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Abstract The advent of data proliferation and electronic devices gets low
execution time and energy consumption software in the spotlight. The key
to optimizing software is the correct choice, order as well as parameters of
optimizations-transformations, that has remained an open problem in compi-
lation research for decades for various reasons. First, most of the transforma-
tions are interdependent and thus addressing them separately is not effective.
Second, it is very hard to couple the transformation parameters to the pro-
cessor architecture (e.g., cache size) and algorithm characteristics (e.g. data
reuse); therefore compiler designers and researchers either do not take them
into account at all or do it partly. Third, the exploration space, i.e., the set
of all optimization configurations that have to be explored, is huge and thus
searching is impractical.

In this paper, the above problems are addressed for data dominant affine
loop kernels, delivering significant contributions. A novel methodology is pre-
sented reducing the exploration space of six code optimizations by many orders
of magnitude. The objective can be Execution Time (ET), Energy consump-
tion (E) or the number of L1, L2 and main memory accesses. The exploration
space is reduced in two phases. Firstly, by applying a novel register blocking
algorithm and a novel loop tiling algorithm and secondly, by computing the
maximum and minimum ET/E values for each optimization set.

The proposed methodology has been evaluated for both embedded and
general purpose CPUs and for seven well known algorithms, achieving high
memory access, speedup and energy consumption gain values (from 1.17 up to
40) over gcc compiler, hand written optimized code and Polly. The exploration
space from which the near-optimum parameters are selected, is reduced from
17 up to 30 orders of magnitude.

Keywords code optimizations · data cache · register blocking · loop tiling ·
high performance · energy consumption · data reuse

Address(es) of author(s) should be given



2 Vasilios Kelefouras, Karim Djemame

1 Introduction

Although significant advances have been made in developing advanced com-
piler optimization and code transformation frameworks, current compilers can-
not compete with hand optimized code, especially for data dominant appli-
cations; compilers lack of efficient register blocking and loop tiling algorithms
which are the key to data dominant applications [9]. Writing efficient code is
a hard and time consuming task as the correct choice, order as well as param-
eters of optimizations for a specific code, are not efficient for another code,
CPU or even for a different input size.

To tackle the above problems, researchers propose heuristics [27], em-
pirical techniques [6], iterative compilation techniques [26], techniques that
simultaneously optimize only two transformations, e.g., register allocation and
instruction scheduling [49] and semi-automatic approaches such as Loopy [33],
POET [45], ChiLL [13] and Orio [18], where the programmer specifies a loop
transformation at a high level and it is then carried out automatically. The
most promising automatic approach is iterative compilation where many dif-
ferent versions of the program are generated-executed by applying a set of com-
piler transformations, at all different combinations/sequences. However, itera-
tive compilation is extremely expensive in terms of compilation time and there-
fore researchers and current compilers try to reduce it by using i) both iterative
compilation and machine learning compilation techniques [29] [5] [54] [38], ii)
both iterative compilation and genetic algorithms [26], iii) heuristics and em-
pirical methods [12], iv) both iterative compilation and statistical techniques
[17], v) exhaustive search [25]. However, by employing these approaches, the
remaining exploration space of code optimizations, i.e., the set of all opti-
mization configurations that have to be explored (optimization sets), is still
so large that searching is impractical. The end result is that seeking the opti-
mal configuration is impractical even by using modern supercomputers. This
is evidenced by the fact that most of the iterative compilation methods use
either low compilation time transformations only or high compilation time
transformations with partial applicability so as to keep the compilation time
in a reasonable level [22] [46]. As a consequence, a very large number of solu-
tions is not tested. This has led compiler researchers use exploration prediction
models focusing on beneficial areas of optimization space [14].

Unlike existing approaches, our method reduces the exploration space of six
code optimizations by many orders of magnitude and therefore it is practical
to be searched; thus, the quality of the end result is significantly improved. The
exploration space is reduced by i) taking into account the HardWare (HW)
architecture details, data reuse and arrays’ data access patterns, ii) addressing
several code optimizations together as one problem and not separately, as they
are interdependent.

The main steps of our methodology 1 are as follows.

1 This is an extension of the conference paper ”A methodology for efficient code optimiza-
tions and memory management”, ACM International Conference on Computing Frontiers
2018
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First, the exploration space of code optimizations is reduced by providing
an efficient register blocking and loop tiling algorithms; these two algorithms
consist of a) loop unroll, scalar replacement, register allocation and b) loop
tiling, array copying, transformations, respectively. A unified framework is
proposed to orchestrate the aforementioned transformations, together as one
problem; the transformations are tailored to the target CPU HW details, data
reuse and data access patterns.

Afterwards, we provide formal methods describing a) the number of L1
data cache (L1dc), L2 cache (L2c) and Main Memory (MM), accesses and b)
the number of arithmetical instructions, as a function of the aforementioned
optimization sets, CPU details and algorithm’s input size.

Next, a Power consumption (P) model based on mcpat [30] simulator and
an Execution Time (ET) model extending C-AMAT [56] [51], are developed,
giving ETMAX , ETMIN and P (and as a consequence Energy Consumption
(E), as E = ET × P ), as a function of the number of L1dc, L2c and MM
accesses and as a consequence to the aforementioned optimization sets, CPU
HW details and algorithm input size. Given that the maximum and minimum
values of ET/E are known for each optimization set, the exploration space can
be further reduced.

The proposed methodology has resulted in five contributions.

– A new approach applying code transformations by taking into account
the memory hierarchy HW architecture details and the application special
memory access patterns

– A single framework addressing the aforementioned transformations to-
gether as one problem and not separately

– Formal methods providing the number of memory accesses and arithmetical
instructions, as a function of the aforementioned optimization sets, HW
architecture details and algorithm input size

– Formal methods providing ET and P with the aforementioned optimization
sets, HW architecture and algorithm input size

– A direct outcome of the above is that the exploration space is reduced by
many orders of magnitude

The evaluation of the proposed methodology has been carried out by us-
ing a) the general purpose processor Intel i7 6700 CPU (using both normal
C-code and C-code with AVX intrinsics), b) the embedded ARM Cortex-A9
processor on a Zybo Zynq-7000 FPGA platform, c) the well-known gem5 [8]
and mcpat [30] simulators, simulating both a generic x86 and an ARMv8-A
CPU. The selected benchmark suite consists of seven well known data domi-
nant loop kernels taken from PolyBench/C benchmark suite version 4.1 [39].
Our obtained evaluation results are reported in terms of L1/L2/MM memory
accesses, arithmetical instructions, ET, P, E and exploration space.

The remainder of this paper is organized as follows. In Section 2, the related
work is reviewed. The proposed methodology is presented in Section 3 while
experimental results are discussed in Section 4. Finally, Section 5 is dedicated
to conclusions.
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2 Related Work

Iterative compilation methods provide the most promising approach towards
the code optimization problem. However, to the best of our knowledge, there is
no existing work facing all the transformations presented in this paper includ-
ing all different optimization sets, because the compilation time becomes too
large. Iterative compilation methods use either low compilation time transfor-
mations only or high compilation time transformations with partial applica-
bility so as to keep the compilation time in a reasonable level [22] [46] [23].
In [23], only one level of tiling is used with tile sizes from 1 up to 100 and
unroll factor values from 1 up to 20 (innermost iterator only). In [22], multiple
levels of tiling are applied but with fixed tile sizes. In [15], all tile sizes are
considered but each loop is optimized in isolation; loop unroll is applied in
isolation also. In [46], loop tiling is applied with fixed tile sizes. In [29] [28]
and [50], only loop unroll transformation is applied. As a consequence, a very
large number of solutions is not tested. In [4], a survey on compiler opti-
mization techniques using machine learning is presented. In [36], sequential
analysis is combined with active learning to reduce the training samples. In
[5], a statistical methodology is applied to infer the probability distribution of
the compiler optimizations. In [53], they use MapReduce programming model
to speedup the iterative compilation process.

The phase-ordering problem is addressed in [34] [43] [2] [3]. In [2] predictive
modeling is used while in [3] machine learning. In [43], they construct good
optimization sequence sets which cover all the program classes in the program
space.

In [27], an artificial neural network is used to predict the optimization
sequence that is likely to be the most beneficial for a method. In [12], perfor-
mance counters are used to determine good compiler optimization settings. In
[54], a long-term learning algorithm is presented that determines the best set
of heuristics that a compiler can use to make decisions about which optimiza-
tions to enable and what values to assign to parameters, without any human
intervention.

The polyhedral model is a flexible and expressive representation for loop
transformations. In [42], a fundamental progress in the understanding of poly-
hedral loop nest optimizations is made. Polly is a high-level loop and data-
locality optimizer and optimization infrastructure for LLVM [16]. Pluto, which
is used by Polly, is an automatic parallelization tool based on the polyhedral
model [9]. [41] statically constructs a set of candidate program versions, con-
sidering the distinct result of all legal transformations in a particular class. In
[47], an iterative compilation framework that empirically autotunes the loop
tile size for many core CPUs is presented. Researchers also try to solve the
problem by using compiler transformations and the Polyhedral model [40] [55].

There has been significant research on reducing the number of data ac-
cesses in memory hierarchy by employing compiler transformations and most
commonly loop tiling [10] [20] [7] [57] [32]. PLuTo applies loop tiling trans-
formation to increase both the resulting parallelism and data locality [10].
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In [20], the target code is restructured such that the different cores operate
on shared data blocks at the same time. In [32], a cache hierarchy aware
tile scheduling algorithm is presented for multicore architectures targeting to
maximize both horizontal and vertical data reuses in on-chip caches. In [52],
an automatic data layout transformation is proposed.

Code optimizations are also used to reduce software energy consumption.
In [35] authors experimentally show that optimizing for performance through
compiler-driven software optimization as a means of optimizing for energy does
not always lead to the most energy efficient compiled functions/programs. In
[1], a survey about the energy reduction methods is given. In [48], a data
layout transformation technique that achieves energy efficiency by combining
the storage of data elements from multiple arrays is investigated. In [44], the
total energy is reduced by applying loop merge while satisfying performance
constraints for loop applications. In [37], several trade-offs during the loop
transformations are discussed. In [11], a technique that takes advantage of
both temporal locality and limited lifetime of the arrays for trading ET and E
by using Pareto points is presented. An incremental hierarchical memory-size
requirement estimation technique is given in [19].

Last, some important source to source annotated tools/frameworks are
found in the literature that help the user to apply code optimizations such as
Rose [31], Orio [18] and POET [45].

Unlike existing techniques, i) our approach narrows down the exploration
space by many orders of magnitude (without pruning efficient optimization
sets), ii) addresses several code optimizations together as one problem and
takes into account the HW architecture details, data reuse and memory access
patterns.

3 Proposed Methodology

In this paper, a novel methodology is presented that takes as input source
code and the underlying hardware architecture details and outputs another
optimized source code, in terms of either L1,L2,MM accesses, Execution Time
(ET) or Energy consumption (E).

Regarding target applications, this methodology considers affine loop ker-
nels; it considers both perfectly and imperfectly nested loops, where all the
array subscripts are linear equations of the iterators. This method is applicable
to loop kernels containing SIMD instructions too (see evaluation in Section 4).

