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 PREPARING FOR OFFSHORE RENEWABLE ENERGY DEVELOPMENT IN THE MEDITERRANEAN 

LAURA BRAY 

ABSTRACT 

The development of offshore wind farms and marine renewable energy devices in the 

Mediterranean is central to both national, and international, energy strategies for 

countries bordering the Mediterranean Sea. The ecological impacts of marine 

renewable energy development in the Mediterranean region, although essential for 

policy makers, are as yet unknown. The Northern Adriatic is identified as a plausible 

site for offshore wind farm development. Using the wider region (Adriatic and Northern 

Ionian) as a case study, this thesis examines the likely impact to the marine 

environment if an offshore wind farm is established. Site suitability, based on wind 

speed, bathymetry, and larvae connectivity levels are investigated along with the 

plausibility of the turbines operating as artificial reefs in the area. As offshore wind 

farms may alter the larval connectivity and supply dynamics of benthic populations, a 

connectivity map was constructed to identify areas of high and low connectivity in the 

Adriatic Sea. The Puglia coast of Italy is a likely larval sink, and displays some of the 

highest connectivity within the region, suggesting potential inputs of genetic materials 

from surrounding populations. Considering offshore wind farms could operate as 

artificial reefs, an in-situ pilot project was established to simulate the presence of wind 

turbines. Macroinvertebrates colonized the new substrata within the first few months 

but were lower in abundance when compared to a natural hard substrata environment. 

Time, turbine location, and the material used for turbine construction all affected the 

macro-invertebrate communities. In addition, fish abundances, and diversity were lower 

around the simulated OWF foundations in comparison to a natural hard substrata 

environment, and no increases in fish abundance occurred around the simulated 

turbines when compared to reference sites of soft substrata.  This observation was 

validated with the use of an ecosystem modelling software (Ecopath with Ecosim), 



 6 

which simulated the overall ecosystem level impacts that would occur if 50 offshore 

monopile wind turbines were introduced to the Northern Ionian and colonized by 

macroinvertebrate communities. When compared to the baseline scenario (no 

simulated introduction of an OWF), the introduction of new habitat had no discernible 

impacts to the structure or functioning of the marine ecosystem. Noticeable changes to 

the ecosystem were only apparent if fishing restrictions were enforced in parallel with 

the simulated offshore wind farm; the ecosystem appears to become more structured 

by top down predation. In addition seabirds are also impacted by the reduction of 

fishing discards as a food source. These results are the first attempt to quantify the 

suspected benefits of offshore wind farms operating as de-facto marine protected 

areas. 
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CHAPTER 1 

PREDICTING THE IMPACT OF OFFSHORE WIND FARMS ON MARINE LIFE IN THE 

MEDITERRANEAN SEA: EVIDENCE TO DATE FROM OTHER SYSTEMS  
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1.1 INTRODUCTION  

The global demand for energy supply continues to increase rapidly (Kermeli et al., 

2014), accelerated demographic and economic growth (Esseghir and Haouaoui 

Khouni, 2014), modifications in energy usage as a result of climate change (Cartalis et 

al., 2001), and rising demands for rural electrification in many Middle East and North 

Africa (MENA) countries (Tsikalakis et al., 2011) have dramatically increased the 

energy demands of the Mediterranean region; a trend that is set to continue (Esseghir 

and Haouaoui Khouni, 2014). Consequently, problems concerning the security of 

energy supply, and the impact of global warming and ocean acidification as a result of 

CO2 emissions, have stimulated research, and development, into environmentally 

sustainable energy. This drive is reflected in the Horizons 2020 EU Renewables 

Directive (2009/28/EC), with member states being required to obtain 20% of their 

energy consumption from renewable energy sources by 2020 (EWEA et al., 2014). 

Non-EU Mediterranean countries have also recognized the need to decrease reliance 

on hydrocarbons and most have adopted similar policies (Tsikalakis et al., 2011). 

Europe is seeing a rapid expansion of the wind energy sector on land; however, higher 

mean winds speeds due to a reduction in offshore surface roughness (EEA, 2009), and 

comparatively lower visual and noise pollution than onshore wind farms (Bilgili et al., 

2011), has led to a recent expansion of marine wind farms with further planned 

developments particularly within the North Sea and Baltic regions (> 40GW by 2020) 

(Jacques et al., 2011). Currently, the Mediterranean Sea has no operational offshore 

wind farms (OWFs), yet this is expected imminently, as several regions have been 

earmarked for OWF development (De Decker et al., 2011). 

The environmental effects of OWF construction in the Mediterranean are as yet 

unknown. The Mediterranean Sea has several distinct characteristics including minimal 

tidal ranges, high levels of biodiversity and endemism (Coll et al., 2010), and a high 
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potential for range extension of alien species due to the Suez Canal acting as a 

corridor from the Red Sea (Rilov and Galil, 2009; Zenetos et al., 2012). The region is 

also exposed to a suite of coastal pressures including pollution, busy shipping lanes, 

eutrophication, urban development, habitat degradation, and overfishing (Micheli et al., 

2013). Due to the characteristics of the region (e.g. susceptibility to alien species), 

impacts of existing OWFs may not be directly applicable to the Mediterranean 

environment. In recognizing some of this uncertainty, the aims of this chapter are 

threefold. Firstly, likely areas of importance for OWF construction in the Mediterranean 

are identified. Secondly, the biological effects of existing OWFs in Northern European 

Seas are systematically assessed and considered in relation to the unique conditions 

of the Mediterranean basin, with particular focus on areas identified as suitable wind 

farm locations, and finally, towards the end of the chapter, the scope of the thesis is 

presented based on the knowledge gaps identified by the literature review.  

1.2 Offshore wind farm potential in the Mediterranean 

In order to investigate the likely impacts to marine habitats caused by OWFs, it is 

imperative that candidate offshore wind farm sites are identified to enable site-focused 

analyses. For effective OWF site selection, many parameters should be considered, 

such as distance from shore, bottom morphology and type of sediments, and electrical 

grid infrastructure availability; however the most important criteria are typically wind 

resource availability and bottom depth (Soukissian et al., 2017).  

To identify potential OWF areas throughout the Mediterranean basin, suitable wind 

speeds and bottom depths were identified using a combination of wind model outputs 

and bathymetry data. Since the current fixed-bottom wind turbine technology 

(monopile, gravity-based, jacket and tripod foundations) is limited to water depths up to 

50 m, the depth range considered was 20–50 m, and the lower threshold for the mean 

annual wind speed (measured at 80 m above mean sea level) was set to 5 ms−1 in 



 21 

accordance with European Environment Agency (EEA) recommendations (EEA, 2009). 

Wind speed outputs covering a 10-year period (1995–2004) were obtained from the 

Eta-Skiron model which is a modified version of the non-hydrostatic workstation Eta 

model (Papadopoulos et al., 2011, 2002; Papadopoulos and Katsafados, 2009), and 

combined with bathymetry data from the General Bathymetry Chart of the Oceans 

global relief (Papadopoulos et al., 2011; Uppala et al., 2005). In accordance with the 

above parameters, potential wind energy sites (model grid points 0.10° × 0.10°) were 

identified, and regions with high densities of such point locations were highlighted as 

offshore wind energy hotspots. The Eta-Skiron mesoscale meteorological model is  

used for the dynamical downscaling of the European Centre for Medium-Range 

Weather Forecasts ECMWF Era-40 reanalysis data (Uppala et al., 2005) and the 

ECMWF operational forecasts, with a fine spatial (0.10° × 0.10°) and temporal 

resolution (3 h) for analysing the Mediterranean Sea.  

Many Mediterranean coastlines seem poorly suited to OWF development. Several 

large areas have high concentrations of suitable wind speed and depth locations (e.g. 

exploitable potential), and have quantitatively been identified here as hotspots. These 

‘hotspots’ include the coasts of the Gulf of Lyons, the Northern Adriatic Sea, the entire 

coastal area of the Gulfs of Hammamet and Gabès in Tunisia, off the Nile River Delta, 

and the Gulf of Sidra in Libya (Figure 1.1). They spatially cover the width and breadth 

of the Mediterranean Sea. Here, the potential effects on birds, marine mammals, fish, 

benthos and plankton throughout the Mediterranean are considered and, where 

possible, the possible impacts of OWFs within the specific hotspot regions. 
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1.2 POTENTIAL IMPACTS TO MEDITERRANEAN MARINE ECOSYSTEMS 

Biological effects resulting from the construction, and operation, of offshore wind farms 

were identified in a review of studies in Northern European Seas. Peer reviewed 

literature took precedence, and primary literature was obtained from several databases 

including CAB abstracts, Google Scholar, Web of Science, Science Direct, and 

Scopus. Relevant grey literature was also included in the compilation of information, 

and expert opinions were sought from several research institutes and industry experts 

(references herein). For clarity, impacts were separated via taxa (e.g., birds, marine 

mammals, fish, and benthos). The impacts to each taxon, alongside a brief description 

of the current status in the Mediterranean are provided, and where possible likely 

impacts to the Mediterranean marine environment are described.  

   1.2.1 BIRDS 

Wind farms affect resident and migrating birds, through avoidance behaviours, habitat 

displacement, and possible collision mortality, but such impacts are difficult to monitor 

offshore (Desholm and Kahlert, 2005; Marques et al., 2014). Seabirds that use the 

marine environment for foraging or resting may be displaced by OWFs (Scott et al., 

2014). The Mediterranean has a low diversity of seabirds, but these species tend to be 

long-lived with low fecundity, traits that often make species vulnerable to abrupt 

environmental change (Coll et al., 2010; Scott et al., 2014) (Table 1.1). Fortunately, 

most Mediterranean marine birds are listed as “least concern” on the IUCN red list, 

although the Audouin's gull (Ichthyaetus audouinii) is listed as “near threatened,” the 

Yelkouan shearwater (Puffinus yelkouan) as “vulnerable,” and the Balearic shearwater 

(Puffinus mauretanicus) as “critically endangered” (IUCN 2014). All 16 Mediterranean 

countries have made commitments to protect these species at a national level (UNEP-

MAP, 1999). With the exception of shearwaters (Cooper et al., 2003), Mediterranean 

seabird population sizes appear to be increasing, particularly the yellow-legged gull 

(Bourgeois and Vidal, 2008; Coll et al., 2010; Thibault et al., 1996). These increases 
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have been attributed to increased fish discards and improvements in coastal 

conservation (Donald et al., 2007; Oro, 1996; Oro and Ruiz, 1997), but changes to 

fishery discard practices following the reform of the Common Fisheries Policy may 

reverse this (Bicknell et al., 2013). 

Studies of northern European seabird populations have developed vulnerability indices 

to indicate seabirds most likely to be affected by the presence of OWFs (Bradbury et 

al., 2014; Furness et al., 2013; Garthe and Hüppop, 2004). The North/Baltic Sea-based 

studies assessed 18 of the 32 Mediterranean seabirds. The Wind Farm Sensitivity 

Index obtained from Garthe and Hüppop (2004) (Table 1.1), is calculated an index 

based on 9 factors including flight manoeuvrability; flight altitude; percentage of time 

flying; nocturnal flight activity; sensitivity towards disturbance by ship and helicopter 

traffic; flexibility in habitat use; biogeographical population size; adult survival rate; and 

European threat and conservation status. Both the vulnerability indexes for collision 

impacts, and the vulnerability index for disturbance impacts (Table 1.1), are obtained 

from Furness et al., (2013). The Vulnerability Index for Collision Impacts is calculated 

by combining ranked values of population percentage, manoeuvrability, flying time 

(including nocturnal flights) and conservation importance. Disturbance impact index is 

calculated using ranked scores from disturbance by ship and helicopter traffic, habitat 

flexibility, and conservation importance. Notable exclusions to the list are the endemic 

species of the Mediterranean, which pose a greater conservation risk due to their small 

population sizes (Gallo-Orsi, 2003). Garthe and Hüppop (2004) identify the Black and 

Red-throated diver, the Sandwich tern, and the great Cormorant as the most sensitive 

of the Mediterranean seabirds within their index, and rated the Black-legged kittiwake, 

and the Black-headed gull as the least sensitive when all parameters were combined. 

Advancing this approach, Furness et al. (2013) separated the hazards due to collision 

risk and habitat distribution. They identified the lesser black-backed gull and the 

northern gannet as seabirds sensitive to collision risk, and both the red and black-
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necked divers as most susceptible to long-term habitat displacement (Table 1.1). The 

approach of identifying at risk species via vulnerability indices (see above) is useful for 

the planning stages of OWFs; however, it does not determine if introduction of OWFs 

will have a detectable change in seabird population trends (e.g. collision mortality 

impacting species fecundity). Focus should preferably be given to understanding any 

direct effects OWFs will have on foraging success, e.g., diving behaviour and prey 

characteristics, which in turn will impact reproductive success, juvenile survival, and 

population trends (Scott et al., 2014).  

Threats to Mediterranean bird populations are also directed towards migratory species. 

Worldwide, migratory species are declining in greater numbers than resident 

populations (Wilcove and Wikelski, 2008), and the Mediterranean basin is a major 

transit route for Saharan-Eurasian migration, as evidenced by both the Mediterranean-

Black Sea flyway and the Adriatic flyway (Boere and Stroud, 2006; Denac et al., 2010). 

Many long-distance bird migrants, e.g., raptors and storks, rely on land-lift via thermal 

upwelling for long-distance flight (Alerstam and Pettersson, 1977; Pennycuick, 1972) 

and avoid broad fronts such as the Mediterranean Sea and the Saharan desert 

(Alerstam and Pettersson, 1977), creating bottlenecks at narrow passages of the 

Mediterranean Sea (e.g. Gibraltar, the Straits of Sicily, Messina, and the Belen pass in 

Turkey) (Bijlsma, 1987). 

High collision levels of migrating terrestrial birds (442 individuals in 14 months) at a 

well-lit observing platform during periods of bad weather and poor visibility (Hüppop et 

al., 2006), indicate that wind farms located near the coast, or in prominent migration 

bottlenecks, may pose a significant risk to migrating birds. In addition to collision risks, 

avoidance behaviour of birds may also impact flight path decisions. Turbine avoidance 

tactics apply to both resident seabirds, and long-distance migrants (Plonczkier and 

Simms, 2012; Vanermen et al., 2015). Changes to migratory routes are difficult to 

monitor and may have large, indirect effects on flight energetics (Hüppop et al., 2006). 
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Avoidance behaviour is possible at several scales, which are typically classified as (i) 

micro, (ii) meso, or (iii) macro strategies. Micro-avoidance is the behavioural response 

employed by birds to actively avoid rotating blades. Meso-avoidance is the avoidance 

of the whole rotor swept zone by species that fly at rotor height within the wind farm, 

and macro-avoidance indicates a change of flight path to totally avoid the presence of a 

wind farm (Scottish Government, 2014). Macro-avoidance has been shown in some 

migrating individuals: The common eider Somateria mollissima, for example, exhibited 

avoidance behaviours of a wind turbine resulting in an additional flight path increase of 

ca. 500 m (Masden et al., 2009). The long-term consequences of employing avoidance 

techniques remain unclear (Warwick-Evans, 2016). Effects in migrating birds will be 

highly dependent on the specific life histories of a species, expenditure of avoidance 

strategies, energy reserves, and weather conditions during migratory periods. 

Additionally, until migration routes across the Mediterranean Sea are better 

understood, developers face large difficulties in wind farm spatial planning in the 

region. 
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Table 1.1 Mediterranean seabird sensitivity assessments (Wind farm sensitivity index, 

vulnerability index for collision impacts, and the vulnerability index for disturbance impacts) 

highlighting most and least vulnerable species according to index “-” = Index not applied. List 

obtained by searching the BirdLife International database for species present in the 

Mediterranean (www.birdlife.org).  

Common Name Species Endemic 
Wind Farm 
Sensitivity 
Index 

Vulnerability 
Index for 
Collision 
Impacts 

Vulnerability 
Index for 
Disturbance 
Impacts 

Cory’s Shearwater 
(Mediterranean) 

Calonectris 
diomedea 
diomedea 

Y - - - 

Yelkouan Shearwater 
(Mediterranean) 

Puffinus yelkouan Y - - - 

Balearic Shearwater 
Puffinus 
mauretanicus 

Y - - - 

European Shag 
(Mediterranean) 

Phalacrocorax 
aristotelis 
desmarestii 

Y - 150 14 

Great Cormorant 
Phalacrocorax 
carbo 

N 23.3 - - 

Pygmy Cormorant 
Phalacrocorax 
pygmeus 

N - - - 

Audouin’s gull Larus audouinii N - - - 
Little Gull Hydrcoleus minutus N 12.8 - - 

Lesser black-backed 
gull 

Larus fuscus N 13.8 960 3 

Slender billed gull Larus genei N - - - 

Mediterranean gull 
Larus 
melanocephalus 

N - - - 

Black-headed gull Larus ridibundus N 7.5 - - 

Caspian gull Larus cachinnans N - - - 

Black legged kittiwake Rissa tridactyla N 7.5  - 

Yellow legged gull Larus michahellis N - - - 

Great skua Catharacta skua N - 320 3 

Caspian tern Hydroprogne caspia N - - - 

Common tern Sterna hirundo N 15.0 229 8 

Little tern Sterna albifrons N - 212 10 

Sandwich tern Sterna sandvicensis N 25.0 245 9 

Lesser-crested tern 
Thalasseus 
bengalensis 

N - -  

Razorbill Alca torda N 15.8 32 14 

Atlantic puffin Fratercula arctica N 15.0 27 10 

European Storm petrel 
Hydrobates 
pelagicus  

Y - 91 2 

Northern gannet Morus bassanus N - - - 

Osprey Pandion haliaetus N - - - 

Eleanore’s falcon Falco eleonorae N - - - 

Red throated diver Gavia stellata N 43.3 213 32 

Black throated diver Gavia arctica N 44.0 240 32 

Great crested grebe Podiceps cristatus N 19.3 84 8 

Red-necked grebe Podiceps grisegena N 18.7 - - 

 

In addition to migration routes and bottlenecks, wetlands around the Mediterranean are 

also widely used by seabirds. They provide suitable stopover sites for long-distance 

migrants to feed, rest and molt (Kirby et al., 2008). Some of the main wetlands around 

http://www.birdlife.org/
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the Mediterranean are located within close proximity of potential OWF hotspots, 

particularly the Po Delta in the Northern Adriatic Sea the Nile Delta, the Gabès Delta 

and the Camargue Delta in the Gulf of Lion (Figure 1.2). Due to the bathymetry of the 

Mediterranean, and the steep continental slope of most coastlines, deltas provide 

feasible sites for wind farm constructions. High densities of avian abundances in these 

regions means that OWF resource overlap will be a key factor in Mediterranean marine 

spatial planning in regard to OWFs. 

 

Figure 1.2 Main Mediterranean wetlands and overlapping OWF potential hotspot areas as 

indicated in figure 1.1 (black squares) (adapted from Jourdain et al., 2007). 1. Ebro Delta; 2. 

Camargue Delta; 3. Po Delta; 4. Amvrakikos Gulf; 5. Prespa Basin; 6. Aliakmonas Delta; 7. 

Evros Delta; 8. Gediz Delta; 9. Gӧksu Delta; 10. Seyhan Delta; 11. Nile Delta; 12. Gabès Delta; 

13. El Kala. 

There are several possible measures to reduce any of the potential impacts that wind 

farms will have on Mediterranean avian populations, e.g., shutdown orders and 

changes to the level of light being emitted by offshore structures to reduce phototaxis 

towards them (Poot et al., 2008; Saidur et al., 2011). However, it is essential that OWF 

construction be preceded by a thorough siting-process to avoid increased risk to 

sensitive areas (migration bottlenecks), and species.  

 

 



 29 

   1.2.2 MARINE MAMMALS 

The Mediterranean Sea is home to both resident and visiting marine mammals, nearly 

all of which have shown a decrease in abundance in recent years, with the exception of 

visiting humpback whales whose numbers have appeared to increase (Coll et al., 2010; 

Frantzis et al., 2004). At a basin level, total population sizes are difficult to assess with 

several species being classified as “data deficient” by the IUCN red list (IUCN 2014) 

(Table 1.2). Nonetheless, certain regions have been identified as important habitats for 

marine mammals. Monitoring programs show a high percentage of fin whale sightings 

within the Ligurian Sea in comparison with other regions of the Mediterranean Sea 

(Notarbartolo-Di-Sciara et al., 2003). The Alborean Sea has been shown to be an 

important area for long-finned pilot whale populations (Cañadas and Sagarminaga, 

2000), and there is also evidence that due to the east-west basin migration of Sperm 

whales, the Strait of Sicily and the Strait of Messina, are critical areas which enable 

inter-basin migration (Frantzis et al., 2011). Despite multi-year surveys, long-finned 

pilot whale populations are apparently low  in abundance in other regions of the 

western Mediterranean Sea, with few sightings recorded over around the central 

Mediterranean Sea, the Balearic Sea, the Provençal Basin, and the Ligurian Sea (see 

Verborgh et al., 2016 for a review). 

In regard to OWF development and site overlap, several species of marine mammals 

frequently use the coastal marine environment earmarked for potential developments 

including the critically endangered Mediterranean monk seal, the common Bottlenose 

dolphin, and visiting Humpback whales (Bearzi et al., 2009; Dendrinos et al., 2008; 

Frantzis et al., 2004). An assessment of the total number of species shows that the 

Gulf of Lion OWF hotspot displays the highest densities of resident marine mammals 

and as such can be considered as the most sensitive in regard to OWF development (if 

it is assumed that individual species are sensitive). The Gulfs of Hammamet and 
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Gabès, the Gulf of Sidra, and the Nile Delta hotspots appear to support low populations 

of resident marine mammals (Figure 1.3). 

Table 1.2 List of resident Mediterranean marine mammals, their current population trends, IUCN 

status and important habitats noted within the Mediterranean. 

