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Abstract

Predictive Maintenance of Critical Equipment for Floating Liquefied
Natural Gas Liquefaction Process

Rabiu Mohammed Rabiu

Meeting global energy demand is a massive challenge, especially with the quest of more
affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a
renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest
form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its
exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides
gas processes and liquefaction has been identified as one of the great challenges of
FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to
profitability and reliability, availability of the process facilities. With the setbacks of widely
used reactive and preventive time-based maintenances approaches, to meet the optimal
reliability and availability requirements of oil and gas operators, this thesis presents a
framework driven by Al-based learning approaches for predictive maintenance. The
framework is aimed at leveraging the value of condition-based maintenanceto minimises

the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine).

In this study, gas turbine thermodynamics were introduced, as well as some factors affecting
gas turbine modelling. Some important considerations whilst modelling gas turbine system
such as modelling objectives, modelling methods, as well as approaches in modelling
gas turbines were investigated. These give basis and mathematical background to develop a
gas turbine simulated model. The behavior of simple cycle HDGT was simulated
using thermodynamic laws and operational data based on Rowen model. Simulink model is
created using experimental data based on Rowen’s model, which is aimed at exploring
transient behaviour of an industrial gas turbine. The results show the capability of Simulink
model in capture nonlinear dynamics of the gas turbine system, although constraint to be

applied for further condition monitoring studies, due to lack of some suitable relevant



correlated features required by the model.

Al-based models were found to perform well in predicting gas turbines failures. These
capabilities were investigated by this thesis and validated using an experimental data obtained
from gas turbine engine facility. The dynamic behaviors gas turbines changes when exposed
to different varieties of fuel. A diagnostics-based Al models were developed to diagnose
different gas turbine engine’s failures associated with exposure to various types of fuels. The
capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce
the dimensionality of the dataset and extract good features for the diagnostics

model development.

Signal processing-based (time-domain, frequency domain, time-frequency domain)
techniques have also been used as feature extraction tools, and significantly added more
correlations to the dataset and influences the prediction results obtained. Signal processing
played a vital role in extracting good features for the diagnostic models when compared
PCA. The overall results obtained from both PCA, and signal processing-based models
demonstrated the capabilities of neural network-based models in predicting gas turbine’s
failures. Further, deep learning-based LSTM model have been developed, which extract
features from the time series dataset directly, and hence does not require any feature
extraction tool. The LSTM model achieved the highest performance and prediction accuracy,

compared to both PCA-based and signal processing-based the models.

In summary, it is concluded from this thesis that despite some challenges related to gas
turbines Simulink Model for not being integrated fully for gas turbine condition monitoring
studies, yet data-driven models have proven strong potentials and excellent performances on
gas turbine’s CBM diagnostics. The models developed in this thesis can be used for
design and manufacturing purposes on gas turbines applied to FLNG, especially on

condition monitoring and fault detection of gas turbines. The result obtained would provide
\Y%



valuable understanding and helpful guidance for researchers and practitioners to
implement robust predictive maintenance models that will enhance the reliability and

availability of FLNG critical equipment.



Table of content

ACKNOWLEDGEMENTS ...ttittitiatteseaseestestestestestessessesseaseeseessessessesseaseaseaseassassessebessesbesbeabeassaneeseensenbesbesbesbenseaneans i
D] =] 1N 27y [ PO PT TR TPPOPR i
Y 01 - Vo OSSPSR i
JLIE: o] Lo o0 1 (=] o S SRTUP vi
TS 0 T TN =TSSR Xii
TS 0 N 1= o] [P S XV
N0 g =T g Yol Fo LN =Y A o] =1 o gL SRR XVii
F N o] o] (=Y T LA o] TRV XVii
RV g = o] LSS XiX
(@8 =) OSSPSR 1
10T L84 o USROS 1
R = T Yol =40 1] o T ER TR 1
1.2 Motivation Of the RESEAICH ....cc..eiiiiiiiee et e s e s e e s e e eans 12
S AN [0 TR T o [ @ o [Tt 6 Y71 PSRRI 14
1.4 CONEIIDULION .ttt st s et e s e e sat e e st e e e st e e e st e e e steesbbeesaseeesanaeesaneeenanes 15
1.5 OULHNE Of the TRESIS c.uuviiiieiiiie ettt e s e e s sttt e e s e s bb e e e e ssabteeesssabeeeesssseeeesssraeeeannes 16
Y U T o' = | V2R 18
(04T o] (=] o TSRS PRUROR 19
LITEIALUIE REVIBW ...ttt ettt bbbt b et b ekt e st b e bt e Rt e e bt e b e e s b e e bt et e enbesaeenbeenee e 19
2.1 Concept of Floating Liquefied NatUral Gas .........ccoicciirieeieeieiieiiiireeeeeeeeeceirreeee e e e e sessetarreeeeeeeeeeenansneneess 19



2.1.2 Gas Turbine as FLNG Compressor MechaniCal DIiVET ........oocuuiiiiiiiiiiiiiiiiee e e s saee e 24

2.2 Aeroderivative gas turbine Concept and deSIZN.........uuviieiiiiieiiieee e 27
2.3 MaiNteNanCe iN LING PrOCESS ... s e e e 31
2.4 Gas Turbine Maintenance iN LNG PrOCESS ........uiiiiiiiieiiiiiee ettt e st e s s sire e e e s saneeeesssneeeeenes 33
2.4.1 OVerview and SIGNITICANCE ........coiiiiiiiiieie bbbttt e et bbb ens 33
2.4.2 Types Of MaiNtenanCe SCREMES........cviiiiiii ittt b bbb 35
2.4.2.1 BreaKadoWn MaINTENANCE ........coviieiiieiieiiesie sttt sttt bbbt s e s et et et enbesbenbeereenes 36
2.4.2.2 PreVeNtiVE IMAINTENANCE .......ciieiiiieieie ettt st sttt e bt e st st esbe bt e s e e st e benbenbesbenbeereenes 37
2.4.2.3 PrediCtivVe MaAINTENANCE. .......covieieiieeieeiesieeie et st eeste et e st e te s e steesteareesbeeseesseesaeeneeeseesseeneeaneenes 40
2.5 General Maintenance Concepts of Aeroderivative Gas TUIDINE ........cceeeveciiiiiiieeee e, 42
2.5.1 0N CONAItION MAINTENANCE .....viivietieiieieie ettt sttt bbb et e b et st esbe st e sbe e b e e se e st e benbenbesbenbeereenes 42
2.5.2 Maximize on-site maintenance Capability............cccooii i 42
2.5.3 MINIMIZE HOWNTIME ...ttt sttt e et bt e st e be e s e s e e st e e e benbeebenbeereenes 43
2.6 Condition-Based maintenance of Floating LNG Critical Equipment .........cccviiiieeeii e, 44
2.6.1 PreviouS REIAIEA WOTK ........ooiiiiiiieieie ettt bbbttt sttt neenes 48

2.8 SUNMMIAIY etttttuiiieeeeeeetttitteaeeeeeeetttttareseeeteestaaaseeesteesssssssseeesessesssssssseeessesssmsssseseeeeseessmsssssseseesseessnnsnsens 51
(O T o) 0 SOOI 53
Gas Turbing Model BaSed CBIM..........ouiiiiiieieiii et bbbttt bbb 53
S 70 1 oo 18 ot oo PP P PR URTOPRPRROPR 53
3.2 Objectives for Modelling Gas TUIDINES .......uuiiiiii it e e e e e e e e e etrrre e e e e e e e e e anrraeeeas 54
3.2.1 MONITOMING TNE STALE ..ottt bbb bbbt et et et bbb e b et enes 54

vii



3.2.2 Fault Diagnosis and ISOIAtION.........coeiiiiie i ettt nne e 55

3.2.3 SENSON VAIAALION ...ttt bbb bbbt b et 56
3.2.4 Model Identification of Gas TUrbing ENQINES..........cccviiiiieiiiieseee e 57
3.2.5 DeSIgN OF CONLIOI SYSTEIM .....viiiiiieiece et e st e et e s ae e reeteeseenteeneesneenras 57
3.3 Challenges and Significance of Gas Turbine Model in LNG ProCess .........cccceeeieiuieeeeiiieeeeesiieeeeeevneeeennns 58
3.4 Requirement for Gas Turbine Model in Optimising Engine Maintenance .........cccccevvvveeeeeniiveeeesiiiieeeenns 59
3.5 Theory of gas turbines operations and Brayton CyCle.........ccouuiiiiiiiiiii e e 60
3.5.1 Gas Turbine Thermodynamics and Brayton CYCIE ..........cccoviiiiiiiiieieie e 62
3.5.2 Modelling and Simulations of gas tUrDINES..........ccceii i 68
3.5.3 Factors Affecting Gas Turbine Modelling .........c.covveiiiiiiie i 70
3.5.3.1 GaS tUIDING AESIGN TYPB....cvieeiitiecie ettt ettt e et e e et e et e s te e s beesbesreesteenteeneenseeneeaneears 70
3.5.3.2 Gas TUrbING CONFIQUIALIONS........cuiiiieieitiitesie sttt bbbttt ettt enes 71
3.5.4 Approaches for Gas Turbine Model CONSIUCTION ...........ociiiiiiiiiicee s 72
3.5.4.1 WANITE-DOX IMOTEL ...ttt 73
3.5.4.2 BIaCKDOX IMOGEL ...ttt 75
3.5.4.3 Grey BOX MOGEIING .....c.ooiuiiie et re e te e te e eneeanas 76
3.5.5 Gas Turbine Model for Predictive MaintenanCe............ccccuiereieiieiiescsie s 77
3.5.6 Case Study (Gas Turbine SIimulink MOdel) .........cooiiiiiii s 81
3..5.6.1 Model EQUAtiONS AN DALA.........ccueiiirieieiieiiisiesie e bbbttt bbb s 82
3.5.6.2 OULPUL TONTUE ...ttt ettt b bbbt bttt b bt et e b e b e e bt e bt e e nne e e 83
3.5.6.3 Fuel system Lag and ValVe POSITIONET ............ccuiiiiiiie ettt sneeene e 84
3.5.6.4 Time Lag and CompresSor DISCNAITE. .......ccviiiiiiiie ettt ettt srae e eere e 86
3.5.6.4 TemMPErature MEASUIEIMENT ........ciiiieiiieeiite st et e st e e st e e st e e st e e st e e st e e e srbe e e sabeeessbaeessbeeensneeans 87



3. 5.0.5 SIMUIALION ... 88

I I [0 014 o= VA 94

(O FoT o] (=] PSP O PP UPTPTPT U VRPRORON 95
Gas Turbine Fault Classification/Diagnosis (Data-Based Model) ..........ccccooeiviiiiiiiiciecc e 95
N R oY o oo [0 4 o] o PSSP PP ORI 95
Y To o [=1 1 1 o =SSP PRR 98
L R B T L BTSSP PR UPR PP 98
4.2.2.1 Sensor Types and Applications in Predictive MaintenanCe:..........cccocveveveeriiieiie i 104
4.3 Sensor Types and Application in Predictive MainteNanCe ...........ccccevvererienieenese e 104
4.2.2.2 DAtaSEt PreParaliONS. .......cviieieiiiitiitisiesiieie ettt ettt b ettt b et e s bbbt b e nne s 105
4.3 Models Implementations for fault diagnoSiS.........ceivicuiiiiiiiiiiec e e 110
4.3.1 Model-1 (Principal Component Analysis BaSed) .........cccovueiiieiiiiieiieie e 112
O Y [T (=1 | [T o @ o [=T ot 1= ST SR 112
4.3.1.2 Data RESTIUCTUING ...cviiieiieiieie ettt bbbttt b ekt b e bttt e et bbb b beene s 113
4.3.1.3 NOIMAHZALION ...ttt bbbt b bbbt bt e et et b ettt beebeene s 113
4.3.1.4 DIMENSION REAUCTION. .....uiiuiiiiietiiti ettt bbbt b ettt bbb b e e ene s 114
4.3.1.5 ClasSification IMOUEN ...........coiiiiiiiie bbb 115
4.3.1.6 Analysis and Evaluation for the MOdEelS.............ccoovii i 124
4.3.2 Model-2 (Signal Processing Based-mOdelS) ... 131
O N 1 11 (oo L8 Tox o USSP TSR PTPT T PRPRORS 131
4.3.2.2 ODJECTIVES ...ttt bbb bbbt s et e b et bbbt Rt Rt et e b et bbb b ene s 132
4.3.2.3 TIMe DOMAIN MOGEL: ... 133
4.3.2.3. 1 DALASEL......ceiitiiiiiitiet s 134



4.3.2.3.3 NOIMAIISALION: ...ttt bbbt b et 134
e J |V T T [=1 | o OSSR 135
4.3.2.3.5 Model Analysis and Performance EVaAlUAtioN..............ccocveiiiieiicie e 135
4.3.2.4 Model-B Frequency Domain MO ...........ccooiiiiiiiiiiiiiieeeee e 137
4.3.2.4. 1 DALASEL......cueitiiiieie ettt E et 138
4.3.2.4.2 Extracting Frequency DOMaiN FEATUIES..........ccoiiiiiiiiiieieiee et 138
4.3.2.4.3 NOIMAIISALION. ..ottt bbb bbb bbbt et b bbb 140
O o |V T o (= I =V T [ o OSSR 141
4.3.2.4.5 Model Analysis and Performance EValuation..............ccccoveiiiiiiicie e 141
4.3.2.5 Time-Frequency DOmain IMOEL............cooiiiiiiiii e 143
4.3.2.5. 1 DALASEL ....cieetiiieeite ettt E bRttt E e r e 144
4.3.2.5.2 FEATUIE EXITACTION .....viiiiiiieie ettt bbbttt bbb ene s 144
4.2.3.5.3 MOAelliNg & TIaINING ....ccviiiiieiiece ettt e esbaesteesresbeesbeenaesneenes 147
4.3.2.5.4 Model Analysis and Performance EValuation..............c.ccceeoiiiiiicie s 148
4.3.2.5.5 Data AUGMENTALION ........oiiiiiiiieiec ettt e e e st e et e e aeesbeenseesseereesbeeneesneenes 149
4.3.3 Deep LearniNg IMOUEI ........c.ooiiiiiiiiiiie ettt bbb ene s 149
4.3.3. 1 INTFOAUCTION ...t bbbttt bbbt bbbt e st et et et ettt e b e e beene s 149
G TR 0 O 1 o] =T ot Y= PP PPUP 150
4.3.3.3 DALASEL.......eeiieetiiiie e 151
4.3.3.4 FRATUIE EXIrACTION ...ttt bbbt b et b bbb 151
4.3.3.5 NOIMAIISALION.......eitiitiitieieie et bbbttt b e bbbt bt b et e b et be st e st e b e e beene s 152
4.3.3.6 Model ArchiteCture and TraINING........ccoiiiiieieie ettt sb bbb s 152



4.3.3.7 Model Analysis and Performance EValUation..............coooiieiiiiniieieneeeee s 154

L T o1 U 11 (o] o FO OO PPPPPPRPT 155
I e a Y=Y VA L Lo I @o T Tl 1T ] o) o TSR 157
(08 =T TSRS 158
CoNCIUSION AN FULUIE WOTK ...tttk bbbt b bbb ene s 158
5.0 CONCIUSION ..ttt ettt ettt et e e s a b e e st e e e st e e e bt e e eabeeesasbeeeasbeesabeeeeabbeeeabeeesabeeeenneens 158
5.2 FUTUIE WOTK ...t e e et e st e e e s be e e sabe e e sabeeesanee s 160
RETEIENICES ...ttt bttt bbb bR AR bR R Rt bRt R et b bbb 162

Xi



List of Figures

Figure 1.1: Energy Consumption DY FUEL. .. ... ..o e 2
Figure 1.2: World primary energy SUPPIY DY SOUICE. .......c.oriii i e, 3
Figure 1.3: Global gas SUPPlY DY SOUICES. ........ori e e, 5
Figure 1.4: Breakdown of liquefaction plant capital COSt...............ooiiiiiii e 6
Figure 1. 5: FLING ProCESS OVEIVIEW.. ... .o ettt et e et e el 7
Figure 1.6: FLNG System CritiCalities. ...........oooiii e e, 9
Figure 1. 7: FLNG equipment item CritiCalities. ..........c.oiriiiii e, 9
Figure 1.8: Distribution of failure root causes over 60 years of LNG/LPG operations............................ 11
Figure 2.1: Typical FLNG [ayOUL. ... ..o e e 20
Figure 2.2: Typical Aeroderivative gas turbine LM 6000.............ccooiiiiiiiiii e 28
Figure 2.3: Aeroderivative gas turbine (LM2500+) being Installed at Darwin LNG Plant....................... 30
Figure 2. 4: Principal factors that affect gas turbine maintenance planning................c.coooiiiiiiinnnen. 35
Figure 2.5: Breakdown or Unscheduled maintenance flow chart.................cooiiiiiiiiiiiii e, 37
Figure 2. 6: Preventive Maintenance FIOW Chart..............oiiiiiiii e, 38
Figure 2. 7: Engine failures and overhauls intervals. ..., 40
Figure 2. 8: Flow chart for predictive maintenance implementation...................ccoiiiiiiiiiii i, 41
Figure 2. 9: Gas Generator Removal (Left) and Power Turbine Removal (Right)....................ccooiiini. 44
Figure 2. 10: The architecture of OSA-CBM platform......... ... 52

Xii



Figure 3.1: Typical single-shaft gas tUrbINe. ... ..o s 61
Figure 3.2: (a-b) Ideal Brayton cycle in pressure-volume and temperature-entropy frames...................... 61
Figure 3.3: Ideal Brayton Cycle in Temperature-Entropy frames.............oooeiiiiiiiiiiiii i 65

Figure 3.4: (a-c) Gas turbine Simple cycle, Gas Turbine regenerative cycle, and Gas Turbine combine

........................................................................................................................................................................... 72
Figure 3.6: Gas Turbine CBM process-Diagnostics & PrognostiCs..........c.ovvvriiiiiiiiiiei e 78
Figure 3. 7: Fault diagnostics through the iterative proCess. .........o.vuvniiriiriiie e 80
Figure 3.8: Simulink-based 172 MW HDGT model SIMUIALION ............cceiiiiiiiiiiiiinieeeee e 90
Figure 3.9: Exhaust temperature of HDGT after speed Step 0f -0.1%0 ......ccooviiiiiininiiecee e 91
Figure 3.10: Mechanical output power of HDGT after speed Step 0f 0.1 ......cccooiiiiiininiiieee e 91
Figure 3. 11: Exhaust Temperature of HDGT after speed step 0f -0.3%0.......cccoceiiiiiiininiiiiiiee e 92
Figure 3. 12: Mechanical output power of HDGT after speed 0f -0.3%0........ccooeiiiiiininiiiieee e 93
Figure 4.1: Plots of useful features of TP11-Fuel to selected for the model .............cccoovreiiiiniiiiicee, 106
Figure 4. 2: FFT and PSD of remaining 9 TPL11 fRATUIES .......ccoiiiiiiiiiieieie e 108
Figure 4. 3: Flow diagram of MOdelling PrOCESSES.......cc.oouiiiiiiiiiiieieieiee e 111
Figure 4. 4: ANN MOGel ATCNITECIUIE. ........oitiiiiiiieeee et 116
Figure 4. 5: ANN-PCA Based CONfUSION IMALIIX........cuiriiiirieriiiisiesiieieee ettt 130
Figure 4.6: Feature ENQINEEIING PrOCESS ........ciiiiiiiieieieie ettt ettt b b 131
Figure 4. 7: Time Domain Based CONfUSION IMALIIX .........cciiiiiiiniiisieeiee e 136
Figure 4.8: Sample Spectrum of 180 datapoint signals showing PSD and 2 Max Peaks............cc.ccoccrevrunnnnn. 140
Figure 4.9: Confusion Matrix for Frequency-Domain ANN Model ..........cccoocoiiiiiiiiiiiiic e 143

Xiii



Figure 4. 10: Sample of Raw TP10 180 Datapoint SIGNaL..........ccceiiiiiiiiiiiisie e 146

Figure 4.11: Scalogram of TP10 Sampled SIGNal ........ccooiiiiiiiiie e 146
Figure 4. 12: Sampled TP11 for 180 Datapoints Signal sample @ 60HZz for 3 SECS........cccoeveiereniiiniennnn 147
Figure 4. 13: Scalogram for TP11 sampled 180 Datapoints SIgNal..........cccceeeiiiiiiniiiieeese e 147
Figure 4. 14: LSTM NetWOrk ArChITECIUIE. ......cviiieiiee ettt sbe e 153
Figure 4. 15: Confusing MatriX for LSTM MOEl ........c.cooviiiiiiie e 155
Figure 4. 16: Models Performance COMPAIISON. .........ccueuerueruerieriirieiieeeiei et nre e b e 156

Xiv



List of Tables

Table 1.1: World primary energy supply by SOUIrCeS (EJ/YI) ...ooovveiieieceeee e 3
Table 2.1: Selection of various liquefaction teChnOIOgIes. ..ot e, 21

Table 2.2: FLNG Liquefaction selection based 0N CApaCIty...........cccccveieiieieiiieiiie e see e ese e 23
Table 2. 3: FLNG Liquefaction selection based 0N CapPaCILY..........cccccvevieiiieiiiiie i 24
Table 2. 4: Aeroderivative classic preventive maintenance SChedule ............cccovvevieie e 39
Table 2. 5: Comparison of various system layers for CBM implementation..............ccccccevveveiieiieeiesieseeinns 48
Table 2. 6: Most Prominent FLNG reSearch WOTKS...........cuiiiiiiiiiisesieeeie et 50
Table 3.1: Definition of parameters in equations (3.1 - 3.8) .. ..c.iiriiiiii e 65
Table 3.2: Nominal Data of HDGT Selected for Modelling ... 83
Table 3. 3: Typical Operating Data for Computing Turbine and Compressor Efficiencies...........ccccccocevvennnne 85
Table 3.4: Estimated Minimum Fuel Flow and No-Load CONSUMPLION .........c.cceiiieneriniiieieie e 86
Table 3.5: Operational Data for Fuel System Lag Time EStIMation ............cccooeviniiinininieeee e 86
Table 3. 6: Operational Data for Compressor Discharge Lag Time EStimation ...........cccccoovvereneienenennnen 87
Table 3. 7: Data of Radiation SHIEIA ..........ccveiiiie et esre e 89
Table 3.8: Parameters 0f HDGT MOEI .........ooviiiiiiee et sne e 90
Table 4. 1: Raw Data Groups and DiMeENSIONS. .. ..ottt e e 103

Table 4.2: Sensors and features used in the eXPEriMENt............c.coiiiiiicie i 104

Table 4.3: Sensor Types and Application in Predictive Maintenance.........................cceeeeveeeenrenenee.. 105

Table 4. 4: PCA-based Models (10 datapoint arrangement with PCA Components) ..........ccceveeveveerieceene. 120
Table 4.5: PCA based Models (20 datapoint arrangement with PCA COmMpPOoNENts).........ccceevvevieerieeiiveannnens 121
Table 4. 6: PCA based Models (30 datapoint arrangement with PCA COMPONENLS)........cccveevvevveiiieeiiveannnens 122
Table 4.7: PCA based Models (40 datapoint arrangement with PCA COmMPONENts).........cccceevvevieirieeiiveennnens 123
Table 4.8: PCA based Models (50 datapoint arrangement with PCA Components)...........cccocevevveeiieeiiveennnns 124
Table 4.9: PCA based Models (60 datapoint arrangement with PCA COMPONENLS)........ccccvvevvevveirieeiiveaninens 125
Table 4.10: Summary of ANN_PCA based Models (10 datapoint arrangement with PCAComponents) .....127

XV



Table 4.11: ANN-Time-Domain Based Model Result Vs PCA_ANN Model............ccccceeneeee.
Table 4.12: ANN-Time Frequency Domain compared with Time Domain & PCA Models......

