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Abstract  

All shallow water hydro-sediment-morphodynamic (SHSM) models are prone to uncertainty 

arising from inadequate representation of the underlying physics and error in input 

parameters. At the time of writing, most SHSM models solve deterministic problems, whilst 

studies of uncertainty quantification in SHSM models remain rare. Here a new stochastic 

SHSM model is proposed, extended from a well-balanced, operator-splitting-based, 

generalized polynomial chaos stochastic Galerkin (gPC-SG) solver of the one-dimensional 

shallow water hydrodynamic equations. A series of probabilistic numerical tests are carried 

out, corresponding to idealized test of dam break flow over a fixed bed and laboratory 

experiments of flow-sediment-bed evolutions induced by a sudden dam break and by 

landslide dam failure. The proposed modelling framework shows promise for uncertainty 

quantification of shallow water-sediment flows over erodible beds.  

 

Keywords: uncertainty quantification; shallow water hydro-sediment-morphodynamic model; 

operator-splitting; generalized polynomial chaos; stochastic Galerkin method  
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1. Introduction 

Shallow free surface water-sediment flows are key drivers of mass transport and 

morphological evolution on Earth. Surface hydro-sediment-morphodynamics processes 

include general fluvial sediment-laden flows and geophysical mass flows such as debris flows, 

landslides, and turbidity currents. Mathematical modelling has become one of the most 

proactive approaches to enhancing our understanding of shallow water-sediment flows over 

the past half-century [1]. Whereas fully three-dimensional models may facilitate very detailed 

resolution of such processes [2-4], such models incur excessively high computing overheads 

and thus may not be practicable for large-scale prototype engineering applications. Instead, 

shallow water hydro-sediment-morphodynamic (SHSM) models have witnessed significant 

developments over the last two decades, featuring a sensible balance between theoretical 

integrity and practical applicability, including depth-averaged quasi single-phase and 

two-phase models (e.g., [5-13]) as well as double layer-averaged quasi single-phase and 

two-phase models (e.g., [14-19]). Unlike traditional shallow water hydrodynamic equations 

for clear water flows [20], the SHSM equations explicitly accommodate interactions between 

flow, sediment transport, and bed evolution.  

In principle, SHSM model equations are a system of nonlinear hyperbolic equations built 

upon fundamental mass and momentum conservation laws. Inevitably, SHSM models 

propagate uncertainty arising from incomplete knowledge of the underlying physics and error 

in physical input parameters. For example, parameter uncertainty can enter the system via 

initial and boundary conditions, such as measurement errors in topography and inflow 

discharge, choice of friction coefficient, selection of empirical parameters used in sediment 
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transport estimation. Although many SHSM model studies have been undertaken (e.g., 

[5-19]), they almost exclusively concern deterministic problems. Even though existing SHSM 

models are able to achieve quantitative matches between predictions and observations, their 

developments and applications hinge upon the user’s ability to assign accurate numerical 

values to various parameters in the governing equations. To fully understand the computed 

results and subsequently the underlying physics, it is therefore imperative to incorporate 

uncertainty from the onset of the simulations and not as an afterthought [21]. However, to 

date, there has been a lack of studies on uncertainty quantification of SHSM equations.  

Uncertainty quantification (UQ) is not new in the broad field of partial differential 

equations (PDEs). Substantial effort has been devoted to applying polynomial chaos or 

generalized polynomial chaos (gPC) expansions as basis functions to represent random space 

[22-24]. They offer good alternatives to statistical methods for uncertainty quantification such 

as Monte-Carlo simulations and their variants, by substantially reducing or eliminating the 

need for repetitive sampling [21]. Non-intrusive polynomial chaos methods repeatedly 

sample a deterministic model with different input values, and then use the numerical outputs 

to construct a stochastic solution based on interpolation and quadrature rules [23, 25]. 

Intrusive methods make a Galerkin projection in stochastic space to produce a system of 

deterministic equations, which are solved in a single model run to obtain the stochastic 

moments of the solution of the original uncertain problem. In a comparison of intrusive and 

non-intrusive approaches for the diffusion equation with random inputs [26], it has been 

found that the intrusive stochastic Galerkin method incurred a lower computational cost. 

Furthermore, the stochastic Galerkin method has inherent theoretical advantages due to its 
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basis in a Galerkin framework.  

Existing generalized polynomial chaos stochastic Galerkin (gPC-SG) methods have been 

successfully applied to many physical and engineering problems, including diffusion [27], 

gas dynamics [28, 29], disperse two-phase flow [30], and shallow water hydrodynamics [31, 

32], where spectral convergence was obtained when the underlying solution was sufficiently 

smooth. However, application of the gPC-SG approach to nonlinear hyperbolic systems of 

conservation laws faces the major challenge of loss of global hyperbolicity [33]. For linear 

hyperbolic systems and scalar hyperbolic conservation laws, the gPC-SG approximation 

yields a system of gPC coefficients that is always hyperbolic; thus gPC-SG methods are 

available for uncertainty quantification of such equations [24]. Also, if the original system is 

symmetric, such as the Hamilton-Jacobi equation [34], the gPC-SG approximation remains 

hyperbolic. However, when gPC-SG methods are applied to general nonlinear 

(non-symmetric) hyperbolic systems, the resulting system of gPC coefficients is not 

necessarily globally hyperbolic because its Jacobian matrices may generate complex 

eigenvalues. This phenomenon is somewhat similar to hyperbolicity loss in Grad’s 

thirteen-moment closure of the Boltzmann equation [35]. Consequently, extra effort is 

required to ensure system remain well-behaved. One approach is to use gPC approximations 

for entropic variables [36]. Specifically, in bijection with conservative variables, the new 

entropic variables are introduced by solving a minimization problem at every mesh point and 

time step; however, this would be computationally expensive for large-scale problems. 

Another alternative approach is to use Roe variables [37], but this is restricted to systems that 

admit Roe linearization. Moreover, switching is required between the Roe and original 
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variables at every grid point and time step, which involves solving nonlinear algebraic 

equations using a trust-region-dogleg algorithm.  