Species 
Mediterranean 

Population 
trend (IUCN) 

IUCN 
Conservation 

Status 
Important regions Source 

Tursiops truncatus Declining Vulnerable 
Coastal waters until 
the continental shelf 

(Bearzi et al., 
2009) 

Ziphius cavirostris Unknown Data Deficient Offshore regions (IUCN, 2012) 

Balaenoptera 
physalus 

Declining Vulnerable 
Corso-Ligurian Basin 

 

(Notarbartolo-di-
Sciara et al., 2008) 

Globicephala 
melas 

Unknown Data Deficient Alboran Sea 
(Cañadas and 
Sagarminaga, 

2000) 

Grampus griseus Unknown Data Deficient 
Continental shelf 

waters 
(Bearzi et al., 

2011) 

Delphinus delphis Declining Endangered 

Alboran Sea, Gulf of 
Vera, Sicily channel, 

South-eastern 
Tyrrhenian Sea, 

Aegean Sea, Eastern-
Ionian Sea 

(Bearzi et al., 
2003) 

Physter 
macrocephalus 

Declining Endangered 
Continental shelf 
waters, offshore 

regions 

(Reeves and 
Notarbartolo di 
Sciara, 2006) 

Stenella 
coeruleoalba 

Declining Vulnerable 
Alboran Sea, Ligurian 

Sea 
(Forcada et al., 

1994) 

Monachus 
monachus 

 

Declining 
Critically 

endangered 

Archipelago of 
Madeira, Area of 

Cabo Blanco, Ionian 
Sea, Aegean Sea 

(Dendrinos et al., 
2008) 
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Figure 1.3 Species number of all resident marine mammals ranges in the Mediterranean (n = 9) 

with overlay of OWF hotspots as defined by figure 1.1 (Black squares) (Image adapted from Coll 

et al. 2010). 

Through monitoring programs and generalised impact assessments for marine noise, 

noise from pile driving during construction has been identified as the most important 

adverse effect of OWF’s for marine mammals (Bergström et al., 2014). Marine 

mammals are heavily reliant on sound for foraging, orientation and communication and 

are thus susceptible to negative effects (i.e. sound masking, temporary hearing 

threshold shift, or in more extreme cases permanent threshold shift) of sound 

generation (Madsen et al., 2006). Depending on the hearing range of a species, pile 

driven construction has the ability to produce sustained hearing impairment, although 

for most species, hearing thresholds and detection levels of noise from wind 

turbines are as yet undetermined (Bergström et al., 2014). A study measuring the 

propagation of sound during the construction phase of an offshore site in the NE of 

Scotland indicated Bottlenose dolphins would suffer auditory injury within a 100 m 

range of the site and that they exhibit behavioural disturbance up to 50 km from pile 

driving activity (Bailey et al., 2010a). With the use of passive acoustic listening devices, 

acoustic monitoring during the construction and operational phases of the Nysted wind 

farm indicated a possible change in habitat use by the harbour porpoise (Phocoena 

phocoena), and a reduction of echolocation activity (Carstensen et al., 2006). 

Furthermore, a long-term study at the same wind farm (10 years) also showed a 

decline from baseline levels of echolocation signals (Teilmann and Carstensen, 2012). 
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In contrast, a similar study at the Dutch wind farm, Egmond aan Zee, measured 

significantly higher acoustic activity inside the farm in comparison with a control site 

(Scheidat et al., 2011), and this effect was mirrored in a study of harbour seal (Phoca 

vitulina) foraging which indicated an increase in habitat utilization (tag duration: 25–161 

days) at two operational wind farms (Alpha Ventus and Sheringham Shoal) (Russell et 

al., 2014). The repeated grid-like movements indicated for the first time, successful 

foraging behaviour by an apex predator within an OWF, indicating evidence of 

acclimatization. The apparent differences between probable habitat uses may be due 

to local-scale ecological differences e.g. local population habituation of wind farms, 

inter-species differences, or differences in construction type of wind farms (Scheidat et 

al., 2011). Due to critical population levels of the Mediterranean monk seal (Monachus 

monachus) in the Mediterranean (estimated as >500 mature individuals, 

www.iucnredlist.org), and the equivocal evidence from the literature, the observed 

increases in seal foraging behaviour around wind farms should be cautiously 

interpreted with regards to the Mediterranean monk seal (Dendrinos et al., 2008; 

Russell et al., 2014). 

In regard to the impacts of noise levels in the Mediterranean, the semi-enclosed 

Mediterranean also suffers from some of the highest volume of shipping routes in the 

world (Abdulla, 2008) (Figure 1.4). Increased motorized vessel shipping during the 

operational phase of wind farms also increases noise levels to the area, and impacts 

marine mammals (Madsen et al., 2006). Generally speaking, underwater noise from 

wind farms is influenced by water depth, wind speed, turbine type, wind farm size, and 

substratum type (Bailey et al., 2010b). High levels of existing background noise from 

maritime traffic in the Mediterranean, heightens the risk of cumulative effects which can 

mask the communicative abilities of marine mammals (David, 2006). By assessing the 

spatial density of traffic routes from 2013, it is clear that the OWF hotspots of the Gulf 

of Lion, the North Adriatic Sea, and the Nile Delta show an already high density of 
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vessels within the area (up to 140 m vessels km−2 day−1); thus, high levels of 

background noise can be expected in these regions. The Gulf of Hammamet and 

Gabès, and the Gulf of Sidra suggest much lower levels of background noise stress. 

The behaviour of noise propagation in the marine environment, and differing 

audiograms of marine mammal species mean that defining thresholds in which ambient 

noise impacts marine mammals is difficult, however it is clear that the use of 

underwater noise propagation models by policy makers will be required to help 

understand the combined influence of OWF construction, operation, and maintenance 

shipping, with current levels of background noise at site-specific locations.  

 

Figure 1.4 Combined density of 2013 maritime routes of all commercial vessels obtained via 

AIS vessel monitoring with overlay of OWF hotspots (black squares) (source: 

www.marinetraffic.com). 

   1.2.3 FISH  

Throughout the basin, many Mediterranean coastal communities depend on fishing-

related activities, particularly artisanal fishing (Tzanatos et al., 2006). Of the 513 

species, and 6 subspecies of fish in the Mediterranean, 8% are currently classified as 

threatened by the IUCN (Malak et al., 2011), and there has been an alarming decline of 

Mediterranean fish stocks over the last two decades with around a 40% decrease in 

biomass (Vasilakopoulos et al., 2014). 
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The principal impacts to fish populations caused by wind farms are noise, electro-

magnetic fields, and novel habitat gain (Gill and Taylor, 2001; Wahlberg and 

Westerberg, 2005; Wilhelmsson and Langhamer, 2014). Recent studies have shown 

that the noise generated by pile-driving during the construction phase of OWF farms 

can generate acute stress responses in juvenile fish species (Debusschere et al., 

2016). Although the responses were recorded as acute, it is possible that repeated and 

prolonged exposure in the wild may lead to a decrease in fitness (e.g. fecundity). 

During the operational stages of OWFs, evidence indicates some fish permanently 

avoid wind turbines at a limited range of up to 4 m under high wind speeds (13 ms−1), 

and that their ability to communicate and utilize orientation signals is often masked 

(Bailey et al., 2010b). Additionally, increased background noise and seabed vibration 

from operational OWFs and associated marine traffic also influences fish detection 

distances, which affects both foraging and communication behaviours (Sigray and 

Andersson, 2011; Wahlberg and Westerberg, 2005) (Figure 1.4). Greater numbers of 

experimental studies on individual fish species are needed before the impact of 

anthropogenic noise on fish can be effectively considered in environmental impact 

assessments of offshore wind farms (Radford et al., 2014). 

Electromagnetic fields (EMF) occur around intra-turbine, array-to-transformer and 

transformer-to-shore cables. The electro-sensitivity of many marine species is 

unknown, and there is a dearth of peer-reviewed information regarding the effects of 

electro-magnetic fields. Elasmobranchs are thought to be especially sensitive, due to 

their electro-sensory organs (Tricas and Gill, 2011). Several shark and ray species 

react to wind farm cables, most commonly with avoidance behaviour, as is the case 

with the small-spotted catshark (Scyliorhinus canicula) (Gill and Taylor, 2001), but 

whether this has any affect at the population level is unknown. Magnetic fields could 

influence geomagnetic patterns used by some migratory marine species for navigation 

(Öhman et al., 2007), and reports also show that electro-magnetic fields from OWFs 
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may affect fish migration. Gill et al. (2009) identified eight migratory fish species 

sensitive to electromagnetic fields, including the European eel Anguilla anguilla, the 

Atlantic salmon Salmo salar and the Yellowfin tuna Thunnus albacares. There is limited 

in-situ data describing the impact of EMF on fish, but of those studies, several indicated 

reduced swimming speeds (Öhman et al., 2007; Westerberg and Lagenfelt, 2008). 

A direct influence to Mediterranean fish populations from the presence of OWFs is the 

addition of novel, vertical habitat, in an area previously void of hard substratum. 

Supporters of marine renewable energy developments have often cited the potential for 

artificial structures to function as fish aggregation devices (FADs) similar to artificial 

reefs (Ashley et al., 2014). Through colonization of the novel, hard substrata by 

macrofauna and algal species, juveniles, and small herbivorous fish species are 

attracted to the artificial substratum, which in turn attracts individuals of higher trophic 

levels (Figure 1.5).  

 

Figure 1.5 Schematic diagram of the FAD concept. Not to scale. Produced by author. 

Several studies have found greater abundances of certain fish within OWFs than in 

comparison to surrounding areas (i.e. Atlantic cod Gadus morhua, pouting Trisopterus 

luscus, and several species of gobies), causing possible spill-over effects to the 

adjacent areas  (Krone et al., 2013; Reubens et al., 2013; Wilhelmsson et al., 2006a). 

Potentially the new habitat provides increased foraging for both primary and secondary 
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food resources, and protection grounds from currents to reduce energy use in juveniles 

or smaller species (Wilson and Elliott, 2009).  

Offshore structures have been shown to be some of the most productive habitats for 

fish in the marine environment (Claisse et al., 2014) however, there is considerable 

debate between ecologists as to whether changes in species biomass within an OWF 

area will be due to production of new biomass from increased food availability, or 

attraction of existing individuals from outside the system (Reubens et al., 2014a). 

Stomach content analysis and energy profiling have shown that OWFs are suitable 

feeding grounds for both Atlantic cod (Gadus) and pouting species (Trisopterus) (De 

Troch et al., 2013; Reubens et al., 2014b). Juvenile recruitment of Atlantic cod has also 

been observed at wind farms in the Belgian part of the North Sea (Reubens et al., 

2014b). However changes in prey densities may be masked by increased predation 

rates (Bergström et al., 2013; Russell et al., 2014), and will potentially strengthen 

predator avoidance behaviours such as diel migration (Reubens et al., 2014b), making 

the disentanglement of attraction-production dynamics difficult and likely only possible 

with extensive, long-term (>10 year), data sets (Gill and Taylor, 2001). 

It is difficult to state the effects OWF implementation will have on fish communities 

based on the findings of northern European studies as the majority of existing 

monitoring programs focus on species that are not generally present in Mediterranean 

waters (e.g., Atlantic cod), and may have differences in life histories and habitat use 

(Bergström et al., 2013; Reubens et al., 2013; Reubens et al., 2014a).  However, the 

possibility for creating de facto marine protected areas (MPAs) due to fishing 

restrictions imposed within OWFs is an interesting aspect in the developments of 

OWFs in the Mediterranean Sea, which has been successfully utilized at offshore 

platforms in the North Sea (Duineveld et al., 2007). Monitoring of fishing activities in UK 

wind farms indicates a decrease in both trawling and static fishing at the sites largely 

due to impracticality (Ashley, 2014; Ashley et al., 2014; Inger et al., 2009). Fishermen 

javascript:;
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are less willing to drag their trawling gear within turbines as they risk entanglement. IN 

addition, there is a potential to monitor fishing activity of static and recreational 

fishermen by using fixed cameras to aid in fishing restriction compliance. It is clear that 

well protected MPAs in the Mediterranean result in significantly higher biomass than 

those with no or minimal protection (Wilhelmsson et al., 2006a), although many 

Mediterranean MPAs lack adequate protection (Montefalcone et al., 2009). 

Enforcement of fishing restrictions in the Mediterranean is a difficult issue, but the 

benefit associated with the introduction of fixed structures is that fishing regulations 

may be easier to apply.  

   1.2.4 BENTHIC COMMUNITIES 

The Mediterranean harbours many important benthic habitats including vermetid reefs, 

coralligenic concentrations, shallow sublittoral rock, seamounts, deep-sea coral reefs, 

and abyssal plains (Danovaro et al., 2010; Mo et al., 2012). The shallow sub-littoral 

sediment is a particularly valuable habitat for the Mediterranean benthos, as it is the 

preferred habitat of the endemic seagrass Posidonia oceanica. Posidonia beds are 

listed as a priority natural habitat under Annex 1 of the EC Habitats Directive 

(92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora), due 

to their endemism, high productivity, and provision of ecosystem services (Jackson et 

al., 2015; Vassallo et al., 2013). Favourable substratum conditions for OWF 

construction throughout Europe is typically soft sediment areas, the same habitat most 

suitable for Posidonia oceanica. Thus as both a habitat, and a species, it is at 

significant risk from several direct physical pressures that include increased 

sedimentation during construction, and changes in hydrographic regimes during 

operation of OWFs (Vanhellemont and Ruddick, 2014). Any plans for OWFs in the 

Mediterranean Sea will have to be carefully designed around the distribution of 

Posidonia oceanica to ensure the correct conservation practices for this priority 

species. 
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Additionally, changes in hydrographic regimes during operation of OWFs can cause 

small-scale shifts in macro-benthic assemblages (Coates et al., 2014; De Backer et al., 

2014). Indeed, studies have shown negative correlations between the distance from a 

turbine, and sediment grain sizes, in the Belgian part of the North Sea (Coates et al., 

2014). In the same study, changes in organic matter and a shift in species 

assemblages were also noted. Most likely due to scouring at the base of the turbine 

and re-suspension of sediments, the closer to the turbine the soft sediment community 

samples were taken, the greater the increase in macrobenthic density and diversity, 

and the larger the grain size (Coates et al., 2014). 

During the operational phase of an offshore wind farm, the addition of hard substratum 

to the area has a large effect on the benthic environment. Recruitment and colonization 

of artificial habitats provided by turbine foundations, increases the structural complexity 

and productivity of an environment previously low in in-fauna diversity and density 

(Birklund and Petersen, 2004; Kerckhof et al., 2009, 2010, 2010; Langhamer, 2012; 

Lindeboom et al., 2011; Maar et al., 2009; Shi et al., 2012; Van Hoey et al., 2004; 

Wilhelmsson and Malm, 2008), meaning that benthic ecosystem dynamics are 

modified, and a new local ecosystem is created. 

Research at an offshore research platform in the German Bight indicated that 35 times 

more macro-zoobenthos biomass was associated with the additional hard substratum 

than the equivalent area of soft benthic sediment (Krone et al., 2013). Although the 

increase in macro-zoobenthos biomass may increase carbon through-flow within the 

benthic ecosystem, in many cases, species assemblages associated with artificial 

structures differ from the environment they replaced, and the long-term effect of 

change in ecosystem structure and functioning associated with OWF developments is 

unknown.  



 39 

Species assemblage is influenced by many parameters including material and texture 

of offshore structures, larval supply, oceanographic conditions, temperature, salinity, 

and water depth (Knights et al., 2012; Langhamer, 2012). The number of defining 

parameters that vary spatially (and temporally) in influencing colonization of offshore 

artificial structures (e.g. larval supply), highlights the need for extensive area-specific 

research, long-tem in-situ experiments, and ecosystem impact modelling to fully 

understand regional implications of OWFs. To date only one study has assessed the 

changes to ecosystem structure and functioning due an increase in hard substrata 

biomass caused by OWF installation (Raoux et al., 2017). It is important to understand 

whether OWF installation substantiates functional changes at an ecosystem level, as 

opposed to impacts to individual species. Failure to address ecosystem impacts in a 

holistic way could impede efforts to reduce any negative impacts (i.e. decreases in 

biodiversity) that OWF’s could have on an already strained marine ecosystem. 

With regard to the Mediterranean, work into epibenthic colonization has focused on 

concrete artificial reefs (Fabi, 2002; Fabi and Fiorentini, 1994; Sinis et al., 2000), or 

anthropogenic structures (Airoldi et al., 2015; Airoldi and Bulleri, 2011; Bulleri and 

Airoldi, 2005; Ferrario et al., 2016; Ido and Shimrit, 2015; Ordóñez et al., 2013; Perkol-

Finkel et al., 2012). Only two studies have investigated an offshore steel structure in 

the Mediterranean (Goren, 1980; Kocak et al., 1999) (Figure 1.6). Dominating 

speciesof epibenthic assemblages varied depending on the location and duration of the 

monitoring program, which ranged from 11 months to 20 years. Most studies note early 

colonization by hydrozoans, bryozoans, and serpulidae (Fabi, 2002; Goren, 1980; 

Kocak et al., 1999; Moreno et al., 1994; Relini et al., 2000). In several studies, this was 

succeeded by the establishment and dominance of the commercially farmed Mytilus 

galloprovincialis (Airoldi and Bulleri, 2011; Fabi, 2002; Moreno et al., 1994; Relini et al., 

2000), however several artificial structures showed no such dominance (Badalamenti, 

2002; Goren, 1980; Ponti et al., 2015; Relini et al., 2000, 1994). Multiple drivers (food 



 40 

availability, environmental factors) affect regional community structure with the most 

significant being larval supply, which is largely determined by small-scale 

hydrodynamics and settlement cues (Pineda et al., 2010). Temporal changes in larval 

supply may impact species turn-over rates and β-diversity through time, as resident 

species may be lost or replaced, meaning that long-term monitoring of the benthic 

community structure on artificial substrates is essential to identify shifts in composition 

through time. The only long-term data set on a concrete artificial reef (20 years) 

reported five distinct phases of species assemblage: dominance of pioneer species, 

mussel dominance, mussel regression, mussel absence, and finally dominance of 

bryozoan bio-constructions (Nicoletti et al., 2007). Additionally, differences in the 

material used for offshore structures may have a significant effect on community 

composition. The surface roughness of a material has been shown to influence 

macrobenthic community composition (Anderson and Underwood, 1994; Berntsson et 

al., 2000; Cacabelos et al., 2016); the two Mediterranean offshore steel structures were 

both dominated by bivalves after 52 and 70 months (Relini et al.,  1994, 2000). Due to 

regional differences in larval supply which impacts benthic colonization communities, 

regional pilot studies and detailed hydrodynamic analyses are essential for 

understanding the structure of benthic communities expected to colonize OWFs.  
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Figure 1.6 Map showing the spatial distribution of in-situ, shallow water artificial reef bio-fouling 

studies on different materials in the Mediterranean. Not including bio-fouling studies on coastal 

defences (i.e. breakwaters) or marinas. 

Finally, the susceptibility of the Mediterranean Sea to non-indigenous species due to 

the connection with the Red Sea via the Suez canal (Galil et al., 2014), and the 

colonization of artificial substrata in the Mediterranean by alien species (Airoldi and 

Bulleri, 2011, Badalamenti, 2002; Çinar, 2006) mean that wind farms may also act as 

benthic “stepping stones” (Adams et al., 2014). The presence of available hard 

substrata from wind turbines for the recruitment and settlement of larvae has the 

potential to extend larval connectivity across biogeographic boundaries (Adams et al., 

2014). Wind turbines could facilitate range extension of alien species within the 

Mediterranean marine environment, which in turn may potentially reduce the β-diversity 

of the basin by encouraging the replacement of local species over time (Adams et al., 

2014; Langhamer, 2012). Considering the importance of this issue for the 

Mediterranean, identifying areas where benthic connectivity is likely to be high 

particularly in regions identified as offshore wind farm hotspots (Figure 1.1), is a priority 

concern. 

1.5 SCOPE OF THESIS 

With the identification of the five Mediterranean offshore wind farm hotspots (the Gulf of 

Lion, the North Adriatic Sea, the Gulfs of Hammamet and Gabès, the Gulf of Sidra, and 

the Nile Delta) (Figure 1.1), there is an ever-growing need to assess the biological 

costs and benefits of OWFs in the region. It is clear from the literature review that there 

are many uncertainties surrounding the impacts that building offshore wind turbines in 

the Mediterranean will have. As one of the most abrupt alterations to the Mediterranean 

ecosystem is likely to be the addition of hard substratum to a dominantly soft substrata 

environment, the scope of the thesis will thus focus on the likely impact that offshore 

wind farm installation will have on benthic communities in the region. 
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One of the areas identified as an OWF ‘hotspot’ by the feasibility study due to its 

relatively high wind speeds and shallow depths, is the Northern Adriatic. Using the 

wider area (Adriatic/Northern Ionian), as a case study for likely OWF development, the 

work will address several key questions: 

1. What will be the likely community structure of macrobenthic organisms and 

demersal fish at wind turbines in the Adriatic – Ionian region?  

2. Considering the likelihood of offshore structures operating as stepping stones 

for benthic communities, is it possible to identify areas of high or low 

connectivity for benthic communities, to help inform marine spatial planners with 

regards to the licensing of offshore marine renewable energy development? 

3. Finally, what are the potential ecosystem-level impacts of building offshore 

wind farms in this region of the Mediterranean? 

The work will take a holistic approach in addressing these questions. Chapters 2 and 3 

will use results obtained from an in-situ pilot project designed to address the habitat 

use of simulated OWF pillars by macrobenthic organisms and demersal fish species. 

Chapter 4 will use a coupled bio-physical model to track the simulated release of 

benthic larvae from the coastal regions of the Adriatic and Northern Ionian to identify 

areas of both high and low connectivity. Chapter 5 will use ecosystem-modelling 

software to describe the likely long-term ecosystem impacts of offshore wind farm 

construction in the Adriatic. Chapter 6 will present the main conclusions from the study, 

and consider whether the aims of the thesis have been adequately addressed. The 

work is intended to provide valuable horizon-scanning recommendations to ecologists 

and marine spatial planners to best ensure that, where possible, disruptions to the 

marine environment from the installation of offshore wind farms are limited.  
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CHAPTER 2 

INVESTIGATING THE LIKELIHOOD OF OFFSHORE WIND TURBINES OPERATING AS 

ARTIFICIAL REEFS FOR BENTHIC INVERTEBRATES IN THE MEDITERRANEAN   
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2.1 INTRODUCTION  

With the identification of Mediterranean offshore wind energy ‘hotspots’ (see Chapter 

1), it is important to understand the impact that large-scale renewable energy 

developments will have on the marine environment. As aforementioned, one of the 

most significant impacts associated with the construction of renewable marine energy 

devices for benthic marine communities is the addition of novel artificial substratum to 

soft substrata environments (Inger et al., 2009) (Chapter 1). Artificial structures in the 

form of offshore wind turbines will certainly be colonized by benthic organisms. 

Whether or not they will differ from natural benthic community compositions remains to 

be seen, however, evidence generally indicates that artificial and natural communities 

will differ (Wilhelmsson and Malm, 2008). In addition, colonization of the artificial 

substrata may facilitate the creation of an artificial reef-like environment, which if 

successful (i.e. ability to support increased biomass and diversity levels of higher 

trophic levels) has the potential to benefit both environmental and commercial interests  

(Wilhelmsson et al., 2006). Possible attraction of mobile predators towards enhanced 

feeding grounds, or the provision of shelter by artificial structures may increase 

biodiversity and thus health of the ecosystem (Westerberg et al., 2013).  

