01 University of Plymouth Research Outputs

2017-11-18

Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial

Petrylak, DP

http://hdl.handle.net/10026.1/10985

10.1016/S0140-6736(17)32365-6 The Lancet Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial

Daniel P. Petrylak¹, Ronald De Wit², Kim N. Chi³, Alexandra Drakaki⁴, Cora N. Sternberg⁵, Hiroyuki Nishiyama⁶, Daniel Castellano⁷, Syed Hussain⁸, Aude Fléchon⁹, Aristotelis Bamias¹⁰, Evan Y. Yu¹¹, Michiel S. van der Heijden¹², Nobuaki Matsubara¹³, Boris Alekseev¹⁴, Andrea Necchi¹⁵, Lajos Géczi¹⁶, Yen-Chuan Ou¹⁷, Hasan Senol Coskun¹⁸, Wen-Pin Su¹⁹, Miriam Hegemann²⁰, Ivor J. Percent²¹, Jae-Lyun Lee²², Marcello Tucci²³, Andrey Semenov²⁴, Fredrik Laestadius²⁵, Avivit Peer²⁶, Giampaolo Tortora²⁷, Sufia Safina²⁸ Xavier Garcia del Muro²⁹, Alejo Rodriguez-Vida³⁰, Irfan Cicin³¹, Hakan Harputluoglu³², Ryan C. Widau³³, Astra M. Liepa³³, Richard A. Walgren³³, Oday Hamid³³, Annamaria H. Zimmermann³³, Katherine M. Bell-McGuinn³³, Thomas Powles³⁴, for the RANGE study investigators*

¹Yale University School of Medicine, New Haven, CT, USA; ²Erasmus MC Cancer Institute, Rotterdam, The Netherlands: ³British Columbia Cancer Agency, Vancouver, British Columbia, Canada; ⁴David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; ⁵San Camillo and Forlanini Hospitals, Rome, Italy; ⁶University of Tsukuba, Tsukuba, Ibaraki, Japan; ⁷Hospital Universitario 12 de Octubre (CiberOnc), Madrid, Spain; 8Plymouth University Peninsula Schools of Medicine & Dentistry, Plymouth, Devon, UK; 9Centre Léon Bérard, Lyon, France; 10National and Kapodistrian University of Athens, Athens, Greece; ¹¹University of Washington, Seattle, Washington, USA: ¹²Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; ¹³National Cancer Center Hospital East, Chiba, Japan; ¹⁴P.A. Herzen Moscow Oncological Research Institute, Moscow, Russia; ¹⁵Fondazione IRCCS Istituto Nazionale dei Tumori. Milan, Italy: ¹⁶National Institute of Oncology, Budapest, Hungary: ¹⁷Taichung Veterans General Hospital, Taichung, Taiwan; ¹⁸Akdeniz University School of Medicine, Antalya, Turkey; ¹⁹Institute of Clinical Medicine, College of Medicine, National Cheng Kung University & Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; ²⁰University Hospital, Tuebingen, Germany; ²¹Florida Cancer Specialists, Port Charlotte, Florida, USA; ²²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ²³Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy; ²⁴RBHI Ivanovo Regional Oncology Dispensary, Ivanovo, Russia; ²⁵Centre Oscar Lambret, Lille, France; ²⁶Rambam Health Care Campus, Haifa, Israel; ²⁷ University of Verona and Azienda Ospedaliera Universitaria Integrata, Verona, Italy²⁸;Tatarstan Regional Cancer Center, Kazan, Russia; ²⁹Institut Català d'Oncologia L'Hospitalet, IDIBELL, University of Barcelona, Barcelona, Spain; ³⁰Hospital del Mar, Barcelona, Spain; ³¹Trakya University, Edirne, Turkey; ³²Inonu University, Malatya, Turkey, ³³Eli Lilly and Company, Indianapolis, IN, USA; ³⁴Barts Cancer Institute, Queen Mary University of London, United Kingdom *See supplementary appendix for full list of investigators

Corresponding author Professor Daniel P. Petrylak, MD Yale School of Medicine 333 Cedar Street, Fitkin 3 New Haven, CT 06520-8028 Phone: 203 785 3597 Email: daniel.petrylak@yale.edu

Abstract: Main text: Tables/Figures: Appendix References Structured, maximum 300 words Maximum of 4500 words Yes Maximum of 30 266 3183 2 Tables/5 Figures 5 Tables/2 Figures 31

Abstract

Background: Limited treatments with distinct mechanism of action are available for patients with platinum-refractory advanced or metastatic urothelial carcinoma. We assessed efficacy and safety of treatment with docetaxel plus ramucirumab, a human IgG1 VEGFR-2 antagonist, or placebo in this patient population.

Methods: In this randomised, double-blind, phase 3 trial, patients with advanced or metastatic urothelial carcinoma who progressed during or after platinum-based chemotherapy were enroled. Prior treatment with one immune checkpoint inhibitor was permitted. Patients were randomised (1:1) to receive docetaxel 75 mg/m² with ramucirumab 10 mg/kg or placebo on day 1 of repeating 21-day cycles until disease progression or other discontinuation criteria were met. The primary endpoint was investigator-assessed progression-free survival. This study is registered with ClinicalTrials.gov, number NCT02426125.

Findings: Between July 2015 and April 2017, a total of 530 patients from 124 sites in 23 countries were randomised to receive ramucirumab plus docetaxel (n=263) or placebo plus docetaxel (n=267). Progression-free survival was significantly prolonged in patients treated with ramucirumab plus docetaxel versus placebo plus docetaxel (median, 4·07 vs 2·76 months; HR, 0·757; 95% CI, 0·607-0·943; P=0·0118). A blinded central analysis demonstrated consistent progression-free survival results (HR, 0·672; 95% CI, 0·536-0·842; P=0·0005). Objective response rate was 24·5% (95% CI, 18·8-30·3) in the ramucirumab arm and 14·0% (95% CI, 9·4-18·6) in the placebo arm. Grade \geq 3 adverse events were reported at a similar frequency in both arms (60 vs 62%) with no unexpected toxicities.

Interpretation: Ramucirumab plus docetaxel is the first regimen in a phase 3 study to show superior progression-free survival over chemotherapy in patients with platinum-refractory advanced urothelial carcinoma.

Funding: Eli Lilly and Company

Introduction

Platinum-based combination chemotherapy is standard frontline treatment for patients with advanced or metastatic urothelial carcinoma (UC) with a median overall survival (OS) of 11–15 months, depending on the type of platinum chemotherapy that can be administered and baseline clinical prognostic factors.¹⁻⁴ Despite an objective response rate (ORR) of 40–70%, the duration of response is limited and most patients become refractory. Prognosis in refractory patients remains poor, with a median OS with single-agent cytotoxic therapy of approximately 7 months.⁵

Immune checkpoint inhibitors targeting the programmed death 1 (PD-1) and its ligand (PD-L1) have shown clinical activity in patients with platinum-refractory UC. Accelerated or full approval has been granted in the United States to five agents of this class based on an ORR of 15-21%.⁶⁻¹⁰ However, many patients treated with immune checkpoint inhibitors have progressive disease as best response, highlighting other targets and treatments are needed.⁶⁻¹¹

Vascular endothelial growth factor receptors (VEGFR) 1 and 2 and their ligands are important mediators of tumour angiogenesis and contribute to the pathogenesis and progression of UC.¹¹⁻¹⁹ Ramucirumab is an immunoglobulin G1 monoclonal antibody that binds to the extracellular domain of VEGFR-2, competing with VEGF-A, -C, and -D.²⁰ In a randomised phase 2 study in patients with platinum-refractory advanced or metastatic UC, ramucirumab plus docetaxel significantly improved median progression-free survival (PFS) over docetaxel (5·4 vs 2·8 months; hazard ratio [HR], 0·389; 95% confidence interval [CI], 0·235-0·643; P =0·0002).¹³ To confirm these results, we conducted a randomised phase 3 trial (RANGE) in a similar patient population.

Methods

Study design and participants

We did this double-blind, multicentre randomized, phase 3 study at 124 investigative sites in 23 countries (listed in the appendix). The full inclusion and exclusion criteria are provided in the appendix. Briefly, patients aged 18 years or older were eligible for enrolment if they had histologically or cytologically-confirmed carcinoma of pure or predominant transitional-cell histology; locally advanced or unresectable or metastatic disease extent; primary tumour originating from the bladder, urethra, ureter, or renal pelvis; and progression \leq 14 months after platinum-containing chemotherapy (2 additional months were allowed for screening and patient identification over the standard 12 months²¹). Prior treatment with one immune checkpoint inhibitor was permitted for patients who relapsed \leq 24 months from the end of a platinum-containing regimen, allowing an additional 10 months for patients who received both platinum and immune checkpoint inhibitors. Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 was required. Key exclusion criteria included more than one prior systemic chemotherapy in the relapsed or metastatic setting (prior systemic therapy in the perioperative setting was not considered a prior line); prior systemic taxane; untreated brain metastases; haemoglobin <9 g/dL; and an arterial or venous thromboembolic event \leq 6 months prior to randomisation.

The trial was conducted in compliance with the Declaration of Helsinki, the International Conference on Harmonisation Guidelines for Good Clinical Practice, and applicable local regulations. The protocol was approved by the ethics committees of all participating centres, and all patients provided written informed consent before study entry. An independent data monitoring committee assessed unblinded safety data throughout the study.

Randomisation and masking

Patients were randomly assigned by a computer-generated random sequence using an interactive Web response system. Randomisation was stratified by geographic region (North America, East Asia, Europe/rest of the world); ECOG performance status at baseline (0 or 1); and visceral metastasis (yes or no), where visceral metastases involve the liver, lung, and/or bone. Patients, study staff, and the sponsor were masked to treatment assignment.

