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Summary 
 
This paper reviews computational modelling approaches to the learning of abstract concepts and words in 
embodied agents such as humanoid robots. This will include a discussion of the learning of abstract words 
such as “use” and “make” in humanoid robot experiments, and the acquisition of numerical concepts via 
gesture and finger counting strategies. The current approaches share a strong emphasis on embodied 
cognition aspects for the grounding of abstract concepts, and a continuum, rather than dichotomy, view of 
concrete/abstract concepts differences. 
 
Introduction 
 
The robots’ learning and understanding of abstract concepts and words, as well as concrete words related to 
the naming of objects and actions, can enable human users to shape the robots’ behaviour by using one of the 
most natural interface at their disposal, i.e. language. In the future robots are expected to work as assistants for 
humans, performing joint tasks as co-workers in manufacturing scenarios, as housekeepers, and caregivers for 
elderly and people with disability. In such activities, is it important for the robot companions not only to be 
able to understand sentences such as “Lift the hammer”, but also requests such as “Use the hammer” or “Use 
the plan”. This paper proposes an approach to the learning of abstract concepts in robots by exploiting the 
grounding strategies currently used in the learning of the names of objects and actions, using embodied and 
situated strategies. Numerous models exist of how a robot can autonomously learn, i.e. ground, the 
association between concrete words and the corresponding objects seen and used by the robot, and the action 
it can perceive and act. This grounding can then further be transferred to higher-order, more abstract concepts 
such as “accept”, “use”, “make”. Additional embodied strategies, such as gestures and finger use, can be 
exploited to acquire abstract numerical concepts.  
 
Abstract words are used in daily conversations among people to communicate and describe events and 
situations that occur in their social and physical environment. Abstract words can be differentiated by 
concrete ones according to different criteria, ranging from concreteness, imageability and context availability, 
to mode of acquisition, etc. As claimed by Borghi and Binkofski (1) abstract words, with respect to concrete 
ones, are characterised by different grounding, complexity and meaning variability. A common way to 
distinguish between concrete and abstract concepts is to refer to their concreteness. Indeed, while concrete 
words refer to material and tangible entities that can be perceived through senses, abstract concepts have 
weaker perceptual constraints with sensorimotor experience and physical referents. However, the 
differentiation of words as concrete/abstract is a controversial problem. Evidence suggests a continuum, 
rather than dichotomy, view of concrete/abstract concepts (2). In addition, according to Altarriba et al.  (3) 
words that refer to emotions should be categorised apart from concrete and abstract words (3). As suggested 
by Barsalou (4), concepts become increasingly abstract as they get more detached from physical entities, and 
more associated with mental states. For example, words that are purely definitional (e.g. “odd number”) are 
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more abstract than words that refer to social roles (e.g. “student”), that in turn are more abstract than strongly 
concrete and perceivable entities (e.g. “book”). Further, words such “push” and “give” can be differentiated in 
their level of concreteness and motor modality; that is, a word like “push” is uniquely linked with the action 
of pushing by using the hand, while “give” implies multiple motor instances of the process of passing an 
object by using one hand, two hands, the mouth etc. Similarly, the meaning of words like “use” and “make” is 
general and depends on the context in which words occur (4). In a scenario in which a person is interacting 
with a set of tools, the meaning of “use” is specified by the particular tool employed during the interaction 
(e.g. “use a knife”, “use a brush”), while the meaning of “make” depends on the outcome of interactions (e.g. 
“make a slice”, “make a hole”). 
 
Abstract Concepts Representation and Grounding 
 
Different views have been proposed on the representation of abstract concepts and words.  
According to traditional views (e.g. (5)) both concrete and abstract concepts are represented as abstract and a-
modal symbols that are unrelated to the perceptual states and actions that produce them. For example, 
according to the Context Availability Theory (6), the different processing involved for concrete and abstract 
concepts is due to the fact that concrete words have stronger semantic relations with a reduced number of 
contexts, while abstract words have weak relations with a larger number of contexts. Following the Dual 
Coding Theory (7), concrete concepts are represented by activating a verbal and non-verbal system, while 
abstract concepts are represented in a verbal system only.  
 
The embodied view (e.g. (8)), by contrast, argues that concrete and abstract concepts are represented as modal 
symbols grounded in perception and action (i.e. sensorimotor knowledge). Within the embodied view, 
theories based on “simulations” (8), “metaphors” (9) and “actions” (10), (11) have been proposed.  
A recent proposal (12) claims that conceptual processing requires the activation of multiple representational 
systems (i.e. sensorimotor and linguistic knowledge).  
 
