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Abstract 

An Intrusion Detection System (IDS) is one of the major techniques for securing information 
systems and keeping pace with current and potential threats and vulnerabilities in computing sys­
tems. It is an indisputable fact that the art of detecting intrusions is still far from perfect, and IDSs 
tend to generate a large number of false IDS alarms. Hence human has to inevitably validate those 
alarms before any action can be taken. As IT infrastructure become larger and more complicated, 
the number of alarms that need to be reviewed can escalate rapidly, making this task very difficult 
to manage. The need for an automated correlation and reduction system is therefore veO' much ev­
ident. In addition, alarm correlation is valuable in providing the operators with a more condensed 
view of potential security issues within the network infrastructure. 

The thesis embraces a comprehensive evaluation of the problem of false alarms and a proposal 
for an automated alarm correlation system. A critical analysis of existing alarm correlation systems 
is presented along with a description of the need for an enhanced correlation system. The study 
concludes that whilst a large number of works were carried out in improving correlation techniques, 
none of them were perfect. They either required an extensive level of domain knowledge from the 
human experts to effectively run the system or were unable to provide high level information of the 
false alerts for future tuning. The overall objective of the research has therefore btsen to establish 
an alarm correlation framework and system which enables the administrator to effectively group 
alerts from the same attack instance and subsequently reduce the volume of false alarms without 
the need of domain knowledge. 

The achievement of this aim h a s comprised the proposal of an attribute-based approach, which 
is used as a foundation to systematically develop an unsupervised-based two-stage correlation tech­
nique. From this formation, a novel SOM K-Means Alarm Reduction Tool (SMART) architecture 
has been modelled as the framework from which t ime and attribute-based aggregation technique 
is offered. The thesis describes the design and features of the proposed architecture, focusing on 
the key components forming the underlying architecture, the alert attributes and the way they are 
processed and applied to correlate alerts. The architecture is strengthened by the development of a 
statistical tool, which offers a mean to perform results or alert analysis and comparison-

The main concepts of the novel architecture are validated through the implementation of a pro­
totype system. A series of experiments were conducted to assess the effectiveness of SMART in 
reducing false alarms. This aimed to prove the viability of implementing the system in a practical 
environment and that the study has provided appropriate contribution to knowledge in this field. 
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1 Introduction 

The information security threa t landscape is changing rapidly; many organisations are struggling 

to keep up with the changes of nature, complexity and scale of attacks or intrusions. In its 2010 

security threat report, Sophos has highlighted six major IT security threats, including social net­

working, data loss and encryption, web threats, email threats, spam and malware (Sophos, 2010). 

One prominent example is the rise of social networking threats, with a 70% rise in the proportion of 

firms that report encountering spam and malware via social networks during 2009 (Sophos, 2010). 

It is also predicted that social networking sites will face mure sophisticated threats as the number 

of users grows (McAfee, 2010). In general, intrusion is defined as 

any actions or attempts made to compromise the integrity, the confidentiEiIity or avail­

ability of a resource (Heady et al., 1990). 

According to the report presented by Symantec (2010), there are a number of recent and growing 

trends in the threat activity landscape that were (^served by Symantec (2010) in 2009. The t rends 

include attacks t a r ^ t e d on enterprise are increasing, with web application continuing to be the 

favoured vector of attacks over the Internet. 

In discovering the security threat landscape, there are two fundamental issues that have been 

affected by the information security domain over the years (Kark. 2010). Firstly, the threat land­

scape keeps evolving and gains sophistication and secondly, the attackers will always be a step 

ahead of the defenders in exploiting the vulnerabilities in the domain of people, processes and tech­

nologies. Given these issues, attention should now be directed to focus on the changing na ture of 

the threat landscape that includes the motivation of the attackers, the attacking methods and toots. 

The attacking techniques have also evolved from a simple and visible attack to a more sophisticated 

or stealth attack. In terms of the tools, the process has moved from manual to more automated tech­

niques that are easy enough to implement that even people with minimal technical knowledge can 

use them effectively (Symantec, 2010). 

Changes in the current threa t landscape (in other words, the complexity, the evolution of at-

Lackeri: and attack patterns) show not only the attack sophistication (the trend of threats) but also 

the need for enhanced security mechanisms to combat these changes. In fact, the use of authenti­

cation, cryptography, firewalls and antivirus systems do not provide a complete solution to secure 

information system. In spite of those security tools, one of the most appai«nt network tools be­

ing developed, and which has continuously grown in popularity, is the Intrusion Detection System 

(IDS) (Bace, 2000). 

This chapter presents a brief introduction to the context of this research by presenting an 

overview of the main problems related to the subject of study. Next, the goals and objectives of 

the research are determined, followed by a brief summary of each chapter. 



Chapter 1. Introduction 

1.1 The Intrusion Detection System 

An Intrusion Detection System (IDS) is essentially a burglar alarm or a security tool, which is 

aimed at detecting attacks against computer systems and network. IDS, much like the security 

industry itself, has grown rapidly over the past two decades (Goeldenitz, 2002). I t has become one 

of the most vital components of a defensive tool protecting computer system and networks from 

abuse. 

The Intrusion Detection System is required in today's computing because it is unfeasible to keep 

pace with current and potentisd threats and vulnerabilities in computing systems. The environment 

is continuously evolving and changing motivated by new technology and the Internet. Intrusion de­

tection products help in protecting a company from intrusion and securing its information. This 

security appliance is used to detect an intruder, identify and block the intruder, support investiga­

tions to find out how the incident occurs and stop the possibility of fiiture exploits. Such a measure 

should be applied across the enterprise and could serve as a very powerful tool in the information 

security practitioner's tool kit. 

Owing to this fact, the existence of intrusion detection has acted as a second line of defense 

by monitoring, detecting or even responding to the unauthorised activities which could bypass the 

firewall system. It is worth remembering that IDS is not a silver bullet when it comes to protect­

ing systems or network infrastructure. Instead, it is only one aspect of multi-layered protective 

mechanism, an approach referred to as 'defense in depth' (McHugh et al., 2000). 

Although intrusion detection technology has been well established and been an active research 

for more than two decades, the a r t of detecting intrusion is still far from perfect. In fact, the system 

still suffers from the problem of false alarms, which is considered the major limiting factor for the 

performance of IDS (Axolsson, 2000). The following subsection briefly discusses the issue and its 

impact on the overall security implementation. 

1.2 The Problem of False Alarms 

While IDSs have been used for years and shown to be an invaluable improvement towards organisa­

tion's security, they endure the problem of high false alarm (alert)^ ra te (Khosravifar et al., 2009). 

The false alarm rate, which is also known as a false positive, is the frequency with which the IDS 

reports the mahcious activities in error This issue is aggravated by the fact that some commercial 

IDSs may generate thousands of alarms per day (El-Hajj et al., 2010). Recognising the real alarms 

from the significant volume of alarms is a frustrating task for security officers. False alerts always 

cause an additional workload for IT personnel, who must handle and verify every single alert gen­

erated to inhibit or block possible loss of data confidentiality, integrity and availability. The manual 

verification of these true and false alarms among the flood of alerts is not only deemed to be labour 

intensive but also error prone (Bolzoni el al.. 2007). 

The number of alerts generated by an IDS on a Local Area Network (LAN) could be very large, 

for example 15,000 alerts per day per sensor (Cuff, 2006). Reducing the false alarm rate is not 

an easy task. Indeed, it often worsens the situation by causing poorer IDS reliability or accuracy. 

^Th,e terms alarm and alerf are used interchangeabl)' throughout the thesis 



1.3. Aims and Objectives of the Research 

Accordingly, further research is needed to devise a better approach to reducing false alarms while 

improving the quality of alerts generated. 

Traditional IDSs raise alerts independently, though there may be logical links between them. 

A successful intrusion could trigger a sequence of alerts that correspond to different stages of the 

attack (Ning et al,, 2002). Thus, identifying alerts related to an intrusion could help construct the 

attack scenarios. In fact, knowing the real attack patterns and the tactics used by the criminals 

to launch the attacks enable the network administrators to take appropriate actions to block or 

prevent them from escalating. Therefore, in order to support the security administrators in the 

analysis of the security incidents and to provide them with a comprehensive view of the events, an 

alert correlation technique is introduced. Such a technique has become well-liked and commonly 

studied in current IDS research (the hterature of the existing techniques is presented in Chapter 3. 

It provides a mean to find the causal relationships in data by associating alerts, which are parts of 

linked chains of events. Thus, it is anticipated that the method will enable the administrators to 

discover the general attacks pattern from raw intrusion alerts, manage large volume of intrusion 

alerts and help reducing false alarms. 

1.3 Aims and Objectives of the Research 

This study focuses on the issue of an automated alarm correlation system and specifically the se­

lection of the features used in the alert mapping processes, enabling the design and evaluation of a 

novel prototype system for an automated alert correlation and filtering method. 

The main objective of this research is to evaluate and design an improved alarm reduction and 

correlation method. This encompasses the following stages: 

1. Investigation of the extent of the false alarm issue and its impact on IDS detection perfor­

mance. 

2. Critically review existing alarm correlation approaches. This was achieved by investigating 

the use of AI for the improvement of false alarm handling. 

3. Identify factors that influence the alert correlation process. It is expected that the appropriate 

alarm correlation method to particular IDSs wiU vary depending on the features of alarms 

generated. The suitahihty of such a method on a particular detection system rehes on its abil­

ity to properly and effectively interpret the features of alarms generated by the IDS. Not only 

is this approach anticipated to aggregate alerts from the same event, but also to distinguish 

between true and fabe alerts. 

4. Propose a novel architectural framework and a new approach to an unsupervised automated 

alarm correlation system. The framework will be designed focusing on its alert mapping pro­

cesses. 

5. Evaluate the effectiveness of the architecture by designing and implementing a prototype 

system. The main objective of developing a prototype system is to facilitate the practical 

evaluation of the proposed unsupervised automated alarm correlation method. 



Chapter 1. Introduction 

The objectives presented above relate to the general sequence of the material presented in this 

thesis, the structure of which will be discussed in the next session. 

1.4 Thesis Structure 

Chapter 2 presents the evolution and basic concepts of intrusion detection, by introducing the IDS 

architecture and responsibilities of each IDS component, followed by the fundamental principles of 

the technology. This is followed by an introduction to the taxonomy of EDS and quality parameters 

of the technology. It also highlights five key measurement criteria that determine the proficiency 

of the intrusion detection technologies. The chapter then provides an overview of the IDS alarm 

generation and the conventional alarm reduction method, aiming to underline the main concepts of 

traditional tuning methods. 

Chapter 3 focuses on the existing studies on alarm clustering and reduction and begins with 

an introduction of the basic concepts of alarm correlation. It then continues with a review of sev­

eral existing correlation approaches, highlighting their strengths and weaknesses in tackling false 

alarms. The chapter concludes with a discussion of the Security Information and Event Manage­

ment (SIEM) tool, a significant example of a correlation system that collects all security-related 

information generated by software running on the network to provide a more condensed view of 

intrusive activities. This chapter highlights the advantages of the product and also indicating the 

requirement of further improvements on alarm correlation system based on the concept SIEM. 

Chapter 4 assesses the extent of the problem of false alarms based on experiments involving 

the popular open source network IDS, Snort (Caswell and Roesch, 1998). A number of potential 

issues are presented along with the IDS performance analysis on both the synthesised 1999 DARPA 

evaluation data set and real network tralTic (University of Plymouth private data set). This chapter 

then continues to explore the issue of false alarm generation and critically scrutinise the impact of 

false alarms on the IDS detection ra te . 

Chapter 5 presents the main contribution of this research, an automatic unsupervised alarm 

correlation system. The aim of developing this system is to process alerts generated by signature-

based IDS, including aggregating and correlating alerts associated with the same attack instance 

and clustering the alerts into groups of true and false alarms. The new correlation approach should 

help the IDS filter the unnecessary alerts and provide a more concise and high level view of oc­

curring or attempted intrusions. Hence, the automatic alarm correlation and filtering system is 

developed using unsupervised techniques, namely Self Organising Map (SOM) and A" - Means al­

gorithm. The chapter begins by introducing the concepts of the apphed methodologies and the 

rationale behind their implementation. The effectiveness of the proposed system is tested in pre­

liminary experiments on both 1999 DARPA data set and University of Plymouth private data. 

Chapter 6 extends the research by presenting a novel architectural framework of an automated 

unsupervised alarm correlation system. The principal focus of the research is then presented, 

briefly describing the main components of the proposed architecture, followed by the underlying 

concepts of the system. Initially, the operational characteristics of the SMART (SOM A—Means 

Alarm Reduction Tool) system, as a novel approach to existing research in the domain of automated 

alarm correlation is described, followed by a detailed presentation of its main modules. 



1.4. Thesis Structure 

Chapter 7 deflnes the implementation of a prototype system, which embodies a subset of the key 

elements of the proposed architecture, describing the interactions or relationships among them. 