Table 4.13: Deep Learning LSTM Model compared with PCA & Signal Processing Models

XVi



Nomenclature/Notations

Abbreviations

Al

ANFIS
ANN
ANN_FDM
ANN_FDM
BP

BV

C3MR
CBM

CNG

CNN

CT

CWT

DBN

DMR

DNV

EIA

FFT

FLNG

Fn

Fp

artificial intelligence

adaptive neural fuzzy inference system
artificial neural network

artificial neural network time domain signal processing
artificial neural network frequency domain
British petroleum

bleed valve

propane pre-cooled mixed refrigerant
condition-based maintenance

compressed natural gas

convolutional neural network

compressor turbine

continuous wavelet transform

deep believe network

double mixed refrigerant

det norske veritas

energy information administration

fast fourier transform

floating liquefied natural gas

false negative

false positive

XVii



FPSO

GG

GT

HDGT

HEFA

HHV

HMI

IGVs

LNG

LSTM

ML

MLNG

MTBF

MTBO

MW

NN

OEM

OSA

PCA

PdM

PFLNG

PSD

PT

ReLu

floating production storage and offloading
gas generator

gas turbine

heavy duty gas turbine

hydro processed ester & fatty acids
higher heating value

human machine interface

inlet guide valves

liquefied natural gas

long short time memory

machine learning

Malaysian liquefied natural gas
mean time between failure

mean time between outages

mega watts
neural network
original equipment manufacturers
open system architecture
principal component analysis
predictive maintenance
petronas floating liquefied natural gas
power spectral density

power turbine

rectified linear unit

xviii



RGB
RMS
RNN
RUL
SCADA
SMR
STFT
SVM
TDSF
Tn

Tp
WT

XGB

Variables

Cr
Cv
Wc
Wi
Wecyc
Q23

Ma

red green and blue colours
root mean square

recurrent neural network
remaining useful life
supervisory control and data acquisition
single mixed refrigerant

short time fourier transform
support vector machine

time domain statistical features
true negative

true positive

wavelets transform

extreme gradient boosting

specific heat in constant pressure (J/KgK)

specific heat in constant volume (J/KgK)
work for compressor (J)
work of turbine (J)

total output work (J)
heat added to system (J)
mass of air (Kg)

mass of fuel (Kg)

XiX



N>

Ticyc

Pain
Pr

Pepu

Vce

Trs
Ecr
Emo
Ty

Tr

DsH
LsH

LsH

Te

maxF

nitrogen

ratio of specific heat

efficiency

specific enthalpy kJ/Kg
fault vector
performance parameters

control input

ambient condition

nominal frequency (Hz)

pressure ratio

output power per unit (J)

common signal

nominal speed

fuel system manifold

combustor reach delay

delay between fuel combustion and measuring system
time constant of lag for container’s volume
nominal temperature of the HDGT

shield head diameter (cm)

shield heal length (cm)

shield head thickness (mm)

speed governor gain

speed governor time constant

fuel demand signal maximum limit

XX



minF

KnL

Trs
Kr

Tcr
T
Teo
GsH
TsH
TR

Grc

fuel demand signal minimum limit

no load fuel consumption

valve positioner time constant

fuel system time constant (s)

fuel system external feedback loop gain
delay of combustion system (s)

transport delay of turbine and exhaust system (s)
compressor discharge lag time constant (S)
radiation shield parameter
radiation shield time constant (s)
thermocouple time constant (s)

temperature controller parameter

XXI



XXii



Chapter 1

Introduction

1.1 Background

Energy is the golden thread that connects economic growth, increases social equity and an
environment that allows the world to thrive. Energy is the catalytic driver for global sustainable
development. The world economy continues to grow especially with increasing prosperity in
the developing world. Perhaps, increased in prosperity drives growth in energy demand (BP
Energy Outlook, 2018). In short Increase in population in developing countries and rising
income levels are the two key drivers of energy demand (Ha et al, 2013). With the world
population increasing by around 1.7 billion to reach nearly 9.2 billion people in 2040 (BP
outlook 2018) and 9.77 billion in 2050 (DNV Energy outlook, 2018), energy security is critical
to the global economic growth. This prompts most of the emerging nations to be concerned
with provision of viable secured energy to develop and sustain their booming economies.
However, with this trend of greater demand for energy coupled with requirement for
sustainability and environmental legislations, a cleaner and sustainable energy source is thenon-
negotiable. Thus, natural gas is seen as a cleaner bridge to a renewable energy future andthe

only fossil energy source which is projected to grow to 2050 (World Energy Council, 2017).

Natural gas is the cleanest burning fossil fuel with tremendous advantages over other energy
sources. Natural gas is cheaper, cleaner with high energy value compared to other fossil fuels.
Its sustainable burning feature led into a boost of its consumption all over the world. Thus, the
demand of natural gas increases at 1.6% p/a which is much faster than either oil or coal (BP
Outlook, 2018). The production of natural gas also increases by 6%/year from 2017 to 2020

compared to 4%/year from 2005 to 2015 (EIA outlook, 2018). The demand of oil as a major



energy source will peak in the 2020s as shown in Figure 1.2 and will be taken over by natural
gas as biggest energy source in 2026 as shown in Figure 1.1. This trend will continue up to
2050 whereby natural gas accounts for 25% of the global energy mix by 2050 as shown in
Table 1.1. This unprecedented growth in natural gas demand is led by increases in industry and
the power sector. Perhaps, almost 70% of the energy demand increase goes to power sector.
(BP Outlook 2018). Therefore, the relevance of natural gas to meet world’s energy need now

and into the future is clear.
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Figure 1.1: Energy Consumption by Fuel (EIA Energy Outlook, 2018) (Quadrillion British thermal
units)
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Figure 1.2: World primary energy supply by source (DNV Energy outlook, 2018)

Table 1.1: World primary energy supply by sources (EJ/yr) (DNV Energy outlook, 2018)

Energy Source 2016 | 2020 2030 2040 2050 Share in 2050

Coal 163 157 140 96 60 10%

QOil 168 169 164 130 86 15%
Natural Gas 140 150 182 179 149 25%
Nuclear Fuels 30 36 44 41 28 5%
Biomass 56 59 66 69 67 11%
Hydro Power 14 17 20 23 24 4%
Solar Thermal 2 2 3 3 4 1%
Solar PV 1 3 19 55 96 16%

Total 581 603 660 639 586 100%




Natural gas markets are mostly far away from production fields. Thus, prompt the need for
transporting the gas from its producing field to the end-user. Transporting the produced gas is
achieved via pipeline system or on-board ships as transformed compressed natural gas (CNG)or
liquefied natural gas (LNG). The transformation process of both LNG and CNG helps to easy
transportation and safe handling when pipeline transportation isn’t feasible which increases their
availability globally. Liquefied natural gas (LNG) is a natural gas which is converted and
transformed to liquid form for ease of storage and transport. The transport of LNG involves three
stages: liquefaction, shipment, and regasification (Eisbrenner et al., 2014). Liquefaction
involves transforming the natural gas by cooling it to a temperature of
—160°C (-260°F). This cooling process shrinks the volume 600 times for easier and safer
storage and shipment (Saavedra, 2017). The shipment of LNG is achieved with well-insulated
storage ship tankers which transport it to the end user via pipeline distribution systems.
However, prior to the pipeline distributions, LNG is restored back to its gaseous state through
regasification process (Gowid et al., 2015). LNG is the most suitable among natural gas

sources and identified by (Shell outlook, 2018) as the fastest growing gas supply sources as

shown in Figure 1.3. The removal of carbon dioxide and other impurities during liquefaction

also make LNG to be the cleanest form of natural gas (He et al., 2018).
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Figure 1.3: Global gas supply by sources (Shell LNG outlook, 2018)

Liquefaction is the most important unit in LNG process (Zainal-Abidin et al., 2011) which
account for 30% to 40% of the overall cost of LNG production plant as stated by (Gowid et al.,
2015) or up to 50% of the plant overall cost as reported by Usama et al. (2011) as shown in
Figure 1.4. Various process configurations exist for liquefaction, but generally classified
depending on the size and function as large base load, peak-shaving and small to medium scale
plants (Mokhatab et al, 2014). The typical Floating LNG process plant is illustrated in Figurel.5.
Over the past several years, siting of LNG plants is usually onshore. However, with increased in
environmental regulations, higher project cost and increased in LNG and natural gas demand as
well as maturity of offshore oil and gas applications, Floating LNG is seen as the new frontier
for robust LNG production. FLNG offers potential cost saving up to 40% whencompared to
traditional onshore LNG facility (Gowid, 2016). Another key benefit of FLNG technology

involves enabling access to abundant stranded offshore natural gas fields that werecommercially
5



difficult to be developed with conventional onshore liquefaction facility (Eisbrenner et al., 2014).
Floating LNG concept solves many onshore production challengesassociated with demographic
constraints and environmental safety regulations (Lee et al., 2014). In offshore applications, it
also solves myriad gas handling challenges faced by offshoreoil and gas producers. High cost of
associated gas reinjection and uneconomical long offset offshore pipelines left offshore oils and
gas producers with only flaring option. However, withincreased strict marine and environmental
regulations, flaring is no longer acceptable in manyregions. Hence, FLNG provides an alternative
solution to handle offshore associated gas profitably and effectively (Saavedra, 2017). Therefore,

FLNG is promising with many potential benefits compared with onshore LNG facility.

Pre-treatment 6%

Loading facilities 10%

Gas liquefaction

0,
Utilities 16% 50%

LNG storage 18%

Figure 1.4: Breakdown of liquefaction plant capital cost (Usama et al., 2011)
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Figure 1. 5: FLNG Process Overview (Tierling and Attaway, 2017)

Considering the importance of liquefaction unit in LNG facility (50% of the overall cost),
failure associated to this unit will significantly causes serious risk to the entire FLNG facility
(Gowid et al., 2015). The study conducted by Forte et al. (2017) found liquefaction unit as most
critical and major contributor of the FLNG downtime (30%) in the entire FLNG processfacility
as shown in the Figure 1.6. Investigative research of the various failure root causes over 60
years of LNG plants operations identified various failure root causes of LNG facility as shown
in Figure 1.8. The substantial plant failure is associated with mechanical failure ofequipment
and storage which accounts for 47.1 of the entire plant’s failures. Materialscorrosion accounts
for 17.6%, failure associated to human error accounts for 17.6, instrument and control error
takes 5.9%, natural hazard accounts for 5.9% while the remaining 5.9% is associated with

unknown factor. However, from Figure 1.8, it can be observed that 65% of the overall LNG



failures can be associated with maintenance activities in the plant. Thus, implementation of
stringent maintenance regime impacts significantly to improve plants reliability, availability

and its profitability (Angelsen et al., 2006).

Since, major LNG plant’s failure is associated with equipment, more attention will be required
to identify critical equipment that contributes to the most of the plant’s downtime. A such,
compression equipment has the highest failure rate of the overall LNG process equipment
(OREDA, 2009).LNG compression equipment consists of Compressors, Gas turbines, heat
exchangers, pumpsand blowers (Gowid, 2016). However, most critical among this equipment
in the liquefactionplants are refrigeration compressors and their drivers (Lee et al., 2014). Thus,
their functionality, reliability and availability significantly affect the overall plant’s performance
andefficiency (Meher-Homji etal., 2011). In the research conducted by Benyessaad et al. (2016)
observed most of the downtime among the FLNG liquefaction equipment comes from gas
turbine with availability loss of 32% as shown in Figure 1.7. This indicates the critical of thegas
turbine in the whole FLNG process facility and as such requires operators to give the highest

maintenance priority to gas turbine.
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One of the key challenges of FLNG lies on the appropriate selection of refrigeration compressor
driver (Kumar and Jang, 2017). Selecting the driver type with right configuration is significantly
important and has a direct impact on the overall performance, efficiency availability as well as
profitability of FLNG facility. As mechanical drive, gas turbines have been applied in many LNG
plants especially the large trains. Gas turbines exist as heavy duty, industrial or aeroderivative.
The Aeroderivative gas turbine are becoming popular and widely accepted in the LNG industry
as mechanical drives (Ott et al., 2015). Aeroderivative have an improved efficiency which range
between 41-44% compared to 30-38% efficiency of heavy-duty machines (Almasi, 2012). An
extensive mechanical drive experience with aeroderivative (both offshore and onshore)
demonstrated good availabilities even under hostile operating conditions. Site maintenance of
aeroderivative is more complex, especially with engines typically being shipped to an authorized
repair depot for service. Further, the high power to weight ratio of an aeroderivative engine is

significantly important especially in the event a floating LNG facility being planned.

Unplanned downtime associated with equipment failure in both onshore and offshore oil and gas
facilities substantially reduces the volume of product sales and decreases the revenue. Perhaps,
both cost of downtime and maintenance are the major concern of Oil and Gas operators. In short,
profitability of FLNG plant has a direct link with the applied maintenance strategy and reliability
of the liquefaction plant (Gowid, 2016). This calls for higher reliabilityin liquefaction most
critical equipment (gas turbine) especially offshore when taking into consideration that the
FLNG facility is on sea with few or no spare parts due to weight and space constraints. Therefore,
retaining a plant’s reliability to an optimum level is the highest priority for FLNG process
operation and production which can be achieved by adopting a robust maintenance approach to
the process system and equipment. It is obvious that systems and equipment degrade and
deteriorate over time irrespective of their design robustness. However, the equipment failure

complied by NASA and US Navy (NASA, 2008) shows that only 18% of the failures are age
10



related, while 82% of the equipment failures occurs randomly.This indicates that only 18% of
the equipment failures can be detected prior to failure using

preventive or time-based maintenance practice alone. The remaining 82% requires more
sophisticated maintenance strategies that incorporate a condition and predictive based
component to enable early warning to diagnose the failure and be able to proactively predict

failure in advance.
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Figure 1.8: Distribution of failure root causes over 60 years of LNG/LPG operations (Angelsen et al., 2006)

Time-based preventive maintenance has been the recognised in oil and gas industry and widely
adopted practice to improve for maintenance effectiveness as well as enhancing equipment
reliability. It has been observed that the cost of maintenance incurred by rotating equipment
using preventive maintenance is 30% less than the cost incurred from reactive maintenance.
However, with recent advances in predictive maintenance program, operators have better
opportunity to plan maintenance action to an equipment prior to the actual maintenance
implementation. As such, predictive maintenance approaches offer more savings (50%)

compared to cost of maintenance incurred from reactive maintenance (Moore, 2004).

11



Considering the criticality of gas turbine in FLNG process facility, it is vital to assign more
robust maintenance regime that will enhances equipment reliability and availability.
Predictive/Condition based Maintenance (CBM) is a maintenance program that recommend
maintenance decision according to information obtained through condition monitoring process
(Jardine et al, 2006). Thus, CBM is based on actual condition of the monitored
equipment/machine. Therefore, the overall philosophy of CBM is a strategy that shift
maintenance processes from fail and fix practice to prediction and prevention of failure (Tehanet

al. 2017).

1.2 Motivation of the Research

The development and extension of the LNG into offshore industry is seen as a major
improvement and a game changer in the utilisation of the world’s energy resources
(Benyessaad, et al., 2015). Floating LNG enables production and liquefaction, storage and
transfer of LNG from gas fields at sea. FLNG innovations emerges from the technologies of
both subsea andmarine facility of Floating Production Storage and Offloading (FPSO) as well
as onshore LNG technology (Hwang et al., 2018). Oil andgas FPSOs are known with limited
space, sensitive to motion, inherent difficulty towards providing maintenance support among
others. As a new concept in the industry, FLNG is potentially recognised to be more dangerous
than oil and gas FPSO, with topside liquefaction process more vulnerable and critical to safety
(Lee et al., 2014). Perhaps, the topsides gas processes and liquefaction has been identified as
one of the great challenges of FLNG, and itsprofitability strongly depends on reliability,

availability, and maintainability of these process facilities.

12



The current most widely used maintenance methods such as breakdown and preventive
maintenances used in offshore oil and gas operations are not sufficient to maintain critical
FLNG equipment such as gas turbines. Gas turbine as mechanical drive is identified asmost
critical with highest availability loss in FLNG process facilities (Benyessaad et al. (2016). The
availability, reliability, high safety standard requirement as well as efficient operation of the
engine is always the major concern of its users. On this basis, a swayfrom conventional

maintenance approaches to more robust, reliable, and cost-effective maintenance is required.

More proactive and advance maintenance method (Condition-based maintenance), pave its way
into oil and gas industry by combining multiple solutions, process reliability and system
operating optimisation to achieve lowest operation risk as well as delivering the desired output
(GE Digital Solutions, 2019). Also, efforts towards enhancing the performance of offshore
plant maintenance methods with condition-based maintenance, drawn the attention of
researchers. However, very few studies have introduced instances of the condition-based
maintenance implementation in offshore oil and gas, with little focus on FLNG liquefaction
equipment and non to its critical equipment (Aeroderivative Gas Turbine) as the time of writing

this report.

Currently the research for the development of Condition-based maintenance in oil and gas
industry is progressing, although it’s still a challenging area especially in the offshore
applications. In short, the current approaches have limitations regarding methods and
validations. Thus, this thesis introduces approaches and methodologies towards
implementation of condition-based maintenance for critical equipment in floating LNG

process, i.e., aeroderivative gas turbine.

13



1.3 Aims and Objectives

The main objective of this research is to address the challenge of failure and downtime in floating
LNG critical equipment (Aeroderivative gas turbine) through the design and development of
novel approaches and methodologies in modelling, simulation gas turbines based on physics-
based techniques. Simulink-based gas turbine model is developed based on thermodynamic
equations and mathematical analysis. Although, the simulated data lack detailed features
required for the model and hence the utilisation of experimental data. Data-driven Al-based
models were built to predict failures associated with gas turbines, especially when exposed to
different fuels. These models shall be capable in detecting and predicting incipient failures in the

equipment.

Given the results of the literature survey and the contents already discussed in this chapter, the

following research objectives are made:

1- Development physics-based gas turbine model based on thermodynamics equations and
state space mathematical analysis. Simulink model for gas turbine is developed to
understand some dynamic and transient responses of the engine, especially when tuned
to various operation conditions. The model output responses or output parameters
generated based on input changes can be applied reliably for gas turbine diagnostics
studies to predict engine’s failures with a high accuracy.

2- Development of data driven Al-based models to reliably perform gas turbines failure
diagnostics and predictions. The dynamic response behaviours of gas turbines critically change,
when exposed to different types of fuels. A diagnostics-based Al models are constructed to
classify gas turbine engine’s failures associated with exposure to different types of fuels. The
experimental time-series datasets obtained from gas turbine engine facility, represents
system responses on exposure to different types of fuel. This data is used to model

operating characteristics of gas turbine and its condition monitoring classification.
14



Feature extraction such as Principal Component Analysis (PCA) and signal processing-
based tools are applied, to add more correlations to the dataset and extract good features
for the model. Neural Network based model is used further to classify failures
associated with different fuels used.

3- Simulate dataset through deep learning-based LSTM model, which extract features
from the time series dataset directly, and further perform condition monitoring
classification. The objective here is to compare the prediction performance and
capability of deep learning-based model against conventional neural network-based

model developed.

1.4 Contribution

This thesis is specifically focused on research on floating LNG (transition fuel) and
application of digitalisation strategy to maintain the FLNG’s critical asset. The thesis
identified most critical asset that requires more research attention. In FLNG project,
Industrial gas turbine is not compatible offshore, therefore Aeroderivative gas turbine is
more preferred in offshore application. However, with limited literature on CBM

implementation on FLNG Aeroderivative gas turbine. The thesis contributes in;

2- Surveying a comprehensive current state-of-the-art of predictive maintenance
approaches on as turbine applied to floating LNG process. to underpin the appropriate

method compatible for modelling and validation of the study.

3- Developing a physics-based model to simulate the operational characteristics of gas
turbine, which will further applied on gas turbine condition monitoring studies. Although

the model requires further analysis to fit for CBM.

15



4- Developing an intelligent model capable in detecting gas turbines failures. Data driven
Al-based models are constructed with experimental dataset. The models built are efficient
enough to predict engines failures, and enhances optimal operations, improve reliability and
availability of FLNG critical asset (aeroderivative gas turbine). Therefore, thesis gives
deeper understanding on how Predictive maintenance could drive efficiency, improve

system reliability and availability of the new FLNG concept.

6- Part of this thesis has been presented at 20" Nigerian Oil and Gas Conference and
Exhibition (20" NOG conference & exhibition, 5-7 July 2021). The paper presented is titled
“Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas

Liquefaction Process: Framework & Benefits”.

1.5 Outline of the Thesis

This study deals with modelling a predictive maintenance model for aeroderivative gas
turbines. The entire contents provide new research basis and novel solutions in this area. The

thesis is structured as follows:

The 1t Chapter commences with a general representation of background, motivations of the

research, objectives of the study, thesis contributions and thesis outline structure.

The 2" Chapter presents a comprehensive overview of the literature in the field of PdM
of aeroderivative gas turbines. It covers the general concepts and design of an aeroderivative
gas turbines, gas turbine maintenance in LNG process, condition-based maintenance of

FLNG.
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The chapter concluded with brief structural modelling architecture of aeroderivative gas

turbine’s Condition Based-Maintenance.

The 3" Chapter briefly discuses modelling and simulations of gas turbines. It covers
challenges and significance of gas turbine model in LNG process. Both white-box and black-
box gas turbine models were treated, with brief introduction of grey-box gas turbines models.
The theories and fundamentals for gas turbines modelling based on white-box model have been
covered. The chapter concluded by establishing a case study for modelling and simulation of
gas turbines. A Simulink gas turbine model is constructed based on the thermodynamic and
energy balance equations in MATLAB environment, and the output responses were recorded

for further PdM studies.

The 4™ Chapter Presents modelling and simulation of gas turbines based on data driven
modelling approach. An experimental time series dataset is used to classify anomalies
associated with gas turbine’s exposure to different fuels. Feature extraction tools such as PCA-
based and signal processing-based are used to prepare the dataset by reducing its
dimensionality and extracted good features for gas turbine diagnostics modelling. A model
based on neural network is developed further to classify the gas turbine engine anomalies.
Deep learning-based LSTM model is used to develop a diagnostics model for gas turbine. The
overall models are tested and validated against unseen dataset, and performances of the models
are compared.

The 5™ Chapter represents the final chapter and covers overall conclusion of this research,

discusses future work and area of possible improvements on aeroderivative gas turbines

condition based-maintenance research work.

17



1.6 Summary

This chapter introduced a background development behind the growing influence of LNG as

an energy mix and important fossil fuel in the energy transition. Then preceded the discussion
on motivations for this research. The contributions of this thesis have been briefly explored.
Finally, the chapter highlighted key objectives of the research work as well as study outline of

the thesis.
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Chapter 2

Literature Review

2.1 Concept of Floating Liquefied Natural Gas

While onshore LNG facility is a well-established mature process, the floating LNG is relatively
new concept (Saavedra, 2017). Although, the concept of floating LNG has been studied since
the mid- 1970s with very low progression until May 2011, when the Shell Oil company decided
to develop floating LNG (Prelude) to be operated in the Timor Sea. Since then, many projects
and research regarding FLNG continue to emerge progressively (Songhurst, 2016). As at the
time of writing this thesis, only Petronas Floating LNG (PFLNG1) is commercially operating
on the sea. PFLNG1 saw its first LNG drop in December 2016, first cargo in April 2017
followed by performance test in June 2017 (Su, 2018). Although Prelude made its way to the

Sea, but the LNG commercial export hasn’t yet started.

FLNG blends the technology of land-based LNG industry, offshore oil and gas industry and
marine transport technology. The FLNG design architecture as defected in Figure 2.1
constitutes topside, storage mooring and turret systems. The topside mainly contains both
process and liquefaction units. The raw natural gas from the subsea well is transferred to the
topside via risers and turret. The process unit takes in the in raw natural gas and remove
impurities (C02, sulphur etc.). The liquefaction compresses and transformed the gas into LNG
which is then transferred into a hull for storage. The stored LNG is normally transferred to

arriving LNG carriers through uploading equipment (Aronsson, 2012).

Given the availability of conventional onshore LNG, many questions will arise on why floating

LNG are considered? Perhaps this translates to the key benefits of FLNG over the conventional
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LNG facilities. Some of the advantages of FLNG over onshore LNG were observed by (Abe

etal., 2018; He et al., 2018) as;

e Cost saving by eliminating subsea pipelines from the offshore gas fields to the shores.

e Cost saving opportunity by employing lower labour rates at shipyards as opposed to

higher labour rate in the regions where onshore LNG projects are executed.

e Opportunity to develop and monetise stranded gas fields as well as the redeployment to
another gas fields upon the production decline which save the operators from full sunk

experienced with onshore plants due to mobility challenges.

Power
plant
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Condensate
Tanks
Well kﬁlmﬂng line

Figure 2.1: Typical FLNG layout (He et al., 2018)
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Table 2.1: Selection of various liquefaction technologies (Eckhardt, 2010 and Lee et al.,2014)

Category Technology Cascade | C3-MR SMR N2
DMR Expander
Equipment counts for
50—65 45-65 40-55 | 12
liquefaction
Suitability | Process sensitivity to motion Yes Yes Yes No
to LNG
Ease of start-up/operation Low Low Low High
FPSO
Flexibility to feed gas
Medium Low Low High
changes
Storage of HC refrigerants Yes Yes Yes No
Safety Cryogenic equipment counts High High Medium Low
issues
Space requirement High High Medium Low
Thermal efficiency (% of 91% 92% 89% 84%
HHV)
Efficiency | Availability Medium Medium Medium High
Specific investment High High Medium | Medium
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Selecting the right liquefaction process is critical to FLNG process. Various criteria have been
adopted in selecting appropriate FLNG process architecture as presented in Table 2.1. Many
researchers work have their specific interest on some process configurations depending on their
preferences and requirements. Li and Ju (2010) considered performance parameters such as
economic performance, layout, sensitivity to motion, suitability to different gas resources, safety
and operability as well as accountability of for the liquefaction process to marine environment
as selection criteria. In their study, the authors compared Propane pre-cooled mixed refrigerant
(C3/MRC), mixed refrigerant cycle (MRC) and Nitrogen expander (N2 Expander) liquefaction
technologies for their suitability in processing associated offshore gas in South China Sea. The
result obtained by the authors found N2 Expander as the most suitableliquefaction process despite
its setbacks regarding poor economic performance and higher energy consumption compared to
the other two process technologies. Perhaps its size compactness, higher safety, less sensitivity
to FLNG vessel motion and simplicity in operationsmakes it more preferred option for FLNG

offshore applications.