Given the current debate in the field and the complexity of the matter, the learning of abstract concepts and 
words is increasingly proving to be an extremely complex task for grounded theories of cognition as well as 
for embodied computational modelling and robotics. The traditional computational approach considers 
conceptual representations independent from perceptual and motor knowledge, neglecting the role of the 
experience made in the world through physical interaction. This approach has been criticized and challenged 
because of the lack of connection between symbols and their real-world referents, as with Searle’s (13) famous 
Chinese Room Argument, and Harnad’s (14) Symbol Grounding Problem.  In the formulation of the symbol 
grounding problem, Harnad argued that purely computational symbols are self-referential entities that 
require the interpretation of an external experimenter to identify the referential meaning of lexical items.  
 
In contrast to purely computational modelling methods, embodied approaches to language learning focus on 
the design of artificial cognitive agents that are capable to ground concepts and words by integrating 
perception and action and via direct experience and use of these words in a situated, embodied context. The 
robotics modelling of abstract words uses and extends methods from the current literature on the grounding 
of concrete words for objects and actions. Two main grounding mechanisms can be used: (i) “direct 
grounding”, where the robot learns the names of objects it is perceiving, or words for actions it is performing 
or observing (15), (16); (ii) “grounding transfer” where new words are acquired via word combinations and 
without direct sensorimotor experience of their referents (17). For example, the word “unicorn” can be learned 
without ever seeing such an imaginary animal, but through the definition “unicorn is horse with horn”, where 
the grounded meanings of “horse” and “horn”, previously learned via direct grounding, can be transferred to 
the new word. Moreover, a third mechanism used to model abstract word learning in robots is that of 
combining gestures and action with words, such as in the use of finger counting to teach a child (or a robot) to 
count. Such motor strategies allow the learning agent to map abstract concepts as ordered numbers into 
embodied concepts as finger sequences. 
 
 
Towards Abstract Words in Robots via Grounding Transfer 
 
At the two extremes of the concrete/abstract continuum view of concepts, there are strongly concrete and 
perceivable words, such as “pencil” and “push”, and very abstracts ones such as “democracy”, “freedom”. 
Between these two extremes it is possible to consider different levels of abstractness. For example, the word 
“accept” (as in “accept a present”) is an extension of the concrete action of receiving an object but in a friendly 
social context. Whereas, the word “use” (as in “use a pencil”) is a more abstract version of the concrete motor 
concept of “drawing with a pencil” (though still linked to action such as draw). In recent studies 
Stramandinoli et al., (18), (19), (20) have tackled the problem of grounding these intermediate abstract 
concepts (like “accept” and “use” defined as higher-order concepts), adopting the same grounding transfer 
mechanism, and implementing it in robot experiments. Their approach is based on the operationalization of 



Barsalou’s (8) theory of mental simulation and conceptual combination for the acquisition of higher-order 
concepts. This simulation theory is implemented via the symbol grounding transfer method proposed by 
Cangelosi and Riga (17), which requires the implementation of the (i) basic grounding (BG) and (ii) higher 
grounding transfer (HG) mechanisms. During the basic grounding, the robot learns to ground a set of action 
primitives (e.g. “push”, “pull”, “grasp”); whereas, during the grounding transfer linguistic descriptions 
consisting of a sequence of words (e.g. “receive is push, grasp and pull” provided in the form a simplified 
linguist token) guide the hierarchical organization of the basic concepts directly grounded in sensorimotor 
experience (e.g. “push”, “pull”, “grasp”) in order to learn novel concepts (e.g. “receive”). The grounding 
transfer mechanism enables the robot to create the semantic reference for higher-order words that do not have 
a direct and tangible relation with sensorimotor experience. 
 
The concrete/abstract continuum view of concepts presented above, and Barsalou’s simulation theory, are 
examined through developmental robotics models of the direct grounding and grounding transfer 
mechanisms on sensorimotor knowledge (17). Stramandinoli et al., (19) have performed experiments on a 
simulated environment for the iCub robot (21), (22), adopted as a study platform for research studies on the 
grounding of abstract words in cognitive robots. This developmental modelling approach, which will be used 
in the computational models reviewed below, follow the principles of Developmental Robotics (23). This aims 
at the building of cognitive robot models and experiments which take direct inspiration from developmental 
psychology phenomena on sensorimotor and cognitive development, such as stage-like patterns of 
developmental changes and open-ended, cumulative learning.   
 
The robot’s cognitive model is based on Recurrent Neural Networks (RNNs) that permit the learning of 
higher-order concepts based on temporal sequences of action primitives and word sentences. RNNs, such as 
the Elman simple recurrent network, are particularly suitable for modelling abstract concept learning since the 
recurrent connections allow the network to handle time series and sequences of times/words. This is the case, 
for example, in using sequences the combination of words when defining a composite, abstract concept, and in 
the case of counting behavior for learning abstract number concepts. 
 