Initially, the chapter begins with an overview of the system development process, the software ap-

phcations used to develop the system as well as its system/software requirements. In addition, 

example scenarios are provided, in order to demonstrate how the correlation is run, how a graph­

ical chart can be created from the correlation results and a false signature rule can be further 

scrutinised. Subsequently, a user-friendly I/O interface is defined, highlighting its features and its 

role in processing and presenting IDS alerts. The chapter continues to discuss the implications of 

the practical evaluation, underhning the prospective changes to the system architecture. Finally, 

the chapter concludes with a comparison on the overall correlations results (false alarms reduction) 

from DARPA 1999 and private data sets against the results of false alarm evaluation discussed 

previously in Chapter 4. 

Finally, Chapter 8 presents the main conclusions from this research, highlighting the principle 

achievements and limitations of the work, along with suggestions for potential further enhance­

ment. 

The thesis also includes a number of appendices, which contain a variety of additional informa­

tion in support of the main discussion, including a number of published papers from the research 

project. 



2 Rationale of IDS Technology 

Although Intrusion Detection technology has existed for three decades, it stiU remains the subject 

of active research area. So far, a lai^e number of research studies have been conducted to improve 

the effectiveness of IDS technology as an essential part of organisational security infrastructure. In 

spite of its improvement, there is always significant scope for further enhancement. This chapter 

will begin by exploring the fundamental principle and evolution of IDS technoli^y in its research 

domain: followed by the underlying problem of IDS alerts. Having presented a brief description of 

the false alarms, this chapter will continue to describe a traditional alarm reduction method. 

2.1 Principles of Intrusion Detection 

In terms of its components. IDS technology consists of three main aspects; namely a sensor (analysis 

engine), an event generator and a response module. In order to have a better understanding about 

the IDS' components, Figure 2.1 depicts a simple example an of IDS architecture (Lundin and 

Jonsson, 2002). 
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Figure 2.1: IDS architecture (Lundin and Jonsson, 2002) 

The sensor, the core element of IDS, is responsible for filtering information and discarding any 

irrelevant data obtained from the event collector, thus detecting suspicious activities. This com­

ponent, which comprises a decision-making mechanism, obtains raw data from 3 m^jor informa-
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tion sources namely IDS detection policy database (knowledge base), system information and audit 

trails. A host-based IDS will rely on system information and audit trails as its major information 

sources to detect potential intrusions. By recei\'ing those 3 types of information, therefore, the 

sensor (analyser) is expected to utilise the data received as the basis for further decision-making 

process. 

As a main information source of the IDS, the policy database does not only comprise the attack 

signatures or user behaviour profile, but it also holds the IDS configuration parameters, including 

the communication method with the response modules. The database will determine how the detec­

tion result should be presented to the end users (passive IDS) or whether further action is required 

to stop the attack (active IDS). Moreover, in order to effectively detect the intrusions, the sensor has 

its own database containing the details of potential complex intrusions (multistep attacks). The in­

formation enables the sensor not only to discover malicious activity but also to link two or more 

activities into a single attack (complex attack). 

In order to enable the system to collect data from the network packets, the sensor is integrated 

with one component responsible for data collection, known as event generator. The role of the 

event generator is to produce a policy-consistent set of events that may be an audit (log) of system 

activities or network packets. Owing to its position as the event collector, this component could 

be an operating system, network or application depending on the type of IDS. In order to properly 

perform its task as data collector, the event generator will receive information from the information 

collection pohcy; containing the rules of filtering event notification information. 

On the other band, the response module, the last component of IDS, is responsible for taking 

an appropriate response action regarding the detection result. This component is known as the 

extension of the traditional IDS. More specifically, an IDS that comes with a response module is 

recognised as an Intrusion Prevention System (IPS). The actions taken by the IPS involve for ex­

ample alerting the administrator about the intrusion via email or even a more active response; 

reconfiguring the firewall settings to inhibit the attacks. In most cases, the response module is 

known as the user interface. In this instance, the response module facilitates the user to view the 

output from the system or even to monitor the behaviour of the system (Grandison and Terzi, 2007). 

IDSs are classified in many different ways, including sensor-based and detection model. 

2.1.1 Sensor-based 

Based on the location of its sensor, the IDS can be divided into 3 types, namely network, host and 

hybrid IDS. 

Network Intrusion Detection Systems (NIDS), such as Snort, CISCO Secure IDS and Clog, are 

IDSs that aim to detect malevolent activities such as denial of service attack, port scanning or even 

any suspicious activity or a t tempt made to crack into the protected system, by monitoring the net­

work traffic (Herberlain et al., 1990). Due to its operational characteristic, the NIDS has become one 

of the most popular types of IDS in the current market (Scarfone and Mell, 2007). The cost-efficient 

(only one IDS required to monitor all devices or hosLs in a network) and easy deployment of the 

system (Operating System independent, in other words, the iinplementaiion of IDS does not affect 

existing .systems or network infrastructure) are few of its main advantages (Carter, 2002), Unlike 

the network-based sensor which performs a packet level analysis, a host-based IDS (HIDS), such as 
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OSSEC, Tripwire and Symantec Critical System Protection (Timberline Technologies, 2009). mon­

itors system level activities and event fog consolidation. With the abihty to access all system calls 

and apphcalion logs, the HIDS sensor can detect any improper change of event activities as soon as 

it is executed, thus determining the occurrence of an attack with greater accuracy and lesser false 

alerts than network-based IDS. 

Given the advantages of both network and host-based IDS, it is more beneficial that the IDS 

is developed by combining multiple different IDS technologies, for example, network-based and 

host-based IDSs, into a single system or also known as Hybrid IDS. The examples of which are 

RealSecure, Cisco Security Monitoring Analysis and Response System (MARS), NetlQ's Security 

Manager and OSSIM (Open Source Security Information Management) (CISCO, 2010). The hybrid 

IDS is commonly created based on a model which brings multiple agents of multiple types sucb 

network-based IDS, host-based IDS, network packet capture and filtering, for example, TCPdump, 

and other multi-vendor IDS systems; all of which are integrated and analysed by the centralised 

management console (Bashah et al.. 2005). The advanced hybrid system is now known as Security 

Information and Event Management (SIEM) (Zoho, 2007). The aim of developing the hybrid tech­

nology is to bring more flexibility, expandabihty and greater accuracy of alerts by cross-checking 

anomalies against other systems; hence reducing the rate of false alerts. 

2.1.2 Detection Model 

Based on its detection method (triggering mechanism), IDS can be classified into 2 common types, 

namely misuse detection and anomaly detection. 

Misuse detection is also referred to as signature-based detection. The idea behind the concept 

of misuse detection is the application of a signature pattern that represents an attack's behaviour 

or even the variations of the attack. Misuse detection IDS. such as Snort IDS, offers various ben­

efits including the ability to detect known intrusive activity and to provide detailed information 

about the attack the IDS is programmed to alert on. Despite the benefits offered, it has a prob­

lem in maintaining the state of information for signatures. In order to maintain the IDS detection 

performance, the signature database must define all possible attacks that an attacker may launch 

against the network. This, therefore, requires a firequent signature updates to keep the knowledge 

base up-to-date (Bon, 2005). 

On the contrary, an anomaly detection system (also known as statistical-based IDS) detects an 

intrusive activity by monitoring the trafBc or system activities and classifying it as either anoma­

lous or normal. One example of this IDS is SPADE (Statistical Packet of Anomaly Detection En­

gine) (SecurityFocus, 2010). An anomaly detection system can effectively detect insider attacks 

and unknown (novel) attacks since it merely relies on the normal behaviour profile and no prior 

knowledge of attacks is required. Such method is opposed to the signature-based IDS which can 

only identify known attacks for which signatures have been created previously. Having said that, 

the biggest drawback of anomaly detection is the issue of false alarms. The unusual behaviour of a 

legitimate user, which is not defined in the user profile, could possibly raise the issue of false alarm. 

Therefore, selecting an appropriate threshold level to achieve a balance between the rates of false 

alerts (false positives) and missed attacks (false negatives) ts a challenge (Garcia-Teodoro et al., 

2009). 
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2.2 The Evolution of IDS 

Intrusion detection technology has evolved significantly over the past few decades. Modem IDS 

has grown into a mature and feature rich technology that provides advanced features to detect 

intrusion, provide responses and also the management system that allows the security analyst 

to monitor, configure and analyse the intrusion data. In order to gain a better understanding of 

how intrusion detection has evolved, the following description presents several faces of intrusion 

detection technology. 

• Primordial Intrusion Detect ion Technolc^y - S imple Pattern Matching 

The very first Intrusion Detection System (IDS) relied on operating system log files as a main 

data source and run on a critical server to detect an intrusion (Kumar and SpafTord, 1994). 

The systems apphed a simple pattern matching approach on the incoming logs. In order to 

perform the pattern matching, a table of pat terns (signatures), representing known intrusive 

tactics was used to match with the analysed patterns (usually presented as ASCII strings or 

string fragments). 

The earliest Network Intrusion Detection System (NTDS) applying this simple approach was 

then introduced (Herberlain et al., 1990). The system performed a comparison on every packet 

passing over a network with a list known attack strings. Each string would be compared byte-

by-byte with all of the traffic monitored by the sensor. Although this system was easy to 

implement, it did not scale well. A rise in the number of pat terns and data sources requires 

an exponential increase in processing power. 

• Protocol Awareness 

The neirt level of the technology was the application of the knowledge of packets to the network 

traffic. The effectiveness of the IDS heavily hinged on the knowledge of packets and protocol 

standards in identifying malicious behaviours. The ability- to decode the protocol header cer­

tainly allowed improvements in the pattern matching technique. Not only could the pat tern 

matching be directed to focus on the appropriate part of a packet, for example, packet header 

or payload, other enhancements could be done in what traffic was monitored. 

Over time, attackers became more sophisticated. Packet fragmentation was one of the cun­

ning techniques used to evade the IDS (Carlo, 2003). The attackers could break each packet 

into smellier pieces to avoid the detection since the IDS was designed to merely detect a com­

plete pattern. In this case, no attack was seen by the IDS. The target network would then 

reassembly the packets and be successfully compromised. In order to address this issue, frag­

mentation reassembly was added to the IDS (Song et al.. 1999). Every monitored network 

packet would be retained, reassembled and then evaluated to look for the suspicious patterns. 

This allowed the sensor to search for the potential fragmented packets effectively, 

• Unders tanding Network Sessions 

Shifting beyond a single packet analysis, IDS technology developed a better approach to 

counter session-based attacks that occurred in a form of a dialog between two systems and 

would not be held in a single packet. In order to effectively uncover this type of attacks. 
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stream reassembly was introduced to IDS (Necker et al., 2002). This method enabled the IDS 

to observe the complete exchange between a source and destination instead of a small slice of 

the exchange and fully review it for mahcious activity. 

Full Protocol Analysis 

With the improvements made on the IDS detection approaches (as described above), the IDS 

technology moved to the next level. The next development of the IDS technology was the im­

plementation of the fioll protocol analysis (in other words, the application of specific knowledge 

of protocols) (Baba and Matsuda, 2004). This technique is proved eflFective to not only detect 

known bad behaviours but also to flag anomalous behaviour as suspicious, discovering new 

attack tactics even before they are announced. 

Intrusion detection based on protocol analysis was the earlier version of an anomaly-based 

IDS. Unlike the basic pattern matching technique, which detects an intrusion based on a 

matching string, the protocol-based evaluation identifies the intrusive behaviotu-s using the 

pre-defined pohcy, thus enabling the system to detect variant of the attacks. As the full proto­

col analysis uses knowledge of protocol toidentify how the packets would be interpreted by the 

destinations, most variations of the attacks can be identified via one mechanism. In addition, 

the attackers can easily evade the detection by simply creating a variation of the same string 

if only the pattern matching technique is applied in the detection system. Another benefit of 

advanced protocol analysis is that it can be applied to anticipate attack patterns. Any at tempt 

made to send an attack against the pre-defined protocol can be detected as an anomaly. 

Intrusion Prevent ion Sys tem (IPS) 

The primary achievement of IDS development is the successful migration of IDS from a pas­

sive monitoring system to an active prevention system, which is known as Intrusion Preven­

tion System (IPS). IPS or IDPS (intrusion Detection and Prevention System) is considered 

the extension of IDS, since both are designed to monitor network traffic or system activity for 

malevolent activity (Enterasys, 2010). Unlike IDS, IPS is able to actively prevent or block 

detected event by taking appropriate actions, such as dropping malicious packets, sending an 

alarm to the administrator or resetting the connection to stop/block the ongoing attack. 

Securi ty Information and Event Management 

Despite the success of the estabhshed IPS, the latest realisation of IDS development is the in­

troduction of Security Information and Event Management (SIEM) system, an analysis centre 

that will combine all IDS outputs, network traffic analysis and other information to provide a 

more condensed picture of adversarial activity (Smith, 2006). It is actually a hybrid solution 

from two distinct security-related products. Security Information Management (SIM) and Se­

curity Event Management (SEM) systems. Unlike IDS/IPS, which relies on a single source 

of information to flag potential breaches, SEEM is capable of assessing log data and corre­

lating information coming fi-om various sources. The system can provide a mean to detect 

security-related events in two distinct ways: by offering a real-time detection or evaluation of 

security-related information directed to it (inherited from SEM) and by supporting non-real­

time forensic analysis of consolidated 1(^ record collected (archive) from various disparate 

security measures (such as packet filter, IDS/IPS, servers) (inherited from SIM). 