Although some researchers like Li and Ju (2010); Gowid et al. (2015); and Lee et al. (2014)
considered the possibility of adopting C3/MRC in the floating LNG applications due to its high
efficiency and proven reliability which accounts for 66% of the total onshore LNG trains in 2013
as reported by WORLDLNG Report (2014). But recent studies found C3/MRC unfit for floating
LNG application especially because the major technology driver for offshore applications
considers weight and space as priority. Propane pre-cooled mixed refrigerant usekettle chillers
and heat exchanger with large flammable liquid refrigerant inventories. As suchthe large
footprint (space and weight) consumed by these pieces of equipment makes C3/MRC

unfavourable for FLNG liquefaction process technology (Tierling and Attaway, 2017). This
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limits the selection to only Nitrogen expander (N2 Expander), Single mixed refrigerant (SMR)
and dual mixed refrigerant (DMR) as illustrated in Table 2.2. Nitrogen expander has been chosen
as a liquefaction process for the first floating LNG on the sea (PFLNG1) and the selection criteria

was reported by Ahmad et al. (2014).

On the bases of scaling capacity criteria, Castaneda (2015) and Tierling & Attaway, (2017)
differs in selecting liquefaction technology for small and mid-scale capacity. Castaneda (2015)
selection is shown in Table (2.2), while Table 2.3 illustrated the selection criteria forTierling and
Attaway (2017). Therefore, regardless of the selection criteria followed, successof any FLNG
application is tied to the liquefaction technology that is proven, reliable, space efficient and as

well as simple to operate.

Table 2.2: FLNG Liquefaction selection based on capacity (Castaneda, 2015)

Capacity MTPA Liquefaction Technology

Expander process
<0.2 Nitrogen expander

Feed Gas (Niche process)

2-3 Single Mixed Refrigerant
PRICO SMR
>3 DMR

23



Table 2. 3: FLNG Liquefaction selection based on capacity

Capacity Liquefaction Technology Reason
Small scale SMR Footprint (Space & Weight)
Small-Midscale N2 Expander Less sensitive to motion
Large scale DMR Higher efficiency and safety

2.1.2 Gas Turbine as FLNG Compressor Mechanical Driver

One of the key challenges of FLNG lies on the appropriate selection of refrigeration compressor

driver (Kumar and Jang, 2017). Perhaps selecting the driver type with right configuration is

significantly important and has a direct impact on the overall performance, efficiency availability

as well as profitability of FLNG facility. Some considerable research work covered LNG

equipment selection, with refrigerant compressor driver selection receivesmore attention in the

publications. The compression driver options reviewed involves steam turbines, industrial gas

turbines, aeroderivative gas turbine and electric motor. However, for applications that requires

significant mechanical shaft power beyond 1 MW such as LNG compression, a direct drive

arrangement prompt most suitable always. Gas turbine engine is a direct drive turbomachinery

which is popular in oil and gas and chemical process industry. These industries use gas

compressors, blowers/fans and pumps (Solar Turbines, 2011;Jansohn, 2013).
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As mechanical drive, gas turbines have been applied in many LNG plants especially the large
trains. Gas turbines exist as heavy duty, industrial or aeroderivative. Industrial gas turbine is the
most widely used driver for refrigerant compressor over the last two decades. However, theheavy-
duty industrial gas turbine has many setbacks that makes it unsuitable for FLNG applications.
For instance, low thermal efficiency (30-38%), high specific fuel consumption, give rise to
increased emissions and extensive maintenance requirements (Bardon, 2016). In addition, its
constrained with limited speed range, and as such requires an auxiliary large variable speed motor
for start-up, which requires more space on FLNG deck and additional cost. Hence, the concern
on emission reduction, improved reliability and improved thermal efficiency of the refrigerant
driver lead LNG operators to search for more sustainable, reliableand efficient driver (Almasi,

2012).

Aeroderivative gas turbine are becoming popular and widely accepted in the LNG industry as
mechanical drives (Ott et al., 2015). They have an improved efficiency which rangebetween 41-
44% compared to 30-38% efficiency of heavy-duty machines (Almasi, 2012). Improving plant
efficiency centred around two areas which involves turbomachinery and cryogenic heat
exchanger. However, considering the maturity of LNG liquefaction processes, little further
tightening modification could be done to exchanger temperature approaches. Hence, that leaves
two areas that significantly influences plant efficiency, i.e., refrigeration compressors and gas
turbines drivers. However, harnessing improved efficiency throughrefrigerant compressors
has little impact, especially given that their efficiencies are already inthe high 80s. Therefore,
appropriate selection of gas turbine determines both thermal efficiency and carbon emission for
the liquefaction turbomachinery. As such, improved efficiency and emission reduction are some

key benefits of aeroderivative compared to industrial gas turbines(Habibullah et al., 2009).
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Recently, aeroderivative gas turbine has been applied in LNG application in Darwin onshore
plant, Australia. This is the first instance where aeroderivative gas turbine is applied to LNG
operations and has been successfully operating from 2006 to date. However, given the little
experiences of aeroderivative gas turbine mechanical driver in the LNG onshore, how compatible

it is to fit into offshore LNG operations?

Several critical parameters are essential when selecting an appropriate refrigerant compressor
driver for FLNG configuration. Some of these parameters were identified by Kumar and Jang
(2017) as footprint size, weight, starting methodology, thermal efficiency, ease of operation,
hazardous area “Ex” use, availability, impact on other system economics and operational
advantage, marine environment use (marinization), operator comfort and life cycle cost. All these
factors are critically important and drives the choice on appropriate selection criteria. However,
more critical choice lies primarily on weight, footprint and serviceability at the offshore location
as well as thermal efficiency. Aeroderivative gas turbines as developed fromaircraft jet engines
acquired some unique features aircraft engines such as lightweight, fuel efficient, easily swapped
in and out of service, and ability to quickly ramp the power up and down. Perhaps, these features
made aeroderivative gas turbines suitable for mechanical or compressor drives for FLNG (Ott et

al., 2015).

The selection of aeroderivative gas turbines to floating LNG applications has motivations that
lies on its technical capabilities and commercial benefits. Couple with the challenges of offshore
environment ranges from metocean conditions and logistics, an equipment with proven
reliability, availability, maintainability, flexible operating conditions, efficiency, low emission
and small footprint stands the most preferred choice. Aeroderivative gas turbine met these
conditions compared to any other mechanical drive equipment in the offshore floating LNG

applications.
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2.2 Aeroderivative gas turbine Concept and design

The aeroderivative gas turbine are originated from aerospace industry as the prime mover of
aircraft. The concept has been adapted to the electrical power generation industry by removing
the bypass fans and addition of power turbine at the exhaust. Aeroderivative has an output power
ranges from 2.5 MW to about 50 MW and efficiencies ranges between 35-45% (Boyce,2006;
Doom, 2013). The architecture of aeroderivative gas turbine is characterised with multi-shaft
design (two or three shafts). The power turbine sits on a separate shaft which allows the speed
adjustment without the need a gearbox (Del Greco et al., 2018). The machine also consists of
two basic components (an aircraft-derivative gas generator and a free-power turbine). The energy
or gas horsepower is produced by gas generator which is a component derived from an aircraft
engine and modified to burn industrial fuels. This component (gas generator) raises combustion
gas products to conditions of around 45-75 psi (3-5 Bar).Conventional aircrafts engines have fan
jetwhich are removed and replaced by some additionalcompression stages in front of the existing
low-pressure compressor. In many cases, the axial flow compressor in aeroderivative gas turbine
is divided into low-pressure and high-pressure sections. In those case, turbine is usually
comprising of low-pressure turbine and high-pressureturbine which drive the corresponding
sections of the compressor. The shafts of aeroderivativeengines are usually concentric. This
significantly enables speed optimisation of the low- pressure and high-pressure sections. Hence,
the power turbine is separated and mechanically uncoupled with the connections only via an

aerodynamic coupling. In these cases, the turbines
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have three shafts with all operating at an independent speed (Boyce, 2006). Figure 2.2

depicted a typical aeroderivative gas turbine.
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Figure 2.2: Typical Aeroderivative gas turbine LM 6000 (McMillian, 2013)

Like all gas turbines, Aeroderivative gas turbine follows Brayton Cycle. It takes in air and
continues injection of fuel to create hot and pressurized gas flow which expands through the
turbine. Then process begins by pressuring the incoming air by a compressor through its stages.
This pressurisation compressed and heated the air which subsequently passed to the combustion
chamber where chemical energy from the burning fuel adds more heat. The hot and pressurised
air expands and follow through turbine blades to rotates the shaft that drives the compressor at
the front of the engine and the cycle continues. The shaft is normally connected to either external
generator for power generation or as a mechanical drive to refrigerant compressor or pumps.
However, for efficient energy conservation, the remaining energy not used in driving the shaft

can be captured in useful ways for various applications in the plant (Doom, 2013).
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Various gas turbine Original Equipment Manufacturers (OEMSs) design and develop various
types of gas aeroderivative gas turbines for both power generation and mechanical drive
applications. Some of the most popular aeroderivative gas turbine include GE (LM 2500 class&
LM 6000 class) and Siemens SGT-A45 and SGT-65. LM 2500 has proven experience in marine
ships propulsion and offshore oil production. Some research effort has been put to investigate
some experience and lessons regarding the applications and operations of some aeroderivative
gas turbine in offshore and marine environment. Spector and Cimino (1990) investigated 10
years’ experience of GE LM 2500 gas turbines operating at North Sea offshoreplatforms. The
study specifically focused on some operational experience, maintenance philosophy, reliability
and some advantages of the engine given its record of over one millionhours of operation in
North Sea at the time of the study. The evaluation of success and challenges of the LM 2500
operating experience revealed an unexcelled level of reliability and availability. Some
recommendations were further given by the authors which aimed at enhancing reliability,
availability and application flexibility of the LM 2500 engines in offshore applications. As such
many developments has been occurred resulting to the evaluation of many versions of LM 2500

by its OEMs.

Recently Meher-Homji et al (2008) reviewed the operational experience of world’s first
aeroderivative gas turbines in LNG applications. The author discussed design, manufacture,
testing, implementations as well as operational experience and lessons learnt from deploying
aeroderivative into LNG application as a mechanical driver. The study discovered an

overwhelming operational performance of the plant over two years operation. The result
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obtained by the study met all the expectation as well as exceeding the LNG production
performance. Infurther investigation by Maher-Homiji et al (2011), the authors conducted another
study to evaluate four years operational experience. Design compatibility, maintenance
implementationas well as debottlenecking activities were further investigated. Since installation,
the plant has been successfully operated over 4 years as at time of the study. Likewise, the
previous study, the authors reported that the expectations and production goals we met and
exceeded. The debottlenecking activities that have been implemented by the plant has been well
covered and extensively discussed by the authors. The over result success and failure discovered
in these two studies is profoundly essential especially to many FLNG operators who deploys
aeroderivative gas turbine into offshore floating LNG application with no experience in offshore
liquefaction process. Figure 2.3 shows the aeroderivative gas turbine installed andoperated by

Darwin LNG plant.

Figure 2.3: Aeroderivative gas turbine (LM2500+) being Installed at Darwin LNG Plant(Meher-Homiji et al.,
2011)
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2.3 Maintenance in LNG Process

Machines/equipment suffers changes during its operating life due to deviations from its standard
design state, leading to a reduction of its reliability and availability (Leturiondo, 2016). Faulty
equipment poses the threat of a full breakdown or outage of the LNG plant. Likewise, equipment/
machines operating at wretched condition may not fail completely, but certainty their efficiency
and output will be reduced. Hence, raises operating costs and impactproduction performance
negatively (STI Group - Industrial, Midstream & Fabrication Services, 2015). However, with
good maintenance practice, minor and major problems in LNG process plant could be detected
before they escalate and poses negative consequences. Therefore, Maintenance is crucial
towards assurance of machines health condition, which is equally essential to determine the

optimum moment to replace or repair them (Leturiondo, 2016).

The maintenance works, inspection, refurbishments, and parts replacement are performed to keep
equipment and systems efficient and operate within a tolerable design life. Maintenance can be
regarded as a strategy and actions implemented during the plant’s service life, requiredto ensured
safe, reliable, and cost-effective operation of the assets. Thus, LNG plants performance strongly
depends on availability and reliability of critical equipment/systems as well as their safe operation
and cost effectiveness in maintaining them. Perhaps, the importanceof reliability improvements
to make the LNG plants more competitive and profitable promptsthe need for adopting
sophisticated technology for inspection and maintenance optimisation (Angelsen et al., 2006)

especially on critical LNG assets.

Similarly, one of the primary goals of adopting good maintenance at LNG plants/terminals is to
improve and maintain safety levels. Although LNG itself cannot burn until it is mixed withair,
and is unlikely to explode, but the presence of other potentially dangerous gases and compounds

that are used in the refrigeration or re-gasification process could explode if mishandled or
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allowed to leak. Mishandle or leakage could be associated with faulty equipment and machinery,
hence potentially leads to the risk and occurrence of explosion or of an accident (STI Group -
Industrial, Midstream & Fabrication Services, 2015). Therefore, safety is another critical
important factor for LNG process. In short, with unprecedented increase in LNG production
value chain involving processing, transporting andconsumption, raises public concern on the
environmental risk, safety and health associated withthe LNG. This has direct relation with the

design, operation and maintenance of LNG facilities.

Some accidents have been recorded in LNG industry with consequential revenue damages, lossof
lives and refutation. The first LNG accident occurred at Cleveland, U.S which injured 225 people
and killed 131 people with huge damages in facilities and infrastructures. In 2003, An explosion
occurred in Malaysian LNG plant (MLNG Tiga) train 8. No casualties or injuries were recorded,
but the incidence raised public concern. Algerian LNG plant exploded in 2004,killed 27 workers
and causes an estimated damage of $1 Billion. Another explosion for Algerian LNG plant
occurred at Skikda town in 2005, which rendered 72 people injured with 28 casualties. Skikda
accident was worst LNG accident since 1973 when the catastrophic explosion at Staten Island,
U.S. claimed 40 lives (Angelsen et al., 2006). Most recent LNG accident was the Plymouth LNG
explosion, occurred in 2014 at Plymouth Washington, U.S, which injured 5 people and claimed
$69 million damage (Powell, 2016). More details regardingincidences of LNG accidents can be

sourced from (Riley and Riley, 2016).

A review for over 60 years of LNG plant operations shows that the various root causes of
incidences for LNG accidents reported are associated with mechanical failure of equipment and
storage tanks, including brittle fracture account for 47.1% of the failures. Corrosion failuresrelated
to operation of cold boxes and mercury liquid metal embrittlement, accounted for 17.6%. This

indicates that about 65% of the major root causes can influenced by maintenanceand inspection
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activities. Hence, optimizing maintenance and inspection activities for criticalequipment such as
gas turbine is necessary to improve the overall plant reliability, availability, and safety (Angelsen

et al., 2006).

2.4 Gas Turbine Maintenance in LNG Process

2.4.1 Overview and Significance

Gas turbine equipment especially when operated in the cryogenic LNG process or offshore
environment often runs under rigorous conditions. Subjecting this equipment to rigorous
operating condition and harsh operating environment, exposes them to corrosion, erosion and
wear. At the same time, day to day operations induces ageing-related factors that consequently
leads to its deterioration and degradation. If these effects are not monitored well, they can leadto
unexpected failure which significantly affects the performance, efficiency and productivityof the
entire process plant. Consequently, this could also lead to large financial losses, imposeshealth
and safety problems to the operating personnel on board and creates major environmental
pollution. However, with improved equipment reliability and systemavailability, these effects
will be mitigated. But can only be achieved by proper monitoring andinspections on the right
equipment in the right location at the right time on the right informationthat guides in carrying out

the necessary maintenance, modification, or replacement (Ratnayake, 2015).

The cost of maintenance and machine availability are two most important concerns to gas turbine
equipment owners (Eggart et al., 2017). The need for maintenance is usually predictedon actual
or impending failure depending on the plant’s maintenance approach and strategy. Thus, FLNG
plants performance strongly depends on availability and reliability of critical equipment/systems

as well as their safe operation and cost effectiveness in maintaining them. Therefore, to ensure
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seamless operation of gas turbine mechanical driver with optimum availability and reliability,
appropriate maintenance process scheme such as periodic inspection, repair, and replacement of

parts, must be established and planned accordingly (Knorr and Jarvis, 1975).

Gas turbine components can be categorized into two, i.e. (i) those that require most frequent
maintenance attention and (ii) those that involves long term maintenance consideration and
planning. The gas turbine components that require the most careful attention are those relatedto
combustion process, together with those exposed to the hot gases discharged from the
combustion system, which are regarded as the combustion section and hot gas path parts. These
components include combustion liners, end caps, fuel nozzle assemblies, crossfire tubes,
transition pieces, turbine nozzles, turbine stationary shrouds, and turbine buckets. The other gas
turbine parts that need long-term maintenance consideration and planning involves compressor
rotor, turbine rotor, casings, and exhaust diffuser (GE Power Atlanta, GA, 2017).Therefore, to
ensure seamless plant operations, a robust, efficient, and flexible maintenance strategy must be
developed for both components with high maintenance frequency and those with long term
maintenance requirements. This significantly improves the reliability and availability of gas
turbine assets and, consequently decreases the number of unpredicted breakdowns, operating
costs, and downtime. Thus, a successful implementation of the right maintenance scheme for gas
turbine, is tied to proper inspection and planning. The maintenanceplanning for gas turbines
depends on some factors as indicated in Figure 2.4. 1n short numerous trade-offs among
environmental, technological, economic and operational factors help towards establishment of
successful maintenance and operational strategy for gas turbineassets (Tahan et al., 2017 & Hoeft

and Gebhardt, 1993).
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Figure 2. 4: Principal factors that affect gas turbine maintenance planning (Tahan et al.,2017, Hoeft and
Gebhardt, 1993)

2.4.2 Types of Maintenance Schemes

The goals of FLNG operators are tailored towards safe operation without harming the personnel
and safeguarding the ocean environment whilst generating revenue. These objectives are only
achievable when right and appropriate maintenance policy has been implemented to critical
equipment such as aeroderivative gas turbine. However, maintaining an equipment in offshore
platform is one of the toughest challenges to the maintenance engineers. VVarious maintenance

strategies have been applied in maintaining industrial equipment, depending on the established
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maintenance policy of the operator. Thus, there are three basic maintenance approaches as

classified by (Niu, 2017) as;

e Breakdown or run to failure maintenance
e Preventive or time-based maintenance

e Predictive or condition-based maintenance

2.4.2.1 Breakdown Maintenance

The breakdown maintenance also known as unplanned maintenance strategy, is usually
implemented to repair equipment only after the manifestation of defect, or total breakdown (fixit
when breaks). In this maintenance approach, the equipment is allowed to run until a given
component(s) fail. No prior efforts or action is taken to maintain the system/component as
recommended by OEM until when its completely failed. In short breakdown maintenance
practice failed to take into cognisance the stochastic nature of the system failure and plan for
maintenance, until the ultimate breakdown. When equipment/machine breakdown, there couldbe
a tendency for production disruption which may likely leads to the stoppage of the entire plant
especially when critical equipment are involved (KARIBO, 2017). When the unit/component
fails, an imperfect corrective maintenance is undertaken (Kouedeu et al., 2014), which involves

replacing or repairing the failing unit. (KARIBO, 2017)

Breakdown maintenance usually occurs as an emergency and therefore requires a cost premium

(Monks, 1996 and KARIBO, 2017). As such, adopting this maintenance practice is always

associated with unscheduled downtime with severe consequences. It is important to note that,
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this type of maintenance scheme is not compatible with aeroderivative gas turbine, especially

when operated in FLNG. Although some non-critical components in the FLNG process whose

failure may not halt the production process, could be subjected to this type of maintenance

approach. Figure 2.5 indicated the flow chart of breakdown maintenance processes.

Functional Failure Selection of :
. : : Disassembly
Failure Diagnosis Spare Parts
Restoration or Functional
— Replacement Assembly Test

Figure 2.5: Breakdown or Unscheduled maintenance flow chart (Souza, 2012)

2.4.2.2 Preventive Maintenance

This is essentially implemented at a predetermined scheduled interval withthe aim in minimising

the probability of failure and degradation (Kothamasu et al., 2006). Unlike breakdown type, the

preventive maintenance strategy is planned, more effective and robust. As the name suggests,

the maintenance is implemented prior to the equipment failure. This maintenance strategy

enables more utilisations of resources compared to reactive. Its implemented using statistical

information and operational experience to schedule successive overhaul to safeguard the

equipment from unexpected failure. Successfulimplementation of this type of maintenance

scheme helps in identifying potential areas of failure in an equipment/system, which by

extension helps in avoiding unplanned breakdown
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and its consequence (KARIBO, 2017). This is succeeded by inspection, service and replacement
of parts before they fail. Figure 2.6 shows the flowchart of Preventive maintenance. More details
regarding preventive maintenance and its further classification could be found in Ben-Daya et

al. (2009).

Disassembl Restoration and Check for Other
Y Replacement Damaged Parts
. Assembly Functional
Test

Figure 2. 6: Preventive Maintenance Flow Chart (Souza, 2012)

Preventive maintenance scheme is applied in LNG industry to maintain critical equipment like
gas turbine and its components. This is achieved by undertaking routine and schedule servicing
at certain intervals. Usually, the gas turbine engine or any other element is withdrawn from
service at scheduled intervals to perform inspection or repair. Aeroderivative gas turbine
normally has fast cooldown and less maintenance time, i.e., 20-48 hours changeout.Unlike Heavy
duty type whose maintenance time is longer, i.e., 20-28 days changeout. This maintenance
philosophy has been the practice and classic way to operate and maintain gas turbine engine in
the past and even nowadays (Tomas, 2015 and Burke, 2011). Although despite its advantages
over reactive type, yet preventive maintenance has some setbacks. It is often not cost effective
especially given the possibility of replacing component (s) or elementswith substantial operating

life left. Hence, increases the number of scheduled maintenance outages unnecessarily.
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The scheduled maintenance intervals for gas turbine turbines are normally determined by the
OEM according to the statistical analysis of the fleet, i.e., MTBF, MTBO, reliability, availability,
among others. Other factors include design practices and safety considerations. The time-based

maintenance schedule for aeroderivative gas turbine has been defected in Table 2.4.

Table 2. 4: Aeroderivative classic preventive maintenance schedule (Tomas, 2015)

Maintenance Activity Operating Hours
Semi-annual (including BSI) Every 400
Hot section repair (gas only) Every 25,000

Maintenance Outage Hours Every 50,000

It shall be noted that the Table 2.4 is obtained based on units that reflects typical operation with
few starts and many hours per year (>6000 hrs). Some maintenance activities will be
recommended according to starts (i.e., semi-annual at 450 starts)or event time (annual, semi-

annual) for units with different operational profiles.
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Figure 2. 7: Engine failures and overhauls intervals (Burke, 2011 and Tomas, 2015)

Figure 2.7 demonstrated how the maintenance interval is set. For instance, if the period is long,
quite many events might occur. Conversely, when the window is too short, a large considerable
amount of life is left in the engine and increases the maintenance outages. Thus, for optimal

maintenance, the correct number is always a compromise (Tomas, 2015).

2.4.2.3 Predictive Maintenance

This maintenance philosophy involves scheduling maintenance only when functional failure is
manifested and detected (Scheffer and Girdhar, 2004). The mechanical and operational
conditions of the equipment are consistently monitoredwhich reveals the current state and health
status of the asset. When an unhealthy trend is detected, appropriate correction action will be

taken to mitigate the failure effect. This helps inavoiding unnecessary maintenance tasks by
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restricting maintenance action only on justifiable evidence of abnormal behaviours manifested
from physical assets (Romesi and Li, 2013). Theflow chart for predictive maintenance is shown

in Figure 2.8.

More capabilities could be herness by implementing predictive maintenance in the processes and
manufacturing industries by minimizes failure risk, as well as enhances and maximises theuseful
life of an asset. In addition, more lead-time window is allowed to purchase component that
requires replacement. Thus, reducing the need for large inventory of spares, since the
maintenance action is carried out only when needed. (Scheffer and Girdhar, 2004; Pektas and
Pektas, 2018). Some of the values that could be harnessed by implementing PdM has been

highlighted by Gang (2017) as;

e Return on investment: 10 %,

e Reduction in maintenance costs: 25-30 %,
e Elimination of breakdowns: 70-75 %,

e Reduction in downtime: 35-45 %, and

e Increase in production: 20-25 %.