26-July-2017

Procedures

Patients were randomized to receive intravenous (IV) docetaxel 75 mg/m² (60 mg/m² in Korea, Taiwan and Japan) plus IV ramucirumab 10 mg/kg or placebo 10 mg/kg volume equivalent, on day 1 of a 21-day cycle. Treatments were continued until disease progression or unacceptable toxicity. Docetaxel was limited to 6 cycles; up to 4 additional cycles could be given after sponsor approval. There was no planned crossover on disease progression. Dose modifications of any administered study drug were allowed according to protocol-defined criteria. The use of granulocyte-colony stimulating factors was permitted based on the American Society of Clinical Oncology guidelines.²²

We assessed tumour response radiographically according to RECIST version 1-1 at baseline, every 6 weeks after randomisation for the first year, and then every 12 weeks thereafter. Following discontinuation, patients were followed for survival every 3 months. The appendix provides details of the timing of other assessments. Adverse events (AEs) were graded using the National Cancer Institute Common Terminology Criteria for AEs, version 4-0. Patient-reported outcomes (PROs) were assessed using the European Organisation for Research and Treatment of Cancer (EORTC) Quality of life Questionnaire-Core 30 (QLQ-C30, version 3-0) and the EQ-5D-5L questionnaire, which measure quality of life and health status, respectively. The QLQ-C30 was scored on a scale of 0 to 100, according to the EORTC scoring manual, and the EQ-5D-5L index was calculated using the English value set.²³ For the QLQ-C30, time to sustained deterioration was defined as time from randomisation to first ≥10-point worsening with no subsequent on-therapy assessment that returned to or improved from baseline score.

Outcomes

Primary endpoint was investigator-assessed PFS, defined as the time from randomisation until the first radiographic documentation of objective progression, or as death due to any cause. Secondary endpoints included OS, defined as the time from randomisation to death from any cause; ORR, defined as the proportion of patients with a best overall response of complete or partial response; disease control rate, defined as the proportion of patients with a best overall response, partial response or stable disease; duration of response, defined as the first date of complete or partial response until the first date of objective progression, or death; safety; PROs;

pharmacokinetics of ramucirumab; and immunogenicity of ramucirumab. The protocol provides the full assessment schedule.

Statistical analysis

We planned to enrol 524 patients in a 1:1 randomisation with the primary analysis to be conducted when at least 331 PFS events were observed from the first 437 randomised patients. The number of events provided 90% power to detect PFS superiority of ramucirumab plus docetaxel versus placebo plus docetaxel, assuming a HR of 0.70 with a 2-sided alpha of 0.05. The sample size was also adequately powered to show an OS superiority between the 2 arms, with an assumed HR of 0.75 for ramucirumab plus docetaxel versus placebo plus docetaxel with at least 382 events, power 80%, and 2-sided type I error of 0.05.

PFS and response were assessed in the first 437 patients of the intention-to-treat (ITT) population that included all randomised patients. PROs used the full ITT population. PFS was estimated using the Kaplan-Meier method, and outcomes were compared between arms using a stratified log-rank test. HRs and associated 95% CIs were estimated using a stratified Cox proportional hazard model. The PRO data were summarised descriptively. Time to sustained deterioration was compared using an unstratified log-rank test. Safety was assessed in all patients who received at least one dose of study medication. A gatekeeping design was implemented to assess PFS, OS, and ORR in a fixed sequential manner.

Role of the Funder

The trial was designed by the funder (Eli Lilly and Company), in collaboration with the scientific council (including authors: DPP, RdW, KNC, CNS, HN, and TP), and was responsible for data management, and statistical analysis. The funder interpreted data in collaboration with all authors and supported development of the report by providing medical writing and editorial assistance. All authors made the decision to submit the report for publication.

Results

Patients and Treatment

Between July 2015 and April 2017, a total of 727 patients at 124 sites were screened, and 530 eligible patients were randomly assigned to receive ramucirumab plus docetaxel (n=263) or placebo plus docetaxel (n=267). Five patients in the ramucirumab arm and two in the placebo arm did not receive study treatment; therefore, the safety population comprised 523 patients (Figure 1). Baseline characteristics of the treatment arms were well balanced (Tables 1, S1, S2). Most patients (61%) had two or more adverse prognostic risk factors,^{24,25} including visceral metastases (70%), haemoglobin <10 g/dL (14%), ECOG performance status score >0 (53%), and time since completion or discontinuation of previous therapy of <3 months (45%) (Table 1).

Data cutoff for the current analysis was April 21, 2017, at which time 341 of the first 437 randomised patients had disease progression or died. At data cutoff, 49 (19%) of 263 patients in the ramucirumab arm and 36 (13%) of 267 patients in the placebo arm continued to receive study treatment. Median follow-up duration in the full ITT population was 5·0 months (interquartile range [IQR], 2·3–8·9). Median therapy duration was 12·2 weeks (IQR, 6·0–21·0) with ramucirumab and 9·9 weeks (IQR, 6·0–20·9) with placebo. The median number of cycles of docetaxel was four (IQR, 2–6) in the ramucirumab arm and three (IQR, 2–6) in the placebo arm (Table S3). Ninety-three (36%) of 258 patients in the ramucirumab arm and 84 (32%) of 265 patients in the placebo arm completed at least six cycles of docetaxel therapy; median relative dose intensities were 98·3% (IQR, 90·9–100·1) and 98·8% (IQR, 92·9–100·1), respectively. Patients who continued with ramucirumab or placebo monotherapy after the end of docetaxel (n=64 versus n=60) received a median of three (IQR, 2–7) additional cycles of treatment in the ramucirumab arm and two (IQR, 1–5) in the placebo arm.

Outcomes

Table S4 summarises the efficacy results. In the 437 ITT population, 341 PFS events occurred (ramucirumab arm: n=158 [73%]; placebo arm: n=183 [83%]). Median PFS was 4.07 months in the ramucirumab arm and 2.76 months in the placebo arm (stratified HR, 0.757; 95% CI, 0.607–0.943; P=0.0118; Figure 2A). The estimated PFS rate at 12 months was 11.9% (95% CI, 7.1–18.0) in the

ramucirumab arm and 4.5% (95% CI, 1.5–10.1) in the placebo arm. A blinded independent central analysis demonstrated consistent PFS results (stratified HR, 0.672; 95% CI, 0.536–0.842; P=0.0005; Figure 2B). In prespecified subgroup analyses for PFS, the addition of ramucirumab to docetaxel improved PFS across most patient subgroups (Figure 3).

Investigator-assessed ORR in the 437 ITT population was 24.5% (95% CI, 18.8-30.3) in the ramucirumab arm and 14.0% (95% CI, 9.4-18.6) in the placebo arm, with non-overlapping confidence intervals (Table S4). This included nine (4.2%) complete responses in the ramucirumab arm and three (1.4%) complete responses in the placebo arm. ORR by blinded independent central analysis was 22.2% (95% CI, 16.7-27.8) in the ramucirumab arm and 12.7% (95% CI, 8.3-17.1) in the placebo arm. Due to gatekeeping trial design, ORR superiority will be formally tested if the OS superiority test is positive. Median duration of response was 5.65 months (95% CI, 3.9-7.1) for the ramucirumab arm and 4.17 months (95% CI, 2.9-5.5) for the placebo arm. Of the patients who received a prior immune checkpoint inhibitor, 5 (35.7%) of 14 patients in the ramucirumab arm and 2 (10.5%) of 19 in the placebo arm had an objective response to treatment. Disease control occurred in 63.4% (95% CI, 57.0-69.8) of patients in the ramucirumab arm and 56.1% (95% CI, 49.6-62.7) in the placebo arm. Most patients experienced a reduction in tumour burden, with an observed increase in PFS, in the ramucirumab arm (64%) (Figure 4). Reductions in tumour burden occurred less frequently in the placebo arm (47%). As of the data cutoff, OS results were not mature, with 219 events.

Compliance for completion of the PRO questionnaires in the 530 ITT population was 97% in both treatment arms at baseline and was \geq 85% at all on-therapy post-baseline visits. Baseline scores were similar between treatment arms. Mean scores for global quality of life and the EQ-5D-5L index were relatively unchanged over time, with no differences between treatment arms (Figure 5). There was no difference in time to sustained deterioration in global quality of life (unstratified HR, 0.931; 95% CI, 0.701–1.235; P=0.610).

Following administration of ramucirumab 10 mg/kg every 3 weeks in combination with docetaxel to patients with urothelial carcinoma, the geometric mean trough concentrations prior to doses 2, 3 and 5 were 15, 23, and 34 µg/mL, respectively. These data are consistent with previous studies where

Ramu-00084475

ramucirumab was administered to patients with various types of cancer using this regimen. Of the 258 treated patients in the ramucirumab arm, there were 185 whose serum was analysed for the presence of anti-ramucirumab antibodies; 19 (10%) had positive samples at baseline and 3 (2%) had treatment-emergent anti-ramucirumab antibodies.

Safety

The most frequently reported treatment-emergent AEs in either treatment arm (any grade) were fatigue, alopecia, diarrhoea, decreased appetite, and nausea (Table 2). These occurred predominantly at grade 1–2 severity. Grade \geq 3 AEs were reported at a similar frequency in both treatment arms; 60% of patients in the ramucirumab arm and 62% in the placebo arm. No grade \geq 3 AE was observed that showed a difference in incidence of 5% or more in the ramucirumab arm compared to placebo. Grade \geq 3 anaemia was less common in the ramucirumab arm (3 vs 11%). The incidence of grade \geq 3 neutropenia (15 vs 14%) was similar in both treatment groups. Granulocyte colony-stimulating factor use was similar in both treatment groups: 41% in the ramucirumab arm and 42% in the placebo arm.

AEs of interest, based on the known safety profile of other antiangiogenic therapies and prior clinical experience with ramucirumab, are shown in Table 2. Grade 1-2 events of epistaxis (14 vs 5%), hypertension (11 vs 5%), haematuria (10 vs 6%), and proteinuria (9 vs 3%) were each reported more frequently in the ramucirumab arm. The incidence of venous (2 vs 5%) and arterial (3 vs <1%) thromboembolic events were low and reported at similar frequency in both treatment groups.