In response to the uncertainty surrounding the biological impacts of OWF construction 

in the Mediterranean, a pilot project was designed as port of the European FP7 

program CoCoNET (Towards COast to COast NETworks of marine protected areas, 

coupled with sea-based wind energy potential) (Grant no. 287844). The pilot project 

was designed to monitor, and estimate, the types of benthic communities that would 

inhabit a renewable energy device foundation, in an area earmarked for renewable 

energy development. Operating at the spatial scale of a pilot project, it aimed to 

interpret whether an artificial reef-like environment could be created by Mediterranean 

OWFs, by investigating the potential colonization of sessile organisms and their 

associated mobile fauna. This chapter describes the methodology used for the pilot 
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project, and examines the succession of epibenthic organisms on different types of 

artificial surfaces used for offshore marine renewable energy devices.  

2.2 METHODS 

   2.2.1 STUDY SITE OF MEDITERRANEAN PILOT SCHEME 

The area selected for the pilot project was the Diapontia Islands in the North Ionian 

Sea (Figure 2.1) (39.7666, 19.4950). The region is relatively unstudied and pre-

sampling cruises were used to characterize the general area. Hydrography, habitat 

distributions, granulometry of sediment, and bio-chemical properties of the water 

column were measured to identify the possibility of use as a study area. These 

campaigns took place in March 2013, July 2013, and November 2013. The area was 

selected for its suitable water depths and relatively high wind speeds; furthermore it 

has been subject to the interest of offshore energy developers in the past because of 

these characteristics (Spiropoulou et al., 2015). 

 

General habitat maps were obtained by divers conducting visual censuses at locations 

within the sampling area throughout the pre-sampling campaigns. At shallow depths (0 

– 10 m), the area is characterized by rocky outcrops that support infra-littoral algal 

communities and encrusting algae (e.g. Cystoseira sp., coralligenous sp. Dictyopteris 

sp.,). At deeper depths (20 m - 30 m), the area is characterized by widespread 

Posidonia oceanica meadows extending up to depths of 35 m, extensive areas of 

coarse sands and fine gravels mixed by the waves, and small rocky outcrops (Figure 

2.2).  
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Figure 2.1 Location of in-situ experimental units in red (S1, S2 and S3) along the coast of 

Mathraki Island (Diapontia Islands) in the vicinity of Corfu, Greece. For reference, the location of 

the natural rocky outcrop in green is included, and three bare substratum control sites in blue 

(Chapter 3). 

A portable CTD (Conductivity, Temperature, Depths) unit (Seabird Electronics SBE19), 

providing in-situ depth profiles of temperature and salinity in the water column was 

used at each location of the in-situ experimental units. In March and July of 2013, the 

water column was homogenized (Figure 2.3), aside from a small salinity decrease in 

the upper 2-5 m because of possible local contributions from rainwater run-off. The 

average water temperature ranged from 15.5o C in winter (March) and 22.1o C in 

summer (July 2014).  Salinities ranged from 38.75 to 39. Lower salinities (38.4 - 38.5) 

were occasionally observed in the upper part of the water column.  
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Figure 2.2 A) Photo transect of vertical hard substrata at 15 m depth covered in Padina 

pavonica, Halopteris filicina, and Haloptilon virgatum. Photograph taken by Emanuela 

Voutsinas. B) Photo transect of grazed facies at 5 m depth with encrusting algae, Cystoseira sp. 

and sea urchins. Photograph taken by Emanuella Voutsinas. C) P. oceanica meadows, and 

biocenecis of vermitids at 20 m depth. Photograph taken by Yiannis Issaris, D) Soft substrata 

location of experimental units at 20 m depth (C1, Figure 2.1). Photograph taken by Laura Bray. 

 

Figure 2.3 Indicative hydrographic (CTD) profiles of temperature in degrees Celsius and salinity  

during the sampling surveys (39.766 N, 19.495 E) of A = March, B = July, C = November 2013. 

For dissolved oxygen (DO) and nutrients, seawater samples were collected at fixed 

depths (surface, 10, 20, 50 m) during the March 2013 survey using a messenger-

activated Niskin bottle (5 litres). Results were averaged to produce a value for the 

whole water column (Table 2.1). Seawater samples for nutrients analysis were 
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collected in 100 mL polyethylene bottles, “aged” with HCl 10%, and then frozen (-20 

C) until required for analysis (nitrate, nitrite and silicate) in the laboratory 

(BRAN+LUEBBE III autoanalyser). DO measurements were performed on board, 

immediately after sampling, using the Winkler method (Carritt and Carpenter, 1960). 

The area is classified as oligiotrophic for nitrates and ammonium salts, and 

mesotrophic for phosphates (Table 2.1). 

Table 2.1 Average values of dissolved oxygen and nutrients at all locations (Figure 2.1) within 

the study site 

Parameter Average 
Standard 
deviation 

Dissolved 
Oxygen 

7.08mg / L 0.20 

Phosphates 0.02 ĩmol / L 0.01 
Nitrate 0.15 ĩmol / L 0.08 
Nitrite 0.06 ĩmol / L 0.02 
Silicates 0.91 ĩmol / L 0.27 
Ammonium 0.20 ĩmol / L 0.10 

 

Additionally, during November 2013 and March 2014, a 300-Khz Acoustic Doppler 

Current Profiler (ADCP) was used to obtain snapshot surveys of the average water 

column current flow data, and to determine whether there is a prevailing current regime 

in the area. As sound (pings) transmitted from the ADCP bounces off particles in the 

water column and is re-received by the ADCP, the shift in frequency (Doppler Effect) 

can be interpolated to provide an estimation of water currents throughout the water 

column. Multiple measurements can provide an idea of circulation patterns within an 

area. Figure 2.4 shows a snapshot representation of the circulation in those two 

months. In November 2013, the circulation is generally westward with a branch flowing 

to the north between the islands of Erikousa and Othonoi. The flow seems to 

decelerate to the west of Erikousa, when it gets over the shallow area between the 

three Diapontia islands. Typically current speeds are between 10 and 20 cm sec-1.  In 
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March 2014, the flow is to the north, with some divergence to the east. Speeds are 

again between 10 and 20 cm sec-1.  

 

Figure 2.4 Flow fields at 15 meters during November 2013 (left) and March 2014 (right). Black 

arrows are the optimally estimated currents via objective interpolation based on direct current 

measurements indicated by the red sticks.  In the lower left of each panel are the scaling 

references for a westerly flow at a speed of 10 cm/sec.  Black thick lines with arrows at the end 

show a schematic structure of the circulation. Green circle indicates location of experimental 

set-up. 

  2.2.2 EXPERIMENTAL SETUP 

To simulate the presence of an offshore wind turbine, vertical stanchions were 

deployed at three sites in the area. Locations of soft sediment substratum with depths 

of approximately 20 m were chosen for artificial structure deployment. The stanchions 

(S1, S2, and S3) were deployed in a line, 2 km parallel to Mathraki Island, with each 

stanchion being approximately 200 m apart (Figure 2.1). A nearby area of natural rocky 

outcrop (R) at 20 m depth, surrounded by soft substrata was also selected as a 

comparison site (see below). The natural rocky outcrop was located approximately 

200m away from the nearest artificial unit (Figure 2.1). The units were deployed via 
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winch and assisting divers from R/V Philia (Hellenic Centre for Marine Research) 

during March 2014. 

Several factors were taken into consideration during construction, chiefly:  the material, 

orientation, substrata type, and exposure period. A cylindrical polyethylene water 

storage tank (height 205 cm, diameter 95 cm), was encased in a PVC coated, 

galvanized steel, wire mesh. Holes were drilled at the base of the units, and steel rods 

inserted in a perpendicular design, and terminally welded onto steel stabilizing panels 

(50 cm x 50 cm) (Figure 2.5). Removable panels (n = 192) of stainless steel or 

concrete, two commonly used materials in marine renewable energy devices and their 

foundations, were cut to a size of 17 cm x 20 cm and used as artificial settlement 

surfaces. The panels were attached with cable ties to the wire mesh into subdivisions 

around the unit. These subdivisions comprised of 4 different orientations (N, S, E, and 

W), and two different heights with respect to the seabed (0 - 0.5 m (low), and 1.5 m - 2 

m (high)). Within each subdivision, the positions of steel or concrete panels in relation 

to each other were randomly assigned. Within each unit, 300 kg of steel mooring 

chains were used as ballast weight.  
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Figure 2.5 Schematic diagram of one of the stanchions that hold the artificial substrata panels. 

Total height is 205 cm and diameter of plastic tank 95 cm. Pink lines indicate how the plates 

were divided into areas (High/Low, North/South/East/West). 

Pre-immersion, both steel and concrete panels were kept in fresh water renewed daily, 

for 3 days to remove any lixiviated substances that could interfere with settlement 

(Guy-Haim et al., 2015). Four replicates for each material (steel and concrete), 

orientation (N, S, E, and W), and for each height above the sediment (high and low) 

were attached to each experimental unit. A replicate panel was removed every 

sampling period to examine the species that had colonised the panel in the laboratory. 

To accommodate for four sampling campaigns; a total of 192 panels were deployed. 

Initially the pilot project was intended to run for a period of 18 months, with samples 

being recovered after 3 months (July 2014), 6 months (September 2014), 12 months 

(March 2015) and 19 months (October 2015).  Unfortunately, destruction of the units 

before March 2015 by either high wind speeds or human interferences meant the 
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premature discontinuation of sampling and monitoring of impacts (Figure 2.6). 

Nevertheless the experiment provided information regarding the initial 6-month 

settlement (March – September) patterns of bio-fouling organisms on the artificial 

surfaces.  

 

Figure 2.6 Photographic timeline of in-situ artificial units including March 2015 where the 

destruction of the units was discovered. 

To determine the colonization patterns of the artificial substratum, the removable 

panels were carefully transferred in-situ to a polyethylene bag and taken to the surface. 

Photographs were taken of delicate species to aid taxonomic identification. Bio-fouling 

organisms were scraped from the surface, stored in alcohol, and identified to the 

highest possible taxonomical level in the laboratory (Zoobenthic laboratory, Hellenic 

Centre for Marine Research). After identification, species were grouped into 

polychaetes, crustacean, molluscs, and remaining taxa (e.g. bryozoans, tunicates), and 

the wet weight of each taxa calculated (College-B B154, Mettler Toledo). Bivalves, 

tubiculous polychaetes, and gastropods were weighed with their shells/tubes. Colonial 

organisms i.e. hydroids, bryozoans, colonial tunicates, were not included in the 

abundance counts due to difficulties in separating individuals, however they were 

included in the analysis of biomass. 

To provide a comparison to a natural hard substrata environment, a nearby rocky 

https://en.wikipedia.org/wiki/Polyethylene
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outcrop (R) was selected for sampling (Figure 2.7, Figure 2.8). During March 2014 (the 

deployment date of the artificial substrata units), three similar areas at the rocky reef 

site were identified for replicates. All sites were between 17 – 22 m depths, and were 

characterized as westerly facing vertical rock wall adjacent to an area of at least 80 m 

of soft substrata. At each replicate site, a quadrat of 17 x 20 cm was sampled via 

MANOSS - a manually operated suction sampler for hard bottom benthos 

(Chatzigeorgiou et al., 2013). Epibenthic fauna was carefully scraped from the hard 

substrata and collected in a mesh net of 63 μm with the help of one-way valves and an 

airlift (Figure 2.8). Considering the area is not subject to benthic trawling by fisherman, 

and is isolated from any tourist dive locations, it is plausible that the area is not subject 

to destructive activities and that the sample collected may be assumed to have a 

relatively stable community structure. After the initial sampling at each site, three 

replicate areas of 1 m2 were subsequently cleared of epibenthic fauna and flora using a 

chisel and a hammer. All attempts were made to ensure that there was a complete 

removal of epibenthic organisms and that only hard substratum was left, however the 

author feels that due to the high complexity of the substrata this was not possible, and 

that small encrusting organisms (bryozoans etc.) are likely to have remained. The 

corners of the area perimeter were marked with yellow cord with small floaters attached 

to enable the rediscovery of the plots (Figure 2.8). From the cleared plots subsequent 

samples were obtained, each time from a new location within the cleared area to 

ensure no overlapping of sample area occurred. Every time plates were removed from 

the artificial units i.e. July 2014 (after 3 months) and September 2014 (after 6 months), 

corresponding samples were taken from the cleared plots. Samples were taken to the 

surface and passed through a 0.25 cm sieve to remove large rock debris parts, stored 

in alcohol, and identified to the highest possible taxonomical level. 
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Figure 2.7 Photographs of Rock wall. Top left shows one of three replicate plots pre – 

clearance. Top right shows diver in the process of clearing plot with a hammer and chisel. 

Bottom left photograph indicates the cleared 1 m x 1 m plot complete with aides for site re-

identification. Bottom right indicates size of surface scraped and taken for comparison with 

artificial substrata panels. Photographs taken by Laura Bray. 

 

Figure 2.8 Schematic drawing of the sampler. A: side view; B: top view. Numbers indicate the 

following parts: (1) barrel (length 38 cm, inner diameter 7.5 cm; volume 1.7 l), with openings 

near the rear end to facilitate water flow; (2) plunger; (3) one-way valves (4) collection sock (5) 
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filter mesh; (6) connector tube (length 15 cm, inner diameter 4.5 cm); (7) cap of connector tube, 

equipped with thumbscrew to secure the cap onto the connector; (8) T-shaped connector; (9) 

nozzle (10) adapters (PVC connections) between T-shaped connector (11) plunger guide (12) 

rear-end cap (13) two O-rings (14) cable binder. Figure and description sourced from 

(Chatzigeorgiou et al., 2013). 

Statistical analysis 

To compare changes in benthic invertebrate abundance with time at the artificial units a 

linear model was used (nlme package). After establishing it unnecessary for the 

artificial unit location to be treated as a random factor the fixed model factors included 

were: (1) Site (S1, S2, S3), (2) Material (Steel, Concrete), (3) Orientation (North, East, 

South, West), (4) Height (High, Low), (5) Time (3 months, 6 months). After determining 

the need to consider an autocorrelation structure, a first-order autoregressive (AR(1)) 

correlation structure was used to account for the repeated measures on the same unit. 

Data were square root transformed to account for non-normality of the data. 

In addition, the diversity (Species richness (Margalef), Pielous evenness (‘), Shannon 

index (H’), and Simpson index (S)), the number of non indigenous species (NIS), and 

the total number of individuals in both the natural substrate samples and the artificial 

substrate samples were compared using a T-test (IBM SPSS statistics 24.0). Data 

were square root transformed to abide by normal distribution requirements for 

statistical analysis. 

2.3 RESULTS 

In total, 11,607 macrobenthic individuals were identified from 95 species, the most 

common of which were calanoid copepod species, the tainaid Chondrochelia savignyii 

(Krøyer, 1842), and the serpulid Spirobranchus polytrema (Philippi, 1844). Thirteen 

non-indigenous species (NIS) were identified, of which 4 species (Hydroides elegans, 

Hydroides operculatus, Elasmopus pectenicrus, and Crepidula fornicata) are listed 
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within the top 100 worst Mediterranean invasive species (Streftaris and Zenetos, 2006). 

No statistical difference was noted regarding the abundance of NIS found on artificial 

substratum vs. the natural reef (t = 0.8671, p = 0.377). Likewise no statistical difference 

was noted in the numbers individuals that were present on plates (18.40 m-2 ± 253.75 

SD) when compared to the rocky substrata (13.86 m-2 ± 82.04) (Figure 2.10) (t = 

1.0013, p = 0.356). A corresponding difference was apparent for the macroinvertebrate 

total biomass, with higher biomass on natural rock (3.45 g m-2 ± 4.16) compared to the 

artificial sites (3.04 g m-2 ± 6.66), however, as with the abundance, the differences were 

not noted to be statistically significant (t = 0.85651, p = 0.471).                     

Ecological indicators 

Species diversity was higher at the rocky reef site in comparison to the artificial 

substratum for several ecological indicators including species number (t = -6.4749, p = 

> 0.001), species richness (t = -7.296, p = >0.001) and Shannon index values (t = -

2.9702, p = 0.003). Other species diversity measurements e.g. total number of 

individuals (t = -0.564, p = 0.577), Pielou's evenness (t = 1.259, p = 0.213), and 

Simpson’s index (t = -0.291, p = 0.776) showed no significant differences of mean 

values between the two groups (Table 2.2).  

Table 2.2 Average of ecological indicators ± standard deviation for the samples obtained from 

the artificial substratum vs. the rocky reef. S = Total species, N = Total individuals, d = Species 

richness (Margalef), J = Pielous evenness, H = Shannon index, 1 - λ = Simpson index. 

Significantly different values are highlighted in bold. 

 

S N d J H 1 - λ 

Rocks 24.78 ± 7.29 195.22 ± 43.95 4.49 ± 1.19 0.56 ± 0.08 1.79 ± 0.37 0.66 ± 0.12 

Artificial 12.01 ± 5.22 173.50 ± 115.63 2.18 ± 0.85 0.62 ± 0.12 1.44 ± 0.32 0.65 ± 0.11 
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Macrobenthic community composition 

The number of macro invertebrate changed over time, in response to the material used 

on the artificial units, and depending on the location of the artificial units (p = > 0.001) 

(Table 2.3).  Neither the height of the removable plates, nor their orientation influenced 

the number of macro invertebrate individuals. 

Table 2.3 Results from linear model for abundance of macro-invertebrates. Statistically 

significant (p-values > 0.05) are highlighted in bold. DF = Degrees of Freedom 

  
DF F-value p-value 

(Intercept) 1 63.870 <.0001 

Material 1 43.947 <.0001 

Time 1 4.379 0.041 

Site 2 16.290 <.0001 

 Orientation  3 1.311 0.281 

Height 1 2.233 0.141 

Material:Time 1 0.504 0.481 

Material:Orientation 3 0.304 0.822 

Site:Orientation 1 0.498 0.485 

Site:Material 1 56.210 <.0001 

Site:Height 2 1.547 0.221 

Site:Time 2 12.670 <.0001 

Time:Orientation 3 0.915 0.440 

Material:Height 1 2.657 0.109 

Time:Height 1 0.157 0.694 

Orientation:Height 3 0.914 0.441 

Material:Time:Orientation 3 2.610 0.061 

Material:Time:Height 3 0.785 0.38 

Site:Material:Time 2 1.332 0.271 

Site:Material:Height 2 0.021 0.979 

Site:Time:Orientation 2 4.346 0.020 

Site:Time:Height 2 0.436 0.649 

Material:Orientation:Height 3 1.237 0.306 

Time:Orientation:Height 3 0.470 0.704 

Site:Material:Time:Orientation 6 2.212 0.063 

Material:Time:Orientation:Height 6 1.030 0.387 

 

Colonization was higher on concrete plates in comparison to those constructed with 

steel for each unit location. For both steel and concrete plates, the unit S3 (the unit 

closest to the natural rock wall) had a higher numbers of individuals after the first three 
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months (Figure 2.9). The unit S1 had the increased greatest rate of increase from three 

to six months for both materials. The abundances of macro-invertebrates only 

decreased with time (from an average of 17.707 ± 23.294 to 12.821 ± 24.448) on the 

steel plates obtained from S3.  

Figure 2.9 Regression plots of temporally auto-correlated abundance per site, per material and 

per time period (3 and 6 months). 

 

  2.4 DISCUSSION 

The statistically significant biodiversity values (species richness, species number and 

Shannon index) all indicated that samples obtained from the natural rock wall were 

higher in comparison to the artificial substrates. Thus corresponding with a large body 

of evidence that indicates that although artificial substrates support hard bottom benthic 

communities (as indicated by statistical similarity of the number of species in both 
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habitats), they are not analogues of a natural rocky habitat, and that the expansion of 

artificial substrates may contribute towards regional diversity loss (Fauvelot et al., 

2009). In addition, artificial substrates often host higher numbers of non-indigenous 

species in comparison to natural habitats likely due to competitive advantages over 

native species (Airoldi et al., 2015); however this was not the case for the present 

results. No significant differences of non-indigenous species observed between the 

natural and artificial habitats is good for developers and marine spatial planners who 

wish to counteract the spread of non-indigenous species in the region, however  

considering that other studies have consistently found differences between in natural 

and artificial habitat in the Ionian and Adriatic basins (Bulleri et al., 2005; Perkol-

Finkel et al., 2006; Airoldi et al., 2015), it is possible that the scale of the pilot project (6 

months) was not sufficient enough to determine whether a significant difference would 

exist in time. 

Regarding the colonization of marine renewable energy device in the region, the results 

indicated that not all the tested variables had an effect on the community composition 

of the macrobenthic communities. Neither the direction that the substratum faced in the 

water column, or the height above the seabed, impacted the abundance or biomass of 

the macrobenthic communities. Local and small-scale hydrodynamics play a role in 

influencing larval settlement on a substrata (Pineda et al., 2010), and the Strait of 

Otranto has a complex hydrological pattern. It is an area of water mass exchange 

between the Adriatic and the Ionian seas, with current patterns varying on a variety of 

timescales, ranging from tidal to inter-annual (Ursella et al., 2013). The complex 

coastal topography of the Diapontia islands, variable prevailing winds (Michelato and 

Kovacevic, 1991), and the lack of a dominant circulation feature in the area suggest 

that current regimes in the area may have regularly changed throughout the sampling 

period (Figure 2.4). Therefore the orientation of the artificial substratum in the water 

column appears to not significantly impact the abundance or biomass of macro-
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invertebrate settlers in the region. In regards to the height above the seabed, no 

significant impacts to the macroinvertebrate abundance may be due to the size of the 

stanchions not being high enough to produce evidence of any vertical zonation 

(Andersson et al., 2009).  

The material used however (whether it was concrete or steel), significantly influenced 

the number of macroinvertebrate individuals. Similar to Azevedo et al., (2006), more 

individuals were present on concrete panels in comparison to steel counterparts. 

Small-scale variations in roughness are highly influential to community composition 

(Cacabelos et al., 2016), however this is often species dependent, with many 

colonizing species preferring either smoother or rougher surfaces (Andersson et al., 

2009). Additionally the high alkalinity of the boundary layer at a concrete substrata 

favours the settlement of some macrobenthic organisms (e.g. 

the hydroid Laomedea spp., and the tunicate Ascidiella spp. (Andersson et al., 2009; 

Petersen and Malm, 2006), however, due to the pre-soak procedure of the 

methodology it is not clear whether the alkalinity of the boundary layer has had an 

influence on the results presents here.  