Recently, an operator-splitting stochastic Galerkin method was proposed for the Euler 

equations for gas dynamics subject to uncertainty [38], and a well-balanced version 

developed for the shallow water hydrodynamic equations without bed friction [39]. The main 

idea behind this method is to split the underlying hyperbolic system into a linear hyperbolic 

system and linear or nonlinear scalar equations with variable coefficients and source terms, 

for which the gPC-SG method obtains globally hyperbolic discretization. Subsequently, the 

gPC-SG method is applied to each of the subproblems, resulting in a hyperbolic system of 

gPC coefficients. In the gPC-SG method, the underlying system is solved in terms of 

orthogonal polynomial series [24, 40], whose coefficients satisfy deterministic systems of 

time-dependent PDEs. Given that the gPC-SG system of equations for the coefficients is 

guaranteed hyperbolic, it can be numerically solved by a finite-volume Godunov-type 

shock-capturing method that is capable of capturing subcritical, supercritical, and transcritical 

flows.  

This paper presents a well-balanced, operator-splitting, stochastic Galerkin model of the 

one-dimensional (1D) shallow water hydro-sediment-morphodynamic equations with 

uncertainty. The model extends the solver devised by Chertock et al. [39] for frictionless clear 

water flow to frictional shallow water-sediment flow over an erodible bed. Unlike Chertock 

et al. [39] who employed a well-balanced second-order semi-discrete central-upwind scheme, 

we use a stochastic reformulation of a well-balanced scheme that utilises a surface gradient 

method (SGM) version of the finite volume Slope LImiter Centred (SLIC) scheme. 
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Probabilistic benchmark tests verify the resulting stochastic model for wave propagation 

triggered by idealized dam break over a fixed bed [39] and flow-sediment-bed evolutions 

driven by a sudden dam break [14] and by landslide dam failure [41].  

To the authors’ knowledge, this is the first attempt towards modelling probabilistic 

shallow water-sediment flows over an erodible bed in a stochastic Galerkin setting. The 

present study does not aim to address numerical difficulties in handling discontinuities in 

random space using the gPC approximation, which may trigger the Gibbs phenomenon. In 

fact, such challenges can be addressed by machine learning to track discontinuities [42], 

adaptive level set methods for discontinuity detection [43], and adaptive minimum spanning 

tree multielement methods combined with vector machines for discontinuity identification 

[44].  

2. Deterministic SHSM model 

2.1. Governing equations  

Consider longitudinal one-dimensional shallow water-sediment flow over an erodible 

bed composed of uniform, non-cohesive sediment of particle diameter sd . The governing 

shallow water hydro-sediment-morphodynamic equations can be derived by directly applying 

the Reynolds transport theorem in fluid dynamics [45], and include mass and momentum 

conservation equations for the water-sediment mixture and separate mass conservation 

equations for sediment and bed material. The resulting system of equations can be expressed 

in standard, well-structured conservation form as follows [6]:  

( )
b f

t x

 
  

 

U F U
S S                             (1) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 

 

in which 
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hc

 
 


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U , 2 20.5 ( 2 )b

q

hu g z

huc
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 

  
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0

0

b
b

z
g

x


 
 


  

 
 
 

S , 

0

( )f N

E D

 
 


 
  

S U                        (2c, d) 

2

0
( ) ( )( )

( )
2 (1 )

s fb
gh E D uc

N
x p

   

  

  
   

 
U                  (2e) 

and 

1

bz E D

t p

 
 

 
                                (3) 

where U  represents the vector of conservative dependent variables; F  is the vector of flux 

variables; bS  is the vector of bed gradient terms; fS  is the vector of other terms including 

friction and effects from mass exchange with the bed; t  is time, x  is streamwise 

coordinate; g  is gravitational acceleration; h  is the depth of the water-sediment mixture, 

bz  is the bed elevation, bh z    is the free-surface elevation above the bed; u  is the 

depth-averaged velocity of the water-sediment mixture in the streamwise ( x ) direction; c  

is the depth-averaged volumetric sediment concentration; f  and s  are the pure densities 

of the water and sediment phases; (1 )s fc c      is the density of the water-sediment 

mixture; 0 (1 )s fp p      is the density of the bed material; p  is the bed sediment 

porosity, and thus 1 p  is the volumetric sediment concentration of the stationary bed; b  

is the bottom shear stress for the water-sediment mixture; and E  and D  are the 
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size-specific sediment entrainment and deposition fluxes.  

 

2.2. Model closures  

To close the governing equations, relationships must be introduced to determine shear 

stresses and sediment exchange fluxes.  

In general, the boundary resistances of unsteady and non-uniform flows are substantially 

different from those of steady and uniform flows. When sediment transport is also involved, 

boundary resistance alters as the flow geometry evolves dynamically. However, to date, there 

are no generally applicable relationships available to represent boundary resistances for 

shallow water-sediment flows. Empiricism and uncertainty in estimation of bed shear stress 

are common to all models of shallow water-sediment flows. Here, we use the Manning 

resistance relationship originally developed for steady, uniform flow to determine the bed 

shear stress from  

2 2

4 3b

n u
gh

h
                                (4) 

where n  is the Manning roughness parameter.  

Two distinct primary mechanisms promote sediment exchange between the flow and the 

bed: bed sediment entrainment due to turbulence; and sediment deposition by gravitational 

action. Sediment particle-particle interactions may also modify such exchange processes. 

Although computational models of sediment transport and morphological evolution depend 

on accurate determination of entrainment and deposition fluxes, current formulations hinge 
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upon a series of premises. Here, we follow the conventional practice in fluvial hydraulics [1], 

and estimate the deposition flux from the local near-bed sediment concentration and settling 

velocity. To specify the entrainment fluxes, we follow a widely used approach that assumes 

entrainment occurs at the same rate as in the capacity regime, whereby the entrainment flux is 

equal to the deposition flux, and computed from the near-bed sediment concentration at 

capacity and settling velocity. Accordingly, the entrainment and deposition fluxes are 

estimated from  

eE c  and D c                        (5a, b) 

where   is the settling velocity of the particle grain calculated using Zhang’s formula [46],  

2(13.95 ) 1.09 13.95
f f

s

s s

sgd
d d

  
                       (6) 

where f  is the kinematic viscosity of the fluid phase; s  is the specific gravity of 

sediment ( )s f f     ;   is an empirical parameter representing the difference 

between near-bed sediment concentration bc  and depth-averaged sediment concentration c . 