U 
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2.3 Efficiency of EDS 

As to the success or failure of IDS technology, the effectiveness of the IDS event imalysis largely 

hinges on the qualities of its detection. This involves three main metrics or parameters that deter­

mine the proficiency of intrusion detection technology (Porras and Valdes, 1998). 

1. Accuracy . This parameter can be quantitatively measured by looking at the ra te of false 

alarms generated by the system. Inaccuracy is shown in the number of legitimate transactions 

being flagged as intrusive activities (false alarms). 

2- Performance. The rate at which transaction or audit events are processed determines the 

value of IDS performance. The lower number of packets dropped by IDS, the better the per­

formance it has. 

3. C o m p l e t e n e s s . Completeness refers to the ability of an IDS to detect all attacks. Incom­

pleteness is reflected when IDS fails to raise an alert when mahcious activities actually occur 

(false negative). Unlike the 'accuracy'" parameter, which can be measured based on the false 

positive rate; the "completeness" is assessed based on IDS detection rate. 

Aside from these main characteristics determining overall IDS' detection performance, there are 

two other properties that have also reflected the additional values of IDS consistency (Debar, 2000). 

Those parameters are fault tolerance and timeliness. Fault tolerance indicates IDS' resistance to 

attacks or its immunity to any attempted damage made to break down the detection system itself 

This is particularly important because this at tr ihute determines the rehability of IDS technology 

as a security defense tool. The second attribute, timeliness, refers to the response time required by 

the IDS to disseminate and react to the information received. A good IDS should not only provide 

a fast processing speed of the information but also enable the security-conscious administrator to 

promptly act in resj>onse to the detected intrusion before further damage has btMsn made (Porras 

and Valdes, 1998). 

2.4 IDS Alarm Genera t ion 

Today, there exist a number of deployment issues faced by current IDS. One of the most significant 

problems facing this technology nowadays is the level of false alarms. The issue of false positive 

has become the major limiting factor for the performance of an IDS (Axelsson, 2000). The sheer 

number of alarms triggered by an IDS can be overwhelming. It is believed that a high rate of 

false alarms is a significant challenge for current network intrusion detection systems, which could 

possibly trigger 80-90% of fake alarms from the total alerts generated (Julisch, 2001; Laskov, 2007). 

In order to gain a better perception about the issue of IDS alarms, the following subsections discuss 

two critical problems of IDS alert generation. 

2.4.1 False Negative 

False negative is a real or genuine attack that is undetected by IDS. Ultimately this is the most 

dangerous type of error could possibly faced by IDS. Principally, false negative is difficult to com­

pute since no evidence can be found from the IDS when the error occurs. Nevertheless, a proper 
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implementation of network defense in depth strategy can help to keep false negatives at a mini­

mum. Significantly, the following are several prominent causes of false negatives (missed alerts) 

defined by Cox and Gerg (2004). 

• IVaffic Encryption 

Encrypted trafRc is often used to perform a secure web communication and it is commonly 

applied to deliver confidential information. Encrypted data does not raise alerts because the 

signature rules do not match. As explained in the previous section, the limitation of NIDS in 

interpreting encrypted traffic becomes one of the major causes of false negative. Hav i i ^ said 

that , modern FDSs are now able to decode the encrypted traffic as long as the encryption keys 

are given. One of the research studies has been conducted to work on a NIDS that makes use 

of IPsec ("Two-Key IPsec") to decrypt the traffic before being processed by the IDS (McLain 

et al., 2007). 

• IDS Evas ion T e c h n i q u e s 

The ability of the attackers to evade the detection could be one of the main causes of the false 

negatives. Blackbats. security researchers and security developers are now competing with 

each other when it comes to network-hased IDS. Blackhats community continually develops 

techniques to evade IDS sensors, whilst security vendors defeat these methods hy releasing 

new patches. Examples of common IDS evasion techniques are fragmentation attacks, session 

sphcing and basic string matching weakness (Ptacek and Newsham, 1998). 

• Badly Written Signatures 

Too specific signatures could also be the factor of false negatives. This signature m i ^ t not 

watch for the correct attack since a variant of an attack might not be detected by the same 

rule as its ancestor (Koziol, 2003). 

• P o o r C h a n g e M a n a g e m e n t 

Poor management within an organisation could possibly result in a poor oi^anisation2d se­

curity posture. Without proper security management, a maficious alteration made on the 

organisational security infrastructure (environment) may go unnoticed by network security 

defense (IDS). 

• IDS Sensor Administration Problem 

The issue of false negative could possibly be engendered by the problem fine tuning. A thor­

ough knowledge of the protected system is required by a qualified IT staff Indeed, a detailed 

examination of the environment, in-depth knowledge of attacking techniques and awareness 

of new vulnerabilities or threats are required before tuning can be carried out. A careless tun­

ing of IDS signatures to control the number of false positives might indeed render the system 

to miss a real securii^ event (Amoroso, 1999), 

2.4.2 False Positive 

A false positive is an alert raised by the IDS because the .system has reported maficious activity 

in error. False positive errors will lead users of the intrusion detection system to ignore its output. 
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as it flags legitimate actions as intrusions; thus leading to an actual intrusion being detected yet 

ignored by the users. Indeed, this error is the major bane of a security administrator's assistance. 

The occurrences of this type of error should be dirainished (it may not be possible to completely 

eliminate them) in order to provide useful information to the system administrators. 

Although IDS has been used for more than a decade, current detection systems still suffer from 

high false alarms and low detection rate (Bolzoni, 2009). An ideal detection system is the one that 

has 0% false positive ra te with 100% attack detection rate. In actual fact, both signature-based 

and anomaly-based systems can be duped to raising thousands of alerts. Usually, with anomaly-

based detectors the abnormality is determined by calculating the distinction between the monitored 

behaviour and the model. Indeed, a selected threshold is used as the benchmark for behaviour 

classification. The value of threshold has a direct impact on both faJse positives and false negatives. 

Increasing the threshold does tighten the system security but it is likely to provoke more false 

alarms. Conversely, the lower the value of threshold, the lesser the number of alarms generated, 

but this might result in a high number of false negatives. Similar to anomaly-based IDS, the more 

specific the rule set of signature-based IDS, the stronger the security tha t can be achieved, hut this 

will lead to a higher false alarm rate. 

In order to explore more about the issue of false positives, there are several common causes of 

false alarms discussed here (Pietraszek and Tanner, 2005). 

• R u n t i m e L i m j t a t i o n 

In practice, it is reasonably hard to distinguish between a real intrusion and normal activity, 

A detailed knowledge of the protected system and a thorough investigation are required to 

accurately isolate malicious events from normal traffic. It is worth remembering that IDS 

cannot analyse the contexts of all activities in details (Ptacek and Newshara, 1998). Owing to 

this limitation, detection system is relatively prone to the false positive issue. 

• Specif ici ty of a t t a c k s i g n a t u r e s 

Writing a good signature rule for IDS is not a straightforward task, it is a challenging job 

instead (Paxson, 1999), In many cases, a right balance between a very specific signature 

and a n overly general one is very difficult to determine. An overly specific signature is very 

prone to cause the system to miss a real attack (false negative). In contrast, an overly general 

signature is likely to induce a large number of false positive alarms. 

• D e p e n d e n c y o n e n v i r o n m e n t 

An activity that is normal in one environment might be harmful in certain situations. For 

example, performing a network scanning is a mahcious act unless i t is carried out by some­

one authorised such as a network administrator. Hence, a thoughtless investigation of this 

instance might render the system to produce a large volume of false positives. 

The accuracy of intrusion detection largely depends on its detection rate and false alarm rate. 

More to the point, the inaccuracy of the alerts generated can be classified into two forms, namely (De­

bar and Wespi, 2001): 

1. Intrinsic inaccuracy 
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This inaccuracy occurred as a result of poorly written rule. As such it does not diflerentiate 

well between normal and harmful activity for a particular attack. 

2. Relative inaccuracy 

This inaccuracy happened owing to the resemblance of normal activity (from the monitored 

system) to those of mahcious activities. 

Both aspects need to be taken into account in calculating the best v^due of detection system. In 

fact, based on the analysis of Axelsson (2000), it is beheved that the substantial values of Bayesian 

detection rate (Intrusion/Alarm) will be achieved if the detection system has attained a very low 

false alarm rate. Unfortunately, according to the 1998 DARPA off-line Intrusion Detection Evalua­

tion, the false alarm rate of the best IDS is not satisfactory {Lippmann et al,, 2000). 

2.5 Conventional Alarm Reduction Methods 

In order to achieve the best performance of an intrusion detection system, the issue of false alarms 

has to be tackled. One of the best ways to reduce the false alarm rate is by pwrforming a tuning. 

Fine tuning is a process of adapting the signature policy to the specific environment and modifying 

or disabling the signatures to reduce false alarms (Chappie, 2003). This is also driven by the fact 

that some vulnerabilities exist in a particular OS (Operating System) platform only. 

In practice, there exist several common techniques applied to the tuning process, namely: 

2.5.1 Disabling Signature 

Disabling signature is carried out by deactivating the signatures relative to the vulnerabilities 

that are not present in a given environment. This method is usually applied to signature-based 

detectors. Some signatures can be switched off as the monitored systems are not exposed to certain 

vulnerabilities or the vulnerability itself only affects certain Operating System platforms. These 

irrelevant signatiires are likely to trigger false alarms if the monitored packets happen to match 

one of the signature rules. 

2.5.2 Pass Rule 

This type of tuning technique can only be applied to a signature-based IDS, which largely hinges 

on the pat tern matching for detect i i^ an intrusion. In spite of alert rule, pass rule csm be used to 

ignore alerts from certain hosts, networks and rules {Roesch, 1999). A poorly written pass rule can 

cause all the signatures to be missed, making the IDS sensor futile. Ignoring alerts from port 21 

for example, might render the actual attack go unnoticed, 

2.5.3 Thresholding and Suppression 

Thresholding and suppression are the most effective tuning techniques, which enable the adminis­

trator to handle the number of logged alerts for noisy rule, generated from or to a given host or for a 
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particular signature. Instead of controlling the alerts per signature, this technique also introduces 

global thresholds; enabling the administrator to control the amount of alerts for all rules. 

Principally, thresholding commands regulate the number of times a particular event is logged 

during a pre-defined time interval. Significantly, threshold rules come in three categories (Beale 

and Caswell, 2004), namely: 

• Limit 

Alerts on the first n events during the time interval, and then ignores events for the rest of 

the time interval. 

• Threshold 

Alerts every n times once this event is seen during the time interval. 

• Both 

Alerts once per time interval after seeing n occurrences of the event and then ignores any 

additional events during the time interval. 

Additionally, thresbolding can be included as part of IDS rule signature (rule key format) or 

even written as a standalone command (standalone format). Although there is no functional differ­

ence between the rule key and the standalone format, there is a logical difference between them. 

Some rules can only work with the thresholds. For example, a nile for detecting brute force attack 

requires a threshold of 5 attempts before the alert can be triggered. 

In order to maximise the performance of an IDS, tbere are 3 methods of tuning IDS sensors (Raikar 

and Ramarao, 2007). Those are: 

1. Tuning based on the deployment of the sensor 

If the sensors are deployed to monitor the external traffic, then to reduce the number of false 

positives, the sensors mus t be finely tuned based on the perimeter defense firewall. This aims 

to alert only those attacks that have the potential to penetrate the firewall. 

2. Tuning based on the information about the protected system 

In order to effectively protect the monitored system, the IDS rules must be tuned based on 

the system's vulnerabilities, such as what application or operating systems are the attacks 

intended to affect. This must be accurately mapped with a superset of all the information 

from the protected system. 

3. Tuning based on observing production environment monitoring 

Apart from tuning the sensors based on its deployment objectives and the information of the 

protected system, alerts from the sensors need to be monitored in a production environment 

for a certain period. Additionally, an extra tuning of the attack signature should also be carried 

out. If the alerts are found to be generated from the normal traffic, then further tuning should 

be conducted for example by disabling the signatures or lowering the severity of the alerts. 

Although tuning does offer a good solution in reducing a large number false alarms, this pro­

cedure could possibly exacerbate the situation by degrading the security level and increasing the 
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risk of missing noteworthy incidents. Therefore, the tuning problem is actually a trade-off between 

reducing false alarms and maintaining the security level. Furthermore, tuning requires a thorough 

examination of the environment by qualified IT personnel and requires a frequent updating to keep 

up with the flow of new vulnerabilities or threats discovered. 

2.6 Conclusions 

This chapter initially presents the concept and evolution of IDS technology in its research domain, 

followed by the fundamental principles of the technology. The components of the IDS technology 

are briefly described in this stage; by introducing the IDS architecture as weU as the responsibihty 

of each IDS component. Lastly, the issue of false alarms was briefly highlighted by including a 

discussion about two critical problems of IDS alert generations and the facts relative to these issues. 

