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Abstract

Predictive Maintenance of Critical Equipment for Floating Liquefied  
Natural  Gas Liquefaction Process

 Rabiu Mohammed Rabiu

Meeting global energy demand is a massive challenge, especially with the quest of more 

affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a 

renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest 

form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its 

exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides 

gas processes and liquefaction has been identified as one of the great challenges of 

FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to 

profitability and reliability, availability of the process facilities. With the setbacks of widely 

used reactive and preventive time-based maintenances approaches, to meet the optimal 

reliability and availability requirements of oil and gas operators, this thesis presents a 

framework driven by AI-based learning approaches for predictive maintenance. The 

framework is aimed at leveraging the value of condition-based maintenance to minimises 

the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). 

In this study, gas turbine thermodynamics were introduced, as well as some factors affecting 

gas turbine modelling. Some important considerations whilst modelling gas turbine system 

such as modelling objectives, modelling methods, as well as approaches in modelling 

gas turbines were investigated. These give basis and mathematical background to develop a 

gas turbine simulated model. The behavior of simple cycle HDGT was simulated

using thermodynamic laws and operational data based on Rowen model. Simulink model is 

created using experimental data based on Rowen’s model, which is aimed at exploring 

transient behaviour of an industrial gas turbine. The results show the capability of Simulink 

model in capture nonlinear dynamics of the gas turbine system, although constraint to be 

applied for further condition monitoring studies, due to lack of some suitable relevant
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correlated features required by the model.

AI-based models were found to perform well in predicting gas turbines failures. These 

capabilities were investigated by this thesis and validated using an experimental data obtained 

from gas turbine engine facility. The dynamic behaviors gas turbines changes when exposed 

to different varieties of fuel. A diagnostics-based AI models were developed to diagnose 

different gas turbine engine’s failures associated with exposure to various types of fuels. The 

capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce 

the dimensionality of the dataset and extract good features for the diagnostics 

model development.  

Signal processing-based (time-domain, frequency domain, time-frequency domain) 

techniques have also been used as feature extraction tools, and significantly added more 

correlations to the dataset and influences the prediction results obtained. Signal processing 

played a vital role in extracting good features for the diagnostic models when compared 

PCA. The overall results obtained from both PCA, and signal processing-based models 

demonstrated the capabilities of neural network-based models in predicting gas turbine’s 

failures. Further, deep learning-based LSTM model have been developed, which extract 

features from the time series dataset directly, and hence does not require any feature 

extraction tool. The LSTM model achieved the highest performance and prediction accuracy, 

compared to both PCA-based and signal processing-based the models. 

In summary, it is concluded from this thesis that despite some challenges related to gas 

turbines Simulink Model for not being integrated fully for gas turbine condition monitoring 

studies, yet data-driven models have proven strong potentials and excellent performances on 

gas turbine’s CBM diagnostics. The models developed in this thesis can be used for 

design and manufacturing purposes on gas turbines applied to FLNG, especially on 

condition monitoring and fault detection of gas turbines. The result obtained would provide
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valuable understanding and helpful guidance for researchers and practitioners to

implement robust predictive maintenance models that will enhance the reliability and 

availability of FLNG critical equipment.  
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Chapter 1  

 

Introduction 

 

 

1.1 Background 
 

Energy is the golden thread that connects economic growth, increases social equity and an 

environment that allows the world to thrive. Energy is the catalytic driver for global sustainable 

development. The world economy continues to grow especially with increasing prosperity in 

the developing world. Perhaps, increased in prosperity drives growth in energy demand (BP 

Energy Outlook, 2018). In short Increase in population in developing countries and rising 

income levels are the two key drivers of energy demand (Ha et al, 2013). With the world 

population increasing by around 1.7 billion to reach nearly 9.2 billion people in 2040 (BP 

outlook 2018) and 9.77 billion in 2050 (DNV Energy outlook, 2018), energy security is critical 

to the global economic growth. This prompts most of the emerging nations to be concerned 

with provision of viable secured energy to develop and sustain their booming economies. 

However, with this trend of greater demand for energy coupled with requirement for 

sustainability and environmental legislations, a cleaner and sustainable energy source is the non-

negotiable. Thus, natural gas is seen as a cleaner bridge to a renewable energy future and the 

only fossil energy source which is projected to grow to 2050 (World Energy Council, 2017). 

 

Natural gas is the cleanest burning fossil fuel with tremendous advantages over other energy 

sources. Natural gas is cheaper, cleaner with high energy value compared to other fossil fuels. 

Its sustainable burning feature led into a boost of its consumption all over the world. Thus, the 

demand of natural gas increases at 1.6% p/a which is much faster than either oil or coal (BP 

Outlook, 2018). The production of natural gas also increases by 6%/year from 2017 to 2020 

compared to 4%/year from 2005 to 2015 (EIA outlook, 2018). The demand of oil as a major 
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energy source will peak in the 2020s as shown in Figure 1.2 and will be taken over by natural 

gas as biggest energy source in 2026 as shown in Figure 1.1. This trend will continue up to 

2050 whereby natural gas accounts for 25% of the global energy mix by 2050 as shown in 

Table 1.1. This unprecedented growth in natural gas demand is led by increases in industry and 

the power sector. Perhaps, almost 70% of the energy demand increase goes to power sector. 

(BP Outlook 2018). Therefore, the relevance of natural gas to meet world’s energy need now 

and into the future is clear. 

 

 

 

 

 

 
Figure 1.1: Energy Consumption by Fuel (EIA Energy Outlook, 2018) (Quadrillion British thermal 

units) 
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Figure 1.2: World primary energy supply by source (DNV Energy outlook, 2018) 

 

 

 

Table 1.1: World primary energy supply by sources (EJ/yr) (DNV Energy outlook, 2018) 

 

 

Energy Source 2016 2020 2030 2040 2050 Share in 2050 

Coal 163 157 140 96 60 10% 

Oil 168 169 164 130 86 15% 

Natural Gas 140 150 182 179 149 25% 

Nuclear Fuels 30 36 44 41 28 5% 

Biomass 56 59 66 69 67 11% 

Hydro Power 14 17 20 23 24 4% 

Solar Thermal 2 2 3 3 4 1% 

Solar PV 1 3 19 55 96 16% 

Total 581 603 660 639 586 100% 
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Natural gas markets are mostly far away from production fields. Thus, prompt the need for 

transporting the gas from its producing field to the end-user. Transporting the produced gas is 

achieved via pipeline system or on-board ships as transformed compressed natural gas (CNG) or 

liquefied natural gas (LNG). The transformation process of both LNG and CNG helps to easy 

transportation and safe handling when pipeline transportation isn’t feasible which increases their 

availability globally. Liquefied natural gas (LNG) is a natural gas which is converted and 

transformed to liquid form for ease of storage and transport. The transport of LNG involves three 

stages: liquefaction, shipment, and regasification (Eisbrenner et al., 2014). Liquefaction 

involves transforming the natural gas by cooling it to a temperature of 

−160C (−260F ) . This cooling process shrinks the volume 600 times for easier and safer 

 
storage and shipment (Saavedra, 2017). The shipment of LNG is achieved with well-insulated 

storage ship tankers which transport it to the end user via pipeline distribution systems. 

However, prior to the pipeline distributions, LNG is restored back to its gaseous state through 

regasification process (Gowid et al., 2015). LNG is the most suitable among natural gas 

sources and identified by (Shell outlook, 2018) as the fastest growing gas supply sources as 

shown in Figure 1.3. The removal of carbon dioxide and other impurities during liquefaction 

also make LNG to be the cleanest form of natural gas (He et al., 2018). 
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Figure 1.3: Global gas supply by sources (Shell LNG outlook, 2018) 

 

 
 

Liquefaction is the most important unit in LNG process (Zainal-Abidin et al., 2011) which 

account for 30% to 40% of the overall cost of LNG production plant as stated by (Gowid et al., 

2015) or up to 50% of the plant overall cost as reported by Usama et al. (2011) as shown in 

Figure 1.4. Various process configurations exist for liquefaction, but generally classified 

depending on the size and function as large base load, peak-shaving and small to medium scale 

plants (Mokhatab et al, 2014). The typical Floating LNG process plant is illustrated in Figure 1.5. 

Over the past several years, siting of LNG plants is usually onshore. However, with increased in 

environmental regulations, higher project cost and increased in LNG and natural gas demand as 

well as maturity of offshore oil and gas applications, Floating LNG is seen as the new frontier 

for robust LNG production. FLNG offers potential cost saving up to 40% when compared to 

traditional onshore LNG facility (Gowid, 2016). Another key benefit of FLNG technology 

involves enabling access to abundant stranded offshore natural gas fields that were commercially 
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difficult to be developed with conventional onshore liquefaction facility (Eisbrenner et al., 2014). 

Floating LNG concept solves many onshore production challenges associated with demographic 

constraints and environmental safety regulations (Lee et al., 2014). In offshore applications, it 

also solves myriad gas handling challenges faced by offshore oil and gas producers. High cost of 

associated gas reinjection and uneconomical long offset offshore pipelines left offshore oils and 

gas producers with only flaring option. However, with increased strict marine and environmental 

regulations, flaring is no longer acceptable in many regions. Hence, FLNG provides an alternative 

solution to handle offshore associated gas profitably and effectively (Saavedra, 2017). Therefore, 

FLNG is promising with many potential benefits compared with onshore LNG facility. 

 

 

 

 

Figure 1.4: Breakdown of liquefaction plant capital cost (Usama et al., 2011)
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Figure 1. 5: FLNG Process Overview (Tierling and Attaway, 2017) 

 

Considering the importance of liquefaction unit in LNG facility (50% of the overall cost), 

failure associated to this unit will significantly causes serious risk to the entire FLNG facility 

(Gowid et al., 2015). The study conducted by Forte et al. (2017) found liquefaction unit as most 

critical and major contributor of the FLNG downtime (30%) in the entire FLNG process facility 

as shown in the Figure 1.6. Investigative research of the various failure root causes over 60 

years of LNG plants operations identified various failure root causes of LNG facility as shown 

in Figure 1.8. The substantial plant failure is associated with mechanical failure of equipment 

and storage which accounts for 47.1 of the entire plant’s failures. Materials corrosion accounts 

for 17.6%, failure associated to human error accounts for 17.6, instrument and control error 

takes 5.9%, natural hazard accounts for 5.9% while the remaining 5.9% is associated with 

unknown factor. However, from Figure 1.8, it can be observed that 65% of the overall LNG 
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failures can be associated with maintenance activities in the plant. Thus, implementation of 

stringent maintenance regime impacts significantly to improve plants reliability, availability 

and its profitability (Angelsen et al., 2006).  

 

Since, major LNG plant’s failure is associated with equipment, more attention will be required 

to identify critical equipment that contributes to the most of the plant’s downtime. A such, 

compression equipment has the highest failure rate of the overall LNG process equipment 

(OREDA, 2009). LNG compression equipment consists of Compressors, Gas turbines, heat 

exchangers, pumps and blowers (Gowid, 2016). However, most critical among this equipment 

in the liquefaction plants are refrigeration compressors and their drivers (Lee et al., 2014). Thus, 

their functionality, reliability and availability significantly affect the overall plant’s performance 

and efficiency (Meher-Homji et al., 2011). In the research conducted by Benyessaad et al. (2016) 

observed most of the downtime among the FLNG liquefaction equipment comes from gas 

turbine with availability loss of 32% as shown in Figure 1.7. This indicates the critical of the gas 

turbine in the whole FLNG process facility and as such requires operators to give the highest 

maintenance priority to gas turbine. 
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Figure 1.6: FLNG system criticalities (Benyessad et al., 2017) 

 

 

 

Figure 1. 7: FLNG equipment item criticalities (Benyessaad et al., 2016) 
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One of the key challenges of FLNG lies on the appropriate selection of refrigeration compressor 

driver (Kumar and Jang, 2017). Selecting the driver type with right configuration is significantly 

important and has a direct impact on the overall performance, efficiency availability as well as 

profitability of FLNG facility. As mechanical drive, gas turbines have been applied in many LNG 

plants especially the large trains. Gas turbines exist as heavy duty, industrial or aeroderivative. 

The Aeroderivative gas turbine are becoming popular and widely accepted in the LNG industry 

as mechanical drives (Ott et al., 2015). Aeroderivative have an improved efficiency which range 

between 41-44% compared to 30-38% efficiency of heavy-duty machines (Almasi, 2012). An 

extensive mechanical drive experience with aeroderivative (both offshore and onshore) 

demonstrated good availabilities even under hostile operating conditions. Site maintenance of 

aeroderivative is more complex, especially with engines typically being shipped to an authorized 

repair depot for service. Further, the high power to weight ratio of an aeroderivative engine is 

significantly important especially in the event a floating LNG facility being planned. 

 

Unplanned downtime associated with equipment failure in both onshore and offshore oil and gas 

facilities substantially reduces the volume of product sales and decreases the revenue. Perhaps, 

both cost of downtime and maintenance are the major concern of Oil and Gas operators. In short, 

profitability of FLNG plant has a direct link with the applied maintenance strategy and reliability 

of the liquefaction plant (Gowid, 2016). This calls for higher reliability in liquefaction most 

critical equipment (gas turbine) especially offshore when taking into consideration that the 

FLNG facility is on sea with few or no spare parts due to weight and space constraints. Therefore, 

retaining a plant’s reliability to an optimum level is the highest priority for FLNG process 

operation and production which can be achieved by adopting a robust maintenance approach to 

the process system and equipment. It is obvious that systems and equipment degrade and 

deteriorate over time irrespective of their design robustness. However, the equipment failure 

complied by NASA and US Navy (NASA, 2008) shows that only 18% of the failures are age 
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related, while 82% of the equipment failures occurs randomly. This indicates that only 18% of 

the equipment failures can be detected prior to failure using 

preventive or time-based maintenance practice alone. The remaining 82% requires more 

sophisticated maintenance strategies that incorporate a condition and predictive based 

component to enable early warning to diagnose the failure and be able to proactively predict 

failure in advance. 

 

 

 

 

Figure 1.8: Distribution of failure root causes over 60 years of LNG/LPG operations (Angelsen et al., 2006) 

 

 

Time-based preventive maintenance has been the recognised in oil and gas industry and widely 

adopted practice to improve for maintenance effectiveness as well as enhancing equipment 

reliability. It has been observed that the cost of maintenance incurred by rotating equipment 

using preventive maintenance is 30% less than the cost incurred from reactive maintenance. 

However, with recent advances in predictive maintenance program, operators have better 

opportunity to plan maintenance action to an equipment prior to the actual maintenance 

implementation. As such, predictive maintenance approaches offer more savings (50%) 

compared to cost of maintenance incurred from reactive maintenance (Moore, 2004). 
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 Considering the criticality of gas turbine in FLNG process facility, it is vital to assign more 

robust maintenance regime that will enhances equipment reliability and availability. 

Predictive/Condition based Maintenance (CBM) is a maintenance program that recommend 

maintenance decision according to information obtained through condition monitoring process 

(Jardine et al, 2006). Thus, CBM is based on actual condition of the monitored 

equipment/machine. Therefore, the overall philosophy of CBM is a strategy that shift 

maintenance processes from fail and fix practice to prediction and prevention of failure (Tehan et 

al. 2017). 

 

1.2 Motivation of the Research 
 

The development and extension of the LNG into offshore industry is seen as a major 

improvement and a game changer in the utilisation of the world’s energy resources 

(Benyessaad, et al., 2015). Floating LNG enables production and liquefaction, storage and 

transfer of LNG from gas fields at sea. FLNG innovations emerges from the technologies of 

both subsea and marine facility of Floating Production Storage and Offloading (FPSO) as well 

as onshore LNG technology (Hwang et al., 2018). Oil and gas FPSOs are known with limited 

space, sensitive to motion, inherent difficulty towards providing maintenance support among 

others. As a new concept in the industry, FLNG is potentially recognised to be more dangerous 

than oil and gas FPSO, with topside liquefaction process more vulnerable and critical to safety 

(Lee et al., 2014). Perhaps, the topsides gas processes and liquefaction has been identified as 

one of the great challenges of FLNG, and its profitability strongly depends on reliability, 

availability, and maintainability of these process facilities. 
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The current most widely used maintenance methods such as breakdown and preventive 

maintenances used in offshore oil and gas operations are not sufficient to maintain critical 

FLNG equipment such as gas turbines. Gas turbine as mechanical drive is identified as most 

critical with highest availability loss in FLNG process facilities (Benyessaad et al. (2016). The 

availability, reliability, high safety standard requirement as well as efficient operation of the 

engine is always the major concern of its users. On this basis, a sway from conventional 

maintenance approaches to more robust, reliable, and cost-effective maintenance is required. 

 

More proactive and advance maintenance method (Condition-based maintenance), pave its way 

into oil and gas industry by combining multiple solutions, process reliability and system 

operating optimisation to achieve lowest operation risk as well as delivering the desired output 

(GE Digital Solutions, 2019). Also, efforts towards enhancing the performance of offshore 

plant maintenance methods with condition-based maintenance, drawn the attention of 

researchers. However, very few studies have introduced instances of the condition-based 

maintenance implementation in offshore oil and gas, with little focus on FLNG liquefaction 

equipment and non to its critical equipment (Aeroderivative Gas Turbine) as the time of writing 

this report. 

 

Currently the research for the development of Condition-based maintenance in oil and gas 

industry is progressing, although it’s still a challenging area especially in the offshore 

applications. In short, the current approaches have limitations regarding methods and 

validations. Thus, this thesis introduces approaches and methodologies towards 

implementation of condition-based maintenance for critical equipment in floating LNG 

process, i.e., aeroderivative gas turbine. 
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1.3 Aims and Objectives 
 

The main objective of this research is to address the challenge of failure and downtime in floating 

LNG critical equipment (Aeroderivative gas turbine) through the design and development of 

novel approaches and methodologies in modelling, simulation gas turbines based on physics-

based techniques. Simulink-based gas turbine model is developed based on thermodynamic 

equations and mathematical analysis. Although, the simulated data lack detailed features 

required for the model and hence the utilisation of experimental data. Data-driven AI-based 

models were built to predict failures associated with gas turbines, especially when exposed to 

different fuels. These models shall be capable in detecting and predicting incipient failures in the 

equipment. 

Given the results of the literature survey and the contents already discussed in this chapter, the 

following research objectives are made: 

1- Development physics-based gas turbine model based on thermodynamics equations and 

state space mathematical analysis. Simulink model for gas turbine is developed to 

understand some dynamic and transient responses of the engine, especially when tuned 

to various operation conditions. The model output responses or output parameters 

generated based on input changes can be applied reliably for gas turbine diagnostics 

studies to predict engine’s failures with a high accuracy. 

2- Development of data driven AI-based models to reliably perform gas turbines failure 

diagnostics and predictions. The dynamic response behaviours of gas turbines critically change, 

when exposed to different types of fuels. A diagnostics-based AI models are constructed to 

classify gas turbine engine’s failures associated with exposure to different types of fuels. The 

experimental time-series datasets obtained from gas turbine engine facility, represents 

system responses on exposure to different types of fuel. This data is used to model 

operating characteristics of gas turbine and its condition monitoring classification. 
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Feature extraction such as Principal Component Analysis (PCA) and signal processing-

based tools are applied, to add more correlations to the dataset and extract good features 

for the model. Neural Network based model is used further to classify failures 

associated with different fuels used. 

3- Simulate dataset through deep learning-based LSTM model, which extract features 

from the time series dataset directly, and further perform condition monitoring 

classification. The objective here is to compare the prediction performance and 

capability of deep learning-based model against conventional neural network-based 

model developed.  

 

1.4 Contribution 
 

This thesis is specifically focused on research on floating LNG (transition fuel) and 

application of digitalisation strategy to maintain the FLNG’s critical asset. The thesis 

identified most critical asset that requires more research attention. In FLNG project, 

Industrial gas turbine is not compatible offshore, therefore Aeroderivative gas turbine is 

more preferred in offshore application. However, with limited literature on CBM 

implementation on FLNG Aeroderivative gas turbine. The thesis contributes in; 

 

2- Surveying a comprehensive current state-of-the-art of predictive maintenance 

approaches on as turbine applied to floating LNG process.  to underpin the appropriate 

method compatible for modelling and validation of the study. 

 

3- Developing a physics-based model to simulate the operational characteristics of gas 

turbine, which will further applied on gas turbine condition monitoring studies. Although 

the model requires further analysis to fit for CBM.  
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4- Developing an intelligent model capable in detecting gas turbines failures. Data driven 

AI-based models are constructed with experimental dataset. The models built are efficient 

enough to predict engines failures, and enhances optimal operations, improve reliability and 

availability of FLNG critical asset (aeroderivative gas turbine). Therefore, thesis gives 

deeper understanding on how Predictive maintenance could drive efficiency, improve 

system reliability and availability of the new FLNG concept. 

 

6- Part of this thesis has been presented at 20th Nigerian Oil and Gas Conference and 

Exhibition (20th NOG conference & exhibition, 5-7 July 2021). The paper presented is titled 

“Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas 

Liquefaction Process: Framework & Benefits”. 

 

 1.5 Outline of the Thesis 
 

This study deals with modelling a predictive maintenance model for aeroderivative gas 

turbines. The entire contents provide new research basis and novel solutions in this area. The 

thesis is structured as follows:  

 

The 1st Chapter commences with a general representation of background, motivations of the 

research, objectives of the study, thesis contributions and thesis outline structure. 

 

The 2nd Chapter presents a comprehensive overview of the literature in the field of PdM 

of aeroderivative gas turbines. It covers the general concepts and design of an aeroderivative 

gas turbines, gas turbine maintenance in LNG process, condition-based maintenance of 

FLNG. 
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The chapter concluded with brief structural modelling architecture of aeroderivative gas 

turbine’s Condition Based-Maintenance.  

 

The 3rd Chapter briefly discuses modelling and simulations of gas turbines. It covers 

challenges and significance of gas turbine model in LNG process. Both white-box and black-

box gas turbine models were treated, with brief introduction of grey-box gas turbines models. 

The theories and fundamentals for gas turbines modelling based on white-box model have been 

covered. The chapter concluded by establishing a case study for modelling and simulation of 

gas turbines. A Simulink gas turbine model is constructed based on the thermodynamic and 

energy balance equations in MATLAB environment, and the output responses were recorded 

for further PdM studies. 

 

The 4th Chapter Presents modelling and simulation of gas turbines based on data driven 

modelling approach. An experimental time series dataset is used to classify anomalies 

associated with gas turbine’s exposure to different fuels. Feature extraction tools such as PCA-

based and signal processing-based are used to prepare the dataset by reducing its 

dimensionality and extracted good features for gas turbine diagnostics modelling. A model 

based on neural network is developed further to classify the gas turbine engine anomalies. 

Deep learning-based LSTM model is used to develop a diagnostics model for gas turbine. The 

overall models are tested and validated against unseen dataset, and performances of the models 

are compared.  

The 5th Chapter represents the final chapter and covers overall conclusion of this research, 

discusses future work and area of possible improvements on aeroderivative gas turbines 

condition based-maintenance research work. 
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 1.6 Summary 
 

This chapter introduced a background development behind the growing influence of LNG as 

an energy mix and important fossil fuel in the energy transition. Then preceded the discussion 

on motivations for this research. The contributions of this thesis have been briefly explored. 

Finally, the chapter highlighted key objectives of the research work as well as study outline of 

the thesis.  
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Chapter 2  

 

Literature Review 

 

2.1 Concept of Floating Liquefied Natural Gas   
 

 

While onshore LNG facility is a well-established mature process, the floating LNG is relatively 

new concept (Saavedra, 2017). Although, the concept of floating LNG has been studied since 

the mid- 1970s with very low progression until May 2011, when the Shell Oil company decided 

to develop floating LNG (Prelude) to be operated in the Timor Sea. Since then, many projects 

and research regarding FLNG continue to emerge progressively (Songhurst, 2016). As at the 

time of writing this thesis, only Petronas Floating LNG (PFLNG1) is commercially operating 

on the sea. PFLNG1 saw its first LNG drop in December 2016, first cargo in April 2017 

followed by performance test in June 2017 (Su, 2018). Although Prelude made its way to the 

Sea, but the LNG commercial export hasn’t yet started. 