At most sites, the number of individuals increased with time even after temporal 

autocorrelation, and the number of individuals on steel and concrete plates increased 

at a similar rate with each other at each site. Only stanchion S3 had a minimal increase 

(concrete plates) or a marginally lower number of individuals (steel plates) after 6 

months in comparison to replicates taken after 3 months of colonization (after temporal 

auto-correlation), potentially indicating a more stable community composition 

(Knowlton, 2004). In addition the concrete plates of S3 were consistently higher in 

numbers of individuals in comparison to the other stanchions. This may be due to its 

relative proximity to the natural rock outcrop, and thus simulation cues from the existing 

communities coupled with a higher larval supply from the source community (Bowden 

et al., 2001; terHorst and Dudgeon, 2009).   
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The results indicate that the artificial units are not surrogates for natural hard 

substrate environments (due to lower levels of biodiversity), however development of 

epibenthic communities is supported, whilst being dependant on the type of material 

used. In addition the present results indicate the importance of OWF siting within a 

region, most likely due to differences in larval supply. It is clear that for effective 

marine spatial planning, developers should thoroughly consider hydrodynamic 

regimes and connectivity networks in the region before construction of offshore wind 

farms commences.  
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CHAPTER 3 

INVESTIGATING THE LIKELIHOOD OF OFFSHORE WIND TURBINES OPERATING AS 

ARTIFICIAL REEFS FOR LOCAL FISH COMMUNITIES IN THE MEDITERRANEAN  
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3.1 INTRODUCTION 

Artisanal fishing and large-scale commercial fisheries are socially and economically 

important in Mediterranean coastal communities (Papaconstantinou & Farrugio, 2000) 

yet overfishing is a serious problem throughout the region despite the best intentions of 

the European Common Fisheries Policy (Vasilakopoulos et al.,  2014). Nevertheless, 

there are examples worldwide where the decline of fishing stocks has been reversed 

by good regional management practices (Tsikliras et al., 2015); one option put forwards 

as a solution to declining fish stocks is the use of artificial reefs to manage aquatic 

resources as they can provide fish habitat and increasing local biomass (Fabi et al., 

2015). 

Many artificial reefs have been deployed in the Mediterranean Sea, most of them 

constructed from concrete units (Fabi et al., 2011).  Evidence as to whether these 

artificial reefs achieve their objective is inconclusive (Scarcella et al., 2015). It appears 

that the success of artificial reefs depends largely on location, construction material 

and management. The Food and Agriculture Organization has produced a set of 

guidelines for the use of artificial reefs in the Mediterranean (Fabi et al., 2015); there is 

no mention on the possibility of offshore energy structures serving as artificial reefs. 

Offshore energy structures such as oil and gas platforms create similar habitat to 

offshore wind farms and can provide no-trawling areas which may provide a sanctuary 

for vulnerable marine species (Langhamer, 2012).  Of the few Mediterranean studies at 

existing offshore gas station structures, some show no effects on fish (Castriota et al., 

2011; Fabi, et al., 2002), with others indicating increases in fish abundance, biomass 

and diversity (Consoli, et al., 2013; Fabi et al., 2004; Scarcella et al., 2011). Whether 

offshore marine renewable energy devices can provide habitats that enhance fish 

populations remains to be seen. To investigate the likelihood of an OWF operating as 

an artificial reef, an analysis into the impacts a simulated OWF will have on local fish 
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communities is presented here. Using the same artificial stanchions as described at the 

beginning of the chapter (Section 2.3.1), underwater visual transects were conducted in 

the areas surrounding the artificial vertical relief structures, and compared to control 

sites. The results are presented and discussed, and an analysis is provided addressing 

the effectiveness of OWFs operating as artificial reefs in the region. 

3.2 METHODS 

  The in-situ setup consisted of 4 fixed transects (25m in length) attached to each 

artificial unit in a cruciform pattern, which enabled measurements of benthic fish spatial 

aggregations. The permanently attached transect line allows acclimatization and 

reduces the ‘tape effect’ seen in several non-herbivorous fish species (Dickens et al., 

2011). Fractional underwater visual transects were used to allow the censuring of 

cryptobenthic species at different distances from the artificial units, a method already 

proved useful when studying fish assemblages around gas platforms in the 

Mediterranean (Andaloro et al., 2011), albeit with the possibility of diver presence 

influencing fish presence (Titus et al., 2015). Surveys were done by two divers, along a 

transect divided into three set distances from the artificial units (at 0 - 5 m distance, 5 - 

15 m distance, and 15 - 25 m distance from the units) (n = 12). The location of 

individuals in each set distance, the species, and the estimated length, were recorded 

for each transect. Transects were recorded on video (Nikon COOLPIX AW120 

Waterproof Digital Camera) in order to assist accuracy in species recording via post-

hoc analysis of footage (Figure 3.1).  
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Figure 3.1 Screenshots of videos taken during visual transects of Bucchich’s goby Gobius 

bucchichi (left) and the striped goby Gobius vittatus (right) in the near vicinity of a simulation 

unit. The fixed tape is visible in the left frame. 

To provide a comparison between areas with vertical relief structures and areas 

without, three control sites of bare substrata areas at similar depths, and void of any 

hard substratum or Posidonia beds were also sampled (n = 12) (Figure 2.1). 

Additionally 'reference' conditions for natural vertical relief structures were investigated. 

Transects were conducted at a nearby rock wall (Figure 2.1, Figure 2.7) following the 

same methodology (n = 8). The two same divers completed all the 25 m transect, to 

minimize bias. Sampling was done between 03 - 15 July 2014, and all transects were 

taken within the same time period (12:00 - 15:00). 

3.2.1 Statistical analysis 

To determine whether habitat impacts the abundance of fish individuals, a one-factor 

ANOVA was performed. The three levels of the habitat factor were the artificial unit, 

bare substrate, and the natural rocky outcrop. Data were square root transformed and 

Tukey’s test was used for post-hoc comparisons. To investigate differences in the 

levels of biodiversity between the three habitats, the Shannon index (H’) was applied 

(Spellerberg and Fedor, 2003), and compared with a one-factor ANOVA. Index values 

were not transformed. 
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In addition, a two-way ANOVA was used to compare changes in fish abundance at 

increasing distances from the artificial units. After establishing that the unit location 

should not be treated as a random factor, (by using a linear mixed-effects model (nlme 

package)), the fixed factors considered were: (1) Unit (S1, S2, and S3) and (2) 

Distance from unit (0-5 m, 5-15 m, 15 – 25 m). Data were calculated as individuals per 

10m3 and were arc-sin transformed to account for non-normality of the data. Tukey’s 

test was used for post-hoc comparisons. 

    3.3 RESULTS 

In total, individuals from 22 species were encountered during the conducted visual 

transects (Figure 3.2), including the invasive species Siganus luridus, which originally 

originates from the Red Sea, and has been present in the Mediterranean Sea since the 

opening of the Suez canal (Galil, 2009). A comparison of the number of fish individuals 

at each habitat type (bare substrate, artificial unit, and natural rock wall) indicated that 

habitat type had a significant influence on the variance of the samples (F = 4.793, p = 

0.013). The natural rock wall had significantly higher abundance than both the bare 

substrata control site (p = 0.015), and the artificial units site (p = 0.01). No statistical 

differences were observed between the artificial units and the control site (p = 0.975). 

(Figure 3.3). 
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Figure 3.2 Total list of species encountered during visual transects and averaged means/10m
3
 

at each site with the inclusion of the standard deviation for each site. 

 

Figure 3.3 Mean (± SD) abundance of total fish species at each habitat (Artificial unit, with the 

inclusion of 1 standard deviation. Letters (a,b) indicate significantly different groups.  
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To investigate any differences in the levels of biodiversity at the sites (units, control site 

and natural reef) the Shannon-Wiener index was applied. Similar levels of diversity 

were noted between the artificial units (H’ = 0.89) and the control site (H’ = 1.02), and a 

higher diversity at the natural site (H ’= 1.68), however the values were not significantly 

different (F = 1.641, p = 0.156). 

To investigate any potential aggregation effects caused by the artificial unit to the 

spatial distribution of fish, comparison of the medians between the varying distances 

from the units was made. The results indicate aggregation of fish individuals around the 

unit compared to those measured at a distance further than 15 m. The one-factor 

ANOVA indicated that distance from the artificial unit significantly influenced the 

number of fish individuals (F = 3.17, p = < 0.001), and post-hoc testing indicated that 

only the furthest measured distance (15 - 25m) was significantly different to the closest 

(0 - 5m) (p = 0.037). The distances 5 – 15m, and 15 – 25m showed no significant 

differences (p = 0.340), as did the number of fish measured around the unit compared 

to a distance of 5 – 15 m (p = 0.376) (Figure 3.4).   

 

Figure 3.4 Average abundance of total fish species at increasing distance from the artificial unit 

with the inclusion of 1 standard deviation.  
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   2.3.3 DISCUSSION 

Surprisingly few studies have been conducted in the Mediterranean to assess the role 

that offshore installations have on motile fauna (Gomiero et al., 2013). The varied 

results from impact assessment studies at offshore gas stations indicate both a 

statistical increase in fish abundance at some sites (Consoli et al., 2013; Fabi et al., 

2004; Scarcella et al., 2011), and no observed differences at others (Castriota et al., 

2011; Fabi et al., 2002). The lack of operational marine renewable energy devices in 

the Mediterranean makes empirical evidence on their marine impacts unattainable. 

The results presented in this chapter indicate that the pilot project had a limited impact 

on fish communities in the region. No statistical differences were observed between the 

number of fish present at the artificial unit, and those present in the control areas of 

bare substrates or the species diversity, thus contradicting several prominent field 

experiments which have demonstrated the reef effect of offshore wind farms on pelago-

benthic and demersal fish communities in northern European seas (Wilhelmsson and 

Malm 2008, Maar et al 2009, Andersson and Ohman 2010, Leonhard et al 2011, 

Reubens et al., 2014b). This may be due to the scale of the pilot study not accurately 

describe the conditions of offshore structures despite it being of a similar design to 

other field experiments (Andersson et al., 2009; Wilhelmsson et al., 2006b). In addition, 

when compared to the natural vertical rock wall, both the control sites and the artificial 

units were statistically lower in both fish abundance than the natural rock wall, with the 

architectural complexity of the natural rocky outcrop evidently contributing to the 

increase in motile species (Diamant et al., 1986).  

However, despite no indication of biomass production increases at the unit installations 

when compared to a control site, there is evidence of fish aggregation around the units. 

More individuals were present around the unit then at a distance of over 15 m from the 

site, suggesting that “attraction” as opposed to “production” is the dominant process in 

force (attraction/production debate, Chapter 1).  
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The findings indicate that offshore structures at the site may not operate as successful 

artificial reefs, and that just the construction of offshore structures, particularly in a 

region which suffers from high levels of over fishing, may not be a viable option for 

rectifying ecological damage or reversing stock depletion, as has been suggested in 

Northern European case studies (Bearzi et al., 2008). It is likely that regional 

management practices will play a much more prominent role in fish production than the 

addition of habitat to the region. The likelihood of fishing restrictions around offshore 

structures being adopted should be an important consideration for ecologists and 

marine spatial planners. Potential benefits from restricted fishing zones may bolster 

any weakly correlated positive impacts to fish assemblages from offshore wind farms 

(Guidetti and Sala, 2007). 

3.4 ARTIFICIAL REEF POTENTIAL 

Understanding the impacts that offshore structures, and in particular offshore wind 

farms, will have on the marine environment is becoming an ever-important 

consideration for marine spatial planners in the Mediterranean. The Marine Strategy 

Framework Directive considers maintaining biodiversity, and seafloor integrity, as 

essential aspects in the drive to reach good environmental status (GES), in all 

European Seas by 2020, and that offshore man-made structures will directly impact 

environmental status (Directive 2008/56/EC).  

For effective use in policy planning stages, it is essential to recognize the scope and 

limitations of pilot projects. This is particularly true for impacts revealed at large spatial 

scales and those long term temporal periods e.g. the influence on marine mammal 

foraging behaviours (Russell et al., 2014). The OWF pilot project conceived by the 

CoCoNET project is the first of its kind in the Mediterranean, and has provided 

interesting results regarding the initial settlement of macrobenthic communities. 

Nevertheless several caveats are attached to the work. Despite evidence from the 



 73 

literature of their limited impacts to benthic communities (Chapter 1), investigating the 

role of noise, electro-magnetic fields, and changes in hydrology due to rotor down draft 

are outside the scope of this study and the likely impacts have not been investigated 

here. Additionally, an important consideration of the pilot project is the duration of the 

experimental period. A similar OWF pilot project for offshore relief structures in the 

Swedish part of the North Sea, had a continuous sampling duration of 5 months, with 

only a limited survey being performed after 12 months (Andersson et al., 2009). Due to 

a lack of large individuals and an absence of several taxa (i.e. chlorophyte green algae) 

expected to colonise artificial substratum in the area (Airoldi et al., 2015), it is likely that 

six months is not an adequate time frame to reach the final stage of ecological 

succession, however the 6-month duration provides an idea of initial settlement 

compositions.  

Despite the limited time frame, the results indicate that the natural habitat appears to 

support a higher macro-invertebrate biodiversity, and number of individuals, than the 

artificial stanchions after six months. Furthermore, of the three artificial stanchions, one 

appears to respond differently in terms of the number and diversity of macrofauna 

communities. The apparent high natural variability highlights the importance of small 

scale siting within a wind farm.  

Regarding the benthic fish communities, no increase of abundance are apparent with 

the placement of the artificial structure in an area of soft substrata, and the artificial reef 

potential appears limited. The number of defining parameters involved in influencing 

the spatial and temporal colonization of offshore artificial structures highlights the need 

for extensive area-specific research alongside holistic environmental impact 

assessments to fully understand regional implications of offshore wind farms. 
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CHAPTER 4 

IDENTIFYING LEVELS OF CONNECTIVITY FOR BENTHIC COMMUNITIES IN THE ADRIATIC 
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4.1 INTRODUCTION 

Offshore structures such as oil rigs and wind farms can act as ‘stepping stones’ for 

benthic communities to expand their ranges across bio-geographic boundaries (Adams 

et al., 2014). These structures quickly become colonised by fouling organisms (Chapter 

2), and over a period of years, can develop diverse assemblages of sessile organisms 

(Bergström et al., 2014). Primarily this is due to the larvae of most benthic marine 

organisms being transported via currents, providing a source for recruitment and 

benthic colonisation. For species with a 24 hour pelagic phase their larvae can travel 

around 1 km, species that have long pelagic phases the larvae can travel hundreds of 

km (Shanks, 2009). This dispersal mechanism is particularly important for sessile 

macro-invertebrates (Grantham et al., 2003) and the strength of connectivity between 

populations may help determine their ecological success (Melià et al., 2016; Treml et 

al., 2012). Paradoxically, assessments of the level of larval connectivity offshore 

structures have with other marine regions are not routinely applied.  

Although marine renewable energy developments have not yet begun in the 

Mediterranean, the Adriatic is being considered for large scale wind farm developments 

as the region is windy and the sea bed is shallow and well suited to offshore 

construction (Bray et al., 2016). This chapter considers potential larval connectivity of 

benthic macro-invertebrates in the region. This knowledge may help in predicting the 

types of communities that will colonize OWF’s (Joschko et al., 2008; Wilhelmsson and 

Malm, 2008), and help assess whether they will encourage the spread of non-

indigenous species (Bianchi, 2007), both of which are important aspects for the 

consideration of marine managers.  

A relatively limited number studies have empirically measured the dispersal of marine 

larvae over large geographic scales (Cowen et al., 2006; Jones et al., 2009; Weersing 

and Toonen, 2009;). In-direct methods include the use of genetic markers, 
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geochemical markers, tagging devices, and bio-physical dispersal models - all of which 

have various arguments in favour of and against (e.g. cost, accuracy, issues of scale) 

(Calò et al., 2013). Bio-physical models are able to track simulated larvae individuals 

over large temporal and spatial scales (Andrello et al., 2014) although there are major 

assumptions used with most hydrodynamic-based models, the most significant being 

the assumed passive nature of the individual larvae particles (Metaxas and Saunders, 

2009). 

In the Mediterranean, few studies focus on the connectivity and dispersal of marine 

species (Calò et al., 2013), and this paucity of information is an obstacle for policy 

makers in the region (Andrello et al., 2015; Muñoz et al., 2017). Those connectivity 

studies that use virtual particle trajectory methods tend to focus on the establishment 

and evaluation of marine protected areas (Andrello et al., 2013; Di Franco et al., 2015; 

Pujolar et al., 2013). Other approaches include the homogenous release of larvae 

particles throughout the whole Mediterranean (Dubois et al., 2016; Rossi et al., 2014), 

or the release from specific coastal sites at a regional level (Carlson et al., 2016; Melià 

et al., 2016; Schiavina et al., 2014; Schunter et al., 2011). Many such studies are 

tailored to determine connectivity of fish, and macroinvertebrate larvae trajectories are 

seldom modelled in the Mediterranean (Guizien et al., 2014; Padrón and Guizien, 

2015; Schiavina et al., 2014).  

In this chapter, a release of larvae from benthic populations along the coasts of the 

Adriatic Sea using coupled bio-physical models is simulated. Furthermore, the effect of 

pelagic larval duration (e.g. simulation duration) on dispersal is investigated. A 

homogenous larval production was assumed and evenly distributed Lagrangian 

particles for a range of pelagic larval durations (4, 8, 16, 20 days) were tracked to cover 

regionally common invertebrate taxa such as barnacles and gastropods (Villamor et al., 

2014), rather than utilizing a particular target species (Rossi et al., 2014). The likely 

spread of larvae from benthic populations that originate from the major Adriatic ports 

https://www.collinsdictionary.com/dictionary/english/argument
https://www.collinsdictionary.com/dictionary/english/favour
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was also tracked, as several studies show an increase in the abundance of non-

indigenous species in or around Adriatic ports and marinas (David et al., 2007; Iveša et 

al., 2015; Pecarevic et al., 2013). The potential spread of non-indigenous species 

through corridors of artificial surfaces (Airoldi et al., 2015) is a critical aspect of marine 

connectivity studies. Essentially, the aim of this chapter is to identify areas of high vs. 

low connectivity to enable decision makers to effectively site offshore marine 

renewable energy developments, either with the aim of increasing the range of native 

species (high connectivity), or decreasing the spread of non-indigenous species in the 

area (low connectivity).  

4.2 METHODS  

The method was based on the Graph Theory approach used by Rossi et al. (2014) for 

identifying hydrodynamic provinces throughout the Mediterranean. Lagrangian particles 

were released from evenly distributed grid cells along the Adriatic coastline and then 

tracked for a range of known pelagic larval durations. Source and destination grid cells 

were compared to indicate regions of high and low connectivity.  

   4.2.1 STUDY AREA 

The Adriatic Sea has a shallow northern section (average depth 40 m), a central 

section (average depth 140 m) and a southern section where troughs > 1200 m deep 

(Figure 4.1) channel deep water masses into the Eastern Mediterranean, particularly in 

late winter (Gačić et al., 2002; Malanotte-Rizzoli et al., 1997). The western coast is 

generally sandy, whereas the eastern side is predominantly rocky (Artegiani et al., 

1997). The hydrography of the basin is influenced by several large rivers (Verri et al., 

2014). The overall circulation is cyclonic, with three cyclonic sub-systems in the 

northern, middle and southern sections and a strong current flowing south along the 

coast of Italy from spring until autumn (Zavatarelli et al., 1998) (Figure 4.1).  
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Figure 4.1 Adriatic larval connectivity matrix comprised of a 1/16
th
 degree grid into which larval 

particles were released, showing locations of major ports (clockwise from left: Taranto, Ancona, 

Ravenna, Venice, Trieste, Rijeka, Sibenik, Split, Tivat, Durres), and major currents (NA = 

Northern Adriatic, MA= Mid-Adriatic, Sa= South Adriatic, ESA= Eastern South Adriatic. 

Bathymetry provided by www.emodnet.eu, hydrology adapted from (Artegiani et al., 1997) . 

   4.2.2 HYDRODYNAMIC GRID 

Hydrodynamic model output data were obtained from the Mediterranean Monitoring 

and Forecasting Centre of the Copernicus Marine Environment Monitoring Service 

(http://marine.copernicus.eu), which has been running since 2000. The model is 

composed of an Ocean General Circulation Model (Tonani et al., 2013) and a coupled 

hydrodynamic-wave model with a horizontal grid resolution of 1/16˚ (ca. 6-7 km).  

The following model description is sourced from the Copernicus website: 

“The OGCM code is based on NEMO (Nucleus for European Modelling) version 3.4 

(Madec et al 2008). The code is developed and maintained by the NEMO-consortium. 

The model solves the primitive equations in spherical coordinates. The Wave dynamic 

is solved by a Mediterranean implementation of the WaveWatch-III code. The 

background error correlation matrix is estimated from the temporal variability of 

parameters in a Reanalysis. Background error correlation matrices vary monthly for 

http://www.emodnet.eu/
http://marine.copernicus.eu/
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each grid point in the discretized domain of the Mediterranean Sea. The assimilated 

data include: Sea Level Anomaly (a satellite product accounting for atmospheric 

pressure effect is used) from CLS SL-TAC, and vertical temperature and salinity 

profiles from Argo, XBT (eXpandable BathyThermograph) and Gliders. Objective 

Analyses-Sea Surface Temperature (OA-SST) fields from CNR-ISA OSI-TAC are used 

for the correction of surface heat fluxes with the relaxation constant of 40 W m-2 K-1. 

The analysis is done weekly, on Tuesday, for the previous 15 days. The assimilation 

cycle is daily (24hr) and is done in filter mode. 10-day forecast is produced every day. 

The forecast is initialized by a hindcast every day except Tuesday, when the analysis is 

used instead of the hindcast.” 

The Adriatic was subdivided into a 0.0625° x 0.0625° grid (each grid cell approx. 6.7 

km2) to match the resolution of the hydrodynamic model, providing 383 grid cells where 

larval particles were released from (release cell) (S1).  