Here,   is a unified constant estimated by calibration tests during model set up [8]. 

Sediment concentration ec  at capacity is  

( )e bc q hu                             (7a) 

where bq  is the transport rate at capacity regime, which is calculated by the Wu formula [1] 

as follows 

2.2 1.74

1.5

3
0.0053 ( ) 1 0.0000262 ( 1)b b

c cs

q n u

nsgd

 

  

   
      

   
          (7b) 

where   is a modification coefficient; 1 6

,50 20sn d   is the Manning roughness 
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corresponding to grain resistance;   is shear stress imposed by channel cross-section bed 

and walls; c  is the critical shear stress for incipient motion of bed material, approximated 

by 0.03( )c s f sgd    . Eq. (5a) is applicable when there is sufficient sediment supply 

from the bed. Otherwise, the sediment entrainment flux vanishes where the bed comprises 

rigid material (e.g., steel or concrete) and is locally non-erodible.  

 

2.3. A splitting operator  

As bed deformation is entirely determined by local entrainment and deposition fluxes 

under the non-capacity framework for sediment transport, Eq. (3) is separated from the 

remaining equations and can be readily solved. Following Chertock et al. [39], we split the 

governing equation system (1) into the following two subsystems  

I ( )
0

t x

 
 

 

U F U
                           (8a) 

and 

II ( )
b f

t x

 
  

 

U F U
S S                        (8b) 

in which 

s

q

h

 
 


 
  

U , I 2

s

q

a

q



 
 


 
  

F , II 2 2

0

0.5 ( 2 )

0

bg z a   

 
 

   
 
  

F        (8c, 8d, e) 

where q hu  is the discharge; sh hc  is the equivalent thickness of the sediment phase; 

s sq h u  is the sediment discharge; 2 2hu q h   . 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 

 

Assuming ( )x,tU  is available at time t , let IS  and IIS  denote the solution operators 

for the subsystem (8a) and (8b), respectively. Then, an approximate solution at the next time 

level t t  can be obtained by using the following operator splitting method: 

III( ) ( ) ( ) ( )x,t + t t t x,t   U US S                     (9) 

For a practical implementation, one needs to choose a proper splitting time step t  and 

replace the solution operators, IS  and IIS  in Eq. (9) with their finite volume discretizations, 

which will be described in detail in Section 2.4. 

The first subsystem (8a) is a linear hyperbolic system whose Jacobian has three distinct 

real eigenvalues 1, 2 a    and 3 u  , where the parameter a  > 0 is chosen to satisfy the 

following sub-characteristic condition:  

a u gh u gh a                              (10) 

The second system (8b) is essentially a scalar Burgers equation for q  with variable 

coefficient and source term, given that   and sh  remain constant in time in Eq. (8b). 

Furthermore, the value of a  is set larger than the characteristic speed related to the second 

equation of the second subsystem (8b), such that  

 sup max( , 2 )a u gh u                        (11) 

It is straightforward to check that under the sub-characteristic condition (10), each subsystem 

is strictly hyperbolic. Therefore, after applying the gPC-SG approximation, each subsystem is 

globally hyperbolic for the gPC coefficients.  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

2.4. Numerical algorithm 

A well-balanced numerical algorithm presented in Qian et al. [8] is adapted to solve 

system Eq. (8). Briefly, within the framework of finite volume SLIC scheme [20], a SGM is 

incorporated to achieve a well-balanced solution to the governing equations. Applying an 

explicit finite volume discretization [20] along with a second-order Runge-Kutta (RK) 

method for the source term fS , one has  

* I I

1 2 1 2

n

i i i i

t

x
 


    

U U F F                          (12a) 

† II II

1 2 1 2 ,i i i i b i

t
t

x



 


      

U U F F S                       (12b) 

and 

1 †n RK

i i ft  U U S                             (12c) 

where t  is the time step; x  is the spatial step; subscript i  denotes the spatial node 

index; superscript n  denotes the time step index; superscript *  indicates the state after 

calculating the variables from Eq. (12a), superscript †  denotes the state after Eq. (12b); and 

I II

1 2

or

iF  and I II

1 2

or

iF  represent the inter-cell numerical fluxes. 

The bed slope source term biS  is discretized with a centered difference scheme [8] 

because it is well-balanced with the flux gradients.  

1 2 1 2 , 1 2 , 1 2

0

2

0

L R

i i b i b i

bi

z z
g

x

    

 
 

   
 
 
 
 

S                     (13) 
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where 
1 2

L

i 
 and 

1 2

R

i 
 are the evolved variables obtained from Step 2 in the following flux 

computation. The source term fS  is determined using the second-order Runge-Kutta 

method as follows 

†1 †2[ ( ) ( )] 2RK

f f i f i S S U S U                       (14) 

in which 
†1 †

i iU U , †2 †1 †1( )i i f it U U S U  

The bed deformation is updated by the discretization of Eq. (3) 

1

, ,
1

RK

n n

b i b i

i

E D
z z t

p

  
   

 
                         (15) 

where the superscript RK indicates that the sediment exchange is estimated using the 

second-order Runge-Kutta method for the source terms. 

The numerical fluxes I II

1 2

or

iF  and I II

1 2

or

iF  involved in Eqs. (12a and 12b) are evaluated in 

the following three steps using the well-balanced SGM version of the finite volume SLIC 

scheme.  