 

FLNG blends the technology of land-based LNG industry, offshore oil and gas industry and 

marine transport technology. The FLNG design architecture as defected in Figure 2.1 

constitutes topside, storage mooring and turret systems. The topside mainly contains both 

process and liquefaction units. The raw natural gas from the subsea well is transferred to the 

topside via risers and turret. The process unit takes in the in raw natural gas and remove 

impurities (C02, sulphur etc.). The liquefaction compresses and transformed the gas into LNG 

which is then transferred into a hull for storage. The stored LNG is normally transferred to 

arriving LNG carriers through uploading equipment (Aronsson, 2012). 

 

Given the availability of conventional onshore LNG, many questions will arise on why floating 

LNG are considered? Perhaps this translates to the key benefits of FLNG over the conventional 
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LNG facilities. Some of the advantages of FLNG over onshore LNG were observed by (Abe 

et al., 2018; He et al., 2018) as; 

 

• Cost saving by eliminating subsea pipelines from the offshore gas fields to the shores. 

 

• Cost saving opportunity by employing lower labour rates at shipyards as opposed to 

higher labour rate in the regions where onshore LNG projects are executed. 

 

• Opportunity to develop and monetise stranded gas fields as well as the redeployment to 

another gas fields upon the production decline which save the operators from full sunk 

experienced with onshore plants due to mobility challenges. 

 

 

 

 
 

 
Figure 2.1: Typical FLNG layout (He et al., 2018) 
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Table 2.1: Selection of various liquefaction technologies (Eckhardt, 2010 and Lee et al., 2014) 

 

 

 

 

Category 

 

 

 

Technology 

 

 

 

Cascade 

 

 

C3-MR         

DMR 

 

 

 

SMR 

 

 

 

N2 

 

Expander 

 

 

 
 

Suitability 

to LNG 

FPSO 

 

Equipment counts for 

liquefaction 

 

 

50—65 

 

 

45-65 

 

 

40-55 

 

 

12 

 

Process sensitivity to motion 
 

Yes 
 

Yes 
 

Yes 
 

No 

 

Ease of start-up/operation 
 

Low 
 

Low 
 

Low 
 

High 

 

Flexibility to feed gas  

changes 

 

 

Medium 

 

 

Low 

 

 

Low 

 

 

High 

 

 

 
Safety 

issues 

 

Storage of HC refrigerants 
 

Yes 
 

Yes 
 

Yes 
 

No 

 

Cryogenic equipment counts 
 

High 
 

High 
 

Medium 
 

Low 

 

Space requirement 
 

High 
 

High 
 

Medium 
 

Low 

 

 

 
 

 

Efficiency 

 

Thermal efficiency (% of 

HHV) 

 

91% 
 

92% 
 

89% 
 

84% 

 

Availability 
 

Medium 
 

Medium 
 

Medium 
 

High 

 

Specific investment 
 

High 
 

High 
 

Medium 
 

Medium 



22  

Selecting the right liquefaction process is critical to FLNG process. Various criteria have been 

adopted in selecting appropriate FLNG process architecture as presented in Table 2.1. Many 

researchers work have their specific interest on some process configurations depending on their 

preferences and requirements. Li and Ju (2010) considered performance parameters such as 

economic performance, layout, sensitivity to motion, suitability to different gas resources, safety 

and operability as well as accountability of for the liquefaction process to marine environment 

as selection criteria. In their study, the authors compared Propane pre-cooled mixed refrigerant 

(C3/MRC), mixed refrigerant cycle (MRC) and Nitrogen expander (N2 Expander) liquefaction 

technologies for their suitability in processing associated offshore gas in South China Sea. The 

result obtained by the authors found N2 Expander as the most suitable liquefaction process despite 

its setbacks regarding poor economic performance and higher energy consumption compared to 

the other two process technologies. Perhaps its size compactness, higher safety, less sensitivity 

to FLNG vessel motion and simplicity in operations makes it more preferred option for FLNG 

offshore applications. 

 

Although some researchers like Li and Ju (2010); Gowid et al. (2015); and Lee et al. (2014) 

considered the possibility of adopting C3/MRC in the floating LNG applications due to its high 

efficiency and proven reliability which accounts for 66% of the total onshore LNG trains in 2013 

as reported by WORLDLNG Report (2014). But recent studies found C3/MRC unfit for floating 

LNG application especially because the major technology driver for offshore applications 

considers weight and space as priority. Propane pre-cooled mixed refrigerant use kettle chillers 

and heat exchanger with large flammable liquid refrigerant inventories. As such the large 

footprint (space and weight) consumed by these pieces of equipment makes C3/MRC 

unfavourable for FLNG liquefaction process technology (Tierling and Attaway, 2017). This 



23  

limits the selection to only Nitrogen expander (N2 Expander), Single mixed refrigerant (SMR) 

and dual mixed refrigerant (DMR) as illustrated in Table 2.2. Nitrogen expander has been chosen 

as a liquefaction process for the first floating LNG on the sea (PFLNG1) and the selection criteria 

was reported by Ahmad et al. (2014). 

 

On the bases of scaling capacity criteria, Castaneda (2015) and Tierling & Attaway, (2017) 

differs in selecting liquefaction technology for small and mid-scale capacity. Castaneda (2015) 

selection is shown in Table (2.2), while Table 2.3 illustrated the selection criteria for Tierling and 

Attaway (2017). Therefore, regardless of the selection criteria followed, success of any FLNG 

application is tied to the liquefaction technology that is proven, reliable, space efficient and as 

well as simple to operate. 

 

 

Table 2.2: FLNG Liquefaction selection based on capacity (Castaneda, 2015) 

 
 

Capacity MTPA 

 

Liquefaction Technology 

 

<0.2 

Expander process 

Nitrogen expander 

Feed Gas (Niche process) 

2-3 Single Mixed Refrigerant 

PRICO SMR 

>3 DMR 
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Table 2. 3: FLNG Liquefaction selection based on capacity 

 

Capacity Liquefaction Technology Reason 

Small scale SMR Footprint (Space & Weight) 

Small-Midscale N2 Expander Less sensitive to motion 

Large scale DMR Higher efficiency and safety 

 

 

 

 

2.1.2 Gas Turbine as FLNG Compressor Mechanical Driver 

 

One of the key challenges of FLNG lies on the appropriate selection of refrigeration compressor 

driver (Kumar and Jang, 2017). Perhaps selecting the driver type with right configuration is 

significantly important and has a direct impact on the overall performance, efficiency availability 

as well as profitability of FLNG facility. Some considerable research work covered LNG 

equipment selection, with refrigerant compressor driver selection receives more attention in the 

publications. The compression driver options reviewed involves steam turbines, industrial gas 

turbines, aeroderivative gas turbine and electric motor. However, for applications that requires 

significant mechanical shaft power beyond 1 MW such as LNG compression, a direct drive 

arrangement prompt most suitable always. Gas turbine engine is a direct drive turbomachinery 

which is popular in oil and gas and chemical process industry. These industries use gas 

compressors, blowers/fans and pumps (Solar Turbines, 2011; Jansohn, 2013). 
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As mechanical drive, gas turbines have been applied in many LNG plants especially the large 

trains. Gas turbines exist as heavy duty, industrial or aeroderivative. Industrial gas turbine is the 

most widely used driver for refrigerant compressor over the last two decades. However, the heavy-

duty industrial gas turbine has many setbacks that makes it unsuitable for FLNG applications. 

For instance, low thermal efficiency (30-38%), high specific fuel consumption, give rise to 

increased emissions and extensive maintenance requirements (Bardon, 2016). In addition, its 

constrained with limited speed range, and as such requires an auxiliary large variable speed motor 

for start-up, which requires more space on FLNG deck and additional cost. Hence, the concern 

on emission reduction, improved reliability and improved thermal efficiency of the refrigerant 

driver lead LNG operators to search for more sustainable, reliable and efficient driver (Almasi, 

2012). 

 

Aeroderivative gas turbine are becoming popular and widely accepted in the LNG industry as 

mechanical drives (Ott et al., 2015). They have an improved efficiency which range between 41-

44% compared to 30-38% efficiency of heavy-duty machines (Almasi, 2012). Improving plant 

efficiency centred around two areas which involves turbomachinery and cryogenic heat 

exchanger. However, considering the maturity of LNG liquefaction processes, little further 

tightening modification could be done to exchanger temperature approaches. Hence, that leaves 

two areas that significantly influences plant efficiency, i.e., refrigeration compressors and gas 

turbines drivers. However, harnessing improved efficiency through refrigerant compressors 

has little impact, especially given that their efficiencies are already in the high 80s. Therefore, 

appropriate selection of gas turbine determines both thermal efficiency and carbon emission for 

the liquefaction turbomachinery. As such, improved efficiency and emission reduction are some 

key benefits of aeroderivative compared to industrial gas turbines (Habibullah et al., 2009).
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Recently, aeroderivative gas turbine has been applied in LNG application in Darwin onshore 

plant, Australia. This is the first instance where aeroderivative gas turbine is applied to LNG 

operations and has been successfully operating from 2006 to date. However, given the little 

experiences of aeroderivative gas turbine mechanical driver in the LNG onshore, how compatible 

it is to fit into offshore LNG operations? 

 

Several critical parameters are essential when selecting an appropriate refrigerant compressor 

driver for FLNG configuration. Some of these parameters were identified by Kumar and Jang 

(2017) as footprint size, weight, starting methodology, thermal efficiency, ease of operation, 

hazardous area “Ex” use, availability, impact on other system economics and operational 

advantage, marine environment use (marinization), operator comfort and life cycle cost. All these 

factors are critically important and drives the choice on appropriate selection criteria. However, 

more critical choice lies primarily on weight, footprint and serviceability at the offshore location 

as well as thermal efficiency. Aeroderivative gas turbines as developed from aircraft jet engines 

acquired some unique features aircraft engines such as lightweight, fuel efficient, easily swapped 

in and out of service, and ability to quickly ramp the power up and down. Perhaps, these features 

made aeroderivative gas turbines suitable for mechanical or compressor drives for FLNG (Ott et 

al., 2015). 

The selection of aeroderivative gas turbines to floating LNG applications has motivations that 

lies on its technical capabilities and commercial benefits. Couple with the challenges of offshore 

environment ranges from metocean conditions and logistics, an equipment with proven 

reliability, availability, maintainability, flexible operating conditions, efficiency, low emission 

and small footprint stands the most preferred choice. Aeroderivative gas turbine met these 

conditions compared to any other mechanical drive equipment in the offshore floating LNG 

applications. 
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2.2 Aeroderivative gas turbine Concept and design 

 

The aeroderivative gas turbine are originated from aerospace industry as the prime mover of 

aircraft. The concept has been adapted to the electrical power generation industry by removing 

the bypass fans and addition of power turbine at the exhaust. Aeroderivative has an output power 

ranges from 2.5 MW to about 50 MW and efficiencies ranges between 35-45% (Boyce, 2006; 

Doom, 2013). The architecture of aeroderivative gas turbine is characterised with multi- shaft 

design (two or three shafts). The power turbine sits on a separate shaft which allows the speed 

adjustment without the need a gearbox (Del Greco et al., 2018). The machine also consists of 

two basic components (an aircraft-derivative gas generator and a free-power turbine). The energy 

or gas horsepower is produced by gas generator which is a component derived from an aircraft 

engine and modified to burn industrial fuels. This component (gas generator) raises combustion 

gas products to conditions of around 45-75 psi (3-5 Bar). Conventional aircrafts engines have fan 

jet which are removed and replaced by some additional compression stages in front of the existing 

low-pressure compressor. In many cases, the axial flow compressor in aeroderivative gas turbine 

is divided into low-pressure and high-pressure sections. In those case, turbine is usually 

comprising of low-pressure turbine and high-pressure turbine which drive the corresponding 

sections of the compressor. The shafts of aeroderivative engines are usually concentric. This 

significantly enables speed optimisation of the low- pressure and high-pressure sections. Hence, 

the power turbine is separated and mechanically uncoupled with the connections only via an 

aerodynamic coupling. In these cases, the turbines 
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have three shafts with all operating at an independent speed (Boyce, 2006). Figure 2.2 

 

depicted a typical aeroderivative gas turbine. 
 

 

 

 

 

 
Figure 2.2: Typical Aeroderivative gas turbine LM 6000 (McMillian, 2013) 

 

 
Like all gas turbines, Aeroderivative gas turbine follows Brayton Cycle. It takes in air and 

continues injection of fuel to create hot and pressurized gas flow which expands through the 

turbine. Then process begins by pressuring the incoming air by a compressor through its stages. 

This pressurisation compressed and heated the air which subsequently passed to the combustion 

chamber where chemical energy from the burning fuel adds more heat. The hot and pressurised 

air expands and follow through turbine blades to rotates the shaft that drives the compressor at 

the front of the engine and the cycle continues. The shaft is normally connected to either external 

generator for power generation or as a mechanical drive to refrigerant compressor or pumps. 

However, for efficient energy conservation, the remaining energy not used in driving the shaft 

can be captured in useful ways for various applications in the plant (Doom, 2013).
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Various gas turbine Original Equipment Manufacturers (OEMs) design and develop various 

types of gas aeroderivative gas turbines for both power generation and mechanical drive 

applications. Some of the most popular aeroderivative gas turbine include GE (LM 2500 class & 

LM 6000 class) and Siemens SGT-A45 and SGT-65. LM 2500 has proven experience in marine 

ships propulsion and offshore oil production. Some research effort has been put to investigate 

some experience and lessons regarding the applications and operations of some aeroderivative 

gas turbine in offshore and marine environment. Spector and Cimino (1990) investigated 10 

years’ experience of GE LM 2500 gas turbines operating at North Sea offshore platforms. The 

study specifically focused on some operational experience, maintenance philosophy, reliability 

and some advantages of the engine given its record of over one million hours of operation in 

North Sea at the time of the study. The evaluation of success and challenges of the LM 2500 

operating experience revealed an unexcelled level of reliability and availability. Some 

recommendations were further given by the authors which aimed at enhancing reliability, 

availability and application flexibility of the LM 2500 engines in offshore applications. As such 

many developments has been occurred resulting to the evaluation of many versions of LM 2500 

by its OEMs. 

 

Recently Meher-Homji et al (2008) reviewed the operational experience of world’s first 

aeroderivative gas turbines in LNG applications. The author discussed design, manufacture, 

testing, implementations as well as operational experience and lessons learnt from deploying 

aeroderivative into LNG application as a mechanical driver. The study discovered an 

overwhelming operational performance of the plant over two years operation. The result
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obtained by the study met all the expectation as well as exceeding the LNG production 

performance. In further investigation by Maher-Homji et al (2011), the authors conducted another 

study to evaluate four years operational experience. Design compatibility, maintenance 

implementation as well as debottlenecking activities were further investigated. Since installation, 

the plant has been successfully operated over 4 years as at time of the study. Likewise, the 

previous study, the authors reported that the expectations and production goals we met and 

exceeded. The debottlenecking activities that have been implemented by the plant has been well 

covered and extensively discussed by the authors. The over result success and failure discovered 

in these two studies is profoundly essential especially to many FLNG operators who deploys 

aeroderivative gas turbine into offshore floating LNG application with no experience in offshore 

liquefaction process. Figure 2.3 shows the aeroderivative gas turbine installed and operated by 

Darwin LNG plant. 

 

 

 

 

Figure 2.3: Aeroderivative gas turbine (LM2500+) being Installed at Darwin LNG Plant (Meher-Homji et al., 

2011)
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2.3 Maintenance in LNG Process 
 

Machines/equipment suffers changes during its operating life due to deviations from its standard 

design state, leading to a reduction of its reliability and availability (Leturiondo, 2016). Faulty 

equipment poses the threat of a full breakdown or outage of the LNG plant. Likewise, equipment/ 

machines operating at wretched condition may not fail completely, but certainty their efficiency 

and output will be reduced. Hence, raises operating costs and impact production performance 

negatively (STI Group - Industrial, Midstream & Fabrication Services, 2015). However, with 

good maintenance practice, minor and major problems in LNG process plant could be detected 

before they escalate and poses negative consequences. Therefore, Maintenance is crucial 

towards assurance of machines health condition, which is equally essential to determine the 

optimum moment to replace or repair them (Leturiondo, 2016). 

 

The maintenance works, inspection, refurbishments, and parts replacement are performed to keep 

equipment and systems efficient and operate within a tolerable design life. Maintenance can be 

regarded as a strategy and actions implemented during the plant’s service life, required to ensured 

safe, reliable, and cost-effective operation of the assets. Thus, LNG plants performance strongly 

depends on availability and reliability of critical equipment/systems as well as their safe operation 

and cost effectiveness in maintaining them. Perhaps, the importance of reliability improvements 

to make the LNG plants more competitive and profitable prompts the need for adopting 

sophisticated technology for inspection and maintenance optimisation (Angelsen et al., 2006) 

especially on critical LNG assets. 

 

Similarly, one of the primary goals of adopting good maintenance at LNG plants/terminals is to 

improve and maintain safety levels. Although LNG itself cannot burn until it is mixed with air, 

and is unlikely to explode, but the presence of other potentially dangerous gases and compounds 

that are used in the refrigeration or re-gasification process could explode if mishandled or 
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allowed to leak. Mishandle or leakage could be associated with faulty equipment and machinery, 

hence potentially leads to the risk and occurrence of explosion or of an accident (STI Group - 

Industrial, Midstream & Fabrication Services, 2015). Therefore, safety is another critical 

important factor for LNG process. In short, with unprecedented increase in LNG production 

value chain involving processing, transporting and consumption, raises public concern on the 

environmental risk, safety and health associated with the LNG. This has direct relation with the 

design, operation and maintenance of LNG facilities. 

 

Some accidents have been recorded in LNG industry with consequential revenue damages, loss of 

lives and refutation. The first LNG accident occurred at Cleveland, U.S which injured 225 people 

and killed 131 people with huge damages in facilities and infrastructures. In 2003, An explosion 

occurred in Malaysian LNG plant (MLNG Tiga) train 8. No casualties or injuries were recorded, 

but the incidence raised public concern. Algerian LNG plant exploded in 2004, killed 27 workers 

and causes an estimated damage of $1 Billion. Another explosion for Algerian LNG plant 

occurred at Skikda town in 2005, which rendered 72 people injured with 28 casualties. Skikda 

accident was worst LNG accident since 1973 when the catastrophic explosion at Staten Island, 

U.S. claimed 40 lives (Angelsen et al., 2006). Most recent LNG accident was the Plymouth LNG 

explosion, occurred in 2014 at Plymouth Washington, U.S, which injured 5 people and claimed 

$69 million damage (Powell, 2016). More details regarding incidences of LNG accidents can be 

sourced from (Riley and Riley, 2016). 

 

A review for over 60 years of LNG plant operations shows that the various root causes of 

incidences for LNG accidents reported are associated with mechanical failure of equipment and 

storage tanks, including brittle fracture account for 47.1% of the failures. Corrosion failures related 

to operation of cold boxes and mercury liquid metal embrittlement, accounted for 17.6%. This 

indicates that about 65% of the major root causes can influenced by maintenance and inspection 
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activities. Hence, optimizing maintenance and inspection activities for critical equipment such as 

gas turbine is necessary to improve the overall plant reliability, availability,   and safety (Angelsen 

et al., 2006). 

 

2.4 Gas Turbine Maintenance in LNG Process 

 
 

 

2.4.1 Overview and Significance 

 

Gas turbine equipment especially when operated in the cryogenic LNG process or offshore 

environment often runs under rigorous conditions. Subjecting this equipment to rigorous 

operating condition and harsh operating environment, exposes them to corrosion, erosion and 

wear. At the same time, day to day operations induces ageing-related factors that consequently 

leads to its deterioration and degradation. If these effects are not monitored well, they can lead to 

unexpected failure which significantly affects the performance, efficiency and productivity of the 

entire process plant. Consequently, this could also lead to large financial losses, imposes health 

and safety problems to the operating personnel on board and creates major environmental 

pollution. However, with improved equipment reliability and system availability, these effects 

will be mitigated. But can only be achieved by proper monitoring and inspections on the right 

equipment in the right location at the right time on the right information that guides in carrying out 

the necessary maintenance, modification, or replacement (Ratnayake, 2015). 

 

The cost of maintenance and machine availability are two most important concerns to gas turbine 

equipment owners (Eggart et al., 2017). The need for maintenance is usually predicted on actual 

or impending failure depending on the plant’s maintenance approach and strategy. Thus, FLNG 

plants performance strongly depends on availability and reliability of critical equipment/systems 

as well as their safe operation and cost effectiveness in maintaining them. Therefore, to ensure 
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seamless operation of gas turbine mechanical driver with optimum availability and reliability, 

appropriate maintenance process scheme such as periodic inspection, repair, and replacement of 

parts, must be established and planned accordingly (Knorr and Jarvis, 1975). 

 

Gas turbine components can be categorized into two, i.e. (i) those that require most frequent 

maintenance attention and (ii) those that involves long term maintenance consideration and 

planning. The gas turbine components that require the most careful attention are those related to 

combustion process, together with those exposed to the hot gases discharged from the 

combustion system, which are regarded as the combustion section and hot gas path parts. These 

components include combustion liners, end caps, fuel nozzle assemblies, crossfire tubes, 

transition pieces, turbine nozzles, turbine stationary shrouds, and turbine buckets. The other gas 

turbine parts that need long-term maintenance consideration and planning involves compressor 

rotor, turbine rotor, casings, and exhaust diffuser (GE Power Atlanta, GA, 2017). Therefore, to 

ensure seamless plant operations, a robust, efficient, and flexible maintenance strategy must be 

developed for both components with high maintenance frequency and those with long term 

maintenance requirements. This significantly improves the reliability and availability of gas 

turbine assets and, consequently decreases the number of unpredicted breakdowns, operating 

costs, and downtime. Thus, a successful implementation of the right maintenance scheme for gas 

turbine, is tied to proper inspection and planning. The maintenance planning for gas turbines 

depends on some factors as indicated in Figure 2.4. 1n short numerous trade-offs among 

environmental, technological, economic and operational factors help towards establishment of 

successful maintenance and operational strategy for gas turbine assets (Tahan et al., 2017 & Hoeft 

and Gebhardt, 1993). 
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Figure 2. 4: Principal factors that affect gas turbine maintenance planning (Tahan et al., 2017, Hoeft and 

Gebhardt, 1993) 

 

 
2.4.2 Types of Maintenance Schemes 

 
 

The goals of FLNG operators are tailored towards safe operation without harming the personnel 

and safeguarding the ocean environment whilst generating revenue. These objectives are only 

achievable when right and appropriate maintenance policy has been implemented to critical 

equipment such as aeroderivative gas turbine. However, maintaining an equipment in offshore 

platform is one of the toughest challenges to the maintenance engineers. Various maintenance 

strategies have been applied in maintaining industrial equipment, depending on the established 
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maintenance policy of the operator. Thus, there are three basic maintenance approaches as 

classified by (Niu, 2017) as; 

 

• Breakdown or run to failure maintenance 

 

• Preventive or time-based maintenance 

 

• Predictive or condition-based maintenance 

 

 

 

 
2.4.2.1 Breakdown Maintenance 

 

 

The breakdown maintenance also known as unplanned maintenance strategy, is usually 

implemented to repair equipment only after the manifestation of defect, or total breakdown (fix it 

when breaks). In this maintenance approach, the equipment is allowed to run until a given 

component(s) fail. No prior efforts or action is taken to maintain the system/component as 

recommended by OEM until when its completely failed. In short breakdown maintenance 

practice failed to take into cognisance the stochastic nature of the system failure and plan for 

maintenance, until the ultimate breakdown. When equipment/machine breakdown, there could be 

a tendency for production disruption which may likely leads to the stoppage of the entire plant 

especially when critical equipment are involved (KARIBO, 2017). When the unit/component 

fails, an imperfect corrective maintenance is undertaken (Kouedeu et al., 2014), which involves 

replacing or repairing the failing unit. (KARIBO, 2017) 

 
 

Breakdown maintenance usually occurs as an emergency and therefore requires a cost premium 

(Monks, 1996 and KARIBO, 2017). As such, adopting this maintenance practice is always 

associated with unscheduled downtime with severe consequences. It is important to note that, 
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this type of maintenance scheme is not compatible with aeroderivative gas turbine, especially 

when operated in FLNG. Although some non-critical components in the FLNG process whose 

failure may not halt the production process, could be subjected to this type of maintenance 

approach. Figure 2.5 indicated the flow chart of breakdown maintenance processes. 

