
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2015-04-01

FHSD: An Improved IP Spoof Detection

Method for Web DDoS Attacks

Shiaeles, SN

http://hdl.handle.net/10026.1/12693

10.1093/comjnl/bxu007

The Computer Journal

Oxford University Press (OUP)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

�

�

�

�

�

�

�

�

© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 21 February 2014 doi:10.1093/comjnl/bxu007

FHSD: An Improved IP Spoof Detection
Method for Web DDoS Attacks

Stavros N. Shiaeles
1

and Maria Papadaki
2∗

1Department of Electrical and Computer Engineering, Democritus University of Thrace, Building A, ECE,
Kimmeria Campus, Xanthi 67100, Greece

2Centre for Security, Communications and Networks Research (CSCAN), School of Computing and
Mathematics, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK

∗Corresponding author: maria.papadaki@plymouth.ac.uk

Distributed denial of service (DDoS) attacks represent a significant threat for companies,
affecting them on a regular basis, as reported in the 2013 Information Security Breaches Survey
(Technical Report. http://www.pwc.co.uk/assets/pdf/cyber-security-2013-technical-report.pdf.). The
most common target is web services, the downtime of which could lead to significant monetary costs
and loss of reputation. IP spoofing is often used in DDoS attacks not only to protect the identity of
offending bots but also to overcome IP-based filtering controls. This paper aims to propose a new
multi-layer IP Spoofing detection mechanism, called fuzzy hybrid spoofing detector (FHSD), which
is based on source MAC address, hop count, GeoIP, OS passive fingerprinting and web browser
user agent. The hop count algorithm has been optimized to limit the need for continuous traceroute
requests, by querying the subnet IPAddress and GeoIP information instead of individual IP addresses.
FHSD uses fuzzy empirical rules and fuzzy largest of maximum operator to identify offensive IPs
and mitigate offending traffic. The proposed system was developed and tested against the BoNeSi
DDoS emulator with encouraging results in terms of detection and performance. Specifically, FHSD
analysed 10 000 packets, and correctly identified 99.99% of spoofed traffic in <5 s. It also reduced

the need for traceroute requests by 97%.

Keywords: distributed denial of service attack; network anomaly; anomaly detection; hop counting;
fingerprinting; spoofing detection; user agent; HCF; IP2HC mapping

Received 26 April 2013; revised 8 December 2013
Handling editor: George Loukas

1. INTRODUCTION

Denial of service (DoS) attacks continue to become more
common and affect organisations on a regular basis [1]. As
reported in the 2013 Information Security Breaches Survey,
39% of large businesses (up from 30% last year), and 23% of
small businesses (up from 15% last year) have been affected
in the last year [1, 2]. Based on the same survey, 19% of
respondents reported a frequency of at least one DoS incident
per week, whereas a smaller minority of 4% experienced
hundreds of such attacks every day. The cost of a distributed
DoS (DDoS) attack is substantial enough to necessitate the
need for detection and mitigation, as according to [3], more
than half of respondents (65%) experienced average costs per
incident to be up to $10K per hour. A further 35% reported cost
of over $10K per hour, and a combined 34% experienced loss
of over $50K per hour. The direct monetary cost is of course

not the only impact of DDoS, as affected companies could
suffer from long-term effects, such as loss of reputation, loss
of revenue, poor customer experience and eventually even job
losses. According to a research by the Yankee Group, a mid-
size enterprise with an annual revenue of $10 million would
lose an additional $20 000 (0.02% of revenue) in the longer
term [3].

In order to work towards detecting and mitigating DDoS
attacks, it is important to understand their characteristics first.
According to [4], the most common target is unprotected
websites (86%), but they also tend to affect DNS (70%),
email (31%), IP telephony (17%) and even IRC (9%) services.
The most common attack vector for web services is HTTP
GET (76%), followed by more sophisticated tools such as
LOIC, HOIC, XOIC, PyLoris, Slowloris, Apache Killer and
SlowPost [3]. As a result, the focus of this work is web-based

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

http://www.pwc.co.uk/assets/pdf/cyber-security-2013-technical-report.pdf

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 893

DDoS attacks, which are defined as DDoS attacks targeting
web-related ports, such as 80/tcp, 443/tcp, etc.

A common defence mechanism against DDoS attacks is
to block the offending source IPs. However, attacks have
evolved to employ IP Spoofing, mainly as a way to defeat such
mechanisms [5]. Also, as [6] reveals, bots often utilize random
spoofing, subnet spoofing or fixed spoofing in DDoS attacks to
hide their identity and make mitigating DDoS attack harder.
Although ingress and egress filtering can help significantly
towards minimizing the problem, the potential for IP spoofing
still exists [7]. According to the MIT Spoofer Project, which
provides an aggregate view of ingress, egress filtering and
IP spoofing on the Internet, 23% of autonomous systems
and 16.8% of IP addresses are spoofable; this means that an
estimated 560 million out of 3.32 billion IP addresses can still
be spoofed [8].

As such, the aim of this paper is to propose an IP
spoofing detection model for web-based DDoS attacks. The
proposed work is an extension of our previous research [9],
which proposed a DDoS detection mechanism based on fuzzy
estimator on the mean time between network events. The
inability to distinguish spoofed IPs and remove false positives
generated by spoofed traffic was a limitation of our method and
hence it is the topic that the present paper aims to expound.
The following outline presents the main topics that are covered
in this paper. Section 2 provides a critical review of existing
research in the detection of IP spoofing and specifies how
the proposed approach differs from the reviewed methods.
Section 3 presents the main concepts behind the fuzzy hybrid
spoofing detector (FHSD) model. Section 4 then proceeds to
describe the prototype implementation and the experimental
design that was adopted to test FHSD. Section 5 presents the
experimental results from our work, and Section 6 discusses the
significance of these results. Section 7 identifies the limitations
of the proposed method, and is followed by Section 8, which
concludes the paper and discusses future work in the area.

