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Abstract 

To evaluate different models of critical speed (CS) for the prediction of 5000-m running 

performance, 16 trained endurance athletes completed an incremental test on a treadmill to 

determine maximal aerobic speed (Smax) and three randomly ordered runs to exhaustion at the 

Delta70% intensity, at 110% and 98% of Smax. CS and the distance above CS (D’) were 

calculated using the hyperbolic speed-time model (HYP), the linear distance-time model 

(LIN) and the linear speed-inverse time model (INV). 5000-m running speed was determined 

on a 400-m running track. Individual predictions of 5000-m running speed and time were 

calculated across the three models. The agreement between predicted and actual performance 

was assessed with the 95% limits of agreement (LOA). 5000-m running speed (4.29 ± 0.39 

m·s-1) was significantly higher than the predicted speeds from all three models (F3,13 = 63.9; P 

< 0.001). The bias and 95% LOA were 0.34 ± 0.20 m·s-1 for HYP, 0.31 ± 0.21 m·s-1 for LIN 

and 0.22 ± 0.22 m·s-1 for INV. Likewise, 5000-m time (1176 ± 117 s) was significantly faster 

compared with the predicted times (F3,13 = 62.2; P < 0.001) and the bias and 95% LOA were 

99.4 ± 63.9 s, 90.3 ± 64.1 s and 62.3 ± 66.6 s for HYP, LIN and INV, respectively. None of 

the three models have a high predictive validity as the differences range from 5-9%. The two-

parameter models from a single-visit laboratory test are not considered as strong predictors of 

5000-m running performance.   

 

Key words: running performance, anaerobic work capacity, performance prediction, exercise 

testing 
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Introduction 

 

To maintain a fast yet comfortable pace over a given distance without early exhaustion is one 

of the principal objectives of endurance sports like running, swimming or cycling. A slight 

increase in pace can result in a substantial increase in perceived effort and reduce the tolerable 

duration of exercise. The speed-duration relationship was first described by Hill [16] and was 

later characterized as the power-duration relationship [34]. The latter authors defined two 

parameters from this relationship: CP as the asymptote of the power-duration hyperbola 

which theoretically represents the maximum rate of work that can be maintained for a very 

long time without fatigue; and W’ as the finite amount of work that may be performed above 

CP. Later the CP concept was modified and applied to running [23,37], with critical speed 

(CS) and D’ (the maximum distance covered above CS) equivalent to CP and W’, respectively 

(for clarity, CS and D’ will be used throughout this paper unless otherwise stated). 

Physiologically, CS demarcates the threshold above which oxygen uptake, inorganic 

phosphate and hydrogen ions can no longer achieve a steady-state, but instead rise inexorably 

as the work rate is continued until the limit of tolerance (i.e. defined as the boundary between 

the heavy and severe exercise intensity domains [28,38]).  

 

For the determination of CS and D’ linear- and non-linear, two- and three-parameter 

mathematical models have been used (for review see Jones, et al. [27]). A number of studies 

have reported that CS differs significantly depending upon the mathematical model used 

[8,14,35]. For example, Bull, et al. [8] and Gaesser, et al. [14] found differences up to 24% 

when examining the same data with two non-linear and one exponential model. The 

exponential model of Hopkins, et al. [19] has been found to result in the highest estimates of 

CS in both studies whilst the non linear three-parameter model of Morton [35] resulted in the 

lowest estimates.  

 

According to Jones and Poole [26], CS testing provides a non-invasive, objective, reliable, 

valid, accurate and sensitive method to assess endurance performance. In addition, for athletes 

and coaches, it is important to apply a testing method that accurately predicts an athletes’ 

current competition performance. Therefore, the CS concept has been used for performance 

prediction in various sports such as rowing and swimming [11,30]. However, comparatively 

few studies have investigated the prediction of running performance. Although, it has been 
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suggested that CS can be maintained for 20-40 min [7,24], strong correlations have also been 

reported with longer endurance events such as the half-marathon or marathon [13,31]. Kolbe, 

et al. [31] investigated the relationship between CS and running performance (time) over a 

range of distances and found correlation coefficients of -0.75 (1 km), -0.85 (10 km) and -0.79 

(21.1 km). In addition, a stronger correlation was found between marathon running 

performance and CS (r = 0.87) compared with 𝑉̇𝑉O2max (r = 0.71) and the speed at the 

ventilatory threshold (r = 0.53) [13]. Bosquet, et al. [5] estimated 800-m running speed from 

two- and three-parameter models of CS and reported good predictive validities (bias 0.0-0.2 

m.s-1) and strong correlations (r = 0.83-0.94) with actual 800-m speed (5.87 ± 0.49 m.s-1). 