 

 

 

 

 

 
 

 
Figure 2.5: Breakdown or Unscheduled maintenance flow chart (Souza, 2012) 

 

 

 

 
2.4.2.2 Preventive Maintenance 

 

This is essentially implemented at a predetermined scheduled interval with the aim in minimising 

the probability of failure and degradation (Kothamasu et al., 2006). Unlike breakdown type, the 

preventive maintenance strategy is planned, more effective and robust. As the name suggests, 

the maintenance is implemented prior to the equipment failure. This maintenance strategy 

enables more utilisations of resources compared to reactive. Its implemented using statistical 

information and operational experience to schedule successive overhaul to safeguard the 

equipment from unexpected failure. Successful implementation of this type of maintenance 

scheme helps in identifying potential areas of failure in an equipment/system, which by 

extension helps in avoiding unplanned breakdown 
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and its consequence (KARIBO, 2017). This is succeeded by inspection, service and replacement 

of parts before they fail. Figure 2.6 shows the flowchart of Preventive maintenance. More details 

regarding preventive maintenance and its further classification could be found in Ben-Daya et 

al. (2009). 

 

 
 

 
 

Figure 2. 6: Preventive Maintenance Flow Chart (Souza, 2012) 

 

 

 
Preventive maintenance scheme is applied in LNG industry to maintain critical equipment like 

gas turbine and its components. This is achieved by undertaking routine and schedule servicing 

at certain intervals. Usually, the gas turbine engine or any other element is withdrawn from 

service at scheduled intervals to perform inspection or repair. Aeroderivative gas turbine 

normally has fast cooldown and less maintenance time, i.e., 20-48 hours changeout. Unlike Heavy 

duty type whose maintenance time is longer, i.e., 20-28 days changeout. This maintenance 

philosophy has been the practice and classic way to operate and maintain gas turbine engine in 

the past and even nowadays (Tomas, 2015 and Burke, 2011). Although despite its advantages 

over reactive type, yet preventive maintenance has some setbacks. It is often not cost effective 

especially given the possibility of replacing component (s) or elements with substantial operating 

life left. Hence, increases the number of scheduled maintenance outages unnecessarily. 
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The scheduled maintenance intervals for gas turbine turbines are normally determined by the 

OEM according to the statistical analysis of the fleet, i.e., MTBF, MTBO, reliability, availability, 

among others. Other factors include design practices and safety considerations. The time-based 

maintenance schedule for aeroderivative gas turbine has been defected in Table 2.4. 

 

Table 2. 4: Aeroderivative classic preventive maintenance schedule (Tomas, 2015) 

 

 
 

Maintenance Activity 
 

Operating Hours 

 

Semi-annual (including BSI) 
 

Every 400 

 

Hot section repair (gas only) 
 

Every 25,000 

 

Maintenance Outage Hours 
 

Every 50,000 

 

 

 

 

It shall be noted that the Table 2.4 is obtained based on units that reflects typical operation with 

few starts and many hours per year (>6000 hrs). Some maintenance activities will be 

recommended according to starts (i.e., semi-annual at 450 starts) or event time (annual, semi-

annual) for units with different operational profiles. 
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Figure 2. 7: Engine failures and overhauls intervals (Burke, 2011 and Tomas, 2015) 

 

Figure 2.7 demonstrated how the maintenance interval is set. For instance, if the period is long, 

quite many events might occur. Conversely, when the window is too short, a large considerable 

amount of life is left in the engine and increases the maintenance outages. Thus, for optimal 

maintenance, the correct number is always a compromise (Tomas, 2015). 

 
2.4.2.3 Predictive Maintenance 

 

This maintenance philosophy involves scheduling maintenance only when functional failure is 

manifested and detected (Scheffer and Girdhar, 2004). The mechanical and operational 

conditions of the equipment are consistently monitored which reveals the current state and health 

status of the asset. When an unhealthy trend is detected, appropriate correction action will be 

taken to mitigate the failure effect. This helps in avoiding unnecessary maintenance tasks by 
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restricting maintenance action only on justifiable evidence of abnormal behaviours manifested 

from physical assets (Romesi and Li, 2013). The flow chart for predictive maintenance is shown 

in Figure 2.8. 

 

More capabilities could be herness by implementing predictive maintenance in the processes and 

manufacturing industries by minimizes failure risk, as well as enhances and maximises the useful 

life of an asset. In addition, more lead-time window is allowed to purchase component that 

requires replacement. Thus, reducing the need for large inventory of spares, since the 

maintenance action is carried out only when needed. (Scheffer and Girdhar, 2004; Pektas and 

Pektas, 2018). Some of the values that could be harnessed by implementing PdM has been 

highlighted by Gang (2017) as; 

 

• Return on investment: 10 %, 

 

• Reduction in maintenance costs: 25–30 %, 

 

• Elimination of breakdowns: 70–75 %, 

 

• Reduction in downtime: 35–45 %, and 

 

• Increase in production: 20–25 %. 
 

 

 

 

 

 

 
Figure 2. 8: Flow chart for predictive maintenance implementation (Souza, 2012)
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Condition-based maintenance can be applied to any system, although the focus of this research 

work is based on FLNG Aeroderivative gas turbines. Implementing predictive/CBM on gas 

aeroderivative gas turbines requires some sequence of processes which will be explained in 

section 2.6. 

 
2.5 General Maintenance Concepts of Aeroderivative Gas Turbine 
 

 
The general philosophy in the industry for maintaining aeroderivative gas turbines involves three 

main concepts, i.e. On condition maintenance, minimize downtime and maximize on-site 

maintenance capability 

 

 

2.5.1 On condition maintenance 

 

Under this concept, gas turbine components or units are repaired or replaced only when it is 

required. Furthermore, this is the underlying concept of condition-based maintenance, which is 

the focus of this study. More details will be discussed in section 2.6. 

 

 

2.5.2 Maximize on-site maintenance capability 

 
Given the similarities between aeroderivative gas turbines and aircraft engines, the former 

leverages some design and maintenance features of the latter. Thus, based on these similarities, 

aeroderivative gas turbine maximize the on-site maintenance capabilities of aircraft as observed by 

(Tomas, 2015, Siemens, 2014 and GE, 2013);
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• Modular design of the engine enables on-site exchanges for major components like High 

Pressure Turbine (HPT), without total engine disassembly. This permits component(s) 

exchanges whilst major overhaul work is conducted on the facility. Hence, reduces the 

turn time whist carrying out maintenance overhaul for the engine.  

• Possession of borescope enable easy one-site Non-Destructive Testing and inspections 

on the engine. Hence allow access to impossible-to-reach area such as high temperature 

portions of the turbine without dismantling the engine. 

• Some vital engine components such as controls, accessories (gearbox, seal etc) and 

sensors are externally oriented, and thus can be easily replaceable. 

• Compressors are typically of split design. Blades can be easily repaired and replaced 

on site. 

• The split design nature of engine allows on-site repair and replacement of compressor 

blades, stator vanes as well HPT blades easily 

 

2.5.3 Minimize downtime 

 
The characteristics design of aeroderivative gas turbine, and its lightweight feature enable 

quicker exchange on-site while conducting major overhaul (GE, 2013). The maintenance 

simplicity of aeroderivative gas turbine is one of the key benefits to LNG operators (Meher- 

Homji et al., 2018). The aeroderivative engine can be changed and quickly (GE, 2013), especially 

when the need for major overhaul arises, the gas turbine enclosure design allows easy removal, 

with the aid of preinstalled crane or removal cradles (GE, 2013). Sometimes, flange to flange 

engine can be replaced (for engine type such as LM6000) or the exchange of gas generator 

section in for engine with free power turbine like LM2500 (Meher-Homji et al.,
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+ 
 
 

 

 
Figure 2. 9: Gas Generator Removal (Left) and Power Turbine Removal (Right) (Meher‐ Homji et al., 2011 

and Meher-Homji et al., 2018) 

 

 

 

2.6 Condition-Based maintenance of Floating LNG Critical Equipment 
 

 
FLNG takes liquefaction technology into a floating production system to exploit stranded 

offshore gas. Floating LNG concept have been briefly introduced in section two, with critical 

units, appropriate process configurations as well as critical equipment for FLNG operations 

being identified. Uptime availability of the liquefaction process unit is the highest priority of 

LNG operators, its importance in LNG value chain as reported by Zainal-Abidin et al. (2011) 

accounts for 30-40% of the overall LNG production cost. However, maintenance priority shall be 

directed to most critical equipment in the liquefaction plant. Gas turbines (Aeroderivative) as 

identified by Benyessaad et al. (2016) is the most critical equipment in FLNG liquefaction unit, 

accounting for (32%) failure criticality. Given such criticality, priority shall be given to this 

equipment in respect to maintainability, reliability, and its availability in the FLNG process unit. 

Scheffer and Girdhar (2004) highlighted how critical equipment could be identified in the 

process plant and recommends appropriate maintenance philosophy to be applied to them. As 
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described by the authors, critical machines are costly, very expensive to repair and have a longer 

repairing time, and since they are expensive, keeping a spare standby equipment could be 

unprofitable. 

 

On the other hand, better utilisation and operation of such critical equipment could saves energy 

and improve production. However, their failure can affect the entire plants’ safety and their 

shutdown curtails the production process. Perhaps, with 65% of the overall LNG failures 

associated with equipment (Forte et al., 2017), the maintenance cost, reliability and availability 

of critical equipment are some of the most important concerns to the LNG operators. As 

such, this makes a predictive maintenance (PdM) philosophy more suitable for critical equipment 

such as gas turbines in floating LNG (Scheffer and Girdhar (2004). PdM seemly provides a 

smooth operation of offshore platform by advanced maintenance prior to the occurrence of 

failure. It plans for more advanced intelligent maintenance actions and enables assess to 

degradation properties of facilities operated in poor environment like offshore platforms (Hwang, 

2015). This enables further quantification of health condition parameters of a system and/or its 

components that are continuously monitored whilst being in operation (Kothamasu et al., 2006). 

 

The cost of maintaining gas turbines is significantly higher than its original purchase cost (Wan et 

al. 2018). For instances, SIEMENS version (V94.3A) gas turbine is estimated to cost 51,340,000 

Euros based on its maintenance schedule in its 40 years life expectancy. This cost is 17.8 times 

to its initial purchase cost, i.e. 2,867,000 Euros (Aminyavari, et al., 2016). Although maintenance 

is substantial part of gas turbines life cycle, but the enormous maintenance cost has been the 

major concern for the gas turbine users (Wan et al., 2018) for ages. For instance, Thompson et 

al. (1989) estimated the cost of typical marine gas turbine (LM 2500) ranges between $300,000 

to $400.000. The general practice in maintaining for maintaining gas turbines is typically carried 
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out in a prescheduled manner (preventive) with the arrangement usually determined by the OEM 

irrespective of the actual condition of the engine (Depold and Gass, 1999; Wan et al., 2018). This 

indicates that overhauls usually take place when the turbines are either in perfect conditions or in 

a failure state (Zaidan et al, 2015; Wan et al., 2018). On this basis, while its uneconomical to 

schedule maintenance for equipment in a healthy condition, also its very risky to allow 

maintenance window until the failed state has been reached. This left gas turbines operators with 

no alternative than implementing maintenance to the equipment only on actual condition of the 

equipment using PdM. 

 

To meet the objectives of CBM implementation, the integration of various functional modules 

into a single architecture or framework is necessary. Several previous works in the academia 

proposed various CBM concept, frameworks, or architectures. Some of these architectures have 

been summarised by Hwang et al. (2018) as depicted in Table 2.5. However, the unifying 

standard architecture is Open Standard Architecture Condition- Based Maintenance (OSA-

CBM) designed by Machinery information Management Open System alliance (MIMOSA) 

(Gouriveau et al., 2016). Based on ISO Standard (ISO13374-2, 2006) OSA (Open System 

Architecture) CBM consists of seven functional levels/modules as depicted in Figure 2.5. These 

functional levels/modules include Data acquisition module which provides the system with 

digital data acquired from equipment using sensors or transducers. Data Processing module 

extracts the features that characterised presence of anomaly, initiation of degradation which 

represents the state of the monitored system. This is preceded by Condition assessment module 

which detects and compares real-time (extracted features) with some expected or known values. 

A diagnostic module further determines whether the monitored system or component is 

degraded or not, it also identifies the probable causes of failure. Prognostics module depends on 

the data issued from diagnostics module which enable it to predict future state of the monitored 
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system or component as well as estimating the time to failure or remaining useful life (RUL). The 

maintenance action or control is recommended by Decision Analysis module. The system may 

likely function until certain operational mission has been accomplished, the maintenance 

decision window afterwards recommends appropriate action based on RUL estimates. Finally, 

information from all previous modules for online or further usage will be received by 

presentation module. This is presentation interface which can be build inform of Human 

Machine Interface (HMI). 

 

Table 2. 5: Comparison of various system layers for CBM implementation (Hwang, 2018) 

 

 

 

ISO 13374 

 

 

ISO 13374-1 

 

OSA-CMB 

(Gouriveau et al., 

2016) 

 

 

Jardine et al. 

(2006) 

 

 

Chen at al. 

(2012) 

 

Data acquisition 
 

Data acquisition 
 

Data acquisition 
 

Data acquisition 
 

Sensor & Data 

acquisition 

  

Data manipulation 
 

Data processing/ 

Sensor module 

 

Data processing  

 

Diagnostics 
 

State detection 
 

Condition 

assessment/Condition 

monitor 

  

 

Condition  

monitoring 

  

Health assessment 
 

Health assessment   

Fault diagnosis 

 

Prognostics 
 

Prognostic 

assessment 

 

Diagnostics module   

Predicting RUL 

 

Prognostics  

actions 

 

Advisory 

generation 

 

Prognostics module 
 

Maintenance 

decision making 

 

 

Post-mortems 
 

Presentation    

Health 

management 
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2.6.1 Previous Related Work 

 
 

The research regarding application of CBM in Floating LNG facility first appeared in Gowid et 

at. (2015). A comprehensive survey has been conducted by the authors to investigate the factors 

affecting the profitability of floating LNG. More interest on Floating LNG developments and 

promising viability of CBM strategy prompted Korean government to fund a research project 

towards implementing CBM system in Floating LNG between 2013 to 2016. Cho et al. (2016) 

published the detailed research as well as the result obtained which focused on investigating the 

prognostics approaches/techniques to estimate the next failure time of offshore floating LNG 

compressor. Advances in FLNG developments and lack of detailed methods and validated 

models of existing CBM concepts/functional modules as well as insufficient reference work 

towards implementing CBM in offshore plant, recently motivated Hwang et al. (2018) to conduct 

another comprehensive survey on implementation of CBM on Floating LNG applications. The 

summary of these research and corresponding PdM maintenance philosophy investigated have 

been outlined in Table 2.6. 

The literatures clearly demonstrated the research gap regarding the application of predictive 

maintenance/condition-based maintenance on aeroderivative gas turbine used in FLNG. Thus, 

prompt the need for a comprehensive study to  develop a concise approach that integrate all the 

major CBM components on aeroderivative gas turbine FLNG mechanical driver, according to 

the requirements of popular CBM architecture.
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Table 2. 6: Most Prominent FLNG research works 
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(2018) 

 

 

 

 

 

 

 

 

Review 

Article with 

Case Study 

 

 

Vibration 

 

 

 

 

 

 

 

 

SCADA 

 

 

 

 

 

OREDA 

 

Reliability-Based 

 

Regression-Based 

 

Markov-Based 

 

Bayesian-Based 

 

 

 

CBM-Framework 

Bayes Classifier 

 

 

 

 

Monte Carlo 

Simulations 

 

 

 

FLNG 

Compressor 

 

 

 

 

 

 

FLNG Topside  

 

 

 

Unit/Module 

 

Inlet Facility 

 

Pre-treatment 

Liquefaction 

 

 

 

 

 

Prognostics 
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2.7 Condition Based Maintenance of Aeroderivative Gas Turbine Based on Open System   

Architecture 

 
The literature on OSA-CBM architecture has been extensively covered by Thurston (2001) and 

Swearingen et al. (2007). Although more specific OSA-CBM framework on rotating equipment 

was investigated by Tahan et al. (2014). OSA-CBM framework is critical in achieving viable 

maintenance objectives as well as the successful implementation of both diagnostics and 

prognosis process modules (Tahan, et al., 2017). As such, on this basis, more effort would  be given 

to address various techniques/components of OSA-CBM architecture that leads to the success of 

CBM of aeroderivative gas turbine in FLNG applications. 

 

OSA-CBM framework is more unifying standard architecture for the implementation of CBM, 

and therefore considered and adopted in this study. It’s apparent that the concept of CBM 

involves sequence of activities as illustrated in Figure 2.10, whereby equipment deterioration 

information is collected as featured sensor data useful features are extracted with the aim system 

downtime by implementing an intelligent diagnostics and prognostics models (Tahan et al. 2014; 

Lee et al. 2006). Figure 2.10 shows   the overall architecture of OSA-CBM for rotating machinery. 
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Figure 2. 10: The architecture of OSA-CBM platform (Tran and Yang, 2012) 

 

 

 
 

 2.8 Summary 

This chapter presented a comprehensive overview of the literature regarding application of 

condition-based maintenance applied to aeroderivative gas turbine used as floating LNG 

mechanical driver. Basically, the onshore LNG facility is a well-established matured process, 

unlike floating LNG which is relatively new concept. Also, the offshore maintenance is more 

critical compared to land-based maintenance due to factors like accessibility and environmental 

conditions. With these constraints in mind, the chapter briefly introduced the state-of-the-art 

maintenance regime applied to the critical equipment in floating LNG process. The chapter 

begins by introducing the concept of FLNG, identifying appropriate liquefaction process designs 

as well as various liquefaction process drivers. Gas turbine was also identified the most suitable 
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FLNG liquefaction driver. On that basis, a review on its application on LNG industry has been 

conducted, which give an insight for its limited application in LNG process plant both onshore and 

offshore despite its capabilities. 

 

Nevertheless, since ADGT is considered as most suitable for FLNG applications, the engine is 

expected to operate with highest reliability and availability with minimum breakdown. 

Therefore, appropriate maintenance is critical to the availability of ADGT. Hence, challenges 

regarding maintaining equipment in an offshore environment were discussed. Various 

maintenance practices were briefly introduced, in which predictive maintenance is identified as 

most suitable to maintain ADGT in offshore applications such as FLNG. To implement CBM, 

various failure root causes were briefly explained. Then preceded by reviewing the state- of the-art 

techniques such as data acquisition, data processing, diagnostics and prognostics used for 

implementation of CBM. 

 

Much previous research effort dealt with various aspects of CBM, yet there is still lack of 

research on the overall solution that integrate all the CBM functions as an entity especially in the 

offshore environment. Majority of the previous related work focused on some parts of CBM,  either 

diagnosis or prognosis without proper integration of the framework or system architecture. This 

indicates the need for more integration of the function and modules required for the 

implementation of CBM as an entity. Until recently with a novel work conducted by (Hwanga, 

et al., 2018), there has been an insufficient framework or architecture that integrates various 

function of CBM module in an offshore O&M. However, although various equipment has been 

integrated in a framework that establishes CBM in the LNG FPSO, yet one of the most critical 

equipment in the FLNG process plant, i.e., liquefaction prime mover (Aeroderivative gas 

turbine) has not been considered in the studies. 
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Chapter 3 

Gas Turbine Model and Simulation 

3.1 Introduction 

Aeroderivative gas turbine is essentially vital and critical to floating LNG performance and 

revenue generation. As mentioned in Chapter 2, FLNG plants performance strongly depends on 

availability and reliability of critical equipment/systems (aeroderivative gas turbine) as well as 

their safe operation and cost effectiveness in maintaining them. As such, the cost of maintenance 

and machine availability are two most important concerns to gas turbine equipment owners 

(Janawitz et al., 2015). Hence, the need for a robust, effective and efficient maintenance program 

that will reduces the owner’s cost whist increasing the equipment availability is necessary. 

However, for effective implementation of maintenance regime in a plant, the need for 

maintenance is usually predicted on actual or impending failure on the equipment, depending on 

the plant’s monitoring approach and maintenance strategy adopted. 

Condition based maintenance (CBM) help operators in meeting their production target by 

avoiding unnecessary maintenance actions and maintaining the condition of gas turbine 

components at an optimal level (Kaikko & Sarkomaa, 2003). Implementing an intelligent 

diagnostic system for gas turbines maintenance reduces excessive outages and costly component 

replacement unnecessarily, by calling for early corrective action before problems transforms to 

failures (Ajoko and Adigio, 2012). Various condition-based maintenance 
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technologies have been developed for detection and classification of different engine faults. 

Among them is model-based approach, which uses first principles thermodynamics equations 

to predicts gas turbine’s failures. This model is essential when the necessary gas turbine 

operational data or commercial diagnostic simulation software is not  available. Thus, simulation 

model can be used for performance evaluation of gas turbines, with quest to reduce unplanned 

down time in the plant. 

 

3.2 Objectives for Modelling Gas Turbines 
 

 

Various objectives prompt analysts and practitioners to model and simulate gas turbine system. 

Perhaps, diagnostics and prognostics of engine, sensor validation, plant/system identification as 

well as overall system control model, forms the bases of GT modelling and simulation. In 

addition, clarity of the modelling goals and objectives, leads to the development of a successful 

gas turbine diagnostics model. Some of these objective involves; 

 

3.2.1 Monitoring the State 

 

One of the purposes for creating gas turbine models is aimed at monitoring various states and 

condition of the system. This can be achieved using system’s parameters such as temperatures, 

mass flow rate, pressure, and vibration etc. Therefore, condition monitoring is fundamental tool 

to predictive maintenance philosophy. Perhaps, condition monitoring on gas turbine engine 

detects anomaly condition of the system, identify, and isolate the faulty component on the system 

and evaluates a potential effect of the failed component to the entire system (Wang et al., 2011). 

State monitoring serves as essential tool that indicates potential failure in advance and inform 

operators via warnings to take appropriate maintenance action (Clipton, 2006). 
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Robust health monitoring of the system is critical to the maintenance planning. Careful condition 

monitoring yield considerable benefits in reducing production lost, minimises maintenance cost 

and improve efficient and seamless operation of the gas turbine engine. Therefore, good 

monitoring through continuous controlled gas turbine through sensory parameters (temperature, 

pressure, vibration etc) and quantitative event information obtained from critical component of 

the engine guide operator’s decisions. It also enhances operational excellence, minimises the risk 

of potential failure and significantly reduces maintenance cost. In short, good condition 

monitoring shall be robust to detect the current state of the system, diagnoses anomalies and 

predicts an incipient system’s failure that has propensity in reducing system’s performance, 

occurrence of undesired trips and lost in production and fatalities. 

