks. Performance decline may also occur because the same brain structures 

are directly involved in the execution of the two separate tasks [5-9].  

Although only some studies showed that, compared to healthy controls (HC), MS 

patients are characterized by higher cognitive-motor interference, the impact on daily life may 

be greater in them, possibly due to the need for more complex and less efficient brain network 

activations that may trigger fatigue [5-9]. Again, this may be particularly relevant in PMS 

patients since they are characterized by more severe clinical disability, brain structural 

damage accumulation and maladaptive functional brain network activities. 

Interestingly, using functional near-infrared spectroscopy, a significant increase in 

prefrontal cortex activation during dual- vs single-task walking was found in MS patients [10, 

11]. Compared to HC, MS patients also showed higher activation during the single-task and a 
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more limited increase in right premotor cortex activation moving from the single- to the dual-

task [12].  

Based on this background, it is tempting to speculate that the presence and severity of 

fatigue and the deterioration of dual-task performance in MS patients may share some 

common pathophysiological processes. In particular, damage in brain regions that are directly 

involved in fatigue as well as in motor and cognitive tasks, such as the prefrontal cortices and 

deep GM, may have detrimental effects for fatigue, dual-task activities and cognitive-motor 

interference according to the presence of fatigue [1-12]. A possible interaction between these 

disabling clinical features of MS is suggested by the evidence that more complex activities 

may increase the sense of fatigue in MS patients, and perceived fatigue may also negatively 

influence dual-task performances [13]. However, at present, no study explored whether 

specific MRI abnormalities of frontal cortical-subcortical network can contribute not only to 

fatigue but also to worse dual-task performance according to the presence of not of fatigue in 

the same cohort of MS patients. 

By evaluating different MRI sequences specific to the different pathological processes 

of MS, in this study we investigated how the interplay between structural and functional MRI 

abnormalities of the frontal cortical-subcortical circuit involving the thalami, caudate nuclei 

and dorsolateral prefrontal cortices (DLPFC) may contribute to both fatigue and dual-task 

performance in PMS patients. Although damage to other brain regions, such as the parietal 

lobe and pallidum, may contribute to both fatigue and dual task performance, we focused on 

the frontal cortical-subcortical circuit since it has been consistently suggested to be associated 

with both fatigue and dual task performance [1-12]. 

 

Methods 
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Study design. This is a cross-sectional analysis, based on baseline data collected 

between March 2019 and August 2021 from a multicenter randomized controlled trial called 

“Improving Cognition in People With Progressive Multiple Sclerosis Using Aerobic Exercise 

and Cognitive Rehabilitation” (CogEx, identifier number: NCT03679468) [14]. For this 

study, 57 PMS patients enrolled in four centers participating in the MRI substudy were 

included: a) IRCCS San Raffaele Hospital (Milan, Italy [n=31]); b) University of Genoa 

(Genoa, Italy [n=18]); c) University of Alabama at Birmingham (Birmingham, Alabama, 

USA [n=2]) and c) Kessler Foundation (East Hanover, New Jersey, USA [n=6]). 

Of note, all procedures described below were standardized across sites via 

comprehensive in-person and remote training, along with quality control on a case-by-case 

basis. 

Inclusion and exclusion criteria have been previously described [14]. Briefly, to be 

included, MS patients had to a) have a confirmed diagnosis of PMS (primary or secondary 

progressive) [15]; b) be aged between 25 and 65 years old; c) have a corrected visual acuity 

>20/70; d) demonstrate intact language comprehension based on Token Test scores >28 

(Italian for the centers of Milan and Genoa, English for the centers of Birmingham and East 

Hanover) and to understand instructions; e) be insufficiently active based on a Health 

Contribution Score of the Godin Leisure-Time Exercise Questionnaire <23 units; f) not be 

severely depressed based on the Beck Depression Inventory-II scores <29 [16]; g) 

demonstrate impaired cognitive processing speed based on Symbol Digit Modalities Test 

(SDMT) scores ≥1.282 standard deviation-units below the age-, sex-, and education-adjusted 

normative score (i.e., ≤10th percentile) [17]. Exclusion criteria were: a) wheelchair dependent 

(EDSS≥7.0); b) history of significant neurological or psychiatric conditions other than PMS; 

c) relapses or steroid use within the past 3 months; d) MRI contraindications (e.g., pacemaker, 
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pregnancy, breast-feeding, etc.); e) use of drugs that could affect cognition (excluding 

cannabis). 

Ten HC, without neurologic diseases or systemic disorders potentially affecting the 

CNS, and with a completely normal neurologic examination, were included from IRCCS San 

Raffaele Hospital (Milan, Italy). 

Clinical evaluation. Within three days from MRI acquisition, a neurological 

examination with Expanded Disability Status Scale (EDSS) score rating was performed by 

experienced neurologists blinded to MRI findings. 

To assess fatigue, experienced evaluators administered the Modified Fatigue Impact 

Scale (MFIS) scale to all subjects [18]. This is a multidimensional self-report of 21 items, 

which examines different aspects of fatigue on everyday functioning by assessing its impact 

on physical, cognitive and psychosocial domains. Response options for each item range from 

0 (Never) to 4 (Almost always). The global MFIS score (MFIS global) is provided by the 

combination of nine items for physical status (MFIS physical), 10 items for cognitive status 

(MFIS cognitive) and two items for psychosocial function status (MFIS psychosocial). PMS 

patients with an MFIS score ≥38 were considered fatigued [19]. 

Single-task and dual-task. Motor and cognitive performance in single-task and dual-task 

[5-9, 20] were evaluated (see Table 1 for a detailed description of single- and dual task 

paradigm). In particular, distance, speed, correct response rate during single- and dual-tasks 

and motor and cognitive costs during dual-task were assessed. 

MRI acquisition. Using 3.0 Tesla scanners (IRCCS San Raffaele: Philips Ingenia; 

University of Genoa and University of Alabama: Siemens Prisma; Kessler Foundation: 

Siemens Skyra) and standardized procedures for subjects positioning, the following brain 

MRI sequences were acquired from all subjects: a) axial T2*-weighted single-shot EPI 

sequence for resting state (RS) fMRI; b) sagittal three-dimensional (3D) fluid-attenuated 
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inversion recovery (FLAIR); c) sagittal 3D T1-weighted sequence; and d) axial pulsed-

gradient single-shot diffusion-weighted echo planar imaging (EPI) sequence. See 

supplementary methods for details regarding sequence parameters. Procedures of 

standardisation and quality control of MRI data have been previously described [14]. In 

details, before MRI scan acquisition, a mock MRI scan was performed at the four centers to 

evaluate image quality. Subsequently, brain MRI scans were acquired using 3.0 Tesla 

scanners by experienced technicians. MRI data acquired for the study were then analyzed 

centrally at IRCCS San Raffaele Hospital (Milan, Italy) by experienced technicians blinded to 

subjects’ identity. 

Conventional MRI analysis. Focal T2-hyperintense WM lesions were identified by a 

fully automated and validated approach using the 3D FLAIR and 3D T1-weighted as input 

images [21]. A cascade of two 3D patch-wise convolutional neural networks, already trained 

on manually labeled data, has been applied on the coregistered 3D FLAIR and 3D T1-

weighted input images to obtain probabilistic masks for each voxel of being lesion. By 

thresholding voxels with 0.5 probability of being lesion, the final lesion mask is achieved. 

T2-hyperintense WM LV was obtained for each patient from their lesion masks, after a 

careful visual check of the results provided by the automatic segmentation. 

Normalized brain volume (NBV), normalized cortical GM volume (NcGMV) and 

normalized WM volume (NWMV) were measured using SIENAx software using lesion-filled 

3D T1-weighted sequence [22]. 

Volumetric analyses of thalami, caudate nuclei and DLPFC. Segmentation of the 

caudate nuclei and thalami was performed using the FSL FIRST tool and their volume was 

calculated and normalized using FSL SIENAx scaling factor (Figure 1). Among the basal 

ganglia, we focused on the caudate nucleus and thalamus since they have been consistently 

demonstrated to be involved in fatigue and dual-task performances. Conversely, we did not 



   9 

include other deep GM nuclei such as the putamen and globus pallidum, that may be 

potentially implicated both in fatigue and dual-task performances, to limit possible 

collinearity among structural and functional MRI variables of structures that are anatomically 

and functionally strongly linked each other. 

An automatic approach was used to derive a measure of DLPFC volume in each study 

participant. First, voxel-based morphometry (SPM12, www.fil.ion.ucl.ac.uk/spm) was run on 

lesion-filled 3D T1-weighted images to map differences in regional GM volumes of left and 

right DLPFC toward a customized atlas (see Supplementary Methods).  

The segmented GM maps, transformed to the Montreal Neurological Institute space, 

modulated for the Jacobian of the non-linear transformation and smoothed with an 8 mm 

Gaussian kernel, were obtained. Then Brodmann area (BA) 9 and 46 were selected by BAs 

template (in which the DLPFC is contained). For each study participant, the regional GM 

volume in the native space was obtained by integrating the values of modulated transformed 

GM maps over the BA areas and then normalizing them for head size using FSL SIENAx 

scaling factor (Figure 1). 