AEs leading to at least one dose adjustment (reduction, delay or omission of any study drug) were reported in 88 (34%) patients in the ramucirumab arm and 82 (31%) in the placebo arm. The most common AE leading to dose adjustments for ramucirumab compared with placebo was febrile neutropenia (4 vs 4%). AEs leading to discontinuation of any study treatment occurred in 39 (15%) patients in the ramucirumab arm and 19 (7%) in the placebo arm. Sepsis was the most common AE leading to treatment discontinuation of any therapy; this occurred in five (2%) patients in ramucirumab arm and no patients in the placebo arm.

Draft for Lancet

Serious AEs were reported for 100 (39%) patients in the ramucirumab arm and 104 (39%) in the placebo arm; these were deemed to be related by the investigator to study treatment in 63 (24%) and 54 (20%), respectively. Including events related by the investigator to disease progression, AEs with an outcome of death on treatment or within 30 days of discontinuation were reported for 38 (15%) patients in the ramucirumab arm and 43 (16%) in the placebo arm; these were deemed to be related by the investigator to study treatment in 8 (3%) and 5 (2%) patients, respectively. Sepsis was the most common AE leading to death on therapy (Table S5), occurring in 4 (2%) patients in ramucirumab arm and no patients in the placebo arm. One fatal event of neutropenic sepsis was reported in the ramucirumab arm.

Discussion

The RANGE study demonstrated the addition of ramucirumab to docetaxel was associated with a statistically significant improvement in PFS in patients with platinum-refractory advanced UC. In this advanced patient population, PFS outcomes were consistent across almost all major subgroups examined and confirmed by blinded central review. The majority of patients in this trial had two or more adverse prognostic risk factors at baseline, including the presence of visceral metastases. A consistent PFS benefit was observed for patients treated with ramucirumab plus docetaxel, irrespective of these risk factors, demonstrating broad applicability of this regimen. The median PFS of 2.76 months that was observed in the placebo arm is consistent with historical data in the second-line setting, such that the observed improvement in the ramucirumab arm was not attributable to underperformance of the control arm.^{5,13}

OS data are immature at this time precluding formal statistical analysis for ORR in accordance with the order of analyses specified in the statistical analysis plan. However, a higher proportion of patients achieved an objective response in the ramucirumab arm (24·5%), including nine complete responses, than in the placebo arm (14·0%) with non-overlapping 95% CIs. The ORR was consistent with that of the phase 2 study of this treatment regimen and higher when indirectly compared with historical chemotherapy studies.^{5,13,26} The ORR observed in the ramucirumab arm in our study is also in line with those seen with immune checkpoint inhibitors in other studies, although duration of response appears longer with immune checkpoint inhibitors.⁶ The disease control rate of 63.4% in our study

Draft for Lancet

compares favourably to single-agent chemotherapy or immune checkpoint inhibitors in other studies, underlining the active nature of this regimen in biomarker-unselected patients.

The combination of ramucirumab and docetaxel revealed no unexpected safety findings. Most toxicities were of grade 1–2 severity and manageable with supportive care alone or with dose reductions, as evident by the high median relative dose-intensity for all study drugs. Overall, the addition of ramucirumab to docetaxel was not associated with an increase in occurrence of grade \geq 3 toxicities typically associated with docetaxel in this patient population. Consistent with Phase 2 data,¹³ the most common haematological toxicity in our study was neutropenia and was reported at a similar incidence in both treatment arms; anaemia was less common in the ramucirumab arm. The incidence of toxicities identified as potential class effects of antiangiogenic therapies, such as grade 1–2 hypertension and bleeding, occurred at a higher frequency in the ramucirumab arm. In addition, the PRO analyses indicated that there was no negative impact on quality of life. This is particularly important for these patients, as most have a short life expectancy.

Phase 2 and 3 studies have demonstrated that approximately 20% of patients with platinum-refractory UC demonstrate an objective response to immune checkpoint inhibition.⁶⁻⁸ Strategies to increase ORR include combinations of PD-1/PD-L1 inhibitors with other immune checkpoint inhibitors, chemotherapy, or antiangiogenic agents.^{5,27-30} Ramucirumab in combination with PD-1/PD-L1 inhibitors has demonstrated promising clinical activity in multiple tumour types in the phase 1 setting, with no unexpected toxicities.^{28,30,31} Although the pool of patients in RANGE who had been treated with prior immune checkpoint inhibitors is limited, the reported outcome is similar to that observed in all patients. Based on the reported efficacy and tolerability, ramucirumab plus docetaxel is also an alternative treatment regimen in the post-immune checkpoint or immune checkpoint inhibitor ineligible setting.

In conclusion, these findings are consistent with results from our previous phase 2 study in which ramucirumab combined with docetaxel improved PFS in patients with platinum-refractory advanced or metastatic UC. Ramucirumab is the only antiangiogenic agent with proven clinical activity in this patient population and, to our knowledge, RANGE represents the first phase 3 study to demonstrate a PFS

advantage over chemotherapy alone. No additive or unexpected toxicities were observed when ramucirumab was combined with docetaxel. Together, these studies suggest a favorable benefit-to-risk ratio for this combination treatment and may represent a new regimen for this patient population.

Acknowledgements

This study was funded by Eli Lilly and Company. We thank the patients, their families, and the study personnel across all sites for participating in this study. Writing and editorial assistance were funded by Eli Lilly and Company.

This research was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Research in context

Evidence before this study

In the development of the study design and protocol, we conducted a systematic review of the published scientific literature. We searched PubMed, with no time restrictions; abstracts of major oncology congresses; and clinical trial websites including ClinicalTrials.gov, for English-language preclinical reports and clinical trials assessing chemotherapy, antiangiogenic therapies, and a combination of these methods in urothelial carcinoma. The findings of this search included multiple single-agent cytotoxic therapies, such as docetaxel, all with modest activity in this patient population. Search results for clinical data in support of this trial included a randomised phase 2 study (NCT01282463) in patients with platinum-refractory advanced or metastatic UC, where ramucirumab plus docetaxel significantly improved median progression-free survival (PFS) over docetaxel. As the protocol was being developed, emerging evidence suggested immune checkpoint inhibitors targeting the programmed death 1 (PD-1) and its ligand (PD-L1) demonstrated clinical activity in a subset of patients with platinum-refractory UC. On the basis of this emerging evidence, we included patients who received one prior immune checkpoint inhibitor. Upon review of the scientific literature and discussions with clinicians, researchers, and regulatory agencies, we conducted this phase 3 study.

Added value of this study

Our findings show that in patients with platinum-refractory advanced or metastatic urothelial carcinoma, ramucirumab plus docetaxel can improve PFS and the objective response rate, without additive toxicity or compromising quality of life when compared to placebo plus docetaxel. The response rate observed in our trial is in line with those seen with immune checkpoint inhibitors in other studies. Taken together with results from our prior phase 2 study in a similar patient population, we provide significant data showing inhibition of VEGFR-2-mediated signaling yields meaningful clinical activity in patients with platinum-refractory advanced or metastatic urothelial carcinoma. Ramucirumab is the only antiangiogenic agent with meaningful clinical activity in this patient population and, to our knowledge, RANGE is the first phase 3 study to demonstrate a PFS advantage over chemotherapy alone in platinum-refractory advanced or metastatic urothelial carcinoma.

Implications of all the available evidence

The RANGE trial design was appropriate for the treatment of a patient population with platinumrefractory advanced or metastatic urothelial carcinoma and can be generalized to clinical practice. The results confirm the benefit of the addition of an anti-VEGFR2 antibody to standard chemotherapy in this setting and represent clinically meaningful progress in the treatment of urothelial carcinoma.

Contributors

DPP, RdW, KNC, CNS, HN, and TP were members of the scientific council and contributed to study design, data collection, data analysis, data interpretation, and drafting, review, and approval of the submitted report. AML, RAW, OH, and AHZ contributed to study design, data analysis, data interpretation, and drafting, review, and approval of the submitted report. RCW and KMB-M contributed to data analysis, data interpretation, and drafting, review, and approval of the submitted report. BA, IJP, FL, and AR-V: contributed to data collection, data analysis, data interpretation, and review and approval of the submitted report. AB, HSC, MH, MT, GT, XGdM, and HH contributed to data collection, and review and approval of the submitted report. DC, SH, EYY and IC contributed to

data analysis, data interpretation, and drafting, review, and approval of the submitted report. AD, AF, MvdH, NM, AN, Y-CO, W-PS, J-LL, AS, and SS contributed to data collection, data interpretation, and drafting, review and approval of the submitted report. LG contributed to data interpretation, and review and approval of the submitted report.

