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Extracting Takagi-Sugeno Fuzzy Rules with 
Interpretable Submodels via Regularization of 

Linguistic Modifiers 
Shang-Ming Zhou, Member, IEEE and John Q. Gan, Senior Member, IEEE 

Abstract— In this paper, a method for constructing Takagi-Sugeno (TS) fuzzy system from data is proposed with the objective 

of preserving TS submodel comprehensibility, in which linguistic modifiers are suggested to characterise the fuzzy sets. A good 

property held by the proposed linguistic modifiers is that they can broaden the cores of fuzzy sets while contracting the overlaps 

of adjoining membership functions during identification of fuzzy systems from data. As a result, the TS submodels identified tend 

to dominate the system behaviors by automatically matching the global model in corresponding sub-areas, which leads to good 

TS model interpretability while producing distinguishable input space partitioning. However, the global model accuracy and 

model interpretability are two conflicting modelling objectives, improving interpretability of fuzzy models generally degrades the 

global model performance of fuzzy models, and vice versa. Hence one challenging problem is how to construct a TS fuzzy 

model with not only good global performance but also good submodel interpretability. In order to achieve a good trade-off 

between global model performance and submodel interpretability, a regularization learning algorithm is presented in which the 

global model objective function is combined with a local model objective function defined in terms of an extended index of 

fuzziness of identified membership functions. Moreover, a parsimonious rule-base is obtained by adopting a QR decomposition 

method to select the important fuzzy rules and reduce the redundant ones. Experimental studies have shown that the TS 

models identified by the suggested method possess good submodel interpretability and satisfactory global model performance 

with parsimonious rule-bases. 

Index Terms— Interpretability, Distinguishability, Knowledge extraction, Local models, Submodels, Takagi-Sugeno fuzzy 

models, Regularization, Fuzziness.  

——————————   �   —————————— 

1 INTRODUCTION

uzzy models have been widely and successfully used 
in many areas such as system modeling and control, 
data analysis, and pattern recognition. Traditionally, 

fuzzy rules are generated from human expert knowledge 
or heuristics, which results in good high-level semantic 
generalization capability. On the other hand, more and 
more researchers have made efforts to build fuzzy models 
from observational data with many successful applica-
tions [1]-[4]. Compared to heuristic fuzzy rules, fuzzy 
rules generated from data are able to extract more specific 
information about unknown complex systems or proc-
esses, however, the wide investigation on data-driven 
models mainly focuses on the issues of high accuracy, 
completeness and efficiency. Recently, more and more 
efforts have been made to approach the problem of inter-
pretability of fuzzy systems [5]-[21], because one of the 
important incentives of introducing fuzzy methods into 
complex system modeling is to improve the model inter-
pretability and thus gain deep insights into the complex 
systems to be modeled. As a matter of fact, comprehensi-

bility preservation during data-driven adaptation and 
knowledge extraction has been regarded as one of the 
most important issues in data-driven fuzzy modeling 
[6][7] [8][9][10][11][12][13]. 

The first aspect of fuzzy model interpretability is the 
transparency of input space partitioning, that is, the gen-
erated fuzzy sets should be distinguishable and interpret-
able. Although there exists no unified standard for select-
ing membership functions (MFs), some researchers have 
proposed semantic criteria or heuristic criteria to guide 
the generation of MFs in the interests of preserving or 
enhancing model interpretability. For instance, several 
semantic criteria for designing MFs (such as distinguisha-
bility of MFs, normalization of MFs, moderate number of 
linguistic terms per variable, and coverage of the universe 
of discourse) have been shown to be very helpful in im-
proving fuzzy model interpretability [15][16][20][21]. Par-
ticularly, some semantic criteria can be formalised for en-
hancing fuzzy model interpretability by combining these 
expressions with global model accuracy measure [16].  

Another interesting criterion states that “good” clusters 
are actually not very fuzzy [22][23][24]. Although some 
fuzzy algorithms are used in data clustering, the aim of 
the clustering is to generate a “harder” partitioning of the 
data sets [24], by which a better interpretation of input 
space partitioning can be achieved. The requirements di-
rectly related to this interpretability in fuzzy modeling are 
that under the condition of preserving the global accuracy 
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at a satisfactory level, the fuzzy sets should have large 
core regions and adjacent fuzzy sets should be less over-
lapped. In order to obtain MFs with large bounded core, 
Hoppner and Klawonn [25] proposed a novel clustering 
algorithm by using the distance to the Voronoi cell of a 
cluster rather than to the cluster prototype, and further-
more they assigned a “reward” to membership degrees 
that are near to 0 and 1. However, traditional data-driven 
algorithms for rule generation, such as neuro-fuzzy algo-
rithms [2][3], usually generate fuzzy sets with “too much” 
overlap due to their accuracy-oriented nature. By using 
fuzzy sets with “too much” overlap, the distinguishability 
of input space partitioning is lost so that it is difficult to 
assign distinct linguistic labels and semantic meanings to 
these fuzzy sets, which leads to poor model interpretabil-
ity [12].  

However, in the first-order Takagi-Sugeno (TS) fuzzy 
model [1], a most widely investigated paradigm in fuzzy 
modeling, the consequents of fuzzy rules are local linear 
models. As a result, there is another type of model inter-
pretation regarding the interaction between global model 
and its local linear models (or linear submodels). The 
purpose of this paper is to provide a new scheme for ex-
tracting TS fuzzy rules from data with good local model 
interpretability by a new type of membership function 
and learning algorithm. In this approach, the TS local lin-
ear models are forced to fit the global model locally and 
separately during the learning process, and at the same 
time, the distinguishability of the input space partition 
can also be improved. 

The remainder of the paper is organized as follows. Sec-
tion 2 addresses the issues arising about local model inte-
pretabilty in TS fuzzy inference systems. In section 3, a 
linguistic modifier is defined as an MF. Section 4 de-
scribes a TS model using linguistic modifiers as MFs, and 
its local model behaviors are analyzed in detail. In section 
5, a hybrid learning scheme is proposed to update both 
the consequent and premise parameters in the TS model 
by regularizing the fuzziness of linguistic modifiers, and 
a pivoted QR decomposition algorithm is used to identify 
the most influential fuzzy rules. Section 6 includes ex-
perimental results to evaluate the performance of the pro-
posed method in terms of global model accuracy and lo-
cal model interpretability. Section 7 concludes the paper 
with discussions. In this paper, the first-order TS model is 
considered, unless otherwise stated. 

2  ISSUES ABOUT INTERPRETABILITY OF LOCAL 

LINEAR MODELS IN TAKAGI-SUGENO FUZZY 

SYSTEMS 

It is known that a challenge for the real-time predictive 
control of nonlinear systems is that a nonlinear (and usu-
ally non-convex) optimization problem must be solved at 
each sampling period by model predictive control, and 
the non-convex optimization usually involves high com-
putational overhead. As a result, the application for fast 
systems is hampered where iterative optimization tech-
niques cannot be properly used due to short sampling 

time intervals. The TS fuzzy model prevails in represent-
ing nonlinear systems in the fuzzy control community in 
that the global TS model interpolates between some local 
linear models in nature, and these control-relevant local 
linear models rather than a single nonlinear plant model 
possess great potential of being effectively used in model 
predictive control.  

The interpretation of fuzzy models including TS fuzzy 
models heavily depends on human’s prior knowledge, 
which is a subjective issue sometimes. However, if there is 
no prior knowledge available, such as in data-driven sys-
tem modelling, a criterion for interpreting TS local linear 
models, as indicated in [9][10][26], is sensible and appli-
cable and should be adopted in fuzzy modelling [27]. This 
criterion is summarised as follow: 

Definition 1: The local models of a TS model are con-
sidered to be interpretable if they fit the global model well 
in their local regions, and result in fuzzy rule consequents 
that are local linearizations of the non1inear system.  

