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Abstract - This paper presents a new chloride diffusion model in concrete exposed to marine 

environment, which considers the individual effects of different types of chloride binding. The 

present model has following new features. (1) The bound chlorides are divided into two types. 

One is reversible, which is related to the physical binding, and the other is irreversible, which 

is related to the chemical binding. (2) The reversible bound chloride remains its charge and 

continues to provide its driving force to influence the movement of free chloride ions. (3) The 

governing equation for the mass conservation of chlorides is established on the framework of 

representative elementary volume of concrete and thus the diffusion coefficient used in the 

present model is consistent with the effective diffusion coefficient defined in the steady-state 

diffusion tests of chloride in concrete.  

 

Keywords – Modelling; chloride diffusion; ionic binding; chemical potential; concrete; marine 

environment. 

 

 

1. Introduction 

 

Metal corrosion induced by chlorides is a major problem of structures in marine environment 

[1,2,3]. For concrete structures exposed to marine environment chlorides can also penetrate 

through the concrete cover to induce the corrosion of reinforcing steel and thus deteriorate the 

reinforced concrete structures. The understanding of the transport mechanism of chlorides in 

concrete is fundamental for the prediction of the service life of reinforced concrete structures. 

Concrete is a porous material. The transport of chlorides in concrete involves not only the 

diffusion of chloride ions in pore solution but also the physical and chemical interactions 

between chloride ions and pore surfaces within cement matrix [4,5]. The latter provides a 

“binding” function to mobile chloride ions. The capacity of concrete cementitious system to 

bind chloride ions has an important effect on the rate of chloride transport in concrete and thus 

also on the corrosion initiation of reinforcing steel in reinforced concrete structures [6,7]. With 

increasing use of concrete in offshore and marine structures a better understanding of the 

transport mechanism of chlorides in concrete becomes even more important.   
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Chloride binding in concrete is a complicated matter. The binding mechanism involves 

physical adsorption and chemical reactions. Numerous studies have been conducted on 

chloride diffusion in concrete with considering the chloride binding effect. For example, Page 

and Vennesland [8] experimentally investigated the chloride binding capacity of silica fume 

cement pastes. It was found that the partial replacement of Portland cement by increasing 

percentages of silica-fume leads to a regular decrease in alkalinity of the pore solution and a 

reduction in the chloride binding capacity of the material. Arya et al. [9] investigated the 

chloride binding in concrete by analysing pore solution expressed from cement paste specimens 

using a pore press. It was found that, for chlorides introduced at the time of mixing, cement 

type, the type and proportion of cement replacement material, the chloride salt and total 

chloride content are the most important factors governing the chloride binding, whereas the 

water/cement ratio and curing time prior to immersion have little effect on the chloride binding. 

Zhang and Gjørv [10] presented an analysis of the diffusion behaviour of chlorides in concrete. 

It was shown that for stronger ionic solutions ionic interaction could reduce the chemical 

potential and thus the driving force of the diffusing species. In addition, the electrical double 

layer forming on the solid surface and the chemical binding could also significantly interfere 

the transport of chloride ions. Glass et al. [11] examined the method of obtaining chloride 

binding data from steady-state diffusion experiments by using the measured total chloride 

profile and estimated free chloride profile. Tang and Nilsson [12] carried out an experimental 

study on chloride binding capacity and binding isotherms of ordinary Portland cement pastes 

and mortars with water/cement ratios 0.4, 0.6 and 0.8. It was shown that the chloride binding 

capacity of concrete is strongly dependent upon the content of CSH gel in the concrete, 

regardless of water/cement radio and the addition of aggregate. The relationship between the 

bound and free chlorides can be modelled by using a Freundlich isotherm at high free chloride 

concentrations and a Langmuir isotherm at low free chloride concentrations. Sandberg [13] 

presented an experimental investigation into chloride binding in concrete and the effect of 

hydroxide leach on the chloride binding. Boddy et al. [14] provided the sensitivity study of 

multi-mechanistic chloride transport model, which considers the multi-mechanistic transport, 

chemical binding, and time-dependent nature of concrete properties. Jensen et al. [15] 

examined the influence of paste and exposure parameters on chloride ingress in cement pastes 

by using electron-probe microanalysis techniques. The measured results were analysed using 