 

 

 
3.2.2 Fault Diagnosis and Isolation 

 

Gas turbine model is useful in detecting fault and diagnosing system failure. Operators and 

researchers monitor engine health condition by performing diagnostics and prognostics using 

online/offline modelling and simulations. Perhaps, system failure can be predicted, detected, and 

prevented with the help of robust model. Diagnosis basically involves fault detection, isolation, 

and identification when it occurs (Jardine et al., 2006). Hence, diagnosis is vital tool in restoring 

GT engine to normal state thereby preventing critical loss or damage to the machines and 

humans. Modelling also enables operators when shifting maintenance strategy from active 

(preventive) to proactive (predictive) maintenance process (Lee et al., 2011). Perhaps, the 

underpinning objective of this study lies on identifying and integrating various methods for the 

successful implementation of fault diagnosis and isolation model for aeroderivative gas turbine.
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3.2.3 Sensor Validation 

 

Sensors plays an important role in monitoring and controlling industrial plants. Thus, monitoring 

and control process of plants considerably depends on accuracy and reliability of sensors. In 

general, sensor validation enhances reliability, availability, and operational cost effectiveness of 

plants. Considering the profound importance of sensor in vast industrial applications, 

considerable research effort has been made on sensors and sensor validation. Palme et al. (2011) 

performed a comprehensive study on sensor fault detection and isolation using black-box 

Artificial Neural Network model. 

Sensor validation is critical to gas turbine model. Perhaps, as discussed in section 2.5.1, condition 

monitoring is essential to gas turbine availability, reliability, and maintainability. However, 

implementation of dependable diagnostics and prognostics models significantly depends on the 

robustness of data acquisition. Data is essential for monitoring equipment performance, and 

sensors plays a vital role in captures dynamics and performance characteristics of the system. 

The gas turbine condition parameters are usually acquired via 

sensory devices attached, which generate voluminous data that can be used for predictive 

maintenance modelling purposes. Therefore, given the criticality of sensors on gas turbine 

condition monitoring, strengthening the validity, accuracy and reliability of data acquisition 

components especially sensors often improve the robustness of predictive maintenance 

implementation (Asgari, 2014). 
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3.2.4 Model Identification of Gas Turbine Engines 

 

Identification of gas turbine engine tend to be a difficult task due to its nonlinear as well as 

system dynamic characteristics. Modelling essentially contribute to gas turbine system 

identification. System identification refers to the methodology for building mathematical models 

of dynamic systems given the measured system’s input and output parameter. Although, it’s 

worth noting that despite significant research effort regarding gas turbine system identification 

over past decades, accurate and reliable model for gas turbine is still requited for Model 

identification purpose (Asgari and Chen, 2016; Asgari, 2014). 

 

 
3.2.5 Design of Control System 

 

Gas turbine models may be constructed for designing or optimising control system for gas 

turbines (Asgari, 2014; Asgari and Chen, 2016). The control system is critical to gas turbine 

operations. For instance, the efficiency and safety requirement of gas turbine significantly 

depends on the robustness of its control system. Therefore, gas turbine model enables design 

simulation of GT control system (Shia and Chen, 2016). Gas turbine has different operational 

stages under different conditions that requires different functional controller. Generally, control 

system monitors and control system dynamics by comparing input and output of sensory 

parameters such that any deviation from desired performance will be corrected using feedback 

mechanism (Burns, 2011). Recently there have been significant interest and research advances on 

gas turbine control. Seok, et al. (2017) recently proposed a noble advanced predictive control 

model for aircraft and power system gas turbine engine. The predictive model controls and 

maximises system performance and enhances its control against anomalies and transient system 

dynamics variations. 
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3.3 Challenges and Significance of Gas Turbine Model in LNG Process 

Gas Turbines are complex systems, with an array of different operational configurations 

and supporting infrastructures. This is prominent especially when compared with other 

rotating equipment’s design type, number of components, number of shafts, and functional 

dynamic cycles (Forsthoffer, 2017). It is the most complex system among 

turbomachinery systems. (Kulikov and Thompson, 2005; Giampaolon, 2007 and Fourthoffer, 

2011). The complexity of gas turbine machine could be associated with many numbers of 

components and subsystem ranges up to 20,000 or more. The sophistication and complexity 

during its design and development potentially leads to some reliability challenges when 

deployed into the field for operations. Thus, the engine will potentially expose to an incipient 

failures and deterioration over its operational life cycle (Loboda, 2010). 

Gas turbine  engine is critical to LNG process plant and many industrial applications. Hence, 

considering the profound role of gas turbine in process plants, substantial effort has been 

placed by researchers and original equipment manufacturers (OEM) in testing various 

design configurations and investigating the performance characteristics of the machine 

through modelling and simulations. Moreover, gas turbine simulators play an important 

role in understanding changes in engine performance, effects of ambient conditions, 

deteriorations, and overall machine health. Hence, insightful information obtained from 

simulator enhances inform decision on the gas turbine performance and operations (Razak 

2007). Although, the complex dynamics of gas turbines make its modelling and control 

challenging and controversial. However, the quest for optimized models for different 

objectives and applications has been a strong motivation for researchers to continue to work in 

this area (Asgari, 2011). 
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3.4 Requirement for Gas Turbine Model in Optimising Engine Maintenance 
 

 
Gas turbine model can be used to optimised plant maintenance. This can be achieved by taking 

into considering how the condition of the components affects the thermodynamic performance of 

the engine. Usually, field operation of a gas turbine, exposes its components to some changes that 

progressively deteriorate engine performance, when compared to new or overhauled engines. 

These degradations can be associated with several performance mechanisms such as fouling, 

erosion, corrosion, abrasion, and foreign object damage (Kaikko & Sarkomaa, 2003) or 

mechanically oriented mechanisms such as misalignment, unbalance, bearing defects, loose 

components and lack of lubrication (Tahan et al., 2017). The condition parameters can be used to 

describe the degree of degradation. To develop a gas turbine model, both performance design point 

(DP) parameters of the engine and parameters obtained due to degradation (off design 

performance parameters) are essential. These parameters are applied in building a dynamic 

model of a gas turbine engine, using set of algebraic equations, that helps in explaining the 

steady-state features of the gas turbine thermodynamics, time delays, and a few relevant controls 

(Al-Dalwi and Vural, 2017). 

 

Accurate implementation of the gas turbine model could help determining the condition of the 

components as well as estimating the cost effects associated with excess accumulation of 

unavoidable non-recoverable degradations of component(s) (ageing) (Kaikko & Sarkomaa, 

2003). This generally assists in optimising maintenance process of the plant by determining the 

appropriate maintenance intervals through prognosis health management. Hence, increases 

availability and plant throughput. 
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 3.5 Theory of gas turbines operations and Brayton Cycle 

 

Gas turbine is an integral combination of steam turbine and internal combustion engine 

technologies that uses air and fuel to produce mechanical energy (Forsthoffer’s, 2017). Thus, as 

internal combustion engine, it converts chemical energy from mixture of fuel and air as working 

fluid to mechanical energy (Asgari, et al., 2011). Figure 3.1 shows a typical single- shaft gas 

turbine with its major components (compressor, combustor, and turbine). The set of these 

components are usually referred to as engine core or gas generator (GG). Both compressor and 

turbine are connected by the central shaft which rotate them. The gas turbine system operates 

according to thermodynamic cycle known as Brayton cycle (Chapman et al., 2016), which 

describes the overall working principles of gas turbine engine (Asgari, 2011). The Brayton cycle 

is often represented on both pressure-volume diagram (pV diagram) and temperature-entropy 

diagram (Ts diagram) as illustrated in Figure 3.2 (a-b). The ideal process of Brayton cycle can 

be regarded as a thermodynamic cycle that consists of an isentropic and adiabatic compression 

of a gas, followed by heat addition at constant pressure, and extraction of energy which results 

in gaseous expansion. In general, Brayton cycle consist of two Isobaric (constant pressure) and 

two Isentropic (equal entropy) processes. The combustor system and turbine involves isobaric 

process, while compressor and turbine expander form the isentropic process units (Boyce, 2006). 

Air is drawn and enters the compressor at section 1 and get compressed through section 4 upon 

passing through compressor. The compression process squeezes the air molecules together which 

increases the internal temperature of molecules as well as their pressure. Thus, the hot compressed 

air then enters the combustion chamber (combustor) at section 2 where it mixes with fuel and get 

ignited. The hot gases created from the ignited mixture are forced into the turbine at section 3 

and causes them to spin. Hence, the turbine capture energy from expanding gas which causes the 

driving shaft to rotate. This drives the compressor as well as the gas generator mechanical output 

such as alternators in power plant, larges compressors in LNG plants and pumps for various 
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industrial applications. 

 

 

 

 

 

 

Figure 3.1: Typical single-shaft gas turbine (Asgari, 2014) 

 

 

 

 
 

 

Figure 3.2: (a-b) Ideal Brayton cycle in pressure-volume and temperature-entropy frames (Asgari, 2014) 

b 

a 
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3.5.1 Gas Turbine Thermodynamics and Brayton Cycle 

 

Modelling gas turbine engine requires an understanding of the two main essential components. In 

short, developing a successful gas turbine model depends on the understanding of total system 

thermodynamics and the component level energy, as well as flow equations. In thermodynamic-

based gas turbine model, the system modelling is based Brayton cycle that anchors the dynamic 

relationship between pressure, temperature, entropy, and enthalpy (Chapman et al., 2016). The 

flow equations are discussed by Boyce (2006). They are based on simplified applications of the 

first law of thermodynamics to the air-standard Brayton cycle, with specific assumption that 

kinetic and potential energy remained unchanged during the cycle processes. The basic equations 

are summarised below; 

 

• Work for Compressor 
 

. 

Wc = ma (h2 − h1) (3.1) 

 

• Work of turbine 
 

. . 

Wt = (ma + mf )(h3 − h4) 
 

(3.2) 

 
 

• Total output work 

 

Wcyc = Wt  −Wc 

 

 
(3.3) 

 

• Heat added to the system 
 

. 
. . . . 

Q2,3 = m f  * LHVfuel = (ma + m f  )(h3) − ma h2 

 
(3.4) 

 

• Overall cycle efficiency 
 


cyc 

= (W
cyc 

/ Q
2.3 

) 

 

 
(3.5
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Equations 3.1-3.5 are the fundamental equation on which gas turbine physics-based models are 

driven from. that Brayton cycle efficiency depend on pressure ratio and turbine firing 

temperature. The underpinning linear relationship between pressure ratio and turbine firing 

temperature affects the overall cycle efficiency. Thus, increase in pressure ratio and turbine 

temperature increases the Brayton cycle efficiency. Although this cycle relationship is based on 

assumptions as highlighted by Boyce (2006) That; 

 

. . 

ma  m f 
 

cp & cv are constant and thus  remained constant throughout the cycle. 

 

Pressure ratio ( rp) remained the same in both compressor and turbine. 

 

All components operate at 100% efficiency. 
 

 

 
With these assumptions, the effect of ideal cycle efficiency as a function of pressure ratio for 

the ideal Brayton cycle operating between ambient and firing temperature can be deduced and 

expressed as; 

 
ideal 

= (1− 
1 
 −1 

) 
 

r  

 

(3.6) 
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Table 3.1: Definition of parameters in equations (3.1 - 3.6) 

 

Parameter Symbol Unit 

 

Mass of air 

 

 

ma 

 

kg 

 

Mass of fuel 

 

 

mf 

 

kg 

 

Specific heat at constant pressure 

 

 

cp 

 

J/kg K 

 

Specific heat at constant volume 

 

 

cv 

 

J/kg K 

 

Ratio of the specific heat 

 

 

 

 

__ 

 

Specific enthalpies 

 

 

h1-4 
 

kJ/kg 

 

Cycle efficiency 

 

 


cyc 

 

__ 

 

Work done by turbine 

 

 

Wt
 

 

J 

 

Work done on the gas by compressor 

 

 

Wc
 

 

J 

 

Total work output by the cycle 

 

 

Wcyc
 

 

J 

 

Heat added to the system 

 

 

Q2,3 

 

J 

 

 

Therefore, Ideal Brayton cycle is represented in Figure 3.3 with stages; 

1-2: Isentropic compression (Air compressor). 

2-3: Constant pressure heat-addition (compressed air with fuel in combustion chamber). 
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3-4: Isentropic expansion (combustion products in turbine).

4-1: Constant pressure heat rejection (exhaust).

2s & 4s: These stages demonstrate ideal situation. 

Figure 3.3: Ideal Brayton Cycle in Temperature-Entropy frames (Tavakoli et al., 2009) 

Ideal representation of gas turbine cycle can be further extended to defect the actual operational 

gas turbine cycles applicable to industries. These cycles are categorised as; 

Simple cycle (20-43%) 

Regenerative cycle (30-45%) 

Combine cycle (55-60%) 
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Simple cycle as shown in Figure 3.4a is highly flexible with low operating cost but constrained 

with poor thermal operational efficiency which is associated with exhaust gas discharge to 

atmosphere. The direct exhaust discharge could be prevented and utilised to improve the 

efficiency of the turbine cycle. This is achieved by preheating the compressor discharge air in 

the exchanger before reaching combustor as shown in Figure 3.4b. The cycle efficiency is also 

enhanced when gas exhaust is diverted to heat recovery steam generator (HRSG) to driver steam 

turbine or generate heat for plant heating processes. This process is known as combine cycle and 

is capable in enhancing efficiency up to 60% (Boyes 2006). 
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Figure 3.4: (a-c) Gas turbine Simple cycle, Gas Turbine regenerative cycle, and Gas Turbine combine 

cycle (Boyce, 2006)

a 
b 

c 
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 3.5.2 Modelling and Simulations of gas turbines 

 

Understanding the characteristics behaviour of gas turbine system is easily achieved by analysing 

operational data obtained using various sensors attached to the physical gas turbine system. Yet 

industrial data is expensive, difficult to obtain due to data censorship and security. Conversely, 

gas turbine behaviour analysis could be achieved through laboratory experiments. However, 

performing experiments on real system by stripping its components could be challenging and 

associated with rigorous fatigue, reliability challenges, error and damages. These constraints 

make it difficult and too dangerous and expensive to perform experiment on real systems. 

Alternatively, simulations can be done on model system to understand the effect of design 

characteristics and performance behaviour of simulated real system (Fritzson 2012). Gas turbine 

is normally modelled and simulated to achieve various objectives and purposes. Depending on 

the desired objective, researchers simulate gas turbine model for condition monitoring, fault 

detection and diagnostics studies. Some model the engine to understand a robust performance 

optimisation and system control, design configuration or validation of sensor configurations. 

Thus, clarity on modelling objectivity is the key towards obtaining good engine model (Asgari et 

al., 2016). 

 

Model represent a system behaviour given some independent input variable and dependant 

variables. Modelling basically is a process that produces a representation of a system. Model is 

an important representation of a system behaviour, hence it’s an approximation of working 

principles of system of interest. Modelling techniques produce a model that enable analyst to 

evaluate and predict system’s behaviour and effect s some changes using input variables. Model 

is built using first principles or set of relevant mathematical equations that defect system dynamics. 

Furthermore, model’s operation and performance evaluation is achieved by simulation 

technique. Thus, simulation enables analysts to obtain a robust model of the system through 

reconfiguration and experimentation until desired model characteristics is obtained. 



69  

This reduces the risk of failure or underperformance of the model. Simulation also provides an 

effective utilisation of resources during design phase that eventually produces cost effective 

systems without under or over utilisation of resources. In general, modelling and simulation 

answers critical questions about system design specification, performance behaviour, failure 

modes and its impact during operations and its entire life cycles. Therefore, analysts, 

practitioners and researchers use mathematical principles to perform modelling and simulation of 

a system to have the general understanding of the system. Moreover, testing system hypothesis 

and feasibility enables both researchers and operators to observe certain phenomena of the system 

over a given time range by approximating real time with via simulation process. Thus, modelling 

and simulation give account to the detailed performance metrics, evaluates various 

configurations and characteristics (Maria, 1997). 

 

Modelling and simulation have significant importance in yielding robust and reliable gas turbine 

engine during its design process. It’s also an essential component during turbine entire life cycle. 

Modelling and simulation enable performance evaluation, sensor validation, fault detection and 

troubleshooting to be carried out on the machine whist in operation. Thus, modelling and 

simulation of gas turbine tend to be an essential tool to OEMs, operators and researchers (Asgari, 

2011). Given the profound importance of gas turbine in the industrial applications, considerable 

research effort has been made by both researchers and manufacturers on modelling and simulating 

the behaviour and design characteristics of gas turbine engine. Thus, complexity and sensitivity 

nature of gas turbines operations, coupled with transitional thermodynamic changes of the 

operational parameters from cold flow to hot flow, a considerable research effort is required in 

building accurate and reliable model (Asgari 2013). However, to obtain accurate and reliable gas 

turbine model, some important factors shall be kept in mind. These factors include 

objective/purpose of the modelling, design type of the gas turbine, its configuration, the modelling 
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approaches as well as type and structure of the control system (Asgari and Chen, 2016). 

 

3.5.3 Factors Affecting Gas Turbine Modelling 

 
Some important factors must be considered whilst developing gas turbine model. As discussed, 

gas turbine design type, gas turbine configurations, modelling objectives and modelling 

approaches shall be carefully considered, to obtain reliable and accurate gas turbine model.  

 

3.5.3.1 Gas turbine design type 

 

Obtaining adequate information regarding various gas turbine designs is necessary and serves 

as the initial steps of gas turbine modelling. Various gas turbines exist according to their 

distinct application in the industry. Boyce (2006) described various gas turbine design types as; 

 

• Micro turbines that are suitable in premium and remote power applications, as well as 

grid support. 

• Aeroderivative with 35-45% efficiency and net power output of 2.5-50MW usually 

used in rigorous applications. 

• Frame type heavy duty gas turbines with 30-46% efficiency and corresponding net 

power output of 3-480MW. 

• Industrial type for low power output of 2.5-15MW and 30-39% efficiency. This 

turbine has wide applications in both power generations and petrochemical plants. 

 

• Small gas turbine for simple cycle applications with very low output (0.5-15MW) and 

efficiency of 15-25%. 
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Although, the five categories described above shared common component as illustrated in Figure 

3.1, yet modelling each gas turbine type has some distinct characteristics. For instance, the 

modelling variations between frame industrial gas turbine type and aeroderivative gas turbine type 

can be seen in Yee et al. (2011) work. 

 

3.5.3.2 Gas Turbine Configurations 

 

Another important factor that requires careful consideration in modelling gas turbine is the 

engine configurations. Although all gas turbines almost share common structure and 

thermodynamic cycle, yet some significant differences exist among the engines, especially when 

detailed investigation is carried out. For instance, to optimise gas turbine efficiency, various 

methods such as re-heating, inter-cooling, or heat exchange, a specific gas turbine configuration 

are used (Asgari, 2014). The physical and model construction of gas turbine also depends on shaft 

configuration type, as either single shaft heavy duty or twin shaft aeroderivative gas turbines 

(Yee et al., 2011). Gas turbines can be single shaft or split shaft (twin or triple) (Asgari, 2014). 

The major difference between the configurations is the connection of the compressor turbine to 

the power turbine (Yee et al., 2011). In a single shaft gas turbine engine, the compressor and 

power turbine are localised on the same shaft (Asgari, 2014). Perhaps there is only single shaft 

linking the turbine blades with the compressor and combustion chamber as shown in Figure (3.5a) 

(Yee et al., 2011). Conversely, in a multi-shaft or split shaft gas turbine, the compressor turbine 

(CT) and power turbine (PT) are physically (mechanical) separated and does not have a shaft that 

link them as shown in Figure 3.5b. The separation of CT and PT enable them to operate at different 

speeds. Single shaft type has lower maintenance cost but constrained with lower efficiency and 

very limited speed ranges, while multi-shaft is characterised with higher efficiency, wide speed 

range but require higher maintenance due to its complex control system (Boyce, 2006). 
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Figure 3. 5: (a-b) Schematics of gas turbines: (a) Multi-shaft aeroderivative GT (b) Single- shaft heavy duty 

GT (Yee et al., 2011) 

3.5.4 Approaches for Gas Turbine Model Construction 

Gas turbine models are designed and constructed according to the need and purpose as discussed 

earlier. Considerable research effort has been put in designing various models to suit some specific 

purposes. Perhaps, various modelling approaches have been adopted by researchers on specific 

tasks. Thus, modelling approaches can be broadly classified into two distinct categories, i.e., 

Blackbox and Whitebox models, although in between them forms another category known as 

Grey box. 
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3.5.4.1 White-box Model 

 

White-box model play a vital role in system modelling especially when all the necessary 

information is completely known. This type of model uses first principles. Thus, the 

mathematical equations governing the system dynamics and other relevant first principles laws 

(physical, chemical and mechanical, etc) are used to build the model (Asgari, 2013). Hence, as 

basic requirement, knowledge on rules and theories are the fundamental components and forms 

the bases of white-box model. As such, a comprehensive knowledge of the target modelling 

system is essential whilst implement white-box model (Yang, et al., 2017). It’s worth noting 

that most white-box models involve non-linear dynamic equations. Hence, linearization of non-

linear dynamic equations contributes significantly on obtaining satisfactory model. Given this 

requirement, various programs and applications such as MATLAB, Simulink and 

MATHEMATICA prompt very useful tools to handle linearization constraints. (Asgari et al., 

2014). 

 

White-box models has been useful tool for many decades for researchers. Perhaps, much effort 

has been placed by gas turbine research community to model GT engine using white box 

modelling technique. Several models with different level of simplification for the representation 

of gas turbines for dynamic studies were proposed in the research community. An excellent 

review on these models can be found in Yee et al. (2008). Among the earliest white box-based 

gas turbine model was introduced by Rowen (1983). The work involves developing a novel 

model of heavy-duty single shaft gas turbine, with the quest to investigate the power stability, 

developing dispatch strategy as well as proving a contingency plan for the system upsets. To 

achieve these objectives, the author developed a simplified model that has the capacity to cover 

full spectrum of gas turbine generator drive as well as capturing the appropriate generator 

characteristics. The author also discussed relevant issues affecting the modelling such as parallel 

and isolating operations, gas and liquid fuel systems, isochronous as well as droop governors. 
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Rowen’s model is very useful and laid a foundation for many researchers to develop variety of 

gas turbine models using different approaches. Although the actual Rowen model is limited to 

simple cycle and single-shaft gas turbines with generator drive, yet it serves as reference base 

for many gas turbines models. In an effort to investigate a simplified mathematical model of gas 

turbine for mechanical drive services with variable speed, Rowen (1992) work improved some 

limitations of Rowen (1983) model by adding some new features. Some of the new features 

include exhaust flow calculation, variable ambient temperature and modulating inlet guide 

valves (IGVs) which were not incorporated in the previous model. Hence, the improved Rowen 

model was simple, flexible, and fairly accurate, features that make the model robust for 

simulating any heavy duty single-shaft gas turbine. 

 

Based on Rowen’s model, Shalan et al. (2010) proposed a simple methodology to estimate 

parameters of single-shaft gas turbines model. These parameters were derived from both 

performance and operational data of the engine, which were further used for various simulation 

tests in Simulink/MATLAB environment. The results obtained in the study were compared with 

the existing relevant results in scientific literatures. Thus, verified the robustness of the proposed 

methodology and perhaps enables wider application of the method to any gas turbine size. 

Similarly, another parameter estimation was carried out by Tavakoli et al. (2009), in an attempt 

to modelled single-shaft heavy duty gas turbine based on Rowen’s model. Both operational and 

performance gas turbine data were used to develop the model which subsequently derived the 

model parameters. Simple physical laws and thermodynamic assumptions were also applied to 

approximate gas turbine parameters. Thus, by comparison, the result obtained in the estimation 

corresponds with the typical operational values. This study is useful for educational guide 

purposes, especially for trainers and students who are interested in gas turbine dynamic studies. 