 
 
 
 
 
 
 
 

 

Fig. 1 TS models with (left) non-interpretable local models and (right) 

interpretable local models: solid line represents the global model, dotted 

lines represent the local models 

According to this definition, interpretable local models 
of a TS model should dominate the system behaviors 
separately in their local regions. The submodels shown in 
Fig.1(left) do not match the global model well in the corre-
sponding local areas, so they exhibit poor interpretation 
of interaction with global model, whilst the submodels 
shown in Fig.1(right) are local linearizations of the global 
system in local regions, which shows good interpretable 
interaction with global model. Hence the TS model with 
interpretable submodels like the ones depicted in 
Fig.1(right) is preferred in fuzzy system modeling. Inter-
estingly, the local error function defined as follows can be 
used to evaluate the degree of TS local model dominating 
the behaviors of the global system, and thus work as a 
measure of the interaction between TS local models and 
global model [9]: 

[ ]
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where given the kth sample, ( )
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w k  is the normalized 

firing strength of the ith rule, ( )
i

y k  is the output of  the 

ith submodel, and d(k) is the desired global system out-

put.  Because  ( )
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the TS local models fit the global model better in the cor-

responding local regions, which indicates that better local 

model interpretation can be obtained in the sense of Defi-

nition 1.  

Zhou and Gan recently proposed a unified view of 

data-driven interpretable fuzzy models in terms of low-

level interpretability and high-level interpretability, while the 

TS local model interpretability in the sense of Definition 1 

works as a criterion for transparency of rule structure in 

constructing TS fuzzy model with high-level interpret-

ability [10]. In [28], Gan and Harris analyzed the relation-

ship between fuzzy local linearization and local basis 

function expansion and the role of the local models in 

global model approximation. It is a rather challenging 

task to build a locally interpretable TS fuzzy model with 

good global approximation performance. This is because 

in the TS fuzzy system modeling, local linear model in-

terpretability and global model ability are two conflicting 

modeling objectives. As a result, interpretability im-

provement of local linear models in the sense of Defini-

tion 1 usually degrades global model approximation abil-

ity. One possibility of attacking this problem, proposed in 

[26], is to constrain the candidate model parameters of the 

rules in the TS fuzzy model based on prior knowledge 

about the modeled process such as stability, minimal or 

maximal gain, or the setting time. For instance, instead of 

the identification from the measured input-output data, a 

TS model with good local model interpretability in the 

sense of Definition 1 was generated directly from a poly-

nomial Hammerstein system that is assumed to be known 

[26]. However, in most data-driven system modeling 

tasks, no prior knowledge about the modeled process is 

available.  

Interestingly and promisingly, in order to improve the 
TS local model interpretability, a scheme that combines 
global learning and local learning (ComGLL) was proposed 

to train a TS fuzzy model from data [9], in which in addi-
tion to the commonly used global error objective, local 
error objectives measuring the deviations of the outputs 
of individual local models from the desired outputs are 
integrated into a learning index as well. In [27], the 
ComGLL scheme was treated as a multi-objective identifi-
cation problem and the Pareto-optimal solutions were 
used to identify the model parameters. The advantage of 
the ComGLL scheme lies in that as an interpretability-
oriented modeling approach, it improves the interpreta-
tion of TS local linear models in the sense of Definition 1, 
that is, these TS local linear models tends to match the global 

model in local regions. However, one drawback of this 
scheme is that it does not simultaneously consider im-
proving the transparency of input space partitioning, 
such as the distinguishability of the generated fuzzy sets, 
as a result, by experiments it was found that some local 
models still exhibit some eccentric behaviors. 

Another potential strategy of improving TS local model 
interactions with global model is via the scheme of merg-
ing similar fuzzy sets in input space partitions. One popu-
lar scheme of merging similar fuzzy sets for improving 

fuzzy model interpretability is performed in terms of the 
similarity measure of fuzzy sets [12][31][32]. In order to 
overcome the computational inefficiency of the similarity 
measure, some researchers recently proposed the possibil-
ity measure of fuzzy sets for producing distinguishable 
fuzzy sets [33][34]. The difference between the merging 
scheme (including similarity based merging scheme and 
possibility based merging (PBM) scheme) and the 
ComGLL lies in that the merging scheme can be used to 
improve the interpretability of both Mamdani fuzzy 
model and TS fuzzy model, whilst the ComGLL scheme 
specially aims at improving TS local linear model inter-
pretability. The main advantage of the merging scheme in 
terms of the similarity or possibility of fuzzy sets lies in 
its ability to improve the distinguishability of input space 
partitions. However, for TS models, distinguishable fuzzy 
sets are helpful in lessening the eccentric behaviours of 
local linear models in an indirect way, but the interactions 
of these TS local linear models with global model can not 
be much improved in some cases where the used model-
ing method does not aim at making the TS local models 
match the global model in their corresponding regions.  It 
should be noted that there are other senses of TS fuzzy 
model interpretability [29][30]. But the methods devel-
oped in [29][30] for improving TS fuzzy model interpret-
ability did not consider the TS local model interpretation 
in the sense of Definition 1.  

The aim of this paper is to improve the interpretability 
of TS local models with regard to the interactions between 
global model and local models as addressed in Definition 
1. Specifically speaking, in order to generate distinguish-
able fuzzy sets and obtain good local model interpretabil-
ity for a TS model, a linguistic modifier is proposed to 
characterize MFs whose centers and shapes can be up-
dated automatically. The linguistic modifier has the abil-
ity to enlarge ε -insensitive core of a fuzzy set and at the 
same time lessen the overlap of adjacent MFs. As MFs 
become less overlapped and possess larger ε -insensitive 
core regions, a desirable situation for local model inter-
pretation would emerge: there is only one rule that domi-
nates in a local region and the consequents of fuzzy rules 
(local models) are forced to represent the global model 
behaviors in the corresponding local areas. Thus, the ec-
centric behaviors of local models would be remedied 
greatly. However, local model interpretability improve-
ment could have a side effect on global model accuracy. In 
order to control the degree of linguistic modification, as 
an extension of the fuzziness measure proposed in [35], 
this paper proposes an index of fuzziness to evaluate the 
performance of linguistic modification of MFs with ad-
justable crossover points. This index of fuzziness is then 
regularized with the global model accuracy in a hybrid 
objective function, and a tradeoff between global ap-
proximation ability and local model interpretation can be 
achieved by minimizing this hybrid objective function. To 
further conduct rule base reduction, a pivoted QR de-
composition algorithm [36][37] is used to identify the 
most influential fuzzy rules and remove the redundant 
ones, which leads to a more parsimonious TS fuzzy 
model. 
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3 LINGUISTIC MODIFIERS AS FUZZY MEMBERSHIP 

FUNCTIONS 

The core of a fuzzy set is a set of points whose member-
ship degrees are one. However, the sizes of the cores of 
fuzzy sets usually remain unchanged during adaptiation 
of membersip functions. In the following, we define an 
ε -insensitive core of a fuzzy set, which changes along 
with the process of parameter learning.  

The ε -insensitive core of a fuzzy set A is defined as  

{ }εε −≥≥= 1)(1|)( xAxAVCore           (2) 

where ε  is a small positive real number and )(xA  is the 
MF of A.   

In order to remedy the eccentric behaviors of local 

models in a TS fuzzy model, a special MF called linguistic 

modifier is introduced to simultaneously adjust the over-

lapping degree of adjacent MFs and the ε -insensitive 

core of a fuzzy set. Given an initial fuzzy set 
0 ( )A x , the 

modifier produces a new fuzzy set A  in a relaxation way 

as follows: 
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        (3) 

where 1p≥  is the linguistic modifier parameter to con-

trol the fuzziness, 1C  and 2C  are called left and right 

crossover points of A  respectively and their membership 

degrees are evaluated by the following equations: 

1

0

1( )C A Cµ =  and 
2

0

2( )C A Cµ =       (4) 

and β
 
is the core center of A   and defined by 

( )0 0

1 2

1

2
β β β= +                   (5) 

where 
0 0

1 2,β β  are the lower and upper bounds of the 

core of the set 
0

normA  respectively, and 
0

normA  is the 

norm set of 
0

A  defined as  

0 0 0( ) ( ) / sup( ( ))
x

normA x A x A x=               (6) 

The examples of linguistic modifiers are illustrated in 
Fig. 2. It can be proved that for linguistic modifier (3), as 
p  increases, the membership degrees of the points be-

longing to 1( , )C−∞  or 2( , )C +∞  will decrease, 

while the membership degrees of the points falling into 

1( , )C β  or 2( , )Cβ  will increase and approach to 1. 