The training of the model is incremental. During the BG training the robot learns the names associated to the 
action primitives through direct sensorimotor experience. The names of action primitives, given in input to the 
robot’s neural network, are “push”, “pull”, “grasp”, “release”, “smile”, “frown”, and “neutral”. The words 
“smile”, “frown”, and “neutral” are not used to describe emotional states of the robot but rather motor acts. 
For the HG training, to enable different levels of combination of basic and complex actions, two different 
stages are implemented. In the first HG stage (i.e. HG-1), the robot learns three new higher-order words (i.e. 
“give”, “receive”, “pick”) by combining only basic action primitives (i.e. “receive is push, grasp and pull”). In 
order to obtain the transfer of grounding from basic actions to higher-order words, the network calculates 
separately the output corresponding to the words contained in the description (“push”, “grasp”, “pull”) and 
stores it. Subsequently, the network receives as input the higher-order word “receive” and as target the 
outputs previously stored. During the second HG stage (i.e. HG-2), the robot learns three new higher-order 
words (“accept”, “reject”, “keep”) consisting of the combination of basic action primitives and higher-order 
words acquired during the previous HG-1 stage (e.g. “accept is receive and smile”). HG-2 adds a further 
hierarchical combination of words from both concrete concepts (BG) and first level of abstraction words (HG-
1). This training methodology is extremely flexible and permits to freely add novel words to the known 
vocabulary of the robot, or to completely rearrange the word-meaning associations. 
 
Similarly, in Stramandinoli et al., (20) experiments on the iCub robot where performed for investigating the 
grounding of abstract action words. Indeed, the grounding transfer mechanism is used for the learning of 
words with more general, abstract meanings, such as “use” and “make”, referred as abstract action words. 
Abstract action words represent a class of terms distant from immediate perception that describe actions with 
a general meaning and that can be referred to several events and situations. Therefore, they cannot be directly 
linked to sensorimotor experience through a one-to-one mapping with their physical referents in the world. 
The grounding of abstract action words is achieved through the integration of the linguistic, perceptual and 
motor input modalities, recorded from the iCub sensors, in a three layers RNN model. The iCub robot first 
develops some basic perceptual and motor skills, necessary for initiating the interaction with the environment, 
and then it can use such knowledge to ground language. The training of the model consists of the following 
incremental stages: (i) pre-linguistic, (ii) linguistic-perceptual and (iii) linguistic abstract.  
During the pre-linguistic training, the iCub acquires a set of basic visual and motor skills leveraged for: (i) 
extracting objects features (i.e. dimension, colour and shape) and (ii) performing basic motor primitives (i.e. 
“push”, “pull”, “lift”, “lower”, etc.). Object features are extracted from the visual stream read from the iCub 
cameras while the robot interacts with the toy objects such as “knife”, “saw”, “pencil” “brush”. Hence, for 
each object a 4x4 binary matrix that represent the extracted features is created. Furthermore, the robot is 
endowed with a set of basic motor primitives such as “push”, “pull”, and “lift” that enables it to initiate its 
physical interaction with the environment. Through the combination of motor primitives into sequences, the 
robot can learn to perform action primitives that correspond to more complex behaviors. Indeed, action 



primitives (e.g. “cut”, “paint”) are built by combining low level motor primitives together. For example, the 
action primitive “cut” is built by iterating the “push-pull” sequence several times.  
The linguistic-perceptual training is the first stage of language acquisition. The robot is trained to name 
actions performed with objects (two-words sentences consisting of a verb followed by a noun e.g. “cut with a 
knife”); these words are directly grounded in perception and motor experience. The model, which was 
previously trained to extract object’s features and perform action primitives, during this stage associates labels 
to the corresponding object and actions.  
During the linguistic-abstract training, abstract action words (i.e. “use” and “make”) are grounded by 
combining and recalling the perceptual and motor knowledge previously linked to basic words (i.e. linguistic-
perceptual training). To derive the meaning of abstract action words the robot, guided by linguistic 
instructions (e.g. “use a knife”), organizes the knowledge directly grounded in perception and motor 
knowledge. This phase of the training represents the abstract stage of language acquisition when new 
concepts are formed by combining the meaning of terms acquired during the previous stages of the training. 
Novel lexical terms can be continually acquired throughout the course of the robot’s development through 
new sensorimotor interactions with the environment to which correspond new linguistic descriptions. 
At the end of the training, the robot is able to perform the behavior triggered by the linguistic description and 
the perceived object.  
 