And to address such problems, a conventional alarm reduction method (that is fine tuning) was 

introduced. 

Despite the fact that IDS technology has grown into a mature product, the problem of false 

alarms is still far from being solved. Although tuning does offer a good solution in reducing a lai^e 

number false alarms, this procedure increases the risk of missing noteworthy incidents. In fact, 

it requires a thorough examination of the environment by qualified IT personnel and requires a 

frequent updating to keep up with the flow of new vulnerabilities or threats discovered. With this 

issue in mind, it is of paramount importance to focus on an intelligent alarm reduction tool that 

could improve the quahty of alerts generated by effectively filtering the false alarms without the 

need of human intervention. The following chapter will present a review of current fiterature or 

studies on IDS alarm correlation methods as well as the drawbacks associated with them. 
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3 Investigation into alert reduction 
methods using alarm clustering 
and correlation techniques 

Apart from tuning, research has recently focused on alternative alarm reduction techniques. This 

chapter covers the state of the art specifically in the area of IDS alarm correlation using Artificial 

Intelligence (AI) techniques. It begins with an introduction of the concepts of alarm correlation 

approaches, highlighting the need for correlation systems. Existing works on false alarm reduction 

approaches are then presented. foDowed by the characteristics of correlation systems proposed in 

current IDS research. 

3.1 The Need for an Automated Alarm Correlation 

It is very common that an attack is performed by sending a significant number of malicious packets 

to the targeted network. As a signature-based IDS triggers an alarm for each detected malicious 

packet, alarm flooding may occur. Additionally, many attacks are launched as a sequence of steps 

(that is multi-stage attacks), which depict the logiciil relationship (in other words, cause and ef­

fect) between each stage of the attacks. Whilst each attack step can be identified by the IDS, it is 

worthwhile for the security administrators to obtain information about the detected attack based on 

the aggregation of alarms related to different steps rather than on each single alarm. Moreover, a 

single alert analysis provides only partial information on the attack, which is deemed not valuable 

enough to uncover the real pat terns or scenario of the attack. 

In order to allow the administrators to perform a complete alert analysis on the aggregated 

alerts and to cope with the issue of ftilse alarms, an alarm correlation system is now a necessity. In 

general, alarm correlation is a process that analyses the intrusion alerts generated by IDS, filters 

the false alarms and then provides a more concise and high level view of occurring or attempted 

intrusions. 

3.2 Concept of Alarm Correlation 

In terms of their underlying concepts, alarm correlation methods can be classified into several 

prominent classes. Those are: 

• Correiating alerts based o n the prerequis i tes of intrus ions 

This approach is based on the assumption that most intrusions are not isolated, but are re­

lated to the different stages of attack sequences, with the early one prepared for the later one. 
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It is believed tha t most of the traditional IDSs only focus on low level at tacks and raise alerts 

independently, without considering the possible logical connection between them or the poten­

tial attack strategies behind them. Another problem is tha t they cannot fully detect unknown 

attacks, or the variation of known attacks, without generating a large volume of alerts. 

Several studies, including works from Cuppens and Miege (2002) and Ning et al. (2002) were 

based on this concept. The authors proposed a novel system that correlated alarms by us­

ing the prerequisites and consequences of corresponding attacks, for example, the existence 

of a vulnerable service can serve as the prerequisite for the remote buffer overflow attacks. 

Furthermore, such an approach provides an intuitive mechanism to represent potential at­

tack scenarios, known as hyper alert correlation. Even though this technique helps removing 

insignificant alerts and discovering a sequence of attack plans, it cannot correlate unknown 

attacks (without attack patterns). 

• Alert correlation based on the similarity between alert features 

This approach correlates alerts based on the similarities of selected features, for example 

source IP address, destination IP address or port number (Debar and Wespi, 2001). Alerts 

with a higher value of overall feature similarity will be correlated. Another research study 

were also conducted in evaluating the use of a feature similarity function to fuse alerts that 

match closely but not perfectly (Vaides and Skinner, 2001). The similarity function was used 

to calculate the hkeness of the features that match at least the minimum similarity speci­

fication, regardless of the match on the feature set as a whole. Several works frora Julisch 

(2001); Al-Mamory and Zhang (2009); Maggi et al. (2009) were also based on this approach. 

Although such method seems to effectively reduce false alarms, it cannot fully discover the 

causal relationship between related alerts. 

• Alert correlation based on k n o w n attack scenarios 

The last approach correlates alerts based on the known attack scenario. One of the methods 

to fuse alerts into a scenario is by using a data mining technique (Dain and Cunningham, 

2001). This technique can produce a real time algorithm to combine the alerts produced by 

heterogeneous IDSs into a scenario. The mciin purpose of this work is to simply group alerts 

which share a common cause, thus providing a better view of the security issue to the system 

administrator. Such approach works well in reducing the false alarms, since either individ­

ual alerts or the whole scenario could be labelled as false alarm. Significantly, it could also 

effectively uncover the causal relationship between alerts; however, it could not be applied to 

correlate alerts generated by unknown attack scenarios. 

It is worth remembering that the process of correlating alerts does not only involve a single or 

few components of procedure, instead it is a complete process involving various or a comprehensive 

set of components. 

A study was carried out to propose a general correlation model that identified a comprehensive 

set of components and a framework that analysed how each component contributes to the overall 

goal of the correlation (Valeiir et al., 2004). Figure 3.1 shows a graphical representation of the 

integrated correlation process. The main purpose of this process is to gain a better understanding 

of the features of the intrusions, for example, the alerts generated, the target and source host of 
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Figure 3.1: Correlation process overview (Valeur et al., 2004) 

the attackE. the impact of attacks as well as the priority of alerts. Although numerous correlation 

methods were proposed in recent studies, not all of tbem provided a detailed account of how these 

components should be evaluated and implemented in a real life environment. For example, the 

identification of alarm patterns into scenarios using prerequisites and consequences features do 

not provide enough detail on how the incoming alerts will be pre-processed before being correlated 

into scenarios. 

3.3 Alarm Reduction Methods 

In order to better understand the roles of correiation systems in IDS technology, this section presents 

the development or techniques of existing false alarm reduction models. 

3.3.1 Categories of Alarm Reduction Approaches 

One of the main objectives of performing alarm correlation is to reduce false alarms. Alarm re­

duction is not a trivial task as numerous aspects, for example, attack features, need to be consid­

ered (Kruegel and Robertson, 2004). In addition to the conventional tuning method, two reduction 

approaches have been proposed so far, namely alarm classification and alarm correlation. 

3.3.1.1 Alarm c lass i f ica t ion 

Alarm classification is a process of identifying true and false alerts based on a pre-defined alarm 

model or pattern. This technique is commonly used to detect abnormal pattern from an alarm 

sequence using a pre-defined normal alarm model (Law and Kwok, 2004; Alharby and Imai, 2O05). 

3.3.1.2 Alarni correlat ion 

Alert correlation is known to be the first step of the alert management processes. The main objective 

of the alert correlation technique is to reduce redundant alerts while keeping the important infor­

mation. Besides, it could also provide a more succinct or high level view of security issues occurring 

in the protected network. This technique is designed to discover the logical connections (causal re­

lationships) between alerts and also structural relationship in data by groupii^aggregat ing alerts 
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with common features (their similarity) (Ning et al., 2004: Julisch, 2001). Alarm correlation is also 

used to manage large volumes of alerts generated by heterogeneous IDSs (Zurutuza and Uribeetxe-

berria, 2004). 

Moreover, knowing the sequence and outcome of an attack does not only help filtering false 

alarms but also enable more appropriate responses to stop and prevent attacks fi^m escalating. 

This is another primary goal of alert correlation. 

Having identified two conmaon alarm reduction approaches, the following subsections describe 

how both techniques are applied in current IDS research. 

3.3.2 Alarm Classification Techniques 

One of the reasons that causes IDS technology to generate a high false positive ra te is the lack of 

correlation between input and output traffic, which can be essentially used to look for abnormal 

output traffic (Bolzoni and Etalle. 2006). The main concept behind this study was the idea that a 

successful intrusion to a system usually generates an anomaly in the outgoing traffic; otherwise 

it is a normal activity. The proposed system, which was known as APHRODITE, consisted of two 

main components, namely Output Anomaly Detector (GAD) and correlation engine {Bolzoni and 

Etalle, 2006)- OAD had a responsibihty for monitoring the output of the system and by referring 

tfl a statistical model describing the normal output, flagging any behaviour tha t deviates from the 

pre-defined model as a possible attack. On the other hand, the correlation engine was responsible 

for correlating the input to the output of the system belonging to a same connection. 

APHRODITE had viuious advantages in terms of operational factors. It worked efTectively with­

out optimal training (without using attack-free traffic) and could successfully detect an unknown 

attack without the need for a new signature. In addition, it was also proved to effectively reduce up 

to 99% of false positives generated by Snort. Despite the benefits offered, the system was unable 

to reduce the number of redundant alerts produced by the same event, and not able to conduct a 

real-time inspection, since the output of the event was required as the prerequisite of the detection 

process. 

A post-processing filter based on the concept of neighbouring alerts and high alert frequency 

was p resen t s ! by Spathoulas and Katsikas (2010). The proposed filtering scheme was developed 

according to two major assumptions; first, the distribution of the number of the neighbouring alerts 

varies significantly from false to true positives. Second, it is more probable for an alert to be a t rue 

positive if it occurs in higher frequency compared to the mean frequency of alerts from the same 

signature. There were three main components implemented in this proposed system, namely the 

Neighbouring Related Alerts (NRA) component, the High Alert Frequency (HAF) component and 

the Usual False Positives (UFP) component. For each alert received, each component should give a 

score (belieO which represented the probability that such alert was a t rue positive. The total scores 

from the three components were then calculated and a final verdict was produced to determine 

whether the alert is a false or true positive. Evaluation carried out using the DARPA 1999 data set 

pointed out that such approach can significantly reduce the false positives by 75%. However, one 

major weakness is that there is still no clear explanation been given to justify how an alert caused 

by a stealth attack can be detected as a t rue positive as such intrusion does not fire a large number 

of alerts, tha t is low fi-equency, in the network. 
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Data mining technique has been commonly applied by numerous research studies; one of them 

was proposed by {Law and Kwok, 2004). The authors suggested a novel system that modelled 

normal alarm pat terns and detected anomaly from incoming alarm streams using a K-Nearest-

Neighbour (KNN) classifier The system monitored and detected abnormal patterns (in other words, 

suspicious events), from tones of alert generated by an IDS. It was beheved that when an attack 

occurs, the alerts will have different patterns from the one generated in an attack-free environ­

ment. The main idea of the study was to let the false alarms be ^ n e r a t e d as they are, and then to 

determine whether the incoming alarm sequence generated are deviated from normal situations. 

Although this model successfully reduced up to 93% of false alarms while maintaining its detec­

tion rate, it was not apphed on live data and implemented in the real life environment. For that 

reason, there is still much more work to be undertaken in order to assert that this idea is applicable 

to existing IDSs under real life environment. 

Another research based on the similar concept was proposed by Alharby and Imai (2005). By 

observing the frequent behaviours within an extended period of time, it was beheved that a normal 

alarm pattern could be accurately formed. Based on the created model, the system could flag a 

sudden burst of a sequence of alarms that has never been seen before as a suspicious activity. 

Given that the historical alarms pattern was used to learn the future alarms by using the ex­

traction of the sequential pattern, this approach overcame some limitations of existing systems by 

constructing a more systematic model. The proposed system matched the extracted newly arrived 

sequence pattern with the extracted sequential pattern that represented the normal behaviours. 

The more matches found in this process, the more likely it is a normal behaviour. 

Like other proposed methods, the system has a major drawback. The classification accuracy of 

both approaches from Law and Kwok and Alharby and Imai relied on the length of the time window 

for each alarm set. Since the alarm patterns are varied depending on the allocated time frame, the 

anomalous alarm pattern will share similarity with the normal pattern if the time allotment is 

amiss. 

Unhke other works that focused on off-line analysis, J an et al. (2009) proposed a decision sup­

port system for constructing alert classification behaviour patterns for on-line network behaviour 

monitoring through a large volume of alerts. The authors proposed three kinds of alert classification 

rule classes including normal behaviour, intrusion behaviour, and suspicious behaviour classifica­

tion rule classes. Each class consisted of a fixed number of classification rules. 

The experiment conducted showed the effectiveness of the proposed decision support system. 

Besides being able to n m an on-line monitoring, the system also enabled domain experts to quickly 

and accurately discover suspicious behaviour patterns, ease the workload of on-hne alert analysis 

for the administrators and effectively reduced up to 80% of false alerts. Having said that, the system 

also suffers from several common limitations. Firstly, in order to ensure that the alert sequences 

are properly flawed, the classification rules need to be frequently refined. This requires high com­

putational overhead and sufficient domain knowledge frt>m the experts. In fact, labelled data (rules) 

are not readily available in most cases. With a very large volume of network data encountered, it 

is undoubtedly expensive to classify them manually. Secondly, since the system can only support a 

limited number of rules (up to 200 rules) in each classification class, they need to be wisely selected 

to provide adequate coverage for whole attack variants. Lastly, the system appears to be not cost 

eflScient enough since the rule classes are created for each target host (each sensor). A significant 
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number of rules will be required for IDS implemented on a multi hosts oetwork envirtmment. 