This method is applicable to all single-core and shared cache multi-core
CPUs. In this section, we explain our method for single core CPUs which
is applicable to shared cache CPUs too, by using the software shared cache
partitioning method given in our previous work [21]; no more than p threads
can run in parallel (one on each core), where p is the number of cores (single
threaded codes only).

An abstract representation of the proposed methodology is illustrated in
Fig. 1. First, all the characteristics of the loop kernels are extracted, i.e., array



6 Vasilios Kelefouras, Karim Djemame

references, array subscript equations, loop iterators and bounds, and iterator
nesting level values.

Going from left to right in Fig. 1, in the first box (Subsection 3.1), we
provide an efficient register blocking algorithm where loop unroll, scalar re-
placement and register allocation are addressed together as one problem, and
an efficient loop tiling algorithm where loop tiling and array copying are ad-
dressed as one problem too. The transformations are carefully devised to fully
exploiting the Register File (RF) size, cache size, cache line size and associa-
tivity, data reuse and array data access patterns. One mathematical inequality
is extracted for each memory, including RF. Each inequality provides all the
efficient optimization sets. The implementations that do not obey to the ex-
tracted inequalities are automatically discarded by our methodology pruning
substantially the exploration space, while all the others are further processed.
Although it is impractical to run all the different optimization sets / binaries
in order to prove that our methodology does not discard efficient optimization
sets, a theoretical explanation is given in Subsection 3.2.

Regarding the second box (Subsection 3.3) in Fig. 1, for all the remain-
ing optimization sets, we approximate the number of L1 data cache (L1dc),
L2 cache (L2c) and Main Memory (MM) accesses as well as the number of
integer and Floating Point (FP) arithmetical instructions. This problem is
theoretically formulated by exploiting the memory HW architecture details
and the array memory access patterns of each loop kernel. In particular, one
mathematical equation is generated for L1dc, L2c, MM, integer and FP arith-
metical instructions, providing the corresponding number of memory accesses
and arithmetical instructions. Therefore, the solution offering the minimum
number of L1dc, L2c or MM accesses can be provided. It is important to note
that the separate memories optimization gives a different optimization set /
schedule for each memory and these schedules cannot coexist, as by refining
one, degrading another, e.g., the schedule minimizing the number of L2c ac-
cesses and the schedule minimizing the number of MM accesses cannot coexist.

Next, an Execution Time (ET) model extending C-AMAT [56] [51] and a
Power consumption (P) model based on mcpat [30] simulator, are developed.
These models correlate ETMAX , ETMIN and P (and as a consequence E, as
E = ET×P ), to the number of memory accesses and arithmetical instructions,
which are derived by the second box in Fig. 1. Given that the maximum
and minimum values of ET and E are known for each optimization set, the
exploration space can be further reduced.

Finally, we can choose between a sub-optimum (good) solution fast or a
near-optimum solution in a reasonable amount of time. In Subsection 4.3, we
show that in the second case, we have to test from 46 up to 1800 binaries;
we show that the exploration space is reduced from 17 up to 30 orders of
magnitude and then it is practical to be searched.
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Fig. 1 Flow chart of the proposed methodology

3.1 Reduce the exploration space of code optimizations

In this Subsection we provide an efficient register blocking and loop tiling
algorithm. The efficient application of loop tiling/blocking is not trivial and
normally many different implementations are tested, since it a) depends on
other transformations (e.g., array copying), b) depends on the target mem-
ory architecture details, data reuse and data access patterns, c) increases the
number of Load/Store (L/S) and arithmetical instructions. The application of
loop tiling for the Register File (RF) is even more complex (register blocking).
To our knowledge, no general (application independent) algorithm exists for
register blocking; it is a mixture of loop tiling/loop unroll, scalar replacement
and register allocation transformations. The efficient implementation of loop
tiling/blocking is the key to the high performance and low energy SoftWare
(SW), especially for data dominant applications [9].

The main steps of the proposed register blocking algorithm are the follow-
ing:

1. Generate the subscript equations of all arrays
2. Generate the RF inequality (Eq. 1) that provides all the efficient optimiza-

tion sets
3. Extract a transformation set from Eq. 1
4. Generate the code

Definition 1 Subscript equations which have more than one solution for at
least one constant value, are named type2 equations. All others, are named
type1 equations.

For example, (A[2∗i+j]) gives the following type2 equation (2∗i+j = c1),
while (A[i][j]) gives the following type1 equation (i = c21 and j = c22).

Each subscript equation defines the memory access pattern of the specific
array reference. Obviously, in our methodology type1 and type2 arrays are
treated with different policies as they access data in different ways. In this
paper we give the formulas referring to type1 subscript equations only, as the
corresponding formulas for type2 are more complicated (however, in Section
4 we have validated both).
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The RF inequality gives the exact loops that loop unroll is applied to,
their unroll factor values and the number of variables/registers allocated for
each array. Each subscript equation contributes to the creation of Eq. 1, i.e.,
equation i gives Ari and specifies its expression. The implementations that do
not obey to the extracted inequalities are discarded narrowing down the space
substantially. The RF inequality is given by

n+ Sc ≤ Ar1 +Ar2 + ...+Arn + Sc ≤ FP (1)

where FP is the number of the floating point (FP) registers, Sc is the num-
ber of FP scalar variables, Ari is the number of variables/registers allocated
for each array and n is the number of the array references. Without any loss
of generality, in this paper we assume that the arrays contain FP data only
and therefore we assume that the number of integer variables used is smaller
than the number of integer registers. The upper bound of Eq. 1 derives from
the fact that if more registers than the available are used, data are spilled
to L1dc, increasing the number of L1 accesses. On the other hand, the lower
bound value has been chosen as small as possible, because other constraints
may be more critical; by using a larger lower bound value, register utilization
is increased and therefore the number of L1 accesses is reduced; however, these
optimization sets may conflict to those minimizing the number of MM or L2
accesses, which may be more critical.

The number of variables/registers allocated for each array is given by both
(Ari = unrx × unry) and the three bullets below (the bullet points are given
in order to assign variables according to data reuse). The integer (unrx/unry)
are the unroll factor values of the iterators in the (x,y) dimension of the array’s
subscript, e.g., the C[i][j] array in Fig. 2 gives (ArC = 1 × 4 = 4) (r1 − r4
variables) as the (i, j) iterator unroll factor values are (1, 4), respectively.

– For the type1 arrays which contain all the loop kernel iterators, only one
register is needed (Ari = 1)

– For the innermost iterator always holds unr′ = 1 (the innermost iterator
cannot be unrolled at this stage - however it can be unrolled in the output
source code after)

– For the arrays i) containing more than one iterators and one of them is the
innermost and ii) all iterators which do not exist in this array reference
have unroll factor values equal to 1, then only one register is needed for
this array (Ari = 1)

In the above three cases, a different element is accessed in each iteration (no
data reuse is achieved) and thus wasting more than one register is not efficient,
e.g., in Fig. 2, six registers are used, i.e., (ArC = 1×4, ArA = 1×1, ArB = 1).
Note that ArB = 1 instead of ArB = 4 because of the 3rd bullet above (a
different element of B is accessed in each k iteration and therefore it is not
efficient to waste more than one register). Obviously, the scenario that not
even one iterator is unrolled is not acceptable.

Let us give an example, first box code in Fig. 2. Eq. 1 gives:
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/* Execute MMM */ cnt_2=0; cnt=0; 
for (kk=0;kk!=N;kk+=KK){ //Tiling for L2 
for (ii=0;ii!=N;ii+=II){ cnt_1=cnt_2;//Tiling for L2 
for (jj=0;jj!=N;jj+=JJ){      //Tiling for L1 

for (i=ii;i!=ii+II;i++){ b=cnt_1;
for (j=jj;j!=jj+JJ;j+=4){ a=cnt+i*KK;
r1=0;r2=0;r3=0;r4=0; 
for (k=kk;k!=kk+KK;k++){ r5=Atr[a]; r6=Btr[b];

r1+=r5*r6; r6=Btr[b+1]; 
r2+=r5*r6; r6=Btr[b+2]; 
r3+=r5*r6; r6=Btr[b+3]; 
r4+=r5*r6;  
b+=4; a++; }  

C[i][j]+=r1; C[i][j+1]+=r2; 
C[i][j+2]+=r3; C[i][j+3]+=r4;
}  }  cnt_1+=KK * JJ; } }  cnt_2+=KK * N; cnt+=N*KK; }

//change data layout of B
for (ii=0;ii!=N;ii+=KK)
for (jj=0;jj!=N;jj+=4)
for (i=ii;i!=ii+KK;i++)
for (j=jj;j!=jj+4;j++) {
Btr[cnt]=B[i][j]; cnt++; }

// After register blocking & loop tiling
//change data layout of A
cnt=0;
for (jj=0;jj!=N;jj+=KK)
for (i=0;i!=N;i++)
for (j=jj;j!=jj+KK;j++) {
Atr[cnt]=A[i][j]; cnt++; }

Tiling for L2 – i and k are tiled
Ti’’=II, because i is tiled with tile size II
Tj’’=JJ, because jj has a smaller NLV than ii,kk
Tk’’=KK, because k is tiled with tile size KK 
TC2=Ti’’xTj’’x4x2, TA2=Ti’’xTk’’x4x1, TB2=Tk’’xTj’’x4x2

Tiling for L1 - only j is tiled
Ti’=1, because i has a smaller NLV than j
Tj’=JJ, because j is tiled with tile size JJ
Tk’=KK, because k has a larger NLV than j
TC1=Ti’xTj’x4x2, TA1=Ti’xTk’x4x2, TB1=Tk’xTj’x4x1

Register blocking – r1-r6 registers

// Input Code
for (i=0;i!=N;i++)

for (j=0;j!=N;j++)
for (k=0;k!=N;k++)

C[i][j]+=A[i][k]*B[k][j];

C A B

r1-r4

Tile2 & Tile1

IIII
=

x

i i

j jk

k

Tile1 Tile1Tile2 Tile2

JJ JJr5 r6KK

KK

//After register blocking
for (i=0; i!=N; i++)

for (j=0; j!=N; j+=4) {
r1=0;r2=0;r3=0;r4=0; 
for (k=0; k!=N; k++) {

r5=A[i][k]; r6=B[k][j];

r1+=r5*r6; r6=B[k][j+1];
r2+=r5*r6; r6=B[k][j+2];
r3+=r5*r6; r6=B[k][j+3];
r4+=r5*r6;  }  

C[i][j]+=r1; C[i][j+1]+=r2; 
C[i][j+2]+=r3; C[i][j+3]+=r4;}

Fig. 2 An example, Matrix-Matrix Multiplication (MMM)

3 ≤ unri × unrj + unri + unrj ≤ FP, unri 6= 1&unrj 6= 1

3 ≤ unrj + 2 ≤ FP, unri = 1&unrj � 1

3 ≤ unri + 2 ≤ FP, unrj = 1&unri � 1 (2)

The 3rd bullet generates 3 branches while the 2nd gives (unrk = 1). The
code shown in the second box of Fig. 2 refers to a second Eq. 2 branch solution,
i.e., (unri = 1 and unrj = 4) and therefore 6 registers are used.