Diffusion tensor MRI pre-processing. Details on diffusion-weighted MRI analyses are 

reported in the Supplementary methods. Briefly, after motion and eddy current correction, the 

diffusion tensor (DT) was estimated.  

Then, the spatial normalization pipeline [23] supported by the DTI-TK toolkit was 

applied to individual DT volumes to produce a study specific template [24]. Finally, fractional 

anisotropy (FA) and mean diffusivity (MD) maps from the population specific DTI template 

and from the transformed individual DTI were derived. 

Transcallosal fibers connecting left and right DLPFC and WM tracts connecting 

ipsilateral thalamus, caudate nucleus and DLPFC were reconstructed (Figure 1). 

http://www.fil.ion.ucl.ac.uk/spm


   10 

To this aim, probabilistic tractography was applied to a population template, obtained 

from 44 HC, not used in this study, who underwent MRI acquisitions including a high angular 

resolution diffusion imaging (HARDI) and multi-shell diffusion-weighted sequences that 

were processed with Constrained Spherical Deconvolution [25]. Thalami and caudate nuclei 

areas defining seeds for tractography at the GM/WM interface were the masks derived from 

FSL FIRST tool (Figure 1). For DLPFC, two spherical seed regions of interest with a 

diameter of 10 millimeter were shaped onto the BAs 46 and 9 with the coordinates of the 

center set at X: ±42; Y:32; Z:30, as previously suggested [26, 27] (Figure 1). 

The resulting tract-maps were then skeletonized and projected back to single study 

participants’ space using the transformations derived from TBSS: i) the skeleton voxel is back 

projected from its position on the skeleton; ii) this point is "inverse warped" back into the 

study participants' native space. Finally, average FA and MD values within tracts were 

calculated. 

RS effective connectivity (EC) analysis. RS fMRI data were analyzed using RS EC. 

Compared to standard RS functional connectivity analysis, which simply describes overall 

functional associations between regions (or networks), EC aims at assessing causal influences 

that the activity of a given region exerts on another one [28], and is particularly suitable for 

studying in details causal information flows within specific brain circuits, as it is the case of 

the present study. After RS fMRI pre-processing (see Supplementary methods), RS EC 

analysis was performed by means of spectral dynamic causal modelling (DCM) a framework 

proposed by Friston et al. [29], to build EC models among brain regions using RS fMRI data, 

as implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) [29].  

The EC was evaluated among the previously identified ROIs (i.e., thalami, caudate 

nuclei and DLPFC, Figure 1). Intrinsic EC strengths between each possible pair of brain 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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regions belonging to each circuit were estimated using spectral DCM, as described in detail 

elsewhere [29, 30]. 

Statistical analysis. Between-group differences of demographic and clinical variables 

among PMS patients with and without fatigue and HC were tested by Fisher’s exact and 

Mann-Whitney U test. Wilcoxon signed-rank test was used to evaluate dual-task motor and 

cognitive costs in each group. 

Between-group comparisons of conventional MRI variables, volumetric, diffusivity 

indexes and RS EC strengths of thalami, caudate nuclei and DLPFC and their connections 

were assessed using age-, sex- and center-adjusted linear models. T2-hyperintense WM LVs 

were log-transformed. To assess the stability of the results the analysis was rerun removing 

center from the set of covariates. False discovery rate (FDR) (Benjamini–Hochberg 

procedure) correction was carried out to take into account the overall number of pairwise 

comparisons. 

Random forest (RF) classification/regression models were grown to rank demographic, 

clinical, significantly altered MRI variables and center effect according to their importance in 

explaining the presence of fatigue, global MFIS and its subscores in all PMS patients, as well 

as motor and cognitive performance at single- and dual-task in PMS patients stratified 

according to the presence of fatigue. Specifically, for each outcome, we adopted the Boruta 

algorithm [31] (with 10,000 trees and 2,000 iterations) in order to select a subset of relevant 

features. The algorithm selects features that perform better (on the basis of a binomial test 

with multiple comparison adjustment) than pure randomness, by iteratively comparing 

variables importance metric with those of shadow attributes, created by shuffling the original 

ones. Features with significantly worst importance than shadow attributes are progressively 

removed.  
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The goodness of fit of a new model, trained by using only the selected predictors, was 

expressed by the out-of-bag (OOB) accuracy (classification) or R2 (regression), computed on 

the left-out observations. 

SAS release 9.4 (SAS Institute, Cary, NC) and Software R (version 4.1.1) were used for 

computations. P values <0.05 were deemed statistically significant. 

 

Results 

Demographic, clinical and conventional MRI findings. The final study sample included 

57 patients with PMS (median age=43 years, interquartile range [IQR]=47;57; 38 women, 

primary progressive=11, secondary progressive=46) with median disease duration of 20.0 

years (IQR=12.0;26.5) and median EDSS=6.0 (IQR=4.5;6.5) and 10 HC (median age=45.0 

years [IQR=36.0;53.0]; 7 women). Thirty-seven (65%) PMS patients were fatigued. 

Compared to HC, both PMS patients with and without fatigue were significantly older 

(p≤0.032), had significantly higher MFIS physical subscore (p≤0.005), lower single- and 

dual-task distances and speeds (p<0.001 for all), and lower single- and dual-task correct 

response rates (p<0.001 for all) (Table 2).  

Compared to non-fatigued PMS patients, those with fatigue had significantly higher 

EDSS score (p=0.048), were more frequently secondary progressive (p=0.004), had 

significantly higher MFIS global score (p<0.001), higher MFIS cognitive and psychosocial 

subscores (p<0.001 for both comparisons, as expected) and lower dual-task correct response 

rate (p=0.019) (Table 2). 

Motor and cognitive performance significantly declined at dual-task compared to single-

task in HC and PMS patients with and without fatigue (p≤0.030), except for cognitive 

performance in non-fatigued PMS patients (p=0.722). No between-group differences were 

detected (p≥0.083) (Table 2). 
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Conventional MRI measures. Compared to HC (4 of them showing small aspecific 

micro-ischaemic WM hyperintensities), both PMS patients with and without fatigue had 

significantly higher T2-hyperintense WM LV, and lower NBV, NcGMV and NWMV (FDR-

p<0.001 for all comparisons) (Table 2). No significant differences in global lesion and 

volumetric measures were found between PMS with and without fatigue (FDR-p≥0.910). 

Thalamic, caudate and DLPFC findings. Compared to HC, both PMS patients with and 

without fatigue showed significantly lower volumes of bilateral thalami (FDR-p<0.001 for 

all), caudate nuclei (FDR-p<0.001 for all) and DLPFC (FDR-p≤0.004) (Table 3). Both PMS 

subgroups also showed significantly increased MD (FDRp≤0.001 for all) in all WM tracts 

analysed and decreased FA in all WM tracts analysed (FDRp≤0.001 for all), except for those 

connecting thalamus with DLPFC bilaterally (FDR-p≥0.263) (Table 3). No significant 

between-group differences in volumetric and DT MRI-derived indexes were found between 

PMS with and without fatigue (FDR-p≥0.246). 

Compared to HC, both PMS patients with and without fatigue showed significantly 

higher RS EC from left to right DLPFC (FDR-p≤0.021) (Table 3 and Figure 2). PMS patients 

without fatigue showed also a significantly lower RS EC from right thalamus to right DLPFC 

(FDR-p=0.034) (Table 3 and Figure 2). Compared to non-fatigued PMS patients, those with 

fatigue had significantly lower RS EC from left caudate nucleus to left DLPFC (FDR-

p=0.046) and higher RS EC from right thalamus to right DLPFC, not surviving FDR 

correction (FDR-p=0.095) (Table 3 and Figure 2).  

The covariate center was not statistically significant in any of the estimated models 

(p≥0.277). Results of between-group comparisons did not change when center was removed 

from the set of covariates. 
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Random forest informative predictors of fatigue. Informative predictors of the presence 

of fatigue (relative importance [%]) (OOB accuracy=0.754) were higher EDSS score (100%) 

and lower RS EC from left caudate nucleus to left DLPFC (73.0%) (Table 4 and Figure 2). 

Higher EDSS score (100.0%), lower FA of the WM tract connecting left caudate 

nucleus and left thalamus (76.6%), higher MD of the WM tract connecting right caudate 

nucleus and right thalamus (66.8%), and longer disease duration (46.6%) predicted a higher 

global MFIS score (OOB R2=0.247) (Table 4, Figures 2 and 3). 

Higher EDSS score (100.0%), lower FA of the WM tract connecting left caudate 

nucleus and left thalamus (76.6%), and higher RS EC from right thalamus to right DLPFC 

(55.7%) predicted a higher MFIS physical subscore (OOB R2=0.282) (Table 4 and Figure 2). 

Lower FA of the WM tract connecting left caudate nucleus and left thalamus (100.0%), 

lower RS EC from left caudate nucleus to left DLPFC (85.6%) and higher RS EC from right 

thalamus to right DLPFC (55.7%) predicted a higher MFIS psychosocial subscore (OOB 

R2=0.226) (Table 4 and Figure 2). 

Random forest informative predictors of single- and dual-task performance. In PMS 

without fatigue, informative predictors of lower single- and dual-task distance/speed were 

higher EDSS score (100.0% for both outcomes) and lower FA of the WM tract connecting left 

caudate nucleus and left DLPFC (36.5% and 43.5%, respectively) (OOB R2=0.535 and 0.530, 

respectively) (Table 5 and Figure 2). 