Traditionally CS and D´ were estimated from 3-5 exhaustive runs on separate days. Just 

recently [15] it was demonstrated that CS determined from a single-visit field test, was not 

significantly different from a traditional multi-visit test, which improves the applicability in 

competitive athletes. It remains to be shown however, whether or not running performance 

can be accurately predicted from three frequently used mathematical models (i.e. the 

hyperbolic speed-distance model (HYP), the linear distance-time model (LIN) and the linear 

speed- inverse time model (INV).   

It was therefore the aim of this study to evaluate the three mathematical models for the 

prediction of 5000-m running performance (speed and time). We hypothesized that there 

would be a good predictive validity from all three models in a cohort of well-trained runners 

with 5000-m times of approximately 20 min.  

 

Methods  

Participants 

Sixteen trained, male endurance athletes (mean ± SD: age 30.4 ± 7.3 years; body mass 74.8 ± 

7.3 kg; stature 179.6 ± 6.2 cm) volunteered to participate in this study. All athletes had a 

training history of at least five years, compete regularly in national and international running 

and triathlon events over various distances and were familiar with treadmill running and 

exercising to exhaustion. All athletes were informed of the experimental procedures and gave 

their written informed consent to participate in the study. The study was conducted in 

accordance with the ethical principles of the Declaration of Helsinki and was approved by the 

institutional review board.  

 

Study Design 
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After familiarization of the exercise protocol, each participant performed three tests on 

separate days. All participants were asked to refrain from strenuous exercise, alcohol and 

caffeine intake and were instructed to follow a carbohydrate rich diet during the 24 hours 

before exercise testing and to drink at least 4 liters to ensure high glycogen stores and full 

hydration.  

During the first visit, the participants completed a graded exercise test (GXT) on a treadmill 

to assess maximal- and submaximal indices of aerobic function. During the second visit, CS 

was determined through a series of three randomly ordered treadmill runs at intensities 

leading to exhaustion within 2-15 min [17]. Finally, the 5000-m running performance was 

determined on a 400-m running track. 

 

Laboratory Incremental Graded Exercise Test  

The GXT was performed on a motorized treadmill (HP Cosmos Pulsar, Nussdorf-Traunstein, 

Germany). The incline during all treadmill tests was set at 1% to simulate air resistance in the 

laboratory [25]. After a 3-min warm up at 5 km·h-1 the tests started at a speed of 6 km·h-1 and 

was increased by 0.5 km·h-1 every 60 s until exhaustion. If the last step was not completed, 

maximal speed was calculated according to Kuipers, et al. [33]: 

Smax = SL + t / 60 x 0.5 

 

where SL is the speed of the last completed step and t is the time for the incomplete step.  

Oxygen uptake was measured continuously via breath-by-breath open circuit spirometry 

(MetaMax 3b, Cortex Biophysik, Leipzig, Germany). Before each test, the gas analyzers were 

calibrated with gases of known concentrations (4.99 Vol% CO2, 15.99 Vol% O2, Cortex 

Biophysik, Leipzig, Germany). Flow and volume were calibrated with a 3-L syringe (Type M 

9474-C, Cortex Biophysik, Leipzig, Germany). The participants wore a facemask and 

breathed through a low-resistance impeller turbine. 

Achievement of V̇O2max was taken as the highest 30-s value attained before volitional 

exhaustion. Determination of ventilatory threshold (VT) followed the criteria of an increase of 

the ventilatory equivalent of O2 (V̇E/V̇O2) without a concomitant increase of the ventilatory 

equivalent of CO2 (V̇E/V̇CO2) and the first loss of linearity in the relationship between minute 

ventilation (V̇E) and carbon dioxide production (V̇CO2) [1]. Heart rate was measured 
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continuously throughout the test using short-range radio-telemetry (Polar Vantage NV, Polar 

Electro, Kempele, Finland).  

