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Accurate species distribution data across remote and extensive geographic areas 

are difficult to obtain. Here, we use bioclimatic envelope models to determine 

climatic constraints on the distribution of the migratory Saker Falcon Falco cherrug to 

identify areas in data-deficient regions that may contain unidentified populations. 

Sakers live at low densities, across large ranges in remote regions, making 

distribution status difficult to assess. Using presence-background data and eight 

bioclimatic variables within a Species Distribution Modelling framework, we applied 

MAXENT to construct models for both breeding and wintering ranges. Occurrence 

data were spatially filtered, and climatic variables tested for multicollinearity, before 

selecting best fit models using Akaike Information Criteria by tuning MAXENT 
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parameters. Model predictive performance tested using Continuous Boyce index (B) 

was high for both breeding (BTEST = 0.921) and wintering models (BTEST = 0.735), with 

low omission rates and minimal overfitting. The Sakers’ climatic niche was defined 

by precipitation in the warmest quarter in the breeding range model, and mean 

temperature in the wettest quarter in the wintering range model. Our models 

accurately predicted areas of highest climate suitability and defined the climatic 

constraints on a wide-ranging rare species, suggesting that climate is a key 

determinant of Saker distribution across macro-scales. We recommend targeted 

population surveys for the Saker based on model predictions to areas of highest 

climatic suitability in key regions with distribution knowledge gaps, in particular the 

Qinghai-Tibet plateau in western China. Further applications of our models could 

identify protected areas and reintroduction sites, inform development conflicts, and 

assess the impact of climate change on distributions. 

 

Keywords: biogeography; bioclimatic envelope models; conservation planning; 

endangered raptors; MAXENT; species distribution models  

 

Defining a species’ geographic range is fundamental to conservation planning 

(Lawler et al. 2011), and for effective conservation management (Wu & Smeins 

2000; Miller 2010). However, obtaining accurate species distribution data across 

remote and extensive geographic areas is difficult and time-consuming (Austin et al. 

1996), especially for high-altitude steppe habitats (Osborne 2005). Species 

Distribution Models (SDMs) quantify correlations between species occurrence and 

environmental factors, generating maps of predicted species distributions (Franklin 

2009; Peterson et al. 2011), helping land managers to set planning priorities for 
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species of conservation concern (Raxworthy et al. 2003; Elith & Leathwick 2009b; de 

Carvalho et al. 2017). Empirically-derived SDMs can highlight specific environmental 

factors influencing species’ distributions and identify areas to locate populations in 

un-sampled areas within a species range (Guisan et al. 2006a; Miller 2010). Using 

presence-background data and interpolating to un-sampled areas within known 

ranges using predictive modelling (model-based interpolation, Elith & Leathwick 

2009a), is a convenient and cost-effective approach to locate areas that are suitable 

for the species, and hence target ground surveys to these areas (Peterson 2001; 

Pearce & Boyce 2006; Rhoden et al. 2017).  

 

Falcons (Falconiformes) are widespread diurnal raptors present on all continents 

apart from Antarctica. As tertiary-level consumers, they face multiple threats such as 

habitat loss and fragmentation, persecution, prey depletion and environmental 

contaminants (Newton 1979; Chancellor & Meyburg 2000). Conservation planning 

for threatened falcons based on SDMs has been effective for species such as the 

Red-footed Falcon Falco vespertinus in eastern Europe, guiding artificial nest site 

provision, directing population monitoring and designating protected areas (Fehévári 

et al. 2012). Booms et al. (2010), used SDMs to predict Gyrfalcon Falco rusticolus 

nest occurrence in remote areas of Arctic Alaska, with high prediction accuracy and 

successful ground-truthing of the predictive model. Both studies demonstrate how 

SDMs can guide best management practices, and direct future planning strategies for 

raptors of high conservation concern in remote landscapes.  

 

The Saker Falcon Falco cherrug (hereafter ‘Saker’), is a large falcon within the 

subgenus Hierofalco, along with other congeneric ‘desert falcons’: Gyrfalcon, Laggar 
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Falcon Falco juggar and Lanner Falcon Falco biarmicus (Nittinger et al. 2007). The 

Saker has a Palearctic breeding distribution extending from central Europe in the 

west, to north-eastern China and Mongolia in the east (Ferguson-Lees & Christie 

2005), with a latitudinal breeding range of 56°N to 28°N. A migratory sub-population 

generally winters south of the breeding range in Afro-tropical (to latitude 3-4°S) and 

Indo-Malayan (to latitude 21°S) zoogeographic realms (Ferguson-Lees & Christie 

2005), though many wintering Sakers also inhabit southerly regions of their breeding 

distribution (Dixon et al. 2016).  

 

The Saker is a bioclimatic semi-specialist (Finlayson 2011), preferring open arid 

landscapes, semi-desert, and wooded steppe, from sea-level to 4700m (Kovács et 

al. 2014). However, Sakers also reside in open agricultural lowland landscapes, 

especially in eastern Europe (Ragyov et al. 2014). Saker diet is dominated by 

rodents such as ground-squirrels Spermophilus sp., along with birds, and 

occasionally reptiles and insects (Watson & Clarke 2000; Wu 2011; Bondì et al. 