Condition
Planner . Check Acceptance
Monitorin | Assessmentand ' Limits -
& Interpretation
Decision-Making Maintenance Maintenance
—| About Maintenance . > .
. Planning Execution
Intervention

Figure 2. 8: Flow chart for predictive maintenance implementation (Souza, 2012)
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Condition-based maintenance can be applied to any system, although the focus of this research
work is based on FLNG Aeroderivative gas turbines. Implementing predictive/CBM on gas
aeroderivative gas turbines requires some sequence of processes which will be explained in

section 2.6.

2.5 General Maintenance Concepts of Aeroderivative Gas Turbine

The general philosophy in the industry for maintaining aeroderivative gas turbines involves three
main concepts, i.e. On condition maintenance, minimize downtime and maximize on-site

maintenance capability

2.5.1 On condition maintenance

Under this concept, gas turbine components or units are repaired or replaced only when it is
required. Furthermore, this is the underlying concept of condition-based maintenance, which is

the focus of this study. More details will be discussed in section 2.6.

2.5.2 Maximize on-site maintenance capability

Given the similarities between aeroderivative gas turbines and aircraft engines, the former

leverages some design and maintenance features of the latter. Thus, based on these similarities,

aeroderivative gas turbine maximize the on-site maintenance capabilities of aircraft as observedby

(Tomas, 2015, Siemens, 2014 and GE, 2013);
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e Modular design of the engine enables on-site exchanges for major components like High
Pressure Turbine (HPT), without total engine disassembly. This permits component(s)
exchanges whilst major overhaul work is conducted on the facility. Hence, reduces the
turn time whist carrying out maintenance overhaul for the engine.

e Possession of borescope enable easy one-site Non-Destructive Testing and inspections
on the engine. Hence allow access to impossible-to-reach area such as high temperature
portions of the turbine without dismantling the engine.

e Some vital engine components such as controls, accessories (gearbox, seal etc) and
sensors are externally oriented, and thus can be easily replaceable.

e Compressors are typically of split design. Blades can be easily repaired and replaced
on site.

e The split design nature of engine allows on-site repair and replacement of compressor

blades, stator vanes as well HPT blades easily

2.5.3 Minimize downtime

The characteristics design of aeroderivative gas turbine, and its lightweight feature enable
quicker exchange on-site while conducting major overhaul (GE, 2013). The maintenance
simplicity of aeroderivative gas turbine is one of the key benefits to LNG operators (Meher-
Homiji et al., 2018). The aeroderivative engine can be changed and quickly (GE, 2013), especially
when the need for major overhaul arises, the gas turbine enclosure design allows easy removal,
with the aid of preinstalled crane or removal cradles (GE, 2013). Sometimes, flange to flange
engine can be replaced (for engine type such as LM6000) or the exchange of gas generator

section in for engine with free power turbine like LM2500 (Meher-Homji et al.,
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Figure 2. 9: Gas Generator Removal (Left) and Power Turbine Removal (Right) (Meher-Homji et al., 2011
and Meher-Homji et al., 2018)

2.6 Condition-Based maintenance of Floating LNG Critical Equipment

FLNG takes liquefaction technology into a floating production system to exploit stranded
offshore gas. Floating LNG concept have been briefly introduced in section two, with critical
units, appropriate process configurations as well as critical equipment for FLNG operations
being identified. Uptime availability of the liquefaction process unit is the highest priority of
LNG operators, its importance in LNG value chain as reported by Zainal-Abidin et al. (2011)
accounts for 30-40% of the overall LNG production cost. However, maintenance priority shallbe
directed to most critical equipment in the liquefaction plant. Gas turbines (Aeroderivative) as
identified by Benyessaad et al. (2016) is the most critical equipment in FLNG liquefactionunit,
accounting for (32%) failure criticality. Given such criticality, priority shall be given to this
equipment in respect to maintainability, reliability, and its availability in the FLNG processunit.
Scheffer and Girdhar (2004) highlighted how critical equipment could be identified in the

process plant and recommends appropriate maintenance philosophy to be applied to them.As
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described by the authors, critical machines are costly, very expensive to repair and have a longer
repairing time, and since they are expensive, keeping a spare standby equipment could be

unprofitable.

On the other hand, better utilisation and operation of such critical equipment could saves energy
and improve production. However, their failure can affect the entire plants’ safety and their
shutdown curtails the production process. Perhaps, with 65% of the overall LNG failures
associated with equipment (Forte et al., 2017), the maintenance cost, reliability and availability
of critical equipment are some of the most important concerns to the LNGoperators. As
such, this makes a predictive maintenance (PdM) philosophy more suitable for critical equipment
such as gas turbines in floating LNG (Scheffer and Girdhar (2004). PdM seemly provides a
smooth operation of offshore platform by advanced maintenance prior to the occurrence of
failure. It plans for more advanced intelligent maintenance actions and enables assess to
degradation properties of facilitiesoperated in poor environment like offshore platforms (Hwang,
2015). This enables further quantification of health condition parameters of a system and/or its

components that are continuously monitored whilst being in operation (Kothamasu et al., 2006).

The cost of maintaining gas turbines is significantly higher than its original purchase cost (Wanet
al. 2018). For instances, SIEMENS version (V94.3A) gas turbine is estimated to cost 51,340,000
Euros based on its maintenance schedule in its 40 years life expectancy. This costis 17.8 times
to its initial purchase cost, i.e. 2,867,000 Euros (Aminyavari, et al., 2016). Although maintenance
is substantial part of gas turbines life cycle, but the enormous maintenance cost has been the
major concern for the gas turbine users (Wan et al., 2018) for ages. For instance, Thompson et
al. (1989) estimated the cost of typical marine gas turbine (LM 2500) ranges between $300,000

to $400.000. The general practice in maintaining for maintaining gas turbines is typically carried
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out in a prescheduled manner (preventive) with the arrangement usually determined by the OEM
irrespective of the actual condition of the engine (Depold and Gass, 1999; Wan et al., 2018). This
indicates that overhauls usually takeplace when the turbines are either in perfect conditions or in
a failure state (Zaidan et al, 2015; Wan et al., 2018). On this basis, while its uneconomical to
schedule maintenance for equipment in a healthy condition, also its very risky to allow
maintenance window until the failed state has been reached. This left gas turbines operators with
no alternative than implementing maintenance to the equipment only on actual condition of the

equipment using PdM.

To meet the objectives of CBM implementation, the integration of various functional modules
into a single architecture or framework is necessary. Several previous works in the academia
proposed various CBM concept, frameworks, or architectures. Some of these architectures have
been summarised by Hwang et al. (2018) as depicted in Table 2.5. However, the unifying
standard architecture is Open Standard Architecture Condition- Based Maintenance (OSA-
CBM) designed by Machinery information Management Open System alliance (MIMOSA)
(Gouriveau et al., 2016). Based on 1SO Standard (1SO13374-2, 2006) OSA (Open System
Architecture) CBM consists of seven functional levels/modules as depicted in Figure 2.5. These
functional levels/modules include Data acquisition module which provides the system with
digital data acquired from equipment using sensors ortransducers. Data Processing module
extracts the features that characterised presence of anomaly, initiation of degradation which
represents the state of the monitored system. This is preceded by Condition assessment module
which detects and compares real-time (extracted features) with some expected or known values.
A diagnostic module further determines whether the monitored system or component is
degraded or not, it also identifies the probablecauses of failure. Prognostics module depends on

the data issued from diagnostics module which enable it to predict future state of the monitored
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system or component as well as estimating the time to failure or remaining useful life (RUL). The

maintenance action or controlis recommended by Decision Analysis module. The system may

likely function until certain operational mission has been accomplished, the maintenance

decision window afterwards recommends appropriate action based on RUL estimates. Finally,

information from all previous modules for online or further usage will be received by

presentation module. This ispresentation interface which can be build inform of Human

Machine Interface (HMI).

Table 2. 5: Comparison of various system layers for CBM implementation (Hwang, 2018)

I1ISO 13374

I1ISO 13374-1

OSA-CMB
(Gouriveau etal.,
2016)

Jardine et al.
(2006)

Chen atal.
(2012)

Data acquisition

Data acquisition

Data acquisition

Data acquisition

Sensor & Data

acquisition
Data manipulation | Data processing/ Data processing
Sensor module
Diagnostics State detection Condition
assessment/Condition Condition
monitor monitoring

Health assessment

Health assessment

Fault diagnosis

Prognostics Prognostic Diagnostics module Predicting RUL
assessment
Prognostics Advisory Prognostics module Maintenance
actions generation decision making

Post-mortems

Presentation

Health
management
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2.6.1 Previous Related Work

The research regarding application of CBM in Floating LNG facility first appeared in Gowid et
at. (2015). A comprehensive survey has been conducted by the authors to investigate the factors
affecting the profitability of floating LNG. More interest on Floating LNG developments and
promising viability of CBM strategy prompted Korean government to funda research project
towards implementing CBM system in Floating LNG between 2013 to 2016.Cho et al. (2016)
published the detailed research as well as the result obtained which focusedon investigating the
prognostics approaches/techniques to estimate the next failure time of offshore floating LNG
compressor. Advances in FLNG developments and lack of detailed methods and validated
models of existing CBM concepts/functional modules as well as insufficient reference work
towards implementing CBM in offshore plant, recently motivated Hwang et al. (2018) to conduct
another comprehensive survey on implementation of CBM on Floating LNG applications. The
summary of these research and corresponding PdM maintenance philosophy investigated have

been outlined in Table 2.6.

The literatures clearly demonstrated the research gap regarding the application of predictive

maintenance/condition-based maintenance on aeroderivative gas turbine used in FLNG. Thus,
prompt the need for a comprehensive study to develop a concise approach that integrate all the
major CBM components on aeroderivative gas turbine FLNG mechanical driver, according to

the requirements of popular CBM architecture.
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Table 2. 6: Most Prominent FLNG research works

Reference Type Input Data Technique (s) Target Maintenance
Model Based Diagnostics
Gowid et. al Review Nil Signal Based FLNG
(2015) Article Feature Selection Compressor Reliability
Based
Regression
Cho et al. Research SCADA Markov FLNG
(2016) Article (Vibration) Compressor Prognostics
Hybrid of both
Regression &
Markov
Reliability-Based
Vibration
Regression-Based FLNG Prognostics
Compressor
Markov-Based
Bayesian-Based
Review
Hwang et al. | Article with
(2018) Case Study
SCADA CBM-Framework FLNG Topside
Bayes Classifier
Unit/Module Diagnostics
OREDA Monte Carlo Inlet Facility
Simulations

Pre-treatment
Liquefaction
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2.7 Condition Based Maintenance of Aeroderivative Gas Turbine Based on Open System
Architecture

The literature on OSA-CBM architecture has been extensively covered by Thurston(2001) and
Swearingen et al. (2007). Although more specific OSA-CBM framework on rotating equipment
was investigated by Tahan et al. (2014). OSA-CBM framework is critical in achieving viable
maintenance objectives as well as the successful implementation of both diagnostics and
prognosis process modules (Tahan, etal., 2017). As such, on this basis, more effort would be given
to address various techniques/components of OSA-CBM architecture that leads to the success of

CBM of aeroderivative gasturbine in FLNG applications.

OSA-CBM framework is more unifying standard architecturefor the implementation of CBM,
and therefore considered and adopted in this study. It’s apparent that the concept of CBM
involves sequence of activities as illustrated in Figure 2.10,whereby equipment deterioration
information is collected as featured sensor data useful features are extracted with the aim system
downtime by implementing an intelligent diagnostics and prognostics models (Tahan et al. 2014;

Lee etal. 2006). Figure 2.10 shows the overall architecture of OSA-CBM for rotating machinery.
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Figure 2. 10: The architecture of OSA-CBM platform (Tran and Yang, 2012)

2.8 Summary

This chapter presented a comprehensive overview of the literature regarding application of
condition-based maintenance applied to aeroderivative gas turbine used as floating LNG
mechanical driver. Basically, the onshore LNG facility is a well-established matured process,
unlike floating LNG which is relatively new concept. Also, the offshore maintenance is more
critical compared to land-based maintenance due to factors like accessibility and environmental
conditions. With these constraints in mind, the chapter briefly introduced the state-of-the-art
maintenance regime applied to the critical equipment in floating LNG process. The chapter
begins by introducing the concept of FLNG, identifying appropriate liquefaction process designs
as well as various liquefaction process drivers. Gas turbine was also identified the mostsuitable
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FLNG liquefaction driver. On that basis, a review on its application on LNG industryhas been
conducted, which give an insight for its limited application in LNG process plant bothonshore and

offshore despite its capabilities.

Nevertheless, since ADGT is considered as most suitable for FLNG applications, the engine is
expected to operate with highest reliability and availability with minimum breakdown.

Therefore, appropriate maintenance is critical to the availability of ADGT. Hence, challenges

regarding maintaining equipment in an offshore environment were discussed. Various
maintenance practices were briefly introduced, in which predictive maintenance is identified as
most suitable to maintain ADGT in offshore applications such as FLNG. To implement CBM,
various failure root causes were briefly explained. Then preceded by reviewing the state-of the-art
techniques such as data acquisition, data processing, diagnostics and prognostics used for

implementation of CBM.

Much previous research effort dealt with various aspects of CBM, yet there is still lack of
research on the overall solution that integrate all the CBM functions as an entity especially in the
offshore environment. Majority of the previous related work focused on some parts of CBM, either
diagnosis or prognosis without proper integration of the framework or system architecture. This
indicates the need for more integration of the function and modules required for the
implementation of CBM as an entity. Until recently with a novel work conducted by (Hwanga,
et al., 2018), there has been an insufficient framework or architecture that integratesvarious
function of CBM module in an offshore O&M. However, although various equipmenthas been
integrated in a framework that establishes CBM in the LNG FPSO, yet one of the most critical
equipment in the FLNG process plant, i.e., liquefaction prime mover (Aeroderivative gas

turbine) has not been considered in the studies.
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Chapter 3

Gas Turbine Model and Simulation

3.1 Introduction

Aeroderivative gas turbine is essentially vital and critical to floating LNG performance and
revenue generation. As mentioned in Chapter 2, FLNG plants performance strongly depends on
availability and reliability of critical equipment/systems (aeroderivative gas turbine) as wellas
their safe operation and cost effectiveness in maintaining them. As such, the cost of maintenance
and machine availability are two most important concerns to gas turbine equipment owners
(Janawitz et al., 2015). Hence, the need for a robust, effective and efficient maintenance program
that will reduces the owner’s cost whist increasing the equipment availability is necessary.
However, for effective implementation of maintenance regime in a plant, the need for
maintenance is usually predicted on actual or impending failureon the equipment, depending on

the plant’s monitoring approach and maintenance strategy adopted.

Condition based maintenance (CBM) help operators in meeting their production target by
avoiding unnecessary maintenance actions and maintaining the condition of gas turbine
components at an optimal level (Kaikko & Sarkomaa, 2003). Implementing an intelligent
diagnostic system for gas turbines maintenance reduces excessive outages and costly component
replacement unnecessarily, by calling for early corrective action before problems transforms to

failures (Ajoko and Adigio, 2012). Various condition-based maintenance
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technologies have been developed for detection and classification of different engine faults.
Among them is model-based approach, which uses first principles thermodynamics equations
to predicts gas turbine’s failures. This model is essential when the necessary gas turbine
operational data or commercial diagnostic simulation software is not available. Thus, simulation
model can be used for performance evaluation of gas turbines, withquest to reduce unplanned

down time in the plant.

3.2 Objectives for Modelling Gas Turbines

Various objectives prompt analysts and practitioners to model and simulate gas turbine system.
Perhaps, diagnostics and prognostics of engine, sensor validation, plant/system identification as
well as overall system control model, forms the bases of GT modelling andsimulation. In
addition, clarity of the modelling goals and objectives, leads to the development of a successful

gas turbine diagnostics model. Some of these objective involves;

3.2.1 Monitoring the State

One of the purposes for creating gas turbine models is aimed at monitoring various states and
condition of the system. This can be achieved using system’s parameters such as temperatures,
mass flow rate, pressure, and vibration etc. Therefore, condition monitoring is fundamental tool
to predictive maintenance philosophy. Perhaps, condition monitoring on gas turbine engine
detects anomaly condition of the system, identify, and isolate the faulty component on the system
and evaluates a potential effect of the failed component to the entire system (Wanget al., 2011).
State monitoring serves as essential tool that indicates potential failure in advanceand inform

operators via warnings to take appropriate maintenance action (Clipton, 2006).
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Robust health monitoring of the system is critical to the maintenance planning. Careful condition
monitoring yield considerable benefits in reducing production lost, minimises maintenance cost
and improve efficient and seamless operation of the gas turbine engine. Therefore, good
monitoring through continuous controlled gas turbine through sensory parameters (temperature,
pressure, vibration etc) and quantitative event information obtained from critical component of
the engine guide operator’s decisions. It also enhances operationalexcellence, minimises the risk
of potential failure and significantly reduces maintenance cost. In short, good condition
monitoring shall be robust to detect the current state of the system, diagnoses anomalies and
predicts an incipient system’s failure that has propensity in reducingsystem’s performance,

occurrence of undesired trips and lost in production and fatalities.

3.2.2 Fault Diagnosis and Isolation

Gas turbine model is useful in detecting fault and diagnosing system failure. Operators and

researchers monitor engine health condition by performing diagnostics and prognostics using

online/offline modelling and simulations. Perhaps, system failure can be predicted, detected, and
prevented with the help of robust model. Diagnosis basically involves fault detection, isolation,
and identification when it occurs (Jardine et al., 2006). Hence, diagnosis is vital toolin restoring
GT engine to normal state thereby preventing critical loss or damage to the machines and
humans. Modelling also enables operators when shifting maintenance strategy from active
(preventive) to proactive (predictive) maintenance process (Lee et al., 2011). Perhaps, the
underpinning objective of this study lies on identifying and integrating various methods for the

successful implementation of fault diagnosis and isolation model for aeroderivative gas turbine.
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3.2.3 Sensor Validation

Sensors plays an important role in monitoring and controlling industrial plants. Thus, monitoring
and control process of plants considerably depends on accuracy and reliability of sensors. In
general, sensor validation enhances reliability, availability, and operational cost effectiveness of
plants. Considering the profound importance of sensor in vast industrial applications,
considerable research effort has been made on sensors and sensor validation. Palme et al. (2011)
performed a comprehensive study on sensor fault detection and isolation using black-box

Artificial Neural Network model.

Sensor validation is critical to gas turbine model. Perhaps, as discussed in section 2.5.1, condition
monitoring is essential to gas turbine availability, reliability, and maintainability. However,
implementation of dependable diagnostics and prognostics models significantly depends on the
robustness of data acquisition. Data is essential for monitoring equipment performance, and
sensors plays a vital role in captures dynamics and performance characteristics of the system.

The gas turbine condition parameters are usually acquired via

sensory devices attached, which generate voluminous data that can be used for predictive
maintenance modelling purposes. Therefore, given the criticality of sensors on gas turbine
condition monitoring, strengthening the validity, accuracy and reliability of data acquisition
components especially sensors often improve the robustness of predictive maintenance

implementation (Asgari, 2014).
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3.2.4 Model Identification of Gas Turbine Engines

Identification of gas turbine engine tend to be a difficult task due to its nonlinear as well as
system dynamic characteristics. Modelling essentially contribute to gas turbine system
identification. System identification refers to the methodology for building mathematical models
of dynamic systems given the measured system’s input and output parameter. Although, it’s
worth noting that despite significant research effort regarding gas turbine systemidentification
over past decades, accurate and reliable model for gas turbine is still requited for Model

identification purpose (Asgari and Chen, 2016; Asgari, 2014).

3.2.5 Design of Control System

Gas turbine models may be constructed for designing or optimising control system for gas
turbines (Asgari, 2014; Asgari and Chen, 2016). The control system is critical to gas turbine
operations. For instance, the efficiency and safety requirement of gas turbine significantly
depends on the robustness of its control system. Therefore, gas turbine model enables design
simulation of GT control system (Shia and Chen, 2016). Gas turbine has different operational
stages under different conditions that requires different functional controller. Generally, control

system monitors and control system dynamics by comparing input and output of sensory

parameters such that any deviation from desired performance will be corrected using feedback
mechanism (Burns, 2011). Recently there have been significant interest and research advanceson
gas turbine control. Seok, et al. (2017) recently proposed a noble advanced predictive control
model for aircraft and power system gas turbine engine. The predictive model controlsand
maximises system performance and enhances its control against anomalies and transient system

dynamics variations.
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3.3 Challenges and Significance of Gas Turbine Model in LNG Process

Gas Turbines are complex systems, with an array of different operational configurations
and supporting infrastructures. This is prominent especially when compared with other
rotating equipment’s design type, number of components, number of shafts, and functional
dynamic cycles (Forsthoffer, 2017). It is the most complex system among
turbomachinery systems. (Kulikov and Thompson, 2005; Giampaolon, 2007 and Fourthoffer,
2011). The complexity of gas turbine machine could be associated with many numbers of
components and subsystem ranges up to 20,000 or more. The sophistication and complexity
during its design and development potentially leads to some reliability challenges when
deployed into the field for operations. Thus, the engine will potentially expose to an incipient

failures and deterioration over its operational life cycle (Loboda, 2010).

Gas turbine engine is critical to LNG process plant and many industrial applications. Hence,
considering the profound role of gas turbine in process plants, substantial effort has been
placed by researchers and original equipment manufacturers (OEM) in testing various
design configurations and investigating the performance characteristics of the machine
through modelling and simulations. Moreover, gas turbine simulators play an important
role in understanding changes in engine performance, effects of ambient conditions,
deteriorations, and overall machine health. Hence, insightful information obtained from
simulator enhances inform decision on the gas turbine performance and operations (Razak
2007). Although, the complex dynamics of gas turbines make its modelling and control
challenging and controversial. However, the quest for optimized models for different
objectives and applications has been a strong motivation for researchers to continue to work in

this area (Asgari, 2011).
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3.4 Requirement for Gas Turbine Model in Optimising Engine Maintenance

Gas turbine model can be used to optimised plant maintenance. This can be achieved by taking
into considering how the condition of the components affects the thermodynamic performanceof
the engine. Usually, field operation of a gas turbine, exposes its components to some changesthat
progressively deteriorate engine performance, when compared to new or overhauled engines.
These degradations can be associated with several performance mechanisms such as fouling,
erosion, corrosion, abrasion, and foreign object damage (Kaikko & Sarkomaa, 2003) or
mechanically oriented mechanisms such as misalignment, unbalance, bearing defects, loose
components and lack of lubrication (Tahan et al., 2017). The condition parameters can be usedto
describe the degree of degradation. To develop a gas turbine model, both performance designpoint
(DP) parameters of the engine and parameters obtained due to degradation (off design
performance parameters) are essential. These parameters are applied in building a dynamic
model of a gas turbine engine, using set of algebraic equations, that helps in explaining the
steady-state features of the gas turbine thermodynamics, time delays, and a few relevant controls

(Al-Dalwi and Vural, 2017).

Accurate implementation of the gas turbine model could help determining the condition of the
components as well as estimating the cost effects associated with excess accumulation of
unavoidable non-recoverable degradations of component(s) (ageing) (Kaikko & Sarkomaa,
2003). This generally assists in optimising maintenance process of the plant by determining the
appropriate maintenance intervals through prognosis health management. Hence, increases

availability and plant throughput.
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3.5 Theory of gas turbines operations and Brayton Cycle

Gas turbine is an integral combination of steam turbine and internal combustion engine
technologies that uses air and fuel to produce mechanical energy (Forsthoffer’s, 2017). Thus,as
internal combustion engine, it converts chemical energy from mixture of fuel and air as working
fluid to mechanical energy (Asgari, et al., 2011). Figure 3.1 shows a typical single-shaft gas
turbine with its major components (compressor, combustor, and turbine). The set of these
components are usually referred to as engine core or gas generator (GG). Both compressor and
turbine are connected by the central shaft which rotate them. The gas turbine system operates
according to thermodynamic cycle known as Brayton cycle (Chapman et al.,2016), which
describes the overall working principles of gas turbine engine (Asgari, 2011). The Brayton cycle
is often represented on both pressure-volume diagram (pV diagram) and temperature-entropy
diagram (Ts diagram) as illustrated in Figure 3.2 (a-b). The ideal process of Brayton cycle can
be regarded as a thermodynamic cycle that consists of an isentropic and adiabatic compression
of a gas, followed by heat addition at constant pressure, and extraction of energy which results
in gaseous expansion. In general, Brayton cycle consistof two Isobaric (constant pressure) and
two Isentropic (equal entropy) processes. The combustor system and turbine involves isobaric
process, while compressor and turbineexpander form the isentropic process units (Boyce, 2006).
Air is drawn and enters thecompressor at section 1 and get compressed through section 4 upon
passing through compressor. The compression process squeezes the air molecules together which
increases theinternal temperature of molecules as well as their pressure. Thus, the hot compressed
air then enters the combustion chamber (combustor) at section 2 where it mixes with fuel and get
ignited. The hot gases created from the ignited mixture are forced into the turbine at section 3
and causes them to spin. Hence, the turbine capture energy from expanding gas which causes the
driving shaft to rotate. This drives the compressor as well as the gas generator mechanicaloutput

such as alternators in power plant, larges compressors in LNG plants and pumps for various
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industrial applications.
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Figure 3.1: Typical single-shaft gas turbine (Asgari, 2014)
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Figure 3.2: (a-b) Ideal Brayton cycle in pressure-volume and temperature-entropy frames (Asgari, 2014)
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3.5.1 Gas Turbine Thermodynamics and Brayton Cycle

Modelling gas turbine engine requires an understanding of the two main essential components.In
short, developing a successful gas turbine model depends on the understanding of total system
thermodynamics and the component level energy, as well as flow equations. Inthermodynamic-
based gas turbine model, the system modelling is based Brayton cycle that anchors the dynamic
relationship between pressure, temperature, entropy, and enthalpy (Chapman et al., 2016). The
flow equations are discussed by Boyce (2006). They are based on simplified applications of the
firstlaw of thermodynamics to the air-standard Brayton cycle, with specific assumption that
kineticand potential energy remained unchanged during the cycle processes. The basic equations

are summarised below;

e Work for Compressor

W, =m, (h,~h,) (3.1)
e Work of turbine

Wi = (Ma-+ mi )(hs — ha)

3.2)
e Total output work
chc :Wt _Wc (33)
e Heat added to the system
Q23 = My * LHViget = (Ma+my )(hs) - my hy (3.4)
e Overall cycle efficiency
Neye = W/ Q,5) (35
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Equations 3.1-3.5 are the fundamental equation on which gas turbine physics-based modelsare
driven from. that Brayton cycle efficiency depend on pressure ratio and turbine firing
temperature. The underpinning linear relationship between pressure ratio and turbine firing
temperature affects the overall cycle efficiency. Thus, increase in pressure ratio and turbine
temperature increases the Brayton cycle efficiency. Although this cycle relationship is based on

assumptions as highlighted by Boyce (2006) That;

Ma > M+

c, & c, are constant and thus » remained constant throughout the cycle.