Therefore, this relaxation linguistic modifier can adjust 

the MF’s shape by enlarging the ε -insensitive core of the 
fuzzy set and at the same time reducing the overlap of 
adjacent MFs, which is a useful property in improving TS 
fuzzy model interpretability. In this paper, the linguistic 
modifier will be optimally adjusted by regularizing its 
fuzziness with global model accuracy. 
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Fig. 2 Linguistic modifiers 

It is noteworthy that trapezoidal MFs have the potential 
of improving local model interpretability by enlarging 
core regions and narrowing the overlap of adjacent MFs, 
but by experiments it is found that by using trapezoidal 
MFs in a TS system, its local models would be easily over-
fitted. Although linguistic modifiers with large p values 
seem to approach to a kind of trapezoidal MFs, parameter 
p  provides a flexible way for updating the overlapping 

of adjacent MFs and the ε -insensitive core regions 
through a relaxation process. In the extreme case 
of p→∞ , the fuzzy sets characterized by linguistic 

modifiers become classic interval sets. Thus, during the 
interpretation improvement, local models could be re-
strained from being over-fitted by applying a fuzziness 
regularization scheme in the learning process. 

4.   BEHAVIORAL ANALYSIS OF SUBMODELS IN 

TAKAGI-SUGENO FUZZY SYSTEM USING 

LINGUISTIC MODIFIERS AS MEMBERSHIP 

FUNCTIONS 

4.1 Takagi-Sugeno Model Using Linguistic 
Modifiers as Membership Fuctions 

In this paper, the TS model based on the following rules 

will be addressed: 

iRule : if 1x  is  
1 ,1iA  and … and nx  is ,ni nA , then 

niniii xaxaay +++= ⋯110                     (7) 

where jx  are input variables, iy  is the output of the ith 

local model, ,ji j
A  are fuzzy sets on domain jx , ija  are 

the consequent parameters that are to be identified based 

on given data, and iRule  is the ith rule of the TS model. 

If the number of fuzzy sets on domain jx  is jL , then 

111 Li ≤≤ , …, nn Li ≤≤1 , and ∏
=

=≤≤
n

j

jLLi
1

1 . 

The global output of the TS model is calculated by  
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where wi is the normalized firing strength of  rule iRule : 

1

/
L

i i l

l
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= ∑ , and iτ  is called the firing strength of rule 

iRule , which is defined by  

,

1

( )
j
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i i j j

j

A xτ
=

= ∏                    (9) 

It can be seen that in this TS model, given the fuzzy sets 

about every variable on its domain of discourse, the rule 

base includes all the possible combinations of these fuzzy 

sets to cover the whole input space. To represent the rules 

clearly, we sort the rules as follows: related to a combina-

tion of fuzzy sets 
1 ,1iA , …, ,ni nA , the rule is indexed as the 

ith rule, where 
n

n

j

n

jq

qj iLii +⋅−=∑ ∏
−

= +=

1

1 1

])1[( . 

In this paper, the MFs of fuzzy sets 
ji j

A ,  are chosen to 

be the linguistic modifiers defined by (3), i.e.,  
(1) (2)

, , , , , ,
( ) ( ; , , , )

j j j j j ji j j i j j i j i j i j i j
A x A x C C pβ=           (10) 

In the following subsection, we will analyze the local 
model behaviors and discuss why linguistic modifiers 
have the potential of improving local model interpretabil-
ity. 
 
4.2 Local Model Behaviors and Model 

Interpretability 

The behaviors of local models can be characterized by the 
consequent parameters, while the behaviors of global 
model can be described by the derivative of the model 
output with respect to (w.r.t.) model input. This subsec-
tion will analyze the relationship between local behaviors 
and global behaviors. The derivative of the TS model 
output w.r.t. model input is as follows:  

∑ ∑
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where 
T

iniii aaaa ),,,( 10 ⋯=  and 
1

(1, , , )T

n
x x x= ⋯ . 

It can be seen from (11) that the global model behaviors 

depend on both local model behaviors characterized by 

vectors ia  and the variation of firing strength. Hence, it is 

possible to achieve good local model interpretability, i.e., 

the match of local model behaviors with global model 

behaviors in specific local regions, by controlling the 

variation of firing strength. The factors directly affecting 

iw  and /
i

w x∂ ∂
 

are the size of core regions and the size 

of overlapping regions of adjacent fuzzy sets. The follow-

ing theorem about partition of unity is useful to the 

analysis of the influence of local model behaviors on the 

global model behaviors. 

Theorem 1: In the input space partitioning by 
ji j

A ,  
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A
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where ∏
=

=
n

j

jLL
1

, 
'' ' 1j ji i= + . 

Proof. Please see the Supplemental Material.            � 

In this paper, the MFs of fuzzy sets ji j
A ,  are obtained 

in terms of (3) with 
(1) (2)

, , , ,, , ,
j j j ji j i j i j i jC C pβ , in which  
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β  are updated by a training process. 

Let us move on to the analysis of local model behaviors. 

First consider iw  and the first term on the right side of 

(11). By using the linguistic modifiers, for any input 
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ji j

p
,0  increases, i.e., 

1lim
0

,
0

),,1(

=

=

∞→
i

nj

p
j

j
i

τ

⋯

         (13) 

where 0
1

1 1

0

0 ])1[( n

n

j

n

jq

qj iLii +⋅−=∑ ∏
−

= +=

. Because 

( ) 1)()(lim
,,,

10

,1,0

=+
∞→∞→

jjijjipp
xAxA

jj
j

j
ij

j
i

)( 01

jj ii ≠  ,1( =j  
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),n⋯ , in terms of Theorem 1, we have  

1)(lim
1

),,1(

,

=







∑

=

=

∞→
x

L

i

i

nj

p
j

j
i

τ

⋯

                     (14) 

and  

1lim
0

,0

),,1(

=

=

∞→
i

nj

p
w

j
j

i

⋯

 , 
0

),,1(

,0lim
,

iiwi

nj

p
j

j
i

≠=

=

∞→

⋯

                 (15)                      

From (11), it is clear that when parameters ji j
p ,  increase 

to some extent, there is only one local model, character-

ized by 
oi

a , dominating the first term on the right side of 

(11).  

Now consider /
i

w x∂ ∂  and the second term on the 

right side of (11). /
i

w x∂ ∂  can be derived as follows: 

2

1 1 1

/ /
L L L

i l
i j l i l

l l lj j

w x
x x

τ τ
τ τ τ

= = =

 ∂ ∂  
∂ ∂ = −    ∂ ∂   

∑ ∑ ∑      (16) 

, ,/ ( ) ( ) /
q ji j i q q i j j j

q j

x A x A x xτ
≠

∂ ∂ = ∂ ∂∏          (17) 

2

1

/ /
L

i j ij l

l

w x τ
=

 
∂ ∂ = Ω  

 
∑                             (18) 

where  

1

1

, ,

1

, ,

1 1

( ) ( ) /

( ) ( ) /

q j

n

q j

n

L

ij i q q i j j j l

lq j

LL

i i q q i j j j

i i q j

A x A x x

A x A x x

τ

τ

=≠

= = ≠

  
Ω = ∂ ∂ −  

  

 
∂ ∂ 

 

∑∏

∑ ∑ ∏⋯

            (19) 