2014; Nedyalkov et al. 2014). Currently, two biogeographic sub-species are 

recognised based on morphology: F. c. cherrug (east Europe to southern-central 

Siberia) and F. c. milvipes (from southern-central Siberia to north-eastern China) 

(Ferguson-Less & Christie 2005; Nittinger et al. 2007). Dispersing Sakers mainly 

follow a roughly north-south migratory pattern, with no evidence for breeding 

individuals dispersing into either sub-species population (Kovács et al. 2014), 

despite recent studies suggesting genetic similarity between individuals of the two 

sub-species (Nittinger et al. 2007).  
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Saker populations have declined significantly over the past 20 years due to multiple 

factors, including over-harvesting for falconry, habitat loss, electrocution, poisoning, 

persecution, prey loss and hybridisation with escaped falconry birds (Bagyura et al. 

2004; Galushin 2004; Kovács et al. 2014; Dixon 2016). There has been a broad-

scale conservation effort to reverse population declines, by regional conservation 

groups, research institutions, and non-governmental organisations (summarized in 

Kovács et al. 2014). However, addressing key knowledge gaps in Saker distribution 

is required to help achieve a sustainable global population into the future (Collar et 

al. 2013; Kovács et al. 2014). In 2015 the conservation status of the Saker was 

upgraded to Endangered on the IUCN Red List (BirdLife International 2017) after 

revised population estimates suggested a rapid decline of ~50% in the global 

population over the past 20 years, particularly in central Asia (Kovács et al. 2014). 

However, this classification is uncertain and may need revision based on new 

population estimates. Surveys need prioritisation to establish reliable population 

estimates, for important but remote breeding areas in China, Mongolia and central 

Asia (Dixon 2009; BirdLife International 2017).  

 

Much of the Saker’s Asian breeding range extends across remote geo-political 

regions with limited resources for biologists to conduct extensive surveys (Dixon 

2005, 2009). Predicting areas with highest climatic suitability for breeding Sakers can 

help prioritise survey effort, saving time and resources (Nicholls 1989; Fielding & Bell 

1997), thus informing revised population estimates, and directing conservation effort 

to key areas. Here, we report the results of the first SDMs covering the entire range of 

the Saker for both breeding and wintering distributions. Our approach aims to 

facilitate greater understanding of Saker distributions, and direct Saker recovery 
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projects in the long-term. Specifically, our objectives are: (1) predict whole range, 

breeding and wintering distributions for the Saker, (2) identify areas of highest 

climatic suitability, (3) determine the most important climatic characteristics that 

explain these respective distributions, (4) project models to high priority areas 

directing survey effort.  

 

METHODS 

 

Saker Falcon occurrence data 

 

A total of 4907 Saker occurrence points were downloaded from the Global 

Biodiversity Information Facility database (GBIF 2017a,b; http://www.gbif.org/). The 

datasets were cleaned by removing duplicated occurrence points, records with no 

georeferenced location or over the sea, and any vagrant sightings appearing as 

outliers (Liu et al. 2017). We removed occurrences with < 2 decimal degree points to 

retain location accuracy. Geographic extent was defined by the subset of records 

within 10°-130° longitude and -5°-60° latitude following current known distribution 

(Kovács et al. 2014). After data cleaning, 854 geo-referenced records were compiled 

for the whole range distribution model. Georeferenced records with no date were 

excluded from analysis for seasonal breeding and wintering distributions. Breeding 

season records were defined as those occurrences recorded between March – 

August (Dixon et al. 2009; Kovács et al. 2014), and wintering records between 

September – February  (Kovács et al. 2014; Dixon et al. 2015), resulting in 513 and 

195 cleaned data records for breeding and wintering distributions respectively. We 

focused on model predictions and analysis for breeding and wintering ranges, but 

http://www.gbif.org/
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also include a whole-range prediction map as a supplement to compare with current 

range maps which generally use the entire range of the Saker.  

 

To reduce spatial auto-correlation and sampling bias in occurrence data, clustered 

occurrence points were removed using spatial filtering to reduce model over-fitting 

(Boria et al. 2014; Radosavljevic & Anderson 2014). Spatial filtering performs better 

than other methods of sampling bias correction (Kramer-Schadt et al. 2013; 

Fourcade et al. 2014), minimizing omission errors and improving model predictive 

performance (Aryal et al. 2016). A spatial filter distance of 40km between occurrence 

points was selected to minimise the effects of over-sampling in highly surveyed 

areas, rather than as a measure of home range size. Saker home range estimates 

vary widely, with wintering range sizes between 5-515 km² (Dixon et al. 2016), and 

breeding ranges between 78-215 km² (Potapov et al. 2000), thus making any 

estimate on range size for use in spatial filtering problematic. Filtering occurrence 

points for inclusion was determined by removing clustered points using the ‘thin’ 

algorithm function in the R package SPTHIN (Aiello-Lammens et al. 2015). Spatial 

auto-correlation was measured using Global Moran’s I index on an inverse Euclidean 

distance matrix projected in Lambert Azimuth Equal Area (LAEA). Moran’s I is an 

index ranging from -1 to +1, with values closer to zero indicating no spatial auto-

correlation, and negative and positive values indicating negative and positive spatial 

auto-correlation respectively.  