Pressure ratio (r,) remained the same in both compressor and turbine.

All components operate at 100% efficiency.

With these assumptions, the effect of ideal cycle efficiency as a function of pressure ratio for
the ideal Brayton cycle operating between ambient and firing temperature can be deduced and

expressed as;

1
Videal = (1_ a (36)
r Ve
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Table 3.1: Definition of parameters in equations (3.1 - 3.6)

Parameter Symbol | Unit

Mass of air Ma kg
Mass of fuel mg kg
Specific heat at constant pressure Cp Jikg K
Specific heat at constant volume Cv Jikg K
Ratio of the specific heat y .
Specific enthalpies h,, kJ/kg
Cycle efficiency Meye —
Work done by turbine Wi J
Work done on the gas by compressor W, J
Total work output by the cycle Weye J
Heat added to the system Q23 J

Therefore, Ideal Brayton cycle is represented in Figure 3.3 with stages;

1-2: Isentropic compression (Air compressor).

2-3: Constant pressure heat-addition (compressed air with fuel in combustion chamber).
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3-4: Isentropic expansion (combustion products in turbine).
4-1: Constant pressure heat rejection (exhaust).

2s & 4s: These stages demonstrate ideal situation.

T A

Temprature

25 4ds
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Figure 3.3: Ideal Brayton Cycle in Temperature-Entropy frames (Tavakoli et al., 2009)

Ideal representation of gas turbine cycle can be further extended to defect the actual operational
gas turbine cycles applicable to industries. These cycles are categorised as;

Simple cycle (20-43%)

Regenerative cycle (30-45%)

Combine cycle  (55-60%)
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Simple cycle as shown in Figure 3.4a is highly flexible with low operating cost butconstrained
with poor thermal operational efficiency which is associated with exhaust gas discharge to
atmosphere. The direct exhaust discharge could be prevented and utilised to improve the
efficiency of the turbine cycle. This is achieved by preheating the compressor discharge air in
the exchanger before reaching combustor as shown in Figure 3.4b. The cycle efficiency is also
enhanced when gas exhaust is diverted to heat recovery steam generator (HRSG) to driver steam
turbine or generate heat for plant heating processes. This process is known as combine cycle and

is capable in enhancing efficiency up to 60% (Boyes 2006).
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Figure 3.4: (a-c) Gas turbine Simple cycle, Gas Turbine regenerative cycle, and Gas Turbine combine
cycle (Boyce, 2006)
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3.5.2 Modelling and Simulations of gas turbines

Understanding the characteristics behaviour of gas turbine system is easily achieved byanalysing
operational data obtained using various sensors attached to the physical gas turbine system. Yet
industrial data is expensive, difficult to obtain due to data censorship and security.Conversely,
gas turbine behaviour analysis could be achieved through laboratory experiments. However,
performing experiments on real system by stripping its components could bechallenging and
associated with rigorous fatigue, reliability challenges, error and damages. These constraints
make it difficult and too dangerous and expensive to perform experiment onreal systems.
Alternatively, simulations can be done on model system to understand the effectof design
characteristics and performance behaviour of simulated real system (Fritzson 2012).Gas turbine
is normally modelled and simulated to achieve various objectives and purposes. Depending on
the desired objective, researchers simulate gas turbine model for condition monitoring, fault
detection and diagnostics studies. Some model the engine to understand a robust performance
optimisation and system control, design configuration or validation of sensor configurations.
Thus, clarity on modelling objectivity is the key towards obtaining goodengine model (Asgari et

al., 2016).

Model represent a system behaviour given some independent input variable and dependant
variables. Modelling basically is a process that produces a representation of a system. Model is
an important representation of a system behaviour, hence it’s an approximation of working
principles of system of interest. Modelling techniques produce a model that enable analyst to
evaluate and predict system’s behaviour and effect s some changes using input variables. Model
is built using first principles or set of relevant mathematical equations that defect systemdynamics.
Furthermore, model’s operation and performance evaluation is achieved by simulation
technique. Thus, simulation enables analysts to obtain a robust model of the systemthrough

reconfiguration and experimentation until desired model characteristics is obtained.
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This reduces the risk of failure or underperformance of the model. Simulation also provides an
effective utilisation of resources during design phase that eventually produces cost effective
systems without under or over utilisation of resources. In general, modelling and simulation
answers critical questions about system design specification, performance behaviour, failure
modes and its impact during operations and its entire life cycles. Therefore, analysts,
practitioners and researchers use mathematical principles to perform modelling and simulationof
a system to have the general understanding of the system. Moreover, testing system hypothesis
and feasibility enables both researchers and operators to observe certain phenomenaof the system
over a given time range by approximating real time with via simulation process. Thus, modelling
and simulation give account to the detailed performance metrics, evaluates various

configurations and characteristics (Maria, 1997).

Modelling and simulation have significant importance in yielding robust and reliable gas turbine
engine during its design process. It’s also an essential component during turbine entirelife cycle.
Modelling and simulation enable performance evaluation, sensor validation, fault detection and
troubleshooting to be carried out on the machine whist in operation. Thus, modelling and
simulation of gas turbine tend to be an essential tool to OEMSs, operators and researchers (Asgari,
2011). Given the profound importance of gas turbine in the industrial applications, considerable
research effort has been made by both researchers and manufacturerson modelling and simulating
the behaviour and design characteristics of gas turbine engine. Thus, complexity and sensitivity
nature of gas turbines operations, coupled with transitional thermodynamic changes of the
operational parameters from cold flow to hot flow, a considerable research effort is required in
building accurate and reliable model (Asgari 2013).However, to obtain accurate and reliable gas
turbine model, some important factors shall be kept in mind. These factors include

objective/purpose of the modelling, design type ofthe gas turbine, its configuration, the modelling
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approaches as well as type and structure of thecontrol system (Asgari and Chen, 2016).

3.5.3 Factors Affecting Gas Turbine Modelling

Some important factors must be considered whilst developing gas turbine model. As discussed,
gas turbine design type, gas turbine configurations, modelling objectives and modelling

approaches shall be carefully considered, to obtain reliable and accurate gas turbine model.

3.5.3.1 Gas turbine design type

Obtaining adequate information regarding various gas turbine designs is necessary and serves
as the initial steps of gas turbine modelling. Various gas turbines exist according to their

distinct application in the industry. Boyce (2006) described various gas turbine design types as;

e Micro turbines that are suitable in premium and remote power applications, as well as
grid support.

e Aeroderivative with 35-45% efficiency and net power output of 2.5-50MW usually
used in rigorous applications.

e Frame type heavy duty gas turbines with 30-46% efficiency and corresponding net
power output of 3-480MW.

e Industrial type for low power output of 2.5-15MW and 30-39% efficiency. This

turbine has wide applications in both power generations and petrochemical plants.

o Small gas turbine for simple cycle applications with very low output (0.5-15MW) and

efficiency of 15-25%.
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Although, the five categories described above shared common component as illustrated in Figure
3.1, yet modelling each gas turbine type has some distinct characteristics. For instance, the
modelling variations between frame industrial gas turbine type and aeroderivativegas turbine type

can be seen in Yee et al. (2011) work.

3.5.3.2 Gas Turbine Configurations

Another important factor that requires careful consideration in modelling gas turbine is the
engine configurations. Although all gas turbines almost share common structure and
thermodynamic cycle, yet some significant differences exist among the engines, especially when
detailed investigation is carried out. For instance, to optimise gas turbine efficiency, various
methods such as re-heating, inter-cooling, or heat exchange, a specific gas turbine configuration
are used (Asgari, 2014). The physical and model construction of gas turbine alsodepends on shaft
configuration type, as either single shaft heavy duty or twin shaft aeroderivative gas turbines
(Yee et al., 2011). Gas turbines can be single shaft or split shaft (twin or triple) (Asgari, 2014).
The major difference between the configurations is theconnection of the compressor turbine to
the power turbine (Yee et al., 2011). In a single shaftgas turbine engine, the compressor and
power turbine are localised on the same shaft (Asgari,2014). Perhaps there is only single shaft
linking the turbine blades with the compressor and combustion chamber as shown in Figure (3.5a)
(Yee et al., 2011). Conversely, in a multi-shaftor split shaft gas turbine, the compressor turbine
(CT) and power turbine (PT) are physically (mechanical) separated and does not have a shaft that
link them as shown in Figure 3.5b. Theseparation of CT and PT enable them to operate at different
speeds. Single shaft type has lower maintenance cost but constrained with lower efficiency and
very limited speed ranges, while multi-shaft is characterised with higher efficiency, wide speed

range but require higher maintenance due to its complex control system (Boyce, 2006).
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Figure 3. 5: (a-b) Schematics of gas turbines: (a) Multi-shaft aeroderivative GT (b) Single- shaft heavy duty
GT (Yeeetal., 2011)

3.5.4 Approaches for Gas Turbine Model Construction

Gas turbine models are designed and constructed according to the need and purpose as discussed
earlier. Considerable research effort has been put in designing various models to suitsome specific
purposes. Perhaps, various modelling approaches have been adopted by researchers on specific
tasks. Thus, modelling approaches can be broadly classified into two distinct categories, i.e.,
Blackbox and Whitebox models, although in between them forms another category known as

Grey box.
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3.5.4.1 White-box Model

White-box model play a vital role in system modelling especially when all the necessary
information is completely known. This type of model uses first principles. Thus, the
mathematical equations governing the system dynamics and other relevant first principles laws
(physical, chemical and mechanical, etc) are used to build the model (Asgari, 2013). Hence, as
basic requirement, knowledge on rules and theories are the fundamental components and forms
the bases of white-box model. As such, a comprehensive knowledge of the target modelling
system is essential whilst implement white-box model (Yang, et al., 2017). It’s worth noting
that most white-box models involve non-linear dynamic equations. Hence, linearization of non-
linear dynamic equations contributes significantly on obtainingsatisfactory model. Given this
requirement, various programs and applications such as MATLAB, Simulink and
MATHEMATICA prompt very useful tools to handle linearization constraints. (Asgari et al.,

2014).

White-box models has been useful tool for many decades for researchers. Perhaps, much effort
has been placed by gas turbine research community to model GT engine using white box
modelling technique. Several models with different level of simplification for therepresentation
of gas turbines for dynamic studies were proposed in the research community. An excellent
review on these models can be found in Yee et al. (2008). Among the earliest white box-based
gas turbine model was introduced by Rowen (1983). The work involves developing a novel
model of heavy-duty single shaft gas turbine, with the quest to investigatethe power stability,
developing dispatch strategy as well as proving a contingency plan for thesystem upsets. To
achieve these objectives, the author developed a simplified model that has the capacity to cover
full spectrum of gas turbine generator drive as well as capturing the appropriate generator
characteristics. The author also discussed relevant issues affecting the modelling such as parallel

and isolating operations, gas and liquid fuel systems, isochronous as well as droop governors.
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Rowen’s model is very useful and laid a foundation for many researchers to develop variety of
gas turbine models using different approaches. Although theactual Rowen model is limited to
simple cycle and single-shaft gas turbines with generator drive, yet it serves as reference base
for many gas turbines models. In an effort to investigate a simplified mathematical model of gas
turbine for mechanical driveservices with variable speed, Rowen (1992) work improved some
limitations of Rowen (1983)model by adding some new features. Some of the new features
include exhaust flow calculation, variable ambient temperature and modulating inlet guide
valves (IGVs) which were not incorporated in the previous model. Hence, the improved Rowen
model was simple, flexible, and fairly accurate, features that make the model robust for

simulating any heavy dutysingle-shaft gas turbine.

Based on Rowen’s model, Shalan et al. (2010) proposed a simple methodology to estimate
parameters of single-shaft gas turbines model. These parameters were derived from both
performance and operational data of the engine, which were further used for various simulation
tests in Simulink/MATLAB environment. The results obtained in the study were compared with
the existing relevant results in scientific literatures. Thus, verified the robustness of the proposed
methodology and perhaps enables wider application of the method to any gas turbinesize.
Similarly, another parameter estimation was carried out by Tavakoli et al. (2009), in an attempt
to modelled single-shaft heavy duty gas turbine based on Rowen’s model. Both operational and
performance gas turbine data were used to develop the model which subsequently derived the
model parameters. Simple physical laws and thermodynamic assumptions were also applied to
approximate gas turbine parameters. Thus, by comparison, the result obtained in the estimation
corresponds with the typical operational values. This studyis useful for educational guide
purposes, especially for trainers and students who are interestedin gas turbine dynamic studies.
In short, this serves as a motive to conduct a case study in section (3.5) of the report based on

Tavakoli et al. (2009) work.
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In a related research work, (Asgari, 2014) used white box model to simulate the transient
behaviour of industrial gas turbine. The modelling was implemented in Simulink/ MATLAB
environment, and consequently the Simulink based-result obtained was compared with artificial

neural network-based model (Black box).

Many researchers also used white box to model low power gas turbines. Abdollahi and Vahedi
(2005) studied low power single-shaft micro turbine. The researchers developed a generic model
for the turbine that fits different flexible operational ranges. Simulink/ MATLABwas used in
modelling the system and the study yield suitable result what demonstrates suitability of dynamic

analysis of microturbines to model the system given variable operating conditions.

3.5.4.2 Blackbox Model

In the circumstance where the information about the physics of the plant or system iscompletely
unavailable or insufficient, a Blackbox modelling approach is used instead. The Blackbox model
is used to discover the relationship between the system variables using the measured operational
input data or data obtained from the system performance characteristicssimulations (Asgari et
al., 2014). Artificial neural network (ANN), as subset of the artificial intelligence, is one of the

most important methods of modelling a system as black box (Asgariand Chen, 2016).

Considerable effort has been put by many researchers to develop ANN-based models for various
types of gas turbines. Some excellent research works has been carried out by Lazzaretto and
Toffolo (2001); Ogaji et al. (2002); Bettocchi et al. (2004) and Spina and Venturini (2007). In
addition, Asgari (2014) recently conducted one of the most comprehensive work regarding
ANN-based gas turbine modelling. The author investigated novel methodologies for modelling,
simulating as well as controlling gas turbines using ANN.Different types of gas turbine engine

models have been constructed for start-up and steady state operation. Both physics-based

75



Simulink and ANN-based models were compared to predict dynamic behaviour of gas turbines.
The study found that ANN has more potential to simulate start-up operations as well as dynamic
behaviour prediction of the gas turbine compared to white-based Simulink model. More literature

on ANN as well as its applications has been discussed in Chapter 4.

3.5.4.3 Grey Box Modelling

The grey box modelling is a hybrid model that incorporates white-box (stochastic model) and
black-box (deterministic model). Thus, this model approach incorporates elements fromresidual-
based methods and parametric estimation methods (Park and Zak, 2003). In anotherwords, that
practical model of a system is optimised by deploying some specific knowledge about the system
parameters, which integrates both the mathematical relations that describes the system and

practical knowledge to enhances the modelling accuracy (Asgari and Chen, 2016).

Some considerable gas turbine models were developed based on grey box modelling concept.
Among these models include (Mohammadi and Montazeri-Gh, 2014) novel work, where a grey-
box identification model based on Weiner model was proposed by the authors to modelledand
estimate the dynamic behaviour of a two-shaft gas turbine. The model was developed on
assumption that the static non-linear part of Weiner model is known, then an innovative approach
was introduced to improve the dynamic model flexibility. This strategy provides more accurate
prediction of non-linear dynamic behaviour of complicated systems such as gasturbines. In
another study, a gas turbine dynamic modelling was proposed Mehrpanahi et al.(2017). The
authors modelled and analysed the behaviour of industrial gas turbine (MGT-30) in both loading
and unloading conditions using grey box modelling concept. The modelling was achieved by
combining the thermodynamic equations (White box) and the equations derived from the values

of some key parameters of the system’s operation information, i.e., performance and off-design
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conditions (Black box). The dynamic model obtained is useful in fault diagnosis. It also serves

as simulator and testing platform for various controllers.

3.5.5 Gas Turbine Model for Predictive Maintenance

Gas turbines failure is often characterized with performance deterioration due to the health state
degradation, and it does not recover without intervention. Two types of gradual degradations
affecting the health state of gas turbine are structural degradation and recoverable degradation.
Structural degradations is associated with wear and tear mechanisms in the parts exposed to high
temperature, high stress, and surface contact. It usually occurs with a slow pace for many parts
of the GT in different fault modes and it is nonrecoverable, i.e., the degraded parts should be
replaced or repaired to retrieve the GT performance. The recoverable degradation emerges due
to fouling, i.e., adherence and congestion of aerosol particles on the air foils and the surfaces at
the frontmost parts of the gas path. The entire performance-based gas turbine’s diagnostics and
prognostics process have been illustrated in Figure 3.6. More information about recoverable and
nonrecoverable faults on the gas turbine performance deterioration can be found in (Kurz and

Brun, 2000).
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Figure 3.6: Gas Turbine CBM process-Diagnostics & Prognostics (Hanachi et al., 2018)

To predict and diagnose failure on gas turbines (GTs), a performance-based degradation
diagnostic modelling can be implemented using first principles. The Diagnostics modelling is
the process of mapping and classification from the gas turbine performance parameter space to
the fault space. In this instance, the conditional failure refers to circumstances when performance
of the GT becomes unacceptable but can be operational. The implementation of the modelling

can be achieved via three distinct steps:

e System identification

e Pattern recognition

e Data model fusion.
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The system Identification is the first step to implement on GT PdM/diagnostics modelling. its
role regarding GT diagnostics is to discover the health state parameters that minimize the
difference of the measured variables and those predicted by the model. This approach is
applicable when a reliable GT model with sufficient information about the internal parameters is
available. Basically, the models that utilizes system identification are mainly physics-based
models. The approach finds the health parameters of the system by solving the mathematical

inverse equation of the system model (Equation 3.7).

x=G"1 (y, uv) (3.7)

Where:

X = components of a fault vector

y = includes performance parameters
u = control input

v = ambient condition

To represent the health state of the parts, faults are introduced as a vector of numerical variables
Ax into the sets of model equations. The Ax represents values of the component level fault
symptoms e.g., loss of isentropic efficiency in the compressor. The fault severity could be
identified through modelling Equation 3.7. The components of a fault vector (Ax) may take
different values within a defined numerical domain. The idea is to find the set of component level
fault symptoms, i.e., changes in the health state Ax, that minimizes the modelling error regarding
the actual measurements on GT performance. The fault severity is evaluated through this process,
even for small values of faults, i.e., less than 1% deviation from healthy condition. The common
practice often involves estimating the relationship between the fault magnitude and performance

deviation with linearization of the gas turbine. The entire fault severity iteration process is
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illustrated in Figure 3.7.
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Figure 3. 7: Fault diagnostics through the iterative process (Hanachi et al., 2018)

Patten recognition is another important model approach, essentially utilized for gas turbines
diagnostics when accurate physics-based models are not available for gas turbines. This approach
mimics the natural learning process of humans to classify input data into classes as output, based
on the information and relevant data features. Since this section dealt with physics-based models,

more detailed on both pattern recognition and data fusion can be found in (Hanachi et al., 2018)
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3.5.6 Case Study (Gas Turbine Simulink Model)

The objective here is to produce a model of a gas turbine. This model would take the form of a
set of equations that govern the dynamic behaviour of the gas turbine. The model would involve
all those variables derived from dynamic equations. While it is conceivable to construct such a
model from first principles, it is not economical to do so, given that a typical turbine might have
several hundred of such variables to dealt with. However, despite these constraints, some
research works implemented a scalable model for gas turbines. Hence, this case study is built
based on Tavakoli et al. (2009) model’s procedures. This model is aimed at implementing a
simplified and comprehensive gas turbine model using estimated and operational data. In this
study, a 172 MW simple cycle single-shaft Heavy Duty Gas Turbine (HDGT) and its available
operational and performance data were introduced and studied for deriving the parameters of the
model. The model is successfully implemented and simulated by splitting the major GTs

components into four categories, i.e.

e (Gas turbine
e Valves and fuels systems
e Turbine dynamics and delays

e Temperature measurements
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Table 3.2: Nominal Data of HDGT Selected for Modelling

Parameter Symbol Unit
MW
Nominal frequency Pein Hz
Turbine speed RPM RPM
Exhaust mass flow N Kag/s
Exhaust temperature T °C
Pressure ratio P, -

3..5.6.1 Model Equations and Data

Based on distinct categories of the modelling, these equations form the bases in which model

parameters were estimated.

e Turbine Parameters

Two quantities represent the behaviour of gas turbine section, i.e.

» Exhaust temperature

» Output torque

As presented in Tavakoli et al. (2009), a compressor and turbine efficiencies can be represented

based on Brayton cycle;

Exhaust gas temperature

Yot Yoot
2o (@) = (PR =%, (38)
1 1
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T =) /-1 -1

Tﬁ: (33) n =(PR) " =x (3.9)
4s 4

Where:

7. = compressor specific heat

7, = Combustor, turbine ratio of specific heats

Therefore;
X —1
T, =T.(=—+1) (3.10)
1
T, =T3[1—(1—X—)f7t] (3.11)

h
At nominal speed, the exhaust temperature can be represented as;
T,=T,—D*(1-mmp) (3.12)

E =0.6T,

Where:
D is the coefficient of the exhaust temperature block
E is the coefficient of the exhaust temperature block

T, is the nominal temperature of the HDGT

3.5.6.2 Output Torque

Given Rowen’s linear response as well as nominal speed assumption, the output torque and

mechanical power can be represented as;

Py, =MIC,, (T, —T,) —C (T, —T,)] or (3.13)
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P. =A+Bx*mg atnominal speed (3.14)

Gpu

Where:

A and B are coefficients of the output torque

P

=pu 1S the per unit output power and equivalent to p.u. torque.

Table 3. 3: Typical Operating Data for Computing Turbine and Compressor Efficiencies

Parameter Unit Value
Output power MW 146.4
Turbine inlet temperature °C 1100
Exhaust gas temperature °C 532
Ambient temperature °C 27.3
Exhaust mass flow Kagls 438.1
Fuel - Gas
Fuel flow Kagls 8.34
Lower heating value of fuel KJ/kg 43094

3.5.6.3 Fuel system Lag and Valve Positioner

The valve positioner moves actuator to a valve position corresponding to a set point, while fuel
system of a gas turbine is designed to injects energy into the gas turbine. The valve positioner

block has one parameter “b” which is usually given by the manufacturer. However, the fuel

system is proportional to the product of the command signal (VCE) and unit speed (N ). With the
assumptions of linear response actuators and valves, the fuel flow changes directly with the

output signal of the valve positioner. Although, a lag associated with the gas/oil flow in the pipe
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and fuel system manifold (TFS ) affects the fuel flows. Thus, according to Tavakoli et al. (2009),

this lag can be approximated using;

P 0,1
T, =—<2V —(=)1 3.15
ey aP(v) T, (3.15)
Where:

T, is the time constant of the lag associated with the container of the volume V.