Learning Numerical Concepts in Robots via Gestures 
 
Number cognition, such as the understanding and use of number words (e.g. one, two, twenty) and of fuzzy 
quantifies (few, some, many), and the manipulations of these numbers (from addition and multiplication to 
complex calculus) are another key example of abstract concepts and how embodiment strategies are used in 
the early developmental stages. Various embodied strategies, such as pointing and counting gestures, object 
touching, finger counting, and mathematical educational strategies based on spatial metaphors, have been 
shown to facilitate the development of number cognition skills (e.g. (24), (25)). The embodied basis of numbers 
is also evident in adults, such as with the size, distance and SNARC effects (Spatial-Number Association of 
Response Codes; (26)). This link between embodiment and early number learning has been exploited to teach 
robot numerical words and concepts, for two specific examples of pointing gesture whilst counting and on 
finger counting. 
 
The role of pointing and touching gestures in the acquisition of counting skills is a prototypical developmental 
phenomenon from the point of view of the embodiment of linguistic and symbolic knowledge. When learning 
to count, children spontaneously point to, touch, or move objects, and a wide set of studies exists which 
demonstrate the beneficial effect of sensorimotor strategies on counting performance (see (27) and (24) for 
reviews). There are three main groups of hypotheses on the role and mechanism behind this phenomenon. 
First, gestures may help the child overcome the limitations in limited cognitive resources, for instance by 
helping her to keep track of counted items. Second, gestures may perform a coordinative function by 
combining a temporal correspondence with speech and a spatial correspondence with the counted items. 
Third, gestures may also facilitate social learning by providing the tutor with feedback on the child's learning 
progress.  
 
Rucinski et al. (28) has proposed a developmental robotics model of the contribution of the counting gestures 
to learning to count. The robot experiments were modelled on Alibali & DiRusso’s (23) study of the role of 
counting gestures in children, in particular the condition when the child sees a puppet pointing at the objects 
being counted aloud. The robot was trained and tested in several experimental conditions, varying the 
availability of the sensory signals (vision and gestures) to the robot, and the type of the counting gestures. The 
robot’s control architecture consists of an Elman simple recurrent neural network. Thus, the counting task was 
simulated as requiring the network to output a count list corresponding to the number of objects shown in the 
visual input layer in response to the counting trigger stimuli (with the option of seeing natural counting 
gestures, where the robot sees the tutor’s virtual hand pointing at each object). To investigate the importance 
of the spatial correspondence which characterises the “natural” counting gestures, Rucinski et al. (27) further 
contrasted such gestures with “artificial counting gestures”. These consists of the rhythmic swings of the 
virtual arm back and forth, in which the gesture still corresponds to the recited number words in the temporal 
domain, but, unlike in “natural” counting gestures, it does not correspond to the counted items in the spatial 
domain.  
 
The results of the robot experiments consistently show that the perception of the pointing gestures allows the 
robot to significantly improve the counting accuracy, as compared with the condition of counting using only 
visual information. This improvement was not explained simply by the additional input signal, as the model 
also counted significantly worse if it was given only he proprioceptive input. This provided first evidence 
outside of behavioural studies that counting gestures are a useful embodied cue in learning to count. 
Furthermore, contrasting the effects of natural spatio-temporal counting gestures with those of artificial 
rhythmic ones revealed that it is essential that the counting gestures are characterized by a spatial 



correspondence to the counted items – in the latter case the gestures did not facilitate the extraction of 
information by the neural network from the visual input. Whereas “natural” counting gestures enabled the 
neural network to extract more information from the visual input, this was not the case with the “rhythmic” 
gestures. In the rhythmic condition, the robot’s neural network converged into counting the gestures rather 
than the objects, as the counting performance was indistinguishable with, and without, the visual information 
for this type of gestures. 
 
Such a pioneering model of the learning of abstract numerical concepts in robots by exploiting the role of 
pointing gesture has been more recently complemented by a study on finger counting, another key 
embodiment strategy extensively used by children to learn to count. Several psychology and neuroscience 
studies with children and adults show that finger counting strategies and finger-based representations play an 
important role in the development of numerical and arithmetical skills and in the learning of number words. 
Moreover, finger counting in particular, and gesture and action-based embodied strategies in general, have 
been shown to support more effective acquisition of number words (e.g. (24)) and to affect the teaching of 
mathematical concepts (e.g. (25)). 
 