Step 1: Data reconstruction of inter-cell variables 
1 2

L

iU  and 
1 2

R

iU  to achieve second-order 

accuracy in space  

1 2 1 2 1

1
( )

2

L n n n

i i i i i    U U U U                      (16a) 

1 2 1 1 2 1

1
( )

2

R n n n

i i i i i     U U U U                     (16b) 

where the superscripts L and R represent the left and right sides of the cell interfaces; and the 

vector   is a slope limiter. Here, the MinBee limiter is chosen for the limiter function  , 

as described by Toro [5]. Besides, the evaluation of inter-cell water depths are obtained from 

the reconstructed water levels  
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1 2 1 2 , 1 2

L L L

i i b ih z    , 
1 2 1 2 , 1 2

R R R

i i b ih z                (17a, b) 

where the inter-cell bed elevations are approximated by linear interpolation  

, 1 2 , 1 2 , , 1( ) 2L R

b i b i b i b iz z z z                           (18) 

Step 2: Evolution of inter-cell variables over a time step of 2t  to achieve second-order 

accuracy in time. To satisfy the well-balanced property when the SGM is adopted, the 

contribution due to gravity must be included： 

I I

1 2 1 2 1 2 1 2[ ( ) ( )]
2

L L L R

i i i i

t

x



   


  


U U F U F U                (19a) 

I I

1 2 1 2 3 2 1 2[ ( ) ( )]
2

R R L R

i i i i

t

x



   


  


U U F U F U                (19b) 

II II

1 2 1 2 1 2 1 2 ,[ ( ) ( )]
2 2

L L L R

i i i i b i

t t

x

  

   

 
   


U U F U F U S           (19c) 

II II

1 2 1 2 3 2 1 2 , 1[ ( ) ( )]
2 2

R R L R

i i i i b i

t t

x

  

    

 
   


U U F U F U S          (19d) 

where ,b iS  is discretized with the centred difference scheme (Eq. 13) as a function of the 

reconstructed variables 
1 2

L

i



 and 

1 2

R

i



. Similarly, the evolving water depths in this step are 

given by  

1 2 1 2 , 1 2

L L

i i b ih z    , 
1 2 1 2 , 1 2

R R

i i b ih z                 (20a, b) 

Step 3: Evaluation of numerical fluxes. The numerical inter-cell fluxes I II

1 2

or

iF  are evaluated 

according to the First ORder CEntred (FORCE) method [20] with the evolved inter-cell 

variables 
1 2

L

iU  and 
1 2

R

iU . 

1 2 1 2 1 2

1
( )

2

LF LW

i i i   F F F                          (21a) 

1 2 1 2 1 2 1 2 1 2

1 1
[ ( ) ( )] ( )

2 2

LF L R L R

i i i i i

x

t
    


   


F F U F U U U           (21b) 

1 2 1 2)LW LW

i i F F(U                              (21c) 
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1 2 1 2 1 2 1 2 1 2

1 1
( ) [ ( ) ( )]

2 2

LW L R L R

i i i i i

t

x
    


   


U U U F U F U           (21d) 

To satisfy the well-balanced property, a special treatment is performed at wet-dry 

interfaces. If the water surface in a wet cell is lower than the bed elevation of its adjacent dry 

cell, then the bed elevation and water level of this dry cell are both set at the level of the 

water surface of the wet cell temporarily during the flux calculation operation. For example, 

if the cell i  is wet while the adjacent cell 1i  is dry and 1i i    then , 1 1i b i iz    , 

and the depth in the cell 1i  remains zero as a consequence. The occurrence of very small 

water depth in a numerical simulation can lead to instability due to the estimated bed 

resistance approaching infinity, especially at wet-dry interfaces. To avoid this difficulty, any 

computed water depth lower than a threshold value is set to be zero. Considering a motionless 

steady state problem ( 0   and 0q  ), it is straightforward to prove the well-balanced 

property of the above numerical algorithm (c.f. Qian et al. [8]]).  

 

3. Stochastic SHSM model 

3.1. gPC-SG Method 

The gPC expansion introduces a new dimension to the physical problem in order to 

account for uncertainty. Variables in the governing differential equations are represented by a 

series of orthogonal polynomials, each of which, for computational purposes, is truncated 

after a finite number of modes. In the present study, the vector of conserved variables in the 

nonlinear SHSM equations is expanded as follows 
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1

0

ˆ( , , )= ( , ) ( )
M

k k

k

x t x t 




U U , 
d N

M
d

 
  
 

                (22) 

where ˆ ( , )k x tU  are gPC coefficients; 1( , , ) d

d    , 1d   is a random vector with 

independent and identically distributed components; ( )k   are d -variate orthonormal 

polynomials of total degree up to N   1 from d

N  satisfying  

( ) ( ) ( )k l kld        , 0 , 1k l M                  (23) 

Here ( )   is the probability density function of  , and kl  is the Kronecker symbol. The 

choice of orthogonal polynomials depends on the distribution function of  . For example, a 

Gaussian distribution defines Hermite polynomials, whereas a uniform distribution defines 

Legendre polynomials, etc. In particular, when multiple sources of uncertainty are considered, 

i.e., d  > 1, the probability distributions become multivariate and ( )  are 

multidimensional polynomials of degree up to N  of  . A graded lexicographic ordering 

scheme for multiple indexes [27] is therefore used to reorder the polynomials into a spatial 

single index. Note that as such dimensionality increases, the number of basis functions can 

quickly grow, exponentially increasing computational and storage costs so that they spiral out 

of control – the so-called “curse-of-dimensionality” [27]. For simplicity, the present study is 

limited to one-dimensional random uncertainty (i.e., d = 1).  

 

3.2. Stochastic Galerkin reformulation of the deterministic model 

Next, we derive a gPC-SG scheme for the governing equation system. To this end, the 

polynomial approximation of  , q , sh , bz  and sq ,   are written as follows  
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1

0

ˆ( , , )= ( , ) ( )
M

k k

k

x t x t   




 , 
1

0

ˆ( , , )= ( , ) ( )
M

k k

k

q x t q x t 




           (24a, b) 

1

0

ˆ( , , )= ( , ) ( )
M

s sk k

k

h x t h x t 




 , 
1

0

ˆ( , , )= ( , ) ( )
M

b bk k

k

z x t z x t 




           (24c, d) 

1

0

ˆ( , , )= ( , ) ( )
M

s sk k

k

q x t q x t 




 , and 
1

0

ˆ( , , )= ( , ) ( )
M

k k

k

x t x t   




         (24e, f) 

Substituting Eq. (24) into system Eq. (8) and bed deformation equation Eq. (3) and then 

conducting a stochastic Galerkin projection yield the following equations for the gPC 

coefficients.  