 

and 
, ( ) /

ji j j j
A x x∂ ∂  will take different values in different 

regions. For 
)1(

, jij j
Cx < , 

,

(1)
,

1
0

, 0

, , ,

( )
( ) / ( ) /

i jj

j

j j j

i jj

p

i j j

i j j j i j i j j j

C

A x
A x x p A x x

µ

−
   ∂ ∂ = ∂ ∂    

    

(20) 

For 
jijji jj

xC ,

)1(

, β<≤ , 

,

(1)
,

1
0 0

, ,

, ,

1 ( ) ( )
( ) /

1

i jj

j j

j j

i jj

p

i j j i j j

i j j j i j

jC

A x A x
A x x p

xµ

−
 − ∂
 ∂ ∂ =
 − ∂
 

    

(21) 

For 
)2(

,, jijji jj
Cx <<β , 

,

( 2)

,

1
0 0

, ,

, ,

1 ( ) ( )
( ) /

1

i jj

j j

j j

i jj

p

i j j i j j

i j j j i j

jC

A x A x
A x x p

xµ

−
 − ∂
 ∂ ∂ =
 − ∂
 

      

(22) 

For jji xC
j

≤)2(

, , 

,

( 2 )

,

1
0 0

, ,

, ,

( ) ( )
( ) /

i jj

j j

j j

i jj

p

i j j i j j

i j j j i j

jC

A x A x
A x x p

xµ

−
  ∂ ∂ ∂ =   ∂  

      

(23) 

For jij j
x ,β= ,   

, ( ) / 0
ji j j j

A x x∂ ∂ =           (24) 

Because ,

,

1

,lim 0
i jj

j
i jj

p

i j
p

p α
−

→∞
=  if 1<α , and the absolute 

values of all the terms in the brackets of (21)-(24) are less 

than 1, so 
,

,lim ( ) / 0
j

i jj

i j j j
p

A x x
→∞

∂ ∂ =  holds. Then, 

,

lim / 0
i jj

i j
p

w x
→∞

∂ ∂ =  is true. In other words, as parameters 

ji j
p ,  increase to some extent, the influence of the second 

term on the right side of (11) will become weak, and the 

global model behaviors will tend to be dominated by a 

single local model characterized by 
oi

a . This is a good 

local model interpretation expected in the subsequent 

model applications such as state estimation and control. 

However, it should be noted that when the MFs become 
less overlapped and have large core regions, the global 
approximation ability of the TS model would be de-
graded. In the next section a learning scheme is proposed 
to balance the model accuracy and interpretability based 
on a combined performance measure, so that the linguis-
tic modifier parameters can be optimally adjusted.   

5 A LEARNING ALGORITHM BASED ON FUZZINESS 

REGULARIZATION 

5.1 Fuzziness Measure of a Fuzzy Set 

The proposed fuzziness measure is based on the distance 

between a fuzzy set A and an ordinary (crisp) set A  that 

is near to A and defined as follows: 



 ≤≤

=
otherwise

CxCif
xA

   0

1
)(

)2()1(

                     (25) 

where 
)1(

C  and 
)2(

C  are the left and right crossover 

points of fuzzy set A, respectively. Given a data set 

{ }N

k
kx 1)( =  on domain x, the index of fuzziness of A is de-

fined based on the distance between A and A
 
as follows: 

1/

2
( ) ( ) ( )

r r
F A A x A x

N
= −                           (26) 

where N is the size of the data set and r is the order of the 

distance. It can be easily proved that )()( *AFAF ≥ , 

where 
*A  is a sharper version of A in the sense that   
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otherwisexAxA

CxCifxAxA

),()(

 ),()(
*

)2()1(*

≤

≤≤≥
                (27) 

Obviously, in case 
(1) (2)( ) ( ) 0.5A C A C= = , )(AF  be-

comes the classic fuzziness measure proposed in [35] and 

(27) is reduced to one of the properties proposed by De 

Luca and Termini for fuzziness measures of fuzzy sets 

[40]. In particular, when r=2 (Euclidean distance is used), 

(26) defines a quadratic index of fuzziness: 

( )∑
=

−=
N

k

q kxAkxA
N

AF
1

2
))(())((

2
)(               (28) 

which will be used in the proposed learning algorithm in 

this paper. 

 

5.2 Fuzziness Index Regularization and the 
Learning Algorithm 

For a given data set { }N

k
kdkx 1))(),(( = , a hybrid learning 

scheme is employed to update both the consequent pa-

rameters ija
 
and the premise parameters ji j ,β  and ji j

p , . 

In the first pass, the premise parameters ji j ,β  and ji j
p ,  

are fixed, and the consequent parameters ija
 
are identi-

fied by least square estimation in terms of the global 

model accuracy measure. In the second pass, the newly 

obtained consequent parameters ija
 
are fixed, and the 

premise parameters ji j ,β  and ji j
p ,  are updated by a 

gradient descent algorithm in terms of the following 

combined performance measure:   

FG JJJ λ+=                   (29) 

where 0 λ≤  is the regularization coefficient, GJ  is the 

global accuracy measure defined as 

∑
=

−=
N

k

G kykdJ
1

2
)()(

2

1
         (30) 

and FJ  is the index of fuzziness of the TS fuzzy model, 

defined by 

∑ ∑∑
= = =

=
1

1 1 1 1

, )(
L

i

L

i

n

j

jiF

n

n

j
AFJ ⋯             (31) 

where )( , ji j
AF  is the quadratic index of fuzziness defined 

by (28). It can be seen that the updating of the parameters 

depends not only on the global model accuracy, but also 

on how much the degree of fuzziness of the linguistic 

modifiers is.  

1) To update consequent parameters:  In order to identify 
the consequent parameters in the TS model, we reformu-
late some expressions first. A base matrix M is defined as 
follows: 

)1(1

1

)()(

)1()1(

+×
















=

nLN

T

L

T

T

L

T

NMNM

MM

M

⋯

⋯

       (32) 

where )( 1 niii

T

i xwxwwM ⋯= . Let the kth row vector 

of matrix M be ))()(()( 1 kMkMkM
T

L

TT
⋯= , then 

[ ])()1( NMMM
T

⋯= . Let 
TT

L

TT aaaa )( 21 ⋯=  denote 

the consequent parameters, where 
T

iniii aaaa )( 10 ⋯= . Also let ( )T
Nddd )()1( ⋯=  be 

the desired output vector. Because the consequent pa-

rameters in a do not make any contribution to the index 

of fuzziness of the TS model, they can be identified prac-

tically based on the global approximation accuracy meas-

ure GJ . In terms of (8) we have 

daM =⋅                   (33) 

where the dimensions of M, a and d are 

)1( +⋅× nLN , 1)1( ×+⋅ nL  and 1×N  respectively. 

Since the number of training pattern pairs is usually 

greater than )1( +⋅ nL , (33) defines a typical ill-posed 

problem and generally there does not exist an exact solu-

tion for vector a if there is no regularization information 

about a added to the global approximation accuracy GJ . 

Therefore, we usually seek a least square estimate of a to 

minimize GJ . The optimal estimate a*
 can be obtained by  

dMa
+=*

                  (34) 

where 
+

M  is the Moore-Penrose inverse of matrix M. 

When M is of column full rank, the Moore-Penrose in-

verse of matrix M can be expressed as 
TT MMMM 1)( −+ = .  In case of singularity of T

M M , 

1( )T TM M M I M+ −= +  with identity matrix I.  