Viinikka et al. (2009) presented a novel system that aggregated alerts into an alert sequence. 

There were two basic assumptions applied in this study: first, normal system behaviours in alert 

flow can be identified by the regularities and smooth changes in the alert intensity. Second, the nor­

mal behaviour is not observable at an individual alert but at alert sequence (flow). To follow these 

hypotheses, the system modelled the regularities of the alert flows from the normal behaviours 

and used the created model to filter out the irrelevant or low impact alarms from the alarm log. 

Although the system revealed a great performance, still, there is a risk of modelling ahnormal be­

haviours into a normal behaviour model if no abrupt changes in the alert intensity caused by true 

alarms have been detected. 

Aside from the data mining techniques, a novel system utilising machine learning technique, 

known as Adaptive Learner for Alert Classification (ALAC), was proposed by Pietraszek (2004). By 

building an alert classifier using such technique, the system would classify the alerts and send the 

classification outcome to the security analyst for further feedback. Once the feedback was received, 

the system would initially build and subsequently update the classifier, which was then used to 

classify new alerts in the future (as shown in Figure 3.2). 
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Figure 3.2; The framework model of ALAC classifier 

The system offered a greater effidency in terms of its operation. ALAC could be set to process 

autonomously alerts that were classified previously. For example, it could remove any alerts that 

have been classified as false positive in high confidence. Indeed, the experiment proved that the 

system could reduce the false alerts by more than 50%. 

Along with the strengths, the system also has its share of drawbacks. One of the biggest prob­

lems is the dependency of the system on human intervention for a decision-making process. The 

abihty of the analyst to correctly classify the alerts determines the accuracy or performance of the 

method. Another drawback is that the system must he able to adapt to the new changes as a new 

data arrives; in order to perform a r«al-time analysis. Besides, applying additional background 

knowledge, for example, network topology, a ler t database, to bmld an accurate alert classifier will 
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increase the complexity of ieaming tasks. 

Another similar piece of study developing an adaptive learner detection system was proposed by 

Yu et a l (2008). The authors proposed an adaptive and automatically tuning intrusion detection 

system (ADAT) that controlled the number of alarms presented to the administrators and tuned the 

detection model according to the feedback provided by the administrators when false predictions 

were identified. The proposed system built a detection model in the training stage and controlled a 

prediction filter to push the most suspicious alarms (predictions) to be verified and labelled by the 

administrators. The volume of alerts presented must be restricted according to system operators' 

abiUty to respond to the predictions. 

In terms of its performance, the system appeared to be very effective; with the total raisclassifi-

cation cost dropped at least 25.5% fi-om the cost of systems with a fixed detection model. Unfortu­

nately, one major common limitation of the system is that the system greatly relies on human inter­

vention, in other words, security operators, in creating the detection model. The administrators are 

urged to verily intrusive predictions made by the prediction engine and to ensure any possible false 

predictions are identified. Additionally, it is very difRcult to work out the optimal tuning strength 

(threshold) required in order to reduce the number of false predictions on future unknown data. 

This, hence, requires a thorough work or analysis to prevent the issue of false negatives. 

3.3.3 Alarm Correlation Techniques 

(lulisch (2001) suggefjted a technique to efficiently handle large groups of redundant alerts by cor­

relating alerts into clusters based on their root causes. The main purpose is to identify and remove 

the root causes of the false alarms. For each alarm cluster, a model of alarms, which is known as 

generalised alarm, is derived. Clearly, a generalised alarm is a pattern that an alarm must match in 

order to fit into a respective cluster. The knowledge of these generalised alarms vastly simplifies the 

identification of alarms' similarities. The author observed that over 90% of all alarms corresponded 

to a small number of root causes. By knowing the root causes, the IDS can be regularly adjusted 

and root causes can be removed, reducing the false alarms by 82%. Unfortunately, as such method 

focused merely on a lai^e group of superfluous alarms, it was considered not effective enough in 

identifying false alarms in a small cluster. Jufisch and Dacier (2002) also developed a technique to 

mine historical IDS alarms for episode rules. The rules are created to predict a prospective alert 

when a specific set of alarms was generated. Whilst this approach is deemed outstanding enough to 

give an insight into the pattern of false alarms and the potential future attacks, it could only offer 

1% reduction in alarm rate, whilst 99% of edarms were still left for manual processing. 

Al-Mamory and Zhang (2009) also proposed a novel system using a root cause analysis and 

clustering, which is extended from previous work done by Juliscb (2001). The main contribution of 

this work was a development of a new data mining technique, Attribute-Oriented Induction (AOI), 

which has a new generalisation technique to avoid over-generalisation and has a good distance 

measure between the values of alarms' features. Although the experiments conducted with DARPA 

data sets and real network traffic clearly demonstrated the efficiency of the system, with a reduction 

ratio of 74%, it does sufTer from the same limitation as Julisch's work. Extensive knowledge and 

experiences from the administrators are required to help creating a safe filtering rule in order to 

avoid the issue of false negative. 
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Another significant study conducted was the application of alert fusion to correlate alerts from 

multiple sensors in a distributed environment (Siraj and Vaughn, 2005). Alert fusion is a process of 

interpretation, combination and analysis of alerts to determine and provide a quantitative view of 

the s tatus of the system being monitored. Importantly, the infrastructure consisted of three essen­

tial components; namely alert prioritisation, alert clustering and alert correlation. Thus, in order 

to fuse the alerts, a causal knowledge-based inference technique with Fuzzy Cognitive Modelling 

was implemented to find out the causal relationship in sensor data. 

Overall, Fuzzy Cognitive modelling offers a good representation of data that enables the human 

operator to learn and interpret the data much easier. The technique also had an advantage in 

describing an attack sceniuio for Distributed Denial of Service Attacks (DDoS) by using the concept 

of "cause and effect". Besides, i t also had a capability in discovering the causal reiationship of 

alerts; which then could lead to the identification of a series of attacks. However, in spite of the 

advantages offered, it has one major limitation; namely its inahility to deal with unknown alerts. 

Another similar piece of work was also proposed by Maggi et al. (2009) to aggregate IDS alerts 

based on the concept of an alert fusion. The core components of the alert fusion process were ag­

gregation and correlation modules. The first module was responsible for clustering alerts sharing 

common features, whilst the second one identified the logical relationships between alerts. The au­

thors explored the concept of fiizzy set theory and fuzzy measure to semantically define the notion 

of "closeness" in time. The proposed technique was claimed to be simple yet robust approach for 

computing the time distance between alerts as it took into account major uncertainties on times-

tamps, in other words, the choice of window size is less sensitive due the concept of the applied fuzzy 

theory. Furthermore, it was able to decrease the false positives ra te at the price of small reduction 

of the detection rate. 

Similar to the previous study conducted by Siraj and Vaughn (2005); Perdisci et al. (2006) sug­

gested a novel nearest neigh hour-based on-hne alarm clustering or fusion algorithm, which pro­

duced a unified description of attacks from alarms produced by multiple IDSs. The system com­

prised three architectural components, namely alert pre-processing module, classification module 

and clustering/fusion module. In the initial phase, an alert pre-processing module translated every 

alert into a standardised format that was understood by all correlation processes. On the other 

hand, a classification module labelled an alarm message as belonging U) one or more attack classes. 

Finally, a clustering/fusion module determined whether the received alarm could be clustered, thus 

fused to the pre-defined clusters or to initialise a new meta alarm. Initially, the proposed system 

processed a sequence of alarms produced by IDSs and then produced meta-alarms, that is a sum­

mary description of events obtained hy aggregating correlated ai^lrms generated by various IDS 

sensors. The main objective of this new strategy was to provide a concise high-level description 

of the attacks and to reduce the volume of alarms presented to the administrators. Although the 

system was demonstrated to effectively reduce up to 80% of false alarms, it had a difficulty in ob­

taining sufficient attack data for the classifier to model and build the attack classes and the data 

acquisition is always time-consuming and greatly relied on the domain experts. 

While several research studies have been focused on finding the relationships between alerts 

automatically, not much attention has been given to the issue of real-time correlation. Sadoddin 

and Ghorbani (2009) proposed a new fi^amework for real-time alert correlation, which applied a 

novel technique for aggregating alerts into meaningful pat terns and incremental mining of frequent 
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structured patterns. The authors presented several generalisation rules to improve the constructed 

pattern and generate an abstract signature for the patterns, A new algorithm, known as Frequent 

Structure Mining (FSP-Growth) was introduced to mine frequent pattern by considering the struc­

ture of the alerts. Such method not only offered more accurate frequency analysis of pat terns but 

also gave the exact structure of the extracted pattern within the network. The core strength of the 

proposed framework Ues on its ability to maintain time-sensitive statistical relationship between 

alerts in an efficient data structure and update the relationship incrementally to reflect the latest 

trend of patterns. The result of the experiments conducted with DARPA 2000 clearly demonstrated 

the effectiveness of the proposed technique. Approximately 96% of total alerts can be reduced ef­

fectively. Having said that, as the system included t ime lapse between alerts in the correlation, 

selecting a right (optimal) value to balance a security threshold is still a challenge. 

3.4 Underlying Mechanisms of Alarm Correlation System 

Unlike the comprehensive correlation framework proposed by Valeur et al. (2004), the majority of 

alert correlation studies deployed only a few major correlation components, involvii^ only alert 

fusion and alert verification approaches, as described in Figure 3.1 (Siraj and Vaughn, 2005; Dondo 

et al., 2006). Alert merging (alert fusion) has a task of grouping alerts that represent independent 

detections of the same attack instance into a cluster. Each cluster is then passed onto the alert 

verification module (alert filtering), which is responsible for determining the success of an attack 

from the corresponding alert and filtering the insignificant alerts. 

The correlation methods can be categorised into two different approaches, namely (Cuppens and 

Miege, 2002): 

1. Explicit Correlation. Explicit correlation is a type of correlation that relies solely on intrusion 

knowledge of the security administrator to correlate alerts. The relationship of iderts can be 

discovered from its logical l in t based on the knowledge of the alerts, instead of the outcome 

of data mapping (Zhu and Ghorbani, 2006). Such correlation can express exphcitly the known 

If^cal hnks between attacks. In addition, it forms and utihses correlation rules to define 

alerts ' condition and the potential events generated from the corresponding intrusion. 

2. Implicit Correlation. Implicit correlation is a correlation that depends on the analysis or 

computation of the alert data instead of the domain knowledge of the experts. By utiUsing 

the data mapping (either statistical or graphical data) produced by the generated events, the 

relations between alerts or events can be identified. The key objective of this approach is 

to investigate the behaviour of the alerts and extract the implicit connection between them. 

Many research studies were conducted to prove tha t IDS sensors can properly produce alerts 

based on the feature, traffic or the topology of information systems. And the correlation can 

be achieved by implementing learning techniques, such as machine learning, data mining and 

neural network. 

In order to gain a better perception of the alert correlation model, following subsections present the 

evolving studies of both expUcit and imphcit methods in more details. 
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3.4.1 Explicit Alarm Correlation 

A correlation method using consequence mechanism was proposed by Debar and Wespi (2001) and 

N'ing et al. (2002). The proposed algorithm used the knowledge of prerequisite and consequence to 

group all possibly related alerts. 

In this context, the prerequisite of an attack is the necessary condition for the at tack to be suc­

cessful. For example, the existence of vulnerable system is the main prerequisite for the attack 

to succeed. On the other hand, the consequence is the outcome of an attack. In a series of at­

tacks where the attackers launch earlier attacks to set up the foUovnng attack, there exists strong 

connection between the consequences of the earlier attacks and the prerequisites of the later one. 

Moreover, the notion of hyper alert type is built to represent the prerequisite and consequence of 

each type of alert. Despite its benefits, this technique is deemed not effective enough to prevent 

the occurrence of false negative. For example, if a particular alert is generated by a specific attack 

that does not correspond to any other subsequent attack, it might not be correlated into a hyper 

alert. This alarm might be considered as a low priority alert tha t does not require fiill attention 

from security analyst. This situation might thus generate a false negative. 

Apart from the consequences mechanisms, another novel system based on the concept of similar­

ity between the alert features was proposed by Valdes and Skinner (2001), The system was created 

using a probabihstic method, which heavily relied on the parameters selected by human experts, 

for example, alert features. Owing to this fact, it is not suitable for fiilly discovering the causal 

relationship between alerts. 

3.4.2 Implicit Alarm Correlation 

Following subsections describe how data mining, machine learning and neural networks are applied 

in current IDS research. 

3.4^.1 Data Mining 

Data mining, which is known as knowledge discovery, is a process of analysing data from differ­

ent perspectives and summarising the valuable information from a large data set, for example, 

relational database (Zaiane, 1999). 