The main steps of the loop tiling algorithm are similar to those of the
register blocking algorithm, but a cache inequality is generated instead (Eq. 3),
one for each cache memory; each inequality contains the iterators that loop
tiling is applied to, the tile sizes and the data array layouts (whether array
copying has been applied or not). The implementations that do not obey to
the extracted inequalities are automatically discarded by our methodology
pruning the space.

The cache inequality is formulated as:
m ≤ d Tile1

Li/assoc
e+ ...+ d Tilen

Li/assoc
e ≤ assoc (3)

where Tilei gives the tile size of the ith array in bytes, Li is the correspond-
ing cache size, assoc is the Li associativity value (e.g., for an 8-way associative
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cache, assoc = 8) and m defines the lower bound of the tile sizes and it equals
to the number of arrays in the loop kernel. The special case where the num-
ber of the arrays is larger than the associativity value is not discussed in this
paper (normally, (assoc ≥ 8)). (d Tile1

Li/assoc
e) is an integer representing the num-

ber of Li cache lines with identical cache addresses used for the tile of array1.
Eq. 3 satisfies that the array tiles directed to the same cache subregions do not
conflict with each other as the number of cache lines with identical addresses
needed for the tiles is not larger than the assoc value.

All the tile elements in Eq. 3 must contain consecutive MM locations. Oth-
erwise, array copying is applied and an extra loop kernel is added for each array,
likewise Atr and Btr arrays in Fig. 2; new arrays are created which replace the
default ones, leading to extra cost in L/S and arithmetical instructions. There
are some special cases where the arrays do not contain consecutive memory
locations but their layouts can remain unchanged in order to avoid the cost of
transforming the arrays, e.g., the tiles contain less or equal sub-rows than the
number of cache ways and each sub-row is smaller than the size of one cache
way; in this case, each sub-row is faced as a different tile.

Tilei which contains consecutive MM locations is given by Eq. 4:

T ilei = ( max
1≤j≤tiles

(d j×(Tx×Ty)
line

e − b (j−1)×(Tx×Ty)
line

c))× line× type× s (4)

where the parenthesis gives the maximum size of the tile measured in cache
lines (although the array’s tiles are of equal size, they occupy a different num-
ber of cache lines), line is the cache line size in elements, type is the size
of the array’s elements in bytes and the integer s defines how many tiles of
each array should be allocated in the cache (s = 1 or s = 2). (Tx, Ty) are
the tile sizes of the iterators in the (x,y) dimension of the array’s subscript
(for 1d arrays, Ty = 1), tiles is the number of tiles for array i in total and
(tiles = N/Ty ×M/Tx) or (tiles = M/Tx) whether for 2D/1D arrays, re-
spectively ((N,M) are the iterators’ upper bound values).

Let us explain Eq. 4 through an example, consider an 1d array with
(Ty=1,Tx=25) and line = 16 elements. First, the actual size of the tile is
not 25 but 32, as the tiles are loaded in cache lines not elements. Second, the
first tile occupies (d 2516e − b

0
16c) = 2 cache lines, while the second tile occupies

(d 5016e − b
25
16c) = 3 cache lines.

Regarding s in Eq. 4, for the tiles that do not achieve data reuse and as a
consequence a different tile is accessed in each iteration, we assign cache space
twice the size of their tiles (s = 2). This way, not one but two consecutive
tiles are allocated into the cache in order for the second accessed tile not to
displace another array’s tile.

T ′i ((Tx, Ty) in Eq. 4) is given by one of the following three:

– the L1 tile size of the i iterator, if tiling for L1 is applied to the i iterator
– the unroll factor value of the i iterator, if tiling for L1 is not applied to the

i iterator and i has a smaller nesting level value (NLV) than the iterator
being tiled for L1

– the upper loop bound value of i iterator, if tiling for L1 is not applied to
the i iterator and i has a larger NLV than the iterator being tiled for L1
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Assuming an 8-way 32kbyte L1dc and MMM (Fig. 2), Eq. 3 gives (3 ≤
d TC1

4096e+ d
TA1

4096e+ d
TB1

4096e ≤ 8). The (TC1, TA1, TB1) values of the C-code shown
at the right of Fig. 2 are given in the bottom left box - to simplify the formulas,
we assume that (KK mod line = 0), (JJ mod line = 0); also, floating point
values are assumed, 4 bytes each (the NLV of k iterator is 6 while the NLV of
kk is 1).

In the shared cache case, Li in Eq. 3 is the corresponding shared cache
partition size used and each core uses only its assigned shared cache space.

We have implemented an automated C to C tool just for the seven studied
algorithms, but a general tool can be implemented by using POET [45] tool.

3.2 Reduction of the exploration space in Subsection 3.1 - optimality

Although it is impractical to run all different optimization sets in order to
prove that our methodology does not discard efficient schedules, a theoretical
explanation is given.

The key idea of register blocking / loop tiling is to exploit the available
registers / cache memory in order to reduce the number of data accesses to
the next level memory in memory hierarchy. The optimization sets that don’t
belong to Eq. 1, either use a larger number of registers than available or they
don’t take into account data reuse (and therefore registers are wasted). The
optimization sets that don’t belong to Eq. 3 either use larger tile sizes than
the cache or the tiles cannot remain in the cache. Thus, the optimization
sets that don’t belong to Eq. 1 and Eq. 3, refer to schedules where register
blocking and loop tiling have not been applied in an efficient way, increasing the
number of memory accesses in memory hierarchy. Although the optimization
sets in Eq. 1 and Eq. 3 do not always provide near-optimum performance,
as register blocking and loop tiling are not always performance efficient /
desirable, Eq. 1 and Eq. 3 do provide all the efficient register blocking and
loop tiling implementations, respectively. In other words, if the target metric
is to minimize the number of memory accesses, then the optimum solution will
be included in the corresponding inequality.

3.3 Approximate the number of memory accesses and arithmetical
instructions

Formal methods are delivered approximating the number of L1dc, L2c and
MM accesses as well integer and FP instructions to the optimization sets, HW
architecture and input size. This problem is theoretically formulated by ex-
ploiting the memory HW architecture details and the array memory access
patterns of each loop kernel. More specifically, one mathematical equation is
created for each memory and for each loop kernel providing the corresponding
value. Loop tiling and loop unroll transformations and input size, are inserted
directly to the aforementioned equations while array copying, scalar replace-
ment and register allocation transformations and the HW architecture, are
inserted indirectly (they have been used in order to create Eq.1-Eq.9).
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We are capable of approximating the number of memory accesses through
the whole memory hierarchy because no unexpected misses occur, as the tiles
fit and remain in the cache. This is because only the proposed tiles reside in
the cache, the tiles are written in consecutive MM locations, an empty cache
line is always granted for each different modulo and we use cache space for two
consecutive tiles and not one (when needed). Additionally,we refer to CPUs
with an instruction cache; in this case, the program code typically fits in L1
instruction cache; thus, it is assumed that the shared cache or unified cache (if
any) is dominated by data. Without loss of generality, this subsection assumes
2 levels of cache with equal line size and write-back write policy.

The equation approximating the number of L1dc accesses follows

L1.acc =

i=arrays∑
i=1

(

j=M∏
j=1

(upj − lowj)

Tj
×

k=P∏
k=1

Tk + offseti) + var (5)

where arrays is the number of arrays, M is the number of the iterators
that control the corresponding array and P is the number of the iterators that
loop unroll has been applied to (iterators that exist in the subscript of the
corresponding array only), e.g., regarding the C array in the code at the right
of Fig. 2, the first product of Eq. 5 refers to all the iterators but k (array
reference is outside k loop) while the second product refers to j iterator only.
(up, low, T ) give the bound values of the corresponding iterator (normally,
(up,low) define the algorithm’s input size); T refers to both tile size and unroll
factor value according to the corresponding iterator.

offset gives the number of L1 data accesses of the new loop kernel added
in the case the data array layout is transformed (array copying transformation
is applied). Offset is either (offseti = 2 × ArraySizei) or (offseti = 0)
depending on whether the data layout of the array is changed or not; in the
case that the layout is changed, the array has to be loaded and then written
again to memory, thus it is (offseti = 2×ArraySizei). (var) gives the number
of L1 accesses due to the scalar variables; given that we never use more registers
than available, no RF spills occur and thus (var ≈ 0).

Eq. 5 for the C-code at the right of Fig. 2 gives (2 × N3

KK , N3

4 , N3) L1
accesses for (C,A,B) arrays, respectively (C is both loaded and stored), and

in overall (L1.acc = 2× N3

KK + N3

4 + N3 + 4×N2).
As far as the number of L2c and MM accesses are concerned, they are

measured in cache lines not in elements. In this paper we give the formulas
referring to type1 subscript equations only, as the corresponding formulas for
type2 are more complex; however, in Section 4 we have validated both.

The number of L2c accesses is approximated by Eq. 6; at this step, only
the new/extra iterators (introduced by loop tiling) are processed and not the
initial iterators exist in the input code.

L2 Acc. =
∑i=arrays

i=1 (times.accessedi × L2c.linesi + offseti) + code (6)

where arrays is the number of the arrays, times.accessedi gives how many
times array i is accessed from L2c and is given by Eq. 8 and L2c.lines is the
number of L2c lines accessed for every i and is given by Eq. 7 (although the
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array’s tiles are of the same size, they occupy a different number of cache lines).
offset gives the number of L2c lines accessed because of the new loop kernel
added when array copying is applied (the data array layout is transformed)
and code refers to code/instruction accesses and always (Arrays acc.� code)
as a) the code size of loop kernels is small and fits in L1 instruction cache, b)
we are dealing with data dominant algorithms.

L2c.lines =



N

Ty
× Ty ×

j=M/Tx∑
j=1

(d
j × Tx

line
e − b

(j − 1)× Tx

line
c), row-wise data array layout

j=tiles∑
j=1

(d
j × (Tx× Ty)

line
e − b

(j − 1)× (Tx× Ty)

line
c), tile-wise

(7)
where (Tx, Ty) are the tile sizes of the iterators in the (x,y) dimension

of the array’s subscript, respectively, (N,M) are the corresponding iterators’
upper bounds (for 1D arrays Ty = 1), line is the cache line size in elements,
tiles is the number of tiles for array i in total and (tiles = N/Ty×M/Tx) or
(tiles = M/Tx) whether for 2D/1D arrays, respectively.