Lower FA of transcallosal fibers connecting left and right DLPFC (100.0%) and of the 

WM tract connecting left caudate nucleus and left thalamus (64.4%), lower normalized 

volume of right caudate nucleus (83.2%), higher RS EC from left DLPFC to right DLPFC 

(78.0%), higher T2-hyperintense LV (73.3%), and higher MD of transcallosal fibers 

connecting left and right DLPFC (72.8%) predicted lower single-task correct response rate 

(OOB R2=0.248) (Table 5 and Figure 2). 
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Lower FA of the WM tract connecting left caudate nucleus and left thalamus (100.0%), 

higher MD of the WM tract connecting right caudate nucleus and right DLPFC (68.6%) and 

higher RS EC from left DLPFC to right DLPFC (60.4%) predicted lower dual-task correct 

response rate (OOB R2=0.444) (Table 5, Figures 2 and 3). 

In PMS with fatigue, higher EDSS score was the only relevant predictor of lower 

single-task distance/speed (100.0%, OOB R2=0.561), whereas higher EDSS score (100.0%), 

higher T2-hyperintense LV (24.1%), higher MD of the WM tracts connecting left caudate 

nucleus and left thalamus (20.0%) and left thalamus and left DLPFC (18.7%) and lower FA 

of the WM tract connecting right caudate nucleus and right DLPFC (16.9%) were informative 

predictors of lower informative predictors of dual-task distance/speed (OOB R2=0.426) 

(Table 5 and Figure 2). 

Higher MD of the WM tracts connecting left DLPFC with left caudate nucleus 

(100.0%) and left thalamus (94.5%), right DLPFC with right caudate nucleus (66.8%) and 

right thalamus (54.9%), right caudate nucleus with right thalamus (44.2%), lower FA and 

higher MD of transcallosal fibers connecting left and right DLPFC (49.5% and 40.0%, 

respectively), and higher T2-hyperintense LV (24.1%) predicted lower single-task correct 

response rate (OOB R2=0.475) (Table 5 and Figure 2). 

Lower FA and higher MD of transcallosal fibers connecting left and right DLPFC 

(100.0% and 74.7%, respectively) and of the WM tract connecting left caudate nucleus and 

left DLPFC (38.7% and 61.4%, respectively), higher MD of the WM tracts connecting right 

caudate nucleus and right DLPFC (89.8%) and, bilaterally, the thalamus with ipsilateral 

DLPFC (left=72.2%, right=60.1%), lower RS EC from left caudate nucleus to left DLPFC 

(58.8%) and lower NcGMV (57.6%) were informative predictors of lower dual-task correct 

response rate (OOB R2=0.377) (Table 5, Figures 2 and 3). 
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No significant predictor for dual-task motor and cognitive costs was found in PMS 

patients with or without fatigue.  

 

Discussion 

In this study, we report that a substantial proportion of PMS patients were fatigued and, 

independently from the presence of fatigue, had worse motor and cognitive performances in 

all items of single- and dual-task activities compared to HC except for dual-task motor and 

cognitive costs. Focusing on a well-characterized cortico-subcortical network suggested to be 

involved in the pathophysiology of fatigue [2-4] and contributing to dual-task performance [9-

12], we found that specific structural and functional MRI abnormalities were associated with 

fatigue impact and its severity. Moreover, they were also informative predictors of motor and 

cognitive performance of single- and dual-task with some differences according to the 

presence of fatigue. Of note, in PMS without fatigue structural and functional MRI 

abnormalities of the investigated frontal cortico-subcortical circuits that predicted single- and 

dual-task performances were more limited and mainly involved the left (dominant) 

hemisphere, transcallosal connections and RC EF from left to right DLFPC. Conversely, in 

PMS with fatigue, several and more bilateral structural MRI abnormalities of frontal cortical-

subcortical networks were informative predictors of single- and dual-task performances.  

The high proportion of PMS with fatigue in our study (37/57, 65%) and the significantly 

higher scores not only of global MFIS but also of its sub-scales in PMS compared to HC 

support the notion that fatigue, not only physical, but also cognitive and psychosocial, is a 

frequent symptom in PMS [32]. 

Interestingly, PMS patients showed also significantly worse motor and cognitive 

performance during the respective single- and dual-task conditions [5-9] compared to HC, 
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also in the absence of fatigue, even though PMS with fatigue showed lower dual-task correct 

response rate compared to those without fatigue. 

Conversely, motor and cognitive performances significantly declined at dual-task 

compared to single-task in HC and PMS patients, with no difference in the motor and 

cognitive dual-task costs being found among PMS patients’ subgroups and HC. Although the 

small sample size of HC could explain the lack of significant differences, similar dual-task 

costs could have been expected based on previous studies [8]. Moreover, motor and cognitive 

performances of PMS patients were already substantially compromised at single-task, thus it 

is likely that during the dual-task condition only a further limited worsening may be observed. 

Despite this, it is likely that the impact of the same percentage decline of performance has 

more detrimental impact on functioning in more disabled PMS patients.  

To study the anatomical and functional correlates of fatigue and of dual-task 

performance in PMS patients according to the presence of fatigue, we selected a subset of 

brain areas (i.e., thalamus, caudate nuclei and DLPFC) and their connections which have been 

suggested to be consistently involved with these clinical end-points by several previous 

studies [2-4, 10-12, 26, 27, 33-43].  

As expected, PMS patients showed significant atrophy of all GM structures investigated 

as well as microstructural abnormalities (in terms of decreased FA and increased MD) of the 

majority of the WM tracts connecting these areas.  

For the analysis of fMRI alterations, we applied RS EC since it provides a potentially 

more direct representation of brain function and information integration between regions 

compared to simple functional connectivity analysis [44], allowing to investigate how one 

region influences another region in the brain. Interestingly, such an analysis disclosed only 

limited between-group RS EC differences. Compared to HC, both PMS patients with and 



   18 

without fatigue had significantly higher RS EC from left to right DLPFC, with PMS patients 

without fatigue having also a significantly lower RS EC from right thalamus to right DLPFC.  

When we explored the possible predictors of fatigue, we found that, in addition to 

higher EDSS score, a significantly lower RS EC from left caudate nucleus to left DLPFC was 

the only informative MRI measures able to explain the presence of fatigue. Our results are in 

line with previous studies suggesting a more prominent role of functional network 

abnormalities in explaining fatigue in MS patients [2-4].  

Interestingly, no differences in the investigated anatomical network were found between 

fatigued and non-fatigued MS patients and no structural MRI measure predicted the presence 

of fatigue. Although apparently in contrast with previous findings [1-4], other studies did not 

support the associations between structural damage of frontal cortico-subcortical circuit and 

fatigue [1-4]. Heterogeneities in the cohorts of MS patients evaluated in terms of clinical 

phenotypes (i.e., relapsing-remitting or PMS), disease duration and disability, in the criteria 

used to define fatigue and in the MRI analyses performed may contribute to explain 

discrepancies among studies. In particular, while significant associations have been typically 

found in relapsing-remitting MS patients [2-4], different pathological processes and a plateau 

effect of structural brain damage may be present in PMS, thus limiting the associations 

between the presence of fatigue and structural MRI measures in this more severe form of the 

disease. 

However, it should be mentioned that microstructural abnormalities of the WM tracts 

connecting bilateral caudate nuclei and thalami, together with abnormal RS EC from deep 

GM nuclei to DLPFC, were informative predictor of global MFIS and its subscores. 

Accordingly, both structural damage of deep GM and functional maladaptive RS EC 

abnormalities in the afferent connections from thalami and caudate nuclei to DLPFC may 

contribute to explain the severity of fatigue impact in MS patients [26, 33-36, 38-40, 45]. 
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When we explored the possible predictors of single- and dual task performances in PMS 

patients stratified according to the presence of fatigue, we found that higher EDSS score and 

microstructural abnormalities of WM tracts connecting caudate nuclei, thalami and DLPFC 

were informative variables of single- and dual task distance/speed for both PMS patients’ 

groups. Of note, the number of relevant predictors for PMS with fatigue was higher and 

included also higher T2-hyperintense WM LV. Our results suggest that, beside the severity of 

clinical disability, structural damage accumulation in clinically-relevant brain regions 

contributes to worse single- and dual-task motor performance, especially in the presence of 

fatigue. 

Several MRI variables of structural damage of frontal cortico-subcortical circuit were 

informative predictors of single- and dual-task cognitive performance. The structural 

correlates of single- and dual-task impairment in MS have been only partially investigated. 

Focal WM lesions in the corona radiata were found to be significantly associated with dual-

task cost during a combined cognitive-postural task [46]. Our study shows that several 

additional pathophysiological processes may negatively impact dual-task performance. Focal 

lesions but also microstructural abnormalities in the WM tract connecting the caudate nuclei, 

thalami and DLPFC may determine a disconnection syndrome among GM regions involved in 

motor and cognitive tasks. In addition, atrophy of strategic GM regions, such as the caudate 

nucleus and the cortex may explain not only more severe clinical disability and cognitive 

impairment, but also a lower dual-task cognitive performance. 