Table 3.4: Estimated Minimum Fuel Flow and No-Load Consumption

No load fuel flow (Kg/s) ~2.56

Min fuel flow to maintain combustor flame | ~1.5

(kg/s)

Table 3.5: Operational Data for Fuel System Lag Time Estimation

Fuel Gas
Fuel pressure (atm) 21
Average temperature (K) 320
Fuel piping approximate 0.17
volume (m?) ~ (15mx6¢cm Radius Equiv.
Cylinder)
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3.5.6.4 Time Lag and Compressor Discharge

The behaviour of gas turbine forces its dynamic model to have small delays and lag time

constants. As reported by Tavakoli et al. (2009), these time delays involve;

Small time delay between fuel injection and heat release in the combustor, which is referred to

as combustor reaction delay ( Ecr ). This delay is implemented in Rowen’s model after the valve

system and it’s in order of some milliseconds.

A delay between fuel combustion and measuring system (ETD). This delay is generated by
exhaust system and turbine to transport the fuel to the measuring point, which is in order of

milliseconds. Although it depends mainly on the size of HDGT engine and average speed of the

fluid.

Table 3. 6: Operational Data for Compressor Discharge Lag Time Estimation

Fuel Gas
Average temperature (K) ~1050
Discharge volume (mq) ~16

86



3.5.6.4 Temperature Measurement

Controlling temperature in HDGT needs measurement of the exhaust temperature, which

composes of;
e Thermocouple
e Radiation shield

The excessive heat in HDGT is controlled by exhaust gas temperature out of the turbine via
convection. Although, the radiation source in gas turbine itself causes error in the temperature
measurement. To overcome this effect, radiation shield is used which reflects most of radiation

away from the thermocouple and itself. The thermocouple is the temperature measuring device

and has a lag time constant (TTR ) based on its type and design. This time constant can be easily
extracted from thermocouple time response documents. Also, the radiation shield equipment
imposes a lag according to its heat transfer that has been presented to the model. An
approximated temperature at the tip of thermocouple represented by equation 3.16 will be used

Gy & Ts

to estimate the radiation shield parameters ( H ) (Tavakoli et al., 2009).

A
Tmeasure zi—i— c Al (316)
Texhaust A —— s+1
hA
Where;

A = Total active area for convection heat transfer to the shield head.
A, = Area effective for convection heat transfer to the thermocouple tip.

C = Heat capacity of shield head

h = convection heat transfer coefficient
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Table 3. 7: Data of Radiation Shield

Parameter Symbol Value
Shield Alloy - Stainless Steel
Shield Head Diameter (cm) Dy, 3
Shield Head Length (cm) L, 7.5
Shield Head Thickness (mm) Hg, 0.08
Thermocouple Tip Length inside Lo 16
Shield (mm)
Convection Heat Transfer h 250
Coefficient (W/m?K)
Specific Heat Capacity per unit Cs, 3.83
Volume (J/cm3®K)

3.5.6.5 Simulation

The derived and assumed parameters generated in section 3.5.2 are summarised in Table 3.7).
This data is used to simulate the behaviour of 172 MW HDGT. The model of HDGT is simulated
against two distinct scenarios, i.e. (0.1% and 0.3%) speed step when operating in nominal
conditions. Also, governor-speed droop of 4% is assumed for the simulation as indicated in table
3.7. The simulation is conducted in Simulink/ MATLAB environment and is illustrated in Figure

3.8.
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Table 3.8: Parameters of HDGT Model

Parameters Symbol Value
Speed Governor Gain W 25
Speed Governor Time Constant (S) Te 0.05
Fuel Demand Signal Max Limit max F 1.5
Fuel Demand Signal Min Limit min F -0.3
No Load Fuel Consumption K 0.24
Value Positioner Time Constant (s) b 0.04
Fuel System Time Constant (s) Tes 0.26
Fuel System External Feedback Loop Gain Ke 0
Delay of Combustion System (s) Ter 0.005
Transport Delay of Turbine and Exhaust System (s) To 0.04
Compressor Discharge Lag Time Constant (s) Teo 0.16
Gas Turbine Torque Block Parameters A -0.158
Gas Turbine Torque Block Parameters B 1.158
Gas Turbine Torque Block Parameters C 0.5
Gas Turbine Exhaust Temperature Parameters °C D 413
Gas Turbine Exhaust Temperature Parameters °C E 313
Radiation Shield Parameter Ggy 0.85
Radiation Shield Time Constant (s) Tq 12.2
Thermocouple Time Constant (s) Tix 1.7
Temperature Controller Parameter Grc 3.3
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Temperature Controller Integration Constant (°C ) Trc 250
Rated Exhaust Temperature (°C) Te 522
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Figure 3.8: Simulink-based 172 MW HDGT model simulation
Scenario 1

In this case, the speed deviation of 0.1% is simulated and Figure 3.10 shows the mechanical output power of
the model against the speed deviations. Thus, in a steady state operation with 4% droop, a final value of 1.021
p.u is obtained as indicated in Figure 3.10. Also, the exhaust temperature of gas turbine measure by the

thermocouple is observed. It is a steady state temperature prior to the activation of temperature control, which

is near 530 °C and indicated in Figure 3.9.
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Figure 3.9: Exhaust temperature of HDGT after speed step of -0.1%
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Figure 3.10: Mechanical output power of HDGT after speed step of 0.1
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Scenario 2

In this case, the speed deviation of 0.3% is simulated, which suddenly leads to the activation of the temperature

control. As indicated in Figure 3.11, The exhaust temperature increases for 70s until it reaches the value of
almost 545 °C , then the temperature control activated which forces the exhaust temperature to decline to its

rated value of 522 °C . Also, the final value of 1.061 p.u. of mechanical power is observed as illustrated in
Figure 3.12, which remains constant after the activation of temperature control. In short, the temperature

control decreases temperature at the expense of output power which helps in keeping is steady and constant.
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Figure 3. 11: Exhaust Temperature of HDGT after speed step of -0.3%
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Figure 3. 12: Mechanical output power of HDGT after speed of -0.3%

Although the focus of this study is on Aeroderivative gas turbines not HDGT as discussed in the case study,
the simulations of ADGT is more complicated and complex. Therefore, given the classification diversity of
gas turbine, some researchers attempted to simulate a generic model for gas turbines. However, simulating a
generic model for gas turbines would be very difficult. Thus, variety of gas turbine models were built by
researchers from different methodological perspectives to achieve specific research objective(s). However, to
underpin the generic model of gas turbine for various modelling purposes, number of commercial and
institutional patent computer simulation models softwares have been developed by researchers and OEMs.
Amongst institutional gas turbine modelling softwares include TURBOMATCH, PYTHIA and DETEM that
has been developed by Cranfield University (Ogaji, 2003). Commercially, PROOSIS is one of the most
powerful industrial software for gas turbine performance modelling. It was the first industrial modelling
software for gas turbine which was released in 2005 and commercialised in 2008 after European FP6 project
VIVACE (Value Improvement Through a Virtual Aeronautical Collaborative Enterprise) (PROOSIS, 2018).

Industrially PROOSIS has wide range of capabilities and applications. It’s used in product design, condition
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monitoring, optimisation, digital twin for process plants, aircraft engine and rockets as well as virtual
commissioning applications (PROOSIS, 2018). Details on gas turbine modelling with PROOSIS has been

explained by (Alexious, 2014).

3.6 Summary

Understanding the characteristics behaviour of gas turbine system is easily achieved by
analysing operational data. The operational data is usually obtained using various sensors
attached to the physical gas turbine system. However, obtaining industrial data is often
expensive and difficult due to data censorship and security. Conversely, gas turbine behaviour
analysis could be achieved through laboratory experiments. However, performing experiments
on real system by stripping its components could be challenging and associated with rigorous
fatigue, reliability challenges, error and damages. These constraints make it difficult and
too dangerous and expensive to perform experiment on real systems. Alternatively,
simulations can be done on model system to understand the effect of design characteristics

and performance behaviour of simulated real system.

This chapter briefly discussed gas turbine modelling. Some gas turbine thermodynamics were
briefly introduced, including some important factors affecting turbine modelling. The chapter
briefly explained some important considerations whist modelling gas turbine system such as
modelling objectives, modelling methods, gas turbine types and configurations as well as
approaches in modelling gas turbines. A case study is on modelling and simulation of HDGT is
implemented based on Rowen model. The behaviour of simple cycle HDGT was simulated using
thermodynamic laws and operational data and the result obtained could be useful in many
turbine studies. Although these results would not be sufficient for the predictive maintenance
modelling task of this thesis, due to lack of relevant feature information required by the model.
Hence the next chapter which seek the deployment of alternative source of dataset to develop
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Chapter 4

Gas Turbine Fault Classification/Diagnosis (Data-Based Model)

4.1 Introduction

Condition monitoring gains much attention in various industries due to quest for the increased
reliability as well as the need to decrease the possible production loss associated with breakdown.
Condition monitoring and fault diagnosis provides useful information regarding nature and
localisation of failure thereby reducing the potential catastrophic failure andenhances adequate
maintenance process planning (Moosavian et al., 2012). Condition monitoring improves
rotating equipment reliability and availability through early fault detection and diagnosis. In
recent years, various methods have been proposed to implement robust condition monitoring
to industrial machineries. Modern industrial applications operate with the aid of rotary
components. Thus, rotating machineries becomes one of the most critical equipment to
modern industrial applications. However, these rotary components are prone to potential
fault due to continuous operation. Hence, robust condition monitoring of the machinery
equipment provides promising improvement on system reliability, availability as well as
overall safety. Therefore, considering the importance of rotating machineries to modern
industrial applications, significant research effort has been made to understand the failures
of critical rotating machinery components. In short, various condition monitoring models has
been studied towards implementation of robust models to detect and classify common failures

modes of rotating machinery (Kaveh et al., 2008).

Fault diagnosis can be associated with pattern scenario of machinery condition. Therefore, a
powerful pattern recognition tool, i.e., Artificial Intelligence (Al) has been identified and
widely used by researchers in solving fault detection and diagnosis problems. Artificial
Intelligence based fault diagnostics involve data Bgocessing, feature extraction and fault

recognition. Given



failure complexity of certain industrial machineries, diagnostics and isolation of machinery faults
require more sophisticated fault diagnostic tool. Unlike model-based/signal processing-based
diagnosis tool, data driven-based fault diagnosis does not require robust expertise to make
judgements on machines fault diagnosis/prognostics (Wang et al., 2011). Conversely, Al- based
fault diagnosis models robustly detect and classify machine failures without dependency on

human experience expertise (Caesarendra et al., 2011).

Thus, Al-based fault diagnostic tools receive growing interest in the machinery research
community (Gangsar and Tiwari 2017). A lot of Al tools and techniques have been widely used
by researchers for fault detection and diagnostics programs. Some of these techniques are
associated with convex optimisation, mathematical optimisation, and classification as well as
statistical learning and probability-based methods. Given the powerful capabilities of Al and
constraints and complexity of physical models of many machineries, Al-based machinery fault
diagnostics attract the attention of researchers recently. Thus, vast research on Al-based fault

diagnostics models appears in the literature every year.

Fault diagnosis essentially uses information about machinery operational condition to detect,
identify and isolate potential faults. The condition of the machine is monitored from the trendof
historical operational data obtained from robust data acquisition process. The condition
monitoring data can be of various features. Thus, it can be acoustic data, vibration data, oil
analysis data, temperature and pressure among others (Jardine et al., 2006). The signal variability
of the condition monitoring data prompts a serious challenge to directly obtain faultpattern.
Hence, an effective signal pre-processing (feature extraction) prepares an essential useful feature
data for robust fault classification model (Jardine et al, 2006 & Yang et al., 2005). Then, pre-
processed data serves to be the input to fault recognition/ classification model. Various
techniques have been applied to fault diagnosis problem. Perhaps Al-based algorithms have

shown more promising result and improved performance over conventional (statistical/model)
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approaches (Jardine et al, 2006). These Al-based techniques generally involve mathematical
optimisation, convex optimisation, classification, statistical learning as well as probability-based
methods. Although both classification and statistical learning prompts the most widely used
methods among these techniques. Thus, most widely Al-based algorithms applied to rotating
machinery fault diagnosis involves K-nearest neighbours (Wang,2016), support vector machines
(Vapnik, 2013), Naive Bayesian classifier (Baraldi, L. et al, 2015) and Artificial neural networks
(Haykin, S., 2004). Similarly, Abed et al. (2016) identified feedforward neural network (NN),
support vector machine (SVM) and adaptive neural fuzzy inference system (ANFIS) as
commonly used Al based techniques in fault classification of rotating machines. Although,
among the various pattern recognition methods employed for fault detection and condition
monitoring of rotating machinery, NNs have been the most commonly used algorithm to classify
training patterns from data sample (Yang et al.,2013; Abed et al. (2016). Figure 4.1 give an
overview on the simple flow chart of Al basedalgorithms for fault diagnosis of rotating machines

using both ANN and SVM models.

With recent advances of Al-based algorithms applied on rotating machinery diagnosis, Deep
learning approaches also began to attract much attention among CBM researchers. Deep learning
most recent machine learning method offers greater capacity to overcome some flawsand
inherent disadvantages of other conventional intelligent methods. It distinguishes itself byits
robust learning capabilities. Thus, it learns valuable features from raw data withoutinvolvement
of feature extraction methods. Perhaps, this enhances its less dependence on various feature
engineering, signal processing and domain expert. The most prominent deep learning methods
applied to machinery fault diagnosis recently involves both Deep Believe network (DBN) and

convolutional neural network (CNN) (Shao et al., 2018).

This chapter give an account of most popular Artificial Intelligence-based fault diagnosis applied

to rotating machinery, with the specific reflection on how the algorithms were applied to rotating
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machinery and their basic background theories. A case study is conducted to understand how
good feature extraction techniques enhances the prediction performances of the models.Various
feature extraction techniques will be employed to pre-process the data before fitting them into
models for classification. Models are validated after the training and ranked according to their

performances.

4.2 Modelling

4.2.1 Data

The dataset used in this study has been collected by me and my DoS from Sheffield Low Carbon
Combustion Centre Sheffield carbon (leading European facility for novel combustion and low
carbon technology). The data used was taken from an experiment associated with a larger project,
that aimed to characterize the behaviours and of gas turbine when exposed to different alternative
fuels. fuel consumption and exhaust emissions. These alternative fuels that are comprises of
conventional kerosene-based fuel Jet-Al and bio jet fuels. Introduction of these fuels to operate
gas turbine engines, subjects the engine into different level of performance severity. While
certain fuel is safe to operate the engine optimally, another different fuel would severely damage

the engine components over certain period of operation.

In this study, condition monitoring strategies were explored for gas turbine engines using
condition monitoring data (vibration and others). The aim here is to implement data-driven
approaches and develop a reliable data-driven models that can describe the underlying
relationships of the processes taking place during an engine’s operation. The condition
monitoring strategy developed can serve as a diagnostic solution in detecting excessive vibration

levels that can lead to engine component failure. Hence, we demonstrate its performance on
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vibration data from an experimental gas turbine engine operating on different conditions. The
data used were obtained by conducting various experiments by the centre on different Jet and
gas turbine fuels with the aim to understand the underlining patterns that helps to intelligently
classify various characteristics associated with engine exposure to different fuels. The facility
used in testing different alternative fuels under different engine air-to-fuel ratios, is an auxiliary
power unit of turboshaft gas turbine (Honeywell GTCP85-129), with its this operating principles

follows a typical Brayton cycle, as described in Chapter 3.

The process involves drawing of ambient air by the engine from the inlet (1 atm) through the
centrifugal compressor, where it raises its pressure by accelerating the fluid and passing it
through a divergent section. This leads to the further decrease of the fluid across the centrifugal
compressor. The pressure would be increased across a second centrifugal compressor, just before
being mixed with fuel into the combustion chamber, and subsequently ignited to add energy into
the system (in the form of heat) at constant pressure. Then a high pressure and temperature gasses
emerges and expanded across the turbine. These expanded gasses further drive two compressors,
as well as 32 kW generator that provides aircraft electrical power and the engine accessories,
e.g., fuel pumps, through a speed reduction gearbox. There is a presence of bleed valve (BV) in
the engine, which enable the extraction of high temperature, compressed air (~232°C at 338 kPa
of absolute pressure) to be passed to the aircraft cabin and to provide pneumatic power to start
the main engines. This mechanism allows the engine to be tested on different operating modes
as the air-to-fuel mass flow that goes into the Combustion Chamber can be changed with the
Bleed Valve position. When the BV opens, a decrease in turbine speed will take place if there is

no addition of fuel to compensate for the lost work.
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A Sensor (piezoelectric accelerometer) was connected to the engine using probes attached to the
engine support structure. The sensor is characterised with sensitivity of 10 mV/g, and sampling
frequency at 2 kHz (fs = 2 kHz). Series of test were conducted with each test last for 110s
duration. The fuels considered for the experiments were blends of Jet-Al (TP10_Diesel and

TP11_RedDiesel) and a bio jet fuel [hydro processed esters and fatty acids (HEFA)].

The engine was set to operate on different modes of operations using various blends of fuels, to
understand some performance behaviours of the engine. For instance, the engine experiences the
highest overall amplitude level across the whole spectrum when operating under condition 50%
Jet-Al + 50% HEFA. Likewise, it exhibits the highest vibration levels throughout the whole
frequency spectrum. Thus, explained how changes in air-to-fuel ratio affects the statistical
properties of the datasets and consequently the frequency-domain response of the engine for the
different fuel blends. Various experiments were conducted on different fuel blends and datasets
obtained can be categorised into two main groups, i.e., those with some strong periodic patterns
and those that do not share this characteristic (non-stationary). This can be distinguished clearly
with case study on Jet-Al fuel blends (TP10 and TP11).

From the experiment above, a case study is established on two Jet-A1l fuel blends, namely TP10
Diesel and TP11_RedDiesel respectively. Both fuels were tested on the gas turbine engine test
facility and its underlining operational behaviours (features) on each fuel blend ware captured

by the sensor and recorded under the conditions specified above.

Some observable characteristics were emerged from the experiment in which both fuel blends
(TP10 & TP11) exhibit different vibration characteristics under the same operation conditions.
These observable changes could be attributed to the engine’s operational response on each fuel
blend. Hence, guide our intuition to categorise the vibration responses under TP10_Diesel as
steady-state operation and vice-versa for the TP11 RedDiesel. This can be clearer with
exhibition of strong non-stationary trends on some time domain feature plots, and variations of

periodic feature characteristics on frequency-domain features plots.
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Engine’s feature responses data can be categorised as belonging to the engine’s ‘“normal”
condition correspond to fuels and air-to-fuel ratio combinations under steady-state, in which the
engine experienced low levels of vibration, and “Abnormal” condition corresponding to air-to-
fuel-ration combination under transient state. This data can be used to implement and validate
the accuracy of condition monitoring-based diagnostics model. Thus, the model can be able to
determine whether new unseen data points are classed as “Normal” or “Abnormal, by comparing
them with the distribution learned. As such, the model should be sensitive enough to identify
potential precursors of localized component malfunctioning at a very early stage that can lead to
total engine failure. Perhaps, going by the analogy of establishing fault diagnosis, its known in
practice that some contaminated fuels cause serious vibration to the gas turbine engines, which
consequently damages some components in the gas turbine. Thus, the two classes of fuels are
analogous to a faulty and non-faulty labelled dataset, which is used to develop a model that
distinguishes faulty and non-faulty fuel. Table 4.1 depicts the dataset obtained from the
experiment and labelled as (TP10 Diesel & TP11 RedDiesel). Both TP10 Diesel and
TP11 RedDiesel represents two different types of fuels that are passed into the gas turbine
engine to understand some underlining operational behaviours of the engine when either of the
fuels is used as a combustion fuel to drive the engine. Some of these behaviours (features) of the

engine were recorded by the sensors and identified in the Table 4.2.

The complexity of the processes taking place in a gas turbine engine from the context of
dynamics, complex thermochemical, and other physical processes, and difficulty in obtaining
system’s failures in practice, prompts it hard to provide a theoretical explanation of the physical
context behind the engine’s responses acquired. This challenge is overcome with implementation
of valid physics-based model that can predict the engine’s vibration response as an output of a
system. Although the nature of the modelling/monitoring problem, when approached from a
physics-based perspective, suggests that model validation would be a significant challenge.

Hence paved the way to a data-driven strategy, since the system examined (engine in operation)
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is treated as a black box. Therefore, the model established here follows a machine-learning
framework for the condition monitoring of engines using the experimental data obtained. The
framework can be used to detect patterns generated due to engine’s response to various fuels
exposed. These could be achieved through keys steps; the data acquisition, data pre-processing,

feature extraction, and development of a learning model and model’s validation.

Table 4. 1: Raw Data Groups and Dimensions

Groups Sub-groups Dimension

TP10_Diesel 1048575 X 18
Gas TurbineLBO

TP11_RedDiesel 1048575 X 18
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Table 4.2:

Sensors and features used in the experiment

S/N Feature Sensor Data
1 |Feature_ 1 Accelerometer_x1
2 |Feature 2 Accelerometery yl
3 |Feature_3 Accelerometer_Z1
4 |Feature_4 Accelerometer_x2
5 |Feature_5 Accelerometer_y?2
6 |Feature 6 Pressure_1
7 |Feature 7 Pressure_2
8 |Feature 8 Pressure_3
9 |Feature 9 Pressure_4
10 |Feature_10 Pressure_5
11 |Feature_11 Microphone_1
12 | Feature 12 Microphone_2
13 | Feature 13 Volumetric air flow
14 | Feature 14 Volumetric volume flow
15 | Feature 15 Air inlet temperature
16 | Feature_16 Upstream air temperature
17 | Feature 17 Annular air temperature
18 | Feature_18 Exhaust air temperature
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4.2.2.1 Sensor Types and Applications in Predictive Maintenance:

Sensors plays an important role in predicting failures in gas turbines. Some sensors can detect certain fault than others.

Sensors can detect gas turbine faults, such as bearing damage, much earlier than others. Table (4.3) summarised types

of sensors used in this research and their applications on gas turbines PdM.

4.3 Sensor Types and Application in Predictive Maintenance

established in CbM

applications

Sensor Type Measurement/Uses Key Information Target Faults
Low noise, frequencies up to Bearing condition, gear
Accelerometer Vibration 30 kHz, well meshing, pump cavitation,

misalignment,

imbalance, load condition

Low cost/power/size,

Pressure leaks, bearing

condition, gear meshing, pump

Microphone Sound Pressure frequencies up to 100 kHz cavitation,
misalignment, imbalance

Change in temperature due to
Expensive, accurate, multiple | friction, load changes, excessive

Infrared Temperature assets/sources of start/stop, insufficient power

thermography heat at one time supply
Turbine flow Volume (liquids & Expensive and accurate. Essential in gas path analysis of
meter gases) gas turbine PdM.
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4.2.2.2 Dataset Preparations

The dataset was prepared through normalization, by dividing each time-domain and frequency-
domain acceleration amplitude by its corresponding maximum value, i.e., unit normalized, so
that all amplitudes, corresponding to the different datasets, vary within the same range [0, 1].
This is preceded by removing some features that are irrelevant or carry very negligible
information,essential in obtaining good robust model. Hence, all the features were plottedin their
raw form to understand some underline characteristics of the signals. As depicted in Figure 4.1,
It can be observed that some features do not change over their entire length. Therefore, by
inspection, removing them is necessary. The Features that have been removed includeVVolumetric

Fuel Flow, Volumetric Air Flow, Air Inlet Temperature, Annular Air Temperature, and Exhaust
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Figure 4.1: Plots of useful features of TP11-Fuel to selected for the model

The remaining sensor data retained has been further investigated using Fast Fourier Transform
(FFT) and Power Spectral Density (PSD), with motivation to discriminate features with low

information content as well as discarding features with similar characteristics. The FFT of 16

remaining sensor signals has been depicted in Fig 4.2.
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Although FFT spectra of some signals appeared to have similar frequency patterns localisation,
however the PSD give more clear frequency patterns, which significantly helps in selecting the
appropriate features for the models. Both FFT and PSD helps in revealing more signal patterns,
that are not clearly visible in time domain. Hence guide the selection of the feat_ures with

significant information content. The features selected for the modelling include;

e Accelerometer x1
e Accelerometer_yl
e Accelerometer_z1

e Accelerometer_y2
e Microphone_1

e Microphone_2

Visualising Figures 4.1-4.2, Pressure_1 to Pressure_5 signals have negligible fundamental
frequency harmonics as revealed by FFT and decaying patterns as demonstrated by PSD. This
indicate that the signals do not carry much significant information for the models, hence
discarded. Both Microphone_1 and Microphone_2 contained a decaying signal, but have some
frequency fundamentals as depicted by their FFTs. This prompted their usefulness and therefore

selected for the model.
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4.3 Models Implementations for fault diagnosis

The data obtained and selected above is used in developing machine learning (Data-Driven)
models that are capable in classifying two distinct types of fuels (TP10 and TP11). The six
features obtained could not be feed into the model directly due to inherent noise contained in the
dataset. Therefore, data pre-processing is essential in yield high performing model. Further,when
the right features have been extracted, various supervised machine learning models would
be developed to handle the problem at stake. These models are developed according to the
techniques employed in restructuring the raw dataset to increase nonlinear relationship between
the feature vectors in the dataset. In addition, some data pre-processing/feature extraction
techniques are employed, such as Principal Component Analysis and Signal Processing to extract
the features that are more relevant to the models. Hence, this work has been carried out according
to the feature extraction technique involves. First, the dataset is restructured to obtain more X
features with many dimensions. This will increase the correlations among the feature vectors.
The high dimension feature vectors are reduced to some more relevant components that

contained useful information using PCA. In short, the overall models are categorized as;

¢ PCA-based

« Signal Processing Based

o Time Domain Based
o Frequency Domain Based

o Time Frequency Domain Based

o Deep Learning Based
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Figure 4. 3: Flow diagram of Modelling Processes

The Figure 4.3 illustrated the entire modelling process and the relationships between the models.
Obviously selecting a single model for the training and validation could not justify the suitability
of that model to the specific problem in context. In short machine learning algorithm works best
for every problem, and this is more relevant for supervised learning Predictions. Therefore,
various models were introduced to verify the best model with highest prediction accuracies.
However, when variety of machine learning algorithms involved, searching on the most suitable
algorithm prompts often challenging. Hence, this paved the way in trying different algorithms

whilst taking into considerations some factors, such as;

the size, quality, and nature of data.