2. RELATED WORK

A considerable amount of literature has been published on
identifying spoofed IPs in DDoS attacks. These methods can
be divided into two categories: router based and host based [7].
The main difference between these is that the former needs
routers software modification, whereas the latter can run on an
end host as a program.

Pi and StackPi [5, 10] is a router-based approach, which
introduces a new packet marking mechanism where a fingerprint
is embedded in each packet to identify the path it takes through
the Internet. Following a similar approach, Refs [11] and [12]
have tried to detect spoofed IPs at the source network based
on their arrival rate threshold and at a victim network by
marking spoof packets based on the IP source arrival rate using
their respective TTL value. Using cryptographic techniques to

encrypt hop count and router to maintain the hop count to IP
address tables, Ref. [13] has also tried to defend against spoof
IPs in a DDoS attack. In addition, a novel defence mechanism
was proposed by [14]; this new mechanism makes use of the
edge routers that connect end hosts to the Internet to store and
detect whether the outgoing SYN,ACK or incoming SYN/ACK
segment is valid. This is accomplished by maintaining a
mapping table of the outgoing SYN segments and incoming
SYN/ACK segments and by establishing the destination and
source IP address database. All these ideas are really interesting
and promising, but they are difficult to implement in real life,
as they require modifications of networking infrastructure on a
global scale.

Host-based approaches have also attracted significant interest
by research communities. Wang et al. [15] were the first to
propose a novel hop count-based filter (HCF) in the end system
that builds an accurate IP-to-hop count (IP2HC) mapping table.
The initial IP2HC was created using traceroute and was from
actual hop-count distributions. Based on the IP2HC table, they
compared the arriving TTL values to identify spoofed IPs. For
example, if the arriving TTL was 60, the assumption would
be that the initial TTL was 64, and the source IP was 4 hops
away. A selection of concurrent traffic from different networks,
but with exactly the same arriving TTL, would indicate a
higher probability of spoofed traffic. Similarly, if the traceroute
results reveal different hop count, this would also suggest
spoofed traffic. They included a secure mechanism to update
the IP2HC mapping table, and eventually protect it against
poisoning attacks as well as take into account changes in
dynamic network conditions. Although HCF was a significant
first step, it had some limitations. First, it used strict TTL values,
without margins for error, which made it prone to false positives
and false negatives [16]. Also it did not check the OS of the
source IP to validate the assumed initial TTL value. Continuing
the example above, where the assumed initial TTL was 64 (the
default initial TTL for Linux), it would be beneficial if the O/S of
the packet was determined to validate the result. Furthermore,
the method is memory and network intensive, which lowers
performance as well as its resistance to a DDoS attack. DHCF
is an improved version of HCF, as it adopts a distributed model
and has the advantage of overcoming the problems of exhausting
network bandwidth and host resources at a single location [17].
However, it would be worth investigating whether alternative
approaches with less memory and network intensive designs
could potentially alleviate the problem. A probabilistic model
was proposed by Swain and Sahoo, who managed to reduce the
computation and memory requirements of HCF, but they still
have the low detection problems of the initial method [18].

Wu and Chen [19] moved beyond the IP layer to improve
detection of IP spoofing by adopting a multi-layer approach.
They used HCF to block the majority of spoofed traffic and
then a SYN Proxy Firewall on transmission layer to filter TCP
half-open connections. The last step was to limit application
layer DDoS traffic that uses legitimate HTTP requests.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

894 S.N. Shiaeles and M. Papadaki

The three-layer inspection manages to improve detection, but
the paper does not specify how legitimate HTTP requests
are distinguished from malicious ones. Also, the inherent
limitations of HCF were not addressed. Zhang et al. [16] have
also adopted a multi-layer approach, by using an improved
version of HCF, SYN cookies and a SYN proxy. The new
method is called hop count proxy (HCP) and it overcomes
HCF’s problem of strict TTL values by applying a wider
TTL threshold. Also, a SYN proxy and SYN cookies are
used to filter out malicious TCP half-open connections. HCP
regularly updates the IP2HC mapping table, when not under
attack. Another drawback of HCP is that it has some issues
with machines behind NAT boxes, resulting in faulty results.
Moreover, O/S information is not used to validate the arriving
TTL, which increases the risk for false negatives. Finally, the
method is limited to the network and transport layers only, and
not to the application layer; hence, it is more suitable as a SYN
attack DDoS mitigation method.

Apart from adopting multi-layer approaches, Covarrubias-
Rodriguez et al. [20] have tried to improve detection by using
fuzzy logic along with HCF to setup a flexible threshold of
decision. Their method will modify the routing table every
time there is a change in hop count (HC) tables. However, the
problems associated with HCF are still present.

To overcome the problems of router implementation, the
proposed method focuses on end host systems. It also adopts
a multi-layer approach, by focusing on the link-layer, network,
transport and application layers, which have shown improved
detection results. The novel contribution of this paper is that
it explores the extent to which additional metrics, such as
source MAC address, OS information, GeoIP or web browser
header information (user agent) can help improve detection of
IP Spoofing. Finally, the proposed research also attempts to
optimize performance, to allow the detection system to operate
in DDoS attack conditions.

3. FUZZY HYBRID SPOOFING DETECTOR
CONCEPTUAL MODEL

The proposed FHSD adopts a multi-layer approach to provide
an efficient IP spoofing detection mechanism that is able to
run under attack conditions. Therefore, the proposed approach
needs to meet the following operational requirements:

(i) Multi-layer approach based on source MAC address,
hop count, passive OS fingerprinting, HTTP user agent,
and HTTP request method.

(ii) Improve detection by cross checking hop count with
passive OS fingerprinting results and HTTP user Agent.