 

Inevitably, removing data points reduces sample size. Therefore, exponential spatial 

filters of 10, 20, 40, 80 and 160 km were compared using sample size and spatial 

auto-correlation as determinants of filter selection. Previous studies have used 10 
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km as an arbitrary distance for spatial filtering for species in high altitude 

heterogenous habitats (Pearson et al. 2007; Kramer-Schadt et al. 2013; Boria et al. 

2014). Therefore, we considered a 40 km spatial filter as an intermediate distance to 

minimize spatial bias, whilst retaining a high number of data points for model 

accuracy and novel environmental conditions (Table S1, Franklin 2009; Boria et al. 

2014). Cleaned whole-range occurrence data were spatially auto-correlated (Moran’s 

I = 0.457, p = <0.001). After spatial filtering, spatial auto-correlation was reduced 

(Moran’s I = 0.295, p = <0.001), resulting in 516 occurrence records for use in the 

whole-range distribution model. Spatial auto-correlation was apparent for both 

cleaned breeding range (Moran’s I = 0.526, p = <0.001), and wintering range 

(Moran’s I = 0.483, p = <0.001) occurrence data. After spatial filtering, spatial auto-

correlation was reduced (breeding: Moran’s I = 0.472, p = <0.001; wintering: Moran’s 

I = 0.356, p = <0.001), resulting in 315 and 133 occurrence records for use in the 

breeding and wintering distribution models respectively. A common issue in SDM, 

especially with rare species, or those that are difficult to survey, such as the Saker, is 

sample size (Pearson et al. 2007; Gibson et al. 2007). We considered the respective 

occurrence records obtained after data cleaning and filtering as suitable for a 

machine-learning algorithm SDM (Stockwell & Peterson 2002; Wisz et al. 2008).  

 

Environmental variables 

 

Bioclimatic data were sourced from the WorldClim database (version 1.4, Hijmans et 

al.  2005). Bioclimatic variables were generated through interpolation of average 

monthly climate data from weather stations over the period 1950-2000. Raster layers 

were downloaded at a spatial resolution of 2.5 arc-minutes (~4.5km² at the equator) 
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and cropped to 1° beyond the extent of Saker occurrences using a delimited 

rectangle.  This generates a defined envelope to capture the full range of suitable 

environmental conditions across the Sakers known range, thus improving model 

predictive power (Lawler et al. 2011). A limited raster extent also removes large 

regions not occupied by a species, thus reducing the area used for background 

selection points in model evaluation (Radosavljevic & Anderson 2014). We used 

solely climatic variables as a first evaluation of climatic constraints on geographic 

distribution for a rare species with little prior knowledge of biology (Collar et al. 2013; 

Galante et al. 2018).  

 

Multi-collinearity between environmental variables can result in biased predictions 

through over-representing the biological relevance of correlated variables (Franklin 

2009; Dormann et al. 2013; see Appendix 1 in Supporting Online Information for 

details). Therefore, before model construction, all 19 bioclimatic variables were 

tested for multi-collinearity using Variance Inflation Factor (VIF) analysis (Guisan et 

al. 2006b; Hair et al. 2006) in the R package USDM (Naimi et al. 2014). VIF is based 

on the square of multiple correlation coefficents, regressing a single predictor 

variable against all other predictors. VIF tests can detect hidden correlations in 

predictors not always apparent in pair-wise correlations. VIF > 10 indicates 

collinearity in the variables, thus we used a stepwise elimination of highly correlated 

variables retaining predictors with a more stringent VIF threshold of < 5 (Table S2), 

considered as suitable for multi-variable correlation (Dormann et al. 2013).  

 

Eight variables were used as predictors in all models (mean diurnal temperature 

range; temperature seasonality; mean temperature wettest quarter; mean 
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temperature warmest quarter; precipitation wettest month; precipitation driest month; 

precipitation seasonality; precipitation coldest quarter), with predictor selection based 

on representing seasonal climatic trends, extremes and variability, which are strongly 

related theoretically and empirically to species distributions (Stockwell 2006; 

Reineking et al. 2016; Bradie & Leung 2017), and specifically to distributions of 

vagile bird species in arid environments (Reside et al. 2010). We selected climate 

predictors based on current knowledge and potential limiting environmental factors 

on Saker biology, preferring arid, temperate climatic conditions (Finlayson 2011), in 

predominantly high-altitude areas, or in regions of high daily and monthly 

temperature variability (Kovács et al. 2014; see Appendix 1 in Supporting Online 

Information for details).  