   4.2.3 SIMULATED LARVAL TRANSPORT 

Simulated larval particles were released from the centre of each of 383 grid cells along 

the Adriatic coastline, and trajectories were followed using the program ICHTHYOP 

(Lett et al., 2008). No behavioural parameters were assigned to the simulated larval 

particles thus assuming a passive trajectory. For the horizontal dispersion of the 

particles within the simulations, the default setting of ICTHYOP (10^-9 m^2/s^3) was 

used for TKE dissipation rate. Particle position was calculated every 2 hours, for four 

pelagic larval durations (4, 8, 16 and, 20 days). Consecutive release dates (n = 10) 

throughout June (starting from the 01/06 each year) were chosen to coincide with peak 

benthic macroinvertebrate spawning in the region (Villamor et al., 2014). Particles were 

released at the same time each day (00:00), and to account for inter-annual variability, 

the larval dispersal simulations were run for consecutive years covering the period 

2011 - 2015 (n = 5). For each larval duration, a cumulative total of 3830 particles were 

released. A limited tidal range in the Adriatic Sea means atmospheric effects are the 



 82 

main forcing factors in the Adriatic Sea (Bolaños et al., 2014). With respect to this, 

particle releases were not factored around tidal stages as other larval dispersal models 

have done in more tide-dominant environments (Narváez et al., 2012).  

   4.2.4 POST SIMULATION ANALYSIS 

Destination grid cells were calculated for each particle using MATLAB6.1, and both 

descriptive statistics and probability matrices were constructed from an amalgamation 

of all simulation years and release dates for each larval duration. Additionally a year-

on-year analysis of the total distances that particles travelled was done to examine 

significant differences between years at specific locations. Due to the non-normal 

distribution of the data, non-parametric tests (e.g. Kruskall-Wallis and Mann-Whitney U 

Comparison) were used. To visualise the inter-annual differences of the larval 

trajectories a single simulation track from each year is presented which indicates 

particle position for 4, 8, 16 and 20 day durations. Locations of OWF’s in early 

planning/concept stage as of April 2017 are included for reference. 

Simulated larvae were considered to have self-replenished if, by the end of the 

simulation, particles remained in their original release grid. Probabilities of particle 

arrival were mapped for each grid cell and particle transport distances were calculated. 

To provide information on larval transport from industrialized regions (Figure 4.1), 

release grids located closest to the ten major Adriatic ports were selected and the 

particles released from these sites were presented separately. 

The web-based network algorithm software Infomap was used to define network 

structure via the use of Graph Theory (Rosvall and Bergstrom, 2008) 

(www.mapequation.org). It enables the determination of where larval transport can be 

expected to flow quickly and easily between the grid cells of the Adriatic, by taking 

advantage of the duality between finding community structure in networks and 

minimizing the description length of a random walker’s movements on a network (for a 
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full review see Rossi et al., 2014). The communities identified by the Infomap software 

are presented visually along with the relative connection strength between each 

community. 

In addition to community detection, Infomap also provides information on the 

importance of individual nodes via the use of its pageRank algorithm. PageRank 

(commonly used for ranking web pages) provides a nonlocal measure of centrality by 

defining the expected density of hypothetical random walkers on a node at stationary, 

within a weighted, directional, network (Lambiotte and Rosvall, 2012). PageRank for 

each cell is presented as a probability distribution with a numerical value between 0 

and 1, i.e. a cell with a pageRank of 0.5 means that a random walker within the 

network would have a 50% chance of arriving at the given cell. Identifying the highest 

and lowest ranked nodes for each pelagic larval duration illustrates the most and least 

important grid cells within each network. 

4.3 RESULTS 

As expected, simulated increases in the duration of particle transport resulted in an 

increase in the distance travelled. Likewise, as dispersal duration increased, self-

replenishment decreased. Overall levels of self-replenishment were very low, but were 

an order of magnitude higher at release grids close to Adriatic Ports (Table 4.1), likely 

due to the typical positioning of ports in enclosed bays. Dispersal distances increased 

from around 11 km for 4-day simulations, to 30 km for larvae that could survive for 20 

days in the plankton. The greatest distance travelled by a particle during the 20 day 

simulation was 334 km (Table 4.1). The large Standard Deviations around each mean 

show that some particles remained close to the simulated release sites, whereas 

others travel far; this variability increased with dispersal duration.   

Regarding inter-annual differences of the distances that the simulated particles 

travelled, the non-parametric (due to extreme outliers of the data) statistical test 
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Kruskal-Wallis test for equal medians was used to compare differences between years. 

All the pelagic larval duration simulations were significant in difference between years 

(For PLD4 H(2) = 856.82, p = 0.00; PLD8, H(2) = 661, p = 0.00; PLD16, H(2) = 480.91, 

p = 0.00; and PLD20, H(2) = 387, p < 0.01. Post hoc Mann-Whitney tests for yearly 

differences within each PLD showed most years are significantly different, with only 6 

years not showing any significant differences (Table 4.2). 

Table 4.1 Descriptive statistics for the range of particle trajectories (4-20 days) Avg. = Average, 

SD = Standard deviation, SR = self replenishment.  

 4 days 8 days 16 days 20 days 

Furthest distance (km) 88.7 205.5 308.3 334.7 

Avg. distance (km) ± SD 11.0 ± 11.0 16.8 ± 17.3 25.7 ± 28.1 29.5 ± 34.0 

Avg. Distance from ports (km) ± SD 7.6 ± 6.3 12.2 ± 12.4 20.3 ± 12.7 24.4 ± 30.9 

Avg. SR(%) ± SD 0.01 ± 0.1 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 

Avg. SR at port sites (%) ± SD 0.11 ± 0.12 0.07 ± 0.06 0.04 ± 0.07 0.04 ± 0.07 
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Table 4.2 Matrix of Mann-Whitney test value (U), and probability (p), for each 

comparison of year-on-year particle distance for each dispersal duration. Highlighted in 

bold are yearly comparisons which show NO statistical differences. Values for Mann-

Whitney test value (U) are shown to 3 s.f, and probability values (p), are shown to 2 

significant figures. 

 
 

2012 2013 2014 2015 

P
L
D

4
 

2011 
U = 7020000, 

p = 0.04 
U = 5500000, 

p = 0.00 
U = 6260000, 

p = 0.00 
U = 5320000, 

p = 0.00 

2012  
U= 5300000, 

p = 0.00 
U = 6030000, 

p = 0.00 
U = 5100000, 

p = 0.00 

2013   
U = 6600000, 

p = 0.00 
U = 7190000, 

p = 1.00 

2014    
U = 6450000, 

p = 0.00 

 2011 
U = 7220000, 

p = 0.93 
U = 5760000, 

p = 0.00 
U = 6400000, 

p = 0.00 
U = 5260000, 

p = 0.00 

P
L
D

8
 2012  

U = 5870000, 
p = 0.00 

U = 6500000, 
p = 0.00 

U = 5380000, 
p = 0.00 

2013   
U = 6690000, 

p = 0.00 
U = 6860000, 

p = 0.00 

2014    
U = 6230000, 

p = 0.00 

 2011 
U = 7070000, 

p = 0.18 
U = 6820000, 

p = 0.00 
U = 6840000, 

p = 0.00 
U = 5560000, 

p = 0.00 

P
L
D

1
6

 2012  
U = 6630000, 

p = 0.00 
U = 6640000, 

p = 0.00 
U = 5420000, 

p = 0.00 

2013   
U = 7260000, 

p = 1.00 
U = 6060000, 

p = 0.00 

2014    
U= 5990000, 

p = 0.00 

 2011 
U = 7 080 000, 

p = 0.26 
U = 6940000, 

p = 0.00 
U = 7000000, 

p = 0.02 
U = 5770000, 

p = 0.00 

  
  
  
  
  

P
L

D
2
0

 

2012  
U = 6 750000, 

p = 0.00 
U = 6800000, 

p = 0.00 
U = 5620000, 

p = 0.00 

2013   
U = 7240000, 

p = 1.00 
U = 6100000, 

p = 0.00 

2014    
U = 6030000, 

p = 0.00 

   4.3.1 PARTICLE TRANSPORT 

In agreement with the statistical analysis of the year-on-year differences between the 

distances travelled by individual particles, the spatial depiction of the particle 
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trajectories indicates high inter-annual variabilities (Figure 4.2). Larval sink locations 

(locations where particle tracks terminate) are not consistent, and although no clear 

inter-annual trends are apparent, an increased inter-connection between the east and 

west coasts after 2013 is noticeable. The model simulates particle transport from the 

central-eastern coastline to the west coast within the 41o – 44o latitudes for the years 

2013, 2014, and 2015 

  

Figure 4.2 A single-track simulation to indicate source/sink information is presented with particle 

position taken from simulations of the 1
st
 of June for each year. Panel A indicates the trajectory 

for the 1
st
 of June 2011, B = 2012, C = 2013, D = 2014, and E = 2015. Positions shown for each 

time interval (0 - 4 day, 4 - 8 days, 8 - 16 days, and 16 - 20 days), and locations of offshore wind 
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farms currently in the early planning/concept stage in the region are also depicted 

(http://www.4coffshore.com).  

After a simulation duration of four days, regions of grid cells with high concentrations of 

larval trajectory destination points include the region south of the river Durres delta, the 

port of Rijeka, the Kvarner Gulf (Croatia), the Gulf of Trieste, Gulf of Venice, and many 

locations along the Italian Adriatic Coast. Regions with grid cells of lower count 

densities include the Po river delta, and the offshore region of the Dalmatia coast. 

Similar results were found for 8, 16, and 20 day durations, with areas of low densities 

of larval trajectory destination points being mostly restricted to offshore regions such as 

the Bay of Kotor, the southern Region of Gulf of Trieste, and the Po river delta (Figure 

4.3). A more detailed depiction in the form of a probability matrices is provided in the 

supplementary files of Bray et al., ( 2017).  

 

Figure 4.3 Grid count densities (i.e. number of particles in each grid at the end of simulation) of 

destination points of larval trajectories for A) four, B) eight, C) 16 and D) 20 day larval durations. 

Counts measured in absolute terms. 

http://www.4coffshore.com/
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A high concentration of port destination cells was also located close to Split, the largest 

passenger port in the region, for all durations.  For simulation durations of 8, 16 and 20 

days, large sections of Albanian coast indicated high concentrations of larval trajectory 

destination points that were released from areas in close vicinity of ports (Figure 4.4). 

 

Figure 4.4 Grid count densities (i.e. number of particles in each grid at the end of simulation) of 

destination points of larval trajectories for each grid cell closest to each major Adriatic port for A) 

four and B) 20 day larval dispersal. Numbers indicate port locations: 1= Taranto, 2= Ancona, 3= 

Ravenna, 4= Venice, 5= Trieste, 6= Rijeka, 7= Sibenik, 8= Split, 9= Tivat, 10= Durres. Count 

densities are not defined by their release points. All PLD simulations produced similar patterns, 

albeit increasing dispersion with increasing larval duration so for convenience only the minimum 

and maximum larval durations are displayed Counts measured in absolute terms.  

The grid cells within the network with relatively high self-replenishment included the 

Manfredonia Gulf, and the Adriatic coast of Italy. Regions of relatively lower cells of 

self-replenishment include the Po delta, south of the Gulf of Trieste, and the northern 

coast of Croatia (Figure 4.5).   
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Figure 4.5 Percentage of self-replenishment for each release grid cell for A) four and B) 20 day 

larval durations. All PLD simulations produced similar patterns, albeit increasing dispersion with 

increasing larval duration so for convenience only the minimum, and maximum, larval durations 

are displayed. Increasing the larval duration means the self-replenishment of most release grids 

along the eastern coast of the Adriatic approaches 0%.  

   4.3.2 CLUSTERS AND NODE CENTRALITY WITHIN NETWORK 

An increase of simulation duration resulted in fewer numbers of identified communities 

with the mapequation algorithm. Infomap clustering visualization (Figure 4.6), indicated 

that the four day larval duration, a transport network with 2022 nodes and 4883 links, 

was clustered into 76 modules with 110 inter-module links. The eight day larval 

duration, a network of 2362 nodes with 6462 links, was clustered into six modules with 

two inter-module links. Both the 16 (2650 nodes with 7484 links), and the 20 day 

simulation durations  (2764 nodes with 7812 links) were clustered into four modules 

with one inter-module link. Figure 4.6 indicates the number of separate communities 

identified by the mapequation algorithm and the connection strength between them at 

the end of each simulation period. 
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Figure 4.6 Community detection outputs from mapequation algorithm displayed spatially A) four 

B) eight, C) 16 and D) 20 day larval durations. Relative strength of connection, and thus 

thickness of arrows, between clusters is automatically calculated by the Infomap software and is 
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presented here as purely indicative. Numbers represent the communities identified by the 

Infomap software.  

Mapping the PageRank for each grid cell indicated that for all PLD’s the Adriatic coast 

of Italy contained some of the highest ranked grid cells, along with two locations within 

the Kvarner Gulf (Croatia), thus indicating these regions contained some of the most 

connected cells within the network. Regions with consistently lower ranked grid cells 

and thus less connected were the offshore basin regions (all durations), include the Po 

river delta (four day), and the Montenegro and Albanian coast (eight, 16, and 20 day 

durations) (Figure 4.7) 

Figure 4.7 Spatial display of PageRank for each grid cell included within the network for A) four, 

B) eight, C) 16 and D) 20 day larval durations. No distinction made between grid cells given a 

PageRank value of zero and grid cells not assigned a Pagerank value. The scale indicates the 

probability distribution as numeric values ranging between 0 and 0.1.  
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4.4 DISCUSSION 

The Adriatic region is a distinct marine sub-region assigned as a priority region for 

marine spatial planning (Bastari et al., 2016). High activity use often creates conflicts 

between economic development of the region, habitat protection, and preservation of 

biodiversity. The region already has a great deal of offshore activities (Manoukian et 

al., 2010) and there is scope for rapid development of offshore wind farms, particularly 

in the Northern Adriatic (Chapter 1). The Adriatic Sea is managed nationally with 

several of the six coastal states sharing the use of territorial waters; the co-ordination of 

marine management in this region is often fragmented. Optimised site selection is an 

important consideration for all offshore marine developments (Falconer et al., 2016, 

2013), and due to the interconnected cross-boundary nature of marine systems, the 

approach presented here may prove useful in fostering basin-scale management of the 

biological impacts of offshore construction in the Adriatic Sea. 

   4.4.1 METHODOLOGICAL APPROACH 

Three dimensional particle tracking models are useful for quantifying the dispersal of 

benthic invertebrate larvae (Metaxas and Saunders, 2009) and Graph Theory is an 

effective tool for exploring patterns of spatial connectivity (Treml et al., 2007). This 

approach has been widely used for the identification and evaluation of marine 

protected areas; however this is the first time it has been used as an aid for planning 

offshore construction. Nevertheless, there are several limitations associated with the 

approach which likely contribute to an overestimation of predicted dispersal distances 

(Shank et al., 2009). Real-world realization of the findings presented here requires 

additional information such as individual larval behaviour (Zhang et al., 2016), predator-

prey interactions, environmental cues, and suitable substratum availability for 

settlement (Chan and Walker, 1998). The homogenous release of passive particles 

along the Adriatic coastline does not accurately reflect nature, as it can be assumed a 

more heterogeneous release of larvae will take place based on habitat type (e.g. rocky 
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shore vs. soft substrate) but it does provide an insight into larval dispersal over large 

scales. 

   4.4.2 PARTICLE TRANSPORT 

The distance larval particles were transported was shorter than other works which 

assessed dispersal distances in the region (Melià et al., 2016) as shorter pelagic larval 

durations were used. Some of the most prolific bio-foulers of the region (balanoid 

barnacles, serpulid worms, and ascidians) have short pelagic larval durations ranging 

from several hours to up to three weeks (Anil et al., 1995; Chan and Walker, 1998; 

Jacobs et al., 2006). The limited dispersal potential reflected within the 4, 8, 16, and 20 

day simulations in comparison to the typical pelagic fish connectivity modelling of the 

Mediterranean (approximately 30 days) highlights the need for taxon-specific 

connectivity analyses as opposed to a one-model fits all approach. 

Regarding the spatial dispersal of larval particles, there are several persistent larval 

sinks along the southern Italian shore, corroborating previous findings in the region 

(Dubois et al., 2016). The shelf area along the Western coast of Italy, consistently had 

high larval densities in the simulations, due to the hydrographic influence of the River 

Po (Orlic et al., 1992). During winter, the river output is confined to the northern basin 

but during the spring/summer spawning season, the Mid Western Adriatic current, and 

the South Western Adriatic currents, transverse the entire western coastline of Italy 

(Artegiani et al., 1997) (Figure 4.1). Offshore structures constructed along the southern 

Italian shores are likely to be much more exposed to higher levels of larval supply than 

other locations. Similarly, other regions that indicate relatively high self-replenishment 

and larval densities are found within the Kravner Gulf. The convoluted coastline of the 

Croatian archipelago clearly plays a large role in transportation of larval particles within 

the region. 
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Dispersal of simulated larvae that originate from the major ports of the Adriatic, 

congregate in high concentrations throughout the northern basin, largely due to the 

close proximity of the port of Ravenna, the port of Venice, and the port of Trieste 

(Figure 4.1). Multiple studies have shown higher abundances of alien species at 

several Adriatic ports (David et al., 2007; Iveša et al., 2015); likely due to direct 

transportation from fouling/ballast water or indirectly via the colonization of artificial 

substratum. The invasive barnacle Amphibalanus improvises has been recorded at the 

Rovinj port in Croatia (Pecarevic et al., 2013). Despite it’s fairly limited pelagic larval 

duration of 5 - 20 days (Anil et al., 1995), its high reproductive capacity and rapid 

establishment on both natural and artificial substratum has caused it to be classified as 

one of the worst invasive species in Europe (Vilà et al., 2009). The high levels of larval 

particles that originate from ports in the region may have implications for the Northern 

Adriatic hotspot identified in Chapter 1. The presence of alien macro-invertebrates 

(Zenetos et al., 2012), and high densities of shipping vectors (Figure 1.4), alongside 

the  disproportionate advantage alien species often have in colonizing artificial 

substrata, means that offshore wind farms may create corridors for alien species 

invasions (Airoldi et al., 2015). Information regarding the likely destination of larval 

particles originating from ports and marinas in the Adriatic may assist marine spatial 

planners looking to reduce the spread of invasive non-indigenous species in the region; 

however in areas like the northern basin, high densities of existing ports and 

infrastructures may mean the colonization of alien species on offshore structures is 

unavoidable.  

   4.4.3 NODE CENTRALITY 

The principal result from this chapter was the production of benthic invertebrate 

‘connectivity’ map for the Adriatic. Grid cell centrality i.e. PageRank, is a good way of 

estimating how connected a cell is with the rest of the grid cells within the network. This 

measure can be important when spatially planning the position of offshore artificial 
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structures. The potential for offshore structures to act as stepping stones by providing a 

suitable habitat for colonisation in areas outside of the typical range extension of a 

species is already documented (Adams et al., 2014), and can have both local and 

regional impacts on the maintenance of local biodiversity within marine ecosystems 

(Dafforn et al., 2015). On average, grid cells had low connectivity for all PLDs, 

particularly in offshore regions and the Po river delta; there were however, several 

regions of high importance within the network that included the Port of Rijeka, Italian 

Adriatic coast, and south of the river Durres. This information presented here will be 

important when deciding if offshore activities should be designed to increase, or 

decrease, benthic community connectivity. Of the connected grid cells the vast majority 

(>90 % of cells with pelagic duration more than four days) involved in the coastline-

release network were part of one cluster, indicating that although connectivity of grid 

cells is relatively low, there is potential for interconnection throughout the whole 

Adriatic.  

Connectedness of regions, particularly regions outside of marine protected areas, is an 

often-ignored aspect of marine spatial planning, but with the further development of 

offshore activities in the area and the likely impacts this expansion will have on marine 

biodiversity (Chapter 1), it should be an important consideration for regional marine 

spatial planners. The density of industrial ports in the Northern Adriatic indicates that 

the location of OWF in the Northern basis may influence the spread of invasive species 

in the region, suggesting more southerly locations appear more appropriate for 

development. The approach presented here is a pragmatic tool for identifying 

connectivity systems of benthic communities within a semi-closed system which can be 

expanded with in–situ data regarding the placement of offshore structures and habitat 

ranges of key benthic species.  
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CHAPTER 5 

ECOSYSTEM-LEVEL IMPACTS OF A NOVEL HARD-SUBSTRUM HABITAT CREATED BY AN 

OFFSHORE WIND FARM IN THE ADRIATIC  
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5.1 INTRODUCTION 

The environmental ramifications of installing offshore wind farms are multi-faceted and 

impact many key species and functional groups (Chapter 1). Wind turbines, many of 

which have rotor tip heights of up to 120 m and diameters wider than 4 m, markedly 

alter on-site conditions. The installation of such large surface areas of artificial 

substratum provides new habitat available for utilization by many marine organisms 

(Inger et al., 2009). Additionally, it appears that, at least in some capacity, offshore 

wind turbines act as artificial reefs in the Mediterranean (Chapter 2). Wind turbines are 

typically colonized by benthic invertebrates and thus provide an additional food source 

in regions with often relatively low numbers of in-faunal benthic invertebrates (e.g. 

homogenous soft substrata areas) (Gray, 1974). It is presumed that the provision of 

additional feeding grounds for higher trophic levels, creates a type of artificial reef 

effect in regions where offshore wind farms are built (Langhamer, 2012). 

Several post-construction studies suggest evidence of the artificial reef effect by noting 

an increase in numbers of certain fish species close to the turbine foundation (Reubens 

et al., 2014a; van Hal et al., 2017). Understanding the causes of such aggregation is 

complex, and may not only be due to the enhancement of food sources (Production vs. 

Aggregation debate, Chapter 1). In addition to providing new substratum in the water 

column, the presence of wind turbines also affects the air space overhead. Rotating 

blades and support structures directly influence the behaviours of seabirds in regions 

where OWF’s have been installed (Harwood et al., 2017). Many species are at risk of 

collision with turbines or exhibit avoidance behaviour to some extent (Chapter 1, Table 

1.1). Conversely, some studies suggests that several species appear to not be 

influenced by the presence of the wind farms, whilst some species even exhibit 

attraction behaviour towards the offshore structures (Dierschke et al., 2016). For 

instance, cormorants may use turbines, and supporting platforms, as outposts to 

extend hunting grounds out to sea (Krijgsveld, 2014).  
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Although it is necessary to quantify how individual species or functional groups will be 

influenced by offshore wind farm construction, it is also important to approach the issue 

holistically and infer what impacts will occur at an ecosystem level. To date, only one 

study has attempted to investigate the effects of the construction and operation of 

offshore wind farms with an integrated, ecosystem-based study (Raoux et al., 2017). 