Iˆ ˆ( )
0k k

t x

 
 

 

U F U
                           (25a) 

IIˆ ˆ( ) ˆ ˆk k
bk fk

t x

 
  

 

U F U
S S                       (25b) 

in which 

,

ˆ

ˆ ˆ

ˆ

k

k k

s k

q

h

 
 

  
 
  

U , I 2

,

ˆ

ˆ

ˆ

k

k

s k

q

a

q



 
 

  
 
 

F , 
1

II 2

,

, 0

0

1
ˆ ˆ ˆ ˆ ˆˆ( 2 )

2

0

M

k j l j b l kjl k

j l

g z S a    




 
 
    
 
 
  

F    (25c, 25d, 25e) 

1
,

,

, 0

0

ˆ
ˆ ˆ

0

M
b l

b k j kjl

j l

z
g S

x






 
 

  
 
  
 

S                           (25f) 

and 

,

0

ˆ ( ) ( ) ( )

( ) ( ) ( )

f k k

k

N d

E D d

   

   

 
 
  
 
  
 





S U                         (25g) 
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,
ˆ ( )

( ) ( )
1

b k

k

z E D
d

t p
   

 
  

                       (26) 

Subsystems Eqs. (25a and 25b) and the bed deformation equation Eq. (26) are solved 

using the numerical algorithm described in Section 2.4. The coefficient ,
ˆ

s kq  in Eq. (25d) is 

computed by applying the gPC-SG approximation to the relation ( )s b sq z h q   , giving 

1 1

, , ,

, 0 , 0

ˆˆˆ ˆˆ( )
M M

s j l b l kjl s j l kjl

j l j l

q z S h q S
 

 

   , 0,....., 1k M               (27) 

where ,
ˆ

s kq  is obtained by solving the linear system Eq. (27) once values for ˆ
kq , ,

ˆ
s kh , ˆ

k  

and ,
ˆ

b kz  are available. The coefficient ˆ
k  in Eq. (25e) is determined using the same 

procedure, applying the relation 2( )bz q    .  

Eq. (25g) involves ensemble averages of the source terms ( ) ( ) ( )kN d    U  and 

( ) ( ) ( )kE D d     , whereas Eq. (26) includes 
( )

( ) ( )
1

k

E D
d

p
   




 . These terms 

are nonlinear and cannot be calculated directly. Instead, these integrals are approximated by 

Gauss quadrature. When d = 1, taking ( ) ( ) ( )kN d    U  as an example, then 

1

1 0

ˆ( ) ( ) ( ) ( ) ( ) ( )
M M

k p k k p k p p

p k

N d w N       


 

 
    

 
  U U            (28) 

where pw  are the quadrature weights and p  are the quadrature points.  

 

3.3. Well-balanced property 

Next, we prove that the resulting stochastic SHSM model also satisfies the well-balanced 

property for a motionless steady state problem with uncertain topography. In the stochastic 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

 

setting, it is assumed that the mean free-surface elevation is constant (
0  ) and the mean 

discharge is zero ( 0q  ), whilst the bed elevation can have any spatial profile. Therefore, one 

has 0,
ˆ

k k  , ˆ 0kq  , ˆ 0k   for all 0,...., 1k M  . It is straightforward to obtain the 

values of inter-cell variables after the reconstruction in Step 1:  

1 2, 1 2, 1 2, 3 2, 0
ˆ ˆ ˆ ˆR L R L

i k i k i k i k k                                (29a) 

1 2, 1 2, 1 2, 3 2,
ˆ ˆ ˆ ˆ 0R L R L

i k i k i k i kq q q q                             (29b) 

1 2, 1 2, 1 2, 3 2,
ˆ ˆ ˆ ˆ 0R L R L

i k i k i k i k                               (29c) 

Then, the second evolution of the variables at the inter-cell 1 2i   is conducted 

following Step 2, from which 
1 2, 1 2, 0

ˆ ˆL R

i k i k k   

   , 1 2, 1 2, 0
ˆ ˆL R

i k i k k     , and also  
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, 0 , 0

1
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0,

, 0
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ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ0 ( 2 ) ( 2 )
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2
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L
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z zt
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x
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

 
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

 (30a) 

1 1

1 2, 0, 0, 0, , 3 2, 0, 0, 0, , 1 2,

, 0 , 0

, 3 2, , 1 2,

0,

, 0

1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ0 ( 2 ) ( 2 )

2 2 2

ˆ ˆ
ˆ( ( ) 0

2

M M
R

i k j l j b i l kjl j l j b i l kjl

j l j l

M
b i l b i l

j kjl

j l

t
q g z S g z S

x

z zt
g S
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

 

  
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 



 
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  
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 (30b) 

Therefore, the first two components of the flux at inter-cell 1 2i   are calculated as  

I, I, 

21 2 1 2

0,

0

ˆ
LF LW

i i

ka  

 
   

 
F F                            (31a) 
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
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
F F              (31b) 

For the inter-cell 1 2i  , following the above analysis, the first two components of its 

flux are obtained in a similar way as Eqs. (31a and b), i.e.,  
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After the flux computation, the values of ˆ
k  and ˆ

kq  at the next time step are updated 

to be 1

0,
ˆ ˆn

k k    and 1ˆ 0n

kq   , and thus a steady static state is exactly preserved at the 

discrete level, i.e., the well-balanced property is maintained.  