Interestingly, while for PMS without fatigue the number of informative MRI predictors 

was more limited and mainly involving the left (dominant) hemisphere, a higher number of 

MRI variables, involving more widely also the non-dominant (right) hemisphere and 

transcallosal fibers, explained single- and dual-task cognitive performance in PMS with 

fatigue. 
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The presence of fatigue may be associated with more diffuse abnormalities of cortico-

subcortical networks, also involving inter-hemispheric connections, that may have more 

substantial detrimental effects on single- and dual-task performance especially during and 

after demanding tasks [34, 39, 47-49]. 

Conversely, the contribution of fMRI abnormalities was quite limited in explaining 

motor and cognitive performances. In details, higher RS EC from left DLPFC to right DLPFC 

predicted single- and dual-task correct response rate in PMS without fatigue, whereas lower 

RS EC from left caudate nucleus to left DLPFC predicted dual-task correct response rate in 

PMS with fatigue. 

Possible heterogeneities of functional network abnormalities among PMS patients may 

contribute to explain the limited role of fMRI abnormalities in predicting motor and cognitive 

performance. However, our results suggest that PMS patients may be characterized by 

clinically-relevant abnormal intra- and inter-hemispheric RS EC, possibly acting in opposite 

directions and being slightly different according to the presence or not of fatigue.  

Our findings are consistent with previous studies that explored functional changes 

during dual-task [10-12] and that showed a significant increase in prefrontal cortex activation 

during dual- vs single-walking task [10, 11], being more limited in MS patients compared to 

HC [12]. Moreover, they are in line with the evidence of abnormal RS functional connectivity 

[1, 26, 38, 40, 45], or abnormal activations during motor [1, 33, 35] or cognitive tasks [1, 34, 

36, 39] in specific cortico-subcortical regions. Finally, abnormal RS EC during cognitive 

tasks among cognitively-relevant brain regions has been described from the earliest phases of 

MS [50] and in the different clinical phenotypes [51, 52]. Reduced RS EC in the afferent limb 

of the dorsolateral prefrontal circuit has been demonstrated to mediate the relationship 

between cognitive performance and structural damage of WM tracts among DLPFC, caudate, 

globus pallidus and thalamus [53].  
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This study has some limitations. We evaluated a small non-matched sample of HC who 

have been enrolled from a single center and were significantly younger compared to PMS 

patients. Despite this, it is noteworthy that we were able to detect significant abnormalities in 

PMS both with and without fatigue compared to HC and between PMS patients’ subgroups. 

Although analyses have been corrected for age and center, they could represent confounding 

factors in the analyses. However, appropriate standardisation and quality control procedures 

have been set to limit heterogeneities of MRI acquisitions among centers [14]. Moreover, the 

covariate center was not statistically significant in any of the estimated models and results of 

between-group comparisons were not affected by the inclusion of covariate center in the 

models. Finally, center was not retained as informative predictor for the presence and severity 

of fatigue as well as for single- and dual-task performances in both PMS with and without 

fatigue in the random forest analyses.   

Given the evidence of accelerated brain aging in MS, further studies with larger cohorts 

of HC and MS patients spanning the whole lifespan are needed to better explore how aging 

may influence the substrates underpinning fatigue and dual-task performances in MS. This is 

a cross-sectional study, which evaluated only a quite small cohort of PMS patients. However, 

it may be difficult to obtain comprehensive and standardized clinical, functional (i.e., 

including single- and dual-task performances) and MRI evaluations in PMS patients. 

Moreover, PMS are typically characterized by high disability levels and severe structural and 

functional brain abnormalities. The evaluation of a larger cohort of MS patients including the 

main clinical phenotypes and in a longitudinal setting may allow to better investigate the 

dynamics of brain cortico-subcortical structural and functional abnormalities and their 

interplay with different clinical outcomes, including fatigue and dual-task performance. We 

explored the predictors of fatigue and of single- and dual-task performances according to the 

presence of fatigue, but the impact of fatigability was not evaluated. To limit the number of 
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regions of interest explored in this study, we did not investigate the role of structural and 

functional abnormalities of other brain regions (e.g., the pallidum and the parietal lobe) that 

may contribute to the occurrence of fatigue and worse dual task performance and this should 

be a matter of investigation of future studies. Finally, volumes of DLPFC and deep GM have 

been quantified using VBM and FSL FIRST, respectively, because thalamic and caudate 

nucleus volume may be underestimated using VBM. Despite these different methodologies, 

these measures have been obtained using standardized and validated approaches, already 

applied in previous studies [54]. 

In conclusion, in PMS patients, different pathological processes occurring in frontal 

cortico-subcortical network, including atrophy, microstructural damage of connecting WM 

tracts and abnormal RS EC, contribute to the severity of fatigue. Different patterns of 

structural and functional frontal cortico-subcortical abnormalities contribute to worse dual-

task performances in PMS according to the presence of fatigue. 

Our findings further support that the investigated network may have a pathogenic role 

for both these clinical manifestations and it may represent a target for novel therapeutic 

strategies aimed at limit the detrimental effects of fatigue and worse dual-task performances.   
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Table 1. Details of single- and dual-task exercises and the clinical outcomes evaluated. 

Task Definition 

Motor task Motor single-task was performed by standing with the toes in contact with a starting line. Then, participant had to walk at 

spontaneous speed for one minute in a corridor 15 or 30 metres long; the participant should quickly turn around behind the 

cone he finds at each end of the corridor and return without hesitation. The metres walked are calculated and then the average 

speed is extracted. MS Patients could use aids if necessary 

Cognitive task Cognitive single-task was performed sitting on a chair, and reciting aloud and alternately letters of the alphabet, starting with 

the letter L. For example, if participant was given the letter S, he/she should say U, and then Z. When the participant has 

reached the end of the alphabet, he/she had to continue by starting a new round of the alphabet but keep doing it alternately. 

For example, after Z, participant should answer B and when he/she has got to the end they have to start again, for a total time 

of one minute 

Combined motor 

and cognitive tasks 

Combined motor and cognitive dual-task was performed like the previous cognitive single-task, starting with the letter C, but 

instead of sitting on the chair while reciting the alternating letters, the participant had to walk as explained above in the motor 

test. Thus, performing the two tasks at the same time 

Outcome Definition Interpretation 

Single-task distance Meters walked in 60 seconds Lower score: lower performance 

Dual-task distance Meters walked in 60 seconds while performing the alternating alphabet task Lower score: lower performance 

Single-task speed Speed obtained in walking for 60 seconds 

meters walked during single motor task

60 seconds
 

Lower score: lower performance 



   31 

Dual-task speed Speed obtained in walking for 60 seconds while performing the alternating alphabet task 

meters walked during dual − task

60 seconds
 

Lower score: lower performance 

Single-task correct 

response rate 

The number of correct answers and the number of totally given answers within 60 seconds. 

From this the correct response rate is calculated according to formula: 

correct answers during single − task

60 seconds
 × 100 

Lower score: lower performance 

Dual-task correct 

response rate 

The number of correct answers and the number of totally given answers within 60 seconds. 

From this the correct response rate is calculated according to formula: 

correct answers during dual − task

60 seconds
 × 100 

Lower score: lower performance 

Dual-task motor 

cost 

Motor cost of the dual-task compared to the single task, calculated according to the formula 

(single − task speed)  −  (dual − task speed)

single − task speed
 × 100 

Higher score: lower motor 

performance in dual-task 

Dual-task cognitive 

cost 

Cognitive cost of the dual-task compared to the single task, calculated according to the 

formula: 

(single − task correct response rate)  −  (dual − task correct response rate)

single − task correct response rate
 × 100 

Higher score: lower cognitive 

performance in dual-task 
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Table 2. Main demographic and clinical variables evaluated in HC and in MS patients as a 

whole and according to the presence of fatigue.  