2) To update premise parameters: The premise parameters 

}{ , ji j
β  and }{ , ji j

p  are updated in terms of the com-

bined objective function defined in (29), which aims at 

achieving a good trade-off between global approximation 

ability and local model interpretability. The equations for 

updating the premise parameters are developed as fol-

lows: 

ji

jijiji

j

jjj

J
tt

,

,,, )()1(
ν

ρνν
∂

∂
−=+                 (35) 

where t is the iteration step, ji j ,ρ  is the learning rate, 

ji j ,ν  = ji j ,β  or ji j
p ,  representing the premise parame-

ters
1
. In order to keep 1, >ji j

p during adaptation, the 

following transformation is used to indirectly update 
 

1
 Please see the Support Material for the computing results of these par-

tial derivatives. 
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ji j
p ,  by adjusting ji j

u , : 

)1log( ,, −= jiji jj
pu                       (36) 

ji

ji

ji j

j

j
p

p
u ,

,

,

)1(
∂

∂
−=

∂

∂
            (37) 

To speed up the learning process, the following adaptive learn-

ing rates are adopted in our experiments:   

( ) ( )
2 2

, , ,
/ / /

j j ji j G i j F i j
J Jρ κ ν ν= ∂ ∂ + ∂ ∂          (38) 

where ji j ,ν = ji j ,β  or ji j
u , , and ( 0)κ >  is the step size 

indicating the length of each gradient transition in the 

parameter space.   

5.3 Rule Selection with Pivoted QR Decomposition 
of Firing Strength Matrix 

In fuzzy modeling, it is very important to partition the 
input space optimally in terms of given criteria. In order 
to attack the curse of dimensionality in fuzzy modeling, 
fuzzy rule selection is usually performed [3][8][12][41]. 
The approach to fuzzy rule selection used in this paper 
involves the estimation of singular values of the firing 
strength matrix W. Each column of matrix W corresponds 
to one fuzzy rule. The important fuzzy rules correspond 
to the columns of the matrix that are linearly independent 
of each other [8]. One method to pick up the most influen-
tial fuzzy rules is to apply the SVD-QR with column piv-
oting algorithm to W [36]. As indicated in [8], redundant 
fuzzy partitions (corresponding to the linear dependent 
or zero-valued columns) are associated with near zero 
singular values of W. The smaller are the singular values, 
the less influential are the associated fuzzy rules. How-
ever, the rule ranking result by the SVD-QR with column 
pivoting algorithm is heavily dependent on the estima-
tion of an effective rank [36]. The problem is that there is 
usually no clear gap between small singular values and 
other “large” singular values, and different ranks often 
produce dramatically different rule ranking results. A 
method to avoid the estimation of the effective rank is to 
apply the pivoted QR decomposition [37] directly to ma-
trix W. The pivoted QR decomposition algorithm for 
ranking fuzzy rules is summarized as follows:  

1) Calculate the QR decomposition of W and get the per-

mutation matrix Π  via QRW =Π , where Q is an uni-

tary matrix, R is an upper triangular matrix. The absolute 

values of the diagonal elements of R, denoted as || iiR , 

decrease as i increases and are named as R-values;  

2) Rank fuzzy rules in terms of the R-values and the per-

mutation matrix Π  in which each column has one ele-

ment taking value 1 and all the other elements taking 

value 0. Each column of Π  corresponds to a fuzzy rule. 

The numbering of the rule that corresponds to the jth col-

umn is the same as the numbering of the row where the 

“1” element of the jth column is located. The rule corre-

sponding to the first column is the most important, and in 

descending order the rule corresponding to the last col-

umn is the least important. 

It is indicated that the R-values tend to track the singu-
lar values of W, hence they can be used to identify the 
influential rules. In this paper we use the R-values of ma-
trix W to perform the rule ranking for TS fuzzy model by 
applying the pivoted QR decomposition algorithm. 

5.4 Learning Scheme Implementation 

To summarize, the proposed learning scheme for improv-
ing TS local model interpretability is described as follows: 
Step 1. Initialize the TS model. 

1.1) Initialize the input space partitioning, for example 

via unsupervised clustering on input-output data 

set. 

1.2) Construct the linguistic modifiers in terms of the 

initially generated fuzzy sets, and set the initial 

modifier parameters ji j
p ,  ( , 1

ji j
p > ).  

1.3) Set a threshold 0J  for stopping learning process 

and a threshold 0fs  for stopping rule selection. 

1.4) Choose a value of regularization coefficient λ . 

1.5) Choose a value of learning step ( 0)κ > . 

Step 2. Identify the consequent parameters using least 

square estimation while keeping the premise pa-

rameters fixed. 

Step 3. Update the premise parameters jiji jj
p ,, ,β  using 

equation (35), while the consequent parameters ob-

tained in step 2 remain unchanged here. 

Step 4. Calculate the combined performance measure (29), 

and go to step 2 until 0JJ ≤ . 

Step 5. Select the most important rules by applying the 

pivoted QR decomposition algorithm to the gener-

ated rule base. 

6 EXPERIMENTAL RESULTS 

In this section we extensively evaluate the performance of 
the proposed learning scheme for constructing interpret-
able TS fuzzy models with satisfactory global model accu-
racy, in which statistical tests are conducted. Two existing 
interpretability-oriented fuzzy modeling methods, the 
PBM method [33][34] and the ComGLL scheme[9], are 
compared with the proposed approach. The first example 
is to recover the original signal from data highly contami-
nated by noise. For the sake of visualizing the interactions 
of TS local linear models with global model in a 2D plot, 
in the first example a TS fuzzy model with only one input 
variable and one output variable is considered due to the 
fact that it is impossible to visualize TS local linear mod-
els clearly in a 3D or higher dimensional plot. The statisti-
cal test method, t-test, is used to evaluate the performance 
of the proposed scheme in comparison with the two exist-
ing related methods. The second example involves a real-
world problem, in which a TS fuzzy model with four in-
put variables and one output variable is considered to 
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predict the steam heat exchange. In the second example, 
the generalization performances of the constructed TS 
fuzzy models will be evaluated by generating distin-
guishable input space partitions. The third example is to 
construct an interpretable TS model to identify the volt-
age time series produced by a nonlinear circuit. Global 

model accuracy is measured by root-mean-square error 

(RMSE): 

( )
2

1

1
( ) ( ( ))

N

k

RMSE d k y x k
N =

= −∑          (39) 

where d is the desired output and y the real output of the con-

structed global model, whilst the extent of local models ap-

proaching to the global model locally is measured by the 

TS local model performance function (1)  in the following 

form 

( )
( )

2

1 ( )

( ) ( ) ( )
i

L

i i

i x k N

RMSLIV w k y k y k
= ∈

= −∑ ∑            (40) 

where ( )y k  is the global model output (8), N
(i)

 is the 

neighborhood of the core center of the multidimensional 

MF, i.e.,
i

τ  defined by (9).  Eq. (40) is called TS root-mean-

square local model index value (RMSLIV).  According to 

(1) , a smaller RMSLIV value implies that the TS local 

models fit the global model better in the corresponding 

local regions, which indicates that better local model in-

terpretability in the sense of Definition 1 can be pre-

served. 

 

6.1 Noisy Signal Recovery  

In the first example, the noisy signal is generated by  





+

≤+
=

otherwisenz

xnz
z

2

1

~

13~
               (41) 

2/3 )2sin())5/2cos(1(10~ xexxz −−= ππ                  (42) 

where z~ is the original signal,  1n  is a random Gaussian 

noise with zero mean and variance 2.02

1 =σ , and 2n  is 

another random Gaussian noise with zero mean and vari-

ance 6.02

2 =σ . The measured signal z is the sum of the 

original signal z~  and the interference noise 1n  and 2n . 

However, we do not know the original signal z~ . The 

only signal available to us is the measured signal z. The 

task is to recover the original signal z~ from the measured 

signal z by constructing an interpretable TS fuzzy model. 

Although the modelled system in this example seems 

simple with one input and one output, it is known in the 

signal processing community that it is rather challenging 

to recover original signal from data highly contaminated 

by noise withoug prior knowledge.   
In order to extensively evaluate the performance of the pro-

posed TS modeling method, 10 TS fuzzy models are con-

structed on 10 different datasets generated by running the data 

generation process (41) and (42) 10 times, each with 400 sam-

ples ( ){ }( ) ( )

1
( ), ( )

N
s s

k
x k d k

=
 (N=400, 1, ,10s= ⋯ ), where 

( ) ( ) [11.5, 15.5]sx k ∈  and ( ) ( )sd k  are obtained by (43). 