The available computational time

The urgency of the task; and

Purpose and objectives of the modelling.
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4.3.1 Model-1 (Principal Component Analysis Based)

The PCA based model developed involves the process of data restructuring, normalisation,
dimension reduction and as well as Artificial Neural Network model architecture. The modelling

results obtained are summarised in Table 4.10. The brief overview on the models are;

4.3.1.1 Modelling Objectives

Principal Component Analysis (PCA) is one of the most used algorithms in supervised and
unsupervised machine learning developments, depending on the problem in context. It’s
essential across a variety of applications, such as exploratory data analysis, dimensionality
reduction, information compression, data de-noising, and much more. It apparent that while
working on various machine learning techniques for Data Analysis, we deal with tremendous
number of variables, depending on the problem at hand. Often most of the variables are correlated
with each other, and in such cases, fitting the model to the dataset significantly results in poor

accuracy of the Model. Therefore, Principal Component Analysis technique is used here;

1. To helps in reducing the dimensionality of the dataset and converts set of correlated

variables to non-correlated variables.

2. To finds a sequence of linear combinations of variables.

3. As atool for better data visualization of the dataset used data, to reveal the correlations

between each component.

4. Used as important tool for data interpretation and variable selection for the overall model

development.
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4.3.1.2 Data Restructuring

Originally each dataset has dimension (1048575 X 18) before discarding the non-useful features,
as explained in Section 4.2.1. Since only 5 features were selected from each dataset,then new
dimension of each dataset will become (1048575X6). However, each dataset needs further
restructuring to increase the correlation between the feature vectors in each dataset. On that basis,
the summary of TP10 dataset restructuring as well as changes in dimension for X features has

been illustrated in Table 4.4.

As indicated in Table 4.3, steps have been used in restructuring the dataset. The steps refer tothe
alignment of each feature vector in horizontal orientation end to end to represent and observation
of a class labels. For instance, 10 steps have been used in Table 4.4, which indicated lining 10
datapoints of each 6 features in horizontal orientation end to end to form 60datapoint. Hence
represent the class in which the fuel belongs to (Y). The loop continues withthe next 10 steps of
datapoints along the entire length of the dataset. The overall process changes the dimension of

X_dataset from (1048575 X 6) to (174763 X 60). Same process

continues by changing the datapoint steps between (20, 30, 40, 50 and 60) as indicated in Tables

(4.4-4.9).

4.3.1.3 Normalization

Normalisation is an important technique in data pre-processing stage, it’s apparent that the datato
be modelled constitutes of different ranges of scales. Perhaps, within the predictor features,there
is often differences between the maximum and minimum values. Normalisation scale down
variation in features in such away when it’s performed the value magnitudes are scaled to
appreciable values. This practice is very important especially considering that the restructured

data has high dimensions which must be reduced to discard the irrelevant features.Thus, PCA
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requires the features to be normalised, likewise the subsequent neural networks algorithms need
normalization which optimises and enhances quick convergence of the algorithm. Thus,
minimising the effect of large magnitude of one predictor dimension inrespect to others, a
scenario that leads to slow convergence (Kotsiantis et al., 2007). Among the most common
techniques for normalisation (Min-Max and Standard-Scaler), Min-Mix is used for this work.
The Min-Max technique rescale every feature to a scale between [0,1]. The Min-Max

normalisation of dataset is computed using the following formula:

_ o x- min(x) (4.20)
max (x)— min( x)

4.3.1.4 Dimension Reduction

Analysing complex and multi-dimensional dataset would be to a difficult task. Likewise,
visualising complex or multi-dimensional dataset. Perhaps, the difficulty in visualisation and
computation increases with increase in dimensions. However, viable solution that overcome
dimension complexity of data is achieved by removing the redundant dimensions (features) and
keeping the most valuable dimensions (features). Feature selection techniques and algorithms
were extensively discussed in Chapter two, however, iterating its profound importance here is
imperative as its essential in transforming patterns from the data and extracts valuable
information from the data table. Further, the data is subsequently express useful information
to a new set of orthogonal variables known as principal components. Thus, reducing the

dimensionality the dataset.

The structured dataset obtained from Section 4.3.1.1, has been transformed further by
reducing its dimensions into various principal components as indicated in tables 4.3, which are
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further fed into machine learning classifier for subsequent classifications and predictions.
Various PCA components were selected (5, 10, 15, 25 and 30) for each datapoint steps (10, 20,
30, 40, 50 and 60) with each PCA component is used for classification task, hence the

corresponding result for each modelling is indicated in Tables 4.3.

4.3.1.5 Classification Model

The Principal Components obtained in Section 4.3.1.3 are fed into Artificial Intelligence
classifier. Various Al classifiers exist for supervise learning tasks. However, by convention
Artificial Neural Network (ANN) and Ensemble learning based Extreme Gradient Boosting
classifier (XGB) have proven performance, compared to other classifiers. Hence both ANN and

XGB are used in this work.

ANN is based on Perceptron and Feed Forward Neural Networks (FFNN) with back propagation
gradient descent learning algorithm, which is used for updating the weightsvectors. VVarious
ANN and XGBoost Architectures were used as illustrated in Tables 4.4-4.9,depending on the
datapoint steps as well as the numbers of PCA components used. For instance,when 10 datapoints
steps and 5 components were used, an architecture with 3 fully connectedlayers (1 input, 1 hidden
and 1 output) is used. The Input layer consists of 5 neurons, hidden layer consists of 3 neuron,
and 1 neuron has been assigned to output layer. Weights and biasesin each layer have been
randomly initialised and used to compute the target output values. Thelearning rate is also initiated
with a minimal fixed value and kept constant until the convergenceof the training model. Two
activations functions were used with ReLU formed both input andhidden layer. The output layer
has Sigmoid as its activation function. The dataset for the modelhas been split into both training
and test sets. Training/learning takes 80% of the dataset whilethe remaining 20% of the dataset

is assigned for testing. The training rans through 300 epoch (iteration) and converges afterwards.
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The capabilities of ANN in classifying various non-linearscenarios in the data is harnessed in this
model to perform binary classification of two differenttypes of fuels used by gas turbine. The

results of the modelling are presented in Table 4.4-4.9.

Input Layer Hidden Layer Output Layer

Input 1
—_—

Input 2
—_—

Input 3 Output
——

“

Input 4
—_—

i

Input 5
—_—

Figure 4. 4: ANN Model Architecture
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Training/learning takes 80% of the dataset while the remaining 20% of the dataset is assignedfor
testing. The training rans through 300 epoch (iteration) and converges afterwards. The
capabilities of ANN in classifying various non-linear scenarios in the data is harnessed in this
model to perform binary classification of two different types of fuels used by gas turbine. The

result of the modelling has been presented in Table 4.4. stands for eXtreme Gradient Boosting.

Another classifier used in this work is XGBoost (eXtreme Gradient Boosting). The name xg
XGBoost refers to the engineering goal to push the limit of computations resources for boosted
tree algorithms., hence a reason why many people use XGBoost. The key motivation behind
deploying this algorithm in this study is to herness the capabilities of algorithm’s robust
Execution Speed and enhanced Model Performance. This is essential due to some feature that

ranges from Sparsity towards automatic handling of missing data values, parallel computations
and Block Structure capabilities to support the parallelization of tree construction. This ensured
continued Training, such that one can further boost an already fittedmodel on new data. Various
PCA component are fed into this classifier, depending on the datapoints steps and number of
PCA components. Although the results obtained in this study with XGB classifier is not as robust
as ANN, yet the algorithm proven its capabilities when inachieving good results as illustrated in

Table 4.4.
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Table 4. 4: PCA-based Models (10 datapoint arrangement with PCA Components)

ANN 0.7359 0.7365
XGB 0.744 0.741
3) 0.729
10 209716 X 60
ANN 0.8237 0.8212
10 0.810
XGB 0.808 0.805
ANN 0.8348 0.8335
15 0.865
XGB 0.807 0.805
ANN 0.8859 0.8863
20 0.898
XGB 0.816 0.812
ANN 0.9069 0.9071
25 0.925
XGB 0.835 0.832
ANN 0.9197 0.9191
30 0.947
XGB 0.840 0.836
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Table 4.5: PCA based Models (20 datapoint arrangement with PCA Components

PCA
Steps Dimension_X % PCA  Model Training Test/Validation
Features
ANN 0.7364 0.7404
5 0.699
0.738 0.742
XGB
ANN 0.8357 0.8355
10 0.766 XGB 0.829 0.822
ANN 0.8570 0.8525
15 0.813
XGB 0.827 0.822
20 104858 X 120
ANN 0.8910 0.8888
20 0846 | XxGB | 0.816 0.812
ANN 0.9232 0.9185
25 0.872 XGB 0.856 0.852
ANN 0.9258 0.9217
30 0.891 XGB 0.860 0.854
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Table 4. 6: PCA based Models (30 datapoint arrangement with PCA Components)

Steps | Dimension_X PCA % PCA| Model | Training |Test/Validation
Features
ANN 0.7287 0.7346
5 0.685
XGB 0.754 0.738
ANN 0.8661 0.8666
10 0.745
XGB 0.855 0.840
30 | 69906 X 180 ANN | 0.8755 0.8758
15 0.795
XGB 0.858 0.839
ANN 0.9024 0..8979
2 81
0 0819 XGB 0.862 0.845
ANN 0.9283 0.9238
25 0.843
XGB 0.864 0.844
ANN 0.9354 0.9308
30 0.862
XGB 0.863 0.845
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Table 4.7: PCA based Models (40 datapoint arrangement with PCA Components)

Steps | Dimension_X PCA % PCA| Model | Training |Test/\VValidation
Features
5 0.6689 | ANN 0.7377 0.7358
XGB 0.754 0.742
ANN 0.8574 0.8589
10 0.734
XGB 0.856 0.848
ANN 0.8829 0.8831
15 0.774
40 | 52430 X 240 XGB | 0.858 0.851
ANN 0.9259 0.9240
20 0.799
XGB 0.861 0.855
ANN 0.9320 0.9271
25 0.822
XGB 0.862 0.858
ANN 0.9425 0.9386
30 0.841
XGB 0.871 0.862
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Table 4.8: PCA based Models (50 datapoint arrangement with PCA Components)

Steps | Dimension_X PCA % PCA| Model | Training |Test/Validation
Features
ANN 0.7388 0.7410
5 0.6568
XGB 0.755 0.751
ANN 0.8515 0.8574
10 0.725
XGB 0.848 0.83
>0 41944 X 300 ANN 0.9027 0.8984
15 0.761
XGB 0.858 0.849
ANN 0.9348 0.9278
20 0.786
XGB 0.860 0.847
ANN 0.9481 0.9387
25 0.807
XGB 0.879 0.866
30 ANN 0.9535 0.9417
0.826
XGB 0.880 0.867
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Table 4.9: PCA based Models (60 datapoint arrangement with PCA Components)

Steps | Dimension_X PCA % PCA| Model | Training | Test/Validation
Features
5 ANN 0.7986 0.7927
0.642
XGB 0.809 0.799
ANN 0.8554 0.8484
10 0.715
XGB 0.856 0.848
15 ANN 0.9049 0.8986
0.751
XGB 0.856 0.839
ANN 0.9438 0.9386
20 0.776
XGB 0.872 0.860
60 34954 X 360
ANN 0.9505 0.9429
25 0.797
XGB 0.875 0.864
ANN 0.9564 0.9436
30 0.815
XGB 0.875 0.861
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4.3.1.6 Analysis and Evaluation for the Models

Successful implementation of model with different datapoints steps and PCA components, it’s

clear that some good results have been obtained from the models as depicted in Table 4.4- 4.9.

Thus, it can be observed that;

The increase in datapoint steps leads to the increase in model performances. For
instance, the performance of ANN model increases from 91.97% to 94.38% when
datapoint steps has been changed from 10 to 60 (Table 4.4 & 4.9) with 20 PCA

components each.

Dimensionality reduction in the raw dataset increases the model performances. For
instance, reduction of 60 features to 5 PCA components as presented in Table (4.4),
prompt ANN model to achieve 73.59% when 10 datapoints steps has beenused.
Although, the model performance increases when more percentage of the data
information has been captured from the features as indicated in Table (4.4) where 30
components (representing 94.7% of the data) achieve 91.97% accuracy using 10

datapoints steps.

The ANN models achieved higher performances compared to XGB. Hence, prompts us

to focus more on the former as summarised in Table (4.10).
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Table 4.10: Summary of ANN_PCA based Models (10 datapoint arrangement with PCAComponents)

PCA
Steps PCA% Training  Test/Validation Accuracy (20-Comp)
Components
5 0.729 | 0.7359 0.7365
10 0.810 0.8237 0.8212
10 0.8859
15 0.865 0.8348 0.8335
20 0.898 0.8859 0.8863
25 0.925 0.9069 0.9071
30 0.947 0.9197 0.9191
5 0.699 0.7364 0.7404
10 0.766 = 0.8357 0.8357
20 0.8910
15 0.814 0.8570 0.8525
20 0.846  0.8910 0.8888
25 0.872 0.9232 0.9185
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The models’ accuracy assessment is critical to the model performance. Although accuracy alone
is not sufficient. Hence, further metrics can be used to evaluate models’ performances. This is
because the performance parameters usually give a good picture on model’s prediction
performance. Hence, another criterion to evaluate model performance isby employing either
statistical or machine learning methods. Suresh et al 2014 highlighted the definitions of some
statistical performance parameters that are derived from model’s confusion matrix. These

parameters as defined by the authors involves;

1. Precision: This refers to the extent to which the repeated measurement under

unchanged conditions demonstrates same result. This is represented as;

TP (4.21)

Precision = ———
FP TP

2. Completeness: On the bases of fault diagnosis, completeness refers to the ratio of the
number of faults in classes classified as fault prone to the total number of faults in the

system. This parameter is also regarded as Recall and expressed mathematically as;

TP (4.22)

Completeness/Recall = —————
TP+ FN
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3. Accuracy: This is defined as ratio predicted fault prone being inspected out of all

modules. It’s expressed mathematically as;

TN =TP (4.23)

Acouracy =
" TN+ FP:+FN+TP

Where; TV is True Negative
TP s True Positive
FN s False Negative

FP s False Positive

Various models have been produced above, depending on the datapoint step number of PCA
components. Each model has corresponding performance accuracy. However, to access other
performance indicator, datapoint step (60) with 20 components has been chosen toverify ANN
model performance using confusing matrix. The result of confusion matrix is illustrated in Figure

4.5.
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Figure 4. 5: ANN-PCA Based Confusion Matrix

It can be observed that the model achieved significant accuracy in predicting the two different

classes of fuels. Hence, when new data is passed through the model,;

o The model successfully classifies Red Diesel Fuel (TP11) accurately by up to 95.6%,

with misclassification error of just 4.4%.

e The model also predicts and classifies Normal Diesel (TP10) accurately by 93.1%

and misclassified the fuel class with the error of 6.9%.
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4.3.2 Model-2 (Signal Processing Based-models)

4.3.2.1 Introduction

Signal Processing essentially helps in analysing, visualising and comparing multiple signals. In
addition, it helps in detecting and extracting features or underline information/event contained
in a signal. Feature detection and extraction significantly add value to the dataset meant to be
used for further machine learning (ML) modelling. Figure 4.6 illustrates the procedures in

preparing signals before feeding into the ML models.

Sensor 1

Signal
Acquisition

(o
O~
o

Data Signal
Interpretation Processing

Figure 4.6: Feature Engineering Process

Various signal processing tools and techniques are used in extracting useful features from
signals. However, depending on the task and requirements, these techniques are distinctly
categorised into 3 groups (Time Domain, Frequency Domain and Time Frequency Domain).
Therefore, we’ll employ all the three signal processing categories to extract features from the
fuels datasets to in developing various supervised classification models. Finally, both categories

will be evaluated regarding their significance in increasing models’ performances.
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4.3.2.2 Objectives

The main purpose of implementing signal processing here as it’s applied to the failure diagnosis
Is to extract an important feature information (feature extraction) to distinguish signals with
different variational failure patterns in the fuel dataset. This made signal processing tool as one
of the key procedures of rolling gas turbine fault diagnosis modelling. Thus, feature extraction
especially signal processing-based would directly affects the diagnosis results. Therefore, to
acquiring rich fault information, the traits in time-domain, frequency-domain, and time-

frequency domain are extracted.

Traditionally, constructing a feature set containing all the fault information to identify and
distinguish different types of faults could be done manually or through PCA-based. However, in
general, the whole feature set of all the fault information are considered, redundant features,
mutually exclusive features, and superior features could be mixed off together. Hence, feeding
all features in the feature directly into a classifier, would significantly affects the classification
process by slowing down the modelling speed and generate poor classification accuracy.
Therefore, selecting the relevant features through one of the signal processing-based techniques
would guarantee an improved calculation speed of the classifier and the classification accuracy

of the model.

In the system of condition monitoring and fault diagnosis, the signals that are collected from the
testing equipment are usually generated as time-domain signals. While these test signals are
random and cannot directly reflect the state change of the system, it’s necessary to analyse the
test signals to find the inherent characteristics patterns useful to the model. Hence, the signal
processing techniques (Time-domain, frequency-domain, and time-frequency domain) are often
used as important tools for signal feature extraction. When dimensional parameters were
extracted from the TP10 and TP11 dataset, and feature vectors were generated. Finally, each

norm of the fault feature vector is input into model classifiers and the fault modes predictions
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and validations.

Time domain analysis is often used to estimate and calculate various time domain-based signal
parameters. However, the variables obtained cannot be sufficient to reveal relevant underlining
pattern required for the diagnostics model. Hence paved the way for frequency domain-based
analysis. Analysis in frequency domain helps to describe and reveal more signals patterns and
information that and can be disclosed or found in time domain. Although the time-domain feature
variables can effectively be applied to distinguish between the normal and the fault case, yet
frequency domain-based feature analysis reveals more inherent patterns in signals. Usually,
frequency-domain feature extraction can reflect the periodic components in the signal, that
cannot be found in time domain-based analysis. However, despite the capabilities of frequency
domain-based analysis, yet its assumption is based on stationary theory, and not applicable to
nonstationary and nonlinear signals. Hence paved the way for more improved analysis tool.
Therefore, combination of both time domain and frequency domain tools, the fault features can

be more accurately extracted. Below are the detailed signal processing-based feature analysis.

4.3.2.3 Time Domain Model:

Time domain features are usually extracted from raw signal. Statistical time-domain features
such as root means square (RMS), mean, standard deviation and variance have been extensively
used in identifying and extracting useful pattern in signals. Further, more advanced statistical-
based features such as skewness, kurtosis is also applied to raw time domain signal to extract

useful features for ML models (Caesarendra and Tjahjowidodo, 2017).
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4.3.2.3.1 Dataset

Time domain-based model is developed by extracting statistical features from restructured and
transformed dataset. The restructured dataset is produced from transformed 10 datapoints and 10
PCA components. Hence yield X_dataset with dimension (209716 X 10) for both TP10 and TP11
each as seen in Table 4.4. The corresponding targetslabels also have dimension (209716 X 1). It
can be observed from Table 4.4, that the combination of 10 datapoints and 10 PCA components
produced a model with 82.37%. Therefore, the objective here is to extract time-domain statistical
features (TDSF) from the same 10 reduced features to and use for subsequent ML modelling.

Hence, investigate the possibility of increased prediction performance accuracy from (82.37%).

4.3.2.3.2 Extracting Time Domain Statistical Features

The time domain statistical features extracted from 10 transformed components include
skewness, mean, kurtosis and standard deviation. Each original feature component produces 4
from these time domain features. Hence yield overall dataset with X_dimension (209716 X 40)
belonging to each fuel class (TP10 and TP11) respectively. The datasets are the concatenated to

form one single dataset, which will be further used in supervised ML model.

4.3.2.3.3 Normalisation:

Features normalisation is not required here since the features were already scaled prior to PCA

dimension reduction process.
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4.3.2.3.4 Modelling

Considering the overwhelming performance of ANN as seen in this study, ANN based on back
propagation gradient descent learning algorithm is used in training the model. The architecture
consists of 3 layers, i.e., input layer (40 neurons), hidden layer (20 neurons) and output layer (1
neuron). which is used for updating the weights vectors. Weights and biases in each layer have
been randomly initialised and used to compute the target output values. The learning rate is also
initiated via Sklearn with a minimal fixed value and kept constant until the convergence of the
training model. Two activations functions were used with ReLU formed both input andhidden
layer. The output layer has Sigmoid as its activation function. The dataset for the modelhas been
split into both training and test sets. Training/learning takes 80% of the dataset whilethe
remaining 20% of the dataset is assigned for testing. The training rans through 100 epoch
(iteration) and converges afterwards. The capabilities of ANN in classifying various non-linear
scenarios in the data is harnessed in this model to perform binary classification of two different
types of fuels used by gas turbine. The model is achieved 98.64% and 97.51% for training and

testing respectively.

4.3.2.3.5 Model Analysis and Performance Evaluation

It can be observed that the statistical time domain feature extraction increases the model
classification performance by 16.27% when compared with PCA based ANN model asindicated
in Table 4.11. This can be attributed to the increase in correlations and nonlinear relationship in
the dataset by time domain statistical features. Further performance investigation using
confusing matrix also indicate an increase in model’s prediction performance as depicted in

Figure 4.7.
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Table 4.11: ANN-Time-Domain Based Model Result Vs PCA_ANN Model

Model Training Test/Validation
ANN_PCA 0.8237 0.8212
ANN_TDSF 0.9864 0.9751

L4000
97.3% -3200
4132/4247
e -2400
©
3
©
<
-1600

97.7%
4048/4142

-800

Predicted

Figure 4. 7: Time Domain Based Confusion Matrix
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It can be observed from Figure 4.6 that;

e The model successfully classifies Red Diesel Fuel (TP11) accurately by up to 97.3%,

with misclassification error of only 2.7%.

e The model also predicts and classifies Normal Diesel (TP10) accurately by 97.7%, and

misclassified error of 2.3% only.

4.3.2.4 Model-B Frequency Domain Model

Frequency domain feature extraction involves transforming and decomposing periodic time-
series signal into various frequency components contained in the raw signal. Majority of real-
life signals are non-stationary in nature, which comprises of events at differentfrequencies.
To measure the occurrence of these events in specified time, signal must be decomposed
into its underline frequency bands/components. Hence, the representation of signal by its
frequency components as well as estimating all related features in frequency is usually known
frequency domain analysis. Among frequency-based feature extraction, themost commonly used
frequency domain feature is Fast Fourier Transform (FFT) especially invibration analysis of
bearing faults. However, the most effective frequency-based methodis Power Spectral Density
(PSD). Which is used to extract frequency characteristics of a signal,as well as estimating the
amount of power and energy contained in a spectrum (Sengiir, Guo and Akbulut, 2016). Hence,

PSD is used in extracting useful features for the supervised MLmodel.
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4.3.2.4.1 Dataset

The time series signals used in this case study consists of restructured 10 datapoint steps and 10
PCA components, similar to the dataset used in Section (4.3.2.1). Hence yield X_dataset with
dimension (209716 X 10) for both TP10 and TP11 each as seen in Table (4.3). Thecorresponding
targets labels also have dimension (209716 X 1). It can be observed from Table 4.3, that
the combination of 10 datapoints and 10 PCA components produced a model with 82.37%.
Therefore, the aim of this case study is to extract frequency-domain features, which would
be subsequently feed into ANN classifier. The result obtained from this model will be compared

with PCA-based, and Time-domain based models predictionperformances.

4.3.2.4.2 Extracting Frequency Domain Features

To effectively work with time series signals, transforming the long time series signals into small
windowed datapoints chunks is imperative as discussed by (Lara and Labrador, 2013).Therefore,
the fuel datasets used in this case study is split into short sub-sequences. To a achieve the dataset
transformations, a window of 180 datapoints has been rolled on each 10 signal components of
the dataset. Hence, both TP10 and TP11 datasets transformed from (209716 X 10) to (582 X 180

X 10).