Declaration of Interests

DPP reports grants from Eli Lilly and Company, during the conduct of the study; personal fees from Bayer, Bellicum, Dendreon, Sanofi Aventis, Johnson and Johnson, Exelixis, Ferring, Millineum, Medivation, Pfizer, Roche Laboratories, and Tyme pharmaceuticals, grants from Oncogenix, Progenics, Johnson and Johnson, Merck, Millineum, Dendreon, Sanofi Aventis, Agensys, Eli Lilly and Company, and Roche Laboratories; and other from Bellicum and Tyme, outside the submitted work. RdW reports personal fees from Eli Lilly and Company, during the conduct of the study, and personal fees from Merck, Roche, and Sanofi, outside the submitted work. KNC reports institutional funding from Eli Lilly and Company, during the conduct of the study. CNS reports personal fees from Eli Lilly and Company, BMS, Merck/Pfizer, and Clovis, outside the submitted work. SH reports personal fees from Roche, Merck, Astra Zeneca, Pierre Fabre, and Bayer, outside the submitted work. AF reports personal fees from Astra Zeneca, MSD, Pierre Fabre, Pfizer, and Roche, outside the submitted work. AB reports personal fees from Astra Zeneca and BMS, and grants and personal fees from Roche, outside the submitted work. EYY reports grants and personal fees from Eli Lilly and Company, during the conduct of the study; grants and personal fees from Agensys, Astellas, Bayer, Dendreon, Genentech/Roche, and Merck; and personal fees from AstraZeneca, Churchill Pharmaceuticals, EMD Serono, Ferring, Janssen, Medivation, Sanofi, Seattle Genetics, Tolmar, and Tokai, outside the submitted work. **MSvdH** reports personal fees from Roche/Genentech, AstraZeneca/Medimmune, BMS, grants and personal fees from Astellas, outside the submitted work. AN reports grants, personal fees and non-financial support from Roche, grants and personal fees from Merck, and Astra Zeneca; and personal fees from Seattle Genetics, and Bayer, during the conduct of the study. MT reports personal fees from Astellas, Sanofi, Bayer, and Janssen, outside the submitted work. AP reports other from MSD, Bayer, BMS, Janssen, Astellas, Novartis, Roche, Astra Zeneca, and Pfizer, outside the submitted work. XGdM reports personal fees from Pfizer, BMS, Eli Lilly and Company, Pharmamar, Novartis, Ipsen, and Roche, outside the submitted work. RCW, AML, OH, AHZ, and

KMB-M are employees and shareholders at Eli Lilly and Company. RAW is an employee,
shareholder, and has a patent pending at Eli Lilly and Company. TP reports grants and other from
Roche, grants from AZ, and personal fees from Roche, Merck, AZ, BMS, Eli Lilly and Company, and
Pfizer, outside the submitted work. AD, HN, DC, NM, BA, LG, Y-CO, HSC, W-PS, MH, IJP, J-LL, AS,
FL, GT, SS, AR-V, IC, and HH declare no competing interests.

	Ramucirumab + docetaxel (n=263)	Placebo + docetaxel (n=267)
Median age, years (range)	65 (34-86)	66 (32-83)
≥ 65 years	139 (53)	152 (57)
Male sex	213 (81)	215 (81)
Race		
White	204 (78)	204 (76)
Asian	54 (21)	61 (23)
ECOG performance status		
0	121 (46)	125 (47)
1	138 (52)	142 (53)
Geographical region		
North America	24 (9)	24 (9)
Europe/Other	186 (71)	186 (70)
East Asia	53 (20)	57 (21)
Histology		
Pure transitional cell	201 (76)	209 (78)
Mixed histology	55 (21)	50 (19)
Missing	7 (3)	8 (3)
Bladder as primary site of tumour	169 (64)	170 (64)
Visceral disease	182 (69)	188 (70)
Lung metastases	99 (38)	121 (45)
Liver metastases	78 (30)	69 (26)
Bone metastases	56 (21)	53 (20)
Adrenal gland	16 (6)	12 (4)
Kidney	12 (5)	10 (4)
Spleen	4 (2)	5 (2)
Other	35 (13)	28 (10)
Lymph node only metastases	52 (20)	45 (17)
Creatinine clearance		
<60 mL/min	106 (40)	118 (44)
≥60 mL/min	151 (57)	146 (55)
Missing	6 (2)	3 (1)

Table 1. Baseline demographics and characteristics (ITT; n=530)

|--|

Haemoglobin concentration <10 g/dL	37 (14)	36 (13)
Completion or disc of most recent therapy < 3 months	115 (44)	122 (46)
Number of Bellmunt risk factors [†]		
0	3 (1)	0
1	102 (39)	101 (38)
2	88 (33)	113 (42)
3	69 (26)	45 (17)
4	1 (<1)	8 (3)
Prior adjuvant therapy		
Adjuvant	38 (14)	61 (23)
Neo-adjuvant	40 (15)	37 (14)
No prior adjuvant	168 (64)	155 (58)
Missing	17 (6)	14 (5)
Prior therapies‡		
Cisplatin-based	159 (60)	182 (68)
Carboplatin-based	95 (36)	78 (29)
Immune checkpoint inhibitor	18 (7)	26 (10)

Abbreviation: disc = discontinuation; ECOG = Eastern Cooperative Oncology Group; ITT = intent-to-treat.

Data are n (%) unless otherwise indicated.

[†]Bellmunt risk factors^{24,25} included visceral metastases, hemoglobin <10 g/dL, ECOG performance status score >0, and time since completion or discontinuation of previous therapy of <3 months. [‡]A detailed summary of prior anticancer therapies is included in Table S2.

	Ramucirumal (n=2	Ramucirumab + docetaxel (n=258)		Placebo + docetaxel (n=265)	
	Any Grade	, Grade ≥3	Any Grade	, Grade ≥3	
Any	244 (95)	156 (60)	251 (95)	163 (62)	
Fatigue [†]	110 (43)	20 (8)	121 (46)	25 (9)	
Alopecia	63 (24)	0	92 (35)	1 (<1)	
Diarrhoea	75 (29)	7 (3)	56 (21)	7 (3)	
Decrease appetite	73 (28)	8 (3)	61 (23)	5 (2)	
Nausea	63 (24)	1 (<1)	52 (20)	3 (1)	
Stomatitis	61 (24)	8 (3)	29 (11)	0	
Pyrexia	42 (16)	1 (<1)	41 (15)	1 (<1)	
Vomiting	38 (15)	3 (1)	37 (14)	2 (<1)	
Neuropathy [†]	31 (12)	0	43 (16)	2 (<1)	
Constipation	29 (11)	1 (<1)	43 (16)	1 (<1)	
Urinary tract infection	32 (12)	10 (4)	38 (14)	11 (4)	
Peripheral oedema	36 (14)	0	30 (11)	1 (<1)	
Dyspnoea	30 (12)	5 (2)	30 (11)	5 (2)	
Asthenia	26 (10)	3 (1)	22 (8)	4 (2)	
Dysgeusia	30 (12)	0	17 (6)	0	
Haematological					
Neutropenia [†]	51 (20)	39 (15)	44 (17)	36 (14)	
Febrile neutropenia	25 (10)	25 (10)	17 (6)	17 (6)	
Anaemia	40 (16)	7 (3)	64 (24)	28 (11)	
Leukopenia [†]	26 (10)	17 (7)	24 (9)	21 (8)	
AEs of special interest					
Bleeding or haemorrhage [†]	67 (26)	8 (3)	46 (17)	12 (5)	
Epistaxis	36 (14)	0	13 (5)	0	
Haematuria	27 (10)	5 (2)	17 (6)	5 (2)	
GI haemorrhage	10 (4)	2 (<1)	10 (4)	3 (1)	
Pulmonary haemorrhage	1 (<1)	0	0	0	
Hypertension [†]	29 (11)	15 (6)	12 (5)	5 (2)	
Renal failure [†]	15 (6)	8 (3)	19 (7)	2 (<1)	
Proteinuria	23 (9)	2 (<1)	8 (3)	1 (<1)	
Venous thromboembolic [†]	6 (2)	1 (<1)	13 (5)	5 (2)	
Arterial thromboembolic [†]	8 (3)	6 (2)	2 (<1)	0	

Table 2: Treatment-emergent adverse events (safety population, n=523)

Fistula [†]	5 (2)	3 (1)	2 (<1)	2 (<1)
Congestive heart failure [†]	3 (1)	2 (<1)	1 (<1)	1 (<1)
GI perforation ⁺	3 (1)	2 (<1)	1 (<1)	1 (<1)

Abbreviation: AE = adverse event; GI = gastrointestinal.

Data are number (%). The table shows treatment-emergent adverse events occurring in at least 10% of patients or of special interest irrespective of cause, according to either preferred terms or [†]consolidated categories.

Figure 1: Trial Profile

Figure 2: Kaplan-Meier plots for progression-free survival (n=437). (A) investigator-assessed (B) independent central review. Abbreviations: CI = confidence interval; HR = hazard

В 1.0 0.9 Ramucirumab + docetaxel (n=216); median, 4.04 months Progression-free Survival Probability Placebo + docetaxel (n=221); median, 2.46 months 0.8 HR, 0.672 (95% Cl, 0.536 to 0.842) Log-rank P=0.0005 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 10 2 4 6 8 12 16 14 18 0 Progression Free Survival (Month) No at risk 2 2 Ramucirumab plus docetaxel 216 117 87 34 21 10 7 0 0 28 14 3 0 Placebo plus docetaxel 221 102 67 4 1

Figure 3: Progression-free survival subgroup analyses, first 437 randomised patients Abbreviations: CI = confidence interval; ECOG PS = Eastern Cooperative Oncology Group performance status; F = female; M = male.