 

Critical Speed Test 

Critical speed was determined through a series of three randomly ordered runs to exhaustion 

at the Delta70% intensity (i.e. 70% of the difference between VT and Smax) and at 110% and 

98% of Smax. After a 10-min individual warm up, the speed was increased to the criterion 

intensity and the participants were required to stand with their feet astride the treadmill belt 

holding onto the handrails. The transitions from rest to running were performed by the 

participants using the handrails to suspend their body above the belt while they developed the 

speed required with their legs. The timing for each trial began when the participants released 

the handrail support and started running. The bout was terminated when the athletes grasped 

the handrails again, signaling exhaustion. All participants were verbally encouraged 

throughout the trials. However, to prevent pacing the display of the treadmill was covered and 

no information on speed or elapsed time was given. A rest period of 30-min [15] was 

provided between the runs during which the participants were allowed to drink water ad 

libitum.  

The least square modeling procedure was used to fit the data from the critical speed tests. The 

parameter estimates (CS and D’) were resolved from the three two-parameter models using 

the software GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA).  

The hyperbolic speed-distance model (HYP) [16] using the nonlinear regression between 

speed and time: 

t = D’ / (speed – CS)      (1) 

where t represents the time (s), D’ is the maximum distance covered above critical speed and 

CS is the critical speed (m.s-1).     

The linear distance vs. time model (LIN) [34] using the linear regression between distance (d) 

and time: 

d = CS x t + D’       (2) 

And the linear speed- inverse time model (INV) [41] using the linear regression between 

speed and the inverse of time: 

 speed = D’ x 1/t + CS     (3) 
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The 5000-m performance was predicted from individual parameter estimates from each 

model. For models 1 and 3 speeds were predicted from the equations and the durations were 

calculated as distance divided by speed. For model 2 the duration was predicted and speed 

was calculated as distance divided by duration.  

 

Field Tests 

For determination of 5000-m running performance, the participants were asked to complete 

the distance as quickly as possible on a 400-m outdoor running track in calm conditions at 

sea-level, at a temperature and humidity of 15° C and 40-45%, respectively. The participants 

started individually at staggered intervals of 30 s, and were verbally encouraged throughout 

the test. The runs were timed and recorded to the nearest second and no information of 

elapsed time was provided.  

 

Statistical Analysis 

All statistical analyses were performed with the software package SPSS Statistics 21 (IBM 

Corporation, Armonk, NY, USA). Descriptive data are summarized as mean ± standard 

deviation (SD). The assumption of normality was verified using Kolmogorov-Smirnov’s test. 

Repeated measure ANOVA was used to compare CS and D’ across the models, as well as the 

predicted speeds and durations from the three models and the actual performance during the 

5000-m run. Significant effects were followed up with pairwise comparisons employing the 

Bonferroni procedure for multiple testing. The agreement between predicted and actual 

performance was assessed with the 95% limits of agreement (LOA) [4]. Relationships 

between variables were examined with Pearson’s product moment correlations. In addition, 

the standard error of estimate (SEE) from linear regressions between predicted and actual 

performance is provided as a measure of precision. The level of significance was set at P < 

0.05. 

 

Results 

The results from the GXT and the 5000-m run are reported in Table 1 with estimates for the 

CS and D’ parameters derived from each model shown in Table 2. The speeds during the 

prediction trials at the Delta70% intensity, 98% and at 110% of Smax were 4.09 ± 0.33 m·s-1, 
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4.55 ± 0.35 m·s-1 and 5.11 ± 0.39 m·s-1 and resulted in times to exhaustion of 765 ± 109 s, 

313 ± 53 s and 126 ± 38 s.   

There was a significant main effect of the model on estimates for CS (F2,14 = 43.2; P < 0.001) 

and D’ (F2,14 = 33.1; P < 0.001) during treadmill running. Post-hoc tests revealed significant 

differences across all three models for estimating CS (HYP < LIN < INV; all at P < 0.001) 

and D’ (HYP > LIN > INV; all at P < 0.001).  

5000-m running speed was significantly higher than the predicted speeds from all three 

models (F3,13 = 63.9; P < 0.001) and strongly correlated with HYP (r = 0.857; SEE = 0.19 m·s-

1), LIN (r = 0.851; SEE = 0.19 m·s-1) and INV (r = 0.833; SEE = 0.20 m·s-1) (all at P < 0.001). 

The bias and 95% LOA were 0.34 ± 0.20 m·s-1 for HYP, 0.31 ± 0.21 m·s-1 for LIN and 0.22 ± 

0.22 m·s-1 for INV (Figure 1).  