Furthermore, the proposed method is compared with the in-

terpretability-oriented fuzzy modeling methods: the PBM 

method [33][34] and the ComGLL scheme [9]. The PBM 

method can be used to improve both Mamdani fuzzy model 

interpretability and TS fuzzy model interpretability whilst 

the ComGLL scheme specially aims at improving TS local 

model interpretability. The performance of the proposed 

scheme is then evaluated via t-test on the 10 TS models in 

terms of global model error-RMSE and local model inter-

action value RMSLIV respectively. 

First, the input space should be initialised by an unsu-

pervised clustering algorithm. In our experiments, the 

normalized kernel based FCM (NKFCM) clustering algo-

rithm [42] is used. For each run, given the input-output 

data samples ( ){ }( ) ( )

1
( ), ( )

N
s s

k
x k d k

=
, the NKFCM algo-

rithm generates fuzzy clusters according to a partition 

entropy measure [38]. These cluster centers on x domain 

are used as the core centers of initial fuzzy sets. The width 

of the linguistic modifiers, which determines the cross-

over points, is estimated by a nearest neighbor heuristic 

suggested by Moody and Daken [43].  In updating MFs 

and the local models, the learning steps are set as 

0.1κ =  for ji j ,β  and 1κ =  for ji j
u ,  in (40), and initial 

values of ji j
p ,  are all set as 1.1.   

Ten TS fuzzy models were constructed by the proposed 

method on the 10 datasets. As a comparison, the ComGLL 

scheme is also used to construct 10 TS fuzzy models based 

on the same 10 datasets. This scheme combines global 

learning and local learning by a global influence factor α  

and a local influence factor β  with 1=+ βα . Using a 

smaller β  the global model accuracy can be improved by 

the ComGLL scheme, but the local model interpretability 

will get worse, while a larger β  leads to local models 

with better interpretability in the sense of Definition 1, 

but degrades global model accuracy. Different parameter 

values including β = 0.1 and 0.6 are separately used to 

evaluate the performance of the ComGLL scheme. Fur-

thermore, the PBM method [33], another interpretability-

oriented modeling scheme, is also used to improve the 

interpretability of the fuzzy models constructed by the 

initial fuzzy rules on the 10 same datasets.  

Table 1 shows the experimental results by averaging the 

performances of the 10 TS models constructed by the 

proposed method, the ComGLL ( 0.6β = ), ComGLL 

( 0.1β = ), and the PBM method respectively, in terms of 

global model (GM) accuracy index RMSE and local model 

(LM) interaction index RMSLIV. These averaging results 

indicate the good performance of the proposed method in 

producing interpretable TS fuzzy models whilst keeping 
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global model accuracy at a satisfactory level. In order to 

check whether the average differences in the perform-

ances of different modeling schemes are significant, a t-

test between the proposed method and other known 

methods is conducted in the following. 

TABLE 1. Average performances of the proposed method and the 

known ones in the first example 

Algorithms GM Average RMSE LM  Average RMSLIV 

The proposed 

( 0.6λ = ) 

0.6678 0.1376 

ComGLL ( 0.6β = ) 1.2089 0.3744 

ComGLL ( 0.1β= ) 0.8458 0.5415 

PBM 0.6283 3.1438 

The first step of t-test is to specify a null hypothesis and 

an alternative hypothesis. In our experiments of testing 

differences between the average performances of the pro-

posed method and other methods, the null hypothesis 

“the difference between means is zero” is used, i.e., 

0

1

: 0

: 0

new other

new other

H

H

µ µ

µ µ

− =

− ≠
                         (43) 

where 
new
µ , 

other
µ are the means of the results achieved 

by the proposed method and other method respectively, 

H
1 
is a specified alternative hypothesis. The second step is 

to choose a significance level for the t-test. Usually, the 

significance level is chosen as 0α =0.05. Given the sam-

ples, the t-value is calculated and a p-value can be deter-

mined according to the Student’s t-distribution. If the p-

value is less than 0α , then the null hypothesis H
0
 is re-

jected, and the alternate hypothesis H
1
 is accepted. Small 

p-value casts doubt on the validity of the null hypothesis. 

However, if the p-value was greater than the 0α  level, the 

hypothesis H
0
 would be retained.  

TABLE 2. T-test of the global model performances of the proposed 

method and the known ones in the first example ( 0α =0.05) 

Algorithms t-value p-value Decision  

The proposed vs 

ComGLL ( 0.6β = ) 

-19.5628 1.4103e-013 H
0
 rejected 

The proposed vs 

ComGLL ( 0.1β = ) 

-5.3545 5.2557e-005 H
0  
rejected 

The proposed vs PBM 2.9805 0.0080 H
0 
rejected 

Table 2 illustrates the t-test results about the TS global 

model performances achieved by applying the proposed 

method and the known ones to the 10 datasets.  For ex-

ample, in the t-test of difference between the proposed 

method and  ComGLL( 0.6β = ), the probability value 

(1.4103e-013) is less than the significance level (0.05), 

which implies that the difference between the two means 

is significant, so the null hypothesis H
0
 is rejected. It is 

concluded that the average RSME (1.2089) by the 
ComGLL( 0.6β = ) is really higher than the one (0.6678) by 

the proposed method. Similar conclusions about the 

global model performances of the proposed method vs. 

other methods can also be drawn according to the t-test 

results in Table 2.  
 

TABLE 3. T-test of the local model performances of the proposed 

method and the known ones in the first example ( 0α =0.05) 

Algorithms t-value p-value Decision 

The proposed vs 

ComGLL ( 0.6β = ) 

-25.2731 1.6393e-015 H
0
 rejected 

The proposed vs 

ComGLL ( 0.1β = ) 

-33.7096 1.0181e-017 H
0
 rejected 

The proposed vs PBM -4.9254 1.0914e-004 H
0
 rejected 

Furthermore, t-test is carried out to evaluate the differ-

ences of local model performances in terms of the 

RMSLIV values achieved by the proposed method and 

other known methods, Table 3 gives the corresponding 

experimental results. For example, in the t-test of differ-

ence between the proposed method and the PBM scheme, 

the probability value (1.0914e-004) is less than the signifi-

cance level (0.05), which implies that the difference be-

tween the two RMSLIV means is significant, so the null 

hypothesis 0H  is rejected. Thus, it is concluded that the 

average RMSLIV (3.1438) achieved by the PBM scheme is 

really higher than the one (0.1376) by the proposed 

method. Similar conclusions about the local model per-

formances of the proposed method vs. other methods can 

also be reached according to the t-test results in the Table 

3. To summarize, the proposed method outperforms the 

ComGLL and PBM schemes in producing interpretable TS 

local models in terms of Definition 1. Particularly, both 

global model accuracy and local model interpretability 

obtained by the ComGLL scheme are worse than the pro-

posed method. One possible reason is that the ComGLL 

learning scheme, specially aiming at improving TS local 

model interpretability, does not optimally adjust MFs to 

make the local models dominate the local behaviors of the 

system. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 TS model with local models (top) and corresponding MFs 

(bottom) obtained by the proposed method: (top)-dotted lines repre-

sent the global models (recovered signal), dashed lines represent the 

local models 
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Promisingly, the distinguishability of the input space 
partition generated by the proposed method is improved 
simultaneously due to the use of linguistic modifiers. Fig. 
3 shows one TS model with local models and the corre-
sponding MFs produced by the proposed method. As a 
comparison, Fig. 4 illustrates the TS model with local 
models and the corresponding MFs generated by the 
PBM method applying to the same dataset as the one 
used in Fig. 3, which indicates that the input space parti-
tions obtained by the proposed method possess better 
distinguishability than the ones achieved by the PBM 
method, and the TS submodes achieved by the proposed 
method exhibit better interpretabtion of the interactions 
with the global model than the ones obtained by the the 
PBM method. Because the ComGLL does not consider the 
improvement of the distinguishability of input space par-
titions, the input space partition is not illustrated here.    