Fick's law modified by a term for chloride binding. It was shown that the inclusion of chloride 

binding significantly improves the profile shape of the modelled ingress profiles. Martı́n-Pérez 

et al. [16] examined the impact of using different binding isotherms on time-dependent chloride 

penetration profiles in concrete specimens submerged in seawater and exposed to de-icing salts. 

Glass and Buenfeld [17] presented a study on the influence of chloride binding on the chloride-

induced corrosion risk in reinforced concrete structures. Baroghel-Bouny et al. [18] presented 

a method for predicting chloride binding isotherms of concrete by using analytical model 

and/or numerical inverse analysis method. Li and Shao [19] examined the effect of four 

different chloride binding isotherms on the service life of RC pipe piles exposed to marine 

environments. Yoon et al. [20] provided a feasibility study of using calcined layered double 

hydroxides to prevent chloride-induced deterioration in reinforced concrete. It was 

demonstrated that the calcined layered double hydroxides not only adsorbed chloride ions in 

aqueous solution with a memory effect but also had a much higher binding capacity than 
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originally layered double hydroxides in the cement matrix. Tang [21]  presented a simplified 

method of applying the ClinConc model to predict both the free and total chlorides in concrete 

by modelling the transport of free chloride ions using free chloride diffusion potential and then 

calculating the total chlorides by taking into account chloride binding. Andrade et al. [22] 

proposed an electrical resistivity model for the calculation of the retardation factor to take into 

account the effect of bound chlorides on chloride diffusion. In addition, the effects of micro- 

and macro-cracking [23] and concrete hetero-organisation [24] on the penetration of chlorides 

in concrete have been also investigated using numerical methods and/or experimental methods.   

 

The above survey of literature shows that, despite the considerable amount of work published 

in literature on chloride binding and its effect on chloride transport in concrete exposed to 

marine environment, there is very little research focussing on the individual effects of different 

types of bound chlorides on chloride transport in concrete. In this paper, a new chloride 

diffusion model is developed, in which the bound chloride is divided into two types. One is 

reversible, which is related to the physical binding. The other is irreversible, which is related 

to the chemical binding. These two types of bound chloride are treated separately in the present 

model. In addition, it is assumed that the reversible bound chloride remains its charge and thus 

can also provide the driving force to influence the movement of free chloride ions. Finally, the 

governing equation for the mass conservation of chlorides is established based on the unit 

volume of representative elementary concrete and thus the diffusion coefficient used in the 

present model is consistent with the effective diffusion coefficient of chloride ions defined in 

the steady-state diffusion tests of chlorides in concrete.  

 

2. Fickian diffusion model considering ionic binding  

 

Chloride diffusion in concrete is usually described by using the Fick’s second law as follows 

[25], 

𝜕𝐶

𝜕𝑡
= ∇(𝐷𝑎∇𝐶)         (1) 

where C is the total chloride content in concrete, normally expressed as the mass of chlorides 

in the unit mass of binder or concrete, Da is the apparent diffusion coefficient of chlorides in 

concrete which includes the effect of chloride binding, and t is the time. If the diffusion 

coefficient, initial and boundary conditions of chlorides are known then the total chloride 

content at any time at any place in a concrete can be predicted using Eq.(1). The main advantage 

of using Eq.(1) is its simplicity. The drawback of using Eq.(1) is the difficulty in defining the 

boundary condition of chlorides because the total chlorides expressed as percentage by mass 

of binder or concrete is different from the chlorides in the exposed environment that are 

normally defined by using the chloride concentration in solution. Also, since it is only the free 

chloride that is harmful to the reinforcement it is preferable to know the free chloride content 

in concrete. By splitting the total chlorides into free and bound chlorides and considering the 

fact that the bound chloride is not able to transport, the following mass conservation equation 

of chlorides based on the unite volume of concrete, which is similar to Eq.(1), can be  

established [26,27,28,29], 
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𝜕𝐶𝑓