Variable 
HC 

(n=10) 

nF PMS 

(n=20) 

F PMS 

(n=37) 

p value 

nF PMS vs  

HC 

p value 

F PMS vs  

HC 

p value 

F PMS vs  

nF PMS 

Median age 

(IQR) [years] 

45.0 

(36.0;53.0) 

51.5 

(47.0;56.5) 

53.0 

(48.0;57.0) 
0.032 0.012 0.530 

Men (%) 

Women (%) 

3 (30%) 

7 (70%) 

9 (45%) 

11 (55%) 

10 (27%) 

27 (73%) 
0.694a 0.999a 0.240a 

Median EDSS 

(IQR) 
- 

5.5 

(3.5;6.5) 

6.5 

(5.0;6.5) 
- - 0.048 

Median disease duration 

(IQR) [years] 
- 

18.5 

(4.2;28.5) 

21.0 

(13.5;26.0) 
- - 0.273 

PMS phenotype  

(primary/secondary) 
- 

 

8/12 

 

3/34 
- - 0.011a 

Median MFIS global 

(IQR) 

16 

(5;27) 

27 

(22;32) 

51 

(44;60) 
0.052 <0.001 <0.001 

Median MFIS physical 

(IQR) 

3.5 

(0;11) 

14 

(10.5;19) 

26 

(23;29) 
0.005 <0.001 <0.001 

Median MFIS cognitive 

(IQR) 

11.5 

(5;12) 

9 

(4.5;12) 

23 

(17;27) 
0.427 <0.001 <0.001 

Median MFIS 

psychosocial (IQR) 

1 

(0;2) 

2 

(1.5;3) 

5 

(4;6) 
0.065 <0.001 <0.001 

Median single-task 

distance (IQR) [m] 

76.5 

(75;78) 

45.5 

(31.5;55.5) 

31 

(20;50) 
<0.001 <0.001 0.093 

Median single-task speed 

(IQR) [m/s] 

1.3 

(1.2;1.3) 

0.8 

(0.5;0.9) 

0.5 

(0.3;0.8) 

Median dual-task distance 

(IQR) [m] 

61 

(60;67) 

40.5 

(25.5;48) 

28 

(17;40) 
<0.001 <0.001 0.086 

Median dual-task speed 

(IQR) [m/s] 

1.0 

(1.0;1.1) 

0.7 

(0.4;0.8) 

0.5 

(0.3;0.7) 

Median single-task correct 

response rate (IQR) 

76.7 

(70.4;85.0) 

45.8 

(38.3;61.7) 

40.0 

(26.7;50.0) 
<0.001 <0.001 0.096 
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Median dual-task correct 

response rate (IQR) 

73.3 

(65.0;85.0) 

45.8 

(32.5;63.3) 

36.7 

(26.7;45.0) 
0.002 <0.001 0.019 

Median dual-task motor 

cost (IQR) 

21.5 

(8.0;32.7) 

12.6 

(8.6;18.9) 

10.5 

(2.6;24.1) 

0.153 

[0.002b] 

0.083 

[<0.001b] 

0.575 

[<0.001b] 

Median dual-task 

cognitive cost (IQR) 

4.6 

(2.0;7.0) 

-2.4 

(-16.2;16.4) 

8.3 

(-3.6;25.0) 

0.226 

[0.008b] 

0.541 

[0.722b] 

0.116 

[0.030b] 

 

Between-group comparisons p value analyses were obtained using Mann-Whitney test unless 

otherwise specified: a=Fisher’s exact test; b=Wilcoxon signed-rank test. 

°Comparison performed on log-scale. 

Statistically significant comparisons are highlighted in bold. 

Abbreviations: EDSS=Expanded Disability Status Scale; F=fatigued; HC=healthy controls; 

IQR=interquartile range; MFIS=modified fatigue impact scale; m=meter; nF=non-fatigued; s=second; 

PMS=progressive multiple sclerosis.  
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Table 3. Comparisons of global lesional and volumetric measures and of thalamic, caudate nuclei and DLPFC volumes, DT MRI measures of 

their connecting WM tracts and RS EC measures among these regions between HC and MS patients according to the presence of fatigue (age-, 

sex- and center-adjusted linear models). 

 

Variable 

HC 
PMS patients 

nF PMS vs HC F PMS vs HC F PMS vs nF PMS 
F nF 

EM 

(SE) 

EM 

(SE) 

EM 

(SE) 

EMD 

(95% CI) 

p 

(FDR-p) 

EMD 

(95% CI) 

p 

(FDR-p) 

EMD 

(95% CI) 

p 

(FDR-p) 

Volumetric measures 

T2-hyperintense WM LVa 

 

[median 

(IQR)] 

1.16 

(0.41) 

[0.00 

(0.00;0.21)]  

3.92 

(0.15) 

[7.89 

(5.28;13.15)] 

3.86 

(0.13) 

[7.47 

(4.41;20.51)] 

2.76 

(1.83;3.68) 

 

 

<0.001 

(<0.001) 

 

 

2.70 

(1.78;3.63) 

 

 

<0.001 

(<0.001) 

 

 

-0.05 

(-0.33;0.23) 

 

 

0.702 

(0.910) 

 

 

NBV 
1610 

(18) 

1485 

(17) 

1490 

(14) 

-125 

(-161;-89) 

<0.001 

(<0.001) 

-120 

(-154;-85) 

<0.001 

(<0.001) 

5 

(-27;38) 

0.737 

(0.910) 

NcGMV 
666 

(13) 

610 

(12) 

612 

(9) 

-55 

(-82;-28) 

<0.001 

(0.001) 

-53 

(-79;-27) 

<0.001 

(0.001) 

2 

(-20;24) 

0.840 

(0.912) 

NWMV 
717 

(9) 

674 

(9) 

676 

(7) 

-43 

(-63;-23) 

<0.001 

(<0.001) 

-41 

(-59;-23) 

<0.001 

(<0.001) 

2 

(-14;18) 

0.800 

(0.912) 

Normalized 

volume 
L thalamus 

12.30 

(0.41) 

9.88 

(0.35) 

9.93 

(0.31) 

-2.41 

(-3.19;-1.64) 

<0.001 

(<0.001) 

-2.37 

(-3.17;-1.56) 

<0.001 

(<0.001) 

0.05 

(-0.57;0.67) 

0.877 

(0.917) 
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R thalamus 
11.80 

(0.40) 

9.51 

(0.37) 

9.41 

(0.34) 

-2.29 

(-2.95;-1.62) 

<0.001 

(<0.001) 

-2.39 

(-3.12;-1.66) 

<0.001 

(<0.001) 

-0.11 

(-0.77;0.55) 

0.749 

(0.910) 

L caudate nucleus 
4.99 

(0.21) 

4.21 

(0.21) 

4.21 

(0.19) 

-0.78 

(-1.12;-0.45) 

<0.001 

(<0.001) 

-0.78 

(-1.15;-0.42) 

<0.001 

(<0.001) 

-0.00 

(-0.37;0.37) 

0.999 

(0.999) 

R caudate nucleus 
5.08 

(0.21) 

4.27 

(0.21) 

4.25 

(0.17) 

-0.81 

(-1.22;-0.40) 

<0.001 

(0.001) 

-0.82 

(-1.21;-0.43) 

<0.001 

(<0.001) 

-0.01 

(-0.39;0.37) 

0.949 

(0.958) 

L DLPFC 
15.13 

(0.53) 

13.04 

(0.43) 

13.18 

(0.35) 

-2.09 

(-3.23;-0.95) 

0.001 

(0.003) 

-1.95 

(-3.06;-0.84) 

0.001 

(0.004) 

0.14 

(-0.64;0.92) 

0.719 

(0.910) 

R DLPFC 
16.39 

(0.53) 

13.61 

(0.44) 

13.55 

(0.34) 

-2.78 

(-3.95;-1.61) 

<0.001 

(<0.001) 

-2.84 

(-3.95;-1.74) 

<0.001 

(<0.001) 

-0.06 

(-0.87;0.74) 

0.874 

(0.917) 

DT MRI measures 

FA 

DLPFC 

transcallosal 

0.34 

(0.01) 

0.29 

(0.01) 

0.29 

(0.01) 

-0.05 

(-0.08;-0.03) 

<0.001 

(0.001) 

-0.05 

(-0.08;-0.03) 

<0.001 

(0.001) 

0.00 

(-0.02;0.02) 

0.815 

(0.912) 

L caudate nucleus 

- L DLPFC 

0.31 

(0.01) 

0.28 

(0.01) 

0.27 

(0.01) 

-0.03 

(-0.05;-0.01) 

0.001 

(0.003) 

-0.04 

(-0.07;-0.02) 

<0.001 

(<0.001) 

-0.01 

(-0.04;0.02) 

0.394 

(0.583) 

L caudate nucleus 

- L thalamus 

0.30 

(0.01) 

0.28 

(0.01) 

0.27 

(0.01) 

-0.02 

(-0.04;-0.01) 

0.001 

(0.003) 

-0.03 

(-0.05;-0.02) 

<0.001 

(<0.001) 

-0.01 

(-0.02;0.00) 

0.199 

(0.355) 

L thalamus -  

L DLPFC 

0.32 

(0.01) 

0.32 

(0.01) 

0.31 

(0.01) 

-0.00 

(-0.02;0.01) 

0.785 

(0.912) 

-0.01 

(-0.03;0.01) 

0.169 

(0.311) 

-0.01 

(-0.02;0.00) 

0.110 

(0.246) 

R caudate nucleus 

- R DLPFC 

0.30 

(0.01) 

0.26 

(0.01) 

0.26 

(0.01) 

-0.04 

(-0.06;-0.03) 

<0.001 

(<0.001) 

-0.05 

(-0.06;-0.03) 

<0.001 

(<0.001) 

-0.00 

(-0.02;0.02) 

0.870 

(0.917) 
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R caudate nucleus 

- R thalamus 

0.30 

(0.01) 

0.26 

(0.01) 

0.26 

(0.01) 

-0.03 

(-0.05;-0.02) 

<0.001 

(<0.001) 

-0.04 

(-0.05;-0.02) 

<0.001 

(<0.001) 

-0.00 

(-0.01;0.01) 

0.557 

(0.780) 

R thalamus -  

R DLPFC 

0.33 

(0.01) 

0.33 

(0.01) 

0.32 

(0.01) 

-0.00 

(-0.01;0.01) 

0.795 

(0.912) 

-0.01 

(-0.02;0.00) 

0.128 

(0.263) 

-0.01 

(-0.02;0.00) 

0.094 

(0.215) 