 

4. Test cases  

The present stochastic SHSM model is tested against probabilistic numerical case studies, 

designed to match idealized test of dam break flow over a fixed bed [39] (test case 1) and 

established laboratory experiments concerning flow-sediment-bed evolutions induced by a 

sudden dam break [14] (test case 2), and a landslide dam failure [41] (test case 3). As this 

work is limited to one-dimensional random uncertainty (i.e., d = 1), the impact of different 

single source of uncertainty is individually examined as per test case. A fixed uniform mesh is 

adopted, and the spatial step is sufficiently fine to ensure mesh independence of the solution, 

i.e., essentially equivalent solutions are obtained with an even finer mesh. The spatial step 

x  is set to be 0.01 m and the Courant number Cr  is 0.4. Bed porosity p = 0.4 is adopted 

for all the test cases. The stochastic model is configured with degree N   8 (the highest 

degree in gPC expansion), resulting in 9 stochastic modes and a probabilistic solution with 9 

model realisations. It is also assumed the random variable   follows a uniform distribution 

[ 1, 1]   , and so Legendre polynomials are used as the gPC basis. The mean and standard 
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deviation of the computed results U  are determined as  

0
ˆ( ) U U      and     

1
2

1

ˆ( )
M

k

k






 U U              (33a, b) 

 

4.1. Idealized dam break flow over an uncertain fixed bed (test case 1) 

The first test concerns a dam break flow over a fixed bed with perturbation, which is 

numerically designed by Chertock et al. [39]. The computational domain is [-1 m, 1 m], and 

the uncertain bed profile includes a hump centred at x   0 m, which is defined as 

0.125(cos(5 ) 1) 0.1 0.1 0.2 0.2
( , )

0.1 0.1
b

x x
z x

otherwise

 




     
 


              (34) 

where   [ 1, 1] . Following Chertock et al. [39], the gravitational constant g   1 and the 

initial water surface is set as 

0

1.0 0.0
( )

0.5 0.0
t

x
x

x
 


 


                          (35) 

At the upstream ( x   -1 m) and downstream ( x   1 m) boundaries, a transmissive condition 

[20] was imposed with the values of all the primitive variables at the outlet nodes set equal to 

those at internal nodes closest to the boundary. 

Fig. 1 displays the computed results of the mean and standard deviation of water surface 

(a1-a2) and discharge (b1 and b2) under uncertain bottom topography at t   0.8 s, which 

show good agreements with the model predictions by Chertock et al. [39]. The standard 

deviation of water surface ( )   presents two major peaks with one located at the wave 

front and the other around the downstream side of the hump, whereas the standard deviation 
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of discharge ( )   exhibit one peak at the wave front.  

 

 

Fig.1. Idealized dam break over a fixed bed with uncertainty: model predictions (dashed lines) 

by Chertock et al. [31] and present model predictions (solid lines) of mean and standard 

deviations of water surface and discharge at t   0.8 s. 

 

4.2. Flow-sediment-bed evolution due to instant dam break (test case 2) 

This test concerns flow-sediment-bed evolution due to an abrupt, full dam break, for 

which experiments were previously carried out in a glass-walled flume of dimensions 6 m 

length × 0.25 m width × 0.7 m height by Spinewine [14]. In the experiments, the dam break 

was created by the rapid downward removal of a thin gate, representing an idealized dam, 

located at the mid-section of the flume. Initially, the bed was horizontal, composed of 

non-cohesive sediment saturated with water, and extended both sides of the gate. Here, we 
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consider one of Spinewine’s experiments, where the initial water depth was 
0h 35 cm 

upstream of the dam, and the bed was dry downstream of the dam. The bed material 

comprised PVC pellets of diameter 3.92 mm and the density 1580 kg/m3. Numerical 

modelling was performed until the forward and backward propagating waves reached the 

downstream and upstream boundaries; thus, the boundary conditions were merely kept at the 

initial static state. 

This test is brought into a probabilistic setting by separately specifying uncertainty in the 

Manning roughness parameter n  and the modification coefficient   for calculating 

sediment transport rate at capacity regime bq  (see Eq. 7(b)). In general, Manning roughness 

parameter n  in mathematical models of shallow water flows, whether determined through a 

calibration procedure based on field or laboratory measurements, or obtained from tables of 

commonly used values, are subject to a high level of uncertainty [47-48]. Likewise, the 

modification coefficient   is usually calibrated using measured data, which also bears 

considerable uncertainty. Due to large uncertainties associated with the Manning roughness 

parameter and the modification coefficient, their range of variability is quite wide. Therefore, 

both parameters are assumed to have 50% uncertainty. The Manning roughness parameter 

has a mean value of n   0.026 m-1/3 s [49], and the mean value of modification   is 

determined through calibration tests to be 3.0 [17], respectively leading to 

( ) 0.026 0.013n     (m-1/3 s), and ( ) 3.0 1.5    , where   [ 1, 1] .  

Figs. 2 and 3 respectively show the probabilistic predictions of water surface and bed 

profiles for random Manning roughness parameter ( )n   and modification coefficient ( )  . 

Corresponding measurements obtained from Spinewine [14] are included. As can be seen, the 
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measured bed elevations lie within the range of the probabilistic prediction, whereas some 

discrepancies can be identified between measured and predicted water level profiles. 

Moreover, the uncertainties in the water level and bed elevation reach peak close to the ‘dam’ 

and then gradually decrease further downstream. The computed water surface and bed 

deformation profiles are both sensitive to Manning roughness parameter (see Fig. 2). By 

contrast, the bed deformation profile is appreciably more sensitive to the modification 

coefficient   than the water surface profile (as evident in Fig. 3). This difference in 

behaviour arises because the Manning roughness parameter is embedded directly in the 

relationships both for resistance (Eq. (4)) and sediment entrainment (Eqs. 7(a, b)). However, 

the modification coefficient   only appears explicitly in the relationship for sediment 

entrainment, and thus it only implicitly affects water surface through bed deformation.  

 

 

Fig. 2. Sudden dam break over an erodible bed: measurements (open circles) by Spinewine 
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[14] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for random Manning roughness parameter ( )n  .  

 

 

Fig. 3. Sudden dam break over an erodible bed: measurements (open circles) by Spinewine 

[14] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for random modification coefficient ( )  .  

 

Fig. 4 shows the spatial-temporal evolution of the standard deviations of water surface, 

bed elevation, flow velocity, and sediment concentration for random Manning roughness 

parameter ( )n   and modification coefficient ( )  . Table 1 summarize the maximum 

values of the standard deviations of these physical variables. Although both input parameters 

are perturbed to the same degree of uncertainty (50%), Manning roughness uncertainty has 

greater impact on the resulting standard deviation surfaces than modification coefficient 
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uncertainty. In general, output uncertainty in the water surface and bed elevation due to input 

uncertainty in the Manning roughness and modification coefficient both accumulates and 

extends downstream as the dam-break wave propagates with time. Furthermore, the standard 

deviations of water surface ( )   and bed elevation ( )bz  peak close to the ‘dam’ site and 

then gradually decrease in the stream-wise direction. Unlike ( )   and ( )bz , the standard 

deviation of flow velocity ( )u  exhibits a peak near the wave front, and the standard 

deviation of sediment concentration ( )c  presents a double-peaked behaviour with one 

peak located at the wave front and the other approximately at the centre of wave. A similar 

multi-peaked structure in the standard deviation of concentration has also been observed for 

advection-diffusion in random media [27].  