(iii) Minimize network and resource requirements for
repeated traceroute queries by considering GeoIP and
subnet address, rather than queries for single IP
addresses.

(iv) Take into account changing network conditions and
incomplete results by adopting flexible TTL values,
along with GeoIP and subnet information for hop
counting.

The proposed hybrid multi-layer approach considers as input
a large selection of metrics, such as source MAC address, hop
count, passive OS fingerprinting, HTTP user agent, and HTTP
request method. The rationale for selecting source MAC address
stems from [21], which recognises the potential of pairing MAC
and IP addresses to control IP spoofing. Therefore, the proposed
work aims to test this hypothesis. Still, it is recognised that
the applicability of having the sender’s MAC address is rather
limited, as it can only apply to local network addresses. Hence
it is imperative that the proposed method is able to function
regardless of whether the sender MAC Addresses are available.
The reason behind using passive OS fingerprinting, and HTTP
user agent is to allow cross-checking of hop-count and HTTP
user agent with passive OS fingerprinting to lower false positives
and false negatives. Changes in user agent requests and user
request methods (POST, GET) are also considered to signify
illegitimate HTTP traffic. This is based on the assumption
that legitimate HTTP requests will have lower variability
than abnormal traffic [22]. Finally, calculating hop count is
influenced by previous work on HCF and HCP (as discussed
in Section 2). In this case, the hop count method is optimized to
reduce the number of slow and sometimes incomplete traceroute
queries, by looking up Class C subnet addresses, rather than
individual IP addresses. Also, GeoIP information provides an
extra dimension on the geographical location of a subnet. The
hop count method also adopts flexible TTL values, to take into
account the changing network conditions.

Figure 1 depicts the network flow diagram of the proposed
model. According to Fig. 1, the FHSD receives web traffic

FIGURE 1. Network flow datagram of our proposed method.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 895

FIGURE 2. FHSD module steps.

for inspection from the firewall. FHSD then retrieves hop
count information from the GeoIP Hop Count Update module,
which is responsible for the estimation of hop count and GeoIP
information. It initially checks whether there is an existing entry
in the database for either the IP address or the Class C subnet,
before initiating a GeoIP hop count query on the Internet. Once
an answer is provided, the database is updated and the relevant
information is passed to FHSD, which in turn calculates the IP
risk for each IP address. The IP risk is saved in the database,
and it is used to distinguish legitimate traffic. When the IP risk
is HIGH, FHSD automatically assigns a firewall rule to reject
traffic from this IP address, whereas legitimate traffic is allowed
to progress to the web server. FHSD can be configured via a
Web Report module, which provides configuration and logging
functionality. The network administrator is able to monitor the
results of the FHSD scoring using the Web Report module.
They can also issue blocking commands directly to the firewall,
e.g. when FHSD misses malicious spoofed IPs that need to be
blocked.

Figure 2 illustrates the core modules of FHSD, where
connection flows are buffered before they are passed for
analysis. FHSD passes data to the analysis modules; either
once the number of connections exceeds a certain threshold
or after a specified amount of time elapses. Both metrics can
be configurable, and in the present paper, a threshold of 10,000
connections and a time threshold of 2 s is assumed (please see
further justification about this threshold in Section 6). The buffer
extracts the following data from raw traffic: (a) IP source, (b)
source MAC address, (c) IP TTL, (d) HTTP user agent and (e)
HTTP request method.

TABLE 1. Operating systems TTL values.

Operating system TCP UDP ICMP

Linux 64 64 255
FreeBSD 64 64 255
Mac OS X 64 64 255
Solaris 255 255 255
Windows 95/98/ME 32 32 255
Windows XP,7,8, 2003, 2008 128 128 255

Once buffer data are passed for analysis, three simultaneous
processes start. The first process starts with MAC address and
IP pairing. This process checks data according to the list of
MAC address of local systems, to detect compromised hosts in
the local network that act as zombies. The second process uses
passive OS fingerprints and compares them with the operating
system information that is retrieved from the user agent string.
If the two values are equal, the result is set to 0; otherwise, it
is 1 until the IP is changed. Next, the comparison continues
through the TTL. Table 1 shows the default initial TTL values
of operating systems that were considered, according to the
results from the second process [23]. After initial TTL is set,
the program checks for IP Hops. If it finds the hops for the
particular IP, it uses it to find the difference between initial
TTL and hop count. If the results are incomplete, it uses the
subnet address instead or the country and city, and considers
TTL boundaries of ±2, as per Refs [16] and [24]. This calculated
TTL is compared with the TTL value reported in the network
data to detect inconsistencies and count the number of times
that they change. The variability of TTL in a normal session is
usually very low, where the TTL value largely stays unchanged,
or sometimes moves up or down to 1 or 2 hops. Finally, the third
process counts user agent changes and frequency of user request
methods (POST, GET). Then, the results are collected and
passed from a fuzzy rule set, as depicted in Fig. 3. For the input
membership function, the triangular membership along with
trapezoid function is chosen (Fig. 4). These were chosen due to
their extensive use in similar research involving fuzzy logic and
intrusion detection. The most notable example is that of [20],
which used triangular membership to mitigate distributed DoS.
Gomez and Dipankar [25] also used triangular membership for
network anomaly detection. Similarly, Ref. [26] used triangular
membership as well to identify port scanning, denial of service
attacks, backdoors and Trojan horse attacks. It is important to
note the possibility that other membership functions could be
equally suitable, or yield even better results. Selecting the most
efficient function is out of the scope of the proposed work,
and it could in fact be a topic for exploration in the future.
Primary aim of this paper is to explore the benefits and basic
concepts of an improved IP spoofing detection mechanism, and
in this context, we opted for well-tried and tested membership
functions that work.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

896 S.N. Shiaeles and M. Papadaki

FIGURE 3. Fuzzy with empirical rules method used.