MD 

DLPFC 

transcallosal 

0.87 

(0.05) 

1.08 

(0.05) 

1.09 

(0.04) 

0.21 

(0.13;0.28) 

<0.001 

(<0.001) 

0.21 

(0.12;0.30) 

<0.001 

(<0.001) 

0.00 

(-0.08;0.09) 

0.916 

(0.949) 

L caudate nucleus 

- L DLPFC 

0.71 

(0.09) 

1.12 

(0.10) 

1.15 

(0.08) 

0.41 

(0.24;0.57) 

<0.001 

(<0.001) 

0.44 

(0.29;0.59) 

<0.001 

(<0.001) 

0.03 

(-0.16;0.22) 

0.745 

(0.910) 

L caudate nucleus 

- L thalamus 

0.74 

(0.05) 

1.01 

(0.05) 

1.03 

(0.04) 

0.27 

(0.19;0.35) 

<0.001 

(<0.001) 

0.28 

(0.21;0.36) 

<0.001 

(<0.001) 

0.02 

(-0.08;0.11) 

0.736 

(0.910) 

L thalamus -  

L DLPFC 

0.70 

(0.036) 

0.85 

(0.04) 

0.87 

(0.03) 

0.15 

(0.10;0.21) 

<0.001 

(<0.001) 

0.17 

(0.11;0.23) 

<0.001 

(<0.001) 

0.02 

(-0.05;0.09) 

0.561 

(0.780) 

R caudate nucleus 

- R DLPFC 

0.76 

(0.07) 

1.04 

(0.08) 

1.10 

(0.07) 

0.28 

(0.17;0.38) 

<0.001 

(<0.001) 

0.33 

(0.21;0.46) 

<0.001 

(<0.001) 

0.06 

(-0.08;0.19) 

0.411 

(0.596) 

R caudate nucleus 

- R thalamus 

0.74 

(0.05) 

1.08 

(0.05) 

1.09 

(0.04) 

0.34 

(0.25;0.425) 

<0.001 

(<0.001) 

0.35 

(0.26;0.43) 

<0.001 

(<0.001) 

0.01 

(-0.09;0.11) 

0.821 

(0.912) 

R thalamus -  

R DLPFC 

0.68 

(0.03) 

0.82 

(0.03) 

0.85 

(0.03) 

0.14 

(0.10;0.18) 

<0.001 

(<0.001) 

0.17 

(0.11;0.23) 

<0.001 

(<0.001) 

0.03 

(-0.03;0.09) 

0.321 

(0.495) 

fMRI measures 

RS EC 
L DLPFC -  

R DPLFC 

-0.14 

(0.08) 

0.16 

(0.07) 

0.09 

(0.06) 

0.30 

(0.13;0.47) 

0.001 

(0.004) 

0.23 

(0.07;0.39) 

0.008 

(0.021) 

-0.07 

(-0.20;0.06) 

0.301 

(0.470) 
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R DLPFC -  

L DLPFC 

0.21 

(0.11) 

0.03 

(0.10) 

-0.01 

(0.07) 

-0.18 

(-0.42;0.07) 

0.154 

(0.300) 

-0.22 

(-0.44;-0.01) 

0.045 

(0.104) 

-0.05 

(-0.25;0.15) 

0.634 

(0.850) 

L caudate nucleus 

- L thalamus 

0.02 

(0.14) 

-0.03 

(0.08) 

-0.01 

(0.07) 

-0.04 

(-0.36;0.27) 

0.770 

(0.912) 

-0.03 

(-0.34;0.28) 

0.839 

(0.912) 

0.01 

(-0.13;0.16) 

0.857 

(0.917) 

L thalamus -  

L caudate nucleus 

0.13 

(0.14) 

-0.11 

(0.12) 

-0.03 

(0.08) 

-0.24 

(-0.57;0.09) 

0.155 

(0.300) 

-0.16 

(-0.45;0.14) 

0.280 

(0.443) 

0.08 

(-0.16;0.31) 

0.496 

(0.707) 

R caudate nucleus 

- R thalamus 

-0.12 

(0.12) 

0.06 

(0.08) 

0.05 

(0.07) 

0.18 

(-0.08;0.45) 

0.164 

(0.307) 

0.17 

(-0.10;0.43) 

0.199 

(0.355) 

-0.01 

(-0.15;0.12) 

0.838 

(0.912) 

R thalamus -  

R caudate nucleus 

-0.01 

(0.19) 

0.08 

(0.11) 

-0.08 

(0.08) 

0.09 

(-0.34;0.52) 

0.667 

(0.884) 

-0.06 

(-0.48;0.35) 

0.750 

(0.910) 

-0.15 

(-0.36;0.05) 

0.137 

(0.275) 

L caudate nucleus 

- L DLPFC 

-0.12 

(0.23) 

0.10 

(0.13) 

-0.18 

(0.10) 

0.22 

(-0.29;0.72) 

0.375 

(0.569) 

-0.06 

(-0.56;0.43) 

0.788 

(0.912) 

-0.28 

(-0.51;-0.05) 

0.019 

(0.046) 

L DLPFC -  

L caudate nucleus 

-0.09 

(0.11) 

0.01 

(0.08) 

-0.08 

(0.07) 

0.10 

(-0.13;0.33) 

0.390 

(0.583) 

0.01 

(-0.22;0.24) 

0.942 

(0.958) 

-0.09 

(-0.24;0.06) 

0.233 

(0.387) 

R caudate nucleus 

- R DLPFC 

0.25 

(0.16) 

-0.00 

(0.08) 

0.05 

(0.08) 

-0.26 

(-0.59;0.07) 

0.115 

(0.252) 

-0.20 

(-0.53;0.14) 

0.225 

(0.387) 

0.06 

(-0.08;0.20) 

0.413 

(0.596) 

R DLPFC -  

R caudate nucleus 

0.13 

(0.13) 

-0.03 

(0.08) 

-0.06 

(0.08) 

-0.15 

(-0.41;0.10) 

0.227 

(0.387) 

-0.19 

(-0.46;0.08) 

0.160 

(0.305) 

-0.04 

(-0.18;0.11) 

0.619 

(0.840) 

L thalamus -  

L DLPFC 

-0.15 

(0.18) 

0.08 

(0.12) 

0.06 

(0.10) 

0.23 

(-0.15;0.61) 

0.239 

(0.387) 

0.20 

(-0.18;0.59) 

0.277 

(0.443) 

-0.02 

(-0.23;0.19) 

0.831 

(0.912) 

L DLPFC -  0.11 0.06 -0.04 -0.05 0.699 -0.15 0.234 -0.10 0.119 
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L thalamus (0.12) (0.07) (0.06) (-0.30;0.21) (0.910) (-0.40;0.10) (0.387) (-0.23;0.03) (0.256) 

R thalamus -  

R DLPFC 

0.37 

(0.16) 

-0.09 

(0.10) 

0.11 

(0.09) 

-0.46 

(-0.81;-0.11) 

0.013 

(0.034) 

-0.265 

(-0.615;0.085) 

0.129 

(0.263) 

0.195 

(0.009;0.380) 

0.040 

(0.095) 

R DLPFC -  

R thalamus 

0.01 

(0.15) 

0.02 

(0.09) 

-0.07 

(0.09) 

0.01 

(-0.30;0.32) 

0.941 

(0.958) 

-0.08 

(-0.40;0.24) 

0.600 

(0.824) 

-0.09 

(-0.26;0.07) 

0.257 

(0.419) 

 

a=Analyses performed on log-scale. 

Statistically significant comparisons are highlighted in bold. 

Abbreviations: CI=confidence interval; DLPFC=dorsolateral prefrontal cortex; DT=diffusion tensor; EM=estimated mean; EMD=estimated mean difference; 

F=fatigued; FA=fractional anisotropy; FDR=false discovery rate; HC=healthy controls; IQR=interquartile range; L=left; LV=lesion volume; MD=mean 

diffusivity; MRI=magnetic resonance imaging; NBV=normalized brain volume; NcGMV=normalized cortical gray matter volume; nF=non-fatigued; 

NWMV=normalized white matter volume; PMS=progressive multiple sclerosis; R=right; RS EC=resting state effective connectivity; SE=standard error; 

WM=white matter. 

Volumetric measures are expressed in units of milliliter; MD is expressed in units of mm2/sec × 10−3; RS EC is expressed in Hertz (1/sec); FA is a 

dimensionless index. 
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Table 4. Random forest informative predictors of fatigue in PMS patients. Demographic, 

clinical and MRI features selected by Boruta algorithm as relevant predictors of the presence 

of fatigue, global MFIS and its subscores in PMS patients are listed. Median importance of each 

predictor, achieved across iterations, the relative importance, and the performance of a final 

random forest model including only selected variables are also reported. 