𝜕𝑡
+

𝜕𝐶𝑏

𝜕𝑡
= ∇(𝐷∇𝐶𝑓)         (2) 

where Cf and Cb are the free and bound chlorides in the unit volume of concrete, respectively,   

D is the diffusion coefficient of chlorides in concrete, which is different from Da in Eq.(1) 

because it excludes the effect of chloride binding [30,31]. Note that different formats have been 

used in literature for defining the rates of change of free and bound chlorides described by the 

left-hand-side terms of Eq.(2). Some of them are related to concrete porosity or the volume 

fraction of liquid phase of concrete [16,17,30,31]. This, however, is purely due to the use of 

different definitions and/or units for the free and bound chlorides. In order to solve Eq.(2) for 

Cf, one has to know the relationship between the free and bound chlorides, that is so-called 

chloride binding isotherms [18,32,33]. Nevertheless, once the bound chloride is expressed in 

terms of the free chloride, Eq.(2) can be used to predict the transport of free chloride in 

concrete.  

 

Eq.(2), or its similar form, has been widely used in literature for predicting the penetration of 

chlorides in concrete and determining the service life of reinforced concrete structures exposed 

in chloride environment [16,17,26,27,28,29,30,31,34]. However, the behind assumptions used 

in developing this equation have not been discussed or justified. First, the use of Eq.(2) together 

with an analytical chloride binding isotherm means that the chloride binding is completely 

reversible. This seems contradictory to some of chloride binding mechanisms, for example, the 

formation of Friedel’s salt [33,35,36], which is not reversible. Secondly, the flux of free 

chloride calculated in Eq.(2) is purely based on the concentration gradient of free chloride ions. 

This seems not consistent to the flux calculated based on the chemical potential gradient of all 

chloride ions including those physically bound on the concrete pore surface. The latter will be 

discussed in more detail in following section.  

 

3. Modified diffusion model considering ionic binding  

 

In order to consider the irreversible process of chemically bound chlorides, the bound chloride 

is now divided into two parts [18]. One is irreversible, which is due to the chemical binding of 

chlorides. The other is reversible, which is due to the physical binding of chlorides. The former 

is modelled by using a sink term, whereas the latter is modelled using a chloride binding 

isotherm. Consider the mass conservation of chlorides in the representative elementary volume 

of a saturated concrete (see Fig.1). The change of the total chlorides in the volume is solely 

caused due to the flux difference of the free chloride pass through the surface areas of the 

representative concrete, as follows, 

𝜕𝐶𝑓

𝜕𝑡
+

𝜕𝐶𝑏2

𝜕𝑡
= −∇𝐽 − 𝑄(𝐶𝑏1)          (3) 

where Cb1 and Cb2 are the irreversible and reversible bound chlorides, respectively, J is the flux 

of free chloride ions pass through the unit area of concrete in unit time, Q(Cb1) is the sink term 

which is the function of the irreversible bound chloride and can be assumed as follows, 

𝑄(𝐶𝑏1) =
𝜕𝐶𝑏1

𝜕𝑡
= 𝑘𝑏(𝐶𝑏̅1 − 𝐶𝑏1)         (4) 
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where kb is a constant representing the rate of chemical binding of chlorides and  𝐶𝑏̅1 is the 

limited value of chemically bound chloride at a given free chloride concentration and thus is 

the function of free chloride Cf. Since the chemical binding takes place very quickly, kb could 

be any large number. As long as it is large enough the actual value of kb will not affect the 

results. Note that the sink term Q(Cb1) takes functioning only when it is positive and vanishes 

when it becomes negative. Assume that the bound chloride can be expressed in terms of the 