5000-m running time was significantly faster compared with the predicted times from all 

three models (F3,13 = 62.2; P < 0.001) and strongly correlated with HYP (r = 0.852; SEE = 

64.1 s), LIN (r = 0.844; SEE = 62.3 s) and INV (r = 0.830; SEE = 63.8 s) (all at P < 0.001). 

The bias and 95% LOA were 99.4 ± 63.9 s, 90.3 ± 64.1 s and 62.3 ± 66.6 s for HYP, LIN and 

INV, respectively (Figure 2).  

 

Discussion 

The results of this study showed that predicted speed and duration of 5000-m running 

performance, estimated from three mathematical models, are strongly correlated but 

significantly different from actual performance. All models underestimated real performance 

by approximately 5-9 %. With a bias of 0.22-0.34 m·s-1 for speed and 62-99 s for duration, 

the two-parameter models from a single-visit laboratory test are not considered as strong 

predictors of 5000-m running performance.   

A number of studies have reported that CP or CS differ significantly depending on the 

mathematical model used [8,14,35]. By examining two linear, two non-linear and an 

exponential model in both studies [8,14], the exponential model [19] resulted in the highest 

estimates of CP and the non-linear three-parameter model [35] in the lowest estimates. More 

recently, Bull, et al. [9] compared CS determined from five mathematical models. To 

calculate CS, the linear total distance model (Lin-TD), the linear velocity model (Lin-V), the 

two-parameter hyperbolic velocity time model (Non-2), the three parameter model with the 

addition of Vmax (Non-3) and the exponential model which includes Vmax and an undefined 

time constant (τ) were used. Again, the Non-3 model resulted in a significantly (P < 0.05) 
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lower CS than the other four models. However, results revealed no other significant 

differences among the CS estimates. In the present study we used three classical two-

parameter models to determine CS and D’: the hyperbolic speed-time model, the linear 

distance-time model and the linear speed-inverse time model. In accordance with previous 

studies, we also found significant differences (P < 0.001) between all three CS estimates. The 

linear speed-inverse time model produced the highest CS (3.94 ± 0.36 m·s-1), followed by the 

linear distance-time model (3.83 ± 0.34 m·s-1) and the hyperbolic speed-time model (3.76 ± 

0.35 m·s-1). However, differences between the highest and the lowest estimate were only 

4.6%, which is much smaller compared to other studies where differences of up to 24% have 

been reported [14]. Moreover, the goodness of fit of the data from the three models (Table 2) 

is high and is consistent with the values reported in previous studies [22,32,39]. As additional 

criteria of the quality of the mathematical models Black, et al. [3] used standard errors < 5 and 

10% associated with CS and D’, respectively. If these criteria were exceeded after three 

prediction trials, a fourth trial was performed, which was required in five of ten subjects. 

Although in the present study the standard error associated with CS was below 3%, the 

variation of D’ was > 20% (Table 2) and only in 5 of our subjects was < 10%. It is therefore 

likely that this error associated with D’ could impact on performance prediction.       

In the present study, it was found that actual 5000-m running performance was significantly 

better than performance predictions from all three models, indicating that none of the models 

could accurately predict 5000-m running performance. Kranenburg and Smith [32] compared 

CS determined from field- and laboratory-tests with a 10-km criterion performance. During 

the field test, subjects completed three maximal effort runs between 3 and 15 min on an 

indoor running track. CS in the laboratory was estimated from three constant speed runs until 

volitional exhaustion within approximately 3, 7 and 13 min. The authors reported strong 

correlations for both track (293 m·min-1) and treadmill (300 m·min-1) CS with race speed (293 

m·min-1) (r = 0.92; P < 0.001). Whilst track CS speed was very similar to race speed, 

treadmill CS was ~2% higher than 10-km speed. The results of the present study revealed that 

5000-m running speed was 10-12% higher than CS and 5-9% higher than the predicted speed. 