 

Outcome Predictor 
Median importance 

(IQR) 
RI 

OOB  

accuracy 

F PMS vs 

nF PMS 

EDSS score 39.6 (24.8;43.1) 100.0 
0.754 

RS EC L caudate nucleus - L DLPFC 28.9 (18.3;36.2) 73.0 

Outcome Predictor 
Median importance 

(IQR) 
RI 

OOB  

R2 

MFIS 

global 

EDSS score 31.2 (28.6;33.9) 100.0 

0.247 
FA L caudate nucleus - L thalamus 23.9 (21.4;26.5) 76.6 

MD R caudate nucleus - R thalamus 20.9 (19;23.2) 66.8 

Disease duration 14.6 (11.2;17.6) 46.6 

MFIS 

physical 

EDSS score 31.3 (26.3;34.3) 100.0 

0.282 FA L caudate nucleus - L thalamus 22.4 (19.3;25) 71.5 

RS EC R thalamus - R DLPFC 17.5 (14;20.1) 55.7 

MFIS 

psychosocial 

FA L caudate nucleus - L thalamus 28.3 (23.9;30.3) 100.0 

0.226 RS EC L caudate nucleus - L DLPFC 24.3 (20.7;28.2) 85.6 

RS EC R thalamus - R DLPFC 21.2 (13.8;24.9) 74.9 

 

Abbreviations: DLPFC=dorsolateral prefrontal cortex; EDSS=Expanded Disability Status Scale; 

FA=fractional anisotropy; IQR=interquartile range; L=left; MD=mean diffusivity; MFIS=modified 

fatigue impact scale; MRI=magnetic resonance imaging; OOB=out-of-bag; R=right; RI=relative 

importance; RS EC=resting state effective connectivity.  

Volumetric measures are expressed in units of milliliter; MD is expressed in units of mm2/sec × 10−3; 

RS EC is expressed in Hertz (1/sec); FA is a dimensionless index. 
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Table 5. Random forest informative predictors of single- and dual-task performance in PMS patients. Demographic, clinical and MRI 

features selected by Boruta algorithm as relevant predictors of single- and dual-task performance in PMS patients, stratified according to the 

presence of fatigue, are listed. Median importance of each predictor, achieved across iterations, the relative importance, and the performance of a 

final random forest model including only selected variables are also reported. 

 

Outcome 

nF PMS F PMS 

Predictor 

Median 

importance 

(IQR) 

RI OOB R2 Predictor 

Median 

importance 

(IQR) 

RI OOB R2 

Single-task 

distance/speed 

EDSS score 56.0 (53.2;58.1) 100.0 
0.535 EDSS score 51.5 (50.6;52.3) 100.0 0.561 

FA L caudate nucleus - L DLPFC 20.5 (16.9;22.7) 36.5 

Dual-task 

distance/speed 

EDSS score 51.8 (49.1;55.1) 100.0 
0.530 

EDSS score 86.1 (83.9;87.6) 100.0 

0.426 

FA L caudate nucleus - L DLPFC 22.5 (20.6;24) 43.5 T2-hyperintense WM LVa 20.7 (19.5;22.5) 24.1 

    

MD L caudate nucleus - L thalamus 17.2 (15.4;18.9) 20.0 

MD L thalamus - L DLPFC 16.1 (14.8;18) 18.7 

FA R caudate nucleus - R DLPFC 14.6 (12.6;16.2) 16.9 

Single-task 

correct 

response rate 

FA DLPFC transcallosal 18 (16.9;19.2) 100.0 

0.248 

MD L caudate nucleus - L DLPFC 45.2 (42.6;46.1) 100.0 

0.475 

Normalized R caudate nucleus volume 15 (12.9;17) 83.2 MD L thalamus - L DLPFC 42.7 (40.7;43.7) 94.5 

RS EC L DLPFC - R DPLFC 14 (12.8;15.2) 78.0 MD R caudate nucleus - R DLPFC 30.2 (29.4;30.8) 66.8 

T2-hyperintense WM LVa 13.2 (12;14.6) 73.3 MD R thalamus - R DLPFC 24.8 (24.3;25.4) 54.9 

MD DLPFC transcallosal 13.1 (11.6;14.5) 72.8 FA DLPFC transcallosal 22.4 (21.5;23.4) 49.5 

FA L caudate nucleus - L thalamus 11.6 (10.4;13) 64.4 MD R caudate nucleus - R thalamus 20.0 (19.2;20.9) 44.2 
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MD DLPFC transcallosal 18.1 (17.1;18.9) 40.0 

T2-hyperintense WM LVa 14.1 12.9;15.2) 31.3 

Dual-task 

correct 

response rate 

FA L caudate nucleus - L thalamus 28.1 (25.6;30.2) 100.0 

0.444 

FA DLPFC transcallosal 32.1 (30.7;33.3) 100.0 

0.377 

MD R caudate nucleus - R DLPFC 19.3 (17;22) 68.6 MD R caudate nucleus - R DLPFC 28.8 (27.7;29.9) 89.8 

RS EC L DLPFC - R DPLFC 17 (14.9;19.2) 60.4 MD DLPFC transcallosal 23.9 (22.6;24.8) 74.7 

    

MD L thalamus - L DLPFC 23.2 (22.1;24) 72.2 

MD L caudate nucleus - L DLPFC 19.7 (18.6;20.8) 61.4 

MD R thalamus - R DLPFC 19.3 (18.4;20.2) 60.1 

RS EC L caudate nucleus - L DLPFC 18.9 17.1;20.2) 58.8 

NcGMV 18.5 (16.8;19.5) 57.6 

FA L caudate nucleus - L DLPFC 12.4 (11.3;13.5) 38.7 

 

 

Abbreviations: DLPFC=dorsolateral prefrontal cortex; EDSS=Expanded Disability Status Scale; F=fatigued; FA=fractional anisotropy; 

IQR=interquartile range; L=left; LV=lesion volume; MD=mean diffusivity; MRI=magnetic resonance imaging; NcGMV=normalized cortical gray 

matter volume; nF=non-fatigued; OOB=out-of-bag; PMS=progressive multiple sclerosis; R=right; RI=relative importance; RS EC=resting state 

effective connectivity; WM=white matter.  
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Figure legends 

 

Figure 1. Selected deep gray matter and cortical regions, reconstructed white matter tracts 

and a priori selected ROIs for RS EC analysis. Map of the thalami, caudate nuclei and DLPFC 

selected as ROIs and representation of the reconstructed white matter tracts connecting these 

regions. (A) Regions of interest: left thalamus (encoded in blue), right thalamus (encoded in light 

blue), left caudate nucleus (encoded in fuchsia), right caudate nucleus (encoded in yellow), left 

DLFC (encoded in red), right DLPFC (encoded in green). The thalami and caudate nuclei were 

segmented using FIRST, whereas region of interest of DLPFC was built by placing spheres with a 

10-millimeter diameter centered on ±42, +30, +32 MNI coordinates. Reconstructed white matter 

tracts on fractional anisotropy template: (B) WM fibers connecting left caudate nucleus and left 

thalamus; (C WM fibers connecting left caudate nucleus and left DLPFC; (D) WM fibers 

connecting left thalamus and left DLPFC; (E) Transcallosal fibers between left DLPFC - right 

DLPFC; Similar WM tracts were also obtained for the right hemisphere. The color-coding indicates 

the local fiber orientation (red, left-right; green, dorsal-ventral; blue, cranial-caudal). (F) ROIs that 

were selected a priori for resting state effective connectivity analysis; left DLPFC (encoded in blue 

fuchsia), right DLPFC (encoded in pink), left caudate nucleus (encoded in green), right caudate 

nucleus (encoded in light blue), left thalamus (encoded in red; right thalamus is encoded in yellow. 

See text for further details. 

Abbreviations: A=anterior; DLPFC=dorsolateral prefrontal cortex; L=left; MNI=Montreal 

Neurological Institute; P=posterior; R=right; ROI=region of interest; RS EC=resting state effective 

connectivity. 

 

Figure 2. Significant RS EC between-group differences among PMS patients with and without 

fatigue and HC, and RS EC variables being relevant to explain the different clinical outcomes 

of the study. Significant differences in RS EC between (A) nF PMS patients compared to HC, (B) 

F PMS patients compared to HC, and (C) F PMS patients compared to nF PMS patients. 

Continuous white arrows represent higher RS EC; dotted white arrows represent lower RS EC. 

Results of the random forest analyses showing RS EC variables being selected as informative 

predictor of (D) MFIS physical score, (E) MFIS psychosocial, (F) single-task correct response rate 

in nF PMS patients, (G) dual-task correct response rate in nF PMS patients, and (H) dual-task 

correct response rate in F PMS patients, 

Continuous orange arrows represent positive associations; dotted white arrows represent negative 

associations. 
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See text for further details. 

Abbreviations: A=anterior; DLPFC=dorsolateral prefrontal cortex; F=fatigued; HC=healthy 

controls; L=left; MFIS=modified fatigue impact scale; nF=non-fatigued; P=posterior; 

PMS=progressive multiple sclerosis; R=right; RS EC=resting state effective connectivity. 

 

Figure 3. Random forest informative predictors of MFIS score and dual task correct response 

rate in PMS patients according to the presence of fatigue. Distribution of variable importance, 

achieved across iterations of Boruta algorithm, of demographic, clinical and MRI features to 

explain (A) MFIS global in all PMS, dual task correct response rate in PMS (B) without and (C) 

with fatigue. Boruta compares the importance of the original variables with the highest feature 

importance of the shadow features, obtained using features permuted copies. Poorly performing 

variables are progressively discarded. 