Let us give an example for the first branch of Eq. 7, consider a 2D floating
point array and a tile of size (10× 10) traversing the array in the x-axis. Also
consider that (line = 16) array elements. The first tile occupies 10× (d 1016e −
b 0
16c) = 10 cache lines while the second tile occupies 10× (d 2016e − b

10
16c) = 20

cache lines. Although the array’s tiles are of equal size, they occupy a different
number of cache lines. If the array in the previous example is written tile-wise
in MM, then the first tile lies between (0, 100), the second between (100, 200)
etc.

times.accessed =
∏j=N

j=1
(upj−lowj)

Tj
×

∏k=M
k=1

(upk−lowk)
Tk

(8)

where N is the number of new/extra iterators (generated by loop tiling)
that a) do not exist in the corresponding array’s subscript and b) exist above
of the iterators of the corresponding array. M is the number of new/extra
iterators that a) do not exist in the array and b) exist between of the iterators
of the array, e.g., regarding (C,A,B) arrays in Fig. 2, the iterators referring
to the first and second product of Eq. 8 are (kk, none), (jj, none), (none, ii),
respectively, giving ( N

KK ), ( N
JJ ) and ( N

II ), respectively.
The number of MM accesses is given by an equation identical to Eq. 6.

However, regarding times.accessed value in Eq. 8, we refer only to the iterators
created by applying tiling to the last level cache, e.g., regarding (C,A,B)
arrays of MMM (Fig. 2), the iterators referring to the first and second product
of Eq. 8 are (kk, none), (none, none), (none, ii), respectively, giving (tC =
N

KK ), (tA = 1) and (tB = N
II ), respectively.

In the case that more than one threads run in parallel under a shared cache,
the overall number of accesses is extracted by accumulating all the different
loop kernel equations. No more than p threads run in parallel, one to each
core, where p is the number of the cores. Different threads access only their
assigned shared cache space and thus different thread tiles do not conflict with
each other [21].
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The number of integer or FP instructions is approximated by:

Arith. instrs =

i=iterators∑
i=1

(

j=i∏
j=1

upj − lowj

Tj
× cj) + offset (9)

where iterators is the total number of iterators and (up, low, T ) are their
corresponding bound values, as in previous equations. cj is the number of
integer or FP assembly instructions measured inside j loop (assembly instruc-
tions occur between the open and close loop bracket). offset is the number
of arithmetical instructions of the extra loop kernels added (if array copying
is applied, i.e., the array layouts change).

(
∑i=iterators

i=1 (
∏j=i

j=1
upj−lowj

Tj
) gives the number of loop iterations in total

while cj gives the number of assembly instructions in loop j. Note that j
iterator varies from (j = 1 - it corresponds to the outermost iterator) to
(j = iterators - it corresponds to the innermost iterator), e.g., in Fig. 2, Eq. 9
gives ((N/KK)× c1 + (N2/(KK × II))× c2 + (N3/(KK × II × JJ))× c3 +
(N3/(KK × JJ)) × c4 + (N3/(KK × 4)) × c5 + (N3/4) × c6); as it can be
observed, the number of arithmetical instructions is strongly affected by a)
the number of the loops being tiled (more terms are introduced), b) tile size
/ unroll factor values of the innermost iterators (here, the unroll factor value
of j, i.e., 4, affects the number of instructions at the most).

Given that the c values depend on the target compiler, they cannot be ap-
proximated. Thus, we measure the c values for one transformation set and pre-
dict the c values of the others (where possible), e.g., in Fig. 2, the c values (as-
sembly instructions) almost remain unchanged by changing the (KK, II, JJ)
values (apart from their maximum and minimum ones because in this case,
the number of the loops changes), but not by changing the (j) unroll factor
value or the number of the loops being tiled, because the loop body changes
and thus more/less assembly instructions are inserted.

We take advantage of the fact that the c values almost remain unchanged
for different tile sizes, suffice the array layouts remain unchanged and the tile
sizes do not take their maximum/minimum values. In Subsection 4.1, we show
that we can approximate the number of arithmetical instructions with very
good accuracy, even using ’O2’ optimization level. The c values for different
unroll factor values and data layouts are significantly changed and cannot be
predicted.

3.4 Execution Time (ET) model

Modern memory systems support concurrent data accesses at each layer of
the memory hierarchy and therefore the ET value cannot be given by the well
known AMAT model, but by its extension, i.e., C-AMAT [56] [51], where the
notions of hit/miss concurrency and pure miss, are introduced. A pure miss, is
a cache miss which contains at least one pure miss cycle, which is a cycle that
does not overlap with a hit cycle. The intuition behind pure misses is based
on the fact that not all cache misses will cause processor stall, but rather only
pure misses. So, according to C-AMAT, the access time of a single memory is
given by (H/CH +(pMR×pAMP )/CM ), where H and CH are the hit latency
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Fig. 3 Simulated and approximated ET values for Matrix-Matrix Multiplication (MMM)
algorithm

and hit concurrency, pMR and pAMP are the pure miss rate and pure average
miss penalty and CM is the average pure miss concurrency.

The parameter CH represents hit concurrency, which results from multi-
port, multibanked and pipelined cache structures, while the parameter CM

represents miss concurrency, which results from nonblocking cache structures
and data prefetching; these parameters can also represent both hit concur-
rency and miss concurrency that result from processor ILP design techniques,
such as out-of-order execution and multiple issue pipelining. Furthermore, 1 ≤
CH ≤ CHmax where (Cmax = #cacheports×#cache.related.pipeline.stages)
and 1 ≤ CM ≤ CMmax where CMmax is determined by the number of miss
status holding register (MSHR) entries.

C-AMAT cannot be used by our method in its current form as the number
of pure misses is unknown; thus we adopt C-AMAT’s idea and construct the
following formula to approximate the ET for data dominant loop kernels:

ET ≈ Tdata ≈ L1.acc×L1.lat
c1 + L2.acc×L2.lat

c2 + MM.acc×MM.max.lat
c3 (10)

where (L1.lat, L2.lat,MM.max.lat) are the L1,L2 and maximum MM la-
tency values (L2.lat and MM.lat refer to the time needed for a whole cache
line to be loaded), c1 = CH and (c2-c3) give both hit and miss concurrency.
(c1-c3) values depend on both HW and SW and (ci ≥ 1). The L1 and L2
latency values are constants while MM’s latency (MM.lat) is not (the reason
follows).

MM can be considered as a 2D array. MM.lat is mainly affected by a)
the time needed to find and activate the desired row (aka MM page), b) find
the desired column, c) transfer the desired word; keep in mind that if the
next desired word is a) the following, it is transferred at minimum cost, b) in
the same page, it is transfered at low cost, c) in another row, in great cost
as another row has to be decoded and activated. Although our methodology
optimizes MM accesses and therefore MM.lat value is kept low (on average),
we insert its upper bound in Eq. 10, i.e., MM.max.lat, and its lower values
are handled through c3.
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An analysis on which parameters affect (c1-c3) follows. The (c1-c3) vary de-
pending on both HW and SW characteristics and therefore different processors
and different optimization sets give different (c1-c3) values. As it has briefly
explained above, the c3 value refers to both MM latency and concurrency and
therefore c3 depends on the data access patterns and on how arrays have been
stored into MM; accessing consecutive data and data from the same memory
bank gives a higher c3 value; moreover, by accessing consecutive data, the
HW prefetchers are enabled and therefore c3 is further increased. Regarding
c2, its value is increased when the tiles that reside in L2 are accessed multiple
times (reused) and when the L2 cache lines are utilized (spatial locality), as
the probability of fetching data from L2 when an L2 miss has been occurred is
increased. Furthermore, accessing consecutive cache lines enables the L1 HW
prefetchers (if any). Likewise, c1 depends on data reuse in L1 but also on the
ratio between the L/S and array arithmetic (in this paper FP) instructions in
the loop kernel (L/S.ratio); high ratio values refer to low register usage and
Instruction Per Cycle (IPC) values and as a consequence to low c1 values. The
L/S.ratio is affected by the register blocking algorithm applied in Subsection
3.1. It is important to note that all the optimization sets generated by Subsec-
tion 3.1 use consecutive MM locations, achieve data reuse and low L/S.ratio
values.

So, the key idea is that although (c1-c3) vary depending on both HW and
SW characteristics, their variation is low, as all the remaining optimization
sets used in Eq. 10: a) refer to the same CPU and MM, and loop kernel and b)
have similar data access behavior (consecutive data accesses, data reuse etc).
Given that first, ET ≈ f(L1.acc, L2.acc,MM.acc) and second, the number
of memory accesses have been approximated for each optimization set, the
(c1-c3) values can be computed by measuring the ET value of three or more
optimization sets and solving the system of equations. The (c1-c3) values are
computed by using three or more samples (runs); as samples, we can chose
the ones achieving a very low Eq. 10 value, as they are more than likely to
belong to the final exploration space and thus tested/run anyway. We have
plotted Eq. 10 together with the simulated ET of different versions of seven
loop kernels on two different processors and the Eq. 10 follows the trend in
all cases; the algorithm giving the highest variation is MMM and is shown in
Fig. 3. In Subsection 4.2, we show that the percent error in Eq. 10 is about
11% on average and 23% at maximum. It is important to note that part of the
variation is because of the error occurred in computing the number of data
accesses (about 2%-3%).

To conclude, the ET values of the Subsection 3.1 binaries can be bounded
and generate ETMAX/ETMIN values, as each point in Fig. 3 varies only be-
tween ±23% (at maximum) and therefore the exploration space can be further
reduced (the scope of this paper is not to find the exact threshold value but
to showcase the methodology). Alternatively, we can select a ’good’ optimiza-
tion set fast, without searching, by using Eq. 10 with median c1-c3 values, as
the aforementioned equation is a good metric to chose an efficient schedule
qualitatively.
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Last, in this paper we refer to algorithms whose ET mainly depends on the
number of data accesses, but Eq.10 can be extended to algorithms whose ET
value is affected by the number of arithmetical instructions too (approximated
by Eq.9).
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3.5 Power consumption (P) model

It is clear that the aforementioned transformations affect P in all the CPU
components and MM and thus a different P model is generated for each dif-
ferent CPU and MM. First, we made a detailed analysis on which parameters
affect P on each CPU component. L1dc and L2c P values are linear to the
number of L1dc/L2c accesses (approximated by Eq. 5 and Eq. 6) while af-
fected by the HW architecture set (cache size,cache line size, associativity,
number of banks, throughput, latency,output width, cache policy - Fig. 4).
Similarly, the DDR P values are linear to the number of MM accesses, while
affected by the number of memory controllers, number of channels, number
of ranks, block size, transfer rate, databus width etc. LoadQ/StoreQ P values
are linear to the number of L/S instructions (approximated by Eq. 5). The
ALU, instruction buffer and instruction decoder P values are linear to the
number of ALU instructions and total number of instructions (Eq. 9+Eq. 5),
respectively (Fig. 4). Second, an off-line training phase is applied for the target
CPU and MM, in order to generate the corresponding P equations; the custom
HW architecture is given as input to the mcpat [30] simulator and a number
of simulations takes place for different values of L1dc,L2c,MM accesses and
int, FP instructions. Although this work can be extended to take into account
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more CPU components, in this paper, we approximate P by using Eq. 11; thus,
we do not take into account P on the renaming unit, instruction cache, RF,
TLBs, branch predictor and instruction scheduler.