In short, this serves as a motive to conduct a case study in section (3.5) of the report based on 

Tavakoli et al. (2009) work. 
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In a related research work, (Asgari, 2014) used white box model to simulate the transient 

behaviour of industrial gas turbine. The modelling was implemented in Simulink/MATLAB 

environment, and consequently the Simulink based-result obtained was compared with artificial 

neural network-based model (Black box). 

 

Many researchers also used white box to model low power gas turbines. Abdollahi and Vahedi 

(2005) studied low power single-shaft micro turbine. The researchers developed a generic model 

for the turbine that fits different flexible operational ranges. Simulink/MATLAB was used in 

modelling the system and the study yield suitable result what demonstrates suitability of dynamic 

analysis of microturbines to model the system given variable operating conditions. 

 

3.5.4.2 Blackbox Model 

 

In the circumstance where the information about the physics of the plant or system is completely 

unavailable or insufficient, a Blackbox modelling approach is used instead. The Blackbox model 

is used to discover the relationship between the system variables using the measured operational 

input data or data obtained from the system performance characteristics simulations (Asgari et 

al., 2014). Artificial neural network (ANN), as subset of the artificial intelligence, is one of the 

most important methods of modelling a system as black box (Asgari and Chen, 2016). 

Considerable effort has been put by many researchers to develop ANN-based models for various 

types of gas turbines. Some excellent research works has been carried out by Lazzaretto and 

Toffolo (2001); Ogaji et al. (2002); Bettocchi et al. (2004) and Spina and Venturini (2007). In 

addition, Asgari (2014) recently conducted one of the most comprehensive work regarding 

ANN-based gas turbine modelling. The author investigated novel methodologies for modelling, 

simulating as well as controlling gas turbines using ANN. Different types of gas turbine engine 

models have been constructed for start-up and steady state operation. Both physics-based 
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Simulink and ANN-based models were compared to predict dynamic behaviour of gas turbines. 

The study found that ANN has more potential to simulate start-up operations as well as dynamic 

behaviour prediction of the gas turbine compared to white-based Simulink model. More literature 

on ANN as well as its applications has been discussed in Chapter 4. 

 

3.5.4.3 Grey Box Modelling 

 

The grey box modelling is a hybrid model that incorporates white-box (stochastic model) and 

black-box (deterministic model). Thus, this model approach incorporates elements from residual-

based methods and parametric estimation methods (Park and Zak, 2003). In another words, that 

practical model of a system is optimised by deploying some specific knowledge about the system 

parameters, which integrates both the mathematical relations that describes the system and 

practical knowledge to enhances the modelling accuracy (Asgari and Chen, 2016).  

Some considerable gas turbine models were developed based on grey box modelling concept. 

Among these models include (Mohammadi and Montazeri-Gh, 2014) novel work, where a grey-

box identification model based on Weiner model was proposed by the authors to modelled and 

estimate the dynamic behaviour of a two-shaft gas turbine. The model was developed on 

assumption that the static non-linear part of Weiner model is known, then an innovative approach 

was introduced to improve the dynamic model flexibility. This strategy provides more accurate 

prediction of non-linear dynamic behaviour of complicated systems such as gas turbines. In 

another study, a gas turbine dynamic modelling was proposed Mehrpanahi et al. (2017). The 

authors modelled and analysed the behaviour of industrial gas turbine (MGT-30) in both loading 

and unloading conditions using grey box modelling concept. The modelling was achieved by 

combining the thermodynamic equations (White box) and the equations derived from the values 

of some key parameters of the system’s operation information, i.e., performance and off-design 
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conditions (Black box). The dynamic model obtained is useful in fault diagnosis. It also serves 

as simulator and testing platform for various controllers. 

 

3.5.5 Gas Turbine Model for Predictive Maintenance 

Gas turbines failure is often characterized with performance deterioration due to the health state 

degradation, and it does not recover without intervention. Two types of gradual degradations 

affecting the health state of gas turbine are structural degradation and recoverable degradation. 

Structural degradations is associated with wear and tear mechanisms in the parts exposed to high 

temperature, high stress, and surface contact. It usually occurs with a slow pace for many parts 

of the GT in different fault modes and it is nonrecoverable, i.e., the degraded parts should be 

replaced or repaired to retrieve the GT performance. The recoverable degradation emerges due 

to fouling, i.e., adherence and congestion of aerosol particles on the air foils and the surfaces at 

the frontmost parts of the gas path. The entire performance-based gas turbine’s diagnostics and 

prognostics process have been illustrated in Figure 3.6. More information about recoverable and 

nonrecoverable faults on the gas turbine performance deterioration can be found in (Kurz and 

Brun, 2000). 
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Figure 3.6: Gas Turbine CBM process-Diagnostics & Prognostics (Hanachi et al., 2018) 

 

To predict and diagnose failure on gas turbines (GTs), a performance-based degradation 

diagnostic modelling can be implemented using first principles. The Diagnostics modelling is 

the process of mapping and classification from the gas turbine performance parameter space to 

the fault space. In this instance, the conditional failure refers to circumstances when performance 

of the GT becomes unacceptable but can be operational. The implementation of the modelling 

can be achieved via three distinct steps:  

• System identification 

• Pattern recognition 

• Data model fusion. 
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The system Identification is the first step to implement on GT PdM/diagnostics modelling. its 

role regarding GT diagnostics is to discover the health state parameters that minimize the 

difference of the measured variables and those predicted by the model. This approach is 

applicable when a reliable GT model with sufficient information about the internal parameters is 

available. Basically, the models that utilizes system identification are mainly physics-based 

models. The approach finds the health parameters of the system by solving the mathematical 

inverse equation of the system model (Equation 3.7). 

x = G−1  (y, u, v)                                                         (3.7) 

 

 

Where: 

 

x = components of a fault vector  

 

y = includes performance parameters 

 

u = control input 

 

v = ambient condition 

 

To represent the health state of the parts, faults are introduced as a vector of numerical variables 

Δx into the sets of model equations. The Δx represents values of the component level fault 

symptoms e.g., loss of isentropic efficiency in the compressor. The fault severity could be 

identified through modelling Equation 3.7.  The components of a fault vector (Δx) may take 

different values within a defined numerical domain. The idea is to find the set of component level 

fault symptoms, i.e., changes in the health state Δx, that minimizes the modelling error regarding 

the actual measurements on GT performance. The fault severity is evaluated through this process, 

even for small values of faults, i.e., less than 1% deviation from healthy condition. The common 

practice often involves estimating the relationship between the fault magnitude and performance 

deviation with linearization of the gas turbine. The entire fault severity iteration process is 
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illustrated in Figure 3.7. 

 

 

 

Figure 3. 7: Fault diagnostics through the iterative process (Hanachi et al., 2018) 

 

Patten recognition is another important model approach, essentially utilized for gas turbines 

diagnostics when accurate physics-based models are not available for gas turbines. This approach 

mimics the natural learning process of humans to classify input data into classes as output, based 

on the information and relevant data features. Since this section dealt with physics-based models, 

more detailed on both pattern recognition and data fusion can be found in (Hanachi et al., 2018) 
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3.5.6 Case Study (Gas Turbine Simulink Model)  

 

The objective here is to produce a model of a gas turbine. This model would take the form of a 

set of equations that govern the dynamic behaviour of the gas turbine. The model would involve 

all those variables derived from dynamic equations. While it is conceivable to construct such a 

model from first principles, it is not economical to do so, given that a typical turbine might have 

several hundred of such variables to dealt with. However, despite these constraints, some 

research works implemented a scalable model for gas turbines. Hence, this case study is built 

based on Tavakoli et al. (2009) model’s procedures. This model is aimed at implementing a 

simplified and comprehensive gas turbine model using estimated and operational data. In this 

study, a 172 MW simple cycle single-shaft Heavy Duty Gas Turbine (HDGT) and its available 

operational and performance data were introduced and studied for deriving the parameters of the 

model. The model is successfully implemented and simulated by splitting the major GTs 

components into four categories, i.e. 

• Gas turbine  

• Valves and fuels systems 

• Turbine dynamics and delays  

• Temperature measurements 

 

 

 

 

 

 



82  

Table 3.2: Nominal Data of HDGT Selected for Modelling 

 

Parameter Symbol Unit 

  MW 

Nominal frequency 
GinP   Hz 

Turbine speed RPM   RPM 

Exhaust mass flow .

m   
Kg/s 

Exhaust temperature 
RT   C

  

Pressure ratio 
RP   - 

 

3..5.6.1 Model Equations and Data 

Based on distinct categories of the modelling, these equations form the bases in which model 

parameters were estimated. 

• Turbine Parameters 

Two quantities represent the behaviour of gas turbine section, i.e. 

➢ Exhaust temperature 

➢ Output torque  

As presented in Tavakoli et al. (2009), a compressor and turbine efficiencies can be represented 

based on Brayton cycle; 

Exhaust gas temperature  

1 1

2 2

1 1

( ) ( )

c c

c cs
c

T P
PR x

T P

 

 

− −

= = =                                                                                  (3.8) 
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1 1

3 3

4 4

( ) ( )

h h

h hs
h

s

T P
PR x

T P

 

 

− −

= = =                                                                               (3.9) 

 

Where: 

c =  compressor specific heat 

h =  Combustor, turbine ratio of specific heats   

Therefore; 

2 1

1
( 1)c

c

x
T T



−
= +                                                                                                     (3.10) 

4 3

1
[1 (1 ) ]t

h

T T
x

= − −                                                                                              (3.11) 

At nominal speed, the exhaust temperature can be represented as; 

.

4 (1 )fpuRT T D m= −  −                                                                                            (3.12) 

0.6 RE T=   

 

Where: 

D is the coefficient of the exhaust temperature block 

E is the coefficient of the exhaust temperature block 

RT  is the nominal temperature of the HDGT 

 

3.5.6.2 Output Torque 

Given Rowen’s linear response as well as nominal speed assumption, the output torque and 

mechanical power can be represented as; 

.

3 4 2 1[ ( ) ( )]Gpu ph pcP m C T T C T T= − − −  or                                                                   (3.13) 
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.

fpuGpuP A B m= +    at nominal speed                                                                     (3.14) 

 

Where: 

A and B are coefficients of the output torque 

GpuP  is the per unit output power and equivalent to p.u. torque.  

 

Table 3. 3: Typical Operating Data for Computing Turbine and Compressor Efficiencies 

 

Parameter Unit Value 

Output power MW 146.4 

Turbine inlet temperature C
  1100 

Exhaust gas temperature C
  532 

Ambient temperature C
  27.3 

Exhaust mass flow Kg/s 438.1 

Fuel - Gas 

Fuel flow Kg/s 8.34 

Lower heating value of fuel KJ/kg 43094 

 

3.5.6.3 Fuel system Lag and Valve Positioner 

The valve positioner moves actuator to a valve position corresponding to a set point, while fuel 

system of a gas turbine is designed to injects energy into the gas turbine. The valve positioner 

block has one parameter “b” which is usually given by the manufacturer. However, the fuel 

system is proportional to the product of the command signal ( ) and unit speed ( ). With the 

assumptions of linear response actuators and valves, the fuel flow changes directly with the 

output signal of the valve positioner. Although, a lag associated with the gas/oil flow in the pipe 

CEV N
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and fuel system manifold ( ) affects the fuel flows. Thus, according to Tavakoli et al. (2009), 

this lag can be approximated using; 

 

1
( )V T

P
T V

Q P v 






= 


                                                                                             (3.15) 

Where: 

vT  is the time constant of the lag associated with the container of the volume v . 

 

Table 3.4:  Estimated Minimum Fuel Flow and No-Load Consumption 

 

No load fuel flow (Kg/s) ~2.56 

Min fuel flow to maintain combustor flame 

(kg/s) 

~1.5 

 

 

Table 3.5: Operational Data for Fuel System Lag Time Estimation 

 

Fuel  Gas 

Fuel pressure (atm) 21 

Average temperature (K) 320 

Fuel piping approximate 

volume (m3) 

0.17 

~ (15mx6cm Radius Equiv. 

Cylinder) 

 

FST
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3.5.6.4 Time Lag and Compressor Discharge 

The behaviour of gas turbine forces its dynamic model to have small delays and lag time 

constants. As reported by Tavakoli et al. (2009), these time delays involve; 

Small time delay between fuel injection and heat release in the combustor, which is referred to 

as combustor reaction delay ( ). This delay is implemented in Rowen’s model after the valve 

system and it’s in order of some milliseconds.  

A delay between fuel combustion and measuring system ( ). This delay is generated by 

exhaust system and turbine to transport the fuel to the measuring point, which is in order of 

milliseconds. Although it depends mainly on the size of HDGT engine and average speed of the 

fluid.  

 

Table 3. 6: Operational Data for Compressor Discharge Lag Time Estimation 

 

Fuel Gas 

Average temperature (K) ~1050 

Discharge volume (m3) ~ 16 

 

 

 

CRE

TDE
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3.5.6.4 Temperature Measurement 

Controlling temperature in HDGT needs measurement of the exhaust temperature, which 

composes of; 

• Thermocouple  

• Radiation shield  

The excessive heat in HDGT is controlled by exhaust gas temperature out of the turbine via 

convection. Although, the radiation source in gas turbine itself causes error in the temperature 

measurement. To overcome this effect, radiation shield is used which reflects most of radiation 

away from the thermocouple and itself. The thermocouple is the temperature measuring device 

and has a lag time constant (  ) based on its type and design. This time constant can be easily 

extracted from thermocouple time response documents. Also, the radiation shield equipment 

imposes a lag according to its heat transfer that has been presented to the model. An 

approximated temperature at the tip of thermocouple represented by equation 3.16 will be used 

to estimate the radiation shield parameters (  ) (Tavakoli et al., 2009). 

        

2

2 1

1

1

1
.

measure

exhaust

A

T A A

CT A
s

h A

−

 +

+

                                                                                (3.16) 

Where; 

1A =  Total active area for convection heat transfer to the shield head. 

2A =  Area effective for convection heat transfer to the thermocouple tip. 

C =  Heat capacity of shield head 

h =  convection heat transfer coefficient 

 

TRT

 & SH SHG T
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Table 3. 7:  Data of Radiation Shield 

 

Parameter Symbol Value 

Shield Alloy - Stainless Steel 

Shield Head Diameter (cm) 
SHD  3 

Shield Head Length (cm) 
SHL  7.5 

Shield Head Thickness (mm) 
SHH  0.08 

Thermocouple Tip Length inside 

Shield (mm) 

tipL  16 

Convection Heat Transfer 

Coefficient (W/m2K) 

h  250 

Specific Heat Capacity per unit 

Volume (J/cm3K) 

spC  3.83 

 

3.5.6.5 Simulation 

The derived and assumed parameters generated in section 3.5.2 are summarised in Table 3.7). 

This data is used to simulate the behaviour of 172 MW HDGT. The model of HDGT is simulated 

against two distinct scenarios, i.e. (0.1% and 0.3%) speed step when operating in nominal 

conditions. Also, governor-speed droop of 4% is assumed for the simulation as indicated in table 

3.7. The simulation is conducted in Simulink/MATLAB environment and is illustrated in Figure 

3.8. 

 

 

 



89  

Table 3.8: Parameters of HDGT Model 

 

Parameters Symbol Value 

Speed Governor Gain W  25 

Speed Governor Time Constant (s) 
GT  0.05 

Fuel Demand Signal Max Limit max F  1.5 

Fuel Demand Signal Min Limit min F  -0.3 

No Load Fuel Consumption 
NLK  0.24 

Value Positioner Time Constant (s) b  0.04 

Fuel System Time Constant (s) 
FST  0.26 

Fuel System External Feedback Loop Gain 
FK  0 

Delay of Combustion System (s) 
CRT  0.005 

Transport Delay of Turbine and Exhaust System (s) 
TDT  0.04 

Compressor Discharge Lag Time Constant (s) 
CDT  0.16 

Gas Turbine Torque Block Parameters A  -0.158 

Gas Turbine Torque Block Parameters B  1.158 

Gas Turbine Torque Block Parameters C  0.5 

Gas Turbine Exhaust Temperature Parameters C
 D  413 

Gas Turbine Exhaust Temperature Parameters C
 E  313 

Radiation Shield Parameter 
SHG  0.85 

Radiation Shield Time Constant (s) 
SHT  12.2 

Thermocouple Time Constant (s) 
TRT  1.7 

Temperature Controller Parameter 
TCG  3.3 
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Temperature Controller Integration Constant ( C
 ) TCT  250 

Rated Exhaust Temperature ( C
) RT  522 

 

 

Figure 3.8:  Simulink-based 172 MW HDGT model simulation 

 

Scenario 1 

In this case, the speed deviation of 0.1% is simulated and Figure 3.10 shows the mechanical output power of 

the model against the speed deviations. Thus, in a steady state operation with 4% droop, a final value of 1.021 

p.u is obtained as indicated in Figure 3.10. Also, the exhaust temperature of gas turbine measure by the 

thermocouple is observed. It is a steady state temperature prior to the activation of temperature control, which 

is near 530
0C  and indicated in Figure 3.9.  
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Figure 3.9:  Exhaust temperature of HDGT after speed step of -0.1% 

 

 

Figure 3.10: Mechanical output power of HDGT after speed step of 0.1 
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Scenario 2 

In this case, the speed deviation of 0.3% is simulated, which suddenly leads to the activation of the temperature 

control. As indicated in Figure 3.11, The exhaust temperature increases for 70s until it reaches the value of 

almost 545 C
,  then the temperature control activated which forces the exhaust temperature to decline to its 

rated value of 522 C
. Also, the final value of 1.061 p.u. of mechanical power is observed as illustrated in 

Figure 3.12, which remains constant after the activation of temperature control.  In short, the temperature 

control decreases temperature at the expense of output power which helps in keeping is steady and constant.     

 

Figure 3. 11: Exhaust Temperature of HDGT after speed step of -0.3% 
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Figure 3. 12: Mechanical output power of HDGT after speed of -0.3% 

 

Although the focus of this study is on Aeroderivative gas turbines not HDGT as discussed in the case study, 

the simulations of ADGT is more complicated and complex. Therefore, given the classification diversity of 

gas turbine, some researchers attempted to simulate a generic model for gas turbines. However, simulating a 

generic model for gas turbines would be very difficult. Thus, variety of gas turbine models were built by 

researchers from different methodological perspectives to achieve specific research objective(s). However, to 

underpin the generic model of gas turbine for various modelling purposes, number of commercial and 

institutional patent computer simulation models softwares have been developed by researchers and OEMs. 

Amongst institutional gas turbine modelling softwares include TURBOMATCH, PYTHIA and DETEM that 

has been developed by Cranfield University (Ogaji, 2003). Commercially, PROOSIS is one of the most 

powerful industrial software for gas turbine performance modelling. It was the first industrial modelling 

software for gas turbine which was released in 2005 and commercialised in 2008 after European FP6 project 

VIVACE (Value Improvement Through a Virtual Aeronautical Collaborative Enterprise) (PROOSIS, 2018). 

Industrially PROOSIS has wide range of capabilities and applications. It’s used in product design, condition 
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monitoring, optimisation, digital twin for process plants, aircraft engine and rockets as well as virtual 

commissioning applications (PROOSIS, 2018). Details on gas turbine modelling with PROOSIS has been 

explained by (Alexious, 2014).

3.6 Summary 

Understanding the characteristics behaviour of gas turbine system is easily achieved by 

analysing operational data. The operational data is usually obtained using various sensors 

attached to the physical gas turbine system. However, obtaining industrial data is often 

expensive and difficult due to data censorship and security. Conversely, gas turbine behaviour   

analysis could be achieved through laboratory experiments. However, performing experiments 

on real system by stripping its components could be challenging and associated with rigorous 

fatigue, reliability challenges, error and damages. These constraints make it difficult and 

too dangerous and expensive to perform experiment on real systems. Alternatively, 

simulations can be done on model system to understand the effect of design characteristics 

and performance behaviour of simulated real system. 

This chapter briefly discussed gas turbine modelling.  Some gas turbine thermodynamics were 

briefly introduced, including some important factors affecting turbine modelling. The chapter 

briefly explained some important considerations whist modelling gas turbine system such as 

modelling objectives, modelling methods, gas turbine types and configurations as well as 

approaches in modelling gas turbines. A case study is on modelling and simulation of HDGT is 

implemented based on Rowen model. The behaviour of simple cycle HDGT was simulated using 

thermodynamic laws and operational data and the result obtained could be useful in many 

turbine studies. Although these results would not be sufficient for the predictive maintenance 

modelling task of this thesis, due to lack of relevant feature information required by the model. 

Hence the next chapter which seek the deployment of alternative source of dataset to develop 

the models (Experimental dataset).
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  Chapter 4 

Gas Turbine Fault Classification/Diagnosis (Data-Based Model) 

4.1 Introduction 

Condition monitoring gains much attention in various industries due to quest for the increased 

reliability as well as the need to decrease the possible production loss associated with breakdown. 

Condition monitoring and fault diagnosis provides useful information regarding nature and 

localisation of failure thereby reducing the potential catastrophic failure and enhances adequate 

maintenance process planning (Moosavian et al., 2012). Condition  monitoring improves 

rotating equipment reliability and availability through early fault detection and diagnosis. In 

recent years, various methods have been proposed to implement robust condition monitoring 

to industrial machineries. Modern industrial applications operate with the aid of rotary 

components. Thus, rotating machineries becomes one of the most critical equipment to 

modern industrial applications. However, these rotary components are prone to potential 

fault due to continuous operation. Hence, robust condition monitoring of the machinery 

equipment provides promising improvement on system reliability, availability as well as 

overall safety. Therefore, considering the importance of rotating machineries to modern 

industrial applications, significant research effort has been made to understand the failures 

of critical rotating machinery components. In short, various condition monitoring models has 

been studied towards implementation of robust models to detect and classify common failures 

modes of rotating machinery (Kaveh et al., 2008). 

Fault diagnosis can be associated with pattern scenario of machinery condition. Therefore, a 

powerful pattern recognition tool, i.e., Artificial Intelligence (AI) has been identified and 

widely used by researchers in solving fault detection and diagnosis problems. Artificial 

Intelligence based fault diagnostics involve data processing, feature extraction and fault 

recognition. Given 
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failure complexity of certain industrial machineries, diagnostics and isolation of machinery faults 

require more sophisticated fault diagnostic tool. Unlike model-based/signal processing- based 

diagnosis tool, data driven-based fault diagnosis does not require robust expertise to make 

judgements on machines fault diagnosis/prognostics (Wang et al., 2011). Conversely, AI- based 

fault diagnosis models robustly detect and classify machine failures without dependency on 

human experience expertise (Caesarendra et al., 2011). 

 

Thus, AI-based fault diagnostic tools receive growing interest in the machinery research 

community (Gangsar and Tiwari 2017). A lot of AI tools and techniques have been widely used 

by researchers for fault detection and diagnostics programs. Some of these techniques are 

associated with convex optimisation, mathematical optimisation, and classification as well as 

statistical learning and probability-based methods. Given the powerful capabilities of AI and 

constraints and complexity of physical models of many machineries, AI-based machinery fault 

diagnostics attract the attention of researchers recently. Thus, vast research on AI-based fault 

diagnostics models appears in the literature every year. 

 

Fault diagnosis essentially uses information about machinery operational condition to detect, 

identify and isolate potential faults. The condition of the machine is monitored from the trend of 

historical operational data obtained from robust data acquisition process. The condition 

monitoring data can be of various features. Thus, it can be acoustic data, vibration data, oil 

analysis data, temperature and pressure among others (Jardine et al., 2006). The signal variability 

of the condition monitoring data prompts a serious challenge to directly obtain fault pattern. 