The inputs were defined on a domain interval of 0–1. Each
domain, except TTL result and p0f result that are Boolean,
was divided into three regions of low, medium and high as
shown in Fig. 3, with the values given in Table 2. Note that
Table 2 values can be changed according to the needs of the
domain or the dataset. All input domains are normalized to
the same input range. The rules of the fuzzy system were
constructed with the fuzzy input set. Fuzzy rules are written

using empirical network administrator experience. For the
output, these rules are combined with largest of maximum
(LoM) operator.

To best understand these empirical rules, an IP attack example
is shown below.

Fuzzy IP HTTP requests count Number = IP HTTP requests
count/TOTAL IP COUNTS,

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 897

FIGURE 4. Fuzzy triangular membership function.

TABLE 2. Range of input.

Linguistic variable Fuzzy number

Low 0,0.1,0.2
Medium 0.16,0.3,0.4
High 0.36,0.7,1

Fuzzy IP HTTP empty requests count Number = IP HTTP
empty requests count/TOTAL IP COUNTS,

Fuzzy User Agent variation count Number = User Agent
variation count/TOTAL IP COUNTS

Fuzzy IP TTL variation count Number = IP TTL variation
count/TOTAL IP COUNTS.

The result of each variable is a number. This number is checked
in the triangular membership function to find the risk that is
belonging. Then these results are passing from two rules:

Rule 1:

IF (IP HTTP requests count == Low) AND (IP HTTP empty
requests count == Medium)

THEN “IP RISK” == Medium

Rule 2:

IF (IP user agent variation count == Medium) AND (IP TTL
variation count == High)

THEN “IP RISK” == High

The result of the two rules is passed to LoM operator that will
report the crisp number of the output, using also triangular
membership function. The crisp number of the output can be
used with other systems that we develop in order to compare
the results and have a more clear output of IP risk. In this system,
if the LoM is in the high area, the output is marked as High.
After that, the output result of IP risk is weighted with the TTL
binary variable, which takes two values: 0 if it is OK according
to hop count and 1 if not. All this combination produces the

TABLE 3. Group 1 empirical fuzzy if–then rules.

IP HTTP request/
IP HTTP empty request Low Medium High

Low Low Medium High
Medium Low Medium High
High Low Medium High

TABLE 4. Group 2 empirical fuzzy if–then rules.

IP User agent variation count/
IP TTL variation count Low Medium High

Low Low Medium High
Medium Medium Medium High
High High High High

TABLE 5. Final result fuzzy if–then rules.

IP LoM result/
IP TTL status Low Medium High

0 Low Low Medium
1 Medium High High

final IP risk. If the TTL is equal to 1, then this is also High, so
in combination with the High from the LoM, it will report the
system as High in the final IP risk.

The empirical fuzzy rules used in our model are shown
in Tables 3–5 while Fig. 3 depicts/outlines a detailed
representation of the fuzzy rules procedure.

4. A PROTOTYPE IMPLEMENTATION OF FHSD
AND EXPERIMENTAL DESIGN

Based on the conceptual model presented in Section 3, the
paper proceeds to present a prototype implementation of FHSD
and the experimental design that was used to investigate its
detection efficiency. The prototype implementation uses binary
files instead of a database in order to store data. This was
in the interest of time and simplicity. Extending FHSD to
use a database would be feasible, and could speed up the
result process even further. Nonetheless, even with the use of
binary files, the results process is already fast enough. The
computational time for 10 000 packets in an Intel Quad Core
Machine with 8 GB RAM and 1TB 7200-rpm hard disk was
<5 s. Therefore, using binary files was deemed suitable for a
proof of concept tool.

The FHSD prototype prepossesses pcap files with tshark and
it exports values in CSV format. Such values include IP source,
source MAC address, TTL, user agent and request method. Then
the collected web traffic for the 10 000 IPs, which correspond

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

898 S.N. Shiaeles and M. Papadaki

to ∼1 or 2 s of traffic, is passed from p0f v3.0 to identify the
OS per IP. The result of p0f is passed to FHSD along with
traceroute data, pre-processed GeoIP data, and the tshark file.
As it shows in Fig. 2, MAC address and IP pairing is initially
checked against the list of local MAC addresses and then data
are sorted per IP and the IPs are checked against p0f exported
file and user agent. If the two values are equal, the p0f flag is
set to 0. Otherwise, the p0f flag gets the value of 1 until the IP
is changed. Next, the comparison continues through the TTL
using the user agent string to setup the initial TTL of operating
system and Table 1. After the initial TTL is set, the program
checks for IP hops in the traceroute and GeoIP file. If it finds the
hops for the particular IP, it uses this value to find the difference
between initial TTL and hop count. If the result is incomplete,
it uses the Class C subnet address to find the difference with ±2
boundaries. This value is compared with the TTL value from the
network TCP stream, and if different, it counts the number of
times the TTL changes. Similarly, FHSD also counts user agent

TABLE 6. List of spoof IP subnets used in BoNeSi.

BoNeSi spoof IP subnet used

0.1.125.174/24 0.1.91.98/24 0.10.138.194/24
0.10.180.83/24 0.100.194.86/24 0.100.4.147/24
0.101.118.61/24 0.101.253.178/24 0.101.79.119/24
76.92.199.150/24 76.93.12.254/24 76.94.211.44/24
76.94.27.31/24 76.94.67.128/24 76.96.122.8/24
76.98.67.241/24 76.99.14.245/24 77.10.210.127/24
77.101.139.127/24 77.101.185.177/24 77.103.220.1/24
77.104.169.154/24 77.105.240.217/24 77.106.168.16/24
77.177.67.106/24 77.178.90.218/24 77.26.237.147/24
77.26.242.166/24 77.27.51.26/24 77.29.51.117/24
77.29.96.223/24 99.95.56.17/24 100.12.130.16/24
100.212.131.16/24 100.212.132.16/24 100.212.133.16/24
100.212.134.16/24 100.212.135.16/24 100.212.136.16/24
100.212.137.16/24 100.212.138.16/24 100.212.139.16/24
100.212.140.16/24 100.212.141.16/24 100.212.142.16/24

changes and user requests (POST, GET). Then the results are
passed to a fuzzy ruleset, using Mamdani Method [27] (Fig. 4)
and it outputs the IP risk score.