 

Species Distribution Models  

 

To predict areas of climate suitability a correlative SDM was developed using MAXENT 

(version 3.3.3k, Philips et al. 2006; Philips & Dudík 2008), a maximum entropy 

machine-learning algorithm. MAXENT uses presence-background data and is a robust 

algorithm that out-performs other SDM methods (Elith et al. 2006, 2011; Gibson et 

al. 2007; Duan et al. 2013), with good prediction accuracy across all sample sizes 

(Wisz et al. 2008). The MAXENT algorithm compares the environmental variables 

underlying the species occurrence points against the range of a random sample of 

background environmental conditions. A raster map is generated, with each cell 

ranked with an index of relative environmental suitability (Zeng et al. 2015). MAXENT 

uses L1-regularization (β) to reduce overfitting in complex models (Hastie et al. 

2005), enabling improved discrimination of correlated predictors compared to other 
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SDM methods (Philips & Dudík 2008; Elith et al. 2011). Calibration and evaluation 

datasets were run using logistic output as a continuous index of climatic suitability, 

with 0 = low suitability and 1 = high climatic suitability. Iterations were increased from 

the default 500 to 5000 allowing for model convergence, and random seed selected 

to randomly sample occurrence test points for each replicate run. Default model 

parameters were used for background absences (10,000) and convergent threshold 

(0.00001).  

 

Model evaluation 

 

We used optimal-model selection based on Akikake Information Criterion corrected 

for small sample sizes (AICc; Warren & Seifert 2011), to determine the most 

parsimonious models from two key MAXENT parameters affecting model complexity: 

Regularization Multiplier (RM) and Feature Classes (FC). AICc selects models based 

on a balance between goodness-of-fit and model complexity (Guisan & Thuiller 

2005; Muscarella et al. 2014), and consistently selects less complex models robust 

to sampling bias (Galante et al. 2018; Gerstner et al. 2018). Species-specific tuning 

of RM and FC produces simpler and more realistic MAXENT models compared to 

using default settings (Warren & Seifert 2011; Muscarella et al. 2014), by smoothing 

response curves, limiting sampling bias, and reducing over-fitting in presence-only 

predictions (Merow et al. 2013; Radosavljevic & Anderson 2014). AICc requires no 

external evaluation data, thus is a useful metric for presence-background SDMs 

(Muscarella et al. 2014; Galante et al. 2018). Lowest AICc scores (i.e. ΔAICc = 0) 

indicate the model that best predicts the training data, given data complexity and 

justified number of parameters (Gerstner et al. 2018), though all models with ΔAICc < 
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2 are considered to have substantial support (Burnham & Anderson 2004). Forty-

eight candidate models of varying complexity were built for each SDM by comparing a 

range of regularization multipliers from 0.5 to 4.0 in 0.5 increments, and five feature 

classes: linear (L); quadratic (Q); hinge (H); product (P); threshold (T), in all possible 

combinations using the ENMEVAL package in R (Muscarella et al. 2014).  

 

Feature classes and regularization multiplier were selected based on the optimal-

model output from all 48 candidate models with ΔAICc <2 using the ‘random k-fold’ 

cross-validation method in ENMEVAL (k = 10). The k-fold cross-validation method 

divides data into k number of mutually exclusive sub-sets, randomly selecting 90% of 

occurrence records for training, and 10% for testing. Model performance is 

determined by removing each successive dataset, then re-estimating the model 

based on the withheld data (Kohavi 1995; Hastie et al. 2005). The use of cross-

validation is justified here in the context of a broad range single-species model 

applied with a spatial filter, with large distances between testing and training points 

reducing any spatial sorting bias (Hjimans 2012). We extracted a range of metrics 

from the ENMEVAL output to assess the best fit model, including AICc values, 

overfitting metrics (minimum omission rate (MOR); 10% omission rate (10%OR)) and 

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC; see 

Appendix 2 in Supporting Online Information for details).  

 

Omission rates measure the proportion of training points that are outside of the 

model prediction and evaluate discriminatory ability and over-fitting at specified 

thresholds. Low omission rates show improved discrimination between suitable and 

unsuitable habitats (indicating higher performance), whilst overfitted models show 
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higher omission rates than expected (Radosavljevic & Anderson 2014). For low 

overfitting models the expectation in MOR is a value close to zero and for 10%OR a 

value close to 0.10. Jackknife tests were used to estimate variable performance 

within the optimal calibration model by excluding each value, then developing the 

model with a sole variable to determine percentage contribution and regularized 

training gain of each environmental variable to model performance.  

 

We used all occurrence points in final distribution maps to achieve the highest 

predictive accuracy for estimating distribution (Fielding & Bell 1997; Fehévári et al. 