Hence, an effective signal pre-processing (feature extraction) prepares an essential useful feature 

data for robust fault classification model (Jardine et al, 2006 & Yang et al., 2005). Then, pre-

processed data serves to be the input to fault recognition/ classification model. Various 

techniques have been applied to fault diagnosis problem. Perhaps AI-based algorithms have 

shown more promising result and improved performance over conventional (statistical/model) 
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approaches (Jardine et al, 2006). These AI-based techniques generally involve mathematical 

optimisation, convex optimisation, classification, statistical learning as well as probability-based 

methods. Although both classification and statistical learning prompts the most widely used 

methods among these techniques. Thus, most widely AI-based algorithms applied to rotating 

machinery fault diagnosis involves K-nearest neighbours (Wang, 2016), support vector machines 

(Vapnik, 2013), Naïve Bayesian classifier (Baraldi, L. et al, 2015) and Artificial neural networks 

(Haykin, S., 2004). Similarly, Abed et al. (2016) identified feedforward neural network (NN), 

support vector machine (SVM) and adaptive neural fuzzy inference system (ANFIS) as 

commonly used AI based techniques in fault classification of rotating machines. Although, 

among the various pattern recognition methods employed for fault detection and condition 

monitoring of rotating machinery, NNs have been the most commonly used algorithm to classify 

training patterns from data sample (Yang et al., 2013; Abed et al. (2016). Figure 4.1 give an 

overview on the simple flow chart of AI based algorithms for fault diagnosis of rotating machines 

using both ANN and SVM models. 

 

With recent advances of AI-based algorithms applied on rotating machinery diagnosis, Deep 

learning approaches also began to attract much attention among CBM researchers. Deep learning 

most recent machine learning method offers greater capacity to overcome some flaws and 

inherent disadvantages of other conventional intelligent methods. It distinguishes itself by its 

robust learning capabilities. Thus, it learns valuable features from raw data without involvement 

of feature extraction methods. Perhaps, this enhances its less dependence on various feature 

engineering, signal processing and domain expert. The most prominent deep learning methods 

applied to machinery fault diagnosis recently involves both Deep Believe network (DBN) and 

convolutional neural network (CNN) (Shao et al., 2018). 

This chapter give an account of most popular Artificial Intelligence-based fault diagnosis applied 

to rotating machinery, with the specific reflection on how the algorithms were applied to rotating 
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machinery and their basic background theories. A case study is conducted to understand how 

good feature extraction techniques enhances the prediction performances of the models. Various 

feature extraction techniques will be employed to pre-process the data before fitting them into 

models for classification. Models are validated after the training and ranked according to their 

performances. 

 

4.2 Modelling  
 

4.2.1 Data 

 

The dataset used in this study has been collected by me and my DoS from Sheffield Low Carbon 

Combustion Centre Sheffield carbon (leading European facility for novel combustion and low 

carbon technology). The data used was taken from an experiment associated with a larger project, 

that aimed to characterize the behaviours and of gas turbine when exposed to different alternative 

fuels. fuel consumption and exhaust emissions. These alternative fuels that are comprises of 

conventional kerosene-based fuel Jet-A1 and bio jet fuels. Introduction of these fuels to operate 

gas turbine engines, subjects the engine into different level of performance severity. While 

certain fuel is safe to operate the engine optimally, another different fuel would severely damage 

the engine components over certain period of operation.   

 

In this study, condition monitoring strategies were explored for gas turbine engines using 

condition monitoring data (vibration and others). The aim here is to implement data-driven 

approaches and develop a reliable data-driven models that can describe the underlying 

relationships of the processes taking place during an engine’s operation. The condition 

monitoring strategy developed can serve as a diagnostic solution in detecting excessive vibration 

levels that can lead to engine component failure. Hence, we demonstrate its performance on 
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vibration data from an experimental gas turbine engine operating on different conditions. The 

data used were obtained by conducting various experiments by the centre on different Jet and 

gas turbine fuels with the aim to understand the underlining patterns that helps to intelligently 

classify various characteristics associated with engine exposure to different fuels. The facility 

used in testing different alternative fuels under different engine air-to-fuel ratios, is an auxiliary 

power unit of turboshaft gas turbine (Honeywell GTCP85-129), with its this operating principles 

follows a typical Brayton cycle, as described in Chapter 3. 

 

The process involves drawing of ambient air by the engine from the inlet (1 atm) through the 

centrifugal compressor, where it raises its pressure by accelerating the fluid and passing it 

through a divergent section. This leads to the further decrease of the fluid across the centrifugal 

compressor. The pressure would be increased across a second centrifugal compressor, just before 

being mixed with fuel into the combustion chamber, and subsequently ignited to add energy into 

the system (in the form of heat) at constant pressure. Then a high pressure and temperature gasses 

emerges and expanded across the turbine. These expanded gasses further drive two compressors, 

as well as 32 kW generator that provides aircraft electrical power and the engine accessories, 

e.g., fuel pumps, through a speed reduction gearbox. There is a presence of bleed valve (BV) in 

the engine, which enable the extraction of high temperature, compressed air (~232°C at 338 kPa 

of absolute pressure) to be passed to the aircraft cabin and to provide pneumatic power to start 

the main engines. This mechanism allows the engine to be tested on different operating modes 

as the air-to-fuel mass flow that goes into the Combustion Chamber can be changed with the 

Bleed Valve position. When the BV opens, a decrease in turbine speed will take place if there is 

no addition of fuel to compensate for the lost work. 
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A Sensor (piezoelectric accelerometer) was connected to the engine using probes attached to the 

engine support structure. The sensor is characterised with sensitivity of 10 mV/g, and sampling 

frequency at 2 kHz (fs = 2 kHz). Series of test were conducted with each test last for 110s 

duration. The fuels considered for the experiments were blends of Jet-A1 (TP10_Diesel and 

TP11_RedDiesel) and a bio jet fuel [hydro processed esters and fatty acids (HEFA)].  

The engine was set to operate on different modes of operations using various blends of fuels, to 

understand some performance behaviours of the engine. For instance, the engine experiences the 

highest overall amplitude level across the whole spectrum when operating under condition 50% 

Jet-A1 + 50% HEFA. Likewise, it exhibits the highest vibration levels throughout the whole 

frequency spectrum. Thus, explained how changes in air-to-fuel ratio affects the statistical 

properties of the datasets and consequently the frequency-domain response of the engine for the 

different fuel blends. Various experiments were conducted on different fuel blends and datasets 

obtained can be categorised into two main groups, i.e., those with some strong periodic patterns 

and those that do not share this characteristic (non-stationary). This can be distinguished clearly 

with case study on Jet-A1 fuel blends (TP10 and TP11). 

From the experiment above, a case study is established on two Jet-A1 fuel blends, namely TP10 

Diesel and TP11_RedDiesel respectively. Both fuels were tested on the gas turbine engine test 

facility and its underlining operational behaviours (features) on each fuel blend ware captured 

by the sensor and recorded under the conditions specified above.  

Some observable characteristics were emerged from the experiment in which both fuel blends 

(TP10 & TP11) exhibit different vibration characteristics under the same operation conditions. 

These observable changes could be attributed to the engine’s operational response on each fuel 

blend. Hence, guide our intuition to categorise the vibration responses under TP10_Diesel as 

steady-state operation and vice-versa for the TP11_RedDiesel. This can be clearer with 

exhibition of strong non-stationary trends on some time domain feature plots, and variations of 

periodic feature characteristics on frequency-domain features plots. 
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Engine’s feature responses data can be categorised as belonging to the engine’s “normal” 

condition correspond to fuels and air-to-fuel ratio combinations under steady-state, in which the 

engine experienced low levels of vibration, and “Abnormal” condition corresponding to air-to-

fuel-ration combination under transient state. This data can be used to implement and validate 

the accuracy of condition monitoring-based diagnostics model. Thus, the model can be able to 

determine whether new unseen data points are classed as “Normal” or “Abnormal, by comparing 

them with the distribution learned. As such, the model should be sensitive enough to identify 

potential precursors of localized component malfunctioning at a very early stage that can lead to 

total engine failure. Perhaps, going by the analogy of establishing fault diagnosis, its known in 

practice that some contaminated fuels cause serious vibration to the gas turbine engines, which 

consequently damages some components in the gas turbine. Thus, the two classes of fuels are 

analogous to a faulty and non-faulty labelled dataset, which is used to develop a model that 

distinguishes faulty and non-faulty fuel. Table 4.1 depicts the dataset obtained from the 

experiment and labelled as (TP10_Diesel & TP11_RedDiesel). Both TP10_Diesel and 

TP11_RedDiesel represents two different types of fuels that are passed into the gas turbine 

engine to understand some underlining operational behaviours of the engine when either of the 

fuels is used as a combustion fuel to drive the engine. Some of these behaviours (features) of the 

engine were recorded by the sensors and identified in the Table 4.2. 

The complexity of the processes taking place in a gas turbine engine from the context of 

dynamics, complex thermochemical, and other physical processes, and difficulty in obtaining 

system’s failures in practice, prompts it hard to provide a theoretical explanation of the physical 

context behind the engine’s responses acquired. This challenge is overcome with implementation 

of valid physics-based model that can predict the engine’s vibration response as an output of a 

system. Although the nature of the modelling/monitoring problem, when approached from a 

physics-based perspective, suggests that model validation would be a significant challenge. 

Hence paved the way to a data-driven strategy, since the system examined (engine in operation) 
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is treated as a black box. Therefore, the model established here follows a machine-learning 

framework for the condition monitoring of engines using the experimental data obtained. The 

framework can be used to detect patterns generated due to engine’s response to various fuels 

exposed. These could be achieved through keys steps; the data acquisition, data pre-processing, 

feature extraction, and development of a learning model and model’s validation.  

 

Table 4. 1: Raw Data Groups and Dimensions 

 

 
 

Groups 
 

Sub-groups 
 

Dimension 

 

 
Gas Turbine LBO 

 
TP10_Diesel 

 

1048575 X 18 

 

TP11_RedDiesel 
 

1048575 X 18 
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Table 4.2:  Sensors and features used in the experiment 

 
 

 

S/N 
 

Feature 
 

Sensor Data 

 

1 
 

Feature_1 
 

Accelerometer_x1 

 

2 
 

Feature_2 
 

Accelerometery_y1 

 

3 
 

Feature_3 
 

Accelerometer_Z1 

 

4 
 

Feature_4 
 

Accelerometer_x2 

 

5 
 

Feature_5 
 

Accelerometer_y2 

 

6 
 

Feature_6 
 

Pressure_1 

 

7 
 

Feature_7 
 

Pressure_2 

 

8 
 

Feature_8 
 

Pressure_3 

 

9 
 

Feature_9 
 

Pressure_4 

 

10 
 

Feature_10 
 

Pressure_5 

 

11 
 

Feature_11 
 

Microphone_1 

12 Feature_12 Microphone_2 

13 Feature_13 Volumetric air flow 

14 Feature_14 Volumetric volume flow 

 

15 
 

Feature_15 
 

Air inlet temperature 

16 Feature_16 Upstream air temperature 

 

17 
 

Feature_17 
 

Annular air temperature 

18 Feature_18 Exhaust air temperature 
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4.2.2.1 Sensor Types and Applications in Predictive Maintenance: 
 

 

Sensors plays an important role in predicting failures in gas turbines.  Some sensors can detect certain fault than others. 

Sensors can detect gas turbine faults, such as bearing damage, much earlier than others. Table (4.3) summarised types 

of sensors used in this research and their applications on gas turbines PdM.  

 

4.3 Sensor Types and Application in Predictive Maintenance 
 

 

Sensor Type 

 

Measurement/Uses 

 

Key Information 

 

Target Faults 

 

 

Accelerometer 

 

 

Vibration 

 

Low noise, frequencies up to 

30 kHz, well 

established in CbM 

applications 

 

Bearing condition, gear 

meshing, pump cavitation, 

misalignment, 

imbalance, load condition 

 

 

Microphone 

 

 

Sound Pressure 

 

Low cost/power/size, 

frequencies up to 100 kHz 

Pressure leaks, bearing 

condition, gear meshing, pump 

cavitation, 

misalignment, imbalance 

 

 

Infrared 

thermography 

 

 

Temperature 

 

Expensive, accurate, multiple 

assets/sources of 

heat at one time 

Change in temperature due to 

friction, load changes, excessive 

start/stop, insufficient power 

supply 

 

Turbine flow 

meter 

 

Volume (liquids & 

gases) 

 

Expensive and accurate. 

 

Essential in gas path analysis of 

gas turbine PdM. 
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4.2.2.2 Dataset Preparations 

 

The dataset was prepared through normalization, by dividing each time-domain and frequency-

domain acceleration amplitude by its corresponding maximum value, i.e., unit normalized, so 

that all amplitudes, corresponding to the different datasets, vary within the same range [0, 1]. 

This is preceded by removing some features that are irrelevant or carry very negligible 

information, essential in obtaining good robust model. Hence, all the features were plotted in their 

raw form to understand some underline characteristics of the signals. As depicted in Figure 4.1, 

It can be observed that some features do not change over their entire length. Therefore, by 

inspection, removing them is necessary. The Features that have been removed include Volumetric 

Fuel Flow, Volumetric Air Flow, Air Inlet Temperature, Annular Air Temperature,   and Exhaust 

Air Temperature. 
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Figure 4.1: Plots of useful features of TP11-Fuel to selected for the model 

 

The remaining sensor data retained has been further investigated using Fast Fourier Transform 

(FFT) and Power Spectral Density (PSD), with motivation to discriminate features with low 

information content as well as discarding features with similar characteristics. The FFT of 16 

remaining sensor signals has been depicted in Fig 4.2. 
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Figure 4. 2:  FFT and PSD of remaining 9 TP11 features 



109 

Although FFT spectra of some signals appeared to have similar frequency patterns localisation, 

however the PSD give more clear frequency patterns, which significantly helps in selecting the 

appropriate features for the models. Both FFT and PSD helps in revealing more signal patterns, 

that are not clearly visible in time domain. Hence guide the selection of the features with 

significant information content.  The features selected for the modelling include; 

• Accelerometer_x1

• Accelerometer_y1

• Accelerometer_z1

• Accelerometer_y2

• Microphone_1

• Microphone_2

Visualising Figures 4.1-4.2, Pressure_1 to Pressure_5 signals have negligible fundamental 

frequency harmonics as revealed by FFT and decaying patterns as demonstrated by PSD. This 

indicate that the signals do not carry much significant information for the models, hence 

discarded. Both Microphone_1 and Microphone_2 contained a decaying signal, but have some 

frequency fundamentals as depicted by their FFTs. This prompted their usefulness and therefore 

selected for the model.
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4.3 Models Implementations for fault diagnosis 
 

The data obtained and selected above is used in developing machine learning (Data-Driven) 

models that are capable in classifying two distinct types of fuels (TP10 and TP11). The six 

features obtained could not be feed into the model directly due to inherent noise contained in the 

dataset. Therefore, data pre-processing is essential in yield high performing model. Further, when 

the right features have been extracted, various supervised machine   learning models would 

be developed to handle the problem at stake. These models are developed according to the 

techniques employed in restructuring the raw dataset to increase nonlinear relationship between 

the feature vectors in the dataset. In addition, some data pre-processing/feature extraction 

techniques are employed, such as Principal Component Analysis and Signal Processing to extract 

the features that are more relevant to the models. Hence, this work has been carried out according 

to the feature extraction technique involves. First, the dataset is restructured to obtain more X 

features with many dimensions. This will increase the correlations among the feature vectors. 

The high dimension feature vectors are reduced to some more relevant components that 

contained useful information using PCA. In short, the overall models are categorized as; 

 

• PCA-based 

 

• Signal Processing Based 

 

o Time Domain Based 

o Frequency Domain Based 

o Time Frequency Domain Based 

 

• Deep Learning Based 
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Figure 4. 3:  Flow diagram of Modelling Processes 

The Figure 4.3 illustrated the entire modelling process and the relationships between the models. 

Obviously selecting a single model for the training and validation could not justify the suitability 

of that model to the specific problem in context.  In short machine learning algorithm works best 

for every problem, and this is more relevant for supervised learning Predictions. Therefore, 

various models were introduced to verify the best model with highest prediction accuracies. 

However, when variety of machine learning algorithms involved, searching on the most suitable 

algorithm prompts often challenging. Hence, this paved the way in trying different algorithms 

whilst taking into considerations some factors, such as; 

• the size, quality, and nature of data. 

• The available computational time 

• The urgency of the task; and 

• Purpose and objectives of the modelling. 
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4.3.1 Model-1 (Principal Component Analysis Based) 

 

The PCA based model developed involves the process of data restructuring, normalisation, 

dimension reduction and as well as Artificial Neural Network model architecture. The modelling 

results obtained are summarised in Table 4.10. The brief overview on the models are;  

 

4.3.1.1 Modelling Objectives 

Principal Component Analysis (PCA) is one of the most used algorithms in supervised and 

unsupervised machine learning developments, depending on the problem in context. It’s 

essential across a variety of applications, such as exploratory data analysis, dimensionality 

reduction, information compression, data de-noising, and much more. It apparent that while 

working on various machine learning techniques for Data Analysis, we deal with tremendous 

number of variables, depending on the problem at hand. Often most of the variables are correlated 

with each other, and in such cases, fitting the model to the dataset significantly results in poor 

accuracy of the Model. Therefore, Principal Component Analysis technique is used here; 

1. To helps in reducing the dimensionality of the dataset and converts set of correlated 

variables to non-correlated variables. 

2. To finds a sequence of linear combinations of variables. 

3.  As a tool for better data visualization of the dataset used data, to reveal the correlations 

between each component.  

4. Used as important tool for data interpretation and variable selection for the overall model 

development. 

 

 

 



113 

4.3.1.2 Data Restructuring 

Originally each dataset has dimension (1048575 X 18) before discarding the non-useful features, 

as explained in Section 4.2.1. Since only 5 features were selected from each dataset, then new 

dimension of each dataset will   become (1048575X6).   However, each dataset needs further 

restructuring to increase the correlation between the feature vectors in each dataset. On that basis, 

the summary of TP10 dataset restructuring as well as changes in dimension for X features has 

been illustrated in Table 4.4. 

As indicated in Table 4.3, steps have been used in restructuring the dataset. The steps refer to the 

alignment of each feature vector in horizontal orientation end to end to represent and observation 

of a class labels. For instance, 10 steps have been used in Table 4.4, which indicated lining 10 

datapoints of each 6 features in horizontal orientation end to end to form 60 datapoint. Hence 

represent the class in which the fuel belongs to (Y). The loop continues with the next 10 steps of 

datapoints along the entire length of the dataset. The overall process changes the dimension of 

X_dataset from (1048575 X 6) to (174763 X 60). Same process 

continues by changing the datapoint steps between (20, 30, 40, 50 and 60) as indicated in Tables 

(4.4-4.9). 

4.3.1.3 Normalization 

Normalisation is an important technique in data pre-processing stage, it’s apparent that the data to 

be modelled constitutes of different ranges of scales. Perhaps, within the predictor features, there 

is often differences between the maximum and minimum values. Normalisation scale down 

variation in features in such away when it’s performed the value magnitudes are scaled to 

appreciable values. This practice is very important especially considering that the restructured 

data has high dimensions which must be reduced to discard the irrelevant features. Thus, PCA 
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requires the features to be normalised, likewise the subsequent neural networks algorithms need 

normalization which optimises and enhances quick convergence of the algorithm. Thus, 

minimising the effect of large magnitude of one predictor dimension in respect to others, a 

scenario that leads to slow convergence (Kotsiantis et al., 2007). Among the most common 

techniques for normalisation (Min-Max and Standard-Scaler), Min-Mix is used for this work. 

The Min-Max technique rescale every feature to a scale between [0,1]. The Min-Max 

normalisation of dataset is computed using the following formula: 

 

 
 

 

(4.20) 

 

 
 

4.3.1.4 Dimension Reduction 

 

Analysing complex and multi-dimensional dataset would be to a difficult task. Likewise, 

visualising complex or multi-dimensional dataset. Perhaps, the difficulty in visualisation and 

computation increases with increase in dimensions. However, viable solution that overcome 

dimension complexity of data is achieved by removing the redundant dimensions (features) and 

keeping the most valuable dimensions (features). Feature selection techniques and algorithms 

were extensively discussed in Chapter two, however, iterating its profound importance here is 

imperative as its essential in transforming patterns from the data and extracts valuable 

information from the data table. Further, the data is subsequently express useful information 

to a new set of orthogonal variables known as principal components. Thus, reducing the 

dimensionality the dataset. 

 

The structured dataset obtained from Section 4.3.1.1, has been transformed further by 

reducing its dimensions into various principal components as indicated in tables 4.3, which are 
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further fed into machine learning classifier for subsequent classifications and predictions. 

Various PCA components were selected (5, 10, 15, 25 and 30) for each datapoint steps (10, 20, 

30, 40, 50 and 60) with each PCA component is used for classification task, hence the 

corresponding result for each modelling is indicated in Tables 4.3. 

 

4.3.1.5 Classification Model 

 

The Principal Components obtained in Section 4.3.1.3 are fed into Artificial Intelligence 

classifier. Various AI classifiers exist for supervise learning tasks. However, by convention 

Artificial Neural Network (ANN) and Ensemble learning based Extreme Gradient Boosting 

classifier (XGB) have proven performance, compared to other classifiers.  Hence both ANN and 

XGB are used in this work. 

 

ANN is based on Perceptron and Feed Forward Neural Networks (FFNN) with back propagation 

gradient descent learning algorithm, which is used for updating the weights vectors. Various 

ANN and XGBoost Architectures were used as illustrated in Tables 4.4-4.9, depending on the 

datapoint steps as well as the numbers of PCA components used. For instance, when 10 datapoints 

steps and 5 components were used, an architecture with 3 fully connected layers (1 input, 1 hidden 

and 1 output) is used. The Input layer consists of 5 neurons, hidden layer consists of 3 neuron, 

and 1 neuron has been assigned to output layer. Weights and biases in each layer have been 

randomly initialised and used to compute the target output values. The learning rate is also initiated 

with a minimal fixed value and kept constant until the convergence of the training model. Two 

activations functions were used with ReLU formed both input and hidden layer. The output layer 

has Sigmoid as its activation function. The dataset for the model has been split into both training 

and test sets. Training/learning takes 80% of the dataset while the remaining 20% of the dataset 

is assigned for testing. The training rans through 300 epoch (iteration) and converges afterwards. 
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The capabilities of ANN in classifying various non-linear scenarios in the data is harnessed in this 

model to perform binary classification of two different types of fuels used by gas turbine. The 

results of the modelling are presented in Table 4.4-4.9. 

 

 

 

 

 

 

Figure 4. 4: ANN Model Architecture
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Training/learning takes 80% of the dataset while the remaining 20% of the dataset is assigned for 

testing. The training rans through 300 epoch (iteration) and converges afterwards. The 

capabilities of ANN in classifying various non-linear scenarios in the data is harnessed in this 

model to perform binary classification of two different types of fuels used by gas turbine. The 

result of the modelling has been presented in Table 4.4. stands for eXtreme Gradient Boosting. 