As part of the experimental evaluation, FHSD is tested
against normal and illegitimate web traffic. The DDoS tool
BoNeSi [28], a network traffic generator for different protocol
types, was used to generate the illegitimate traffic. It has the
ability to control with various parameters the attributes of the
created packets and connections as, for example, send rate,
payload size or even all attributes can be randomized. Also in
HTTP mode attack, it behaves as a real Botnet. This is also
the reason behind the choice of BoNeSi, as it can emulate real
bot behaviour. According to SecurityTube, BoNeSi has been
used to simulate large Botnets on an AMD Opteron with 2 GHz,
generating up to 150 000 packets per second [29]. BoNesi was
also successful against the state-of-the-art commercial DDoS
mitigation systems, which it managed to either crash or bypass
detection [28]. Hence, BoNeSi was used in this case as an
alternative to botnets, as a way to overcome the practical
difficulty and ethical problems of obtaining or renting real bot
software.

BoNeSi HTTP request attack was used against an Apache
2.2.20 web server, which hosts PHP dynamic web pages.
In order to make the HTTP requests more realistic, 45/24 IP
subnet ranges (listed in Table 6) and 10 different user agents
along with operating system (listed in Table 7) were used.
BoNeSi then produced spoof IPs within the IP range of each
subnet. For example, the first IP subnet triggered BoNeSi to start
sending requests from random IPs within the range of 1.2.3.1–
1.2.3.254. So the total number of distinct spoof IPs that could
reach the web server would be 11385 (the product of 45 subnets
and 253 IPs per subnet). Also, the TTL values and source ports
of the attack IPs were generated randomly, in an attempt to
make the spoof data more realistic. As for the selected sample
of User Agent strings that are shown in Table 7, it was obtained
from [30].

Although the word ‘Mozilla’ appears in all entries, these
actually represent a wide selection of browsers, such as Internet
Explorer, Opera, Safari and Chrome, and not just Mozilla

TABLE 7. List of user agent strings used in BoNeSi.

User Agent used in BoNeSi import file

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0)
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0)
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/4.0; InfoPath.2; SV1; .NET CLR 2.0.50727; WOW64)
Mozilla/5.0 (compatible; MSIE 10.0; Macintosh; Intel Mac OS X 10_7_3; Trident/6.0)
Mozilla/4.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0)
Mozilla/1.22 (compatible; MSIE 10.0; Windows 3.1)
Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.60 Safari/537.17

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 899

browsers. According to [30], most browsers include the string
‘Mozilla’ in their user agent string.

A pseudocode of the implementation is shown below:

P = SortPacketsPerIP();
FOR each packet in P

IP = GetIPfromPacket(P);
OP = CheckOperatingSystem(P);
Browser = CheckBrowser(P);
UserAgentCount = CountUserAgentChanges(P);
TTL = CheckTTL(IP);
If (TTL found in database)

TTLVALUE=TTL
Else
TTLVALUE=GEOIP_LOOKUP_WITH_SUBNET_

CHECK(IP);
IF (TTLVALUE found)
AddtoDatabase(IP);
Return TTLVALUE;
Else
Mark As Unknown;

Traceroute(IP) in the background
AddtoDatabase(IP);

END IF
END IF
CountPG = Count Post and Get Requests(P);
CountTTLVar = Count_TTL_Changes(P);

END FOR
FinalResult_Per_IP = Summarize_All_Values();

The experiments considered four datasets: one dataset with only
legitimate users’ traffic; the DARPA LLDOS Inside 1.0 dataset;
and two datasets with legitimate users traffic along with BoNeSi
spoof DDoS attack traffic. The first dataset was legitimate users
traffic and was exported from a busy job seeking website used
also in [9]. It contained 30 000 network packets over a period
of 4 min and 157 unique IP addresses. The second dataset was
an attack dataset and was exported using a virtual machine as
web server and another one as attacker with BoNeSi. The two
machines resided on the same host and the web server machine
could be accessed from the Internet. The dataset contained
180000 network packets over a period of 3 min, and it involved
15 legitimate IPs and 2546 spoof IPs. BoNeSi generated around
115 000 packets of spoofed HTTP traffic, using addresses within
a set of IP subnets, as shown in Table 6. This option was enabled
with the max-bot flag.

The third dataset was also an attack dataset and was exported
from the job seeking website used in [9]. The dataset contained
1 600 000 network packets over a period of 4 min. During the
capture of legitimate users sessions on this website, a DDoS
attack was launched from two different locations using BoNeSi.
BoNeSi was configured to use a list of spoof IP addresses,
which are shown in Table 6. The max-bot flag was not used
in BoNeSi, in this dataset. For user agents, Table 7 was used.

BoNeSi generated around 1 550 000 packets of attacking traffic
involving 170 distinct source IPs, where the 45 were the attack
IPs of Table 6.

The last and forth dataset was DARPA LLDOS Inside 1.0
dataset Inside [31]. This dataset contained 649 787 packets
over a period of 3 h 14 min. The HTTP sessions in this dataset
are limited.