free chloride by Freundlich isotherm as follows, 

𝐶𝑏 = 𝛽 (
𝐶𝑓

𝐶𝑓𝑏
)
𝛼

          (5) 

where  and  are the constants, and Cfb is the concentration of free chloride ions at the exposed 

surface. Note that, only two fitting constants are required in the Freundlich isotherm. Herein, 

the use of Cfb in Eq.(5) is only for the purpose of unit conversion. The reversible bound chloride 

in the representative concrete thus can be expressed as, 

𝐶𝑏2 = 𝐶𝑏 − 𝐶𝑏̅1 = 𝛽 (
𝐶𝑓

𝐶𝑓𝑏
)
𝛼

− 𝐶𝑏̅1       (6) 

Considering that the chemical binding is much faster than the physical binding, it is assumed 

that the chemical binding process takes first, followed by the physical binding process. Fig.2 

illustrates the relationships between the free chloride, irreversible and reversible bound 

chlorides, while the exact curves are dependent on the values of   Cfb and Cb1,max. 

 

Assume that the concrete pore solution is an idealised dilute solution. The chemical potential 

of chloride ions in the concrete pore solution may be written in terms of the concentration of 

chloride ions as follows,   

𝜇 = 𝜇𝑜(𝑇, 𝑃) + 𝑅𝑇𝑙𝑛(𝐶𝑓 + 𝐶𝑏2)       (7) 

where µ is the chemical potential of chloride ions, µo is the standard chemical potential, T is 

the absolute temperature, P is the pressure, and R is the gas constant. The reason that the 

reversible bound chloride Cb2 is also included in Eq.(7) is because the physically bound chloride 

still carries its charge although it is not able to move. Since the mass conservation of Eq.(3) is 

established based on the representative elementary volume of concrete that involves both the 

liquid and solid phases the reversible bound chloride that remains its charge will continue 

affecting the transport of free chloride ions. The driving force generated by the chemical 

potential gradient at a point defined by Eq.(7) applies to all charged chloride ions including the 

physically bound chloride. Under the action of the driving force, free chloride ions diffuse, 

whereas the physically bound chloride ions remain stationary due to the fact that the driving 

force they received is not enough to overcome their binding force. The flux of the free chloride 

ions caused by the chemical potential gradient described by Eq.(7) can be expressed as follows, 

𝐽 = −𝜈𝐶𝑓∇𝜇 = −𝜈𝑅𝑇
𝐶𝑓

𝐶𝑓+𝐶𝑏2
∇(𝐶𝑓 + 𝐶𝑏2) = −𝐷𝑒

𝐶𝑓

𝐶𝑓+𝐶𝑏2
∇(𝐶𝑓 + 𝐶𝑏2)  (8) 

where  is the mobility constant and De=RT is the diffusion coefficient of chloride ions. Note 

that, if Cb2 is linearly proportional to Cf, then Eq.(8) will reduce to the Fick’s first law, 

𝐽 = −𝐷𝑒∇𝐶𝑓          (9) 

However, when a nonlinear binding isotherm is used for the physically bound chloride, the flux 

calculated from Eq.(8) is different from that calculated from Eq.(9). Eq.(8) indicates that the 

free chloride ions move from a place with higher overall concentration (Cf+Cb2) to a place with 
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lower overall concentration (Cf+Cb2), even when the free chloride concentration is lower in the 

former than in the latter (see the graphical illustration shown in Fig.3).  

 

Note that, according to Eq.(3) all chlorides are defined based on the unit volume of 

representative elementary concrete. Thus, their units should be the mole or mass per unit 

volume of concrete. However, according to the steady-state diffusion tests, the unit used for 

chloride concentration in Eq.(8) or (9) is the unit of mole or mass per unit volume of pore 

solution [37] although the flux is defined as the mole or mass pass through per unit area of 

concrete in the unit time. In other words, if the flux unit used in Eq.(8) or (9) is consistent with 

what is used in Eq.(3), the concentration unit of chloride ions used in Eq.(8) or (9) have to be 

converted from the mole or mass of per unit volume of solution to the mole or mass of per unit 

volume of concrete. By doing so, the right-hand-side term of Eq.(8) and Eq.(9) need to be 

divided by concrete porosity Substituting Eqs.(4), (5), (6) and (8) into (3), it yields, 