P = PL1(f(L1.acc)) + PL2(f(L2.acc)) + PDDR(f(DDR.acc))+

PL/S Queue(f(L/S.instrs)) + PALU (f(ALU.instrs))+

Pinstr.buffer(f(instrs)) + Pinstr.decoder(f(instrs))

(11)

The coefficients of Eq. 11 are derived by the custom CPU and MM charac-
teristics (off-line training phase). The independent variables of Eq. 11 are the
memory access and instruction values given in Subsection 3.3.

Regarding Energy consumption (E), it is the product of Eq. 10 and Eq. 11;
thus, if the target metric is E, we can either bound the new equation and
apply searching or select a ’good’ schedule qualitatively as in the previous
subsection.

Algorithm 1: Proposed Methodology
Step 1. extract SW characteristics
Step 2. apply proposed Register blocking algorithm
for (all different optimization sets (RF sets)) do

Step 3. apply loop tiling alg. to L1
for (all different optimization sets (L1 sets)) do

Step 4. apply loop tiling alg. to L2
for (all different optimization sets (L2 sets)) do

Step 5a. generate the memory access equations - Eq. 5-Eq. 8 (all memories)
Step 5b. compute the num of accesses in memory hierarchy
Step 6. arithmetical instructions
if (the num of arith. instrs cannot be predicted for the current set) then

generate output C code (from C to C) for the current set
generate assembly code - cross compile
measure the num of FP and integer assembly instrs (get the c values of Eq. 9)

else
predict the num of arith. instrs (Eq. 9)

end if
Step 7. compute the ET,P,E values for the current set
Step 8. store only the best set(s) depending on the cost function
(ET,E,L1,L2,MM)

end for
change the nesting level values of the iterators generated in step4

end for
change the nesting level values of the iterators generated in step3

end for

3.6 Proposed framework - Putting it all together

The proposed methodology is given in Algorithm 1. All the steps have been
explained in the previous subsections. All different combinations of loop inter-
change are generated as it affects the proposed equations.

In the case that the target metric is not the ET or E but the minimum
number of Li memory accesses and therefore the minimum number of L1dc,
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L2c or MM accesses is requested, then Algorithm 1 is changed accordingly,
i.e., steps (1, 2, 5, 8), (1, 3, 5, 8) or (1, 4, 5, 8) are executed only, respectively. It
is important to note that in this case the number of different optimization sets
that have to be further processed by Subsection 3.3 is smaller, i.e., the lower
bound values of Eq. 1 and Eq. 3 are no longer needed to be that small. For
example, by using a larger lower bound value in Eq. 1, register utilization is
increased and therefore the number of L1 accesses is reduced; however, as we
have already explained in Subsection 3.1, these optimization sets may conflict
to those minimizing the number of MM or L2c accesses, which may be more
critical. Thus, if the binary achieving the minimum number of L1 accesses is
requested, there is no need to use such a small Eq. 1 lower bound value. The
same holds for L2c and MM too.
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4 Experimental Results

The proposed methodology has been evaluated in terms of memory accesses,
arithmetical instructions, ET, P, E and exploration space. The experimen-
tal results are obtained by using a) gem5 [8] and McPAT [30] simulators,
simulating both a generic x86 and an ARMv8-A CPU b) the quad-core Intel
i7 6700 CPU (CentoS-7 OS) by using both normal C-code and hand written
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code with AVX extensions, c) the embedded ARM Cortex-A9 processor on a
Zybo Zynq-7000 FPGA platform using petalinux OS. The gem5 cache subsys-
tem consists of a 4K, 64 byte block, 8-way, dual-ported, 2 cycle L1 data and
instruction caches and a 16-way, 32KB L2, 20-cycle L2 cache. The gem5 simu-
lation results are forwarded as input to McPAT; McPAT provides dynamic and
leakage power values of both processor and main memory in detail. The energy
consumption is computed by (Etotal = (Pdynamic + Pleakage) ∗ Exec.time).

The bench-suite used in this study consists of seven well-known data domi-
nant static kernels taken from PolyBench/C benchmark suite version 4.1 [39].
These are: Matrix-Matrix Multiplication (MMM), Matrix-Vector Multiplica-
tion (MVM), Gaussian Blur (3×3 filter), Finite Impulse Response filter (FIR),
a kernel containing mixed vector multiplication and matrix addition (Gemver
- first loop kernel only), a multiresolution analysis kernel (Doitgen) and BiCG
sub Kernel (Bicg). The source code of the bench-suite used, is given in Fig. 7.
The kernels are compiled using gcc 4.9.4 and arm-linux-gnueabi-gcc 4.9.2 com-
pilers, for x86 and arm, respectively. The proposed method is compared to gcc
’O3’ option as well as to hand written optimized code and Polly [16]. The
proposed methodology output C-codes are compiled with ’O2’ optimization
level in order to the compiler be less aggressive.

4.1 Validation of Eq.5-Eq.9

First, a validation on the number of L1, L2 and MM accesses is given and
in particular Eq.5-Eq.8, on gem5 simulator; the number of memory accesses
has been measured for different optimization sets and the maximum percent

error (error% = |experimental−theoretical|
theoretical ×100) values are shown (Fig. 5). The

proposed equations give from 2.2% up to 3.6% less accesses.
Second, a validation on the number of arithmetical instructions is given

(Eq. 9) for both normal C-code and hand written code with AVX instruc-
tions and 2 different compilers with both ’O1’ and ’O2’ options (Fig. 5). The
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//MMM
for (i=0;i!=N;i++)
for (j=0;j!=N;j++)
for (k=0;k!=N;k++)
C[i][j]+=A[i][k]*B[k][j];

//MVM
for (i=0;i<M;i++)
for (j=0;j<M;j++) 
Y[i]+=A[i][j]*X[j];

//FIR
for( i = 0; i < N ; i++ )

for( j = 0; j < M; j++ )
out[i] += in[ i + j ] * kernel[ j ];

//GEMVER
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

//Gaussian Blur
for (row = 1; row < N-1; row++) {

for (col = 1; col < M-1; col++) { 
tmp=0;
for (row2=-1; row2<=1; row2++) {
for (col2=-1; col2<=1; col2++) {

tmp += (image[row+row2][col+col2] * mask[1+row2][1+col2]);
}         }

image2[row][col]=tmp/const;
} }

//Diotgen
for (r = 0; r < N; r++)

for (q = 0; q < N; q++)  
for (p = 0; p < N; p++)  

for (s = 0; s < N2; s++)
sum[r][q][p] = sum[r][q][p] + A[r][q][s] * C[s][p];

//MMM
//B array has been transposed to column-wise
for (i=0;i!=N;i++)
for (j=0;j!=N;j++){
ymm0= _mm256_setzero_ps();
for (k=0;k!=N;k+=8){
ymm1=_mm256_load_ps( &A[i][k]);
ymm2=_mm256_load_ps( &B2[j][k]);
ymm0+=_mm256_mul_ps(ymm1,ymm2);

}
ymm2 = _mm256_permute2f128_ps(ymm0 , ymm0 , 1);
ymm0 = _mm256_add_ps(ymm0, ymm2);
ymm0 = _mm256_hadd_ps(ymm0, ymm0);
ymm0 = _mm256_hadd_ps(ymm0, ymm0);
xmm1=_mm256_extractf128_ps(ymm0,0)
_mm_store_ss((float *) &C[i][j], xmm1);
}

//MVM
for (i=0;i!=M;i++){

num1= _mm256_setzero_ps();
for (j=0;j<M;j+=8){
num5=_mm256_load_ps(X + j );
num0=_mm256_load_ps(&A[i][j]);
num1+=_mm256_mul_ps(num0,num5);

}
ymm2 = _mm256_permute2f128_ps(num1 ,num1,1);
num1 = _mm256_add_ps(num1, ymm2);
num1 = _mm256_hadd_ps(num1, num1);
num1 = _mm256_hadd_ps(num1, num1);
xmm2=_mm256_extractf128_ps(num1,0);
_mm_store_ss((float *) Y+i, xmm2);
}

//FIR
for( i = 0; i != N; i++ ){

num1= _mm256_setzero_ps();
for( j = 0; j != M; j+=8 ){
num5=_mm256_load_ps(kernel + j );
num0=_mm256_loadu_ps(in +i+j);
num1+=_mm256_mul_ps(num0,num5);

}
ymm2 = _mm256_permute2f128_ps(num1 ,num1,1);
num1 = _mm256_add_ps(num1, ymm2);
num1 = _mm256_hadd_ps(num1, num1);
num1 = _mm256_hadd_ps(num1, num1);
xmm2=_mm256_extractf128_ps(num1,0);
_mm_store_ss((float *) out+i, xmm2);
}

//Diotgen
//Ctr array has been transposed to column-wise
for (r = 0; r < N; r++)

for (q = 0; q < N; q++)  
for (p = 0; p < N; p++)  { 

num3= _mm256_setzero_ps(); 
for (s = 0; s < N2; s+=8){
num1=_mm256_load_ps(&A[r][q][s]);
num2=_mm256_load_ps(&Ctr[s][p]);
num3+=_mm256_mul_ps(num1,num2);

}
ymm2 = _mm256_permute2f128_ps(num3 , num3 , 1);
num3 = _mm256_add_ps(num3, ymm2);
num3 = _mm256_hadd_ps(num3, num3);
num3 = _mm256_hadd_ps(num3, num3);
xmm2=_mm256_extractf128_ps(num3,0);
_mm_store_ss((float *)&sum[r][q][p], xmm2);   }

//GEMVER
for (i=0;i!=N;i++){
xmm1=_mm_load_ps1(u1 + i);
xmm2=_mm_load_ps1(u2 + i);
num3=_mm256_broadcast_ps(&xmm1);
num4=_mm256_broadcast_ps(&xmm2);

for (j=0;j<N;j+=8){
num1=_mm256_load_ps(v1 + j);
num2=_mm256_load_ps(v2 + j);
num5=_mm256_mul_ps(num1,num3);
num5+=_mm256_mul_ps(num2,num4);
num6=_mm256_load_ps(&A[i][j]);
num6+=num5;
_mm256_store_ps((float *) &A[i][j], num6);

}    }

//Gaussian Blur
for (i = 1; i < N-1; i++) {

for (j = 1; j < M-1; j++) {
r0 = _mm_loadu_si128((__m128i *) &image[i-1][j-1]);
r0 = _mm_madd_epi16(r0,const0);
r1 = _mm_loadu_si128((__m128i *) &image[i][j-1]);
r1 = _mm_madd_epi16(r1,const1);
r2 = _mm_loadu_si128((__m128i *) &image[i+1][j-1]);
r2 = _mm_madd_epi16(r2,const2);
r0 = _mm_add_epi32(r0,r1);
r2 = _mm_add_epi32(r2,r0);
r11 = _mm_cvtepi32_ps(r2);
r11 = _mm_hadd_ps(r11,r11);
r11 = _mm_div_ps(r11,const3);
_mm_store_ss((float *) &image2[i][j], r11);

}    }

Fig. 7 Source code used to evaluate the proposed methodology
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Table 1 Evaluation over gcc using gem5 and mcpat (MMM, MVM and FIR)