	Ramucirumab	Placebo	
Subgroup	No. of Patients/ No. of Events	No. of Patients/ No. of Events	Hazard Ratio (95% CI)
Overall	216/158	221/183	0.761 (0.615, 0.943)
Age			
<65	103/74	102/87	0.623 (0.455, 0.853)
>=65	113/84	119/96	0.901 (0.672, 1.208)
Sex			
M	175/134	176/148	0.799 (0.631, 1.011)
F	41/24	45/35	0.607 (0.359, 1.027)
Race			
White	159/115	160/134	0.726 (0.564, 0.933)
Asian	54/41	60/48	0.848 (0.558, 1.288)
Geographical Region			
East Asia	53/40	57/46	0.841 (0.549, 1.288)
Europe/Other	146/106	145/125	0.660 (0.507, 0.858)
North America	17/12	19/12	→ 1.240 (0.549, 2.799)
Histologic Type			
Transitional Cell	169/122	174/146	0.694 (0.545, 0.885)
Mixed	40/33	42/33	1.158 (0.711, 1.887)
Primary Disease Site			
Urinary Bladder	136/99	138/120	0.684 (0.522, 0.898)
Other	77/59	83/63	0.884 (0.619, 1.261)
ECOG PS at Baseline			
0	99/72	102/83	0.725 (0.526, 1.000)
1	113/85	119/100	0,764 (0,572, 1,021)
Visceral Disease			_
Yes	145/116	153/132	0.862 (0.671, 1.107)
No	68/42	68/51	0.592 (0.390, 0.898)
Lymph Node Only Disease			
Yes	46/27	39/28 -	0.542 (0.316, 0.930)
No	170/131	182/155	0.868 (0.688, 1.097)
Liver Metastases		1021100	
Yes	64/52	55/51	0.694 (0.468, 1.028)
No	152/106	166/132	0.742 (0.574, 0.960)
Baseline Haemoglobin	102100		
<10 g/dL	30/25	30/27	0.954 (0.549, 1.659)
>=10 g/dL	181/133	190/156	0.735 (0.583, 0.928)
Time Since Most Recent Chemother	apy		
<3 mo	96/77	102/89	0.738 (0.542, 1.004)
>=3 mo	115/80	113/88	0.802 (0.592, 1.088)
No. of Risk Factors			
0-1	85/53	85/63	0.764 (0.529, 1.103)
2	74/58	92/80	0.676 (0.479, 0.953)
3-4	57/47	44/40	0.804 (0.525, 1.232)
Prior Adjuvant Therapy			_
Adjuvant	32/24	50/36	1.019 (0.607, 1.710)
Neo-Adjuvant	28/18	34/28	0.867 (0.476, 1.577)
No Prior Adjuvant	144/110	123/106	0.673 (0.514, 0.882)
Context of Most Recent Therapy			
Adjuvant or Neo-Adjuvant	37/27	50/36	1.283 (0.776, 2.119)
Metastatic Disease	166/125	158/134	0.658 (0.514, 0.842)
Prior Platinum Based Therapy			
Cisplatin	134/98	149/121	0.790 (0.604, 1.032)
Carboplatin	75/57	66/56	0,709 (0.486, 1.036)
Prior Immune Checkpoint Inhibitor			
Yes	14/10	19/17	→ 0.920 (0.409, 2.067)
No	197/147	196/160	0.777 (0.621, 0.973)
		0.2).4 0.6 0.8 1.0 1.2 1.4 1.6 2.0

Favours ramucirumab arm

≁

Favours placebo arm

Figure 4: Best percent change from baseline in tumour size vs progression-free survival (PFS), first 437 randomised patients

Best percentage change of targeted lesions from baseline versus PFS. Patients (x-axis) were ordered by best percentage change of targeted lesions from baseline (y-axis) and color coded for best response according to RECIST version 1·1. PFS time (z-axis) is shown as observed or censored at time of data cutoff. Abbreviations: CR = complete response; NE = not evaluable; PD = progressivedisease; PR = partial response; SD = stable disease; ORR = objective response rate. ORR wasdetermined in the first 437 ITT population.

Circles represent means scores and bars represent standard deviation. (A) Scores range from 0 to 100, with higher scores representing better quality of life. (B) Scores range from -0·281 to 1 (displayed as 0-1), with higher scores representing better health status. These figures offset data from the treatment arms along the x-axis for increased legibility, but the assessment times were the same for both arms.

APPENDIX

Study Protocol (attached separately)

List of Principal Investigators

Investigator Name	Site Address
Australia	
Suet-Lai Shirley Wong, MD	Western Hospital
	Gordon Street,
	Footscray,VIC, 3011
	Australia
Thean Hsiang Tan, MD	Royal Adelaide Hospital
	North Terrace,
	Adelaide, SA, 5000
	Australia
Elizabeth Jane Hovey, MD	Prince Of Wales Hospital
	Barker Street,
	Randwick, NSW, 2031
	Australia
Timothy Dudley Clay, MD	St John of God Hospital –Subiaco
	12 Salvado Road,
Siobhan Su Wan Ng	Subiaco, WA, 6008
	Australia
Beigium	Algemeen Ziekenhuis St Augustinus St. Comillus St. Dave
Annemie Rutten, MD	Algemeen Ziekennuis St Augustinus-St. Camilius-St. Davo
	Wilriik 2610
	Belgium
Jean-Pascal Machiels, MD	Cliniques Universitaires Saint-Luc
	Avenue Hippocrate, 10
	Uro-oncologie (étage -1 Route 389)
	Brussels,1200
	Belgium
Herlinde Dumez, MD	Universitaire Ziekennuizen Leuven - Campus Gastnuisberg
	Leuven 3000
	Belaium
Canada	
Susanna Yee-Shan Cheng, MD	Centre- Odette Cancer Ctr. T2-034
	2075 Bayview Avenue
	Toronto, Ontario, M4N 3M5
	Canada
Kim Nguyen Chi, MD	British Columbia Cancer Agency
	600 West 10th Avenue
Cristiana Formaria, MD	Vancouver, British Columbia, V52 4E6 Canada
	Jewish General Hospital
	Pavilion F
	Montreal, Quebec, H3T 1E2
	Canada
Denmark	

Investigator Name	Site Address
Lisa Sengeloev, MD	Herlev Hospital
	Herlevringvej 75
	Onkologisk Afdeling 54 B1
	Herlev, 2730
Niele Vigge Jensen MD	Denmark
	Sdr. Boulevard 29
	Odense C. SYD 5000
	Denmark
France	
Constance Thibault, MD	Hopital Europeen Georges Pompidou
	20-40 Rue Leblanc
	75015 Paris
	France
Brigitte Laguerre, MD	Centre Eugene Marquis
	Avenue Bataille Flandres-Dunkerque
	Bp 25002 Depres Codev
	Source
Fredrik Laestadius, MD	Centre Oscar Lambret
	3 Rue Erederic Combemale
	Bp 307
	59020 Lille Cedex
	France
Florence Joly, MD	Centre Francois Baclesse
	3 Avenue General Harris, Bp 5026
	14076 Caen Cedex 5
	France
Aude Flechon, MD	Centre Leon Berard
	28, Rue Laennec 69373 Lyon Cedex 08
	France
Stéphane Culine, MD	Hopital Saint-Louis
	1. Avenue Claude Vellefaux
	75475 Paris Cedex 10
	France
Catherine Becht, MD	Centre de cancérologie du Grand Montpellier
	25 Rue de Clémentville
	34070 Montpellier
Gormany	France
Germany	Linivarsitätsklinikum Düssaldarf
Gunter Niegisch, MD	Moorenstraße 5
	Düsseldorf, NORDRHEIN-WESTFALEN, 40225
	Germany
Michael Stöckle, MD	Universitätsklinikum Des Saarlandes
	Kirrberger Straße 1
	Urologische Klinik, Gebäude 6
	Homburg,SAARLAND, 66421
	Germany
Warc-Oliver Grimm, MD	Ninikum Der Friedrich-Schlier-Universität Jena
	Lessingsitaise 1 Japa THÜRINGEN 07740
	Germany
Georgios Gakis, MD	Klinikum Der Eberhard-Karls-Universität Tübingen
	Hoppe-Seyler-Straße 3
	Tübingen, BADEN-WÜRTTEMBERG, 72076
	Germany

Investigator Name	Site Address
Wolfgang Schultze-Seemann, MD	Universitätsklinikum Freiburg
	Hugstetter Straße 55
	Freiburg Im Breisgau BADEN-WÜRTTEMBERG 79106
	Germany
Greece	
Haralambos Kalofonos, MD	University General Hospital Of Patras
	Rio
	Patras, ACHAIA, 26504 Greece
Dimitrios Mayroudis, MD	University General Hospital Of Heraklion
	Stavrakia And Voutes
	Heraklion, CRETE, 71110
Christos Papandreou, MD	General Hospital Of Thessaloniki Papageorgiou
Vasilis Karavasilis, MD	N. Efkarpia, THESSALONIKI, 56403
	Greece
Aristotelis Bamias, MD	General Hospital Of Athens 'Alexandra'
	80 Vasilissis Sofias Ave
	Athens, ATTICA, 115 28
Hungary	Gleece
Janos Révész, MD	Borsod-abaui-Zemplen Megyei Korhaz Es Egyetemi Oktato
	Korhaz
	Szentpeteri Kapu 72-76
	Miskolc,BAZ MEGYE, 3526
Laios Geczi MD	nungary Orszagos Onkologiai Intezet
	Rath Gvorgy U. 7-9
	Budapest, 1122
	Hungary
Ell Rosenbaum, MD	Rabin Medical Center
	Petach Tikva, 4941492
	Israel
Raya Leibowitz-Amit, MD	Chaim Sheba Medical Center
	Tel Hashomer
	Israel
Daniel Keizman. MD	Meir Medical Center
, , , , , , , , , , , , , , , , , , ,	59 Tchernichovski St.,
	Kfar Saba, 4428164
Avivit Boor MD	Israel Rambam Modical Contor
	8 Haaliya Hashniya St. Pob 9602
	Haifa, 3525408
	Israel
David Sarid, MD	Tel Aviv Sourasky Medical Center
	o weizman St., Tel-Aviv Jaffa 6423906
	Israel
Italy	
Giorgio Vittorio Scagliotti, MD	Azienda Ospedaliero - Universitaria S. Luigi Gonzaga
	Regione Gonzole, 10
	10043 Orbassano, I ORINO
	nary