2012). Continuous Boyce index (B) was used as a threshold-independent metric to 

evaluate final output models (Hirzel et al. 2006; Ramírez-Albores et al. 2016). B 

measures how much climate suitability predictions differ from a random distribution 

of observed presences across the spatial predictions (Boyce et al. 2002), 

comparable to a Spearman correlation (Rs). Values of B range from -1 to +1, with 

positive values indicting climate suitability predictions consistent with observed 

presences, values closer to zero no different than a random model, and negative 

values indicating areas of poor predicted climate suitability but with a high number of 

observations. B evaluation was used on all presence data points split into 90% 

training (BTRAIN) and 10% testing (BTEST), calculated using the R package ECOSPAT (Di 

Cola et al. 2017), with a moving window for threshold-independence and ten defined 

bins. 

 

Projected distribution maps were modelled for two important range countries within 

the Saker’s known breeding and wintering ranges with key knowledge gaps: China 

and Mongolia (Dixon 2009; Collar et al. 2013). Both countries have the highest 
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spatial priority ranking to direct conservation efforts most likely to result in effective 

conservation outcomes in the United Nations Convention on Migratory Species (UN 

CMS) Saker Global Action Plan (Kovács et al. 2014). Both China and Mongolia have 

reasonable knowledge of distribution in some areas but limited knowledge elsewhere 

and are likely to hold significant unknown Saker populations (Dixon 2009). Within 

China we selected the Qinghai-Tibet plateau as a priority region lacking information 

on Saker distribution, ecology and population status (Dixon et al. 2015; Dixon et al. 

2016). Clamping was applied when projecting to regions with limited distribution data 

to restrict model interpolation based on the extent of environmental predictors 

(Stohlgren et al. 2011). The process of clamping constrains environmental variable 

features to within the range of occurrence values given in the calibration data, 

identifying any uncertain predictions in projected distribution models (Elith et al. 

2010). Model construction, analysis and predictive GIS maps were built in R (version 

3.3.1; R Core Team 2016) using the DISMO (Hijmans 2017) and RASTER (Hijmans 

2016) packages. 

 

RESULTS 

 

Species distribution models 

 

From the 48 candidate models in all SDMs, we selected MAXENT settings based on 

the optimal-model output with lowest ΔAICc: breeding range Regularization Multiplier 

(RM) = 2, wintering range RM = 2.5, whole-range RM = 1.5; Feature Classes = all 

models = Linear, Quadratic, Hinge, Product. Predictive performance across all ten-

fold cross-validated best fit models had moderate to high predictive accuracy, with all 
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models demonstrating robust predictive metrics with low omission rates (Table 1). 

Mean AUCTEST and AUCTRAIN values were all > 0.79 across the three range predictions, 

with low AUCDIFF values indicating limited over-fitting (Table 1). Test omission rates 

were close to defined thresholds in all models, indicating effective discriminatory 

ability between suitable and unsuitable climatic areas, and a low number of localities 

falling outside of the model prediction (Table 1). Continuous Boyce index values in 

final model predictions showed high positive correlation between predicted climate 

suitability and presence training and test occurrence points. Both breeding (BTEST = 

0.921, n = 315) and wintering (BTEST = 0.735, n = 133) range models had high 

predictive performance at identifying suitable habitat from test data. The whole-range 

model was consistent with current distribution maps (Figure S1), with high predictive 

accuracy (BTEST = 0.882, n = 516). Continuous Boyce index plots showed positive 

correlations and increased predicted to expected ratios as the number of climate 

suitability bins increased (Fig. S2), demonstrating well-calibrated models.  

 

New areas of climatic suitability 

 

Final predictive maps using all occurrence points identified new areas of high 

climatic suitability in both breeding and wintering ranges for targeted population 

surveys (Figs. 1 & 2). Focal regions for potential Saker breeding populations where 

distribution data are limited include: central and eastern Turkey; western Caucasus 

from eastern Georgia south across Armenia and Azerbaijan, and into north-western 

Iran; western Uzbekistan, Kyrgyzstan; Qinghai-Tibetan plateau, and central-northern 

provinces of Gansu, Inner Mongolia, Ningxia and Xinjiang in China (Fig. 1). Focal 

regions for potential wintering populations where distribution data are limited include: 
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western Turkey; the Caucasus into northern Iran, the Levant and north African coast 

from Egypt to Tunisia; the Ethiopian highlands; central-southern Iran; north-east 

Afghanistan; the Yemen Highlands; eastern and southern Qinghai-Tibetan plateau, 

and extending across the provinces of western Sichuan, Gansu and Ningxia in China 

(Fig. 2). 

 

Model predictions for regions within the Saker’s known range, but with limited 

distribution data or low survey coverage, identified regions to prioritise future 

population surveys. Visual inspection of clamped projected distributions showed 

minimal or no prediction outside of the geographic extent of the calibration data. 

Predictive maps for the Qinghai-Tibet plateau identified highest climatic suitability for 

breeding Sakers in central and western Tibet, and eastern Qinghai (Fig. 3a). In Tibet, 

highest climatic suitability encompasses a large region west of Lhasa and extending 

north into the Nyenchen Tanglha and Tanggula mountain ranges, and further west 

into Ngari prefecture (Fig. 3a). In Qinghai, highest climatic suitability extends from 

the Bayan Har Shan range, north-east to the Qilian Shan range bordering Gansu 

province (Fig. 3b). Predicted wintering Saker climatic suitability covers a broad 

extent across southern and eastern Tibet, extending into the northern Himalayan 

foothills bordering Nepal, and further east into western Sichuan province (Fig. 3b). 