 

Table 1 Summary of maximum standard deviations of all the physical variables (Test case 1) 

Results 

Source of uncertainty 

Manning roughness ( )n   Modification coefficient ( )   

( )   (m) 0.023 0.010 

( )bz  (m) 0.041 0.014 

( )u  (m/s) 0.462 0.108 

( )c  0.289 0.083 
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Fig. 4. Spatial-temporal evolution of standard deviations of water surface, bed elevation, flow 

velocity, and sediment concentration for random (a1-a4) Manning roughness parameter ( )n   

and (b1-b4) modification coefficient ( )  .  
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4.3. Flow-sediment-bed evolution due to landslide dam failure (test case 3) 

We now examine flow-sediment-bed evolution due to landslide dam failure, and 

compare model predictions with measured data obtained from one of a series of flume 

experiments carried out by Cao et al. [41]. The experiments were undertaken in a flume of 

dimensions 80 m length × 1.2 m width × 0.8 m height (Fig. 5), bed slope of 0.001, and 

Manning’s bed roughness coefficient n   0.012 m-1/3 s. Twelve automatic water-level probes 

measured the stage time histories at different locations along the centre line of the flume. In 

the experiments, dam failure occurred through erosion caused by overtopping flow. Once 

dam failure commenced, flow upstream of the dam receded quickly. By contrast, the 

downstream flow underwent three stages: initial rising, subsequent gradual recession, and 

final stabilization. For further details, please see Cao et al. [41]. The present case of interest 

concerns a landslide dam comprising uniform sediment with no initial breach (i.e., F- Case 11 

considered by Cao et al.’s paper). In this case, the initial upstream and downstream slopes of 

the dam were 1/2 and 1/3. The inlet flow discharge was 0.042 m3/s. Initial static water depths 

immediately upstream and downstream of the dam were 0.054 m and 0.048 m. At the outlet 

of the flume, a 0.15 m-high weir controlled the downstream water level so that it remained at 

the initial depth. The dam comprised non-cohesive sediment of median diameter 0.8 mm and 

specific gravity 1.65. At the inlet boundary of numerical model, the flow discharge was 

specified, and the water depth and velocity determined by the method of characteristics. 

Observations during the course of the experiments had shown that a hydraulic drop occurred 

downstream of the weir, so the outflow did not affect flow upstream of the weir. Hence, a 
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transmissive condition [20] was imposed at the downstream boundary (80 m).  

In addition to the Manning roughness and the modification coefficient, we also 

investigated the impact of uncertainty in the inflow discharge, which is subject to 

considerable uncertainty due to measurement error [48]. Specifically, the steady inflow 

discharge is assumed to have 15% uncertainty, which is a suitable range for fluvial flow 

modelling [48]. Similar to test case 2, the Manning roughness parameter and the modification 

coefficient are both perturbed by 50% uncertainty. Hence, ( ) 0.042 0.0063inq     (m3/s), 

( ) 0.012 0.006n     (m-1/3s), and ( ) 6.0 3.0    , where   [ 1, 1] .  

Figs. 6, 7 and 8 respectively show the probabilistic stage time histories predicted by the 

stochastic SHSM model for random inflow discharge ( )inq  , Manning roughness parameter 

( )n  , and modification coefficient ( )  . Corresponding measurements obtained by Cao et 

al. [41] at selected locations along the channel are superimposed. Stations CS 1, CS 5, CS 8 

and CS 12 are located 19 m, 40 m, 54 m and 73.5 m downstream of the inlet (Fig. 5).  CS 1 

and CS 5 are upstream of the dam, whereas CS 8 and CS 12 are downstream. The model 

predictions comprise 9 model realisations as plotted individually. Figs. 6, 7, and 8 

collectively show that the new model satisfactorily reproduces the stage time histories, in that 

the probabilistic predictions bounds all the measured data. Moreover, it is demonstrated that 

the computed results are most sensitive to inflow discharge inq , followed by Manning 

roughness parameter n , and then modification coefficient  . Model sensitivity to 

uncertainty in n  and   is considerably constrained compared to uncertainty in inq . This is 

confirmed by the output uncertainties in response to perturbed n  and   (by 50%), which 

are considerably smaller than their counterpart for perturbed inq  (by 15%).  
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Fig. 5. Cao et al.’s [41] experimental setup for landslide dam failure [figure adapted from Li 

et al. [17]]. 

 

 

Fig. 6. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random inflow discharge ( )inq  . 
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Fig. 7. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random Manning’s coefficient ( )n  . 
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Fig. 8. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random modification coefficient ( )  . 

 

Figs. 9 and 10 respectively present the probabilistic predictions of water surface and bed 

profiles for random inflow discharge and Manning roughness parameter, with measured data 

from Cao et al. [41] for water surface superimposed. Echoing Figs. 6 and 7, the computed 

results are generally more sensitive to uncertainty in inflow discharge than in Manning 

roughness parameter. Compared to bed deformation, the water surface profile is more 

sensitive to the input perturbations. The output uncertainty in water surface is relatively large 

along the channel for random ( )inq   because the uncertainty in inflow discharge enters 

from the upstream boundary and propagates downstream (Fig. 9a). The output uncertainty in 
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the water surface for random ( )n   only develops after the onset of dam failure (Fig. 10a). 

At t   430 s, the overtopping flow erodes the downstream surface of the dam, causing the 

formation of a hydraulic drop and a hydraulic jump near the dam site. Further erosion is 

evident by t   450 s, with two hydraulic jumps occurring downstream of the dam. The 

uncertainties in the water surface and bed elevation for random inflow discharge (Fig. 9b and 

9c) and Manning roughness (Fig. 10b and 10c) exhibit appreciable increase close to the 

hydraulic drop and jump. After t   600 s, the free surface of the flow is nearly horizontal, 

unable further to erode the dam, and the dam failure process essentially terminates. At this 

stage, the output uncertainties in the water surface and bed elevation due to inflow discharge 

perturbation revert almost to zero (Fig. 9d), whereas those under random Manning roughness 

parameter still persist, despite their magnitude decreasing significantly (Fig. 10d).  