(1 +
𝑑𝐶𝑏2

𝑑𝐶𝑓
)
𝜕𝐶𝑓

𝜕𝑡
= ∇ [

𝐷𝑒

𝜀

𝐶𝑓

𝐶𝑓+𝐶𝑏2
(1 +

𝑑𝐶𝑏2

𝑑𝐶𝑓
) ∇𝐶𝑓] − 𝑘𝑏(𝐶𝑏̅1 − 𝐶𝑏1)                         (10) 

Eq.(10) can be used to calculate the free chloride content in concrete if its initial and boundary 

conditions are known, in which Cb1 and Cb2 are calculated using Eqs.(4) and (6), respectively, 

and 𝐶𝑏̅1 is taken as 𝛽 (
𝐶𝑓

𝐶𝑓𝑏
)
𝛼

or Cb1,max,  whichever is smaller (see Fig.2). Eq.(10) can be solved 

numerically, for example, by using the PDEPE scripts built in the Matlab. The total chloride 

content can be calculated as follows, 

𝐶𝑇 = 𝐶𝑓 + 𝐶𝑏1 + 𝐶𝑏2                   (11) 

 

4. Numerical examples 

 

The above-described chloride diffusion model with considering chloride binding is applied to 

reproduce the experimentally obtained chloride profiles in three different types of concrete. 

The first experiment is the OPC concrete mixed with type 50 cement (370 kg/m3), graded silica 

sand (738 kg/m3), crushed limestone aggregate (1107 kg/m3), water (148 kg/m3), and 

superplacticizer (4.64 kg/m3), immersed in a multi-component ionic solution with ionic 

concentration (wt% of bath) of potassium 4.68%, chloride 16.82%, sulphate 0.18%, calcium 

0.134%, magnesium 0.107%, and sodium 7.76%,  for 3, 6 and 12 months [38]. The parameters 

employed in the present simulation are diffusion coefficient De/=1.05x10-11 m2/s, surface 

concentration of free chloride Cfb=0.8 (%wt of concrete), binding constants =2/3, =0.9Cfb, 

and maximum irreversible bound chloride Cb1,max=0.5. Fig.4 plots the diffusion profiles of 

chlorides for both the free and total chlorides obtained from the present simulation at the 

exposure times of 3, 6 and 12 months. The comparison between the simulated total chloride 

and experimentally obtained total chloride is shown in Fig.4b. It can be seen from the 

concentration profiles of free chloride shown in Fig.4a that the chloride penetration becomes 

slower with the increased time. The predicted total chlorides from the present simulation are 

reasonably in good agreement with the experimental data. The deviation of the few 

experimental data points from the simulation curves might be due to the randomness of the 

experiments. Overall, the simulated curves provide very good tendency of chloride movement. 

This indicates that the present model is able to represent the main transport features of chlorides 
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in concrete. It was reported that if the Fick’s second law alone is used to model the chloride 

transport, the diffusion coefficient calculated from the experimentally measured total chlorides 

varies from 2.88x1.0-12 m2/s to 2.12x1.0-11 m2/s [38], the variation of which is almost about 10 

time.   

 

The second experiment is the 50% pulverized fuel ash (PFA) concrete mixed with grade 40 

normal cement (398 kg/m3), PFA (398 kg/m3), fine aggregate (1194 kg/m3), coarse aggregate 

(669 kg/m3), and water (175 kg/m3), immersed in a 5 M sodium-chloride solution at 20 oC for 

3, 6 and 12 months [39]. The parameters employed in the present simulation are diffusion 

coefficient De/=0.625x10-11 m2/s, surface concentration of free chloride Cfb=0.6 (%wt of 

concrete), binding constants =2/3, =0.65Cfb, and maximum irreversible bound chloride 