Various different data mining techniques exist for cluster analysis and the suitability of the 

different approaches heavily depend on the area of their applications and features. One of the 

examples is to use data mining to look for alert clusters corresponding to root causes (Juhsch, 2001; 

Julisch and Dacier, 2002); as described previously in subsection 3.3.3. 

To achieve an effective data raining mechanism, a proposed system should satisfy several func­

tional requirements, as described below (Julisch and Dacier, 2002): 

• Scalability 

As the main task of data mining technique is to deal with a large data set, scalabihty has 

become its necessity. Scalability is a desirable property which indicates its ability to either 

handle growing amounts of data or to be readily enlarged. 

• Noise Tolerance 
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Intrusion detection alarms can be very noisy (Paxeon, 1999); thus the capabthty of filtering 

the noise from the real data is desirable. 

• Multiple attribute types 

Alarms can be made of various types of data attributes such as numerical, categorical, time 

and free-text attributes (Juhsch, 2001). An ideal data mining technique sboiild support all 

attribute types. 

• Ease of use 

The usability of data mining is of importance. Setting the parameters, for example, should not 

require an extensive and profound knowledge of data mining and statistics from the users. 

• Interpretabihty and relevance of patterns 

Since the process of analysing the outcomes of data mining is iterative or it has to be repeated 

to keep up with changes of IDS alarm patterns, this feature become highly important. Other­

wise, the human cost of learning from these patterns would become excessively expensive. 

One of the fundamental techniques of data raining is associated with finding association rule. 

The concept of association (episode) rule has become well-accepted in the area of IDS research. 

Typically, episode rules are a data mining technique that was created to find patterns in event se­

quences (Shin et al., 2003). This method refers to a set of inference rules that predict the occurrence 

of an alarm based on the occurrence of other alarms. Indeed, it allows one to extract useful infor­

mation from an unknown attack. Knowing the episodes of a legitimate activity makes the filtering 

of fake alarms effective, thus preventing false positives in the future. Similarly, if a number of 

redundant alarms have been discovered by episode rules, then overall alarm load can be reduced 

by fiasing those duplicate alarms into a single, better meta-alarm. Ultimately, episodes that are 

generated frora a real attack can be reliably applied to effectively detect future attacks. 

Apart from using the theory of relationship to mine the historical alerts in a more inferential 

manner, a data mining technique can also be deployed for a virtual data mapping. It can be applied 

to map alerts data into a set of data points in order to provide a more descriptive view of the anal­

ysis. One prominent example of such apphcation is the usage of KNN classifier to classify normal 

and abnormal IDS alerts (X*aw and Kwok, 2004). The KNN technique models the normal alerts 

patterns into an N-dimensional space. In fact, it was also commonly used in anomaly detection to 

observe the behaviours and to detect the intrusion from audit data (Li et al., 2007). 

3.4.2.2 Machine Learning 

Machine learning is a broad subfieid of artifidal intelligence, which is concerned with the design 

and development of algorithms and techniques that enable computers to learn (Bishop, 2007). Its 

major focus ts similar to the data mining technique, to extract useful information automatically 

either by computational or statistical methods. 

In the context of intrusion detection technology, machine learning can be used to store user-input 

stream of commands in a vectorial form and is implemented as model of normal user behaviour 

profile (Nilsson, 1996). Having developed the profile of normal behaviour patterns, they are then 

clustered in a group containing user commands with similar characteristics. Another significant 
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example of machine learning is the Adaptive Learner for Alert Classification (ALAC) (Pietraszek, 

2004). It utilises the idea of labelled alerts to create the patterns or training examples for the input 

of machine learning. 

3.4.2.3 N e u r a l N e t w o r k s 

An artificial neural network is a broad subfield of artificial intelligence technique. It consists of col­

lection of processing nodes that are highly interconnected and convert a set of input into a set of re­

quired output. The outcome of the alteration is determined by the nodes' attributes and the weights 

associated with the relationships or connections between them (Stergiou and Siganos, 1996). By ad­

justing the characteristics and connection between the elements, the network is able to adapt to the 

final outputs. 

An increasing number of research studies so far investigated the application of neural networks 

to intrusion detection. If well designed and implemented, it has the potential to alleviate a number 

of problems encountered by other current approaches. Neural network is specifically created to 

learn the typical behaviours of actors in the system and to statistically recognise the significant 

variations from the established patterns (Bishop, 1995). The main advantage of using this approach 

is that it gives a simple method to express nonlinear relationships between parameters and learns 

the relationship automatically. 

There are several typical neural network approaches applied in the area of intrusion detection. 

Further descriptions of those techniques are presented in the subsections below. 

3.4.2.3.1 Self Oi^anis ing Map (SOM) 

The Self Organising Map (SOM), developed by Kohonen, is one of the most popular neural network 

models. It is a fully connected, single layer neural network (Kohonen, 1995). The SOM algorithm 

performs a smooth and linear mapping of a high-dimensional data set into l-or 2-dimensionaI space. 

More to the point, it transforms non-linear statistical variables in a multi-dimensional map into 

geometrical connections between data points in a 2 dimensional space. 

To date, the implementation of SOM algorithm to intrusion detection technology is prevalent. 

Ramadas et al. (2003) proposed an anomalous network traffic detector using the SOM algorithm. In 

this context, the SOM was trained by using the normal network. If the minimum distance between a 

network connection and the trained neurons exceeded the pre-defined threshold, the connection was 

flagged as an intrusion. This technique was also applied to perform the clustering of network traf­

fic (Labib and Vemuri, 2002). It was implemented to plot network connections onto 2-dimensional 

maps, which were then presented to the network analyst. With the visual representation of data, 

such approach can effectively facilitate the detection of malicious network activities. 

A work proposed by Rhodes et al. (2003) suggested the implementation of SOM as a network 

monitor stack, which utilised a protocol analyser to profile the network and to shrink or isolate 

the traffic before it was subjected to map analysis. The monitor stack was constructed at various 

layers of TCP/IP protocol stack. The proposed system monitored the activities at every layer of the 

monitoring stack since mahcious attacks could target any protocol layer Moreover, it was particu­

larly tested to investigate one of the most well-known attacks, buffer overflow attack. Vectorisation 

scheme was adapted, consisting of a simple six-category histogram specifying the percentage of 
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bytes each packet fits a particular character class such as alphabetic, numeric, control and non 

ASCII. 

An anomaly-based intrusion detection using self organising map approach was proposed by Li-

chodzijewski et al. (2002) and Vokorokos et al. (2006). Lichodzijewski et al. (2002) built an anomaly-

based detection system by firstly identifying the characteristics of the normal connection to the tar­

get host using DARPA 1998 Intrusion Detection Evaluation data set. The proposed architecture 

comprised two levels, in which the first level is responsible for feature specification or detector for 

six basic TCP features, whereas the second level aims to combine the features identiiied by the 

six first level features into a single map. Vokorokos et al. (2006) suggested an anomaly IDS, which 

heavily relied on user behavioural pat terns to distinguish between normal and abnormal behaviour. 

In order to properly model the user behaviours, the system log information was used as the main 

sources for the SOM networks. 

Kayacik et al. (2007) proposed a novel NIDS based on a hierarchy self-organising feature maps 

(SOMs), which was evaluated on KDD-99 data set. An extensive analysis was conducted to assess 

the significance of features employed, partitioning of training data and the complexity of the ar­

chitecture. The study also performed an evaluation to select the most significant basic features 

for IDS detection patterns. A two-layer SOM hierarchy system based on all 41 basic features from 

KDD data set was selected as the best detector. 

The system offered excellent detection rate and false positive rate of 90.4% and 1.38% under test 

conditions. Having said that , SOM methodology was deployed on a new IDS solely to improve IDS 

detection rate, it was not implemented to enhance the quality of the alerts. Therefore, there was no 

alert correlation being proposed and none of the works were conducted to interpret the alerts. 

Another novel SOM-based system using artificial immune system was presented by Powers and 

He (2008). The authors proposed a hybrid system, which combined both an anomaly detection com­

ponent and a misuse component. The key concept was to deploy separate components for anomaly 

detection and attack classification. The idea behind this was to detect abnormal activity using 

anomaly-based detector and analyse examples of known attacks for common statistical patterns or 

features, thereby allowing the attacks with similar properties to be grouped into a cluster. A cluster 

centre should share common properties of many attacks by providing a higher level abstraction of 

attack patterns. After the cluster centres were created, an anomalous activity could be matched to 

the cluster that it was most similar to. By combining both anomaly and misuse detection, the pro­

posed system could ensure that the known attacks were recognised and the novel attack patterns 

were detected. However, as the attack classification component classified the detected intrusions 

solely based on the known signature patterns, it is uncleeu* how the detected novel attacks are 

grouped into the pre-defined clusters. 

Apart from attack identification. SOM has also been widely apphed to alarm clustering systems. 

A new clustering method. Improved Evolving Self Organising Maps (lESOM), was proposed by Xiao 

and Han (2006) to a g g r ^ a t e multiple alerts into attack scenarios. The proposed correlation system 

consisted of four modules, namely filtering, aggregation, condensing and combination modules. In 

the initial phase, the filtering component deleted alerts belonging to invahd value set. for example 

an alert with an invalid timestamp. Next, an aggregation component would group similar alerts 

together. Thecondensingcomponent was responsible for discarding redundant alerts in each cluster 

while reserving only one alert per cluster On the other hand, the combination component was in 
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charge of discovering an attack scenario based on the intrusive events. Finally, a visual attack 

scenario is given as the output of the system. 

Notably, SOM has excellent capabilities for visualising high dimensional data onto one or two 

dimensional space. However, it has a m^or weakness in the context of alarm clustering. The 

number of neurons used in data mapping could affect the performance of the clustering. Therefore, 

it should be carefully selected in order to gain a better clustering result. Increasing the number of 

nodes implemented in the data mapping might increase the resolution of map. 

3.4.2.3.2 Support Vector M a c h i n e (SVM) 

Support Vector Machine (SVM) is a set of unsupervised learning techniques used for pattern clas­

sification and nonlinear regression (Cristianini and Shawe-Taylor, 2000). It is deemed to be one of 

the most successful classification algorithms in neural networks and it is commonly applied in the 

area of intrusion detection. Zhu and Ghorbani (2006) described the implementation of alert corre­

lation system using SVM. In this approach, the SVM was trained with a small number of patterns, 

which were manually generated and labeled. Indeed, it did not require probability correlation to be 

assigned to the training patterns, but only the class labels were assigned (in this case, 1 and -1). 

This appears to be one of the major advantages of using SVM. Moreover, its fast training speed has 

made it possible to incrementally update such approach in a real time environment. 

Khan et al. (2007) presented a study for enhancing the training time of SVM, specifically when 

dealing with large data sets, using hierarchical clustering analysis. Hierarchical clustering is a 

method of cluster analysis that develops a hierarchy (tree hke structure) of clusters to see the 

relationship among entities (Sambamoorthi, 2003), The clustering analysis was proposed to help 

find the boundary points, which were the most qualified data points to t rain SVM. between 2 groups. 

It was also used to generate support vectors to improve the accuracy and effectiveness of SVM 

classifier. Hence, by introducing a reduction technique to reduce the training data set using the 

clustering analysis, it was expected tha t the training process could be expedited. 

3.4.2.3.3 Multi layer Perceptron (MLP) 

One of the most widely used neural classifier today is the Multilayer Perceptron Network, a type of 

supervised neural network, which has been extensively investigated and for which various learning 

algorithm have been created (Seung, 2003). The MLP network is a flexible and nonlinear model 

comprising of a number of nodes arranged into multiple layers (Kanellopoulos et al., 1997). 

Zhu and Ghorbani (2006) proposed an alert correlation engine using both MLP and SVM tech­

niques, which has been discussed in subsection 3.4,2.3.2. In this work, the training data similar 

to that given to SVM approach was adapted to MLP network. The main objective of the proposed 

work was to verify the suitability of both correlation methods in correlating alerts and extracting 

attack strategies. The final outcome revealed that both approaches have their own strengths and 

weaknesses. MLP seems to have the potential to generate more precise correlation probabihties 

than SVM if the knowledge for assigning accurate probabilities to training data is available. On 

the other hand, labeling training examples for SVM is much easier since only two variables, 1 and 

- 1 , are used for the class labels, 

Cannady (1998) proposed a hybrid model of SOM and MLP. The model was created to detect 

comphcated and possibly collaborative attacks. Aside from alert correlation engine, MLP network 
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was also been deployed in keyword selection approach. Lippmann and Cunningham (2000) utilised 

back propagation technique as the learning algorithm for a classification function. The method was 

implemented to adapt the weights of the neural networks, and revealed a detection rate of 80% 

when it was tested against the DARPA 1998 evaluation data set. The study also described the 

implementation of MLP in anomaly detection system with a remarkable result of 77% detection 

rate and 2.2% false alarms. 