Relative anaerobic contributions have been reported for 3000-m (14%) [12] and for 5000-m 

running (7%) [10], indicating a significant anaerobic contribution to the energy turnover for 

these race distances that could partly explain the prediction errors.  
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Various authors have pointed out that it is important to select the right range of duration for 

the trials to determine CS [6,17,18,40]. Whilst classical guidelines for two-parameter models 

recommend trials not shorter than 3 min and not longer than 30 min [2,40], more recent 

studies did not use trials longer than 12 min [6] with a minimum difference of 5 min between 

the longest and shortest trial [21]. This is in accordance with recommendations [17] where the 

prediction trials are intended to yield times to exhaustion between 2-15 min. The intensities 

chosen are typically between 75% and 110% of the maximum power output achieved during a 

GXT. In the current study, we selected the highest intensity at 110% of Smax, which 

presumably would lead to exhaustion within 2-3 min. The two other trials where performed at 

the Delta70% intensity and at 98% of Smax. The results revealed exhaustion times between 

126 ± 38 s and 765 ± 109 s and therefore were in agreement with the guidelines stated above.  

Finally, the present study employed a single-visit protocol to estimate CS and D’, which is in 

contrast to traditional protocols where exhaustive trials over multiple days were required. 

However, this is time consuming and disruptive to an athlete’s daily training program and, 

therefore, may limit the compliance of athletes to complete such a protocol. Recently [15], it 

was demonstrated that CS determined from a traditional multi-visit treadmill test, was not 

significantly different from single-visit protocols with 30-min and 60-min inter-trial recovery 

periods. In addition, no difference in critical power was found by Karsten, et al. [29] 

comparing single-visit time-to-exhaustion trials in laboratory conditions with maximal-effort 

time-trials during field cycling. However, the single-visit protocol used by Galbraith, et al. 

[15] was applied in field conditions at fixed distances, whereas the present study used time-to-

exhaustion trials on a treadmill. It has been suggested that self-pacing, typically adopted 

during time-trials, closely reflect competitive performance and therefore increase the 

ecological validity in comparison with time-to-exhaustion trials [20,36]. In addition, critical 

power has been shown to increase (~7%) when the prediction trials were self-paced compared 

with constant-power trials in laboratory conditions [3]. When parameter estimates derived 

from constant-power trials were used, a ~6% under-prediction of time-trial performance was 

reported and it was recommended to permit self-paced trials to enhance performance 

prediction.  

 

Conclusions 

The present study demonstrated that the two-parameter models of CS significantly 

underestimated 5000-m running performance by approximately 5-9%. Despite strong 

correlations between predicted and actual performance, the bias was 0.22-0.34 m·s-1 for speed 



 11 

and 62-99 s for duration. Therefore the single-visit laboratory protocol is not considered to be 

a valuable test for predicting performance over race distances of 5000 m. It remains to be 

shown whether or not a single-visit field-test, which in contrast to the present study employ 

self-paced prediction trials, can further improve the predictive validity for running 

performance. 
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Figure captions: 

 

Figure 1: Bland-Altman plots of the differences between the actual and the predicted speed (left 

panel). Relationships between the actual and the predicted speed (right panel). Solid lines 

represent the line of identity.    
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Figure 2: Bland-Altman plots of the differences between the actual and the predicted time (left 

panel). Relationships between the actual and the predicted time (right panel). Solid lines represent 

the line of identity.    
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 Table 1: Results from the GXT and the 5000-m run (mean ± SD) 

Measure Group (n = 16) 

V̇O2max (ml·min-1) 

V̇O2max (ml·min-1·kg-1) 

VT (m·s-1) 

Smax (m·s-1) 

5000-m running speed (m·s-1) 

5000-m finish time (s) 

4757 ± 613 

63.6 ±  6.9 

2.66 ± 0.24 

4.63 ± 0.36 

4.29 ± 0.39 

1176 ± 117 

VT = ventilatory threshold; Smax = maximum speed 

 

Table 2: Parameter estimates of CS and D' derived from the three models (mean ± SD) 

Model 
CS  

(m·s-1) 

SE 

(%) 

D‘  

(m) 

SE  

(%) 
R2 

HYP 

LIN 

3.76 ± 0.35* 

3.83 ± 0.34* 

2.2 ± 1.5* 

2.8 ± 1.4* 

222 ± 68* 

187 ± 61* 

23.3 ± 10.1 

28.2 ± 13.8* 

0.950 – 0.999 

0.997 – 0.999 

INV 3.94 ± 0.36* 3.8 ± 1.5* 152 ± 61* 20.5 ± 8.7 0.892 – 0.994 

HYP = hyperbolic speed-time model; LIN = linear distance-time model; INV = linear speed-

inverse time model; R2 = goodness of fit; SE = standard error (%); * significantly different at 

P < 0.01 

 

 

 

 