Predictive maps for Mongolia identified highest climatic suitability for breeding 

Sakers within the central steppe and forest-steppe ecoregions (Fig. S4a). With a 

large area of climatic suitability buffering this central core area, and to a lesser extent 

across eastern Mongolia. Predicted wintering climatic suitability identified a similar 

core region in central Mongolia, with further suitable climatic areas south close to the 

border with China (Fig. S4b).  
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Environmental predictors 

 

Mean temperature of the warmest quarter (BIO10) contributed the highest 

percentage to the breeding range model prediction (37.24%; Table 2), followed by 

precipitation in the driest month (BIO14; 15.97%), precipitation in the wettest month 

(BIO13; 13.21%), and temperature seasonality (BIO4; 12.32%), with the remaining 

variables contributing ≤ 10%. Mean temperature in the wettest quarter (BIO8) 

contributed the highest percentage to model prediction in the wintering distribution 

model (53.03%; Table 2), followed by temperature seasonality (BIO4; 23.53%) and 

precipitation in the wettest month (BIO13; 14.72%), with the remaining variables all 

contributing < 5%. Jackknife tests of variable importance show that the 

environmental predictors with the highest percent contribution in both breeding and 

wintering models (mean temperature warmest quarter and mean temperature 

wettest quarter respectively), also had highest regularized training gain (Fig. S3). 

Overall, removing each variable whilst including all others demonstrated that no 

single predictor contained a significant amount of information not present in other 

predictors.  

 

Response curves showing the probability of climate suitability relative to 

environmental variables, demonstrated pronounced climatic thresholds for Saker 

climate suitability (Fig. 4). In the breeding range model, suitable climatic conditions 

for mean temperature in the wettest quarter (BIO8) and warmest quarter (BIO10) 

both ranged from -10°C to ~35°C, peaking at the most suitable climatic conditions at 

10°C (Fig. 4a). A similar curve was apparent for BIO8 in the wintering range model, 
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but with a higher tolerance of mean temperatures in the warmest quarter up to 40°C 

(Fig. 4b). Mean diurnal temperature range had highest climate suitability at ~15°C, 

ranging from 5°C to ~17°C in the breeding model, but decreasing rapidly after 5°C in 

the wintering range model. There were similar curves in precipitation of the driest 

month for both models, with a peak of most suitable climate conditions at ~12mm, 

then decreasing rapidly after (Figs. 4a & 4b). However, there were clear differences 

in suitable climate conditions in all other variables between the two models, 

demonstrating the importance of the same limiting climatic factors over others 

dependent on season.  

 

DISCUSSION 

 

Species distribution models are a powerful tool in conservation biogeography, 

particularly when used for predicting distribution knowledge gaps (Franklin, 2013). 

Our models for the Saker are consistent with current known distributions (Galushin 

2004; Ferguson-Lees & Christie 2005, Karyakin 2012; Kovács et al. 2014; Figs. 1, 2, 

S1), suggesting that bioclimatic factors are a key determinant of Saker distributions 

at the macro-scale. Model predictive performance was consistently accurate using 

multiple metrics (see Appendix 3 in Supporting Online Information for details), 

demonstrating robust SDMs to identify areas with highest climatic suitability. Applying 

these models in targeted surveys should increase the chance of locating sparsely 

distributed Saker populations across remote areas, thus addressing knowledge gaps 

in Saker distribution. Climatic characteristics demonstrated pronounced thresholds 

for specific environmental conditions, quantifying which variables had the highest 

contribution to model prediction. Projected distributions in areas with limited 
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distribution data within the Saker’s known range, indicated specific regions with 

highest climatic suitability, which should be prioritized for future surveys.  

 

Environmental constraints 

 

As an initial broad-scale assessment, only climatic variables were used as 

environmental predictors (Pearson & Dawson 2003), though incorporating land 

cover, topography and biotic interactions would likely improve model predictions, 

especially when used at smaller geographical scales (Elith & Leathwick 2009). 

Bioclimatic envelope models assume climate is the main limiting factor in species 

distributions (Pearson & Dawson 2003; Parmesan & Yohe 2003), and our models 

show how climate may drive Saker distributions at the macro-scale. Sakers generally 

prefer areas of low rainfall (Kovács et al. 2014), consistent with the response curves 

here, showing a marked decrease in climatic suitability with precipitation < 15mm in 

the wettest month (Fig. 4). However, from these models, Sakers can tolerate slightly 

higher levels of precipitation in the warmest quarter (25-30mm) in both breeding and 

wintering models (Fig. 4), and higher precipitation in the coldest quarter (50-80mm) 

in the breeding model (Fig. 4a), but with no effect in the wintering model (Fig. 4b).  