 

 

 

 

 

 

 

 

Fig. 4  TS model with local models (top) and corresponding MFs 

(bottom) obtained by the PBM method: (top)-dotted lines represent 

the global models (recovered signal), and dashed lines represent the 

local models 

Next, the performance of the pivoted QR decomposi-
tion algorithm for selecting the most important fuzzy 
rules is evaluated in comparison with the SVD-QR with 
column pivoted method [36][37]. The two methods are 
separately applied to the firing strength matrices of the 10 
TS fuzzy models produced by the proposed method. Table 
4 summarizes the average RMSEs and RMSLIVs of the TS 
models constructed by 8 most important fuzzy rules se-
lected in terms of the R-values and singular values of 
fuzzy rules, in which the R-values of fuzzy rules are ob-
tained by the pivoted QR decomposition algorithm, 
whilst the singular values of fuzzy rules are calculated by 
the SVD-QR with column pivoting method (r=4). In order 
to test whether the difference between the two rule rank-
ing methods over the available data sets is non-random, 
the t-test is performed, in which the null hypothesis “the 
difference between means is zero” is used, i.e., 

0

1

: 0

: 0

qr svd qr

qr svd qr

H

H

µ µ

µ µ

−

−

− =

− ≠
              (44) 

where 
qr
µ , 

svd qr
µ − are the means of the results achieved 

by the QR method and the SVD-QR method respectively, 

1H is the specified alternative hypothesis, and the signifi-

cance level is chosen as 0α =0.05.  

TABLE 4. Average performances of the QR method and the SVD-QR 

with column pivoted method in the first example  

Algorithms GMl Average RMSE LM  Average RMSLIV 

QR 0.8352 0.1474 

SVD-QR 1.5200 0.1493 

 
TABLE 5. T-test of the global model and local model performances of 

QR method and SVD-QR method  in the first example ( 0α =0.05) 

Global/local models t-value p-value Decision 

GM performance -6.1107 8.9913e-006 
0H rejected 

LM performance -0.1873 0.8535 
0

H retained 

 
Table 5 illustrates the t-test results on global model per-

formances and local model performances achieved by the 

two rule selection methods. In the t-test of difference be-

tween the QR method and SVD-QR method on global 

model performance, the probability value (8.9913e-006) is 

less than the significance level (0.05), which implies that 

the difference between the two RMSE means is signifi-

cant, so the null hypothesis 0H  is rejected. The average 

RMSE (0.8352) achieved by the pivoted QR method is 

significantly smaller than the one (1.5200) achieved by the 

SVD-QR with column pivoting method. However, in the 

t-test of difference between the two methods on local 

model performance, the probability value (0.8535) is 

greater than the significance level (0.05), which implies 

that the difference between the two RMSLIV means is not 

significant, so the null hypothesis 0H  is retained. That is 

to say, given the available TS models constructed by the 

proposed method, the pivoted QR method is comparable 

with the SVD-QR with column pivoting method in fur-

ther improving the TS local model interpretability. To 

summarize, when applied to the TS models constructed 

by the proposed method, the pivoted QR method can 

achieve significantly better global model accuracy than 

the SVD-QR with column pivoting method, but the two 

methods achieve the same level of performance in further 

improving the TS local model interpretability.  

Now let us see whether the practically generated TS 
models can verify the above claim. Fig. 5 shows two TS 
models constructed by the 8 most important rules in 
terms of R-values and singular values respectively, which 
clearly indicate that the SVD-QR with column pivoted 
method greatly degrades the global model accuracy, but 
there is not much difference of local model interpretations 
between the two TS models. These results also justify that 
the RMSLIV really possesses the capability of characteriz-
ing the status of TS local model interaction with global 
model. 
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Fig. 5 The TS models and local models obtained by 8 important 

rules selected by the pivoted QR method (top) and SVD-QR with 

column pivoting method (bottom): dotted line represents the global 

model (recovered signal), and dashed lines represent the local mod-

els 

 
6.2 Steam Heat Exchanger 

The second example considers a liquid-saturated 
steam heat exchanger [44], where water is heated by pres-
surized saturated steam through a copper tube. The proc-
ess plant is shown in Fig. 6, in which the output is the 
outlet liquid temperature, and the inputs are the liquid 
flow rate, the steam temperature, and the inlet liquid 
temperature.  In this experiment the steam temperature 
and the inlet liquid temperature are kept constant to their 
nominal values, so only the liquid flow rate is considered 
as plant input variable. The main motivation for the 
choice of the heat exchange process is that this plant is a 
significant benchmark for nonlinear control design pur-
poses, because it is characterized by a non-minimum 
phase behavior which makes the design of suitable con-
trollers particularly challenging even in a linear design 
context [44]. Hence, it is highly expected to construct TS 
fuzzy model with good local linear model interpretation 
to predict the system behaviors.  

In our experiment, 1000 heat exchanging samples are used to 

build up a TS fuzzy system model with 4 inputs, i.e., 

1 2 3( , , , )
t t t t t

v f v v v u− − −= , where tv  is the outlet liquid 

temperature at time t, and 
t

u is the liquid flow rate at 

time t.  And 10-fold cross validation is used to evaluate 

the performance of the TS model, which works as follows:  

• Divide the 1000 instances into 10 disjoint data subsets, 
each containing 100 heat exchanging samples; 

• Form a testing sample set with each data subset;  

• Form a training sample set for every testing set with the 
remaining 900 instances; 

• Train and test the TS fuzzy model by the proposed 
method using each of the pairs of training and testing 
sets; 

• Record and average the results for the testing sets to 

determine the model generalization performance, i.e., 

the RMSEs of predicting the outlet liquid temperatures 

by the trained TS model on the test samples.  

 

Fig. 6 The steam heat exchanger plant 

Firstly, an initial input space partition is obtained by using 

the NKFCM clustering algorithm [42] on the available 

input-output samples, which generates 2 clusters as the 

core centers of initial fuzzy sets. For the 4 input variables 

1 2 3, ,
t t t

v v v− − −
 and 

tu , 16 fuzzy rules are generated in the 

initial TS model. In the experiment, the learning rates for 

updating the antecedent parameters 
ji j ,β   and ji j

u ,  are 

adapted dynamically with κ =0.1 and 1 separately, the 

initial value of ji j
p ,  is set as 1.1, and λ =0.6 is used to 

evaluate the performance of the proposed method. The 

experimental results are summarized in Table 6 and Table 

7, which indicate that the TS models constructed by the 

proposed method achieve good generalization perform-

ance, whilst their local models possess good interpretabil-

ity in terms of Definition 1. Moreover, the generated 

fuzzy sets by the linguistic modifiers exhibit good distin-

guishability in the input space partition as illustrated in 

Fig. 7. 

TABLE 6. Global model performance comparisons of the proposed 

method with the known ones in the second example  

Algorithms Training 

RMSE 

Variance Testing 

RMSE 

Variance 

The proposed 

( 0.6λ = ) 

0.2433 0.0052 0.2531 0.0332 

ComGLL 

( 0.6)β =  

16.5659 0.2453 17.1984 3.2568 

ComGLL ( 0.05)β =  0.8854 0.0220 0.9296 0.1615 

PBM 0.2478 0.0031 0.2617 0.0327 

As a comparison, the ComGLL method is also used to 

construct TS fuzzy model via similar 10-fold cross valida-

tion on the same data subsets. The parameter values of 

β =0.05 and 0.6 are separately used to evaluate the per-

formance of the ComGLL method. The experimental re-

sults are summarized in Table 6 and Table 7 as well. Be-

cause the ComGLL scheme does not consider improving 

the distinguishability of the input space partition, the 

fuzzy sets used remain unchanged as in the initial parti-

tion. Furthermore, the PBM method is used to enhance 

the distinguishability of the fuzzy model constructed by 

the 16 initial fuzzy rules. The 10-fold cross validation is 

also used to evaluate the performance of the PBM method 
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applying to the same data subsets, and the experimental 

results are shown in Table 6 and Table 7 as well. Fig. 8 illus-

trates one improved input space partition by the PBM 

method. It can be seen that the proposed method achieves 

better performance in improving the TS local model in-

terpretability with satisfactory generalization perform-

ances on the steam heat exchanger problem than other 

known interpretability-oriented fuzzy modeling methods. 