Selected features are shown in green, discarded features in red. Maximum, mean and minimum 

importance achieved by shadows attributes are shown in blue. 

Abbreviations: DLPFC=dorsolateral prefrontal cortex; EDSS=Expanded Disability Status Scale; 

F=fatigued; FA=fractional anisotropy; L=left; MD=mean diffusivity; MFIS=modified fatigue impact 

scale; MRI=magnetic resonance imaging; NcGMV=normalized cortical gray matter volume; 

nF=non-fatigued; R=right; RS EC=resting state effective connectivity.  
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Figure 1:  
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Figure 2:  
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Figure 3:  
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Supplementary Material 

Supplementary Methods 

MRI acquisition. Using 3.0 Tesla scanners (IRCCS San Raffaele: Philips Ingenia CX; 

University of Genoa and University of Alabama: Siemens Prisma; Kessler Foundation: Siemens 

Skyra) and standardized procedures for subjects positioning, the following brain MRI sequences 

were acquired from all subjects during a single session: a) axial T2*-weighted single-shot EPI for 

resting state (RS) functional (f) MRI (all scanners: TR=1560 ms; TE=35 ms, flip angle=70°; multi-

band factor=2, matrix size=96×96; FOV=240 x 240 mm2; 48 contiguous axial slices, 3 mm thick, 

number of volumes=320); b) variable flip angle 3D T2-weighted fluid-attenuated inversion 

recovery (FLAIR) turbo spin echo (Philips scanner: repetition time [TR]=4800 ms; echo time 

[TE]=270 ms; inversion time [TI]=1650 ms; matrix size=256 × 256; field of view [FOV]=256 × 

256 mm2; echo train length [ETL]=167; 192 contiguous sagittal slices, 1 mm thick; Siemens 

scanners: TR=5000 ms; TE=395 ms; TI=1800 ms; matrix size=256 × 256; FOV=256 × 256 mm2; 

ETL=284; 192 contiguous sagittal slices, 1.05 mm thick), c) sagittal 3D T1-weighted sequence: 

(Philips scanner: TR=7 ms; TE=3.2 ms; TI=1000 ms; flip angle=8°; matrix size=256 × 256; 

FOV=256 × 256 mm2; 204 contiguous sagittal slices, 1 mm thick; Siemens scanners: TR=2300 ms; 

TE=2.98 ms; TI=900 ms; flip angle=9°; matrix size=256 × 256; FOV=256 × 256 mm2; 204 

contiguous sagittal slices, 1 mm thick); and d) axial pulsed-gradient spin echo single shot diffusion-

weighted echo planar imaging (EPI) (all scanners: 3 shells at b-value=700/1000/2855 s/mm2 along 

6/30/60 non-collinear directions and 10 b=0 volumes were acquired, FOV=240×233 mm, pixel 

size=2.14×2.69 mm, 56 slices, 2.3 mm-thick, matrix=112×85, TR=about 6000 ms, TE=about 80 ms 

and three additional b=0 volumes with reversed polarity of gradients for distortion correction). 

Acquisition for RS fMRI scans required about 8 minutes. During RS fMRI acquisition, subjects 

were asked to keep their eyes closed, to remain motionless and not to think of anything in 

particular. All subjects stated that they had not fallen asleep during scanning, according to a 
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questionnaire delivered immediately after the MRI session. The total duration of MRI acquisition 

was approximately 50 minutes. 

Voxel-wise atrophy analysis. Voxel-based morphometry (VBM), as implemented in SPM12 

(www.fil.ion.ucl.ac.uk/spm), was used to map modifications in regional gray matter (GM) volumes 

between multiple sclerosis (MS) patients and healthy controls (HC). The lesion-filled 3D T1-

weighted images were used for a group-wise alignment: first, the images were segmented into 

different tissue types via the Segmentation routine in SPM12. Then, GM and white matter (WM) 

segmented images of all study participants, in the closest possible rigid-body alignment with each 

other, were used to produce GM and WM templates and to drive the deformation to the templates. 

At each iteration, the deformations, calculated using the Diffeomorphic Anatomical Registration 

using Exponentiated Lie algebra (DARTEL) registration method [1], were applied to GM and WM, 

with an increasingly good alignment of study participant’s morphology, to produce templates. 

Finally, an affine transformation that maps from the population average (DARTEL Template space) 

to Montreal Neurological Institute (MNI) space was calculated. GM and WM maps were spatially 

normalized, modulated for the Jacobian of the non-linear transformation and smoothed with an 8 

mm Gaussian kernel. To define the DLPFC, Brodmann areas (BA) 9 and 46 were selected by BAs 

template (in which the DLPFCs are contained). For each study participant, the regional GM volume 

in the native space was obtained by summing values of the aforementioned maps within the mask. 

DT MRI pre-processing. Preprocessing of diffusion-weighted imaging data included 

correction for off-resonance and eddy current induced distortions, as well as for slice-to-volume and 

subject movements, and signal dropout, using the Eddy tool within the FSL library (FSL version 

6.0.1, www.fmrib.ox.ac.uk) [2].  

The diffusion tensor (DT) was estimated in each voxel using the shell at b=700 and 1000 by 

linear regression [3] using the FMRIB's Diffusion Toolbox (FDT tool, FSL 5.0.5).  

Construction of WM Atlas. To generate WM fiber bundles, a separate cohort of 44 HC (24 

females, age 32 ± 12, range 18-55 years) underwent the same diffusion-weighted and 3D T1-

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/
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weighted MRI protocol described above, on the same 3.0 Tesla Philips Ingenia CX scanner used for 

the study at IRCCS San Raffaele.  

Fiber orientation distribution (FOD) functions were computed using Multi-Shell, 3-Tissue 

Constrained Spherical Deconvolution, with group averaged response functions for WM, GM, and 

CSF using MRtrix3 software (www.mrtrix.org) [4]. FOD images of HC were averaged to create a 

study specific unbiased FOD population template. Spatial correspondence with the population 

template was achieved with an iterative registration and averaging approach [5]. Each subject’s 

FOD and FA images were then registered to the template via a FOD-guided non-linear registration 

[6]. Probabilistic tractography[7] was then run using the FOD template to reconstruct the following 

WM tracts, which have been implicated in fatigue,[8-10] using a region of interest (ROI) approach 

and seed from the GM-WM interface: transcallosal fibers between left and right DLPFC, 

connections between ipsilateral caudate nucleus and thalamus, connections between ipsilateral 

caudate nucleus and DLPFC and connections between ipsilateral thalamus and DLPFC. For each 

WM tract, this approach is based on manual delineation of a “seed” ROI, based on anatomical 

landmarks (combining information provided by FA, FOD and T1-weighted images). Starting from 

the seed ROI, tractography reconstructs a probability map of the WM tract. An “end” ROI, namely 

another anatomical landmark to which the tract is known to connect the seed ROI was also used. 

Further “exclusion” ROIs were used to avoid the selection of undesired fibers and to optimize the 

selection of the tract of interest.  

In details, the following seed and end ROIs were used for each WM tract: 

- Transcallosal fibers between left DLPFC-right DLPFC: the spherical ROIs (10mm diameter) 

of DLPFC were shaped onto the BAs 46 and 9; the center of the left one: X:-42; Y:32; Z:30; and the 

right one: X: 42; Y:32; Z:30, in line with what suggested in a previous publication;[11]  

- WM tracts connecting ipsilateral caudate nucleus-thalamus (left and right sides): the ROIs of 

these nuclei were the masks derived from FSL FIRST tool; 

http://www.mrtrix.org/
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- WM tracts connecting ipsilateral caudate nucleus-DLPFC (left and right sides): the ROIs of 

caudate nuclei were derived from FSL FIRST tool, whereas the spherical seed ROIs (10mm 

diameter) of DLPFCs were shaped onto the BAs 46 and 9, as described above; 

- WM tracts connecting ipsilateral thalamus-DLPFC (left and right sides): the ROIs of thalami 

were derived from FSL FIRST tool, whereas the spherical seed ROIs (10mm diameter) of DLPFCs 

were shaped onto the BAs 46 and 9, as described above. 

For the subsequent analyses, mean FA and MD values of the aforementioned WM tracts were 

extracted by applying each atlas section as a mask on DWI of every single study participant. 

RS fMRI pre-processing. RS fMRI data were pre-processed using the CONN toolbox 

(https://web.conn-toolbox.org/).[12] RS fMRI images were realigned to the mean of each session 

with a six-degree rigid-body transformation to correct for minor head movements. After rigid 

registration of realigned images to the lesion filled 3D T1-weighted scan, RS fMRI images were 

normalized to the MNI template using a standard affine transformation followed by non-linear 

warping. After detection of outliers (using the ART toolbox), images were smoothed with a 6 mm3 

Gaussian filter. The five principal components derived from WM and CSF estimated with the 

anatomical component-based noise correction method (aCompCor),[13] and motion parameters 

with their first temporal derivatives were regressed out from RS fMRI time series as nuisance 

covariates. Outliers detected by the ART toolbox (if any) and spurious effects from the first two 

timepoints (to maximize magnetic equilibrium) were also regressed out from data. Finally, images 

were linearly detrended and band-pass filtered (0.01-0.1 Hz). 

  

https://web.conn-toolbox.org/
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