The study used a mass-balance software program called Ecopath with Ecosim (EwE 

Version 6.5) to provide a snapshot of the environment before and after the hypothetical 

presence of an offshore wind farm. Raoux et al., (2017) used EwE to force the biomass 

of the functional groups within the ecosystem that are impacted by the presence of an 

offshore wind farm, in order to simulate the ecosystem impacts of OWF installation 

through time. 

The present study seeks to adhere to the approach used by Raoux et al., (2017) for the 

Northern Adriatic; an area earmarked for OWF development (Chapter 1). Using 

ecological data collected from the region, this chapter aims to provide scenarios of the 

artificial reef effect that would occur with, and without, the presence of an offshore wind 

farm in the year 2020. In contrast to Raoux et al., (2017), only impacts considered a 

direct result of the novel habitat addition were parameterised i.e. the benthic 

invertebrate colonization of the substratum and the behavioural changes of marine 

birds in the vicinity due to the turbines. Despite evidence at some Northern European 

OWF sites, of fish and marine mammal aggregation (Reubens et al., 2014a; Russell et 

al., 2014), it is difficult to discern whether this increase is due to the aggregation of 

existing individuals from the wider region, or an increase in absolute production of 

biomass at the site due to increased food availability and foraging grounds (artificial 

reef effect). Additionally the pilot project results from Chapter 3, show no indication of 

fish aggregation at the simulated wind turbine foundations. Therefore, to avoid 

simulating false positive interactions, only the biomass increases of those species that 

likely wouldn’t be present without the availability of a hard substrate to colonise are 
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considered (e.g. benthic macro-invertebrates) or those impacted by the presence of the 

rotating blades (seabirds). If sufficient prey resources are available within the EwE 

mode simulations, greater biomass of higher trophic levels (e.g. fish and marine 

mammals) are supported. The EwE software approach therefore simulates the 

production aspect of the artificial reef effect, as opposed to consideration of any 

aggregation from outside the wind farm region. In addition, individual species 

responses (i.e. due to sound and electromagnetic fields in the vicinity of the turbines) 

were not considered due to a dearth of knowledge regarding the physiological 

responses of fish/elasmobranchs during turbine operation (Öhman et al., 2007; 

Wahlberg and Westerberg, 2005). 

In a first of its kind, this chapter also considers the changes in fishing effort inside the 

offshore wind farms. Typically fishing restrictions on mobile trawlers are enforced within 

offshore wind farm areas for safety reasons; however evidence from UK case studies 

also indicates a complete absence of static gear within many wind farms (Ashley, 

2014). Thus, in addition to scenarios predicting ecosystem changes in response to the 

presence of wind turbines, a scenario is also presented indicating the impacts of 

reduced fishing effort at the site.  

5.2 METHODS 

   5.2.1 STUDY AREA 

The Northern Adriatic Sea is a shallow, semi-enclosed, heavily fished, sub-basin of the 

Adriatic Sea covering over 32,000 km2 (Chapter 3, Figure 3.1). The trophic status of the 

region is largely defined by the discharge of fresh water from the Po River, the second 

largest river entering the Mediterranean Sea. This nutrient-rich input, along with strong 

seasonal changes in wind and current regimes contribute towards the eutrophic status 

is the region (Spillman et al., 2007). The high nutrient availability is reflected in the 
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relatively high value of biomass used for the phytoplankton functional group in the 

model (13.2 t km2 yr-1) (Appendix A, Table A1). 

   5.2.2 ECOPATH DESCRIPTION 

Ecopath is a multi-species, mass balanced model that provides a snapshot (typically 

per year) of the trophic flow within an ecosystem. In addition, Ecopath (through the 

Ecosim module) also enables a dynamic modelling capability i.e. how the ecosystem 

fluctuates through time under different scenarios. The parameterization of the model is 

based on two central equations that describe the (a) production rate and the (b) energy 

balance of each functional group (single species or group of species) defined by the 

user. In essence, the production rate of each functional group is described as the total 

catches + predation mortality + net migration + biomass accumulation + any other 

mortality (i.e. old age), as a function of biomass (eq. 1): 

                                                                                             

Where P = the production rate, Y = total fishery catch rate, M2 = the instantaneous 

predation rate, E = the net migration rate e.g. the emigration – immigration, BA = the 

biomass accumulation rate, M0 = the other mortality rate (e.g. old age), and B = the 

biomass of the functional group.  

The second equation relates to the energy balance within each group, and requires 

that the consumption of the group is equal to the sum of the production rate + 

respiration rates + the total of unassimilated food (i.e. that which is directed to detritus). 

To fulfil these two equations, Ecopath requires data on the following parameters: the 

total biomass (t wet mass km-2), the production to biomass ration (P/B) (yr-1), the 

consumption to biomass ratio (Q/B) (yr-1), and the Ecotrophic Efficiency (EE) of each 

functional group (provided as a fraction of 1) (Christensen and Walters, 2004). The EE 

is the fraction of the production that is used up in the system. It is dimensionless, 

difficult to measure directly, and entry into the model is optional. The model can 
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calculate EE if values for the three other parameters are entered. Additionally, a diet 

matrix is required to define the relationships between prey and predators, to enable the 

calculation of energy flow between trophic levels and a quantification of the landings 

and discards of fishing fleets in the region. The version used for the present analysis 

was EwE 6.5 (www.ecopath.org). For full details on the equation balancing of the 

Ecopath software the reader is directed to Christiansen and Walker (2004). 

5.2.3 NORTHERN ADRIATIC MODEL  

The input data for the Northern Adriatic model is sourced from an existing Ecopath 

model. The model is based on data collected for the years 1996-1998 (Barausse et al., 

2009), and is the most recently available Ecopath ecosystem data for the region. 

Considering the fact that the input data for the model was consolidated to describe the 

pre-1998 Northern Adriatic ecosystem, Ecosim was used to simulate the evolution of 

the system until the year 2020 (22 years). Fishing effort was assumed to remain the 

same through time. A static Ecopath was then exported from the simulation and used 

as the basis of the current study. The parameterizations of the 2020 model (Functional 

groups, B, P/B, Q/B, EE, fishing mortalities, and diet matrix) are included in Appendix 

A. 

To infer the impacts to the marine ecosystem with the potential construction of an OWF 

at the site in the year 2020, three scenarios were conceived.  The first scenario (S1) 

examined the evolution of the ecosystem if all parameters were to remain the same 

and no OWF construction occurred i.e. business-as-usual. The 2020 baseline model 

was run for another 10 years (until 2030), and a static Ecopath model was exported at 

the end of the simulation). The second scenario (S2) considered the artificial reef effect 

due to the installation of an OWF farm. Changes in the biomass of species or functional 

groups that typically colonize the artificial hard substratum of offshore wind turbines 

were obtained from post-construction surveys in the literature (see below). Additionally 

changes to seabird population sizes due to the presence of the OWF were considered. 

http://www.ecopath.org/
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Biomasses of the affected functional groups were forced into the 2020 Ecopath model, 

and ecosim used to simulate the 10-year evolution of the model. Likewise, the third 

scenario (S3) also considers the artificial reef effect, whilst in addition incorporating the 

likelihood of fishing restriction enforcement within the OWF site. Fishing effort from 

2020 (hypothetical date of OWF construction in line with European objectives) until the 

end of the simulation was considered as 0 % for all fishing gears (Ashley, 2014) (Table 

5.1). Ecological Network indices were then calculated using the in-built network 

analysis plug-in, and compared for each scenario output. 

Table 5.1 Description of different scenarios used in methodology. It is assumed OWF 

installation will be in line with horizon 2020 predictions  

Scenario 1 (S1) 

 No change, Business as 
usual 

Scenario 2 (S2) 

 OWF installation 

Scenario 3 (S3) 

 OWF installation and fishing 
restriction enforcement 

- No changes in fishing effort 

until 2030 

- No forcing of biomass until 

2030  

- No changes in fishing effort 

until 2030 

- Biomass forcing of certain 

functional groups in 2020 to 

simulate artificial reef effect 

- Fishing effort at 100% until 

year 2020, fishing effort at   

0% from 2020 - 2030  

- Biomass forcing of certain 

functional groups in 2020 to 

simulate artificial reef effect 

   5.2.4 BIOMASS FORCING WITH EVIDENCE TO DATE FROM EXISTING OFFSHORE WIND 

FARM SYSTEMS. 

Benthic invertebrates 

To quantify the additional amount of benthic invertebrate biomass to be forced into the 

model simulation an extensive search of the literature was done. The biomass value is 

forced into the artificial reef scenarios (Scenario 2, Scenario 3), for the functional 

groups within the Ecopath model that are typically considered to colonize hard 

substrata (commercial and non-commercial bivalves, filter feeding invertebrates, and 

polychaetes). 
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Tethys, a knowledge database developed by the Pacific Northwest National Laboratory 

for the gathering, organising, and dissemination of information on the environmental 

effects of marine and wind energy development (https://tethys.pnnl.gov), was searched 

with multiple key words, e.g.  post-construction, benthic invertebrates, benthos, 

biomass, foundation, impact assessment, colonizing organisms, impact, offshore wind, 

and near-field habitat. Of the 3528 available items within the data base, which include 

journal articles, reports, conference papers, presentations, book chapters, theses, 

magazine articles, workshop articles, websites and videos, a total of seven post-

constriction studies at operational offshore wind farms containing data regarding fouling 

biomass estimates were identified (Table 5.2).  

The dates of the post-construction surveys ranged from 12 months to up to 5 years 

after installation. Several of the values were recorded in Ash Free Dry Weight (ASFD), 

as opposed to wet weight (WW), the unit used for the EwE model inputs (Barausse et 

al., 2009) (Appendix A, Table A1). To transform ASFD to WW an average conversion 

factor 0.07 for the functional groups colonizing hard substratum was used (Filter 

feeding invertebrates = 0.025, Commercial and non-commercial bivalves = 0.058, 

Polychaetes = 0.16) (Ricciardi and Bourget, 1998). All the WW biomass values 

(calculated and measured) were plotted depending on how many months had elapsed 

after the construction date of the OWF when the survey was done (Figure 5.1). 

 

 

 

 

 

https://tethys.pnnl.gov/
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Table 5.2 Post-construction surveys sourced from Tethys database containing quantitative data 

regarding the increase of biofouling organisms on offshore wind farm turbines [1] = (Vanagt and 

Faasse 2014), [2] = (Lindeboom et al. 2011), [3] = (Birklund and Petersen 2004), [4] = (Bouma 

and Lengkeek 2012), [5] = (Bunker 2004),  [6] = (Emu Ltd. 2008), [7] = (Leonhard et al. 2006). 

OWF site 
Average 

biomass (g m-2) 
Unit 

Elapsed 
time (mo) 

Reference 
Wet weight 

(g m-2 ) 

Prinses Amalia 441 ASFD 42 [1] 6300 

Prinses Amalia 645 ASFD 66 [1] 9217 

Egmond aan Zee 1257 ASFD 12 [2] 18219 

Nysted 1040 ASFD 12 [3] 14861 

Egmond aan Zee 450 ASFD 24 [4] 6431 

Egmond aan Zee 1400 ASFD 31 [4] 20006 

North Hoyle 1141 WW 12 [5] 1141 

Kentish Flats 35007 WW 36 [6] 35007 

Horns Rev 1050 WW 12 [7] 1050 

Horns Rev 1700 WW 24 [7] 1700 

Horns Rev 2650 WW 36 [7] 2650 

 

A logarithmic trendline was fitted, and used to calculate a time series of total benthic 

invertebrate biomass increase per m2 through time. As increases in biomass were 

reported as the wet weight (g) of colonizing species per square metre, additional 

calculations were done to identify the average increase in surface area. As no planning 

proposals for Northern Adriatic OWF’s are available, the average values (diameter, 

number of turbines) of the OWF sites used to obtain the biomass of biofouling 

communities were used to define the increase of surface area that would occur (Table 

5.3. 
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Figure 5.1 Wet weight (by month elapsed from OWF construction) of colonizing organisms 

(Table 4.2) on OWF’s sourced from the literature (See in-text references), with logarithmic 

trendline displayed (R² = 0.0275).  

The technical details (e.g. maximum height of turbine submerged in water) for each site 

were sourced (http://www.4coffshore.com), and the surface area calculated by 

assuming an even, cylindrical, design for monopiles and gravity base foundation types, 

and three cylinders for tripod foundations (Table 5.3).  

Table 5.3 Dimensions of the wind farms used for the calculation of the biomass increase of 

benthic organisms. Due to differences in the foundation structure of the Nysted gravity base, 

surface area values were calculated separately. Source: http://www.4coffshore.com  

OWF site 
Max. 
water 

depth (m) 

Average 
Diameter 

(m) 

No. of 
turbines 

Area of 
wind farm 

(km
2
) 

Type 
Calculated total 

surface area 
(m

2
) 

North Hoyle 12 4 30 10 Monopile 150.80 

Egmond aan Zee 18 4.6 36 24 Monopile 260.12 

Alpha Ventus 30 2.7 12 4 Tripod 763.41 
Horns Rev 1 11 4.2 80 21 Monopile 145.14 

Nysted 9 4.2 72 26 Gravity base 415.16 
Prinses Amalia 24 4 60 17 Monopile 301.59 
Kentish Flats 5 4.5 30 10 Monopile 70.69 

Average 13.86 4.3 59.7 18.86 
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To force the biomass for the four functional groups, the total biomass increase 

calculated from the literature review was multiplied by the average surface area 

increase (229 m2) and divided equally by the four groups. As the EwE input data is also 

factored spatially (km-2), the time series were divided by the average surface area wind 

farm area (229 m2) (Table 5.3). Finally the baseline biomasses of each functional group 

from the 2020 ecopath model were added to each forcing time series (Table 5.4). 

Table 5.4 Time series for forcing biomass inputs for scenario 2 and scenario 3 Ecosim models. 

Baseline value obtained from 2020 ecopath model output (Appendix A, Table A1). 

 

Filter feeding 

invertebrates 

(t km-2 yr-1) 

Non-Commercial 

bivalves 

(t km-2 yr-1) 

Commercial 

bivalves 

(t km-2 yr-1) 

Polychaetes 

(t km-2 yr-1) 

2020 Baseline 

value 
7.76 25.13 0.90 27.27 

2021 7.78 25.16 0.93 27.29 

2022 7.79 25.16 0.93 27.30 

2023 7.79 25.17 0.94 27.30 

2024 7.79 25.17 0.94 27.31 

2025 7.80 25.17 0.94 27.31 

2026 7.780 25.17 0.94 27.31 

2027 7.80 25.17 0.95 27.31 

2028 7.80 25.17 0.95 27.31 

2029 7.80 25.17 0.95 27.31 

2030 7.80 25.18 0.95 27.31 

Seabirds 

Identifying the impacts of wind turbine blades on the presence of the pelagic marine 

bird populations was done by using a recent review of (Dierschke et al., 2016), which 

reviewed avoidance and attraction behaviour of seabirds in European waters. For the 

original Northern Adriatic model, the only avian species included in the seabird 

functional group are Phalacrocorax carbo (Great cormorant) and Larus 
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melanocephalus (Mediterranean Gull) (Barausse et al., 2009). Of these two species, 

the cormorant is identified as being strongly attracted to OWF sites after a meta-

analysis of post-construction surveys. The Mediterranean Gull, was not included in the 

meta-analysis review however other gull species (Larus canus and Larus ridibundus) 

were identified as weakly attracted (e.g. continued use of a marine area after the 

construction of the wind farm, but to a higher degree or at a higher abundance) and 

Larus michaellis was observed as being present within several wind farms without 

displaying any particular preference to the site (Dierschke et al., 2016). Using the 

attraction hypothesis, it is theorized that birds will primarily be attracted to the region as 

a feeding ground. It is plausible to assume that if there is an increase in prey availability 

(e.g. small pelagic fish) at the site, an increase of seabirds will occur within this 

ecosystem. Forcing a decrease in seabird biomass due to deterrence behaviours 

appears unnecessary within the proposed ecosystem model. 

   5.2.5 NETWORK ANALYSIS 

The Network Analysis plug-in included in the EwE software calculated several indices 

for each output scenario which analyse whole system interactions and properties 

(Christensen et al., 2005). The indices applied to each output scenario within this study 

include the total system Throughput and Throughflow, the Transfer Efficiency, the 

Omnivory Index, Mixed Trophic Impact analysis, and the Keystoneness of individual 

functional groups. Presented in the results are brief explanations of each index, and a 

comparison of the results for the three scenarios, and included in each explanation are 

references to the original studies describing the parameterization of the index. 

5.3 RESULTS 

   5.3.1 ECOPATH MODEL DESCRIPTIONS 

Under the business-as-usual scenario (S1), the constructed Ecopath output model 

predicts that the total biomass of the system (including detritus) in the year 2030 will 
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amount to 529.472 t km-2 (Table 5.5).  Macroalgae, polychaetes, and non-commercial 

bivalves, make up 57 % of the total living biomass. This figure does not change for S2 

and the hypothetical installation of an offshore wind farm. There is a slight increase in 

the forced biomass groups e.g. for filter feeding invertebrates and bivalves (Figure 5.2), 

but overall a limited differences in total biomass was observed (0.04%). The reduction 

in fishing pressure under S3 generates an increase in the percentage of top predators 

biomass e.g. sharks, rays, benthic piscivorous fish and an increase in the biomass of 

lower trophic levels e.g. macroinvertebrates, when compared to the business-as-usual 

scenario (Figure 5.2). When fishing effort is reduced (S3), the largest decrease in 

comparison to S1 is at the mid-trophic level. A large reduction in anchovy biomass (-

10.3%) is likely due to increased competition from the previously heavily fished sardine 

populations, as they share the same prey sources e.g. plankton (Morote et al., 2010) 

(Appendix A, Table A3). Interestingly, no increase of seabird biomass was supported 

by the model, suggesting a limited artificial reef effect. The total biomass of the system 

increases to 533.77 t km-2 under S3.  

 

Figure 5.2 Absolute differences in biomass (t km
1
 year

-1
) of each functional group for scenario 2, 

and scenario 3, in comparison with Scenario 1.  
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   5.3.2 NETWORK ANALYSIS INDICES 

TOTAL SYSTEM THROUGHFLOW AND TOTAL SYSTEM THROUGHPUT 

Total system throughflow and total system throughput are closely related yet separate 

indices. Their common representation in the literature as TST values mean the two are 

often confused. Total system throughflow represents the total flow (of mass) into or out 

of each functional group, whilst total system throughput is the sum of all flows in the 

food web, thus providing an indication of the overall level of activity within the marine 

system (Fath et al., 2013). Flows are calculated (t m-2 year-1) by combining the 

consumption, export, respiration and flows to detritus. For a detailed explanation the 

reader is referred to Ulanowicz (1986). 

No noticeable differences in ecosystem activity were observed between the baseline 

scenario and the introduction of the hypothetical wind farm. The total system 

throughput of S1 and S2 is 10363.19 and 10363.28 t km-² year-1 respectively. For S3 

the overall ecosystem increased by 0.18% to 10381.46 t km-² year-1 in comparison to 

S1. Differences in compartment throughflow were more apparent. In comparison to the 

baseline scenario, the S2 throughflow values for S2 functional groups varied less than 

5 %, however the S3 indicates much more variation. The throughflow of the functional 

groups rays, benthic piscivorous fish, and sharks increased 228%, 127%, and 104% 

respectively (Table 5.6). 
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Table 5.5 Ecopath input values for 2030 Ecopath models. Scenarios 1 represents Business-as-

usual model, Scenario 2 describes impacts of OWF installation, and Scenario 3 models impacts 

of OWF installation and fishing. B = Biomass, P = Production, Q = Consumption, and EE = 

Ecotrophic Efficiency. 