 

The differences in response to temperature variables in both breeding and wintering 

predictions (Fig. 4), is likely due to the broad continental distribution of this migratory 

species. Wide variation in temperature would be expected between breeding areas 

mainly in colder, high altitude regions, compared to higher mean temperatures in 

some warmer, low-level wintering grounds. In the breeding model, Sakers can 

tolerate a ~15°C mean diurnal temperature range during the breeding season, 
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reflecting the wide latitudinal gradient in the species’ breeding range (Ferguson-Lees 

& Christie 2005). However, wintering Sakers are less tolerant of diurnal temperature 

variation with a marked decrease in climatic suitability above 5°C diurnal 

temperature range (Fig. 4b). This reflects the seasonal movements of many northern 

breeding Sakers into more southerly wintering regions further south within their 

breeding range (Dixon et al. 2016).  

 

Both mean temperature in the wettest quarter and mean temperature in the warmest 

quarter peaked at highest climate suitability of 10°C in the breeding model (Fig. 4a), 

with a similar response to mean temperature in the wettest quarter in the wintering 

model, but increased tolerance of temperatures up to 40°C for wintering Sakers 

measured with mean temperature in the warmest quarter (Fig. 4b). This suggests a 

strong relationship between temperature and precipitation for suitable breeding and 

wintering conditions for Sakers, reflecting the arid, temperate areas that Sakers 

mainly prefer across their range (Bondì et al. 2013). The response curves for 

temperature seasonality showed a greater range of tolerance during the breeding 

season consistent with the dominant high latitude and altitude areas used by 

breeding Sakers (Fig. 4a), compared to the peak of very low temperature seasonality 

for wintering Sakers (Fig. 4b) when moving further south in latitude or with 

decreasing altitude within their range.  

 

Occurrence data and model limitations 

 

Using online bioinformatic databases is increasingly common in biodiversity 

assessments (Maldonado et al. 2015) and is a cost-effective and convenient method. 
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However, using such records requires caution and careful appraisal before 

implementation into predictive models (Beck et al. 2013). The robust approach 

implemented here to clean datasets and remove spatial biases, whilst maintaining 

suitable sample sizes, shows the utility of using online database records for SDMs 

(See Appendix 4 in Supporting Online Information). Reliability of observer 

experience and accuracy of biodiversity database records can be difficult to quantify, 

as records are often compiled from varied sources with no systematic methodology. 

However, in these models, Saker occurrence records were sourced from reliable 

data sources such as raptor biologists, atlases, museum specimens, and citizen 

science data (i.e. eBird; Sullivan et al. 2009) and subsequently archived within the 

GBIF database.  

 

Using presence-only data is now commonplace in biogeography, and its use should 

be encouraged when robust datasets can be generated from citizen-science data 

(Beck et al. 2013; Fournier et al. 2017a,b). For example, a comparison of model 

predictive performance from both satellite tracking and eBird data-derived SDMs for 

the Band-tailed Pigeon Patagioenas fasciata, demonstrated that an SDM using 

presence-only occurrence data was just as effective at predicting species 

distributions as one using satellite tracking data (Coxen et al. 2017). However, we 

recognise there are important methodological issues regarding spatial bias in 

presence-only occurrences from digital databases (Beck et al. 2014). Citizen-science 

data collection is often biased to areas near to human habitation or more accessible 

sites, resulting in gaps in sampling effort from hard-to-survey areas (Kramer-Schadt 

et al. 2013; Boria et al. 2014; Fourcade et al. 2014). However, as our occurrence 

dataset was compiled from both professional and volunteer surveyors, the sampling 
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area covers much of the Saker’s known range. Inevitably there will always be 

variation in survey effort for species with such large ranges across remote areas, 

such as the Saker, and this is where we argue for using correlative SDMs to help fill 

in the gaps and direct future survey effort.  

 

Predicted distributions for the Qinghai-Tibet plateau 

 

China is an important range country for Sakers, with significant distribution 

knowledge gaps (Collar et al. 2013). The predicted distributions to a key region for 

breeding and wintering Sakers in the Qinghai-Tibet plateau is an initial step to 

improved understanding of Saker distribution across this vast country. Climatic 

suitability predictions for the Saker in this region are consistent with previous 

observations that Sakers mainly breed in the east and south of the plateau (Vaurie 

1972; Potapov & Ming 2004). Cui et al. (2008) also report that Sakers are common in 

north-east Qinghai during the breeding season, and King & Tai (1991) state that 

Sakers are common in north-west Sichuan. However, even with this information 

surveying remote, inhospitable terrain, combined with large search areas, can often 

be a key factor constraining successful population surveys (Menon et al. 2010).  

 

The predicted distributions into the Qinghai-Tibet plateau and Mongolia (Figure S4; 

Appendix 5 in supporting Online Information) illustrate this problem of scale, and how 

SDMs can identify the most suitable areas reducing the searchable area. Our 

models further support previous assessments for the importance of the Qinghai-Tibet 

plateau as an area of potentially high Saker population density (Dixon et al. 2015). 