3.5 Security Information and Event Management 

Security Information and Event Management (SIEM) is a piece of software used on enterprise 

data networks to collect input logs and alerts from a variety of security systems such as Firewalls, 

Routers and Servers and at tempt to interpret the collected events as well as inform the security 

operators of unusual occurrences (Miller et al.. 2010). SIEM is relatively a new idea, pioneered a 

decade ago and still evolving rapidly as yet. More importantly, it has now grown into a very powerful 

security tool that obtains information from many systems at both network and application level, 

ha\'ing a perception of security events and ability to access vulnerability databases, for example, 

system known weaknesses and their exploitation. SIEM may have also featiu-e a reporting tool to 

assist the security analysts with an event investigation and a report production. 

Many studies have focused on optimising security event interpretation via event correlation to 

improve the process of security investigation. Libeau (2008) defined three options of event anal­

ysis, namely log management (collection and storage of events in a repository), security informa­

tion management (historical analysis of security events) and security event management (real-time 

analysis of security events). The process of event analysis can be summarised into a life cycle, which 

entails 7 sub-processes. Those are generation, collection, transport, real-time analysis, storage, re­

porting and forensics. These processes can be further simplified into 5 phases to reflect details of 

the investigation procedure. Those are data collection, normalisation, enrichment, correlation and 

report (360IS, 2010). Data collection refers to a process of receiving event l o ^ and alerts from var­

ious security tools, whilst normalisation is a process of converting numerous data formats into a 

standardised version; for example common date format and address notation. In order to perform a 

comprehensive analysis, it is necessary to involve extra security information such as publicly known 

exploit data, inventory of enterprise and vulnerability scan results. The data are then grouped, pri­

oritised using an event correlation method to flag the events and subsequently eUminate the false 

positives. Finally, a real-time event display and activity report can be performed for example by 

dispatching email notification, SMS, or other means. 

The development of SIEM technology is driven by the need for improved security monitoring 

capabilities (Nicolett and Kavanagh, 2008). The main goals of its deployment are to primarily con-

soUdate Ic^s from different security systems into single events and to reduce false positives. The 

technology has become an established security product in the field of sectuity management and is 

deemed to be one of the fastest growing security markets in 2007 (Nicolett and Kavanagh, 2008). 

Its market is motivated by the demand for a real-time security event analysis (for threat manage­

ment on network events) and log analysis as well as report (for security complitmce monitoring on 

host and application events). Numerous security organisations have funded the development of 
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such technology and commonly integrated it with various related security products. Examples of 

which are IDS, system m a n a ^ m e n t functions, event mantigement and IT governance or risk and 

comphance management. 

3.6 Concltisions 

This chapter focused on the existing studies on false alarm reduction system using alarm classi-

hcation and correlation methods. Numerous correlation methods are reviewed; h ighhght i i^ their 

strengths and weaknesses in tackling false alarms. 

The main purposes of deploying an alert correlation engine are to improve the quality of the 

generated alerts and to help automatically extracting attack strategies from a large volume of in­

trusion alerts. Based on the reviewed works, the key objectives of alarm correlation systems can be 

concluded as follows: 

• to construct attack scenario by aggregating alerts related to the same attack (Ning et al., 2002; 

Debar and Wespi, 2001; Cuppens and Miege, 2002) 

• to classify alerts into two classes (in other words, t rue and false alarms) (Maggi et al., 2009; 

Spathoulas and Katsikas, 2010) 

In general, two main correlation methods have been applied in existing works. The first category 

is called explicit approach (that is knowledge-based correlation), in which the correlation relies 

solely on intrusion knowledge of the systems to correlate alerts. These methods are limited to the 

experience of the system itseif and cannot correlate alerts of new attack. The second category is 

known as a learning-based correlation (that is implicit approach). Instead of relying on the domain 

knowledge of the experts or Siystems, this method depends on the analysis or the computation of 

the alert data. By utilising the data mapping {either statistical or graphical data) produced by the 

generated events, the relations between alerts or events can be identified. The key objective of this 

approach is to investigate the behaviour of the alerts and extract the imphcit connection between 

them. 

Although roost proposed methods were proved to effectively reduce false alarms, none of them 

were perfect. They either required an extensive level of domain knowledge from the human experts 

to effectively run the system or were unable to provide high level information of the false alerts 

for future tuning. On the other hand, those, which were able to discover attack patterns from the 

aggregated alerts, did not have an ability to determine the validity of the alerts. The administrator 

was, therefore, left with a task of identifying the real and the false alarms. 

In fact, the rule-based or explicit approaches (Julisch and Dacier, 2002; Cuppens and Miege, 

2002; Ning et ai., 2002; Sadoddin and Ghorbani. 2009; Jan et al., 2009) and the supervised algo­

rithms (Law and Kwok, 2004; Alharby and Imai, 2005; Pietraszek, 2004; Zhu and Ghorbani, 2006; 

Viinikka et al., 2009) are not ideal approaches for alert correlation owing to the dynamic growth 

of network attacks. Such techniques require extensive knowledge of the administrators to create 

rules for defining any potential relationships between alerts. On the contrary, implicit correlation 

method using unsupervised approach (Kayacik et al,, 2007; Powers and He, 2008; Lichodzijewski 
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et al., 2002; Xiao and Han, 2006) is considered a better technique than the rule-based method in cre­

at ing an automated correlation engine. Such an approach applies a competitive learning algorithm, 

which does not require any human intervention to classify the alerts. 

Given tha t the concepts of data mining, unsupervised neural network and machine learning 

techniques are so powerful and it is believed tha t they are holding the future of IDSs, it is worth­

while that future research study should be devoted to investigating these approaches in alarm 

correlation engine. The key objective of the research is to establish an alarm correlation framework 

and system which enables the administrator to effectively group alerts from the sEmie attack in­

stance and subsequently reduce the volume of false alarms without the need of domain knowledge 

(that is based on implicit approach). In fact, the purpose of SIEM technology has become another 

main objective of the proposed system. Unlike SIEM. which focuses on various security tools, the 

proposed engine collects alerts from a single tool, network intrusion detection system. Moreover, 

an ideal system should not only classify alerts as t rue or false alarms but also provide a mean to 

facilitate alert analysis for future tuning. 

Finally, in order to better understand the fundamental issue of current IDS, the following chap­

ter presents a series of experiments conducted to explore the extent of the problem of false alarms 

and to assess the effectiveness of tuning method and the impact of it on the IDS detection rate. 
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4 An Experimental Study of the 
Problem of False Alarms 

After evaluating or reviewing the existing research on IDS alarm correlation and false alarm re­

duction methods, it is now essential to look at the main issue tha t has stgnihcantly highlighted the 

need for an automated false alarm reduction system. And in order to investigate the extent of the 

problem of false alarms faced by current IDS technology, a series of experiments were conducted in 

Snort (Caswell and Roesch, 1998), using the DARPA'99 data set as well as a private data set, before 

and after fine tuning Snort's signature set. 

This chapter discusses the design of the experiments, and the rationale behind it. This is then 

followed by an analysis of the experimental results, the aim of which is to assess the impact of false 

alarms on the IDS detection rate. 

4.1 Experiment Description 

Prior to presenting the experimental results, this section provides a brief description of the experi­

ments data set as well as the tools used to carry out the evaluation. 

4.1.1 Experiment Data Set 

A number of research efforts have been conducted to evaluate the performance of IDS in terms 

of its detection rate and false positive rate. One of the most well-known and determined IDS as­

sessments to date was undertaken by Defense Advanced Research Projects Agency (DARPA) EDS 

evaluation (Lincoln Lab, 2010), This quantitative evaluation was performed by building a small 

network (test bed), which aimed to generate hve background traffic similar to that on a government 

site connected to the Internet. The generated data set. which included a number of injected attacks 

at well defined points, were presented as tcpdump data, Basic Security Model (BSM), Windows NT 

audit data, process and File system information. The data were then used to evaluate the detection 

performance of signature-based as well as anomaly-based IDSs (Lippmann et al., 2000). 

Although this data set appears to be one of the most preferred evaluation data sets used in IDS 

research and addressed some of the concerns raised in the IDS research community, it received 

in-depth criticisms on how this data was collected. The degree to which the stimulated background 

traffic is representative of real traffic is questionable, especially when it deals with the reservation 

about the value of the assessment made to explore the problem of the false alarm rate in real 

network traffic {McHugh, 2000). Significantly, Mahoney and Chan (2003) also critically discuss how 

this data can be further used to evaluate the performance of network anomaly detector. Although 

the DARPA dataset can help to evaluate the detection (true positive) performance on a network, it 
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is doubtful whether it can be used to evaluate false positive performance. In fact, the t ime span 

between the dataset creation and its application to the current research has resulted in another 

reservation about the degree to which the data is representative of modern traffic. However, despite 

all of these criticisms, the dataset still remains of interest and appears to be the largest publicly 

available benchmark for IDS researchers (McHugh, 2000). Moreover, it is also significant that an 

assessment of the DARPA dataset is carried out to further investigate the potential false alarms 

generated from this synthetic network traffic. It is expected that the result of this analysts could 

describe or provide a general picture of the false alert issue faced by the existing IDSs. 

Given that DARPA dataset is deemed to be the largest publicly available benchmark and the 

baseline of many research (Thomas et al., 2008), the first experiment was designed to utilise such 

data as the source of the investigation. The primary data source of this evaluation was collected 

from 1999 DARPA IDS evaluation dataset. Without training the Snort IDS with the three weeks 

training data provided for DARPA off-line evaluation beforehand, two weeks testing data (fourth 

and fifth week of test data) were downloaded and tested against Snort IDS. 

Although DARPA allows comparison with other research studies, it is still jus t synthesised traf­

fic that was collected ten years ago. Owing to this issue, the second experiment involved the evalua­

tion of Snort on a private data set, based on the collection of network traffic (100-150 MB/s network) 

to and from the University of Plymouth's web server over a period of 40 days, start ing from May 

17th to June 25th 2007. Technically, the data was collected by port mirroring the external inter­

face of the UoP Internet connection. The capture was performed using a conventional network 

capturing tool, tcpdump, filtering for external requests to port 80 and the UoP extranet server IP 

address. The purpose of conducting an experiment on the University's private data set is to test 

IDS performance on a more recent and real life data set than DARPA. In fact, an evaluation, which 

is conducted merely on a synthetic data such as DARPA data set is not adequate enough to provide 

an insight into the issue of IDS implementation on a real life environment. 

The experiments involved a process of identifying real and false alarms; before and after tuning 

was performed. The main purpose of comparing results with or without tuning is to assess the 

effectiveness of tuning IDS signatures in reducing false alarms and the impact of it on the overall 

IDS performance. 

4.1.2 Experimental Tools 

To carry out the experiments, there are three software applications are required, namely Snort 

(an open source network intrusion detection), Wireshark (a network protocol analyser) and BASE 

(a web front-end application that is used to query and analyse Snort IDS alerts). The following 

subsections briefly define these applications. 

4.1^.1 Snort 

Snort is a lightweight Network-based IDS created by Caswell and Roesch (1998). It is a primarily 

a signature-based IDS that monitors network traffic in real time, examining each packet carefully 

to detect harmful payload or suspicious behaviours. Snort uses rules written in text files to capture 

suspicious data. It comes with a ftill set of pre-defined rules to detect intrusive activities and the 
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administrators are free to edit, disable the built-in rules or even to create new rules in an at tempt 

to improve the Snort detection rate. 

The reason for utilising Snort was due to its openness and public availability. Moreover, an 

investigation involving such a commonly used IDS can give an insight into the extent of the false 

a larm problem in other IDS systems as well. 

Snort version 2.6 was selected as the main detector, whilst the Snort ruleset deployed in this 

evaluation is VRT Certified Rules for Snort v2,6 registered user release (released on 14 May 2007). 

And since the objective of this research is to explore the extent of false alarm problem on IDS 

detection rate, only the Snort's default configuration could be deployed in this evaluation; with all 

signature rules enabled. 

4.1.2.2 Wireshark 

Wireshark is a free open source GUI-based packet analyser for Windows and Unix (Wireshark, 

2010). It uses pcap to capture data and is commonly used for network troubleshooting and packet 

analysis. The reason for using Wireshark as the analysis tool is its user-friendliness. Unlike some 

of the more complicated command-line driven tools like Tcpdimip, Wireshark has a graphical front-

end and features various sorting or filtering options that enables the users to interactively analyse 

and filter the content based on the different protocols, ports, and other data. 

4.1.2.3 Basic Analysis and Securi ty E n g i n e (BASE) 

BASE is a front-end tool for Snort IDS system and has been created based on previous Analysis 

Console for Intrusion Database (ACID) project (BASE, 2009). It provides a web-front end to per­

form an analysis of alerts coming from the Snort IDS system. This application processes database 

containing security incidents logged by IDS programs and presents the information to the users 

in a user-friendly web interface. In addition, the product also features a graph creation tool tha t 

allows the users to present the da ta in a graphical report. The reason of choosing BASE is because 

it is one of the well-known alert analysis tools that has been specifically developed for Snort IDS. 

In this experiment, the Snort alert output was stored in a MySQL database and the front-end 

tool BASE was utilised as the intrusion analyst console. The investigation was accomplished by 

exhaustively examining every single alert tha t was ^ n e r a t e d by Snort. And to help analyse the 

alerts, the Wireshark was run to read the packet capture dump file and identify the network packets 

associated with the triggered alerts. 