 
B (t/km²) 

 
P/B (/year) 

 
Q/B (/year) 

 
EE 

 
P/Q 

Group name 1 2 3 
 

1 2 3 
 

1 2 3 
 

1 2 3 
 

1 2 3 

Dolphins 0.006 0.006 0.008 
 

0.054 0.054 0.031 
 

14.000 14.000 13.986 
 
0.278 0.278 0.000 

 
0.004 0.004 0.002 

Seabirds 0.012 0.011 0.010 
 

4.610 4.610 4.657 
 

69.340 69.340 69.467 
 
0.000 0.000 0.000 

 
0.066 0.066 0.067 

Sharks 0.066 0.057 0.116 
 

0.400 0.400 0.399 
 

3.077 3.077 3.046 
 
0.687 0.687 0.813 

 
0.130 0.130 0.131 

Rays 0.015 0.012 0.040 
 

0.724 0.724 0.719 
 

4.137 4.137 4.107 
 
0.545 0.545 0.765 

 
0.175 0.175 0.175 

European hake 0.056 0.052 0.113 
 

1.180 1.180 1.102 
 

4.120 4.120 3.813 
 
0.663 0.663 0.434 

 
0.286 0.286 0.289 

Zoobenthivorous fish 
hard bottom 

0.229 0.190 0.164 
 

1.901 1.901 1.909 
 

6.410 6.410 6.433 
 
0.611 0.623 0.587 

 
0.297 0.297 0.297 

Zoobenthivorous fish 
soft bottom 

1.023 0.849 0.977 
 

1.180 1.180 1.179 
 

6.306 6.306 6.288 
 
0.878 0.873 0.849 

 
0.187 0.187 0.188 

Mackerel 1.076 1.001 1.052 
 

0.620 0.620 0.624 
 

6.506 6.506 6.507 
 
0.251 0.251 0.263 

 
0.095 0.095 0.096 

Horse Mackerel 1.035 0.963 1.241 
 

0.570 0.570 0.572 
 

5.941 5.941 5.927 
 
0.600 0.595 0.558 

 
0.096 0.096 0.096 

Other small pelagics 0.356 0.330 0.332 
 

1.889 1.889 1.873 
 

8.294 8.294 8.280 
 
0.851 0.840 0.702 

 
0.228 0.228 0.226 

Anchovies 7.531 7.131 6.398 
 

1.100 1.100 1.098 
 

12.440 12.440 12.464 
 
0.930 0.930 0.930 

 
0.088 0.088 0.088 

Sardines 4.909 4.716 5.886 
 

0.870 0.870 0.861 
 

8.709 8.709 8.672 
 
0.961 0.961 0.941 

 
1.000 1.000 0.099 

Nectobenthic 
zooplanktivorous fish 

0.427 0.401 0.429 
 

1.180 1.180 1.176 
 

6.442 6.442 6.438 
 
0.839 0.836 0.945 

 
0.183 0.183 0.183 

Omnivorous fish 0.133 0.115 0.159 
 

1.624 1.624 1.615 
 

15.040 15.040 14.941 
 
0.965 0.961 0.926 

 
0.108 0.108 0.108 

Benthic piscivorous 
fish 

0.218 0.201 0.761 
 

0.850 0.850 0.512 
 

3.304 3.304 1.982 
 
0.699 0.699 0.916 

 
0.257 0.257 0.258 

Flatfishes 0.174 0.142 0.236 
 

1.300 1.300 1.232 
 

6.975 6.975 6.595 
 
0.622 0.622 0.787 

 
0.186 0.186 0.187 

Squids 0.053 0.050 0.086 
 

3.506 3.506 3.512 
 

26.968 26.968 26.911 
 
0.349 0.349 0.889 

 
0.130 0.130 0.131 

Benthic cephalopods 0.125 0.101 0.172 
 

3.300 3.300 3.269 
 

6.600 6.600 6.537 
 
0.869 0.868 0.962 

 
0.500 0.500 0.500 

Crustacea 1 6.597 5.447 5.162 
 

2.894 2.894 2.896 
 

17.786 17.785 17.803 
 
0.971 0.966 0.969 

 
0.163 0.163 0.163 

Crustacea 2 1.183 1.017 1.003 
 

7.911 7.911 7.911 
 

51.186 51.187 51.187 
 
0.996 0.997 0.988 

 
0.155 0.155 0.155 

Mantis shrimp 0.102 0.082 0.487 
 

1.500 1.500 0.462 
 

4.560 4.559 1.412 
 
0.892 0.892 0.301 

 
0.329 0.329 0.327 

Non-commercial 
bivalves 

30.260 25.176 25.176 
 

1.415 1.418 1.408 
 

6.350 6.349 6.352 
 
0.518 0.515 0.512 

 
0.223 0.223 0.222 

Commercial bivalves 1.067 0.948 0.948 
 

1.415 1.446 0.772 
 

6.350 6.336 6.500 
 
0.784 0.470 0.013 

 
0.223 0.228 0.119 

Gastropods 9.535 7.917 8.031 
 

1.735 1.735 1.734 
 

9.717 9.717 9.712 
 
0.907 0.903 0.899 

 
0.179 0.179 0.179 

Filter-feeding 
invertebrates 

10.033 7.802 7.802 
 

0.761 0.765 0.725 
 

3.804 3.803 3.809 
 
0.483 0.483 0.457 

 
0.200 0.201 0.190 

Echinoderms 10.965 8.949 10.059 
 

0.803 0.803 0.800 
 

2.514 2.514 2.508 
 
0.429 0.426 0.333 

 
0.319 0.319 0.319 

Polychaetes 33.451 27.314 27.314 
 

1.644 1.647 1.645 
 

14.271 14.269 14.268 
 
0.673 0.672 0.667 

 
0.115 0.115 0.115 

Jellyfish 1.141 1.025 0.952 
 

14.813 14.813 14.797 
 

44.439 44.439 44.436 
 
0.150 0.150 0.146 

 
0.333 0.333 0.333 

Zooplankton 3.430 3.284 3.131 
 

65.058 65.061 66.816 
 

185.167 185.172 190.326 
 
0.924 0.924 0.921 

 
0.351 0.351 0.351 

Pelagic bacteria 4.944 4.052 4.093 
 
136.131 136.190 135.633 

 
758.731 759.042 755.909 

 
0.415 0.415 0.412 

 
0.179 0.179 0.179 

Macroalgae and 
phanerogams 

41.422 42.420 43.414 
 

1.700 1.700 1.681 
 

- - - 
 
0.193 0.193 0.188 

 
- - - 

Phytoplankton 12.486 13.166 13.226 
 
175.228 175.226 174.836 

 
- - - 

 
0.403 0.403 0.402 

 
- - - 

Discard 0.061 0.058 0.000 
 

74.285 74.331 74.391 
 

- - - 
 
0.290 0.500 

  
- - - 

Detritus 424.173 364.678 364.788 
 

8.906 8.905 8.937 
 

- - - 
 
1.000 1.000 1.000 

 
- - - 

Sum 608.294 529.663 533.766 
 

- - - 
 

- - - 
 

- - - 
 

- - - 

Omnivory index 

The Omnivory index (OI) is a function of the variance of the trophic level of a 

consumer's prey groups. The closer the OI is to zero, the more specialized a predator 

is. The higher the value, the more trophic levels a predator feeds on. For the original 
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paper referring to the parameterization of the omnivory index the reader is referred to 

Pauly et al., (1993). For S1, S2, and S3, the OI of anchovies and small pelagic were 

the only functional groups that were either zero, or close to zero, indicating that they 

fully specialized and was feeding on a single trophic level (Table 4.6).  

Transfer Efficiency 

Transfer efficiency describes the ratio between the sum of the exports plus the flow that 

is transferred from one trophic level to the next, and the throughput on the trophic level 

(Christensen and Walters, 2004). The scenarios are represented graphically with the 

use of a Lindeman spine, showing the aggregated flow of transfer through each trophic 

level (Lindeman, 1942). The Lindeman spines of S1 and S2 show similar patterns in 

transfer efficiency with increasing trophic level (Figure 5.3). With the reduction of 

fishing pressures (S3), slightly higher transfer efficiencies are apparent, which support 

an additional trophic level in comparison to the baseline scenario and the OWF 

installation alone (Figure 5.3C).  

Mixed trophic impact 

The mixed trophic impact (MTI) analysis is a method of indicating the combined direct 

and indirect trophic impact that occurs when the biomass of a functional group is 

infinitesimally increased. Impact values (either positive or negative) are presented as a 

matrix between the impacting group (predators) and impacted group (prey). The matrix 

values are calculated as the difference between a diet composition parameter (the 

fraction of the impacted group that contributes to the impacting group), and a 

competition parameter (the proportion of predation on the impacted group that is due to 

the impacting group operating as a predator). For additional information regarding the 

MTI aspect of the EwE plug-in, the reader is directed to (Ulanowicz and Puccia, 1990). 

The MTI matrices of S1 and S2 are almost identical, with no apparent differences 

between the two (Figure 5.4, Figure 5.5). The low trophic level group’s zooplankton, 
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pelagic bacteria, and detritus all exert a strong influence on the system. Additionally 

three mid-level trophic groups (anchovies, horse mackerel, and large crustacean), 

negatively influence several of their predators, prey, and competitors. The MTI analysis 

of S3, indicates a similar trend, however the higher trophic level benthic piscivorous 

fish and squids also appear to exert strong influence on the ecosystem under this 

scenario (Figure 5.7). 
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Table 5.6 The throughflow and Omnivory indices of the functional groups. Note that throughflow 

is presented in % change from the baseline scenario; whist the OI of all scenarios (S1, S2, and 

S3) is presented. 

Functional Group 

Throughflow 
 (% Change from S1) Omnivory index 

S2 S3 S1 S2 S3 

Dolphins 0.00 32.50 0.07 0.07 0.16 
Seabirds 0.00 -2.98 1.41 1.40 1.58 
Sharks 0.00 104.02 0.33 0.32 0.49 
Rays 0.00 228.03 0.29 0.29 0.25 

European hake 0.00 99.53 0.10 0.10 0.13 

Zoobenthivorous fish—hard bottom 0.25 -12.87 0.15 0.15 0.15 

Zoobenthivorous fish—soft bottom 0.17 14.94 0.17 0.17 0.20 

Mackerel -0.05 5.07 0.22 0.22 0.24 

Horse Mackerel -0.03 28.50 0.24 0.24 0.36 

Other small pelagics -0.04 0.47 0.00 0.00 0.00 

Anchovies -0.03 -10.14 0.00 0.00 0.02 

Sardines -0.05 24.22 0.09 0.09 0.11 

Nectobenthic zooplanktivorous fish -0.04 6.89 0.11 0.11 0.12 
Omnivorous fish 0.06 37.50 0.49 0.48 0.47 
Benthic piscivorous fish 0.00 127.60 0.08 0.08 0.14 
Flatfishes 0.30 57.75 0.14 0.14 0.18 
Squids 0.00 70.69 0.08 0.08 0.13 
Benthic cephalopods 0.15 68.32 0.21 0.21 0.34 
Crustacea 1 0.16 -4.99 0.46 0.46 0.46 

Crustacea 2 -0.06 -1.36 0.24 0.24 0.24 

Mantis shrimp 0.54 85.68 0.09 0.09 0.15 

Non-commercial bivalves 0.13 0.19 0.22 0.22 0.22 

Commercial bivalves 4.76 7.56 0.22 0.22 0.22 

Gastropods 0.07 1.46 0.25 0.25 0.26 

Filter-feeding invertebrates 0.47 0.64 0.25 0.25 0.25 

Echinoderms 0.04 12.14 0.32 0.32 0.32 

Polychaetes 0.13 0.13 0.13 0.13 0.13 

Jellyfish -0.04 -7.16 0.29 0.29 0.29 

Zooplankton -0.03 -2.05 0.17 0.17 0.17 

Pelagic bacteria -0.03 0.59 - - - 

Macroalgae and phanerogams -0.01 1.14 - - - 

Phytoplankton 0.00 0.22 - - - 
Discard 0.14 -100 - - - 
Detritus 0.00 0.34 0.35 0.35 0.37 



 
 

 

Figure 5.3 Lindeman spine diagrams of A = Scenario 1 (Business-as-usual), B= Scenario 2 (OWF installation), and C = Scenario 3 (OWF 

installation and fishing restrictions). TL = Trophic level, P = Producers, D = Detritus, TE = Transfer efficiency, TST = Total system 

throughput.



 

 

 

Figure 5.4 MTI analysis of Scenario 1 (Business-as-usual), note positive impacts are denoted in 

blue, negative in red. 

 

Figure 5.5 MTI analysis of Scenario 2 (OWF installation), note positive impacts are denoted in 

blue, negative in red. 
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Figure 5.6 MTI analysis of Scenario 3 (OWF installation and fishing restrictions), note positive 

impacts are denoted in blue, negative in red. 

To compare the mixed trophic analyses of each scenario, species and functional 

groups were grouped according to the trophic level assigned by the Ecopath software. 

The total sum of the differences between each trophic group was plotted for each 

scenario (Figure 5.7). There are limited differences between Scenario 1 and Scenario 

2, however Scenario 3 differed to both Scenario 1 and Scenario 2.  The mid level 

trophic level group (TL3 – mostly macroinvertebrates) had a more negative impact on 

the highest trophic level for Scenario 1 and 2 in comparison to Scenario 3 e.g. an 

infinitesimal increase in the biomass of macroinvertebrates, caused a more negative 

impact (decrease) in the biomass of the top predators. In addition, small biomass 

increases in both the top predators, and the primary producers for Scenario 1 and 2, 

more positively impacted the top predators than Scenario 3, suggesting an increase in 

within-group competition when fishing pressures are reduced, and an indirect release 

of primary producers from a bottleneck caused by proliferation of mid-level trophic 

levels under a heavily fished system. 
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Figure 5.7 Differences in mixed trophic analyses for A) Scenario 1 minus the impacts of 2, B) 

Scenario 1 minus the impacts of Scenario 3, and C) Scenario 2 minus the impacts of Scenario 

3. Numbers refer to trophic level. The lowest trophic level where TL ≤ 1 (TL1) included the 

functional groups Macroalgae and phanerograms, Phytoplankton, Detritus and Discards. 

Functional groups whose trophic level values ranged from 1 > TL ≤ 2 (TL2) included pelagic 

bacteria; Functional groups whose trophic level values ranged from 2 > TL ≤ 3  (TL3) included 

Polychaetes, Zooplankton, Gastropods, Non-commercial bivalves, Commercial bivalves, 

Crustacea 1 and 2, Omnivorous fish, Echinoderms, and Filter-feeding invertebrates. Functional 



 

 120 

groups whose trophic level values ranged from 3 > TL ≤ 4 (TL4) included Jellyfish, Sardines, 

Anchovies, Other small pelagic, Nectobenthic zooplanktivorous fish, Zoobenthivorous fish—

hard bottom, Mantis shrimp, Flatfishes, Zoobenthivorous fish—soft bottom, Mackerel and Horse 

Mackerel. The functional groups with the highest trophic levels (4 > TL ≤ 5) (TL5) were 

European hake, Seabirds, Squids, Rays, Dolphins, Benthic piscivorous fish and Benthic 

cephalopods. 

Keystoneness  

The keystoneness index (KS) is a measure of the extent to which a functional group 

disproportionately (based on its measure of biomass) influences the food-web structure 

of its community e.g. High KS values signify high influencing, low biomass functional 

groups (or species). The index used is based on a recent definition by Valls et al., 

(2015). For all scenarios the keystone index was highest the squid, and some of the 

lowest keystoneness values were reported for macroalgae and phanerogams, and filter 

feeding invertebrates (Table 5.7). For scenario 3, the keystoneness of high trophic 

predators, and especially dolphins, sharks, rays, horse mackerel, and benthic 

piscivorous fish increased significantly. Additionally the keystoneness of several non-

commercial bivalves greatly decreased, likely due their increased abundance within the 

system. Regarding keystone species, scenario 3 appears to be structured, to a larger 

extent, by top-down regulation in comparison to the other scenarios. 
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Table 5.7 Keystoneness values per functional group, for scenario 1, and percentages changes 

in comparison to scenario 1 for scenario 2 and 3. Highest 10 % of values are shaded in blue 

and lowest 10 % of values are shaded in red for each scenario. 

Functional group 
Keystoneness  index 

Scenario 1 
Scenario 2 
% change 

Scenario 3 
% change 

Dolphins 0.259 -0.39 100.39 

Seabirds 0.166 6.02 236.14 

Sharks 0.382 0.00 37.43 

Rays 0.179 0.56 720.11 

European hake 0.368 0.82 109.78 

Zoobenthivorous fish—hard bottom 0.128 -2.34 -20.31 

Zoobenthivorous fish—soft bottom 1.053 -0.28 10.45 

Mackerel 0.705 0.43 44.11 

Horse Mackerel 0.916 0.33 54.48 

Other small pelagics 0.21 -0.48 50.48 

Anchovies 0.692 0.43 -17.05 

Sardines 0.669 0.30 17.94 

Nectobenthic zooplanktivorous fish 0.896 0.45 20.42 

Omnivorous fish 0.233 -6.01 44.64 

Benthic piscivorous fish 0.641 0.16 118.10 

Flatfishes 0.274 27.01 83.94 

Squids 1.245 0.08 26.99 

Benthic cephalopods 0.719 -2.09 32.13 

Crustacea 1 0.931 -2.58 2.69 

Crustacea 2 0.511 -0.59 3.91 

Mantis shrimp 0.31 1.94 280.65 

Non-commercial bivalves 0.12 -5.83 -8.33 

Commercial bivalves 0.803 -0.50 -184.56 

Gastropods 0.641 0.00 7.18 

Filter-feeding invertebrates -0.294 -1.70 -0.68 

Echinoderms -0.0736 -5.03 -107.98 

Polychaetes -0.208 0.96 -5.29 

Jellyfish 0.111 1.80 96.40 

Zooplankton 1.066 0.28 1.69 

Pelagic bacteria 0.766 0.52 2.74 

Macroalgae and phanerogams -0.598 0.17 -1.51 

Phytoplankton 0.259 -0.39 100.39 

 

 



 

 122 

5.4 DISCUSSION 

The artificial reef effect caused by the addition of new wind turbine substratum to a 

marine region is well noted in many scientific studies and environmental impact 

assessments (Chapter 1, however see Chapter 2 for equivocal evidence). What is less 

well known is the overall impact that this phenomenon described in Northern European 

case studies, could have at an ecosystem level in the Mediterranean. Using Ecopath 

with Ecosim to model the likely impacts of introducing offshore wind turbines to a 

system is a holistic approach only recently suggested by Raoux et al., (2017). The 

approach appears an effective method of applying ecological expertise to marine 

spatial planning questions, particularly if the models are paramatized by data that 

accurately represents the examined ecosystem. The Northern Adriatic is a marine 

region with many existing marine spatial pressures (Bastardie et al., 2017).  

Furthermore, with the identification of the area as an offshore wind farm hotspot 

(Chapter 1), and this pressure is likely to increase in the near future. Applying EwE in 

this manner is likely to become a useful instrument for policy decision makers in the 

future (Wilding et al., 2017). 

 The Ecological Network Analysis of the baseline scenario for the 2030 Ecopath 

models indicates that it is lower level trophic groups that predominantly structure the 

Northern Adriatic. The mixed trophic analysis indicates the exerting influence that 

zooplankton, pelagic bacteria, and detritus have on the system, and in agreement with 

the original model constructed by Barausse et al., (2009) for the period 1996-1998, the 

Ecotrophic efficiency values and MTI impacts of zooplankton in comparison with 

phytoplankton imply that zooplankton operates as bottleneck. The high EE value of 

zooplankton suggests it is almost completely exploited by the system, whilst the MTI 

analysis illustrates that an incremental decrease of zooplankton will have a strongly 

positive impact on phytoplanktonic species, suggesting that zooplankton limits the 

complete exploitation of the lowest trophic levels within the system. In parallel, lower 
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mixed trophic impacts, biomass levels, and keystoneness values of the apex predators 

(e.g. sharks, dolphins, rays) of the system in the S3 scenario, indicate that the heavily 

depleted top predators of the system appear to play a limited role for the baseline 

scenario in structuring the ecosystem.  

The addition of an artificial reef caused by the hypothetical installation of 50 offshore 

wind turbines appears to have a limited influence on the functioning of the ecosystem. 

When comparing the artificial reef scenario (S2) with that of the baseline, the only clear 

increases in functional group biomass where those that had been forced by the model 

(Commercial and non-commercial bivalves, filter feeding invertebrates and 

polychaetes). A small increase in detritus was also observed, presumably due to the 

increased throughflow of the commercial bivalves (5%). The model biomass forcing 

caused a diminutive (< 0.001%) increase in ecosystem activity, however, ecosystem 

functioning (Keystoneness values, transfer efficiencies, mixed trophic impacts, and 

omnivory index values), didn’t change with the simulated introduction of an offshore 

wind farm.  

These results are in contrast to the proposed hypotheses that offshore wind farms will 

operate as artificial reefs that aggregate apex predators to the area  due to additional 

food sources (Langhamer, 2012). The aggregation of higher trophic levels (e.g. marine 

mammals, and piscivorous fish) has been observed in a few specific sites (Reubens et 

al., 2013; Russell et al., 2014), but the equivocal empirical evidence at many Northern 

European OWF case studies mean some uncertainty is associated with extrapolation 

of the results. In addition, the only other EwE approach to simulate ecosystem impacts 

of OWF installation indicated a positive response of piscivorous fish species, marine 

mammals, and seabirds, to the forced increase of colonizing macrobenthic biomass 

and fish aggregation around the wind turbines, however, it was at a level that didn’t 

impact the structure and functioning of the ecosystem (Raoux et al., 2017). 
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The lack of any indications that increased food sources impact apex predators may be 

due to the time frame of the simulation period. Ecosim was only set to run for 10 years 

after the simulated introduction of the wind turbines, in contrast to Raoux et al., (2017), 

which simulated a 30 year evolution. The artificial reef may need time to attain the 

biological and ecological attributes needed  to significantly influence ecosystem. This 

however, appears unlikely, the aggregation of pouting (Trisopterus luscus) at a wind 

turbine in the Thoringtonbank OWF in the North Sea was observed after less than one 

year after the turbine construction (Reubens et al., 2011). It remains is unclear whether 

the aggregation is due to an increase in productivity at the artificial reef site or the 

attraction of fish from within the region. 

In areas where successful artificial reefs are introduced, the proportion of biomass 

increase due to either increased production rates within the system, or attraction/ 

redistribution of existing individuals from outside the modelled region, is still under 

debate (Chapter 1). Recent research indicates that although artificial reefs are, in 

general, very productive, only 4-5% of the production is new biomass (Smith et al., 

2016). The present Ecopath model is parameterised to predict change within a closed 

system, and does not account for any emigration/immigration of biomass. Although the 

results imply no increase in the levels of higher trophic level production, it is possible 

that attraction from outside the system could occur; this however is not supported by 

results from the pilot project presented in Chapter 3.  

Despite a negligible ecosystem impact with the introduction of the wind farm to the 

Northern Adriatic, the anticipated manner in which OWFs are to be managed (i.e. an 

almost total reduction in fishing) appears to significantly influence ecosystem 

functioning in the area. The Northern Adriatic is very heavily overfished, and has limited 

cross-national cooperation or marine protected area management (Severini, 2013). 

Offshore wind farms are likely to become de-facto MPAs even without specific 

management plans due to practical restraints associated with fishing inside wind farms 
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and their supply stations (Ashley, 2014) (Chapter 1). Thus, it is important to consider 

the impacts that the reduction of fishing pressures will have in parallel with the 

introduction of an artificial reef to the area e.g. the increase in Keystoneness for higher 

trophic levels e.g. dolphins, seabirds, sharks, benthic piscivorous fish, and rays. By 

reducing fishing effort to 0%, the EwE model predicts a stronger response of the 

ecosystem in comparison to just the introduction of new substrata. The increase of 

apex predator keystoneness, transfer efficiencies, and changes to the mixed trophic 

impacts analysis, indicate that the system becomes more structured by top down 

predation as opposed to the availability of lower trophic levels (e.g. zooplankton). 

This apex predator increase doesn’t apply to the seabird functional group. The no-

fishing scenario predicts no change in the biomass of seabirds within the system, likely 

due to the disappearance of discards as a food source when fishing efforts cease 

(Votier et al., 2004). This may be counteracted if attraction of fish individuals from 

outside the OWF area occurs; however declines of several population sizes of seabird 

species has been widely reported in OWF post-construction surveys (Leopold et al., 

2010; Petersen et al., 1999; Welcker and Nehls, 2016). Such reductions are typically 

assumed to be as a result of avoidance behaviours employed by seabird individual 

(Desholm and Kahlert, 2005). These results indicate the importance of considering, in 

parallel to avoidance behaviour impacts, the reductions of prey availability (discards 

from fishing activities) as a possible rationale for seabird decline within OWF sites. 

In addition, it is important to note that displacement of fisheries could occur as a result 

of total exclusion within the wind farm (Campbell et al., 2014), and that the overall costs 

and benefits of particular management actions (Knights et al., 2014) have not been 

considered here. Changes in fishing pressures, especially static gear fleets, outside the 

OWF perimeter (Campbell et al., 2014), may mitigate the increase in ecosystem 

activity, biodiversity, and biomass observed in the ecosystem when fishing pressures 

are reduced within the wind farm.  When definite planning proposals for OWF sites are 



 

 126 

available for the study area, a detailed examination of regional fishing grounds, gear 

use, and fishing intensity should be completed to reduce the impact of fisheries 

displacement on the wider fish populations in the region. 