MMM
x86-N=192 x86-N=360 ARM-N=192 ARM-N=360

gcc best ET gcc best ET gcc best ET gcc best ET
Instrs 4.99E+07 3.52E+07 3.28E+08 2.27E+08 4.98E+07 1.94E+07 2.81E+08 1.47E+07

DL1 acc. 1.51E+07 5.40E+06 9.94E+07 3.43E+07 1.42E+07 8.37E+06 9.36E+07 6.49E+06
L2 acc. 7.73E+06 1.13E+05 5.28E+07 6.05E+05 7.28E+06 1.62E+05 5.00E+07 1.27E+05

DDR acc. 7.71E+06 4.60E+04 5.46E+06 2.28E+05 7.27E+06 4.25E+04 2.95E+06 6.43E+04
cycles 2.04E-01 1.49E-02 4.74E-01 8.86E-02 1.91E-01 7.71E-03 3.99E-01 6.51E-03

E(total) 8.86E-01 7.44E-02 2.27E+00 4.53E-01 5.38E-01 2.55E-02 1.17E+00 2.15E-02
L2 (J) 8.99E-03 6.63E-04 2.34E-02 3.93E-03 8.43E-03 3.51E-04 2.00E-02 3.03E-04

DDR (J) 4.04E-01 2.72E-02 8.83E-01 1.61E-01 3.79E-01 1.41E-02 7.35E-01 1.21E-02
Instr.Buf(J) 5.67E-03 1.27E-03 3.14E-02 8.18E-03 4.70E-03 4.97E-04 2.16E-02 3.83E-04
Decoder(J) 7.72E-03 1.72E-03 4.25E-02 1.11E-02 6.55E-03 6.88E-04 3.00E-02 5.30E-04

DL1 (J) 6.89E-02 6.41E-03 1.81E-01 3.87E-02 6.29E-02 5.12E-03 1.51E-01 4.44E-03
LoadQ (J) 3.72E-03 1.69E-04 1.69E-02 1.05E-03 3.96E-03 2.17E-04 1.63E-02 1.70E-04
StoreQ (J) 6.90E-03 2.99E-04 3.25E-02 1.86E-03 7.42E-03 4.14E-04 3.15E-02 3.22E-04
Int.alu (J) 2.83E-02 2.89E-03 8.74E-02 1.76E-02 5.22E-03 2.58E-04 1.24E-02 2.19E-04
FP.alu (J) 1.17E-01 1.44E-02 3.99E-01 9.15E-02 2.40E-02 1.32E-03 6.77E-02 1.05E-03

MVM
x86-M=1008 x86-M=4200 ARM-M=1008 ARM-M=4200

gcc best ET gcc best ET gcc best ET gcc best ET
Instrs 6.18E+06 5.60E+06 1.06E+08 8.52E+07 5.09E+06 2.57E+06 8.82E+07 4.49E+07

DL1 acc. 2.10E+06 1.39E+06 3.64E+07 2.09E+07 2.04E+06 1.20E+06 3.53E+07 2.09E+07
L2 acc. 1.32E+05 7.59E+04 2.22E+06 1.37E+06 1.29E+05 8.09E+04 2.22E+06 1.36E+06

DDR acc. 6.38E+04 6.48E+04 1.55E+06 1.37E+06 6.39E+04 8.09E+04 1.56E+06 1.36E+06
cycles 7.75E-03 3.87E-03 1.34E-01 6.59E-02 7.21E-03 3.24E-03 1.24E-01 5.47E-02

E(total) 3.37E-02 1.82E-02 2.54E+00 3.07E-01 2.00E-02 9.44E-03 3.45E-01 1.58E-01
L2 (J) 3.43E-04 1.71E-04 6.19E-03 2.89E-03 3.19E-04 1.42E-04 5.45E-03 2.40E-03

DDR (J) 1.43E-02 7.30E-03 1.19E+00 1.25E-01 1.33E-02 6.22E-03 2.31E-01 1.05E-01
Instr.Buf(J) 3.35E-04 2.32E-04 4.24E-02 3.50E-03 1.74E-04 1.14E-04 3.02E-03 1.78E-03
Decoder(J) 4.54E-04 3.14E-04 5.72E-02 4.75E-03 2.43E-04 1.59E-04 4.21E-03 2.48E-03

DL1 (J) 3.11E-03 1.67E-03 1.28E-01 2.73E-02 2.83E-03 1.36E-03 4.86E-02 2.31E-02
LoadQ (J) 7.02E-05 4.77E-05 6.62E-03 8.16E-04 6.61E-05 5.79E-05 1.14E-03 8.08E-04
StoreQ (J) 1.20E-04 8.44E-05 1.29E-02 1.46E-03 1.13E-04 1.07E-04 1.96E-03 1.47E-03
Int.alu (J) 1.46E-03 7.34E-04 1.44E-01 1.09E-02 2.33E-04 1.00E-04 4.00E-03 1.71E-03

FIR
x86-(N=6000,M=1200) x86-(N=9000,M=1500) ARM-(N=6000,M=1200) ARM-(N=9000,M=1500)

gcc best ET gcc best ET gcc best ET gcc best ET
Instrs 5.77E+07 3.92E+07 1.08E+08 7.34E+07 3.61E+07 1.81E+07 6.76E+07 3.40E+07

DL1 acc. 1.49E+07 7.89E+06 2.79E+07 1.48E+07 1.44E+07 8.15E+06 2.71E+07 1.53E+07
L2 acc. 9.30E+05 4.86E+03 1.72E+06 9.02E+03 9.30E+05 4.85E+03 1.74E+06 9.25E+03

DDR acc. 1.28E+03 1.27E+03 1.89E+03 2.02E+03 1.30E+03 1.12E+03 1.92E+03 2.05E+03
cycles 3.65E-02 1.36E-02 6.84E-02 2.54E-02 1.54E-02 4.69E-03 2.87E-02 8.76E-03

E(total) 1.72E-01 7.10E-02 3.23E-01 1.33E-01 4.92E-02 1.74E-02 9.16E-02 3.26E-02
L2 (J) 1.65E-03 5.95E-04 3.09E-03 1.11E-03 7.25E-04 2.05E-04 1.35E-03 3.84E-04

DDR (J) 6.61E-02 2.46E-02 1.24E-01 4.60E-02 2.79E-02 8.50E-03 5.18E-02 1.59E-02
Instr.Buf(J) 2.68E-03 1.39E-03 5.02E-03 2.60E-03 1.22E-03 4.60E-04 2.30E-03 8.63E-04
Decoder(J) 3.63E-03 1.88E-03 6.79E-03 3.51E-03 1.69E-03 6.35E-04 3.18E-03 1.19E-03

DL1 (J) 1.62E-02 6.77E-03 3.03E-02 1.26E-02 9.15E-03 3.93E-03 1.71E-02 7.36E-03
LoadQ (J) 4.41E-04 2.23E-04 8.25E-04 4.18E-04 3.76E-04 2.01E-04 7.08E-04 3.77E-04
StoreQ (J) 7.83E-04 4.10E-04 1.47E-03 7.67E-04 7.12E-04 3.89E-04 1.34E-03 7.31E-04
Int.alu (J) 9.30E-03 3.09E-03 1.74E-02 5.77E-03 7.63E-04 1.64E-04 1.42E-03 3.06E-04
FP.alu (J) 2.34E-02 1.38E-02 4.38E-02 2.59E-02 2.20E-03 1.03E-03 4.10E-03 1.93E-03

number of integer instructions is measured for one transformation set and
then predicted for the others; we take advantage of the fact that the c val-
ues almost remain unchanged for different tile sizes. The insertion of an extra
assembly instruction in the innermost/outermost loop body, leads to a sig-
nificant/meaningless error value in Eq. 9, respectively. ’O1’ option gives a
meaningless error in all cases. Regarding ’O2’ option, there is an extremely
small number of specific tile sizes that affect the innermost assembly loop ker-
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Table 2 Evaluation over gcc using gem5 and mcpat (Diotgen, Gemver and Gaussian Blur)

Diotgen
x86-N=96,N2=96 x86-N=96,N2=1008 ARM-N=96,N2=96 ARM-N=96,N2=1008
gcc best ET gcc best ET gcc best ET gcc best ET

Instrs 6.02E+08 4.63E+08 6.25E+09 4.95E+09 6.01E+08 2.51E+08 6.25E+09 2.68E+09
DL1 acc. 1.82E+08 9.78E+07 1.90E+09 1.05E+09 1.72E+08 1.04E+08 1.79E+09 1.11E+09
L2 acc. 9.50E+07 7.81E+05 9.81E+08 1.02E+07 8.95E+07 7.81E+05 9.23E+08 1.04E+07

DDR acc. 5.49E+06 2.79E+05 9.80E+08 7.85E+06 5.48E+06 2.77E+05 9.23E+08 7.86E+06
cycles 7.41E-01 1.74E-01 2.59E+01 2.08E+00 6.97E-01 9.34E-02 2.44E+01 1.19E+00

E(total) 3.63E+00 8.97E-01 1.13E+02 1.04E+01 2.07E+00 3.09E-01 6.84E+01 3.81E+00
L2 (J) 3.74E-02 7.66E-03 1.14E+00 9.18E-02 3.50E-02 4.12E-03 1.07E+00 5.27E-02

DDR (J) 1.37E+00 3.16E-01 5.12E+01 3.80E+00 1.29E+00 1.70E-01 4.83E+01 2.18E+00
Instr.Buf(J) 5.49E-02 1.67E-02 7.24E-01 1.78E-01 4.09E-02 6.46E-03 5.84E-01 6.93E-02
Decoder(J) 7.44E-02 2.25E-02 9.86E-01 2.41E-01 5.66E-02 8.94E-03 8.13E-01 9.60E-02

DL1 (J) 2.92E-01 8.55E-02 8.73E+00 9.85E-01 2.67E-01 6.03E-02 8.00E+00 7.25E-01
LoadQ (J) 3.00E-02 2.74E-03 5.02E-01 2.99E-02 2.89E-02 2.64E-03 4.92E-01 2.89E-02
StoreQ (J) 5.81E-02 5.01E-03 9.35E-01 5.42E-02 5.59E-02 5.04E-03 9.20E-01 5.46E-02
Int.alu (J) 1.39E-01 3.82E-02 3.52E+00 4.38E-01 2.30E-02 3.31E-03 6.64E-01 4.04E-02

Gemver
x86-N=408 x86-N=816 ARM-N=408 ARM-N=816

gcc best ET gcc best ET gcc best ET gcc best ET
Instrs 1.75E+06 1.50E+06 6.74E+06 5.75E+06 1.51E+06 9.51E+05 6.00E+06 4.02E+06

DL1 acc. 6.77E+05 4.69E+05 2.71E+06 1.87E+06 6.69E+05 3.92E+05 2.67E+06 1.67E+06
L2 acc. 4.36E+04 2.43E+04 1.71E+05 9.50E+04 4.39E+04 2.59E+04 1.71E+05 1.07E+05

DDR acc. 2.07E+04 2.07E+04 8.33E+04 8.94E+04 2.07E+04 2.07E+04 8.33E+04 8.33E+04
cycles 2.32E-03 9.71E-04 8.75E-03 3.81E-03 1.98E-03 6.21E-04 7.81E-03 2.36E-03