5. RESULTS

Initially, the DARPA LLDOS 1.0 Inside data set was
used [31]. According to DARPA LLDOS 1.0 scenario, an
attacker compromises three machines inside the local network.
These hosts are mil with IP 172.16.115.20, pascal with IP
172.16.112.50 and locke with IP 172.16.112.10. Using all the
three compromised hosts and spoof IPs, the attacker attacks
victim IP 131.84.1.31 for 5 s. Our program identifies this attack
in the first stage, using MAC address pairing, so the second
stage was not needed. Also the second stage was not possible
to be used in DARPA because it does not contain web traffic.
Specifically, user agents are missing from many IPs.

The second test was done using the dataset from the two
virtual machines on the same host. According to this scenario,
the attacker machine had BoNeSi installed in order to spoof
IPs and attack the second machine’s web server. Also this
experiment helped to identify the spoofing IPs from MAC
addresses that were changing.

Next step was to test the third and fourth datasets that were
more realistic and that could happen in live situations. The
third dataset dealt with attacking a job seeking website (also
used in [9]) from two geographically different locations using
BoNeSi with spoofed IPs. Our method successfully found all
the spoof IPs in the second stage because the first stage of MAC
filter cannot be used in Internet traffic.

Lastly, the fourth dataset was legitimate data from the job
seeking website as well. In this scenario, the success rate
was 99.99%. There were some minor misclassifications, false
positive values set as Medium that should have been set as
Low. There were no IPs classified in the High state, which is
a reasonable expectation given that the dataset was legitimate
user data.

Figure 5 shows the number of attack packets arriving over
time, whereas Fig. 6 depicts the number of normal packets
arriving over time. Both figures show a different pattern for
normal vs. attacking traffic. Specifically, the volume of distinct
attacking IPs is much higher, than normal IPs.

Figure 7 is a screenshot of the prototype, showing the
outcome of the IP risk classification, using the first and second
stages.

6. DISCUSSION

The DARPA DDoS dataset is based upon DDoS attacks from
compromised hosts in the Local LAN. Also the attack is not

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

900 S.N. Shiaeles and M. Papadaki

FIGURE 5. Attack data packets per time.

FIGURE 6. Normal data packets per time.

FIGURE 7. Program results.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 901

specific for web server so there was not much information
about the user agent and some other features that are needed
for our method to find the offensive IPs in the second stage of
check. Moreover, the IP and MAC pairing is changing during
the DDoS attack using the spoof IPs and having this information
in the dataset makes it easier to find spoof IPs. In a real
DDoS attack against a web server, the MAC address of the
attacker would not be available at the victim side. In the victim
site one would only see the MAC address of the router that
forwards the packets. As a result, the DARPA DDoS dataset
was not considered appropriate to export correct results for the
proposed method. What is more, the second dataset allowed us
to successfully identify the spoof IPs with two ways: First with
the MAC-IP pair changes and secondly using the hop counting,
TTL and user agent filtering method. The third dataset was a
real DDoS scenario. The aim was to collect data and analyse
them to see if the proposed method was effective. Using a hop
counting table for some of the spoofing IPs, not all of them,
geographical locations and OS fingerprinting techniques used
by p0f in comparison with user agent, the proposed method
showed encouraging results by identifying 99.99% of spoof
IPs. Similar results were produced in the fourth dataset that was
live data capture using tcpdump from the job seeking website.
This particular dataset did not have attack IPs, and our method
corresponded correctly to this scenario, but with a few false
positives in the state of Medium score. The reason for this false
positive was the use of proxy server in the settings of the user
browser that visited our web site; the initial TTL was 64, which
is the initial value of a Linux operating system, but the user agent
reported Windows operating system, which has initial TTL of
128. Thus, the system reports it as anomaly, which is correct.

FHSD provides improved results in comparison to HCF
and other approaches. The additional metrics, such as HTTP
request method, user agent and IP TTL value change, proved
to be particularly valuable in accurate classifications, without
introducing significant overhead. This is evident by the
reasonable system performance. A major factor contributing
towards a robust solution was the optimization of hop count
queries by introducing the GeoIP and subnet TTL. By reducing
the need for repeated traceroute requests, the number of
traceroute queries was 45 out of 2000, which is approximately
a 97% reduction in comparison to HCF, which is a significant
improvement of network usage.

Figure 8 shows a comparison between FHSD and HCF, based
on detection rate and false positive rate. The detection rate for
spoof IPs in FHSD is 100% even though we have some false
positive IPs in the rate of 2%. The CPU usage was between 37
and 52%. According to [32], the corresponding figures for HCF
are 90% detection rate and 8% false positive rate. It should be
noted that the results from [32] are based on a different dataset;
therefore, it is not possible to perform a direct comparison
of the two methods. Similarly, other alternative methods to
HCF base their findings on private datasets, making a direct
comparison to FHSD impossible. Wu and Chen [19] shows the

FIGURE 8. FHSD and HCF comparison based on detection rate and
false positive rate.

FIGURE 9. Computational time per number of packets.

most promising results with their three-layer approach using
SYN proxy, reporting 98.93% detection rate. No performance
data were published though in their work.

In terms of performance, the proposed prototype uses
a threshold of 10 000 packets or 2 s. This was based on the
threshold that was used in our previous work in [9]. The same
threshold was chosen again to enable a smoother integration
of the two systems in the future. Thus, it is important to note the
possibility that other thresholds could yield similar results. In
fact, looking at the computational time based on the number
of packets our developed system had to process at a time,
as shown in Fig. 9, it is possible to estimate that a threshold
of 360 K packets or 2 min (120 s) would produce comparable
performance results. It should be noted that the FHSD prototype
uses CSV files to calculate spoof IPs, and the test was performed

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

�

�

�

�

�

�

�

�

902 S.N. Shiaeles and M. Papadaki

FIGURE 10. Traceroute pre-process file.

on a Intel Quad Core Machine with 8 GB RAM and 1 TB 7200-
rpm hard disk. It is not known how these results would vary
if the implementation was done using database or if dedicated
hardware like GPU or FPGA was used.