Further pre-processing has been carried out to extract features from the transformed datasets.
Power Spectrum Density (PSD) has been applied to transform the time-domain based signal to
frequency-domain signal. The datapoints of 180 has been sampled at 3 seconds using 60 Hz
frequency on each signal component from both datasets. Some of the sampled transformed
dataset has been depicted in Figure 4.7. Further a PDS-based Welch algorithm has been usedto
Compute Power Spectrum Density of each signal and transform the signal into frequency- based

spectrum. Some samples of the PSD spectrum have been illustrated in Figure 4.
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Although Power spectral density function (PSD) has been used to transform the signal
components, which shows the strength of the variations(energy) as a function of frequency, yet
some frequencies does not represent the actual useful information contained in the signal. In
other words, PSD decomposes various frequencies into weak and strong frequencies. Some of
the weak frequencies contained in a signal are mere microphonics, which need to be isolated and
filtered. Presence of microphonics in a signal prompt the need to select prominent
fundamental frequency and other relevant harmonics. Consequently, there is need to transform
PSD-based data into a useful representation to extract the features that are suitableenough to train
the model for effective classification. Finding peaks in a signal is an effective way to select
fundamental frequencies in a spectrum, which distinguishes legitimate peaks andother feature like

noise. Hence selects suitable features and ignore all other irrelevant features.

As (Fahad et al., 2018) implemented, similar approach has been adopted. Hence, some useful
peaks have been detected and extracted from transform fuels spectrum signal, which
subsequently been fed into ML classier of training and prediction. Two maximum peaks are

identified and selected from each spectrum using thresholding technique, which select two

frequencies with highest intensity. Sample of the peak representation has been illustratedin
Figure 4.7. This procedure has been repeated along the entire length of both fuels’datasets. Thus,

X_dataset with (582 X 20) dimensions has been generated from each dataset (TP10 & TP11).
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180 windowed datapoints sampled @ 60 Hz for 3 Secs
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Figure 4.8: Sample Spectrum of 180 datapoint signals showing PSD and 2 Max Peaks

4.3.2.4.3 Normalisation

Features normalisation is not required here since the features were already scaled prior to PCA
dimension reduction process. Although the data has been shuffled to create more correlation with

the independent feature vectors.
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4.3.2.4.4 Model Training

Like other case studies (PCA-based & Time-domain-based), ANN architecture based on back
propagation gradient descent learning algorithm is also adopted in training the model. The
architecture consists of 3 layers, i.e., input layer (20 neurons), hidden layer (10 neurons) and
output layer (1 neuron). which is used for updating the weights vectors. Weights and biases in
each layer have been randomly initialised and used to compute the target output values. The
learning rate is also initiated via Sklearn with a minimal fixed value and kept constant until the
convergence of the training model. Two activations functions were used with ReLU formed both
input and hidden layer. The output layer has Sigmoid as its activation function. The datasetfor the
model has been split into both training and test sets. Training/learning takes 80% of thedataset
while the remaining 20% of the dataset is assigned for testing. The training has been initiated
and converged after 700 epoch (iteration) cycles. The model achieved an impressive result

(98.87% & 98.07%) is obtained for training and validation respectively.

4.3.2.4.5 Model Analysis and Performance Evaluation

It can be observed from both training and validation results obtained; the frequency- domain

based feature extraction increases the model classification performance. As indicated

in Table 4.12, the Frequency Domain Based ANN Model (ANN_FDM) outperformed the
previous PCA and Statistical Time-domain based ANN models. The by 16.27% when compared
with PCA based ANN model as indicated in Table 4.1. This can be attributed tothe increase in
correlations and nonlinear relationship in the dataset by time domain statisticalfeatures. Further
performance investigation using confusing matrix also indicate an increase inmodel’s prediction

performance as depicted in Figure 4.9.
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Table 4.12: ANN-Time Frequency Domain compared with Time Domain & PCA Models

Model Training Test/Validation
ANN_PCA 0.8237 0.8212
ANN_TDSF 0.9864 0.9751
ANN_FDM 0.9871 0.9807

Further, the model’s prediction accuracy has been improved when compared with other

previous models. It can be observed from Figure 4.9;

o The ANN_FDM model impressively classifies Red Diesel Fuel(TP11) with

98.3% prediction accuracy, and low misclassification error of only 1.7%.

o The model also achieved higher prediction accuracy (99.1%) when classifying

Normal Diesel (TP10), with little misclassified error of 0.9% only.
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Figure 4.9: Confusion Matrix for Frequency-Domain ANN Model

4.3.2.5 Time-Frequency Domain Model

The idea behind time frequency domain is to provide true time-frequency representation of the
signal. Time frequency analysis identifies the signal frequency components and reveals their time
variant features. Perhaps effective feature extraction tool for machinery diagnosticsinformation

(Feng et al., 2013).

Time frequency analysis is suitably used technique to extract features from non-stationary or

transient signals in addition to static non-stationary signals. The process involves mapping

out one-dimensional function of time domain signal to a two-dimensional function of both time
and frequency. This enables good representation of signal in both time and frequency. Hence
provides more information on how signal is localised in both time and frequencies, which

provide more greater insight into the nature of information carried by the signal.

The techniques used in time frequency analysis involves Short-Time Fourier Transform
(STFT), Wavelet Transform (WT), Wigner-Ville Distribution among other. Among them, WT

is the most common and effective technique used for extracting useful features from signals.
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Wavelet Transform algorithms such as continues wavelet transform (Scalogram) are effective
in feature detection and pattern matching. They are normally designed as gaussian (Kernel)
that convolve along time series signal to search for specific features embedded in a time series
signal and extract them. Various decomposed signal coefficients are be obtained, which
resulted from scaling and translating the signal into various scales depending on the
requirements of the decomposition level. Thus, wavelet transform is used as feature extraction

tool in this case study.

4.3.2.5.1 Dataset:

Similar 10 components PCA dataset (209716 X 10) used in previous case studies has been
applied here. Likewise, a three seconds window with 60Hz frequency is used to split
both dataset components into small sequences of 180 sampled datapoints signal. Hence
transforming each fuel dataset to (582 X180 X 10), with corresponding class labels (522
X1) from each dataset where 0 representing Red Diesel TP11 and 1 representing

Normal_Diesel_TP10 fuels respectively.

4.3.2.5.2 Feature Extraction

Wavelet transform feature extraction procedure differs with FFT. Perhaps, while the latter
presents extracted features in 1-dimension, the former transforms 1-dimension raw signals into2-
dimension scalogram. The scalogram offers more detailed information about the state spaceof
the system dynamic behaviour. Morlet Continues Wavelet Transform is used in this case study
to generate scalogram from both dataset signalcomponents. The scalogram is viable feature
extraction tool, effectively givesdynamic behaviour of the system. In addition, it distinguishes
different types of signals produced by the system. Hence makes it perfect feature extraction tool

for supervised learningclassification problems.
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Looking at the scalograms, two classes of fuels can be distinguishable, due to the nature and
different pattern orientations present in the signals as depicted in Figure 4.10-4.13. It can be
observed that the dynamic pattern in two different scalogram samples belonging to both TP11
and TP10 fuels differs. Hence, with such variation in patterns, both classes can be classified
accordingly. However, the classification cannot be undertaken manually. Perhapsone way to
automate this classification process that involves that resemble images is to build aConvolutional
Neural Networks (CNN). The algorithm is capable in detecting the classes of each scalograms

(fuels) through robust patterns detection and classify them accordingly.

Since each dataset consists of 10 components, the CWT is applied 10 times on each signal (180
datapoint short sequence windowed signal). Therefore, the CWT generate 582 scalograms from
10 components belonging to each dataset class, with the dimension (582X 10) belonging to both
(TP10 and TP11) and resolution of (180X180) for each scalogram. Hence the overall dimension
of (582 X 180 X 180 X 10) belonging to each class of fuel respectively. The scalogram from
each signal are stalked on top of each other to form a single image with 10 channels. Perhaps,
ideal image has either 1-channel (grey image) or 3-channels(RGB image). However, since CNN
is used in the modelling, it can handle multichannel images (10 in this case). It shall be noted that
the working principle is thesame with conventional CNN with (1 or 3) channels. The only
difference is the requirements ofaddition more filters when compared to the conventional CNN.

The two-fuel dataset are concatenated and split into both training and test sets.
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Figure 4. 10: Sample of Raw TP10 180 Datapoint signal
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Figure 4.11: Scalogram of TP10 sampled signal

146



Raw Time series Signal TP11

o 021
©
=
= 0.0 A
Q.
§ —0.2 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Secs)
Figure 4. 12: Sampled TP11 for 180 Datapoints Signal sample @ 60Hz for 3 Secs
Continuous Wavelet Transform Amplitude Spectrum
2.00
05 1.75
1.50
= 10
= 1255
0
s 13 1.00 %
= Q
g 075 °
&L 2.0 ;
0.50
2.5
0.25
3.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (Secs)

Figure 4. 13: Scalogram for TP11 sampled 180 Datapoints signal

4.2.3.5.3 Modelling & Training

Keras based CNN architecture has been developed to train the model. The model consists 0f3
distinct layers (Convolution, pooling and flatten). The convolutional layer extract features from

the input image, by preserving the spatial relationship between pixels (information) by
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learning the image features. 3X3 convolutional kernel is chosen with single stride to detect
features from the input images (stalked scalograms). Hence, produces feature maps. The
subsampling or down sampling of the feature maps reduces the dimensionality of each feature
map. This process is achieved by pooling layer. Max pooling is the most effective and is usedin
this case study. A 2X2 kernel with double stride is employed to take the maximum numberin
each window kernel when convolved with convoluted feature maps, hence reduces the sizeof
feature maps. The pooled layer is then flattened, i.e. converted into a linear array to make the
layer suitable to be fed into Neural Networks. Hence, 128 neurons are chosen for
flattening, which are stretched linearly and flattened, ready to be fit into Neural Networks (NN).
This is proceeded with fully connection with NN, which are subsequentcomplied into the
network for training. Relu activation functions has been chosen in the hiddenlayer to enhance
correlation and linear relationship between neurons, while the Sigmoidactivation function
is used for the final binary classification process. Batch training is conducted and after 25 epochs,

the training converges.

4.3.2.5.4 Model Analysis and Performance Evaluation.

The model achieved 61% training accuracy and 58% validation accuracy. Although this is lower
performance when compared with previous models. However, the reduced performance can be
attributed to the requirements of CNN to have as many data as possible, in order to learnmore
pattern relationship from pixels. Recently, Deep learning Scientists identified mechanisms
to enhances training performance of deep learning models that suffers from scantly training

data. Most prominent among them is Data Augmentation.
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4.3.2.5.5 Data Augmentation

To obtain robust and effective CNN model, Data Augmentation is employed to enhances
models’ performances in a circumstance when the training images are scantly. Hence, some new
novel images can be added to the dataset. Augmentation process makes some minor changes
to the existing datasets. The alterations involve flipping, rotating, or translating the existing
images. Hence, increases the amount of the training dataset and improves the model’s
performance. Although the process of Data Augmentation is new concept in the deep learning
field, but it has a lot of promising outcomes in improving the model performances. Thus, Data
Augmentation is considered as further work to be carried out in the subsequent PhD research work

to improve the performanceof novel proposed Hybrid Autoencoder-CNN-RNN based model.

4.3.3 Deep Learning Model

4.3.3.1 Introduction

Basically, Deep learning is a subset of both Artificial intelligence and machine learning. It
involves introduction of more additional multiple layers to the models to process features. In
deep learning networks, each layer extract valuable information, and each node is trained on
distinct set of features based on previous layers output. In short, the further advances are made
into the network, then more complex the nature of feature or nodes can be recognised, with the
continuous aggregation and recombination of features from the previous layer. This is a special
type of feature extraction which is known as Feature Hierarchy. As the hierarchy increases, the

complexity and abstraction increase, and more information couldbe extracted.
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Various algorithms for deep learning such as Deep Neural Networks, Restricted Boltzmann
Machine, CNN, Recurrent Neural Networks (RNN)and Auto Encoders amongothers are
available in the literature and have been used on different purposes. However, sincethis case
study dealt with time series data, the most suitable algorithm to dealt with time seriesdata is RNN.
Although RNN algorithm works effectively with time series data, yet its prone tosome limitations
which constrained its viability to datasets with short term dependencies. It’s also prone to
Exploding gradient and vanishing gradient problems. Therefore, more improvedalgorithm is
introduced to handle time series data more robustly. Thus, RNN-based Long-ShortTime Memory
(LSTM) algorithm is developed to and has been producing good result from many time series
based deep learning case studies. On that basis, LSTM is employed in this case study to classify

two classes of fuels based on their measured time series features obtained.

4.3.3.2 Objectives

Essentially, implementing deep learning model lies on harnessing its capabilities on both,
Correlations and Reduction. Deep learning extracts information that is similar to one another,
while getting rid of irrelevant information. The relevant information is retained across the layers
while discarding the irrelevant one. Thus, increases correlation in a data whilst reduces the data
dimensionality. These functionalities make deep learning a robust tool for extracting useful
information even from both structured and unstructured dataset. Further, its capabilities involve
extracting features automatically without human intervention. This is achieved by combining
lower-level features to form more abstract, higher level representing property classifications or
feature representation of data. When compared with the previous models studied, the major
difference between deep learning and traditional pattern recognition methods is that deep
learning automatically learns features from big data, instead of adopting handcrafted features.
Further implementation of deep learning model when benchmarked with the previous models

implemented, could leads to;
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e More accuracy improvements.
e Reduction of Overfitting risk.

e Speeding up in training.

e Improved Data Visualization.

e Increase in model’s functionality.

4.3.3.3 Dataset

Similar 10 components PCA dataset (209716 X 10) used in previous case studies has been
applied here. Likewise, a three second window with 60Hz frequency is used to split both dataset
components into small sequences of 180 sampled datapoints signal. Hence transformingeach fuel
dataset to (582 X180 X 10), with corresponding class labels (522 X1) from each dataset where 0

representing Red_Diesel_TP11 and 1 representing Normal_Diesel_TP10 fuelsrespectively.

4.3.3.4 Feature Extraction

As explained, deep learning algorithms are good feature extraction tools. Perhaps, robustly
extract features automatically from the data, unlike conventional signal processing techniques
considered earlier. Therefore, no further feature extraction would be considered in this case
study. The algorithm will automatically learn from relevant features and discard the irrelevant
features. Another factor to be considered here is the requirement of LSTM architectureregarding
the input data structure. Since LSTM dealt with sequences of event that varied withtime steps
sequences per samples, the algorithm required breaking of each long time series signals into
sequence of events (windowed samples in a specific time steps). Interestingly, thedata prepared
is already in the required format (Observation signal, time steps, signal component). Hence the

dimension (582 X 180 X 10) from each dataset (TP10 & TP11) that fitthe LSTM input data
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requirement. Further, both datasets are concatenated to form (1164 X 180X 10) as X-input data,

with (1164 X 1) as labels representing both fuel classes (0 for TP11 and1 for TP10).

4.3.3.5 Normalisation

LSTM algorithms are sensitive to the scale of the input data, especially when the sigmoid
(default) or tanh activation functions are used. Therefore, it’s a good practice to rescale the datato
the range of 0-to-1. However, the data has already bee normalised whilst reducing the
dimensionality of the original dataset earlier. Hence, normalisation is not requiredhere.
Yet both datasets are shuffled and split into training and test/validation datasets. 70% of the data

is dedicated for training and 30% are reserved for testing.

4.3.3.6 Model Architecture and Training

LSTM usually learns by making certain modification to the information that has been passed
into it, through simple addition and multiplication. The information flows across LSTM
architecture through a mechanism known as cell states (Xt 1, Xt, and Xt+1) as illustrated in
Figure (4.14). Thus, at any instance, the LSTM can select what to remember and what to forget.

These three states dependencies can be described as;

e The previous state ((Xt1): refers to information being present in the memory after the

previous time steps.

e The previous hidden state ((Xt+1): refers to output of the previous cell.

e The input at the current time step (X): refers to the new information being fed into that

instance of time.
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Figure 4. 14: LSTM Network Architecture (Nicholas et al., 2018)

The LSTM model developed in this case study is based on Keras architecture, consisting of 4
layers (input, 2 hidden and output). The input layer receives the input data, while the 2 hidden
layers extracts feature from the data. Finally, the dense fully connected layer is used to make
prediction. Stochastic gradient descent optimiser (Adam version) is used to optimise the network.
A dropout regularisation is also used in both hidden layers to reduce over fitting the model to
training. The binary cross-entropy function is used as loss function. The training commences and
converges after 500 epoch (iteration) cycles. The model achieved good, impressive result

(99.89% & 99.21%) for training and validation respectively.
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4.3.3.7 Model Analysis and Performance Evaluation

LSTM algorithm has proven its capabilities as good feature extraction tool and high performing
supervised learning model, considering the result obtained here. As indicatedin Table 4.13,
the Frequency Domain Based ANN Model (ANN_FDM) outperformed the previous PCA and
Statistical Time-domain based ANN models. However, LSTM almost achieve 100% prediction

accuracy as indicated in Figure 4.15.

Table 4.13: Deep Learning LSTM Model compared with PCA & Signal Processing Models

Model Training Test/Validation
ANN_PCA 0.8237 0.8212
ANN TDSP 0.9864 0.9751
ANN_FDM 0.9871 0.9807

LSTM 0.9989 0.9921

CNN 0.6100 0.5800

Further, the model’s prediction accuracy has been improved when compared with other

previous models. It can be observed from Figure 14.5;

e The LSTM model impressively classifies Red Diesel Fuel(TP11) with 100%

prediction accuracy, and no misclassification error.

o The model also achieved higher prediction accuracy (99.2%) when classifying Normal
Diesel (TP10), with little misclassified error of 2% only.
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4.4 Discussion

From Figure 4.15, it can be observed that all the models except for time-frequency based model
achieved more than 90% training and validation accuracies. This can be associated withthe
enhanced procedures applied to extract good features for the classification modelling. By virtue
of ranking, LSTM scored the highest performance with 99.89% and 99.21% training and
validation accuracies. Likewise, signal processing played a vital role in extracting good features
for the model especially when comparing PCA and both time domain and frequency domain
models performances. Dimensionality reduction is also an essential process in feature
engineering and PCA play a vital role in reducing the redundant information from the dataset.
Another important technique employed is the early restructuring the entire dataset some
datapoints were lined in horizontal manner end to end as explained earlier. This procedure
increases some correlation among the feature vector and as such give a better presentation of

target dataset labels.
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With the good performances obtained it can conclude that the models successfully classify two
classes of fuels and predict fuels categories from unlabelled dataset, with high accuracy as
indicated in the confusion matrixes obtained. Although the Time domain-based model has some
lower performance accuracy when compared with other models. solution has been proposed

(Data Augmentation) to enhances training data quality.

Scores by Each Model in 100%

Accuracy
I I I I- Va"datlon

Time_Dom  Freq_Dom Time_Freq

Figure 4. 16: Models Performance comparison
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4.5 Summary and Conclusion

Identifying constraint in using physics-based simulated data to build model for gas turbine
diagnostics condition monitoring, prompted the need to utilise the experimental data to build
suitable gas turbine diagnostics model. The Dataset generated by gas turbine testing facility at
Sheffield Low Carbon Energy Centre, UK, proved useful in building various gas turbine CBM
models. Different machine learning models where developed and benchmarked against their

performances and prediction accuracies.

The capabilities of feature extraction tools were tested and proved helpful in adding more
prediction accuracies. In short, PCA and signal processing-based techniques have significantly
added more correlations to the dataset and influences the prediction results obtained. Signal
processing played a vital role in extracting good features for the model especially when
comparing PCA. Further, quest for more prediction accuracies leads to the implementation of
deep learning-based technique. As such by virtue of ranking, deep learning-based LSTM model

achieved the highest performance with 99.89% and 99.21% training andvalidation accuracies.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis investigated novel methodologies for modelling aeroderivative gas turbine fault
diagnosis using artificial intelligence techniques. Findings obtained from this study could help
in designing new approaches towards operating gas turbines especially in offshore liquefied
Natural Gas (LNG) facilities. Further it will pave the new way to design gas turbine that are more
suitable to offshore environment. Likewise, the design of the engine could be improved to

develop more efficient, reliable, and durable gas turbines to adopt harsh offshore environments.

In the field of modelling and simulation, two different types of gas turbines were modelled and
simulated using both Simulink and neural network-based models. Simulated and operational data
sets were employed to demonstrate the capability of neural networks in capturing complex
nonlinear dynamics of gas turbines, especially when enough information about physics of the

system is not available.

This thesis identified Aeroderivative Gas Turbine as the most critical asset in floating LNG
applications. Failure investigation of such critical equipment requires more research attention.
Various maintenance approaches were studied to dealt with failure of rotation machineries.
However, condition-based maintenance is considered as the most effective maintenance strategy
to maintain critical process equipment. Hence, CBM will be considered in detecting and

predicting faults in Aeroderivative gas turbines.
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Generally, it was concluded from this thesis that despite of some constraints regarding utilisation
of physics-based model to implement gas turbine’s CBM, data-based driven Al models

developed demonstrated a strong potential in predicting gas turbines failures.

This thesis has made the following contributions the area of predictive maintenance modelling

of aeroderivative gas turbines:

This thesis presented a comprehensive literature review in the field of predictive maintenance of
aeroderivative gas turbines [Chapter 2]. It covers the general concepts and design of an
aeroderivative gas turbines, gas turbine maintenance in LNG process. The chapter explored the
limitations of conventional-based maintenance practice in the oil and gas industry and
recommends condition-based maintenance as the most suitable for aeroderivative gas turbine
used for FLNG process. The chapter concluded with brief structural modelling architecture of

aeroderivative gas turbine’s Condition Based-Maintenance.

The thesis discussed modelling and simulations of gas turbines briefly discuses modelling and
simulations of gas turbines [Chapter 3]. Various challenges and significance of gas turbine model
in LNG process were covered. Both white-box and black-box gas turbine models were treated,
with brief introduction of grey-box gas turbines models. The theories and fundamentals for gas
turbines modelling based on white-box model have been covered. The chapter concluded by
establishing a case study for modelling and simulation of gas turbines. A Simulink gas turbine
model was constructed based on the thermodynamic and energy balance equations in MATLAB
environment, and the output responses were recorded for further PdM studies. Although the
dataset obtained have not been utilised in the diagnostics modelling, yet the promising potentials
of utilising physics-based modelling in gas turbine diagnostics studies was demonstrated.

This thesis developed a data driven-based model for gas turbine diagnostics [Chapter 4]. An
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experimental time series dataset is used to classify anomalies associated with gas turbine’s
exposure to different fuels. Feature extraction tools such as PCA-based and signal processing-
based were used to prepare the dataset, which reduced its dimensionality and extracted good
features for gas turbine diagnostics modelling. A model based on neural network was developed
further to classify the gas turbine engine anomalies. Signal processing techniques has been
very useful tools in extracting good featuresfor classification modelling. Although, several
research works highlighted some setback of signal processing-based feature extraction
techniques, such as human errors, noise and limitation in dealing with big data. To address these
setbacks, researchers propose deep learning models as viable feature extraction tools, especially
give its capabilities in learning features automatically from data patterns. To find the best model
for gas turbine diagnostics with high performance and prediction accuracy, Deep learning-based
LSTM model was developed. The overall models were tested and validated against unseen

dataset, and performances of the models are compared.

5.2 Future Work

The importance of PdM on critical asset of FLNG process (aeroderivative gas turbine) have been
extensively explored by this thesis. Modelling PdM for aeroderivative gas turbine can be
achieved through a wide range of research activities. Both white box and black box approaches

shows promising potentials in failure prediction and remaining useful life investigation.

Given the scope, results obtained by this thesis, and the limitations; the future efforts and

upcoming research outputs in this area can be highlighted as follow:

e White box physics-based gas turbine model was constrained to be deployed for PdM
studies in this thesis, due to lack of essential information. However, various
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methodologies could be employed to simulate transient behaviours and incipient faults
characteristics in gas aeroderivative gas turbine engine. The simulated dataset obtained

can be used for an optimum PdM studies.

The thesis clearly identified fault, as purely classification task, and can be effectively
solved using Artificial Intelligence-based data-driven techniques. This thesis used
stand-alone Al based models to predict gas turbines failures. However, whilst the
models developed achieved very impressive prediction performances, many researchers
are still searching for solutions that provides better results. This prompt the proposal of
integrated Al models, that combine the capabilities of each stand-alone model,
especially with the limitations of stand-alone models in detecting fault with non-linear
characteristics in gas turbines. Therefore, more robust modelling algorithms are
required that integrate good feature extraction and enhanced pattern recognition
capabilities. This prompt the need for further improvement towards developing good
models with satisfactory prediction accuracies and good classification results. Thus, a
novel hybrid model could be developed with the specific target to solve various
limitations of stand- alone models and improve the accuracy of gas turbine fault

detections.

More value could be added in this area through upcoming research outputs. Therefore,
future efforts could be tailored towards obtaining the dataset with desired fault

characteristics and employing algorithms with good predictions capabilities.
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