What is more, the distinguishability of input space parti-

tion is simultaneously improved by the proposed method. 

TABLE 7.  Local model performance comparisons of the proposed 

method with the known ones in the second example 

Algorithms Average RMSLIV 

The proposed ( 0.6λ = ) 0.1939     

ComGLL ( 0.6β = ) 0.5217     

ComGLL ( 0.05β = ) 1.9686 

PBM 2.3242     

 

 

 

 

 

 

 

 

Fig. 7 The MFs generated by the proposed method in the second 

example 
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Fig. 8 The MFs generated by the PBM method in the second example 

Next, the performance of the pivoted QR decomposi-
tion algorithm is evaluated on the steam heat exchanger 
problem via 10-fold cross validation in comparison with 
the SVD-QR with column pivoted method. By applying 
the pivoted QR decomposition algorithm to the firing 
strength matrix of the 16 fuzzy rules produced by the 
proposed method, the R-values are obtained to rank the 
fuzzy rules as illustrated in Table 8. The rule ranking re-
sults obtained by the SVD-QR with column pivoted 
method are also depicted in Table 8, which indicate that 
the SVD-QR with column pivoted method heavily de-
pends on the selection of the efficient rank parameter r.  

By setting 0fs =2.0, 9 most important fuzzy rules are se-

lected in terms of R-values to construct a TS model. This 
TS model achieves good model performance: training 
RMSE=0.2496 with variance 0.0038, testing RMSE=0.2578 
with variance 0.0381, and average RMSLIV=0.2445. How-
ever, the TS model constructed in terms of the 9 most im-
portant fuzzy rules selected by the SVD-QR with column 
pivoted method with r=6 achieves training RMSE =0.8906 
with variance 0.5204, testing RMSE =1.0659 with variance 
0.7235, and average RMSLIV=0.2804. From the above re-
sults, it can be seen that the pivoted QR decomposition 
method is more efficient in identifying influential fuzzy 
rules than the SVD pivoted QR decomposition in con-
structing parsimonious TS models. 

TABLE 8. Rule ranking results by pivoted QR decomposition and 

SVD-QR with column pivoting in the second example 

Methods Rule  Ranking Results 

QR  15, 16, 1, 2, 7, 8, 3, 4, 13, 14, 9, 10, 11, 12, 5, 6 

SVD-QR (r=4)  4, 1, 11, 10, 5, 6, 7, 8, 9, 2, 3, 12, 13, 14, 15, 16 

SVD-QR (r=5)  8, 4, 1, 10, 12, 6, 7, 3, 9, 2, 11, 5, 13, 14, 15, 16 

SVD-QR (r=6)  8, 9, 4, 1, 12, 10, 7, 3, 2, 6, 11, 5, 13, 14, 15 ,16 

 

6.3 Nonlinear Circuit System 

The third example is a benchmark nonlinear circuit creat-
ing a time series of voltage. The theoretical model of this 
circuit is described in [45]. The voltage recordrings from 
the nonlinear circuit have been collected. The aim is to 
construct a fuzzy model with good interpretability which 
is capable of reproducing the voltage time series.  

In our experiment, 1000 voltage samples are used to build 

up a TS fuzzy system model with 4 inputs, i.e., 

1 2 3 4( , , , )
t t t t t

v f v v v v− − − −= , where tv  is the voltage 

value at time t.  And 5-fold cross validation is used to 

evaluate the performance of the TS model. Similar scheme 

for initializing the input space was used as before. 2 clus-

ters are generated for the 4 input variables, and thus 16 

fuzzy rules are used in the initial TS model. The experi-

mental results are summarized in Table 9 and Table 10. It 

can be seen that the TS models constructed in this exam-

ple by the proposed method achieve good generalization 

performance, whilst their local models possess good in-

terpretability in terms of Definition 1.   

TABLE 9. Global model performance comparisons of the proposed 

method with the known ones in the third example  

Algorithms Average Training 

RMSE 

Average Testing 

RMSE 

The proposed ( 0.6λ = ) 0.0011 0.0013 

ComGLL ( 0.6)β =  0.0446 0.0457 

PBM 0.0011 0.0014 

 

TABLE 10.  Local model performance comparisons of the proposed 

method with the known ones in the third example 

Algorithms Average RMSLIV 

The proposed ( 0.6λ = ) 0.2953 
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ComGLL ( 0.6β = ) 0.5611 

PBM 1.1307 

 
6.4 Further Discussions 

Two issues might arise about the proposed method. 

One is that facing the same problem, different initial input 

space partitions may lead to TS models with different 

local model interpretability. The other is the proposed 

method involves hyperparameters κ , 0J , and 0fs . In 

(38), parameter ( 0)κ >  is used to determine the speed of 

the learning algorithm, which is similar to the parameter 

determining learning rates commonly used in gradient-

based machine learning algorithms. Parameter 0J  is used 

as a threshold or target value of the objective function J, 

which corresponds to the stopping criterion used in ma-

chine learning algorithms. Hence, parameters κ  and 0J  

are the common ways of controlling a machine learning 

algorithm. Comparatively, only parameter 0fs  is spe-

cially designed in the proposed method as a parameter of 

threshold for most influential fuzzy rules, which makes 

the constructed TS models parsimonious. The choice of 

these parameter values is data dependent. With specific 

data, trial-and-error procedures are appropriate in deter-

mining the values for hyperparameters with the objective 

of achieving satisfactory results. For readers interested in 

trying the proposed method, the source codes are avail-

able from the authors
2
. 

7 DISCUSSIONS AND CONCLUSIONS 

There are several aspects of TS fuzzy model interpret-
ability that are worth being addressed [8][27][29][30]. This 
paper just focuses on one of them, i.e., good interactions 
of TS local linear models with global model that make the 
local models dominate the system behaviors locally and 
separately as indicated in Definition 1 [8][26][27]. Among 
the existing schemes that are capable of improving TS 
model interpretability in the sense of Definition 1, most 
methods focus on either improving the distinguishability 
of input space partitions without optimizing local linear 
models to fit global model in local regions, or optimizing 
local linear models to fit global model locally without 
considering the improvement of the distinguishability of 
input space partitions. Interestingly, one advantage of the 
proposed method with linguistic modifiers in this paper 
lies in its ability to fulfil the two objectives together in one 
model structure, i.e., local linear model interpretability in 
the sense of Definiton 1 can be improved and distinguish-
able input space partition can be simultaneously pro-
duced. The experimental results have shown that by us-
ing the proposed method, the produced input space parti-
tioning has good distinguishablity and the local models 

 
2
 http://dces.essex.ac.uk/staff/jqgan/gan.htm;   http://www.cci. 

dmu.ac.uk /index.php?i=5&id=5 
 

match the global model well in the corresponding local 
regions. As a result, good model interpretability has been 
achieved while the global model accuracy remains at a 
satisfactory level. Another contribution of this paper is to 
have applied the pivoted QR decomposition algorithm to 
fuzzy rule ranking to produce more transparent and par-
simonious TS fuzzy models.  

Due to the promising capability of the proposed 
method in construcing TS fuzzy models with comprehen-
sible linear submodels in the sense of Definition 1, the 
proposed method would have potential applications to 
fuzzy modeling for nonlinear state estimation and control 
problems. Generally speaking, for highly nonlinear sys-
tems, many rules would be required to characterize them. 
Some interesting issues include formal stability analysis 
of TS models with interpretable submodels, possibility of 
applying reinforcement techonology to interpretability 
improvement of TS fuzzy models in case of no input-
output training samples available. These topics merit fur-
ther reseach in the future. 
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