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Abstract:  The use of rules-of-mixture to predict the elastic modulus and strength of natural 

fibre-reinforced composites is often compromised by the fibre properties used in the 

calculations being derived with an assumption of circular cross-section, when real fibres have 

polygonal cross-section.  A fibre area correction factor (FACF) has been proposed to address 

this inaccuracy and has been demonstrated to improve the predictions. 

 

Letter: Lau et al [1] have stated that “it is challenging to develop a generic formula to predict 

the structural and mechanical properties of NFRP [natural fibre reinforced polymer matrix] 

composites” and that the traditional shear-lag “model is not applicable to NFRP composites 

due to the imperfect shape of nature fibres along their longitudinal direction and irregular shape 

of fibres' cross section”. 

 

Virk et al [2] (the authors of this letter) introduced a “fibre area correction factor (FACF)” to 

address this issue in the context of the rules-of-mixture (RoM) for natural fibre reinforced 

composites.  The FACF, denoted , is determined as the ratio of the apparent fibre cross-section 

area (CSA) divided by the true fibre CSA for a set of observations.  While it is impractical to 

determine this value for each individual fibre test, a sensible  value can be determined from 

the mean values for a set of measurements using “apparent diameters” (obtained prior to 

experimental fibre tests), and by measuring the true fibre polygonal CSA from polished 

fibres/composites mounted parallel to the microscope axis, respectively. 

 

The modified RoM [2] become Equation (1) for elastic modulus of any composite, and 

Equation (2) for strength (limited to quasi-unidirectional composites) by extending the Kelly-

Tyson model [3]: 

 

Ec =  d l o Ef Vf + Em Vm        (1) 

c =  f Vf + *m Vm        (2) 

 

where E = elastic modulus, d = fibre diameter distribution factor, l = fibre length distribution 

factor, o = fibre orientation distribution factor, Vf = component volume fraction,  = strength, 

*m = stress in the matrix at the failure strain of the fibre, and subscripts c, f and m denote 

composite, fibre and matrix respectively.  The assumptions underlying the rules of mixtures 

are not changed by the introduction of the FACF. 
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Virk et al [2] reported experimental data for well-characterised quasi-unidirectional technical 

jute fibre reinforced epoxy resin matrix composites, manufactured by resin infusion under 

flexible tooling (RIFT) with a flow medium, and for the respective constituents.  The 

experimental mean moduli and strengths were 8.19±0.6 GPa and 100.0±5.7 MPa respectively 

for dyed fibre/pigmented resin composites and 8.47±1.18 GPa and 101.0±17.2 MPa for 

undyed/unpigmented composites respectively (i.e. the difference between the pairs of 

respective mean values was <50% of the lower standard deviation).  The predicted modulus 

using Equation (1) without  was 6.44 GPa (-24.0% from the experimental data for the 

undyed/unpigmented composites) and with  was 8.24 GPa (-2.7%). 

 

The experimental fibre strengths were analysed using natural logarithm interpolation (NLI) [4, 

5], and multiple data set (MDS) weak link scaling (WLS) [6], models.  The predicted strengths 

using Equation (2) without  were 79.2 MPa (NLIM, -21.6% from the experimental data for 

the undyed/unpigmented composites) and 73.1 MPa (MDS, -25.4%) and with  = 1.42 

(2697/1896) were 102.9 (NLI, +1.9%) and 95 MPa (MDS, -5.9%) respectively (Figure 1). 

 

Further, Virk et al [2] assumed that the FACF would be appropriate for other batches of jute 

fibres and analysed 14 sets of experiments conducted by other researchers with sliver, yarn, 

chopped strand or fabric reinforcements.  The error in those predicted composite moduli was 

reduced when the FACF was used for all but two cases (Figure 2).  Soatthiyanon et al [7] 

determined a fibre area correction factor of 2.70 for flax.  By back-calculation from tensile tests 

on unidirectional composites, the modulus of the flax fibres was within 6%, and the strength 

was within 7%, of that for single fibre tests. 

 

In conclusion, the modified generic RoM formulae do permit sensible prediction of the elastic 

moduli and strengths of NFRP, and hence address the challenge issued by Lau et al [1].  Further 

work is required to (a) determine the validity of the model for natural fibre composites from a 

broader range of sources, (b) establish if  varies with the range of “apparent” fibre diameters, 

(c) determine  for other natural fibres (and for non-circular [8] or hollow [9] synthetic fibres), 

and (d) confirm the validity of the new equations for a wider set of data.  
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Figure 1: Strength of quasi-unidirectional jute/epoxy composites predicted using Equation 2 

with and without the fibre area correction factor (FACF: ) compared to experimental values 

for materials with dyed fibres in pigmented resins or without colourants [2]. 

The experimental data points are the mean and ± one standard deviation. 
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Figure 2: Comparison of rule-of-mixtures predicted moduli for jute fibre composites 

without (below/red) and with (above/green) the fibre area correction factor [2, 10-16]. 
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