7. LIMITATIONS

The proposed method uses hop counting, geographical location,
user agent and passive OS fingerprinting. This means that FHSD
needs to maintain a database with correct TTL values from most
IPs of the Internet with country and city. The use of information
such as the subnet and geographical location of the IP helps
to shrink a little the area of IPs. But for better results, a good
database with IP hops should be maintained. Also, the passive
OS fingerprinting and user agent database should be updated
with new operating system signatures and the user agent new
browsers respectively. All these data can be updated daily or
when needed by a new proposed method or even use already
proposed methods like SYN proxy [16].

In the current developed application, data are stored in files
instead of a database. Our intent was to test the efficiency of our
proposed method and not its speed. Nonetheless, file-parsing
techniques were used to optimize performance and produce
results to appear in seconds. To test our scenarios, some IPs
using traceroute and GeoIP were pre-processed and stored in a
file. An example of the process file is shown in Fig. 10. As seen
in Fig. 10, in some cases the traceroute did not lead to the end
IP (see column Completed). In these cases, the system checks
the subnet, and if the IP is in the same subnet with another that
is completed, it takes this value in the field (CLOSES_TTL); if
not then it checks the GeoIP using country and city and if it finds
the IP that the traceroute completed and is in the same country
and city it takes the higher value. In a different case, it takes the

value of the LAST_HOP_ENDED, which is the last reply from
the traceroute. This could be avoided if a good database is kept
with correct values from the subnets for more accuracy and not
giving false positives.

8. FUTURE WORK: CONCLUSIONS

The result from the proposed method shows that it is effective in
identifying spoof IPs, with detection rate almost 100%. Future
work could include the validation of FHSD with flash crowds
and whether it can discriminate them from spoof IPs. This was
not the main aim of the paper and hence it is yet to be tested.
Similarly, further work could investigate the implementation of
FHSD for IPv6 and how it performs in IPv6 traffic.

ACKNOWLEDGEMENTS

The authors are indebted to Assistant Professor Vasilios Katos
for his suggestion to use BoNeSi DDoS emulator for the
experiments.

REFERENCES

[1] PwC (2013) 2013 Information Security Breaches Survey: Tech-
nical Report. http://www.pwc.co.uk/assets/pdf/cyber-security-
2013-technical-report.pdf (accessed January 23, 2014).

[2] Loukas, G. and Öke, G. (2010) Protection against denial of service
attacks: a survey. Comput. J., 53, 1020–1037.

[3] Neustar (2012) DDoS Survey: Q1 2012: When Businesses Go
Dark. http://www.neustar.biz/enterprise/docs/whitepapers/ddos-
protection/neustar-insights-ddos-attack-survey-q1-2012.pdf
(accessed January 23, 2014).

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

http://www.pwc.co.uk/assets/pdf/cyber-security-2013-technical-report.pdf
http://www.pwc.co.uk/assets/pdf/cyber-security-2013-technical-report.pdf
http://www.neustar.biz/enterprise/docs/whitepapers/ddos-protection/neustar-insights-ddos-attack-survey-q1-2012.pdf
http://www.neustar.biz/enterprise/docs/whitepapers/ddos-protection/neustar-insights-ddos-attack-survey-q1-2012.pdf

�

�

�

�

�

�

�

�

IP Spoofing Detection for Web DDoS Attacks 903

[4] Techdata. (2011) Worldwide Infrastructure Security Report,
Arbor Networks 2011 Volume VII. http://www.techdata.com/ar
bornetworks/files/Arbor%20Security%20Report%202012.pdf
(accessed January 23, 2014).

[5] Yaar, A., Perrig, A. and Song S. (2003) Pi: A Path Identification
Mechanism to Defend Against DDoS Attacks. Proc. 2003 IEEE
Symp. on Security and Privacy, Berkeley, CA, USA, May 11–14,
pp. 93–107. IEEE Computer Society.

[6] Thing, V., Sloman, M. and Dulay, N. (2007) A Survey of Bots
Used for Distributed Denial of ServiceAttacks. Proc. IFIP TC-11
22nd Int. Information Security conference (SEC 2007), Sandton,
South Africa, May 14–16, pp. 229–240. Springer.

[7] Ehrenkranz, T. and Li, J. (2009) On the state of IP spoofing
defense. ACM Trans. Internet Technol., 9, Article 6:1–29.

[8] MIT (2013). Spoofer Project: Stats. http://spoofer.cmand.org/
summary.php (accessed January 23, 2014).

[9] Shiaeles, S.N., Katos, V., Karakos, A.S. and Papadopoulos,
B.K. (2012) Real time DDoS detection using fuzzy estimators.
Comput. Secur. 31,782–790.

[10] Yaar, A., Perrig, A. and Song, D. (2006) StackPi: new packet
marking and filtering mechanisms for DDoS and IP spoofing
defense. IEEE J. Sel. Areas Commun., 24, 1853–1863.

[11] Ali, K., Zulkernine, M. and Hassanein, H. (2007) Packet Filtering
Based on Source Router Marking and Hop-Count. Proc. 32nd
IEEE Conf. on Local Computer Networks (LCN 2007), Dublin,
Ireland, October 15–18, pp. 1061–1068. IEEE Computer Society
CPS, Los Alamitos, CA.

[12] Lee, F.Y. and Shieh, S. (2005) Defending against spoofed
DDoS attacks with path fingerprint. Comput. Secur., 24,
571–586.

[13] KrishnaKumar, B., Kumar, P.K. and Sukanesh, R. (2010) Hop
Count Based Packet Processing Approach to Counter DDoS
Attacks. Proc. 2010 Int. Conf. on Recent Trends in Information,
Telecommunication, and Computing (ITC 2010), Kochi Kerala,
India, March 12–13, pp. 271–273. IEEE Computer Society CPS,
Los Alamitos, CA.