Fig. 11 shows the spatial-temporal evolution of the standard deviations of water surface, 

bed elevation, flow velocity and sediment concentration for random inflow discharge ( )inq   

and Manning roughness parameter ( )n  . Table 2 list the maximum standard deviations of 

these physical variables. Fig. 11 and Table 2 collectively confirms that inflow discharge 

uncertainty has greater impact on the resulting standard deviation than Manning roughness 

uncertainty. Before the water flows over the top of the dam, the standard deviations of water 

surface ( )   and flow velocity ( )u  only increase upstream of the dam site, and the 

standard deviation of the bed elevation ( )bz  and sediment concentration ( )c  remain 

zero. After the dam is overtopped and the dam breach commences, the standard deviations of 

all the physical variables increase rapidly with time and extend toward the outlet. As the dam 

failure process decreases and finally comes to a halt, the standard deviations also gradually 
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shrink.  

 

 

Fig. 9. Landslide dam failure: measured water surface (open circles) for F-Case 11 by Cao et 

al. [41] and probabilistic predictions of water surface, and bed profiles (dashed lines) along a 

channel for random inflow discharge ( )inq  . 
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Fig. 10. Landslide dam failure: measured water surface (open circles) for F-Case 11 by Cao 

et al. [41] and model realisations of water surface, and bed profiles (dashed lines) along a 

channel for random Manning’s coefficient ( )n  . 

 

Table 2 Summary of maximum standard deviations of all the physical variables (test case 3) 

Results 

Source of uncertainty 

Inflow discharge ( )inq   Manning roughness ( )n   

( )   (m) 0.148 0.068 

( )bz  (m) 0.261 0.118 

( )u  (m/s) 1.315 0.924 

( )c  0.455 0.423 
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Fig. 11. Landslide dam failure: spatial-temporal evolution of standard deviations of water 

surface, bed elevation, flow velocity and sediment concentration for random (a1-a4) inflow 

discharge ( )inq   and (b1-b4) Manning’s coefficient ( )n  .  
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5. Conclusions  

A new stochastic SHSM model based on a well-balanced, operator-splitting-based, 

stochastic Galerkin method is proposed for probabilistic shallow water-sediment flows over 

erodible beds. Benchmark probabilistic numerical tests verify the model for wave 

propagation triggered by idealized dam break over a fixed bed and flow-sediment-bed 

evolution driven by sudden dam break and by landslide dam failure, with uncertainty 

introduced in initial and boundary conditions. The model captures both possible realization 

and standard deviation of the solutions, while also simulating strongly nonlinear flow 

behaviour. Although this study represents a first attempt to model probabilistic shallow 

water-sediment flows over an erodible bed in a stochastic Galerkin setting, further research is 

still required to extend the proposed model to multiple joint uncertainties and also validate 

the model for flows containing strong discontinuities in random space. It is also essential that 

a more solid theoretical foundation is established for the present model and that it is extended 

to two spatial dimensions for application to natural flows. These topics are reserved for future 

study.  
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List of figure captions  

 

Fig.1. Idealized dam break over a fixed bed with uncertainty: model predictions (dashed lines) 

by Chertock et al. [31] and present model predictions (solid lines) of mean and standard 

deviations of water surface and discharge at t   0.8 s. 

 

Fig. 2. Sudden dam break over an erodible bed: measurements (open circles) by Spinewine 

[14] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for random Manning roughness parameter ( )n  .  

 

Fig. 3. Sudden dam break over an erodible bed: measurements (open circles) by Spinewine 

[14] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for random modification coefficient ( )  .  

 

Fig. 4. Spatial-temporal evolution of standard deviations of water surface, bed elevation, flow 

velocity, and sediment concentration for random (a1-a4) Manning roughness parameter ( )n   

and (b1-b4) modification coefficient ( )  .  

 

Fig. 5. Cao et al.’s [41] experimental setup for landslide dam failure [figure adapted from Li 

et al. [17]]. 

 

Fig. 6. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random inflow discharge ( )inq  . 
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Fig. 7. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random Manning’s coefficient ( )n  . 

 

Fig. 8. Landslide dam failure: measurements (open circles) for F-Case 11 by Cao et al. [41] 

and probabilistic predictions (solid lines) of stage time histories at 4 gauge points along the 

flume for random modification coefficient ( )  . 

 

Fig. 9. Landslide dam failure: measured water surface (open circles) for F-Case 11 by Cao et 

al. [41] and probabilistic predictions of water surface, and bed profiles (dashed lines) along a 

channel for random inflow discharge ( )inq  . 

 

Fig. 10. Landslide dam failure: measured water surface (open circles) for F-Case 11 by Cao 

et al. [41] and model realisations of water surface, and bed profiles (dashed lines) along a 

channel for random Manning’s coefficient ( )n  . 

 

Fig. 11. Landslide dam failure: spatial-temporal evolution of standard deviations of water 

surface, bed elevation, flow velocity and sediment concentration for random (a1-a4) inflow 

discharge ( )inq   and (b1-b4) Manning’s coefficient ( )n  .  
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List of tables 

Table 1 Summary of maximum standard deviations of all the physical variables (Test case 1) 

Results 

Source of uncertainty 

Manning roughness ( )n   Modification coefficient ( )   

( )   (m) 0.023 0.010 

( )bz  (m) 0.041 0.014 

( )u  (m/s) 0.462 0.108 

( )c  0.289 0.083 

 

Table 2 Summary of maximum standard deviations of all the physical variables (test case 3) 

Results 

Source of uncertainty 

Inflow discharge ( )inq   Manning roughness ( )n   

( )   (m) 0.148 0.068 

( )bz  (m) 0.261 0.118 

( )u  (m/s) 1.315 0.924 

( )c  0.455 0.423 
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