 

Another classifier used in this work is XGBoost (eXtreme Gradient Boosting). The name xg 

XGBoost refers to the engineering goal to push the limit of computations resources for boosted 

tree algorithms., hence a reason why many people use XGBoost. The key motivation behind 

deploying this algorithm in this study is to herness the capabilities   of   algorithm’s robust 

Execution Speed and enhanced Model Performance. This is essential due to some feature that 

ranges from Sparsity towards automatic handling of missing data values, parallel computations 

and Block Structure capabilities to support the parallelization of tree construction. This ensured 

continued Training, such that one can further boost an already fitted model on new data. Various 

PCA component are fed into this classifier, depending on the datapoints steps and number of 

PCA components. Although the results obtained in this study with XGB classifier is not as robust 

as ANN, yet the algorithm proven its capabilities when in achieving good results as illustrated in 

Table 4.4. 
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Table 4. 4: PCA-based Models (10 datapoint arrangement with PCA Components) 

 

 
 

Steps 

 

Dimension_X 

 

PCA 

 

Features 

 

% 

PCA 

 

Model 

 

Training 

 

Test/Validation 

     

ANN 
 

0.7359 
 

0.7365 

     
XGB 

 
0.744 

 
0.741 

  
5 0.729 

   

10 209716 X 60    
ANN 

 
0.8237 

 
0.8212 

   

10 
 

0.810 
   

    XGB 0.808 0.805 

     
ANN 

 
0.8348 

 
0.8335 

   
15 

 
0.865 

   

    XGB 0.807 0.805 

     

  ANN 0.8859 0.8863 

  

20 
 

                  0.898 
  

  XGB 0.816 0.812 

   
ANN 

 
0.9069 

 
0.9071 

  

25 
 

                  0.925 
  

  XGB 0.835 0.832 

   
ANN 

 
0.9197 

 
0.9191 

  

30 
 

                  0.947 
  

  XGB 0.840 0.836 
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Table 4.5: PCA based Models (20 datapoint arrangement with PCA Components 

 

 
 

 

 

Steps 

 

 

Dimension_X 

 

PCA 

 

Features 

 

 

% PCA 

 

 

Model 

 

 

Training 

 

 

Test/Validation 

   

 

 

 
5 

 

 

 

 
0.699 

 

ANN 
 

0.7364 
 

0.7404 

 

 

XGB 

 

0.738 
 

0.742 

 

 

 

 

 

 

 

 

 

 

 

 

 
20 

 

 

 

 

 

 

 

 

 

 

 

 

 
104858 X 120 

     

 

 

 
10 

 

 

 
0.766 

 

ANN 
 

0.8357 
 

0.8355 

 

XGB 
 

0.829 
 

0.822 

 

 

 
15 

 

 

 
0.813 

 

ANN 
 

0.8570 
 

0.8525 

 

XGB 
 

0.827 
 

0.822 

 

 

 
20 

 

 

 
0.846 

 

ANN 
 

0.8910 
 

0.8888 

 

XGB 
 

0.816 
 

0.812 

 

 

 
25 

 

 

 
0.872 

 

ANN 
 

0.9232 
 

0.9185 

 

XGB 
 

0.856 
 

0.852 

 

 

 
30 

 

 

 
0.891 

 

ANN 
 

0.9258 
 

0.9217 

 

XGB 
 

0.860 
 

0.854 
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Table 4. 6: PCA based Models (30 datapoint arrangement with PCA Components) 

 
 

 

Steps 

 

Dimension_X 

 

PCA 

 

Features 

 

% PCA 

 

Model 

 

Training 

 

Test/Validation 

 
 

 

 

 

 

 

 

 

 

 

30 

 
 

 

 

 

 

 

 

 

 

 

69906 X 180 

 
 

5 

 
 

0.685 

 

ANN 
 

0.7287 
 

0.7346 

XGB 0.754 0.738 

 
 

10 

 
 

0.745 

 

ANN 
 

0.8661 
 

0.8666 

XGB 0.855 0.840 

 
 

15 

 
 

0.795 

ANN 0.8755 0.8758 

 

XGB 
 

0.858 
 

0.839 

 
 

 

20 

 
 

 

0.819 

ANN 0.9024 0..8979 

 

XGB 
 

0.862 
 

0.845 

   
 

25 

 
 

0.843 

 

ANN 
 

0.9283 
 

0.9238 

 

XGB 
 

0.864 
 

0.844 

 
 

30 

 
 

0.862 

 

ANN 
 

0.9354 
 

0.9308 

 

XGB 
 

0.863 
 

0.845 
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Table 4.7: PCA based Models (40 datapoint arrangement with PCA Components) 

 

 

Steps 

 

Dimension_X 

 

PCA 

 

Features 

 

% PCA 

 

Model 

 

Training 

 

Test/Validation 

   
5 

 
0.6689 

 

ANN 
 

0.7377 
 

0.7358 

XGB 0.754 0.742 

 
 

 

 

 

 

 

 

 

 

 

40 

 
 

 

 

 

 

 

 

 

 

 

52430 X 240 

     

 
 

10 

 
 

0.734 

 

ANN 
 

0.8574 
 

0.8589 

 

XGB 
 

0.856 
 

0.848 

 
 

15 

 
 

0.774 

 

ANN 
 

0.8829 
 

0.8831 

 

XGB 
 

0.858 
 

0.851 

 
 

20 

 
 

0.799 

 

ANN 
 

0.9259 
 

0.9240 

 

XGB 
 

0.861 
 

0.855 

 
 

25 

 
 

0.822 

 

ANN 
 

0.9320 
 

0.9271 

 

XGB 
 

0.862 
 

0.858 

 
 

30 

 
 

0.841 

 

ANN 
 

0.9425 
 

0.9386 

 

XGB 
 

0.871 
 

0.862 
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Table 4.8: PCA based Models (50 datapoint arrangement with PCA Components) 

 
 

 

Steps 
 

Dimension_X 
 

PCA 

 

Features 

 

% PCA 
 

Model 
 

Training 
 

Test/Validation 

 
 

 

 

 

 

 

 

 

 

 

50 

 
 

 

 

 

 

 

 

 

 

 

41944 X 300 

 
 

5 

 
 

0.6568 

 

ANN 
 

0.7388 
 

0.7410 

XGB 0.755 0.751 

 
 

10 

 
 

0.725 

 

ANN 
 

0.8515 
 

0.8574 

XGB 0.848 0.83 

 
 

15 

 
 

0.761 

ANN 0.9027 0.8984 

XGB 0.858 0.849 

 
 

20 

 
 

0.786 

ANN 0.9348 0.9278 

XGB 0.860 0.847 

   
 

25 

 
 

0.807 

 

ANN 
 

0.9481 
 

0.9387 

 

XGB 
 

0.879 
 

0.866 

 
30 

 
 

0.826 

 

ANN 
 

0.9535 
 

0.9417 

 

XGB 
 

0.880 
 

0.867 
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Table 4.9: PCA based Models (60 datapoint arrangement with PCA Components) 

 
 

 

Steps 

 

Dimension_X 

 

PCA 

 

Features 

 

% PCA 

 

Model 

 

Training 

 

Test/Validation 

   
5 

 
 

0.642 

 

ANN 
 

0.7986 
 

0.7927 

XGB 0.809 0.799 

 
 

10 

 
 

0.715 

ANN 0.8554 0.8484 

XGB 0.856 0.848 

 
 

 

 

 

 

 

 

 

60 

 
 

 

 

 

 

 

 

 

34954 X 360 

 
15 

 
 

0.751 

 

ANN 
 

0.9049 
 

0.8986 

 

XGB 
 

0.856 
 

0.839 

 
 

20 

 
 

0.776 

 

ANN 
 

0.9438 
 

0.9386 

 

XGB 
 

0.872 
 

0.860 

 
 

25 

 
 

0.797 

 

ANN 
 

0.9505 
 

0.9429 

 

XGB 
 

0.875 
 

0.864 

 
 

30 

 
 

0.815 

 

ANN 
 

0.9564 
 

0.9436 

 

XGB 
 

0.875 
 

0.861 
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4.3.1.6 Analysis and Evaluation for the Models 

 

Successful implementation of model with different datapoints steps and PCA components, it’s 

clear that some good results have been obtained from the models as depicted in Table 4.4- 4.9. 

Thus, it can be observed that; 

 

• The increase in datapoint steps leads to the increase in model performances. For 

instance, the performance of ANN model increases from 91.97% to 94.38% when 

datapoint steps has been changed from 10 to 60 (Table 4.4 & 4.9) with 20 PCA 

components each. 

 

• Dimensionality reduction in the raw dataset increases the model performances. For 

instance, reduction of 60 features to 5 PCA components as presented in Table (4.4), 

prompt ANN model to achieve 73.59% when 10 datapoints steps has been used. 

Although, the model performance increases when more percentage of the data 

information has been captured from the features as indicated in Table (4.4) where 30 

components (representing 94.7% of the data) achieve 91.97% accuracy using 10 

datapoints steps. 

 

• The ANN models achieved higher performances compared to XGB. Hence, prompts us 

to focus more on the former as summarised in Table (4.10). 
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Table 4.10: Summary of ANN_PCA based Models (10 datapoint arrangement with PCA Components) 

 

 
 

     PCA 

Steps 

Components 

 

PCA % 

 

Training 
 

Test/Validation          Accuracy (20-Comp) 

 

5 
 

0.729 
 

0.7359 
 

0.7365 

 
10 

 
0.810 

 
0.8237 

 
0.8212 

10 
  

0.8859 

15 
 

0.865 0.8348 0.8335 

 
20 

 
0.898 

 
0.8859 

 
0.8863 

 
25 

 
0.925 

 
0.9069 

 
0.9071 

 
30 

 
0.947 

 
0.9197 

 
0.9191 

 
5 

 
0.699 

 
0.7364 

 
0.7404 

 
10 

 
0.766 

 
0.8357 

 
0.8357 

20 
  

0.8910 

15 0.814 0.8570 0.8525 

 
20 

 
0.846 

 
0.8910 

 
0.8888 

 
25 

 
0.872 

 
0.9232 

 
0.9185 
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30 0.891 0.9258 0.9217 

 
5 

 
0.685 

 
0.7287 

 
0.7346 

 
10 

 
0.745 

 
0.8661 

 
0.8666 

30 
  

     0.9024 

15 0.791 0.8755 0.8758 

 
20 

 
0.818 

 
0.9024 

 
0.8979 

 
25 

 
0.843 

 
0.9283 

 
0.9238 

 
30 

 
0.862 

 
0.9354 

 
0.9308 

 
       5 

 
0.669 

 
0.7377 

 
0.7358 

 
10 

 
0.734 

 
0.8574 

 
0.8589 

40 
  

       0.9259 

15 0.774 0.8829 0.8831 

 
20 

 
0.799 

 
0.9259 

 
0.9240 

 
25 

 
0.822 

 
0.9320 

 
0.9271 

 
30 

 
0.841 

 
0.9425 

 
0.9386 
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5 0.656 0.7388 0.7410 

 
10 

 
0.721 

 
0.8515 

 
0.8574 

50 
  

0.9348 

15 0.761 0.9027 0.8984 

 
20 

 
0.786 

 
0.9348 

 
0.9278 

 
25 

 
0807 

 
0.9481 

 
0.9387 

 
30 

 
0.826 

 
0.9535 

 
0.9417 

 
10 

 
0.715 

 
0.8554 

 
0.8484 

 
15 

 
0751 

 
0.9049 

 
0.8986 

 
20 

 
0.776 

 
0.9438 

 
0.9386 

 
25 

 
0.797 

 
0.9505 

 
0.9429 

 
30 

 
0.815 

 
0.9564 

 
0.9436 
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The models’ accuracy assessment is critical to the model performance. Although accuracy alone 

is not sufficient. Hence, further metrics can be used to evaluate models’ performances. This is 

because the performance parameters usually give a good picture on model’s prediction 

performance. Hence, another criterion to evaluate model performance is by employing either 

statistical or machine learning methods. Suresh et al 2014 highlighted the definitions of some 

statistical performance parameters that are derived from model’s confusion matrix. These 

parameters as defined by the authors involves; 

 

1. Precision: This refers to the extent to which the repeated measurement under 

unchanged conditions demonstrates same result. This is represented as; 

 

 

 
 

 

 

(4.21) 

 

 

 

2. Completeness: On the bases of fault diagnosis, completeness refers to the ratio of the 

number of faults in classes classified as fault prone to the total number of faults in the 

system. This parameter is also regarded as Recall and expressed mathematically as; 

 

 

 

 
 

 

 

(4.22) 
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3. Accuracy: This is defined as ratio predicted fault prone being inspected out of all 

modules. It’s expressed mathematically as; 

 

 

 
 

 

 

(4.23) 

 

 

 

 

 

Where; is True Negative 

is True Positive 

is False Negative 

is False Positive 

 

Various models have been produced above, depending on the datapoint step number of PCA 

components. Each model has corresponding performance accuracy. However, to access other 

performance indicator, datapoint step (60) with 20 components has been chosen to verify ANN 

model performance using confusing matrix. The result of confusion matrix is illustrated in Figure 

4.5. 
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Figure 4. 5: ANN-PCA Based Confusion Matrix 

 

It can be observed that the model achieved significant accuracy in predicting the two different 

classes of fuels. Hence, when new data is passed through the model; 

 

• The model successfully classifies Red Diesel Fuel (TP11) accurately by up to 95.6%, 

with misclassification error of just 4.4%. 

 

• The model also predicts and classifies Normal Diesel (TP10) accurately by 93.1% 

and misclassified the fuel class with the error of 6.9%. 
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4.3.2 Model-2 (Signal Processing Based-models) 

 

 

4.3.2.1 Introduction 

Signal Processing essentially helps in analysing, visualising and comparing multiple signals. In 

addition, it helps in detecting and extracting features or underline information/event contained 

in a signal. Feature detection and extraction significantly add value to the dataset meant to be 

used for further machine learning (ML) modelling. Figure 4.6 illustrates the procedures in 

preparing signals before feeding into the ML models. 

 

 

 

 

 
Figure 4.6: Feature Engineering Process 

 

Various signal processing tools and techniques are used in extracting useful features from 

signals. However, depending on the task and requirements, these techniques are distinctly 

categorised into 3 groups (Time Domain, Frequency Domain and Time Frequency Domain). 

Therefore, we’ll employ all the three signal processing categories to extract features from the 

fuels datasets to in developing various supervised classification models. Finally, both categories 

will be evaluated regarding their significance in increasing models’ performances.  
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4.3.2.2 Objectives 

The main purpose of implementing signal processing here as it’s applied to the failure diagnosis 

is to extract an important feature information (feature extraction) to distinguish signals with 

different variational failure patterns in the fuel dataset. This made signal processing tool as one 

of the key procedures of rolling gas turbine fault diagnosis modelling. Thus, feature extraction 

especially signal processing-based would directly affects the diagnosis results. Therefore, to 

acquiring rich fault information, the traits in time-domain, frequency-domain, and time-

frequency domain are extracted. 

Traditionally, constructing a feature set containing all the fault information to identify and 

distinguish different types of faults could be done manually or through PCA-based. However, in 

general, the whole feature set of all the fault information are considered, redundant features, 

mutually exclusive features, and superior features could be mixed off together. Hence, feeding 

all features in the feature directly into a classifier, would significantly affects the classification 

process by slowing down the modelling speed and generate poor classification accuracy. 

Therefore, selecting the relevant features through one of the signal processing-based techniques 

would guarantee an improved calculation speed of the classifier and the classification accuracy 

of the model.  

In the system of condition monitoring and fault diagnosis, the signals that are collected from the 

testing equipment are usually generated as time-domain signals. While these test signals are 

random and cannot directly reflect the state change of the system, it’s necessary to analyse the 

test signals to find the inherent characteristics patterns useful to the model. Hence, the signal 

processing techniques (Time-domain, frequency-domain, and time-frequency domain) are often 

used as important tools for signal feature extraction. When dimensional parameters were 

extracted from the TP10 and TP11 dataset, and feature vectors were generated. Finally, each 

norm of the fault feature vector is input into model classifiers and the fault modes predictions 
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and validations. 

Time domain analysis is often used to estimate and calculate various time domain-based signal 

parameters. However, the variables obtained cannot be sufficient to reveal relevant underlining 

pattern required for the diagnostics model. Hence paved the way for frequency domain-based 

analysis. Analysis in frequency domain helps to describe and reveal more signals patterns and 

information that and can be disclosed or found in time domain. Although the time-domain feature 

variables can effectively be applied to distinguish between the normal and the fault case, yet 

frequency domain-based feature analysis reveals more inherent patterns in signals. Usually, 

frequency-domain feature extraction can reflect the periodic components in the signal, that 

cannot be found in time domain-based analysis. However, despite the capabilities of frequency 

domain-based analysis, yet its assumption is based on stationary theory, and not applicable to 

nonstationary and nonlinear signals. Hence paved the way for more improved analysis tool. 

Therefore, combination of both time domain and frequency domain tools, the fault features can 

be more accurately extracted. Below are the detailed signal processing-based feature analysis. 

 

4.3.2.3 Time Domain Model: 

 

Time domain features are usually extracted from raw signal. Statistical time-domain features 

such as root means square (RMS), mean, standard deviation and variance have been extensively 

used in identifying and extracting useful pattern in signals. Further, more advanced statistical- 

based features such as skewness, kurtosis is also applied to raw time domain signal to extract 

useful features for ML models (Caesarendra and Tjahjowidodo, 2017). 
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4.3.2.3.1 Dataset 

 

Time domain-based model is developed by extracting statistical features from restructured and 

transformed dataset. The restructured dataset is produced from   transformed 10 datapoints and 10 

PCA components. Hence yield X_dataset with dimension (209716 X 10) for both TP10 and TP11 

each as seen in Table 4.4. The corresponding targets labels also have dimension (209716 X 1). It 

can be observed from Table 4.4, that the combination of 10 datapoints and 10 PCA components 

produced a model with 82.37%. Therefore, the objective here is to extract time-domain statistical 

features (TDSF) from the same 10 reduced features to and use for subsequent ML modelling. 

Hence, investigate the possibility of increased prediction performance accuracy from (82.37%). 

 

4.3.2.3.2 Extracting Time Domain Statistical Features 

 

The time domain statistical features extracted from 10 transformed components include 

skewness, mean, kurtosis and standard deviation. Each original feature component produces 4 

from these time domain features. Hence yield overall dataset with X_dimension (209716 X 40) 

belonging to each fuel class (TP10 and TP11) respectively. The datasets are the concatenated to 

form one single dataset, which will be further used in supervised ML model. 

 

4.3.2.3.3 Normalisation: 

 

Features normalisation is not required here since the features were already scaled prior to PCA 

dimension reduction process. 
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4.3.2.3.4 Modelling 

 

Considering the overwhelming performance of ANN as seen in this study, ANN based on back 

propagation gradient descent learning algorithm is used in training the model. The architecture 

consists of 3 layers, i.e., input layer (40 neurons), hidden layer (20 neurons) and output layer (1 

neuron). which is used for updating the weights vectors. Weights and biases in each layer have 

been randomly initialised and used to compute the target output values. The learning rate is also 

initiated via Sklearn with a minimal fixed value and kept constant until the convergence of the 

training model. Two activations functions were used with ReLU formed both input and hidden 

layer. The output layer has Sigmoid as its activation function. The dataset for the model has been 

split into both training and test sets. Training/learning takes 80% of the dataset while the 

remaining 20% of the dataset is assigned for testing. The training rans through 100 epoch 

(iteration) and converges afterwards. The capabilities of ANN in classifying various non-linear 

scenarios in the data is harnessed in this model to perform binary classification of two different 

types of fuels used by gas turbine. The model is achieved 98.64% and 97.51% for training and 

testing respectively. 

 

4.3.2.3.5 Model Analysis and Performance Evaluation 

 

It can be observed that the statistical time domain feature extraction increases the model 

classification performance by 16.27% when compared with PCA based ANN model as indicated 

in Table 4.11. This can be attributed to the increase in correlations and nonlinear relationship in 

the dataset by time domain statistical features. Further performance investigation using 

confusing matrix also indicate an increase in model’s prediction performance as depicted in 

Figure 4.7.
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Table 4.11: ANN-Time-Domain Based Model Result Vs PCA_ANN Model 

Model Training Test/Validation 

ANN_PCA 0.8237 0.8212 

ANN_TDSF 0.9864 0.9751 

Figure 4. 7: Time Domain Based Confusion Matrix
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It can be observed from Figure 4.6 that; 

• The model successfully classifies Red Diesel Fuel (TP11) accurately by up to 97.3%,

with misclassification error of only 2.7%.

• The model also predicts and classifies Normal Diesel (TP10) accurately by 97.7%, and

misclassified error of 2.3% only.

 4.3.2.4 Model-B Frequency Domain Model 

Frequency domain feature extraction involves transforming and decomposing periodic time- 

series signal into various frequency components contained in the raw signal. Majority of real- 

life signals are non-stationary in nature, which comprises of events at different frequencies. 

To measure the occurrence of these events in specified time, signal must be decomposed 

into its underline frequency bands/components. Hence, the representation of signal by its 

frequency components as well as estimating all related features in frequency is usually known 

frequency domain analysis. Among frequency-based feature extraction, the most commonly used 

frequency domain feature is Fast Fourier Transform (FFT) especially in vibration analysis of 

bearing faults. However, the most effective frequency-based method is Power Spectral Density 

(PSD). Which is used to extract frequency characteristics of a signal, as well as estimating the 

amount of power and energy contained in a spectrum (Şengür, Guo and Akbulut, 2016). Hence, 

PSD is used in extracting useful features for the supervised ML model. 



138  

4.3.2.4.1 Dataset 

 

The time series signals used in this case study consists of restructured 10 datapoint steps and 10 

PCA components, similar to the dataset used in Section (4.3.2.1). Hence yield X_dataset with 

dimension (209716 X 10) for both TP10 and TP11 each as seen in Table (4.3). The corresponding 

targets labels also have dimension (209716 X 1). It can be observed from Table 4.3, that 

the combination of 10 datapoints and 10 PCA components produced a model with 82.37%. 

Therefore, the aim of this case study is to extract frequency- domain features, which would 

be subsequently feed into ANN classifier. The result obtained from this model will be compared 

with PCA-based, and Time-domain based models prediction performances. 

 

4.3.2.4.2 Extracting Frequency Domain Features 

 

To effectively work with time series signals, transforming the long time series signals into small 

windowed datapoints chunks is imperative as discussed by (Lara and Labrador, 2013). Therefore, 

the fuel datasets used in this case study is split into short sub-sequences. To a achieve the dataset 

transformations, a window of 180 datapoints has been rolled on each 10 signal components of 

the dataset. Hence, both TP10 and TP11 datasets transformed from (209716 X 10) to (582 X 180 

X 10). 

 

Further pre-processing has been carried out to extract features from the transformed datasets. 

Power Spectrum Density (PSD) has been applied to transform the time-domain based signal to 

frequency-domain signal. The datapoints of 180 has been sampled at 3 seconds using 60 Hz 

frequency on each signal component from both datasets. Some of the sampled transformed 

dataset has been depicted in Figure 4.7. Further a PDS-based Welch algorithm has been used to 

Compute Power Spectrum Density of each signal and transform the signal into frequency- based 

spectrum. Some samples of the PSD spectrum have been illustrated in Figure 4. 
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Although Power spectral density function (PSD) has been used to transform the signal 

components, which shows the strength of the variations(energy) as a function of frequency, yet 

some frequencies does not represent the actual useful information contained in the signal. In 

other words, PSD decomposes various frequencies into weak and strong frequencies. Some of 

the weak frequencies contained in a signal are mere microphonics, which need to be isolated and 

filtered. Presence of microphonics in a signal prompt the need   to   select prominent 

fundamental frequency and other relevant harmonics. Consequently, there is need to transform 

PSD-based data into a useful representation to extract the features that are suitable enough to train 

the model for effective classification. Finding peaks in a signal is an effective way to select 

fundamental frequencies in a spectrum, which distinguishes legitimate peaks and other feature like 

noise. Hence selects suitable features and ignore all other irrelevant features. 