Exploratory surveys in this vast biogeographic region (2.5 million km²), suggest the 



Page 23 of 39 
 

plateau may hold Saker densities higher than for China as a whole, and further 

systematic surveys have been recommended (Dixon et al. 2015). Our models 

produced accurate distribution maps, and provided focused direction for future 

population surveys in remote regions of the Sakers’ range. We recommend that 

population surveys for the Qinghai-Tibet plateau be prioritized to determine its 

potential global importance for breeding and wintering Saker populations.  

 

Predictive spatial models are currently in high demand for conservation planning  

and to improve understanding of species distributions (Rodríguez et al. 2007; Wood 

et al. 2017). Broad-scale climatic assessments provide an initial step towards 

smaller-scale projects focused on planning reintroductions, mitigating development 

conflicts, defining protected areas and evaluating the impact of climate change on 

species distributions (Peterson et al. 2011). Here, we show a further application by 

identifying areas with highest climatic suitability to target population surveys for an 

endangered species, and potentially accelerating the discovery of new populations 

(Guisan et al. 2006a). Species geographical distributions are important units of 

information used to assess range size, population numbers, target management 

measures and determine conservation status (Elith et al. 2006). Species that live at 

low densities, across large ranges in remote regions, such as the Saker, are often 

the most difficult to assess (Collar et al. 2013). By using a presence-background, 

climate-based SDM, key knowledge gaps in Saker distribution can be addressed. 

Though there are multiple gaps in our understanding of Saker biogeography and 

ecology (Collar et al. 2013; Kovács et al. 2014), SDMs can start to address 

fundamental biogeographical questions, leading to improved understanding of Saker 

distribution, and informing effective conservation management.  
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TABLES 

 

Table 1. Evaluation test statistics from ten-fold cross validation for three species distribution models 

for the Saker Falcon. AICC = Akaike Information Criterion corrected for small sample sizes, ΔAICC = the 

difference in AIC between the best model and a given model. AUCTRAIN, AUCTEST and AUCDIFF are three 

different metrics representing Area Under the Curve (AUC) of the Receiver Operating Characteristic 

plot (ROC). MOR = minimum test omission rate & 10%OR = 10 percent test omission rate. 

 

            Test omission rates 

Distribution model AICC ΔAICC AUCTRAIN AUCTEST AUCDIFF MOR 10%OR 

Breeding 8904.143 0.0 0.813 0.791 0.022 0.003 0.130 

Wintering 3845.936 0.0 0.837 0.801 0.036 0.023 0.143 

Whole-range 14746.47 0.0 0.851 0.840 0.011 0.002 0.120 

 

 

Table 2. Percent contribution for environmental predictors in breeding and wintering distribution 

models for the Saker Falcon. Bioclimatic variables represent annual trends and extremes and limiting 

environmental factors from the period 1970-2000. Sourced from WorldClim (version 2, 

http://www.worldclim.org/bioclim/). All temperature values in °C and precipitation values in mm.  

 

Bioclim code Description Breeding Wintering 

BIO2 Mean diurnal range¹   5.92   4.97 

BIO4 Temperature Seasonality² 12.32 23.53 

BIO8 Mean temperature of wettest quarter 10.13 53.03 

BIO10 Mean temperature of warmest quarter 37.24   1.44 

BIO13 Precipitation of wettest month 13.21 14.72 

BIO14 Precipitation driest month 15.97   0.98 

BIO15 Precipitation seasonality³   3.60  1.34 

BIO19 Precipitation of coldest quarter   1.72   0.00 

 

¹ Mean of monthly temperature (maximum temperature – minimum temperature) 

² Standard deviation *100 

³ Coefficient of variation. Standard deviation of monthly precipitation estimates expressed as a percentage of the mean 

estimate 

http://www.worldclim.org/bioclim/
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FIGURE LEGENDS 

Figure 1. Predicted breeding distribution model for the Saker Falcon. Map shows continuous logistic 

prediction with hotter red areas (values closer to 1) having high Saker climate suitability. Black filled 

circles define known Saker occurrence points. Boyce index BTEST = 0.921 using 10% test data.     

 

Figure 2. Predicted wintering distribution model for the Saker Falcon. Map shows continuous logistic 

prediction with hotter red areas (values closer to 1) having high Saker climate suitability. Black filled 

circles define known Saker occurrence points. Boyce index BTEST = 0.735 using 10% test data.     

 

Figure 3. Predicted distributions for the Saker Falcon projected into the Qinghai-Tibet plateau, China. 

Map (a) shows predicted breeding distribution, and (b) predicted wintering distribution. Hotter red 

areas (values closer to 1) have higher Saker climate suitability. Black filled circles show Saker 

occurrence points. Bold lines define Chinese border and administrative regions.  

 

Figure 4. Response curves for all climatic variables used as predictors within distribution models for 

the Saker Falcon: (a) breeding range distribution, and (b) wintering range distribution. All temperature 

values in °C and precipitation values in mm. 

 

 