Investigator Name	Site Address
Cora N. Sternberg, MD	Azienda Ospedaliera S. Camillo Forlanini
	Circonvallazione Gianicolense, 87 00152 Roma
	Italy
Giampaolo Tortora, MD	Ospedale Borgo Roma
	Piazzale Ludovico Antonio Scuro, 10 37134 Verona
	Italy
Sergio Bracarda, MD	Ospedale San Donato
	Via Pietro Nenni, 20
	52 TOU ATE220
Andrea Necchi MD	Istituto Nazionale Dei Tumori
	Via Giacomo Venezian. 1
	20133 Milano
	Italy
Francesco Massari, MD	Ospedale Malpighi-Policlinico di S Orsola
	Via Albertoni, 15 Oncologia Medica, Padiglione 2 Piano 5
	40138 Bologna
	Italy
Japan Takabira Osawa MD	Hokkaido Liniversity Hespital
	Kita 14 Nishi 5 Kita-Ku
Naoto Mivaiima MD	Sapporo, HOKKAIDO, 060-8648
	Japan
Nobuo Shinohara MD	'
Fumimasa Fukuta, MD	Sapporo Medical University Hospital
	16-291 Minami-1jyo-nishi Chuo-ku
	Sapporo, HOKKAIDO, 060-8543
Chikara Ohyama MD	Japan Hiropoli University Heepitel
Chikara Onyama, MD	53 Hon-cho
	Hirosaki AOMORI 036-8563
	Japan
Wataru Obara, MD	Iwate Medical University Hospital
	19-1, Uchimaru
	MORIOKA, IWATE, 020-8505
Shinishi Yamashita MD	Japan Toboku University Heepitel
	1-1 Seirvo-cho Aoba-Ku
	Sendai, MIYAGI, 980-8574
	Japan
Yoshihiko Tomita, MD	Niigata University Medical & Dental Hospital
	1-754,Asahimachidori,Chuo-ku
	Niigata, NIIGATA, 951-8520
	Japan
Koji Kawai, MD	I sukuba University Hospital
	2-1-1 Anakubo Tsukuba IBARAKI 305-8576
	Japan
Satoshi Fukasawa. MD	Chiba Cancer Center
	666-2 Nitona-cho Chuo-Ku
	Chiba, CHIBA, 260-8717
	Japan
Nobuaki Matsubara, MD	National Cancer Center Hospital East
	6-5-1 Kashiwanoha
	Kasniwa, CHIBA, 277 8577
	Japan

Investigator Name	Site Address
Masafumi Oyama, MD	Saitama Medical University International Medical Center
	1397-1 Yamane Hidaka SAITAMA 250 1208
	Janan
Junii Yonese, MD	The Cancer Institute Hospital Of JECR
	3-8-31 Ariake
	Koto-Ku, TOKYO, 135-8550
	Japan
Masayoshi Nagata, MD	Juntendo University Hospital
	3-1-3 Hongo Bunkvo-Ku, TOKVO, 113-8431
	Japan
Motohide Uemura, MD	Osaka University Hospital
	2-15 Yamadaoka
	Suita-Shi, OSAKA, 565-0871
Kazua Niahimura MD	Japan Opaka International Concer Institute
	3-1-69 Otemae Chuou-Ku
	Osaka, OSAKA, 541-8567
	Japan
Mutsushi Kawakita, MD	Kobe City Medical Center General Hospital
	2-1-1, Minami-Machi, Minatojima, Chuo-Ku
	Kobe, HYOGO, 650-0047
Hirovuki Tsunemori MD	Kagawa University Hospital
	1750-1 Ikenobe, Miki-cho
	Kita-gun, Kagawa, 761-0793
	Japan
Katsuyoshi Hashine, MD	National Hospital Organization Shikoku Cancer Center
	160 Kou Minamiumemoto-Machi Matsuvama EHIME 791-0280
	Japan
Junichi Inokuchi, MD	Kyushu University Hospital
	3-1-1 Maidashi Higashi-Ku
Akira Yokomizo, MD	Fukuoka, FUKUOKA, 812-8582
Catachi Nazamari MD	Japan
Satoshi Nagamon, MD	2-3-54 Kikusui-Aivo Shiroishi-Ku
	Sapporo, HOKKAIDO, 003-0804
	Japan
Korea	
Jae-Lyun Lee, MD	Asan Medical Center
	88, Olympic-Ro, 43-Gil, Songpa-Gu Seoul, 05505
	Korea. South
Hyo Jin Lee, MD	Chungnam National University Hospital
	282 Munhwa-ro, Jung-gu
	Daejeon, 35015
So Hoop Park MD	Korea, South
	81 Irwon-ro Gangnam-gu
	Seoul, 06351,
	Korea, South
Sun Young Rha, MD	Severance Hospital
	50-1 Yonsei-ro, Seodaemun-gu
	Seoul, 03722 Koroa, Sauth
	Norea, South

Investigator Name	Site Address
Yu Jung Kim, MD	Seoul National University Bundang Hospital
	300 Gumi-dong, Bundang-gu
	Seongnam-si, Gyeongg1-do, 13620
	Korea, South
Yun-Gyoo Lee, MD	Kangbuk Samsung Hosp
	108, Pyung-dong, Jongro-gu
	Korea South
Mexico	
Leticia Vazquez Cortés MD	Centro De Investigacion Clinica Chapultepec S.A. De C.v.
	General Pena Y Pena 256 Col. Chapultepec Norte
	Morelia, MICHOACÁN, 58260
	Mexico
Claudia Lorena Urzua Flores, MD	Hospital Cardiologica Aguascalientes
	República De Ecuador No. 200, Las Americas
	Aguascalientes, AGS, 20230
Notherlands	Mexico
Reinoud J.B. Blaisse MD	Riinstate Ziekbenius
Reinoud o D. Blaisse, MD	Wagnerlaan 55
	Arnhem, 6815 AD,
	The Netherlands
Michiel S. Van der Heijden, MD	Het Nederlands Kanker Instituut - Antoni van Leeuwenhoek
	Plesmanlaan 121
	Amsterdam, 1066 CX,
	The Netherlands
Ronald de Wit, MD	Erasmus Medisch Centrum
	Daniel den Hoed Cancer Center Groope Hilledijk 301
	Oncologisch Centrum
	Rotterdam.3075 EA.
	The Netherlands
Fransiscus L.G. Erdkamp, MD	Zuyderland MC
	Dr. H. Van Der Hoffplein 1
	Sittard – Geleen, 6162 BG,
	The Netherlands
Maureen J.B. Aarts, MD	Universitair Medisch Centrum Maastricht
	P. Debyelaan 25 Maastricht 6220 HX
	The Netherlands
Poland	
Joanna Woicik-tomaszewska MD	Copernicus Podmiot Leczniczy Sp.Z O.o.
	Al. Zwycięstwa 31/32 Dzial Badan Klinicznych
	Gdansk, 80-219
	Poland
Piotr Tomczak, MD	Szp.kliniczny Przemienienia Panskiego Um
	Im.k.marcinkowskieg
	UI. Szamarzewskiegu 82/84 Klinika Onkologii: Oddział Chamiotaranii
	Poznan 60-569
	Poland
Bozena Sikora-Kupis. MD	Magodent Sp. Z O.o.
· · · · · · · · · · · · · · · · · · ·	UI. Gen. Fieldorfa 40
	Warszawa, 04-125
	Poland
Romania	

Investigator Name	Site Address
Michael Schenker, MD	Centrul De Oncologie Sf. Nectarie SRL
	Str. Caracal nr. 23a, Parter Si Demisol, Bloc 17a
	Craiova, DOLJ, 200347
	Romania
Alina Amalia Herzal, MD	Spitalul Judetean De Urgenta "dr. Constantin Opris"
	Str. George Cosbuc, Nr. 31 Reio More, 420021
	Dala Mare, 430031 Romania
Anghel Adrian I Idrea MD	S.C. Medisprof SRI
	Piata 1 Mai Nr. 3
	Cluj-Napoca, Cluj, 400058
	Romania
Russian Federation	
Petr Karlov, MD	St. Petersburg City Clinical Oncological Dispensary
	56 Veteranov Prospect
	Saint-Petersburg, 198255
	Russian Federation
Sufia Z. Safina, MD	Republic Oncology Dispensary Of MoH of Republic
	l atarstan
	29, SIDIISKIY HAKI Kazan RUSSIA 420020
	Russian Federation
Boris Alekseev.MD	Moscow Scientific and Research Oncology Institute
	3, 2-oy Botkinskiy Proezd
	Moscow, 125284
	Russian Federation
Andrey Semenov, MD	GIoPHS Ivanovo Regional Clinical Oncology Dispensary
	5 Lubimova Street
	Ivanovo, 153040
Deman Familia MD	Russian Federation
Roman Fomkin, MD	Saratov State Medical University
	137, boisilya sadovaya ul. Saratov 410054
	Russian Federation
Spain	
Enrique Grande Pulido, MD	Hospital Universitario Ramon y Cajal
	Ctra. Colmenar Viejo, Km 9.1
	Oficina De Ensayos Clínicos/serv.onco Planta - 2 Dcha
	Madrid, MADRID, 28034
E Varias Cassía Dal Musa MD	Spain
F. Xavier Garcia Dei Muro, MD	Hospital Duran I Reynals
	Avua.castellueleis, KIII 2.7
	Barcelona BARCELONA 08907
	Spain
Juan Ignacio Delgado Mignorance	Hospital Infanta Cristina
	Avda. De Elvas, S/n
	Badajoz, BADAJOZ, 06080
	Spain
Daniel Castellano Gauna, MD	Hospital Universitario 12 De Octubre
	Avenida de Cordoba
	Madrid MADRID 280/1
	Spain
Aleio Rodríguez-Vida MD	Hospital del Mar
	Passeig Maritim, 25-29
	Barcelona, BARCELONA, 08003
	Spain