By using the same holistic approach presented here to assess the medium-long term 

impact of installing an offshore wind farm, it would be possible for marine spatial 

planners to compare regions throughout the Mediterranean to identify areas which best 

respond to OWF installation. The prominent impacts caused by the type of fishing 

policy, in comparison to the effects generated from the presence of the offshore wind 

farm, highlights just how important it is for decision makers to consider site 

management plans in future environmental impact assessments of offshore wind 

farms. 
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CHAPTER 6 

MAIN FINDINGS 
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The likely expansion of offshore renewable energy devices in the Mediterranean will 

bring with it the introduction of hard substrate to predominantly soft substrate areas. 

The colonisation of these new structures by benthic macro-invertebrate species will 

create new habitats for bentho-pelagic communities in the region (van Hal et al., 2017). 

Despite evidence from some existing offshore wind farm sites in Northern European 

seas, predicting the impacts that this new artificial reef-type habitat will have in the 

Mediterranean marine environment remains unclear. This thesis addresses some of 

this uncertainty by showing that: 

1. Based on the results of the pilot project, it appears that those macro-benthic 

communities colonizning a wind turbine in the Adriatic – Ionian region will be 

influenced by the type of material used, and the location of the turbines. In 

addition, there was a minimal impact to overall fish abundance but some 

evidence, however, of aggregation around the structures. 

2. Throughout the Adriatic, there are variations in the level of larval connectivity. 

Some areas are identified as being much more pivotal within the connectivity 

network than others, particularly after longer pelagic larval durations (20 

days). Additionally, for pelagic larval durations longer than 4 days the number 

of separate communities detected is relatively few, implying that for benthic 

populations most of the Adriatic is connected. 

3. The ecosystem-level impacts of building offshore wind farms in this region of 

the Mediterranean are relatively limited, however in comparison, the type of 

management plan i.e. denying fisheries access to the offshore wind farm has 

a much greater impact, and influences the functioning of the ecosystem. 

This chapter provides an overall synthesis of the knowledge gained by the study, and 

considers how to apply the results within the context of future offshore wind farm 

development in the region.  
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6.1 ARTIFICIAL REEF POTENTIAL OF OFFSHORE WIND FARMS IN THE REGION 

A commonly cited benefit regarding the introduction of marine renewable energy 

devices is the habitat creation potential of the new substratum (Inger et al., 2009). This 

thesis investigated whether an artificial reef effect would occur in the study area 

(Adriatic and Northern Ionian) and whether the marine ecosystem would benefit 

positively from this effect. The approach was divided into two components. Firstly, what 

type of species would colonize the new habitat, and secondly whether this would 

increase the aggregation of predators and higher trophic levels of predators within the 

ecosystem?  

6.1.1 SUBSTRATA COLONIZATION 

With regards to benthic communities, the most significant impact associated with the 

expansion of renewable marine energy devices, either as fixed gravity turbines or the 

foundations for floating devices, is the addition of novel artificial substrates to soft 

substrate environments (Inger et al., 2009). Relatively few studies determine the 

impacts of offshore wind farm (OWF) turbines and foundations on benthic communities 

(however see: Birklund & Petersen., 2004; Joschko et al., 2008; Wilhelmsson & Malm., 

2008; Maar et al., 2009; Kerckhof et al., 2009; Lindeboom et al., 2011; Shi et al., 2012; 

Gutow et al., 2014; Mesel et al., 2015; Krone et al., 2017). The in-situ pilot project, 

which simulated colonization and habitat use of offshore wind turbines (Chapter 2, 

Chapter 3), was the first of its kind in the Mediterranean. 

Throughout the study period the number of macroinvertebrate individuals increased, 

due to a rapid colonization of the bare surface provided by the colonization plates by 

recruits (Smith et al., 2014), however the colonization was also influences by the 

material used for the plates, and the location of the stanchions. However, the results 

from the pilot project indicate that not all variables measured had an impact on the 

community composition; neither the height of the plates, nor the direction they face in 
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the water column (N, S, E and W) had an impact on the abundance of 

macroinvertebrate species. This information has important implications for developers 

concerned with habitat creation and range extension of regional benthic communities.  

It is clear that the design of wind turbines (i.e. the size of concrete foundations vs. steel 

diameter of stanchion) and the siting of the wind farms should be taken into 

consideration during the planning process. If the turbines are constructed in regions 

well connected to larval source regions, it is likely that population growth will occur 

(Pineda et al., 2010), thus implying that the selection of sites for wind turbines should 

be done in parallel with the establishment of benthic larval connectivity metrics. 

It is important however, to consider that although the artificial substratum was indeed 

colonized by macro-invertebrates, when compared to natural hard substrata 

environments the number of individuals was fewer and the communities were of a 

lower diversity. It should be noted that due to the fairly limited time-scale of the pilot 

project (6 months) this difference may be due to a lag in colonization, however this 

difference in community composition is in accordance with several studies analysing 

differences between offshore renewable energy devices and natural habitats (Krone et 

al., 2013; Wilhelmsson and Malm, 2008).  

Thus, it appears implausible to expect offshore wind farms to act as direct substitutes 

of natural hard substrate environments, but as no differences in the numbers of non-

indigenous species were observed and the macroinvertebrate abundances increased 

with time, it seems there is a possibility for offshore wind farms in the area to operate 

as ‘stepping stones’ for benthic communities, albeit to a lesser extent than offshore 

hard substrate rocky outcrops. 

  

 

. 
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 6.1.2 HIGHER TROPHIC LEVEL AGGREGATION 

Over the past two decades artificial reefs in the Mediterranean have been met with 

varying degrees of success (Jensen et al., 2000). In many instances increases in the 

biomass of fish and high trophic level predators were evident (Charbonnelet al., 2002; 

Fabi et al., 2006) whilst in other locations no changes in the regional biomass of fish 

were observed (Barnabé, et al., 2000). Many factors influence the success of artificial 

reefs; however it is unclear when increased numbers of fish are observed whether this 

is due to an increase in production rate or whether the artificial reefs stimulate the 

aggregation of existing individuals to specific locations (Ruebens et al., 2014).  

The results from the pilot project, although they noted a benthic colonization of 

macroinvertebrates that increased with time, didn’t provide any indication of increases 

in fish abundance around the turbine simulations (Chapter 3). Analyses showed that 

the abundance of fish is similar at both the artificial units and the bare substrata control 

sites. Both the artificial units and the control sites harboured lower fish abundance and 

diversity when compared to a natural rocky outcrop, presumably due to lower lever of 

surface complexity and niche creation (St. Pierre and Kovalenko, 2014). The in-situ 

results indicate that artificial vertical relief sites in the region might not have the 

capacity to operate as successful artificial reefs.  

In accordance with this finding, when the introduction of an offshore wind farm into the 

ecosystem was simulated i.e. an increase in the biomass of colonizing 

macroinvertebrate species, failed to predict any changes to the biomass of apex 

predators (Chapter 4). No clear changes in fish species biomass occurred and the 

hypothetical introduction of an offshore wind farm to the Adriatic hotspot had almost no 

impact on the functioning, structure or overall activity of the ecosystem.  

These results contrast with several Northern European field studies at offshore 

renewable energy sites (De Troch et al., 2013; Langhamer, 2012; Reubens et al., 
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2013, 2011; Wilhelmsson and Malm, 2008). Considering that the in-situ results also 

indicated some aggregation of the fish around the artificial units, the increases in fish 

biomass in the Northern European field studies may be due to an aggregation of 

individuals at the site as opposed to the new hard substrate supporting higher rates of 

production.  

6.2 SITE SELECTION AND SENSITIVITY 

Knowing the importance that location has on influencing the macro-invertebrate 

communities that colonize an offshore wind turbine (Chapter 2), the identification of 

connectivity levels within a Mediterranean offshore wind farm hotspot (Chapter 1) is 

essential. The Adriatic ‘hotspot’ is an already heavily burdened area in terms of 

offshore use (Micheli et al., 2013; Zanuttigh et al., 2015). High wind speeds, and 

relatively shallow coastal depths mean that parts of the region are suitable for 

renewable energy development sites. In order to best aid site selection within the 

Adriatic, it is important to have a clear understanding of connectivity levels for benthic 

communities to identify possible larval source and destination regions. Since the 

seafloor of the Adriatic is predominantly sedimentary, new structural material (e.g. 

OWF foundations) may act as a conduit for the movement of benthic populations 

across the region (Bishop et al., 2017; Firth et al., 2016). Depending on the aims of a 

planning process, developers may wish to either increase the benthic community 

connectivity of a wind farm to encourage the development of an artificial reef at the site, 

and range expansion of native species (Langhamer, 2012), or decrease connectivity to 

reduce the likelihood of colonization by invasive species (Adams et al., 2014). 

The construction of a connectivity map to identify high and low areas of 

macroinvertebrate connectivity is a novel approach for an OWF site selection process, 

which may prove vital to marine spatial planners. This thesis produces such a map for 

the Adriatic ‘hotspot’ (Chapter 3). The network analysis shows how the whole Puglia 
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coast  is well connected within the Adriatic network, and acts a sink for larvae from 

benthic populations in the Adriatic, making more likely that offshore wind turbines in 

this region will operate as stepping stones for benthic communities (Adams et al., 

2014). In contrast, regions which are situated close to commercial ports and thus at 

higher risk of non-indigenous species presence (Seebens et al., 2016), may benefit 

from being less connected and more isolated from the connectivity network as to 

reduce the spread of these often ecologically harmful species (Simons et al., 2016); 

The Po river basin, and the Montenegro/Albanian coastline are some of the least 

connected sites in the Adriatic. 

 6.3 OFFSHORE WIND FARM ECOSYSTEM APPROACH AND MANAGEMENT PLANS 

Along with other parameters (technical, social, economical etc), ecological targets 

should influence the decision making process for marine spatial planners in regards to 

the siting and managing offshore wind farms. The reduction of commercial fisheries at 

offshore wind farm sites is common in Northern European Seas (Adams et al., 2014). 

These reductions are often not due to the implementation of statutory instrumentation, 

but the reluctance of fisherman to endanger fishing apparatus on underground cables. 

Many offshore wind farm sites have become ‘de facto’ marine protected areas. For the 

first time, this thesis considered the ecosystem level impacts of restricting fishing 

efforts at a potential offshore wind farm site in the Mediterranean (Chapter 5).  

When an Ecological Network Analysis (ENA) was run that compared the Adriatic 

ecosystem with, and without, the enforcement of fishing restrictions at a simulated 

offshore wind farms, it showed that removing fishing activity from the area caused an 

increase in ecosystem activity, biodiversity, and biomass. In addition to these 

increases, the previously heavily fished apex predators of the Northern Adriatic played 

a larger role in structuring ecosystem. The results indicate the importance of 

considering the installation and operation of an offshore wind farm within the context of 
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likely management schemes, and that the addition of novel hard substrate alone does 

not appear to generate the artificial reef effects noted by many existing offshore wind 

farms.  

In conclusion, despite appearing to be a suitable area for offshore wind farm 

development, it appears that wind turbines in the Adriatic and Northern Ionian will only 

create effective artificial reefs if rigorous fishing restrictions are implemented and 

turbines are situated in areas well connected with larval source regions. In an attempt 

to combat the ever evident environmental impacts of fossil fuel use, offshore wind 

energy is a seemingly feasible renewable alternative, however without applying 

cumulative environmental impact assessments the influences on marine ecosystems 

cannot be feasible determined. To fully determine the context of environmental impacts 

from offshore wind farm installations in the Mediterranean, a holistic ecosystem 

approach, as is presented in this thesis, is essential. 
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APPENDIX A 

 

Table A1. Parameters used for Adriatic model. All data is obtained from (Barausse et al., 2009). 

Reader is directed to the supplementary information of the study of Barausse et al., (2009) to 

obtain references for data presented. B = biomass, P = production, Q = comsumption, and EE = 

Eutrophic Efficieny.  

Functional Group B (t km2 yr-1) P/B (yr-1) Q/B (yr-1) EE P/Q 

Dolphins 0.006 0.054 14.0001 0.278 0.004 
Seabirds 0.010 4.610 69.340 0.000 0.066 
Sharks 0.056 0.400 3.077 0.894 0.130 
Rays 0.012 0.724 4.137 0.870 0.175 
European hake 0.052 1.180 4.120 0.937 0.286 
Zoobenthivorous fish hard bottom 0.189 1.900 6.410 0.990 0.297 
Zoobenthivorous fish soft bottom 0.847 1.180 6.306 0.998 0.187 
Mackerel 1.001 0.620 6.506 0.265 0.095 
Horse mackerel 0.962 0.570 5.941 0.593 0.096 
Other small pelagics 0.330 1.889 8.294 0.851 0.228 
Anchovies 7.134 1.100 12.44 0.910 0.088 
Sardines 4.718 0.870 8.709 0.950 0.100 
Nectobenthic zooplanktivorous fish 0.401 1.180 6.442 0.989 0.183 
Omnivorous fish 0.115 1.624 15.040 0.996 0.108 
Benthic piscivorous fish 0.201 0.850 3.304 0.970 0.257 
Flatfishes 0.141 1.300 6.975 0.922 0.186 
Squids 0.050 3.506 26.968 0.973 0.130 
Benthic cephalopods 0.100 3.300 6.600 0.994 0.500 
Crustacea 1 5.437 2.894 17.786 0.958 0.163 
Crustacea 2 1.017 7.911 51.186 0.999 0.155 
Mantis shrimp 0.081 1.500 4.560 0.897 0.329 

Non-commercial bivalves 25.130 1.415 6.350 0.511 0.223 
Commercial bivalves 0.902 1.415 6.350 0.876 0.223 
Gastropods 7.911 1.735 9.717 0.898 0.179 
Filter-feeding invertebrates 7.756 0.761 3.804 0.949 0.200 
Echinoderms 8.939 0.803 2.514 0.433 0.319 
Polychaetes 27.268 1.644 14.27 0.667 0.115 
Jellyfish 1.025 14.813 44.439 0.150 0.333 
Zooplankton 3.285 65.060 185.170 0.917 0.351 
Pelagic bacteria 4.055 136.125 758.696 0.414 0.179 
Macroalgae and phanerogams 42.435 1.700 - 0.200 - 
Phytoplankton 13.165 175.230 - 0.403 - 
Discard 0.058 - - 0.970 - 
Detritus 364.672 - - 1.000 - 
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Table A2. Average annual landings and discards used for model. Reader is directed to the 

supplementary information of the study of Barausse et al., (2009) to obtain references for data 

presented. 

 
Functional group 

Average landings  
(t km

-2
 yr

-1
) 

Average 
discards  

(t km
-2

 yr
-1

) 

Dolphins - 0.0000942 

Seabirds - - 

Sharks 0.0136 - 

Rays 0.00473 - 

European hake 0.0353 - 

Zoobenthivorous fish hard bottom 0.0162 0.00244 

Zoobenthivorous fish soft bottom 0.167 0.172 

Mackerel 0.0379 0.00113 

Horse mackerel 0.0281 0.0856 

Other small pelagics 0.0214 0.0814 

Anchovies 0.711 0.2 

Sardines 0.999 0.55 

Nectobenthic zooplanktivorous fish 0.0729 0.0757 

Omnivorous fish 0.0797 0.00174 

Benthic piscivorous fish 0.0189 0.099 

Flatfishes 0.0538 0.0479 

Squids 0.0441 0.011 

Benthic cephalopods - 0.0109 

Crustacea 1 0.178 0.384 

Crustacea 2 0.068 0.00000523 

Mantis shrimp 0.0957 0.00766 

Non-commercial bivalves - 0.0594 

Commercial bivalves 0.553 0.0463 

Gastropods 0.0155 0.309 

Filter-feeding invertebrates 0.0000852 0.325 

Echinoderms - 0.819 

Polychaetes - 0.015 

Jellyfish - 0.0000586 

Zooplankton - - 

Pelagic bacteria - - 

Macroalgae and phanerogams - 0.992 

Phytoplankton - - 

Discard - - 

Detritus - - 



 

 

Table A3 Diet composition matrix of the Ecopath model for the year 2020. 

 
Prey/Predator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 Dolphins                               
2 Seabirds                               
3 Sharks   0.01  > 0.01          > 0.01                
4 Rays   > 0.01 > 0.01 > 0.01          > 0.01                
5 European hake 0.02  > 0.01 0.015 0.013   > 0.01 > 0.01      > 0.01  > 0.01              

6 
Zoobenthivorous 

Fish—hard 
bottom 

0.02 0.013 > 0.01 0.015 > 0.01 > 0.01 0.023 > 0.01 > 0.01 > 0.01   > 0.01  0.031 0.012 > 0.01 0.05 > 0.01            

7 
Zoobenthivorous 

Fish—soft 
bottom 

0.002 0.013 > 0.01 0.015 > 0.01 > 0.01 0.028 > 0.01 0.02 > 0.01   > 0.01  0.158 0.018 > 0.01 0.145 > 0.01  0.04          

8 Mackerel 0.066  0.018 0.015 0.058    > 0.01      0.015  0.061              
9 Horse mackerel 0.064 0.004 0.017 0.015 0.056  0.016        0.031  0.059              

10 
Other small 

pelagics 
0.022 0.009 > 0.01 0.015 0.019 0.002 > 0.01 0.014 0.01 > 0.01   0.086  0.013 > 0.01 0.02              

11 Anchovies 0.465 0.155 0.127 0.015 0.41 0.04 0.015 0.408 0.382 > 0.01   0.022  0.329 0.04 0.486              

12 Sardines 0.313 0.103 0.084 0.015 0.274 0.026 0.032 0.13 0.1 > 0.01   0.016  0.181 0.03 0.256              

13 
Nectobenthic 

zooplanktivorous 
fish 

0.009 0.013 > 0.01 0.015 > 0.01 > 0.01 0.024 > 0.01 0.01 > 0.01   > 0.01  0.105 > 0.01 > 0.01 0.052             

14 Omnivorous fish  0.004 > 0.01 0.015 > 0.01 > 0.01 > 0.01 > 0.01 0.014 > 0.01   > 0.01  > 0.01 > 0.01 > 0.01 0.019             

15 
Benthic 

piscivorous fish 
0.01 0.004 > 0.01 0.015 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01     > 0.01  > 0.01 > 0.01             

16 Flatfishes  0.007 > 0.01 0.015 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01   > 0.01  0.013 > 0.01 > 0.01 > 0.01             
17 Squids 0.005 0.002 0.027 0.015  > 0.01 > 0.01 > 0.01 > 0.01      > 0.01  0.01 > 0.01             

18 
Benthic 

cephalopods 
0.003  0.111 0.015 > 0.01 > 0.01 > 0.01  0.005      > 0.01 0.01 0.035 0.027   > 0.01          

19 Crustacea 1   0.377 0.015 0.15 0.321 0.621 0.04 0.048 > 0.01   0.08 0.194 0.091 0.251 0.048 0.566 0.091  0.309          
20 Crustacea 2   0.071 0.015 > 0.01 0.153 0.063 0.01  > 0.01   0.071 0.017  0.227 > 0.01 0.048 0.047 0.045 0.09    > 0.01      
21 Mantis shrimp   0.00025 0.015 > 0.01 > 0.01 > 0.01        > 0.01 > 0.01               

22 
Non-commercial 

bivalves 
  0.021 0.015  0.088 0.013         0.131  0.036 0.142  0.367   0.031  0.066     

23 
Commercial 

bivalves 
  > 0.01 0.015  > 0.01 > 0.01         > 0.01  > 0.01 0.004  0.012   > 0.01  > 0.01     

24 Gastropods   > 0.01 0.015  0.083 > 0.01   > 0.01   0.042   0.063  0.025 0.079  0.107   0.032 > 0.01 0.068     

25 
Filter-feeding 
invertebrates 

  0.014   0.036        > 0.01  > 0.01  > 0.01      0.032   > 0.01    

26 Echinoderms   0.016 > 0.01  0.06 > 0.01         > 0.01   0.022       > 0.01     
27 Polychaetes   0.05 > 0.01  0.147 0.119  0.01 0.01   > 0.01   0.173 0.01  0.109  0.07   0.033  > 0.01 0.04    
28 Jellyfish                            0.05   
29 Zooplankton   0.039 0.061  > 0.01 0.022 0.382 0.371 0.972 0.99 0.925 0.67 0.07 > 0.01 0.022 > 0.01 > 0.01  0.047  0.06 0.06  > 0.01 0.099  0.75 0.02  
30 Pelagic bacteria                    0.192  0.22 0.22 0.109 0.491 0.14 0.1  0.19  

31 
Macroalgae and 
phanerogams 

     0.038      0.01  0.25     0.054     0.033  > 0.01 0.012    

32 Phytoplankton           0.01 0.065  0.02     0.022 0.121  0.22 0.22 0.109 > 0.01 0.14 0.12 0.05 0.6 0.15 
33 Discard  0.1                0.01 0.012 > 0.01    0.012  0.01 > 0.01    

34 Detritus       0.014       0.445     0.415 0.59  0.5 0.5 0.606 0.497 0.463 0.717 0.15 0.19 0.85 

 Import  0.573                             
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APPENDIX C 

Table D1.  List of various activities throughout period of research studies 

Event 
 

Location Date 

Conference 

11th Panhellenic 

Symposium of 

Oceanography & Fisheries 

University of the 

Aegean, Mytilene, 

Lesvos Island 

3 - 17 May, 2015 

Conference 
51

st
 European Marine 

Biology Symposium 

Rodos Palace 

Hotel, Rhodes 

Island. 

26 - 30 September, 2016 

Workshop meeting 
CoCoNET Focus 

Workshop 
Norfolk, UK 28 – 29 April 2014 

Workshop meeting 
CoCoNET Focus 

Workshop 

Hellenic Centre for 

Marine Research, 

Anavyssos, Athens  

9 – 10 June,  2014  

Workshop meeting 
CoCoNET Focus 

Workshop 

Spanish Institute of 

Oceanography 

(EIO), Mallorca 

6 - 7 October, 2014 

Workshop meeting 
CoCoNET Second 

synthetic workshop 

Hellenic Centre for 

Marine Research, 

Anavyssos, Athens 

25 - 26 May, 2015 

Workshop meeting 
CoCoNET Final synthetic 

workshop meeting 

Università del 

Salento, Lecce, 

Italy 

1 – 2 December, 2015 

 

Specialist training 
Macroinvertebrate 

taxonomy 

Hellenic Centre for 

Marine Research, 

Anavyssos, Athens  

1 – 30 September, 2014 

Outreach European Maritine Day Pireaus, Greece 28 – 29 May, 2015 

 

 

 

 