Cb1,max=0.5. The use of a lower diffusion coefficient and a lower binding capacity for PFA 

concrete is mainly due to the fineness and spherical shape of PFA particles, which improve the 

pore-microstructure of mixed concrete. Fig.5 plots the diffusion profiles of chlorides for both 

the free and total chlorides obtained from the present simulation at the exposure times of 3, 6 

and 12 months. Again, it can be seen from the figure that, the speed of chloride penetration 

decreases with the increased time. It is evident from the comparison shown in the figure that 

the predicted total chlorides are in good agreement with the experimental data, although there 

is one experimental data point, which is deviance from the simulated curves. If it is to use the 

Fick’s second law alone to model the chloride transport, one has to use the concentration- or 

time-dependent chloride diffusion coefficient in order to achieve a decent fit with the 

experimentally obtained chloride profiles at different times [39]. 

 

The third experiment is the concrete mixed with 75% Portland cement (364 kg/m3), 25% fly 

ash (122 kg/m3), sand (588 kg/m3), coarse aggregate (1142 kg/m3), and water (145.6 kg/m3), 

immersed in a 3.5% sodium-chloride solution for 90 days [40,41]. The parameters employed 

in the present simulation are diffusion coefficient De/=0.25x10-11 m2/s, surface concentration 

of free chloride Cfb=0.22 (%wt of concrete), binding constants =2/3, =0.7Cfb, and maximum 

irreversible bound chloride Cb1,max=0.5. Fig.6 shows the comparison between the simulation 

results and experimentally measured data for both the free and total chlorides. Again, good 

agreement can been seen between the numerical and experimental results. It was reported that, 

if the Fick’s second law alone is used to model the chloride transport, the diffusion coefficient 

was found to be 0.26x10-11 m2/s for the free chloride and 0.729x10-11 m2/s for the total chloride 

[41].   

 

5. Conclusions 

 

In this paper, we have presented a new chloride diffusion model in concrete exposed to marine 

environment, which considers the individual effects of the physically and chemically bound 

chlorides. In the present model the chemical binding of chlorides is assumed to be irreversible 

and is described by using a sink term in the mass conservation equation; whereas the physical 

binding of chlorides is assumed to be reversible and is treated by using a binding isotherm. 

Unlike most existing chloride binding models in which the charge of the physically bound 

chloride is ignored, the present model takes into account the effect of its charge on the transport 
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of free chloride ions. Finally, the mass conservation of the total chlorides in concrete is 

established based on the unit volume of representative elementary concrete, which provides a 

consistent and concise description for each involved component. The comparison of the free 

and/or total chloride profiles predicted by using the present model and those measured in 

experiments has demonstrated the capability and rationality of the present model. 
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Fig.1 (a) Schematic of a representative elementary volume of concrete. (b) Pore  

micro-structure. (c) Surface charge and chloride ions in pore solution. 

 

 

 

 
 

 

Fig.2 Illustration of irreversible (Cb1) and reversible (Cb2) bound chlorides. 
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                           (a)                                   (b)                                   (c) 

 

 

Fig.3 Free chloride diffusion direction in three cases of Cf(x)+Cb2(x)>Cf(x+dx)+Cb2(x+dx). 

(a) Cf(x)>Cf(x+dx). (b) Cf(x)=Cf(x+dx). (c) Cf(x)<Cf(x+dx). 

 

 

 

(a)                                                      (b) 

 

Fig.4 Free and total chlorides obtained from simulation and the comparison with 

experimental results [28]. (a) Free chloride profiles and (b) total chloride profiles. 
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(a)                                                      (b) 

 

Fig.5 Free and total chlorides obtained from simulation and the comparison with 

experimental results [29]. (a) Free chloride profiles and (b) total chloride profiles. 

 

 

 

Fig.6 Comparison of free and total chlorides between simulations and experiments for 

0.75PC+0.25FA concrete exposed to 3.5% NaCl solution for 90 days. 

 