Investigator Name	Site Address
Taiwan	
Yu-Li Su, MD	Chang Gung Memorial Hospital - Kaohsiung No.123, Dapi Rd., Niaosong Shiang 7f. Blood Smear Exam Rm. Kaohsiung, 83301 Taiwan
Yen-Chuan Ou, MD	Taichung Veterans General Hospital No 160 Taichung Kuan Road, Section 3 Prostate Disease Center 1f OPD Taichung, 40705 Taiwan
Chien-Liang Lin, MD	Chi-Mei Medical Center, Liouying No. 201, Taikang Village, B2 5 Building Tainan, 73657 Taiwan
Wen-Pin Su, MD	National Cheng Kung University Hospital 138, Sheng Li Road Clinical Research Center 6f OPD Building Tainan, 70403 Taiwan
Chia-Chi Lin, MD	National Taiwan University Hospital No 1 Changde St. Rm.6451,4f, 6 West Building Taipei, 10048 Taiwan
Su-Peng Yeh, MD	China Medical University Hospital No 2, Yuh-Der Rd., Taichung (R.O.C), 40447 Taiwan
Turkey	
Irfan Çiçin, MD	Trakya University Faculty Of Medicine Balkan Yerleskesi Edirne, 22030 Turkey
Hakan Harputluoglu, MD	Inonu University Medical Faculty Inonu University,turgut Ozal Medical Center, Elazig Yolu 15.km Malatya, TURKEY, 44280 Turkey
Mustafa Erman, MD	Hacettepe University Faculty Of Medicine Tip Fakultesi Hastanesi Sihhiye Ankara, 06100 Turkey
Hasan Senol Coskun, MD	Akdeniz University Medical Faculty Dumlupinar Bulvari Kampus Antalya, 07059 Turkey
Yuksel Urun, MD	Ankara University Cebeci Yerleskesi Ankara, 06100 Turkey
Urkraine	
Yurii Golovko, MD	Kyiv Regional Clinical Oncology Dispensary 1, Baggovutivska Street Kyiv, 04107 Ukraine

Investigator Name	Site Address
Igor Bondarenko, MD	Dnipropetr City Multif Cli Hosp 4 Dnip Regi Council, Dep Che
	31 Blyzhnya Str
	Dnipropetrovsk, 49102, Ukraine
Ivan Sinielnikov, MD	Volyn Regional Oncological Center
	1 Timiryaziva Street
	Lutsk, 43018
Inited Kingdom	Ukraine
	St Partholomow's Haanital
Thomas Fowles, MD	St Bartioloniew's Hospital
	West Smithfield London EC1A 7BE
	United Kingdom
Simon Crabb, MD	University Hospital Southampton NHS FOUNDATION
	TRUST,
	Tremona Road,
	Southampton, SO16 6YD
	United Kingdom
Isabel Syndikus, MD	I ne Clatterbridge Cancer Centre
	NHS Foundation Trust
	Bebington Wirral CH63 4.IY
	United Kingdom
Robert Huddart, MD	Royal Marsden NHS Foundation Trust
	Downs Road
	Sutton, SURREY, SM2 5PT
	United Kingdom
Santhanam Sundar, MD	Nottingham University Hospital
	NOTTINGHAMSHIRE, NG5 TPB
Simon Chowdhury MD	Sarah Canon Research Institute LIK Ltd
	93 Harley Street
	London, SURREY, W1G 6AD
	United Kingdom
Naveed Sarwar, MD	Charing Cross Hospital
	Fulham Palace Road
	Chelsea, LONDON, W6 8RF
	United Kingdom
United States	LIOLA Madiael Contan
Alexandra Drakaki, MD	Department of Modicine
	Hematology/Oncology
	10945 Leconte Avenue. Ste 3360
	Los Angeles, California, 90095
	United States
Thomas Flaig, MD	University of Colorado
	12801 E. 17th Ave., Rc-1 South
	Rm 8123, Ms 8117
	Aurora, Colorado, 80045
Chang Vian Ban, MD	United States
	4501 X Street Suite 3016
	Sacramento, California, 95817
	United States
Daniel Petrylak, MD	Yale University, Yale Cancer Center
	333 Cedar Street, FMP 313
	New Haven, Connecticut, 06520
	United States

Investigator Name	Site Address
James Schwarz, MD	University Of Nebraska Medical Center
	987680 Nebraska Medical Center
	Dept of Internal Medicine
	Omaha, Nebraska, 68198-7680
	United States
Ivor Percent, MD	Florida Cancer Specialists
	3840 Broadway
	Fort Myers, Florida, 33901
	United States
Jennifer Cultrera, MD	Florida Cancer Specialists And Research Institute
	560 Jackson Street, Suite 220
	St Petersburg, Florida, 33705
	United States
John Hainsworth, MD	Tennessee Oncology, PLLC
	250 25th Ave N, Suite 307
	Nashville, Tennessee, 37203
	United States
Benjamin Herms, MD	Oncology Hematology Care Inc
	4350 Malsbary Road
	Cincinnati, Ohio, 45242
	United States
William Lawler, MD	St Jude Hospital Yorba Linda DBA
	St. Joseph Heritage Healthcare
	2151 N Harbor Blvd STE 2200
	Fullerton, California, 92835
	United States
Thomas Lowe, MD	Torrance Health Association, DBA Torrance Memorial
	Physician Network/Cancer Care Associates
	514 N. Prospect Ave.
	4th Floor
	Redondo Beach, California, 90277
	United States
Scott Tagawa, MD	New York Presbyterian Hosp.
	Weill Cornell Medical College
	525 East 68th Street
	New York, NY 10065
Jeanny Aragon-Ching, MD	Inova Dwight and Martha Schar Center Institute
	8505 Arlington Blvd., Ste 100
	Fairfax, Virginia, 22031
	United States
Ulka Vaishampayan, MD	Karmanos Cancer Institute
	4100 John R.
	Detroit, Michigan, 48201
	United States

Table S1: Baseline demographics, first 437 randomised patients

	Ramucirumab + docetaxel (n-216)	Placebo + docetaxel (n-221)
Median age, years (range)	65 (34-86)	66 (34-83)
≥ 65 years	113 (53)	119 (54)
Male sex	175 (81)	176 (80)
Race		
White	159 (74)	160 (72)
Asian	54 (25)	60 (27)
ECOG performance status		
0	99 (46)	102 (46)
1	113 (52)	119 (54)
Geographical region		
North America	17 (8)	19 (9)
Europe/Other	146 (68)	145 (66)
East Asia	53 (25)	57 (26)
Histology		
Pure transitional cell	169 (78)	174 (79)
Mixed histology	40 (19)	42 (19)
Missing	7 (3)	5 (2)
Primary site of tumour		
Bladder	136 (63)	138 (62)
Renal pelvis	30 (14)	35 (16)
Ureter	32 (15)	29 (13)
Urethra	5 (2)	5 (2)
Other	10 (5)	14 (6)
Missing	3 (1)	0
Visceral disease	145 (67)	153 (69)
Lung metastases	78 (36)	102 (46)
Liver metastases	64 (30)	55 (25)
Bone metastases	47 (22)	46 (21)
Adrenal gland	13 (6)	8 (4)
Kidney	7 (3)	7 (3)
Spleen	3 (1)	3 (1)
Other	30 (14)	20 (9)
Lymph node only metastases	46 (21)	39 (18)

Creatinine clearance		
<60 mL/min	92 (43)	101 (46)
≥60 mL/min	119 (55)	118 (53)
Missing	5 (2)	2 (<1)
Haemoglobin concentration <10 g/dL	30 (14)	30 (14)
Completion or disc of most recent therapy < 3 months	96 (44)	102 (46)
Number of Bellmunt risk factors [†]		
0	3 (1)	0
1	82 (38)	85 (38)
2	74 (34)	92 (42)
3	56 (26)	37 (17)
4	1 (<1)	7 (3)
Prior adjuvant therapy		
Adjuvant	32 (15)	50 (23)
Neo-adjuvant	28 (13)	34 (15)
No prior adjuvant	144 (67)	123 (56)
Prior therapies [†]		
Cisplatin-based	134 (62)	149 (67)
Carboplatin-based	75 (35)	66 (30)
Immune checkpoint inhibitor	14 (6)	19 (9)

Abbreviation: disc = discontinuation; ECOG = Eastern Cooperative Oncology Group. Data are n (%) unless otherwise indicated.

[†]Bellmunt risk factors^{24,25} included visceral metastases, haemoglobin <10 g/dL, ECOG performance status score >0, and time since completion or discontinuation of previous therapy of <3 months. [‡]A detailed summary of prior anticancer therapies is included in Table S2.

Table S2: Prior therapies[†] (ITT; n=530)

	Ramucirumab +	Placebo +
	docetaxel	docetaxel
Platinum-based therapy	257 (98)	261 (98)
Cisplatin	159 (60)	182 (68)
Carbonlatin	95 (36)	78 (29)
Oxalinlatin	1 (<1)	0
Platinum not otherwise specified	2 (<1)	1 (<1)
Non-platinum-based therapy	257 (98)	261 (98)
Gemcitabine	231 (88)	236 (88)
Methotrexate/Vinblastine/Doxorubicin	16 (6)	16 (6)
Other	2 (<1)	5 (2)
Epirubicin/Methotrexate/Mitomvcin	1 (<1)	0
Epirubicin/Methotrexate	0	1 (<1)
Methotrexate/Vinblastine	1 (<1)	1 (<1)
Etoposide	Û Û	1 (<1)
Methotrexate sodium/Vinblastine	0	1 (<1)
Paclitaxel	1 (<1)	1 (<1)
None	7 (3)	4 (1)
Immune checkpoint inhibitor therapy	19 (7)	26 (10)
Atezolizumab	10 (4)	10 (4)
Pembrolizumab	5 (2)	9 (3)
Durvalumab	1 (<1)	2 (<1)
Nivolumab	0	2 (<1)
Pembrolizumab or placebo	0	1 (<1)
Nivolumab or placebo	1 (<1)	0
Anti-PD-L1, not otherwise specified	1 (<1)	1 (<1)
Bgba317 (anti-PD-1)	1 (<1)	1 (<1)
Antiangiogenic therapy	0	1 (<1)
Ramucirumab	0	1 (<1)
All Other	1 (<1)	3 (1)
Emactuzumab	1 (<1)	0
Denosumab	0	1 (<1)
Ayurvedic Preparation, not otherwise specified	0	1 (<1)
Cancer peptide vaccine	0	1 (<1)

Abbreviation: ITT = intent-to-treat.