The developmental robotics paradigm was used specifically to explore whether finger counting and the 
association of number words to each finger could serve to bootstrap the representation of number in the 
humanoid robot iCub (29), (30). This model uses a combination of neural networks, with a recurrent 
intermediate layer for number words and motor finger sequences, to implement the learning of associations 
between (motor) finger counting, (visual) object counting and (auditory) number words and sequence 
learning. The study manipulates the coupling between different modalities. In the Auditory-Only condition, 
the robot only learns to hear and repeat the sequence of number words (“one”, “two”, … up to “ten”). In the 
Finger-Only condition, the iCub is trained to produce finger counting sequences, without any auditory signal 
in input or output. Finally. in the Finger+Auditory condition, the robot simultaneously learning the sequence 
of acoustic number words and the sequence of moving fingers. The American sign language finger counting 
configuration was used to match the iCub robot’s finger actuator system.   
 
The results obtained in various experiments with both the simulated and the physical iCub robot show that 
learning the number word sequences together with finger sequencing helps the fast building of the initial 
representation of number in the robot. Robots who only learn the auditory sequences perform worse. 
Moreover, the neural network’s internal representations for these two counting conditions result in 
qualitatively different patterns of the similarity between numbers. Only after the Finger+Auditory sequence 
learning does the network represent the relative distance between them, which corresponds to the 
quantitative difference between numbers. In Finger+Auditory trained robots, the cluster analysis diagram of 
the hidden layer’s activation shows that the representation for the number word “one” is adjacent to that of 
“two” and is increasingly different (distant) from the higher numbers. Instead, in the auditory-only condition, 
there is no correspondence between the cluster diagram similarity distance and the numerical distance. 
Moreover, this modelling approach has been extended to simulate (30) the acquisition of different cultural 
strategies in finger counting. 
 
Conclusions 
 
This paper reviews the very first, pioneering robotic models of abstract concepts learning, all adopting an 
embodied methodological approach towards the grounding of abstract words and numbers and sharing some 
common methodological and theoretical principles.  
 
One common characteristic of these approaches is that the robot’s cognitive architecture is based on recurrent 
neural networks to process and ground abstract meanings, allowing the implementation of embodied 
cognition theories on mental simulations and symbol grounding. Recurrent architectures permit both the 
simultaneous, multimodal processing of sequences or words and actions (pointing gestures, finger counting), 
and the processing of linguistic sentences for the composition of their meanings. In the specific case of the 
abstract word experiments, the implementation of the grounding transfer via recurrent networks has been 
interpreted as an operationalization of Barsalou’s (8) mental simulation and conceptual combination 
mechanisms (17). Moreover, the direct grounding of highly concrete motor primitive words (“push”, “pull”), 
combined with the learning of new, higher order action words (e.g. “accept”, “use”, which have an 
increasingly more generic – i.e. towards abstractness - sensorimotor meaning), achieved via linguistic 
definitions, is in line with theories on the activation of multiple representational systems via sensorimotor and 
linguistic knowledge (12). Further, the use of neural-network based architectures also has the advantage of 
modelling the representation of concrete and abstract meanings not via arbitrary, researcher-defined symbolic 
representations, but rather as learned parallel distributed representations combining perceptual, motor and 
linguistic knowledge. And as the link between linguistic and embodied meaning is autonomously learned by 
the neural network, such an approach and architecture satisfies the symbol grounding problem.  
 



The approach reviewed here is further consistent with other embodied theories of cognition. For example, in 
the finger counting experiments the robot’s reliance on the constraints of the hand structure and finger 
counting sequence to develop representation of number words consistent with number cardinality, can 
provide an operational implementation of the mechanisms of metaphors between body/space maps and 
numbers (9).  
 
A further common feature of the models and experiments reviewed above is the use of a developmental 
robotics approach (23). This implies the modelling of various developmental stages and capabilities involved 
in the grounding of concrete and abstract words and numbers, taking inspiration from child psychology. The 
finger counting studies clearly relies on a common, universal strategy on number learning associated to finger 
counting. The Rucinski number (28) and pointing gesture model directly simulates Alibali and DiRusso  (24) 
experiments on the children’s use of pointing and touching whilst counting. 
 
The field of the modelling of abstract concept learning in robots and machines, using embodied strategies and 
representations, still is at its “infancy”, to use a developmental metaphor.  Notwithstanding the significant 
achievements of the above studies to show the possible acquisition of a small set of concrete and abstract 
words in robotic agents, big challenges lie ahead both in terms of the complexity of the lexicon, and the level 
of abstractness of the words used. However, within the view a continuum between concrete and abstract 
concepts, such small steps and models provide methodological insights and computational solutions for the 
big challenge of designing robots capable to interact with humans and hold meaningful conversations on the 
abstract concept of “using a plan” and talk about “freedom”. 
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