 

As (Fahad et al., 2018) implemented, similar approach has been adopted. Hence, some useful 

peaks have been detected and extracted from transform fuels spectrum signal, which 

subsequently been fed into ML classier of training and prediction. Two maximum peaks are 

identified and selected from each spectrum using thresholding technique, which select two 

frequencies with highest intensity. Sample of the peak representation has been illustrated in 

Figure 4.7. This procedure has been repeated along the entire length of both fuels’ datasets. Thus, 

X_dataset with (582 X 20) dimensions has been generated from each dataset (TP10 & TP11).
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Figure 4.8: Sample Spectrum of 180 datapoint signals showing PSD and 2 Max Peaks 

 

 

 

 

4.3.2.4.3 Normalisation 

 

Features normalisation is not required here since the features were already scaled prior to PCA 

dimension reduction process. Although the data has been shuffled to create more correlation with 

the independent feature vectors. 
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4.3.2.4.4 Model Training 

Like other case studies (PCA-based & Time-domain-based), ANN architecture based on back 

propagation gradient descent learning algorithm is also adopted in training the model. The 

architecture consists of 3 layers, i.e., input layer (20 neurons), hidden layer (10 neurons) and 

output layer (1 neuron). which is used for updating the weights vectors. Weights and biases in 

each layer have been randomly initialised and used to compute the target output values. The 

learning rate is also initiated via Sklearn with a minimal fixed value and kept constant until the 

convergence of the training model. Two activations functions were used with ReLU formed both 

input and hidden layer. The output layer has Sigmoid as its activation function. The dataset for the 

model has been split into both training and test sets. Training/learning takes 80% of the dataset 

while the remaining 20% of the dataset is assigned for testing. The training has been initiated 

and converged after 700 epoch (iteration) cycles. The model achieved an impressive result 

(98.87% & 98.07%) is obtained for training and validation respectively. 

4.3.2.4.5 Model Analysis and Performance Evaluation 

It can be observed from both training and validation results obtained; the frequency- domain 

based feature extraction increases the model classification performance. As indicated 

in Table 4.12, the Frequency Domain Based ANN Model (ANN_FDM) outperformed the 

previous PCA and Statistical Time-domain based ANN models. The by 16.27% when compared 

with PCA based ANN model as indicated in Table 4.1. This can be attributed to the increase in 

correlations and nonlinear relationship in the dataset by time domain statistical features. Further 

performance investigation using confusing matrix also indicate an increase in model’s prediction 

performance as depicted in Figure 4.9. 
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Table 4.12: ANN-Time Frequency Domain compared with Time Domain & PCA Models 

Model Training Test/Validation 

ANN_PCA 0.8237 0.8212 

ANN_TDSF 0.9864 0.9751 

ANN_FDM         0.9871 0.9807 

Further, the model’s prediction accuracy has been improved when compared with other 

previous models. It can be observed from Figure 4.9; 

o The ANN_FDM model impressively classifies Red Diesel Fuel (TP11) with

98.3% prediction accuracy, and low misclassification error of only 1.7%.

o The model also achieved higher prediction accuracy (99.1%) when classifying

Normal Diesel (TP10), with little misclassified error of 0.9% only.



143 

Figure 4.9: Confusion Matrix for Frequency-Domain ANN Model 

4.3.2.5 Time-Frequency Domain Model 

The idea behind time frequency domain is to provide true time-frequency representation of the 

signal. Time frequency analysis identifies the signal frequency components and reveals their time 

variant features. Perhaps effective feature extraction tool for machinery diagnostics information 

(Feng et al., 2013). 

Time frequency analysis is suitably used technique to extract features from non-stationary or 

transient signals in addition to static non-stationary signals. The process involves mapping 

out one-dimensional function of time domain signal to a two-dimensional function of both time 

and frequency. This enables good representation of signal in both time and frequency. Hence 

provides more information on how signal is localised in both time and frequencies, which 

provide more greater insight into the nature of information carried by the signal. 

The techniques used in time frequency analysis involves Short-Time Fourier Transform 

(STFT), Wavelet Transform (WT), Wigner-Ville Distribution among other. Among them, WT 

is the most common and effective technique used for extracting useful features from signals. 
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Wavelet Transform algorithms such as continues wavelet transform (Scalogram) are effective 

in feature detection and pattern matching. They are normally designed as gaussian (Kernel) 

that convolve along time series signal to search for specific features embedded in a time series 

signal and extract them. Various decomposed signal coefficients are be obtained, which 

resulted from scaling and translating the signal into various scales depending on the 

requirements of the decomposition level. Thus, wavelet transform is used as feature extraction 

tool in this case study. 

4.3.2.5.1 Dataset: 

Similar 10 components PCA dataset (209716 X 10) used in previous case studies has been 

applied here. Likewise, a three   seconds window with   60Hz frequency   is   used   to split 

both dataset components into small sequences of 180 sampled datapoints signal. Hence 

transforming each fuel dataset to (582 X180 X 10), with corresponding class labels (522 

X1) from each dataset where 0 representing Red_Diesel_TP11 and 1 representing 

Normal_Diesel_TP10 fuels respectively. 

4.3.2.5.2 Feature Extraction 

Wavelet transform feature extraction procedure differs with FFT. Perhaps, while the latter 

presents extracted features in 1-dimension, the former transforms 1-dimension raw signals into 2-

dimension scalogram. The scalogram offers more detailed information about the state space of 

the system dynamic behaviour. Morlet Continues Wavelet Transform is used in this case study 

to generate scalogram from both dataset signal components. The scalogram is viable feature 

extraction tool, effectively gives dynamic behaviour of the system. In addition, it distinguishes 

different types of signals produced by the system. Hence makes it perfect feature extraction tool 

for supervised learning classification problems. 
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Looking at the scalograms, two classes of fuels can be distinguishable, due to the nature and 

different pattern orientations present in the signals as depicted in Figure 4.10-4.13. It can be 

observed that the dynamic pattern in two different scalogram samples belonging to both TP11 

and TP10 fuels differs. Hence, with such variation in patterns, both classes can be classified 

accordingly. However, the classification cannot be undertaken manually. Perhaps one way to 

automate this classification process that involves that resemble images is to build a Convolutional 

Neural Networks (CNN). The algorithm is capable in detecting the classes of each scalograms 

(fuels) through robust patterns detection and classify them accordingly. 

 

Since each dataset consists of 10 components, the CWT is applied 10 times on each signal (180 

datapoint short sequence windowed signal). Therefore, the CWT generate   582 scalograms from 

10 components belonging to each dataset class, with the dimension (582 X 10) belonging to both 

(TP10 and TP11) and resolution of (180X180) for each scalogram. Hence the overall dimension 

of (582 X 180 X 180 X 10) belonging to each class of fuel respectively. The scalogram from 

each signal are stalked on top of each other to form a single image with 10 channels. Perhaps, 

ideal image has either 1-channel (grey image) or 3-channels (RGB image). However, since CNN 

is used in the modelling, it can handle multichannel images (10 in this case). It shall be noted that 

the working principle is the same with conventional CNN with (1 or 3) channels. The only 

difference is the requirements of addition more filters when compared to the conventional CNN. 

The two-fuel dataset are concatenated and split into both training and test sets. 
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Figure 4. 10: Sample of Raw TP10 180 Datapoint signal 

 

 
 

 

 
Figure 4.11: Scalogram of TP10 sampled signal 
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Figure 4. 12: Sampled TP11 for 180 Datapoints Signal sample @ 60Hz for 3 Secs 

 

 

 

 

 

 

 

 
Figure 4. 13: Scalogram for TP11 sampled 180 Datapoints signal 

 

 

 
4.2.3.5.3 Modelling & Training 

 

Keras based CNN architecture has been developed to train the model. The model consists of 3 

distinct layers (Convolution, pooling and flatten). The convolutional layer extract features from 

the input image, by preserving the spatial relationship between pixels (information) by 
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learning the image features. 3X3 convolutional kernel is chosen with single stride to detect 

features from the input images (stalked scalograms). Hence, produces feature maps. The 

subsampling or down sampling of the feature maps reduces the dimensionality of each feature 

map. This process is achieved by pooling layer. Max pooling is the most effective and is used in 

this case study. A 2X2 kernel with double stride is employed to take the maximum number in 

each window kernel when convolved with convoluted feature maps, hence reduces the size of 

feature maps. The pooled layer is then flattened, i.e. converted into a linear array to make the  

layer   suitable   to    be    fed    into    Neural    Networks. Hence, 128 neurons are chosen for 

flattening, which are stretched linearly and flattened, ready to be fit into Neural Networks (NN). 

This is proceeded with fully connection with NN, which are subsequent complied into the 

network for training. Relu activation functions has been chosen in the hidden layer to enhance 

correlation and linear relationship between neurons, while the Sigmoid activation function 

is used for the final binary classification process. Batch training is conducted and after 25 epochs, 

the training converges. 

4.3.2.5.4 Model Analysis and Performance Evaluation. 

The model achieved 61% training accuracy and 58% validation accuracy. Although this is lower 

performance when compared with previous models. However, the reduced performance   can be 

attributed to the requirements of CNN to have as many data as possible, in order to learn more 

pattern relationship from pixels. Recently, Deep learning Scientists  identified mechanisms 

to enhances training performance of deep learning models that suffers from scantly training 

data. Most prominent among them is Data Augmentation. 
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4.3.2.5.5 Data Augmentation 

 

To obtain robust and effective CNN model, Data Augmentation is employed to enhances 

models’ performances in a circumstance when the training images are scantly. Hence, some new 

novel images   can   be added to the dataset. Augmentation process makes some minor changes 

to the existing datasets. The alterations involve flipping, rotating, or translating the existing 

images. Hence, increases the amount of the training dataset and improves the model’s 

performance. Although the process of Data Augmentation is new concept in the deep learning 

field, but it has a lot of promising outcomes in improving the model performances. Thus, Data 

Augmentation is considered as further work to be carried out in the subsequent PhD research work 

to improve the performance of novel proposed Hybrid Autoencoder-CNN-RNN based model. 

 

 4.3.3 Deep Learning Model 

 

 

4.3.3.1 Introduction 

Basically, Deep learning is a subset of both Artificial intelligence and machine learning. It 

involves introduction of more additional multiple layers to the models to process features. In 

deep learning networks, each layer extract valuable information, and each node is trained on 

distinct set of features based on previous layers output. In short, the further advances are made 

into the network, then more complex the nature of feature or nodes can be recognised, with the 

continuous aggregation and recombination of features from the previous layer. This is a special 

type of feature extraction which is known as Feature Hierarchy. As the hierarchy increases, the 

complexity an d  abstraction increase, and more information could be extracted.  
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Various algorithms for deep learning such as Deep Neural Networks, Restricted Boltzmann 

Machine, CNN, Recurrent   Neural    Networks (RNN) and    Auto Encoders    among others are 

available in the literature and have been used on different purposes. However, since this case 

study dealt with time series data, the most suitable algorithm to dealt with time series data is RNN. 

Although RNN algorithm works effectively with time series data, yet its prone to some limitations 

which constrained its viability to datasets with short term dependencies. It’s also prone to 

Exploding gradient and vanishing gradient problems. Therefore, more improved algorithm is 

introduced to handle time series data more robustly. Thus, RNN-based Long-Short Time Memory 

(LSTM) algorithm is developed to and has been producing good result from many time series 

based deep learning case studies. On that basis, LSTM is employed in this case study to classify 

two classes of fuels based on their measured time series features obtained. 

 

4.3.3.2 Objectives 

Essentially, implementing deep learning model lies on harnessing its capabilities on both, 

Correlations and Reduction. Deep learning extracts information that is similar to one another, 

while getting rid of irrelevant information. The relevant information is retained across the layers 

while discarding the irrelevant one. Thus, increases correlation in a data whilst reduces the data 

dimensionality. These functionalities make deep learning a robust tool for extracting useful 

information even from both structured and unstructured dataset. Further, its capabilities involve 

extracting features automatically without human intervention. This is achieved by combining 

lower-level features to form more abstract, higher level representing property classifications or 

feature representation of data. When compared with the previous models studied, the major 

difference between deep learning and traditional pattern recognition methods is that deep 

learning automatically learns features from big data, instead of adopting handcrafted features. 

Further implementation of deep learning model when benchmarked with the previous models 

implemented, could leads to; 
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• More accuracy improvements. 

• Reduction of Overfitting risk. 

• Speeding up in training. 

• Improved Data Visualization. 

• Increase in model’s functionality. 

 

4.3.3.3 Dataset 

 

Similar 10 components PCA dataset (209716 X 10) used in previous case studies has been 

applied here. Likewise, a three second window with 60Hz frequency is used to split both dataset 

components into small sequences of 180 sampled datapoints signal. Hence transforming each fuel 

dataset to (582 X180 X 10), with corresponding class labels (522 X1) from each dataset where 0 

representing Red_Diesel_TP11 and 1 representing Normal_Diesel_TP10 fuels respectively. 

 

4.3.3.4 Feature Extraction 

 

As explained, deep learning algorithms are good feature extraction tools. Perhaps, robustly 

extract features automatically from the data, unlike conventional signal processing techniques 

considered earlier. Therefore, no further feature extraction would be considered in this case 

study. The algorithm will automatically learn from relevant features and discard the irrelevant 

features. Another factor to be considered here is the requirement of LSTM architecture regarding 

the input data structure. Since LSTM dealt with sequences of event that varied with time steps 

sequences per samples, the algorithm required breaking of each long time series signals into 

sequence of events (windowed samples in a specific time steps). Interestingly, the data prepared 

is already in the required format (Observation signal, time steps, signal component). Hence the 

dimension (582 X 180 X 10) from each dataset (TP10 & TP11) that fit the LSTM input data 
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requirement. Further, both datasets are concatenated to form (1164 X 180 X 10) as X-input data, 

with (1164 X 1) as labels representing both fuel classes (0 for TP11 and 1 for TP10). 

 

  4.3.3.5 Normalisation 

 

LSTM algorithms are sensitive to the scale of the input data, especially when the sigmoid 

(default) or tanh activation functions are used. Therefore, it’s a good practice to rescale the data to 

the range of 0-to-1. However, the data has already bee normalised whilst reducing the 

dimensionality of the original dataset earlier. Hence, normalisation is not required here. 

Yet both datasets are shuffled and split into training and test/validation datasets. 70% of the data 

is dedicated for training and 30% are reserved for testing. 

 

4.3.3.6 Model Architecture and Training 

 

LSTM usually learns by making certain modification to the information that has been passed 

into it, through simple addition and multiplication. The information flows across LSTM 

architecture through a mechanism known as cell states (Xt- 1, Xt, and Xt+1) as illustrated in 

Figure (4.14). Thus, at any instance, the LSTM can select what to remember and what to forget. 

These three states dependencies can be described as; 

 

• The previous state ((Xt-1): refers to information being present in the memory after the 

previous time steps. 

 

• The previous hidden state ((Xt+1): refers to output of the previous cell. 

 

• The input at the current time step (Xt): refers to the new information being fed into that 

instance of time. 
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Figure 4. 14: LSTM Network Architecture (Nicholas et al., 2018) 

 

 

 

The LSTM model developed in this case study is based on Keras architecture, consisting of 4 

layers (input, 2 hidden and output). The input layer receives the input data, while the 2 hidden 

layers extracts feature from the data. Finally, the dense fully connected layer is used to make 

prediction. Stochastic gradient descent optimiser (Adam version) is used to optimise the network. 

A dropout regularisation is also used in both hidden layers to reduce over fitting the model to 

training. The binary cross-entropy function is used as loss function. The training commences and 

converges after 500 epoch (iteration) cycles. The model achieved good, impressive result 

(99.89% & 99.21%) for training and validation respectively. 
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4.3.3.7 Model Analysis and Performance Evaluation 

 

LSTM algorithm has proven its capabilities as good feature extraction tool and high performing 

supervised learning model, considering the result obtained here. As indicated in Table 4.13, 

the Frequency Domain Based ANN Model (ANN_FDM) outperformed the previous PCA and 

Statistical Time-domain based ANN models. However, LSTM almost achieve 100% prediction 

accuracy as indicated in Figure 4.15. 

 

Table 4.13:  Deep Learning LSTM Model compared with PCA & Signal Processing Models 

 

 

Model 

 

Training 

 

Test/Validation 

ANN_PCA 0.8237 0.8212 

ANN TDSP 0.9864 0.9751 

ANN_FDM 0.9871 0.9807 

LSTM 0.9989 0.9921 

CNN 0.6100 0.5800 

 

 

Further, the model’s prediction accuracy has been improved when compared with other 

previous models. It can be observed from Figure 14.5; 

 

• The LSTM model impressively classifies Red Diesel Fuel (TP11) with 100% 

prediction accuracy, and no misclassification error. 

 

• The model also achieved higher prediction accuracy (99.2%) when classifying Normal 

Diesel (TP10), with little misclassified error of 2% only. 
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Figure 4. 15: Confusing Matrix for LSTM Model 

 

 
4.4 Discussion 
 

From Figure 4.15, it can be observed that all the models except for time-frequency based model 

achieved more than 90% training and validation accuracies. This can be associated with the 

enhanced procedures applied to extract good features for the classification modelling. By virtue 

of ranking, LSTM scored the highest performance with 99.89% and 99.21% training and 

validation accuracies. Likewise, signal processing played a vital role in extracting good features 

for the model especially when comparing PCA and both time domain and frequency domain 

models performances. Dimensionality reduction is also an essential process in feature 

engineering and PCA play a vital role in reducing the redundant information from the dataset. 

Another important technique employed is the early restructuring the entire dataset some 

datapoints were lined in horizontal manner end to end as explained earlier. This procedure 

increases some correlation among the feature vector and as such give a better presentation of 

target dataset labels. 



156  

With the good performances obtained it can conclude that the models successfully classify two 

classes of fuels and predict fuels categories from unlabelled dataset, with high accuracy as 

indicated in the confusion matrixes obtained. Although the Time domain-based model has some 

lower performance accuracy when compared with other models. solution has been proposed 

(Data Augmentation) to enhances training data quality. 

 

 

 

Figure 4. 16: Models Performance comparison
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4.5 Summary and Conclusion 
 

 

Identifying constraint in using physics-based simulated data to build model for gas turbine 

diagnostics condition monitoring, prompted the need to utilise the experimental data to build 

suitable gas turbine diagnostics model. The Dataset generated by gas turbine testing facility at 

Sheffield Low Carbon Energy Centre, UK, proved useful in building various gas turbine CBM 

models. Different machine learning models where developed and benchmarked against their 

performances and prediction accuracies. 

 

The capabilities of feature extraction tools were tested and proved helpful in adding more 

prediction accuracies. In short, PCA and signal processing-based techniques have significantly 

added more correlations to the dataset and influences the prediction results obtained. Signal 

processing played a vital role in extracting good features for the model especially when 

comparing PCA. Further, quest for more prediction accuracies leads to the implementation of 

deep learning-based technique. As such by virtue of ranking, deep learning-based LSTM model 

achieved the highest performance with 99.89% and 99.21% training and validation accuracies.  
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Chapter 5 
 

 

 

Conclusion and Future Work 

 

 

5.1 Conclusion 

This thesis investigated novel methodologies for modelling aeroderivative gas turbine fault 

diagnosis using artificial intelligence techniques. Findings obtained from this study could help 

in designing new approaches towards operating gas turbines especially in offshore liquefied 

Natural Gas (LNG) facilities. Further it will pave the new way to design gas turbine that are more 

suitable to offshore environment. Likewise, the design of the engine could be improved to 

develop more efficient, reliable, and durable gas turbines to adopt harsh offshore environments.  

In the field of modelling and simulation, two different types of gas turbines were modelled and 

simulated using both Simulink and neural network-based models. Simulated and operational data 

sets were employed to demonstrate the capability of neural networks in capturing complex 

nonlinear dynamics of gas turbines, especially when enough information about physics of the 

system is not available.  

This thesis identified Aeroderivative Gas Turbine as the most critical asset in floating LNG 

applications. Failure investigation of such critical equipment requires more research attention. 

Various maintenance approaches were studied to dealt with failure of rotation machineries. 

However, condition-based maintenance is considered as the most effective maintenance strategy 

to maintain critical process equipment. Hence, CBM will be considered in detecting and 

predicting faults in Aeroderivative gas turbines. 
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Generally, it was concluded from this thesis that despite of some constraints regarding utilisation 

of physics-based model to implement gas turbine’s CBM, data-based driven AI models 

developed demonstrated a strong potential in predicting gas turbines failures. 

This thesis has made the following contributions the area of predictive maintenance modelling 

of aeroderivative gas turbines:  

 

This thesis presented a comprehensive literature review in the field of predictive maintenance of 

aeroderivative gas turbines [Chapter 2]. It covers the general concepts and design of an 

aeroderivative gas turbines, gas turbine maintenance in LNG process. The chapter explored the 

limitations of conventional-based maintenance practice in the oil and gas industry and 

recommends condition-based maintenance as the most suitable for aeroderivative gas turbine 

used for FLNG process. The chapter concluded with brief structural modelling architecture of 

aeroderivative gas turbine’s Condition Based-Maintenance. 

 

The thesis discussed modelling and simulations of gas turbines briefly discuses modelling and 

simulations of gas turbines [Chapter 3]. Various challenges and significance of gas turbine model 

in LNG process were covered. Both white-box and black-box gas turbine models were treated, 

with brief introduction of grey-box gas turbines models. The theories and fundamentals for gas 

turbines modelling based on white-box model have been covered. The chapter concluded by 

establishing a case study for modelling and simulation of gas turbines. A Simulink gas turbine 

model was constructed based on the thermodynamic and energy balance equations in MATLAB 

environment, and the output responses were recorded for further PdM studies. Although the 

dataset obtained have not been utilised in the diagnostics modelling, yet the promising potentials 

of utilising physics-based modelling in gas turbine diagnostics studies was demonstrated.  

This thesis developed a data driven-based model for gas turbine diagnostics [Chapter 4]. An 
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experimental time series dataset is used to classify anomalies associated with gas turbine’s 

exposure to different fuels. Feature extraction tools such as PCA-based and signal processing-

based were used to prepare the dataset, which reduced its dimensionality and extracted good 

features for gas turbine diagnostics modelling. A model based on neural network was developed 

further to classify the gas turbine engine anomalies. Signal processing techniques has been 

very useful tools in extracting good features for classification modelling. Although, several 

research works highlighted some setback of signal processing-based feature extraction 

techniques, such as human errors, noise and limitation in dealing with big data. To address these 

setbacks, researchers propose deep learning models as viable feature extraction tools, especially 

give its capabilities in learning features automatically from data patterns. To find the best model 

for gas turbine diagnostics with high performance and prediction accuracy, Deep learning-based 

LSTM model was developed. The overall models were tested and validated against unseen 

dataset, and performances of the models are compared.  

 

5.2 Future Work 
 

The importance of PdM on critical asset of FLNG process (aeroderivative gas turbine) have been 

extensively explored by this thesis. Modelling PdM for aeroderivative gas turbine can be 

achieved through a wide range of research activities. Both white box and black box approaches 

shows promising potentials in failure prediction and remaining useful life investigation.  

 

Given the scope, results obtained by this thesis, and the limitations; the future efforts and 

upcoming research outputs in this area can be highlighted as follow:  

 

• White box physics-based gas turbine model was constrained to be deployed for PdM 

studies in this thesis, due to lack of essential information. However, various 
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methodologies could be employed to simulate transient behaviours and incipient faults 

characteristics in gas aeroderivative gas turbine engine. The simulated dataset obtained 

can be used for an optimum PdM studies. 

 

• The thesis clearly identified fault, as purely classification task, and can be effectively 

solved using Artificial  Intelligence-based data-driven techniques. This thesis used 

stand-alone AI based models to predict gas turbines failures. However, whilst the 

models developed achieved very impressive prediction performances, many researchers 

are still searching for solutions that provides better results. This prompt the proposal of 

integrated AI models, that combine the capabilities of each stand-alone model, 

especially with the limitations of stand-alone models in detecting fault with non-linear 

characteristics in gas turbines. Therefore, more robust modelling algorithms are 

required that integrate good feature extraction and enhanced pattern recognition 

capabilities. This prompt the need for further improvement towards developing good 

models with satisfactory prediction accuracies and good classification results. Thus, a 

novel hybrid model could be developed with the specific target to solve various 

limitations of stand- alone models and improve the accuracy of gas turbine fault 

detections.  

 

• More value could be added in this area through upcoming research outputs. Therefore, 

future efforts could be tailored towards obtaining the dataset with desired fault 

characteristics and employing algorithms with good predictions capabilities.  
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