E(total) 1.01E-02 4.70E-03 3.80E-02 1.84E-02 5.43E-03 1.93E-03 2.15E-02 7.56E-03
L2 (J) 1.04E-04 4.42E-05 3.92E-04 1.72E-04 8.86E-05 2.83E-05 3.49E-04 1.08E-04

DDR (J) 4.30E-03 1.86E-03 1.62E-02 7.31E-03 3.67E-03 1.22E-03 1.45E-02 4.65E-03
Instr.Buf(J) 8.40E-05 5.81E-05 3.21E-04 2.21E-04 4.92E-05 2.90E-05 1.96E-04 1.26E-04
Decoder(J) 1.15E-04 7.87E-05 4.36E-04 2.99E-04 6.86E-05 4.02E-05 2.73E-04 1.75E-04

DL1 (J) 9.57E-04 4.66E-04 3.62E-03 1.80E-03 8.10E-04 3.10E-04 3.20E-03 1.23E-03
LoadQ (J) 2.33E-05 1.49E-05 8.82E-05 6.08E-05 2.08E-05 1.10E-05 8.23E-05 4.89E-05
StoreQ (J) 4.02E-05 2.73E-05 1.53E-04 1.12E-04 3.63E-05 2.05E-05 1.44E-04 9.16E-05
Int.alu (J) 3.74E-04 1.52E-04 1.38E-03 5.52E-04 6.02E-05 1.92E-05 2.38E-04 7.64E-05
FP.alu (J) 1.31E-03 7.78E-04 5.03E-03 3.14E-03 2.18E-04 9.19E-05 8.65E-04 3.60E-04

Gaussian Blur
x86-N=362 x86-N=722 ARM-N=362 ARM-N=722

gcc best ET gcc best ET gcc best ET gcc best ET
Instrs 1.89E+07 3.92E+06 7.53E+07 1.88E+07 1.49E+07 3.01E+06 5.96E+07 1.20E+07

DL1 acc. 2.41E+06 6.06E+05 9.62E+06 2.61E+06 2.59E+06 5.28E+05 1.04E+07 2.10E+06
L2 acc. 4.07E+04 2.93E+04 1.62E+05 1.17E+05 4.08E+04 2.91E+04 1.62E+05 1.24E+05

DDR acc. 2.44E+04 2.44E+04 9.75E+04 9.75E+04 2.43E+04 2.43E+04 9.74E+04 9.74E+04
cycles 1.43E-02 2.92E-03 5.58E-02 1.22E-02 6.55E-03 1.60E-03 2.53E-02 5.84E-03

E(total) 6.37E-02 1.33E-02 2.50E-01 5.70E-02 1.97E-02 4.87E-03 7.69E-02 1.83E-02
L2 (J) 6.33E-04 1.36E-04 2.48E-03 5.67E-04 2.95E-04 7.76E-05 1.14E-03 2.86E-04

DDR (J) 2.59E-02 5.41E-03 1.01E-01 2.26E-02 1.20E-02 3.00E-03 4.62E-02 1.10E-02
Instr.Buf(J) 9.07E-04 1.44E-04 3.61E-03 7.27E-04 4.21E-04 7.50E-05 1.68E-03 3.43E-04
Decoder(J) 1.23E-03 1.95E-04 4.89E-03 9.86E-04 5.82E-04 1.04E-04 2.33E-03 4.75E-04

DL1 (J) 5.27E-03 1.14E-03 2.07E-02 4.75E-03 2.82E-03 8.39E-04 1.11E-02 3.08E-03
LoadQ (J) 9.47E-05 2.84E-05 3.72E-04 9.58E-05 8.93E-05 1.65E-05 3.55E-04 6.44E-05
StoreQ (J) 1.51E-04 4.89E-05 5.94E-04 1.59E-04 1.61E-04 2.82E-05 6.43E-04 1.14E-04
Int.alu (J) 3.59E-03 4.08E-04 1.42E-02 1.83E-03 2.97E-04 4.86E-05 1.17E-03 1.87E-04
FP.alu (J) 7.92E-03 2.23E-03 3.13E-02 1.01E-02 8.50E-04 2.39E-04 3.32E-03 9.63E-04

nel code and as a consequence the error values. This disunion refers only to
cases that the tile size of the innermost iterator is twice its minimum value;
in that case the compiler is likely to fully unroll that loop, affecting the code.
Thus, this case has to be included to the first branch in Step 6 (Algorithm 1).
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Table 3 Evaluation over gcc and hand written AVX code on 2 real processors

MMM - ZYBO MVM - ZYBO Gemver - ZYBO
in1-N=1200, in2-N=1800 in1-M=3900, in2-M=7800 in1-N=2000, in2-N=4000

Binaries ET (sec) P (W) E (J) ET (sec) P (W) E (J) ET (sec) P (W) E (J)
default-in1 3.48E+01 5.00E-01 1.74E+01 1.18E-01 4.00E-01 4.72E-02 1.25E-01 5.50E-01 6.88E-02
best ET-in1 4.41E+00 4.75E-01 2.09E+00 5.50E-02 3.35E-01 1.84E-02 5.30E-02 5.00E-01 2.65E-02
best E-in1 5.40E+00 3.75E-01 2.03E+00 5.50E-02 3.35E-01 1.84E-02 5.30E-02 5.00E-01 2.65E-02
default-in2 1.38E+02 4.80E-01 6.62E+01 4.70E-01 4.10E-01 1.93E-01 4.90E-01 5.75E-01 2.82E-01
best ET-in2 1.55E+01 5.00E-01 7.75E+00 2.20E-01 3.50E-01 7.70E-02 2.10E-01 5.00E-01 1.05E-01
best E-in2 1.79E+01 3.80E-01 6.80E+00 2.20E-01 3.50E-01 7.70E-02 2.10E-01 4.75E-01 9.98E-02

MMM - i7 MVM - i7 Gemver - i7
in1-N=1920 in1-M=4032 in1-N=4032

in2-N=3960, in3-N=8000 in2-M=8064, in3-M=16128 in2-N=2016, in3-N=1008
default-in1 1.11E+00 4.75E+01 5.27E+01 1.66E-02 4.22E+01 7.01E-01 8.10E-03 3.85E+01 3.12E-01
AVX-in1 9.70E-01 4.70E+01 4.56E+01 2.00E-03 4.58E+01 9.16E-02 7.70E-03 3.56E+01 2.74E-01

best ET-in1 2.50E-01 4.60E+01 1.15E+01 9.40E-04 4.80E+01 4.51E-02 6.40E-03 3.52E+01 2.25E-01
best E-in1 2.57E-01 4.45E+01 1.14E+01 9.40E-04 4.80E+01 4.51E-02 6.40E-03 3.52E+01 2.25E-01
default-in2 9.92E+00 4.80E+01 4.76E+02 1.02E-01 4.18E+01 4.25E+00 2.10E-03 4.47E+01 9.39E-02
AVX-in2 8.90E+00 4.66E+01 4.15E+02 8.43E-03 4.67E+01 3.94E-01 2.00E-03 3.70E+01 7.40E-02

best ET-in2 2.30E+00 4.60E+01 1.06E+02 3.30E-03 4.92E+01 1.62E-01 1.54E-03 3.65E+01 5.62E-02
best E-in2 2.40E+00 4.39E+01 1.05E+02 3.30E-03 4.92E+01 1.62E-01 1.54E-03 3.65E+01 5.62E-02
default-in3 8.53E+01 4.73E+01 4.03E+03 2.70E-01 4.27E+01 1.15E+01 1.42E-04 5.23E+01 7.42E-03
AVX-in3 7.51E+01 4.70E+01 3.53E+03 3.40E-02 4.60E+01 1.56E+00 1.10E-04 5.34E+01 5.87E-03

best ET-in3 1.90E+01 4.62E+01 8.75E+02 1.50E-02 4.84E+01 7.26E-01 1.10E-04 5.34E+01 5.87E-03
best E-in3 1.90E+01 4.62E+01 8.75E+02 1.50E-02 4.84E+01 7.26E-01 9.20E-05 5.09E+01 4.68E-03

FIR - ZYBO Doitgen - ZYBO Gaussian Blur - ZYBO
in1-[N=16032, M=2000] in1-[N=100,N2=1008] in1-[N=512, M=512]
in2-[N=32064, M=8000] in2-[N=256,N2=256] in2-[N=1024, M=1024]

Binaries ET (sec) P (W) E (J) ET (sec) P (W) E (J) ET (sec) P (W) E (J)
default-in1 2.50E-01 5.50E-01 1.38E-01 1.07E+01 5.00E-01 5.35E+00 6.30E-02 4.00E-01 2.52E-02
best ET-in1 1.00E-01 5.00E-01 5.00E-02 3.00E-01 4.50E-01 1.35E-01 1.65E-02 3.00E-01 4.95E-03
best E-in1 1.00E-01 5.00E-01 5.00E-02 3.20E-01 4.15E-01 1.33E-01 1.65E-02 3.00E-01 4.95E-03
default-in2 1.98E+00 5.75E-01 1.14E+00 3.90E+01 5.00E-01 1.95E+01 2.53E-01 4.10E-01 1.04E-01
best ET-in2 8.20E-01 5.00E-01 4.10E-01 1.60E+00 4.25E-01 6.80E-01 6.65E-02 3.50E-01 2.33E-02
best E-in2 8.60E-01 4.75E-01 4.09E-01 1.60E+00 4.25E-01 6.80E-01 6.65E-02 3.50E-01 2.33E-02

FIR - i7 Doitgen - i7 Gaussian Blur - i7
in1-[N=64032, M=4000] in1-[N=504,N2=1008] in1-[N=4096, M=4096]
in2-[N=128064, M=8000] in2-[N=504,N2=504] in2-[N=2028, M=2048]
in3-[N=256128, M=16000] in3-[N=100,N2=1008] in3-[N=1024 M=1024]

default-in1 3.36E-02 4.43E+01 1.49E+00 1.81E+01 4.77E+01 8.63E+02 1.04E-01 4.65E+01 4.84E+00
AVX-in1 3.18E-02 4.45E+01 1.42E+00 1.86E+01 4.74E+01 8.82E+02 2.42E-02 4.69E+01 1.13E+00

best ET-in1 8.50E-03 4.72E+01 4.01E-01 4.54E+00 4.69E+01 2.13E+02 2.20E-02 4.59E+01 1.01E+00
best E-in1 8.50E-03 4.72E+01 4.01E-01 4.66E+00 4.56E+01 2.12E+02 2.20E-02 4.59E+01 1.01E+00
default-in2 1.33E-01 4.45E+01 5.94E+00 8.90E+00 4.81E+01 4.28E+02 2.60E-02 4.62E+01 1.20E+00
AVX-in2 1.30E-01 4.43E+01 5.76E+00 6.82E+00 4.68E+01 3.19E+02 6.10E-03 4.68E+01 2.85E-01

best ET-in2 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02 5.40E-03 4.64E+01 2.51E-01
best E-in2 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02 5.40E-03 4.64E+01 2.51E-01
default-in3 5.32E-01 4.41E+01 2.35E+01 3.34E+00 4.79E+01 1.60E+02 6.48E-03 4.75E+01 3.08E-01
AVX-in3 5.30E-01 4.45E+01 2.36E+01 3.65E+00 4.72E+01 1.72E+02 1.45E-03 4.58E+01 6.64E-02

best ET-in3 1.36E-01 4.68E+01 6.37E+00 9.00E-01 4.70E+01 4.23E+01 1.26E-03 4.50E+01 5.67E-02
best E-in3 1.36E-01 4.68E+01 6.37E+00 9.30E-01 4.54E+01 4.22E+01 1.26E-03 4.50E+01 5.67E-02

Nevertheless, compiling the proposed method’s output codes with ’O1’ or ’O2’,
does not affect performance. The results for the FP instructions are similar.