[14] Wei, G., Gu, Y. and Ling, Y. (2008) An Early Stage Detecting
Method against SYN Flooding Attack. Proc. 2008 Int. Symp.
on Computer Science and its Applications (CSA-08), Hobart,
Australia, October 13–15, pp. 263–268. IEEE.

[15] Wang, H., Jin, C. and Shin, K. G. (2007) Defense against spoofed
IP traffic using hop-count filtering. IEEE/ACM Trans. Netw.
(TON), 15, 40–53.

[16] Zhang, F., Geng, J., Qin, Z. and Zhou, M. (2007) Detecting the
DDoS Attacks Based on SYN Proxy and Hop-Count Filter. Proc.
Int. Conf. on Communications, Circuits and Systems (ICCCAS
2007), July 11–13, pp. 457–461. IEEE.

[17] Wang, X., Li, M. and Li, M. (2009) A Scheme of Distributed
Hop-Count Filtering of Traffic. Proc. of IET Int. Commun.
Conf. on Wireless Mobile and Computing (CCWMC 2009),
Shanghai, China, December 7–9, pp. 516–521. IET, Stevenage,
Herefordshire.

[18] Swain, B.R. and Sahoo, B. (2009) Mitigating DDoS attack
and Saving Computational Time using a Probabilistic Approach
and HCF Method. Proc. 2009 IEEE Int. Advance Computing

Conference (IACC 2009), Thapar University Patiala, India, March
6–7, pp. 1170–1172. IEEE.

[19] Wu, Z. and Chen, Z. (2006) A Three-Layer Defense Mechanism
Based on Web Servers Against Distributed Denial of Service
Attacks. Proc. 1st Int. Conf. on Communications and Networking
in China (ChinaCom’06), Beijing, China, October 25–27,
pp. 1–5. IEEE Explore.

[20] Covarrubias-Rodriguez, J.C., Parra-Briones, A. and Arturo-
Nolazco, J. (2007) FLF4DoS. Dynamic DDoS Mitigation based
on TTL field using fuzzy logic. Proc. 17th Int. Conf. on Elec-
tronics, Communications and Computers (CONIELECOMP’07),
Cholula Puebla, Mexico, February 26–28, pp. 12–12. IEEE Com-
puter Society CPS, Los Alamitos, CA.

[21] Dumbare, S.S., Patil, P. and Bhanarkar, P. (2012) Survey on
Defenses Techniques Used For Controlling IP Spoofing. Int. J.
Eng. Res. Technol., 1. www.ijert.org.

[22] Kandula, S., Katabi, D., Jacob, M. and Berger, A. (2005) Botz-
4-sale: Surviving Organized DDoS Attacks that Mimic Flash
Crowds. Proc. 2nd Conf. on Symp. on Networked Systems Design
& Implementation-(NSDI’05), Boston, MA, USA, May 2–4,
Vol. 2, pp. 287–300. USENIX Association Berkeley, CA.

[23] Lloyd, G. (2012) The Need for Hacker Identification and
Attribution. http://genelloyd.com/publications.html.

[24] Technical Report 070529A (2007). Dynamics of the IP Time To
Live Field in Internet Traffic Flows. Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia.

[25] Gomez, J. and Dipankar D. (2002) Evolving Fuzzy Classifiers for
Intrusion Detection. Proc. 2002 IEEE Workshop on Information
Assurance, Vol. 6, No. 3. IEEE Computer Press, United States
Military Academy, West Point, New York, USA.

[26] Dickerson, J.E., Juslin, J., Koukousoula, O. and Dickerson J.A.
(2001) Fuzzy Intrusion Detection. Ifsa World Congress and 20th
Nafips Int. Conf., 2001, joint 9th, Vol. 3, IEEE, USA.

[27] UPM (no date) Mamdani’s Method. http://www.dma.fi.upm.
es/java/fuzzy/fuzzyinf/mamdani3_en.htm (accessed January 23,
2014).

[28] Bonesi (2008). BoNeSi—the DDoS Botnet Simulator.
http://code.google.com/p/BoNeSi (accessed January 23,
2014).

[29] SecurityTube Tools (2012) BoNeSi. http://www.securitytube-
tools.net/index.php@title=BoNeSi.html (accessed January 23,
2014).

[30] UserAgentString.com (no date) All User Agent Strings.
http://www.useragentstring.com/pages/All/ (accessed January
23, 2014).

[31] MIT (2000) MIT Lincoln Laboratory Scenario (DDoS) 1.0.
http://www.ll.mit.edu/mission/communications/cyber/CSTcor
pora/ideval/data/2000/LLS_DDOS_1.0.html (accessed January
23, 2014).

[32] Jin, C., Wang, H. and Shin, K.G. (2003) Hop-Count Filtering:
An Effective Defense Against Spoofed DDoS Traffic. Proc.
10th ACM Conf. on Computer and Communications Security,
Washington, DC, USA, October 27–30, pp. 30–41. ACM,
New York.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/4/892/336014 by U
niversity of Plym

outh user on 30 O
ctober 2018

http://www.techdata.com/arbornetworks/files/Arbor{%}20Security{%}20Report{%}202012.pdf
http://www.techdata.com/arbornetworks/files/Arbor{%}20Security{%}20Report{%}202012.pdf
http://spoofer.cmand.org/summary.php
http://spoofer.cmand.org/summary.php
http://www.ijert.org
http://genelloyd.com/publications.html
http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/mamdani3_en.htm
http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/mamdani3_en.htm
http://code.google.com/p/BoNeSi
http://www.securitytube-tools.net/index.php@title=BoNeSi.html
http://www.securitytube-tools.net/index.php@title=BoNeSi.html
http://www.useragentstring.com/pages/All/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/2000/LLS_DDOS_1.0.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/2000/LLS_DDOS_1.0.html