[†]Patients may have received more than one type of therapy.

Table S3: Exposure (safety population, n=523)

	Ramucirumab + docetaxel (n=258)	Placebo + docetaxel (n=265)
Ramucirumab or placebo		X /
Number of patients	258	265
Median duration of therapy (IQR), weeks	12.1 (6-21)	9.9 (6-21)
Median number of cycles (IQR)	4 (2-7)	3 (2-6)
No. of patients completing at least 2 cycles, (%)	226 (88)	236 (89)
No. of patients completing at least 4 cycles, (%)	136 (53)	127 (48)
No. of patients completing at least 6 cycles, (%)	95 (37)	87 (33)
No. of patients completing at least 8 cycles, (%)	56 (22)	51 (19)
Median relative dose intensity (IQR)	99.6 (94.5-100.1)	99.6 (95.5-100.1)
Docetaxel		
Number of patients	258	265
Median duration of therapy (IQR), weeks	12.1 (6-18)	9.9 (6-18)
Median number of cycles (IQR)	4 (2-6)	3 (2-6)
No. of patients completing at least 2 cycles, (%)	228 (88)	233 (88)
No. of patients completing at least 4 cycles, (%)	137 (53)	128 (48)
No. of patients completing at least 6 cycles, (%)	93 (36)	84 (32)
No. of patients completing at least 8 cycles, (%)	19 (7)	17 (6)
Median relative dose intensity (IQR)	98·3 (90·9-100·1)	98.8 (92.9-100.1)

Abbreviation: IQR = interquartile range; No. = Number

	Ramucirumab + docetaxel (n=216)	Placebo + docetaxel (n=221)	
Progression-free survival	· · ·		P Value
Deaths or disease progressions, no. (%)	158 (73)	183 (83)	
Median, months (95% CI)	4.07 (2.96 to 4.47)	2.76 (2.60 to 2.96)	
Hazard ratio (95% CI)	0.757 (0.607	7 to 0·943)	0.0118
3-month PFS rate, % (95% CI)	57·1 (49·9 to 63·7)	42·3 (35·5 to 49·0)	0.0028
6-month PFS rate, % (95% CI)	28.5 (22.0 to 35.3)	18·9 (13·7 to 24·7)	0.0309
9-month PFS rate, % (95% CI)	16·5 (11·0 to 22·9)	10·0 (6·1 to 14·9)	0.0862
12-month PFS rate, % (95% CI)	11·9 (7·1 to 18·0)	4·5 (1·5 to 10·1)	0.0374
Best overall response, No. (%)			
Complete response	9 (4·2)	3 (1·4)	
Partial response	44 (20·4)	28 (12.7)	
Stable disease	84 (38·9)	93 (42·1)	
Progressive disease	49 (22.7)	73 (33·0)	
Not evaluable	30 (13·9)	24 (10·9)	
Objective response rate, % (95%CI)	24.5 (18.8 to 30.3)	14·0 (9·4 to 18·6)	N/A
Disease control rate, % (95%CI)	63·4 (57·0 to 69·8)	56·1 (49·6 to 62·7)	N/A

Table S4: Investigator-assessed efficacy endpoints, first 437 randomised patients

Abbreviations: CI = confidence interval; N/A = not applicable due to gatekeeping trial design; no. =

number; PFS = progression-free survival

Data are n (%) unless otherwise indicated.

	Ramucirumab + docetaxel (n=258)	Placebo + docetaxel (n=265)
Any	15 (6)	11 (4)
Sepsis	4 (2)	0
Death [†]	1 (<1)	2 (<1)
Renal failure	2 (<1)	0
Pneumonia	0	2 (<1)
Pneumonitis	1 (<1)	1 (<1)
Basilar artery thrombosis	1 (<1)	0
Cardiac arrest	1 (<1)	0
Enterovesical fistula	1 (<1)	0
Gastric haemorrhage	1 (<1)	0
Neutropenic sepsis	1 (<1)	0
Pneumonia aspiration	1 (<1)	0
Respiratory tract infection	1 (<1)	0
Asthenia	0	1 (<1)
Lung infection	0	1 (<1)
Pulmonary embolism	0	1 (<1)
Pulmonary hypertension	0	1 (<1)
Sudden death	0	1 (<1)
Toxic shock syndrome	0	1 (<1)

Table S5: Adverse events leading to death, regardless of causality

[†]No further information was available.

References

1. Sternberg CN, Yagoda A, Scher HI, et al. Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. *Cancer* 1989; **64**(12): 2448-58.

2. Loehrer PJ, Sr., Einhorn LH, Elson PJ, et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. *J Clin Oncol* 1992; **10**(7): 1066-73.

3. Saxman SB, Propert KJ, Einhorn LH, et al. Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. *J Clin Oncol* 1997; **15**(7): 2564-9.

4. von der Maase H, Hansen SW, Roberts JT, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. *J Clin Oncol* 2000; **18**(17): 3068-77.

5. Raggi D, Miceli R, Sonpavde G, et al. Second-line single-agent versus doublet chemotherapy as salvage therapy for metastatic urothelial cancer: a systematic review and meta-analysis. *Ann Oncol* 2016; **27**(1): 49-61.

6. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. *N Engl J Med* 2017; **376**(11): 1015-26.

7. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. *Lancet* 2016; **387**(10031): 1909-20.

8. Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. *Lancet Oncol* 2017; **18**(3): 312-22.

9. Apolo AB, Infante JR, Balmanoukian A, et al. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. *J Clin Oncol* 2017; **35**(19): 2117-24.

10. Hahn NM. Updated efficacy and tolerability of durvalumab in locally advanced or metastatic urothelial carcinoma (UC). *J Clin Oncol* 2017; **35 (suppl; abstr 4525)**.

11. Dickinson AJ, Fox SB, Persad RA, Hollyer J, Sibley GN, Harris AL. Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. *Br J Urol* 1994; **74**(6): 762-6.

12. Necchi A, Mariani L, Zaffaroni N, et al. Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, phase 2 trial. *The lancet oncology* 2012; **13**(8): 810-6.

13. Petrylak DP, Tagawa ST, Kohli M, et al. Docetaxel As Monotherapy or Combined With Ramucirumab or Icrucumab in Second-Line Treatment for Locally Advanced or Metastatic Urothelial Carcinoma: An Open-Label, Three-Arm, Randomized Controlled Phase II Trial. *J Clin Oncol* 2016; **34**(13): 1500-9.

14. Jaeger TM, Weidner N, Chew K, et al. Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. *J Urol* 1995; **154**(1): 69-71.

15. Sato K, Sasaki R, Ogura Y, et al. Expression of vascular endothelial growth factor gene and its receptor (flt-1) gene in urinary bladder cancer. *Tohoku J Exp Med* 1998; **185**(3): 173-84.

16. Crew JP, O'Brien T, Bicknell R, Fuggle S, Cranston D, Harris AL. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. *J Urol* 1999; **161**(3): 799-804.

17. Inoue K, Slaton JW, Karashima T, et al. The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. *Clin Cancer Res* 2000; **6**(12): 4866-73.

18. Xia G, Kumar SR, Hawes D, et al. Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. *J Urol* 2006; **175**(4): 1245-52.

19. Balar AV, Apolo AB, Ostrovnaya I, et al. Phase II Study of Gemcitabine, Carboplatin, and Bevacizumab in Patients With Advanced Unresectable or Metastatic Urothelial Cancer. *Journal of Clinical Oncology* 2013; **31**(6): 724-30.

20. Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. *J Clin Oncol* 2010; **28**(5): 780-7.

21. Bellmunt J, Orsola A, Leow J, Wiegel T, De Santis M, Horwich A. Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment and follow-up. *Annals of oncology* 2014; **25**(suppl_3): iii40-iii8.

22. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. *J Clin Oncol* 2006; **24**(19): 3187-205.

23. Devlin N, Shah K, Feng Y, Mulhern B, van Hout B. Valuing health-related quality of life: an EQ-5D-5L value set for England. 2016.

24. Bellmunt J, Choueiri TK, Fougeray R, et al. Prognostic factors in patients with advanced transitional cell carcinoma of the urothelial tract experiencing treatment failure with platinum-containing regimens. *J Clin Oncol* 2010; **28**(11): 1850-5.

25. Sonpavde G, Pond GR, Fougeray R, et al. Time from prior chemotherapy enhances prognostic risk grouping in the second-line setting of advanced urothelial carcinoma: a retrospective analysis of pooled, prospective phase 2 trials. *European urology* 2013; **63**(4): 717-23.

26. McCaffrey JA, Hilton S, Mazumdar M, et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. *J Clin Oncol* 1997; **15**(5): 1853-7.

27. Petrylak DP. Immunotherapy: The Wave of the Future in Bladder Cancer? *Clin Genitourin Cancer* 2017; **15**(3S): S3-S17.

28. Petrylak DP, Arkenau H-T, Perez-Gracia JL, et al. A multicohort phase I study of ramucirumab (R) plus pembrolizumab (P): Interim safety and clinical activity in patients with urothelial carcinoma. American Society of Clinical Oncology; 2017.

29. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. *The lancet oncology* 2016; **17**(11): 1497-508.

30. Golan T, Lin C-C, Fu S, et al. PD-010A multi-cohort phase 1 study of ramucirumab plus durvalumab: Preliminary safety and clinical activity in patients with locally advanced and unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma. *Annals of Oncology* 2017; **28**(suppl_3).

31. Herbst R, Martin-Liberal J, Calvo E, et al. 90PDPreviously treated advanced NSCLC cohort from a multi-disease phase 1 study of ramucirumab (R) plus pembrolizumab (P): Efficacy and safety data. *Annals of Oncology* 2017; **28**(suppl_2).