4.2 Validation of execution time and power consumption models

The validation Eq.10 has been made on gem5 simulator. For the studied loop
kernels Eq.10 gives (ET = L1reads ∗ 2/c1 + L2reads ∗ 20/c2 + MMreads ∗
80/c3); the writes are not present as they occur in parallel. We have plotted
Eq.10 together with the simulated ET for 10 different optimization sets of
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Table 4 Speedup over hand optimized code

i7 (AVX) ZYBO
Unroll Tiling Tiling Unroll & Prop. Polly Unroll Tiling Tiling Unroll & Prop.
1 loop 1 loop 2 loops Tiling Method. LLVM 1 loop 1 loop 2 loops Tiling Method.

MMM 1.11 1.53 1.82 1.90 3.93 1.41 1.71 2.23 2.78 3.07 8.62
MVM 1.08 1.09 1.09 1.10 2.32 0.97 1.18 1.11 1.10 1.13 2.14
FIR 1.42 1.11 1.11 1.44 3.85 1.38 1.31 1.52 1.50 1.63 2.48

Gemver 1.06 1.03 1.03 1.07 1.26 1.31 1.33 1.04 1.04 1.35 2.34
Doitgen 1.16 1.53 1.60 1.65 3.91 1.26 1.34 2.69 3.05 3.38 30.63
G.Blur 1.02 1.00 1.00 1.02 1.17 1.02 1.62 1.00 1.00 1.62 3.81
Bicg 1.09 1.10 1.09 1.10 2.21 1.23 1.23 1.11 1.10 1.16 2.29

seven loop kernels on two different processors, and Eq.10 follows the trend in
all cases. The difference between Eq.10 and measured ET is shown in Fig. 6 and
is about (10.6%,11%) on average and (20.3%,23%) at maximum, on (x86,arm),
respectively. The algorithms giving the highest error values are MMM and
Doitgen, as they contain three very big arrays achieving data reuse; in these
two algorithms, both cache memories are dominated by tiles being accessed
many times and therefore different reuse factors affect more miss concurrency.
On the other hand, regarding MVM, FIR, Gemver and Bicg, their 2D arrays
(which consume most of the memory) are accessed just once, making memory
behavior less diverse. Last, the L/S.ratio is critical in all algorithms, but the
proposed register blocking algorithm does not give high values.

The validation of the P model (Eq.11) has been made on gem5 and mcpat
simulators for different optimization sets. Eq.11 does not take into account
P on the renaming unit, instruction cache, RF, TLB, branch predictor and
instruction scheduler, and this is why Eq.11 gives from 80% up to 94% of
the total P (Fig. 4). P is more accurate on arm, as x86 is more complex and
therefore the HW components that we have not taken into account consume
more. It is important to note that because gem5 simulator is slow, we have
used both small cache sizes and input sizes in order to have more realistic
simulation results. Thus, both L1 and L2 are expected to consume more for
realistic cache sizes and therefore the range in Fig. 4 is expected to be lower.

4.3 Reduction of the exploration space

Table 5 Number of optimization sets / binaries

Explor. space MMM MVM FIR Doitgen Gemver G. Blur Bicg
(N=1000) (N=4000) (N=16000, M=1000) (N=600) (N=1200) (N=1200) (N=1200)

Initial 1.39E+27 9.91E+20 4.95E+20 5.24E+33 8.03E+18 9.75E+24 1.61E+19
Subsect. 3.1 8.20E+05 1.50E+04 4.00E+03 2.40E+06 3.80E+03 5.10E+04 3.70E+03

Final 1.11E+03 7.80E+01 1.24E+02 1.83E+03 4.60E+01 8.60E+01 5.20E+01

In Table 5 we give the initial exploration space (all optimization configura-
tions that have to be explored), the space after the application of Subsection
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3.1 and the final space by using as threshold the maximum range value found
in Fig. 6, i.e., ±23%.

The initial space is given by: (S = 7! × T loops × T ′loops × T ′′loops × (2 ×
loops)!×(2×2D.arrays)), where (T, T ′, T ′′) is the number of different (Unroll
factor sizes, L1 tile sizes, L2 tile sizes), respectively, loops is the number of
the loops and 2D.arrays is the number of multidimensional arrays indicating
that each multidimensional array uses two different data layouts (the default
and the tile-wise). (2 × loops)! gives all the different combinations of loop
interchange (by applying loop tiling to both L1 and L2, (2 × loops) extra
loops exist) while 7! gives the number of different transformation sequences
of loop unroll, array copying, tiling for L1 and L2, loop interchange, scalar
replacement, register allocation. We have used T = 32, T ′ = N/2, T ′′ = N/4.

The space is reduced from 17 up to 30 orders of magnitude. It is clear that
the more and the larger the loops, the more the optimization sets. The final
space for MVM, Gemver, G.Blur and Bicg is low because transforming their 2D
array data layouts introduces a relatively significant cost and is not efficient;
thus, the remaining tile sizes are limited as they must contain consecutive MM
locations.

4.4 Evaluation over gcc, hand tuning optimized code & Polly

First, the proposed methodology is evaluated over gcc by using gem5 and
mcpat simulators (Table 1 and Table 2) - the best binaries are produced in
terms of ET. The evaluation has been made on two different processors and for
two different input sizes. In this section, we haven’t searched for the best binary
among all those shown in the last row of Table 5, but we have picked the best
among the ten achieving the lowest Eq.10 value. There are significant/large
cycle (from 2 up to 25), memory access (from 1.14 up to 171), energy (from
2 to 54) and instruction (from 1.1 up to 4) gain values. MMM and Doitgen
achieve the highest memory and speedup/energy gains on both CPUs as they
contain 3 big arrays that achieve data reuse and as a consequence memory
management has a higher effect. Given that the gem5 simulator is slow, we
have used both small cache sizes and input sizes in order to have more realistic
simulation results. Thus, P on both L1 and L2 is expected to be higher for
more realistic cache sizes.

Second, the proposed methodology is evaluated over gcc compiler on two
different types of real processors. The P on ZYBO is about 0.35Watts and
0.5Watts (including a usb disc connected on it which consumes about 0.25Watts),
when just petalinux OS and input codes are running, respectively while on i7
is about 26Watts and 45Watts, when just CentoS and input codes are running,
respectively (for single-core). Intel i7 processor supports SIMD and therefore
we have evaluated our methodology to C-code containing AVX intrinsics; we
have used hand written C-code with AVX intrinsics as input to our method.
It is important to note that although gcc supports auto-vectorization, hand
written AVX code is faster in most cases (Table 3). The results are given in
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terms of best ET and best E for three different input sizes. As it was expected,
there are binaries with worse ET but better E, as they achieve fewer accesses
in the energy demanding memory hierarchy; however, in most cases the best
ET and E solutions match.

MMM and Doitgen are the most data intensive kernels and this is why they
achieve the highest memory gains and speedup/energy gains on both CPUs.
The proposed methodology achieves about (8.5, 30, 2.1, 2.5, 2.3, 3.8, 2.4)
times faster code, for (MMM, Doitgen, MVM, FIR, Gemver, Gaussian Blur,
Bicg), on ZYBO and about (3.9, 4, 2.3, 3.8, 1.2, 1.15, 2.1) on i7 comparing to
AVX hand written code. Regarding energy gains, the proposed methodology
achieves about (9.2, 40, 2.5, 2.7, 2.6, 5, 2.6) times less energy on ZYBO and
about (4, 4, 2.4, 3.6, 1.2, 1.15, 2.2) on i7 comparing to AVX code. The pro-
posed methodology achieves smaller gain values for AVX input codes, because
hand written AVX-code first, is at a lower level and thus more efficient and
second, in many cases it already uses a significant number of the available
registers (G.Blur,Gemver), leaving less space for modifications and third, it is
less friendly to register blocking.

Last, our methodology is evaluated over hand written optimized a) loop
unroll code (one loop only - best loop and best unroll factor size), b) loop
tiling code for one and two loops (best loop(s) and best tile size(s)), c) loop
unroll for one loop and loop tiling for one loop (best loops and best unroll
factor/tile size), d) Polly [16] (Table 4). For a fair comparison, we have used
tile sizes where the accumulated sum of all the array tiles is smaller than the
largest cache. A large number of experiments has taken place with 10 different
unroll factor values and 10 different loop tiling sizes in order to find the best.
We have used normal C-code for ZYBO and hand written C-code using AVX
instrinsics for i7. As it was expected, hand written optimized code achieves
better or equal performance than gcc in all cases and likewise Table 3, our
method achieves smaller gain values for the codes using AVX intrinsics. The
largest speedup values occur for MMM and Doitgen. On the other hand, the
smallest speedup values occur for Gemver and Gaussian Blur on i7, as first,
their arrays fit in the largest cache in all cases and second, they already use
a significant number of registers. It is important to note that Polly includes
other transformations too, which our methodology does not.

5 Conclusion and Future Work

In this paper a novel methodology is presented that reduces the exploration
space of code optimizations by many orders of magnitude, for data domi-
nant affine loop kernels. We provide two efficient blocking algorithms, one for
the RF and one for the cache, addressing the corresponding interdependent
transformations together and taking into account the HW details, data reuse
and arrays’ data access patterns. Moreover, formal methods are provided to
correlate code optimizations with the number of data accesses, arithmetic in-
structions, ET and E. Instead of applying heuristics and empirical methods
we try to understand how software runs on the target CPU and how different
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optimization sets affect the number of memory accesses, ET and P. Instead of
searching for the best solution in a limited exploration space, we deal with an
enormous space as we are capable of narrowing it down by many orders of mag-
nitude. We motivate this work by showcasing that the only way to effectively
reduce the space is by taking into account the HW and SW characteristics and
by addressing the interdependent transformations together as one problem.

As far as our future work is concerned, the first step includes the validation
of the proposed method to more CPUs, extend the ET model to less data
dominant algorithms where the number of instructions affects the ET too and
extend the P model to the remaining CPU components. Second, we plan to
implement an automated tool of the proposed method. POET and/or Loopy
tools will be used for generating the output source code and Scout [24] tool
will be used to transform the input of our tool from normal C-code to C-code
with SIMD instrinsics.
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