4.2 An Experiment using the 1999 DARPA Data Set 

The first stage of the experiment was to run Snort in NIDS mode g a i n s t the DARPA dataset. The 

manual validation and analysis of alerts produced by Snort were undertaken by matching against 

the Detection and Identification Scoring Truth. The Detection Scoring Truth is comprised of a list 

of all attack instances in the 1999 test data, while Identification Scoring Truth consists of alert 

entries of all attack instances in those test data (Lincoln Lab, 2010). A match is identified as same 

source or destination IP address, port numbers and their protocol type. In this case, t imestamp does 

not really help identifying the t rue alerts since the attacks were labelled by the t ime the malicious 
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activities set off while Snort spotted them when malevolent packets occurred. This might render the 

system missing numerous matches. Hence, by recognising the matches for those attack instances, 

the number of false positives alarms will then be identified. 

Once the alerts were manually verified and the false positives were isolated, the results were 

presented in several diagrams to give a clear picture on the issue of false alarms. In this experi­

ment, the main purpose is to depict the severity of the false alert issue based on the type of sig­

nature raised. Given that Snort IDS enables the user to freely access the ruleset. this facilitates 

an investigation of the causes of false alarms generation. Hence, by examining each signature rule 

associated with the false alarms, this will provide an insight into the extent of false alarms issue 

and the impact of false alarms on the IDS detection rate. 

This section presents the findings of the experiment. There were a total of 91,671 alerts, made 

up of 115 signature rules, generated by Snort in this experiment. In order to visualise the number 

of alerts, a pie chart is presented in Figure 4.1. Of the roughly 90,000 alerts generated from this 

dataset, 69% are false positives. 

I False Positives 

True Positives 

Figure 4.1: Percentage of t rue and false positive alerts on DARPA dataset 

To gain a more in-depth understanding of the nature of Snort's alert generation. Figure 4.2 

portrays a ROC (Receiver Operating Characteristic) plot for the overall result, which illustrates the 

overall alert generation of Snort's signature rule. The number of false positives is presented per 

signature for the X-axis, while t rue positive is portrayed on the Y-axis. This diagram also describes 

the random guess line (non-discriminatory line), which gives a point along a diagonal line from 

the left bottom (0, 0) to the top right comer (10, 10). This diagonal line divides the space into two 

domains; namely good and had zones. Ideally, a good detection system should yield a point above 

the line, meaning the number of real alerts (true positives) triggered should not be exceeded by the 

number of false positives generated. The area below the line represents a higher number of false 

positives than true positives. Thus, the more plots are scattered on this £irea, the poorer the IDS is. 

As the plot diagram can only give an overview of IDS alert generation, Figure 4.3 provides the 
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ID IOC 1000 

Figure 4.2: Overall alert generation per signature 

exact figures of Snort's signatures generating the false and true positive alerts in a Venn diagram. 

Seventy three signatures raised the false positive alarms; of which 26 of them triggered both t rue 

and false positives. It is also worth noticing that of those 26 rules, 14 signatures had false positives 

outnumbering the t rue positives. This seems to be a very critical issue faced by contemporary IDSs. 

The following subsections discuss this issue in greater detail. 

False 
Positives 

47 Signatures 

26 
True Positives 

42 Signatures 

Figure 4.3: Snort IDS alarm - True and false positive Venn diagram 

A complete Ust of t rue and false alarms as well as the attack types detected on this data set is 

presented in Appendix A. 

4.2.1 T r u e P o s i t i v e s 

Given that the objective of this experiment is to investigate the issue of IDS false alarms, evaluating 

Snort's detection performance on DARPA dataset is beyond the scope of this study. Therefore, the 

extent of Snort's detection performance on a particular attack will not be fiirther evaluated in a 

greater detail. However, this subsection presents a brief overview of the generation of Snort's t rue 
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alarms on 4 attack categories, namely probe. Denial of Services (DoS), Remote to Local <B2L) and 

User to Root (U2R). 

Interestingly, about 72% of t rue positives were generated due to the probing activities. Gener­

ally, Snort fares well in detecting probe attacks, which largely generate noisy connections. In this 

study, it was found that Snort has a very low threshold for detecting probing activity; for example in 

detecting ICMP packets. This has made up of 40% (37,322 alerts) of the total alerts. In spite of its 

sensitivity. Snort generated a low level of true ICMP alarms in this experiment, which accounted 

for only 13% of those 37,322 alerts. This significantly highlights the underlying flaw of Snort IDS 

alarms. 

In terms of the DoS attacks. Snort does not perform well. Only one attack, "Back" (a denial 

of service attack against the Apache web server) (Lincoln Lab, 2010), could be perfectly detected 

without generating any false positives. This has contributed to 20% of total true alarms. As for 

remote to local attacks, about 16 out of 20 types of attacks were detected. This, however, only made 

up of 2% of true alarms. Although Snort seems to fare well in this category, it critically missed 

numerous attack instances. 

The last attack category, user to root (U2R), is the most challenging attack for Snort IDS. Since 

U2R attack typically occurs on a local machine, which attempts to elevate administrator's privi­

leges, it relies solely on a system log or computer's file system. As such, Snort, a network-based 

IDS which merely depends on network connections, does not work well in detecting such attacks. 

Such attack could only be detected if it is launched by a remote machine to a local host across the 

network. In this case, only a small proportion of true alerts (less than 1%) were generated owing to 

this category. 

4^.2 False Positives 

A large volume of alerts, largely comprised of false positives, were generated by Snort IDS. Approx­

imately, 69% of total alarms are false positives. Figure 4.4 shows the top five false alarms raised 

by Snort. Interestingly, 48% of the total false alarms were made up of ICMP alerts. This explains 

one of the flaws of Snort IDS. As Snort has a very low threshold for ICMP traffic, logging every 

connection associated with probing, for example all ping activities, will only tend to generate a sig­

nificant number of false positives. In fact, all detected ICMP traffic did not imply the occurrence 

of probing actions, but it was merely an informational event; indicating the occurrence of network 

outage. Thus, this concern drives the need to verify every single alert generated or even to improve 

the performance of IDS alarm reporting system. 

In terms of the category of alerts generated. 39% (24.835 alerts) of the total false alerts were 

triggered due to policy violations. Significantly, this type of alerts is more related t« irrelevant 

positives than false positives. Irrelevant positives refer to the alerts generated from unsuccessfiil 

at tempts or unrelated vulnerability. However, as those informational alerts were not related to any 

suspicious activity from DARPA attack database and in order to make it simpler, they were fliag^ed 

as false positives. 

The highest number of false a larms in this experiment was triggered by INFO web bug 1x1 

gif a t tempt signature. This signature rule was raised when the privacy policy violation was de­

tected (Snort, 2010b), Theoretically, the web bug is a graphic on the web page, which is used to 
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Figure 4.4: Top 5 DARPA false alarms 

monitor users' behaviours. This is often invisible (typically only 1x1 pixel in size) and hidden to 

hide the fact tha t the surveillance is taking place (Smith. 1999). In fact, it is also possible to place 

web bug in a Word document as it allows html in a document or images to be downloaded &om 

the external server. This is particularly usefiil if the document is supposed to be kept private, and 

web bug provides the information if the the document had leaked by finding out how many IP ad­

dresses had looked at it. Owing to its legitimate use and since none of these web bug alerts fitted 

in any attack instances described in DARPA attack database, the study reveals that no true alarms 

associated with this signature was generated. Therefore, total 22,559 alerts from this signature 

were entirely asserted as false positives. This contributed to 35% of total false alarms raised by the 

system. 

Another similar policy-related alarms l o ^ e d in this experiment is CHAT IRC alerts. These 

alerts accounted for 3.6% (2,276 alerts) of total false alarms. Snort generates these IRC alerts 

because the network chat clients have been detected. In common with the previous "web bug" 

signature, ERC alerts were not truly false positives. Principally, Snort, given the correct rule, fares 

well in detecting pohcy violation. Indeed, through the investigation of the DARPA packet payload, 

it was noticeable that the chat activity did take place on a certain time. However, since these alerts 

did not contribute to any attack instances in the attack list, they were considered as false positives. 

These CHAT IRC alerts were triggered by three signature rules; namely CHAT IRC message, CHAT 

IRC nick change and CHAT IRC channel join. 

Interestingly enough. 25 web-related signatures triggered pure false positives. A signature is 

ransidered to generate pure false positive if no t rue alarm associated with this signature is gener­

ated. Although port 80 was one of the most vulnerable ports for DARPA attacks, these signatures 

did not correspond to any attack instances listed in the attack database. Aside from the web-related 

alerts, other 22 signatures, involvii^ ICMP informational rule, pohcy, preprocessors, exploit at-
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tempt and SQL rules, also generated a significant number of pure false positives in this evaluation. 

In view of that , all these alerts made up of 44% (28,340 alerts) of total false alarms raised by the 

system. 

AB described in the previous section, 14 signatiu-es produced more false positives than true pos­

itives. This certainly becomes a good example, which highUghts the critical issue of false alarms in 

the real world. Ifthe false positives per signature highly outnumbered the true positives, this could 

undermine the process of identifying real attacks. In addition, this often renders the administrator 

less concerned about the alerts; thus tending to conclude them as false positives. This problem 

could seriously inhibit IDS detection performance in a real environment. 

While Snort's performance looks sufficiently impressive by detecting 32 types of attacks, it pro­

duced a large volume of unnecessary alerts; for example the alerts triggered due to the detection 

of a DoS attack (that is "Back" attack), by WEB-MISC apache directory disclosure at tempt signa­

ture. Only seven instances frora this attack were included into the DARPA dataset, but surprisingly 

Snort detected all seven instances by triggering 5.628 alerts from single signature. Obviously, Snort 

has generated a significant number of redundant alerts in this case. Indeed, this often leaves the 

administrator with the difficulty of verifying every single alert logged by the system. 

4.3 An Experiment using the University of Plymouth Data 

Set 

The next phase of the experiments is to assess the problem of false alarm using University of 

Plymouth data set. 

Although storing the full packet information significantly increased the storage requirements 

for the experiment, it was impwrtant to maintain this information for the vahdation and analysis of 

IDS alarms. It should also be noted that traffic containing web pages with the potential of having 

sensitive / confidential information was excluded from the packet capture, in order to preserve the 

privacy of web users. This was accomplished by parsing the packet trace using ngrep to ensure that 

no personal data (such as personal details on contact/feedback web pages) existed in the trace. 

The first stage of the experiment was to run Snort in NIDS mode, in its default configuration. 

This means that no tuning whatsoever was conducted. The idea behind this is to investigate the 

extent of the problem of false alarms and to compare the effect that tuning can have on false alarm 

reduction. The next phase of the experiment involved the analysis of the same traffic, after tuning 

was performed on Snort. A number of techniques were applied for the tuning, including setting up 

the event thresholds and adjusting Snort's rules (Beale and Caswell. 2004). A necessary require­

ment for this was the manual validation and analysis of alerts produced by Snort in the first phase, 

and identification of signatures that are prone to false alarms. The analysis of IDS alerts was su­

pervised by a certified intrusion analyst, and BASE was utilised to assist the intrusion analysis 

process 

Once the alerts were manually verified, the result was presented in a ROC diagram; a graphi­

cal plot of Snort alarm generation. In order to reveal a clear picture of the false alarm problem, a 

ROC plot is preferable. Unfortunately, there were no true negative (number of benevolent activities 

passed) and false negative (number of real attacks missed) value known in this analysis since no 
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alarms were triggered due to these events. In fact, the only way to obtain these figures is via packet 

analysis. Unfortunately, no traffic analysis was conducted on the captured traffic to identify true 

and false negatives. As an alternative, the plot diagram is drawn to represent the actual number 

of false and true a larms instead of their a larms rate. This diagram provides a simple graphical 

representation of the false alarm problem, thus enabling the analyser to easily comprehend the 

performance of Snort IDS in a real network environment. By demonstrating the graphical plot of 

false positive versus t rue positive, this approach visibly explains the criticabty of the fjdse alarm 

issue. As the values of false and true negatives are unknown in this case, the alarm rate is calcu­

lated per total generated alarms instead of its total negative and positive values. The formula is 

presented as follows; 

„ . . „ False Alarms 
False Alarm Rate = -^ ; .-, x 100 

Total Alarms 

True Alarms 
True Alarm Rate = _ ^ , . , x 100 

Total Alarms 

The lack of knowledge or awareness about the complexity of network by IDS technology has led 

to the generation of excessive amount of false alarms. Generally, there are three possible alert types 

raised by the system, namely true positives (alerts from real attacks), false positives (legitimate 

activities thought to be mahcious) and irrelevant positives (alerts from unsuccessful attacks or 

attempts (Kruegel and Robertson, 2004). The last two alerts are the main concerns in this study. 

This section presents the results of the experiment. Figure 4.5 depicts the overall result, which 

represents the general detection performance of Snort IDS using a similar ROC plot diagram as il­

lustrated in Figure 4,2. In order to create a simpler illustrative graph, which facihtates the compre­

hension of Snort's detection ability, the false and true positives values are presented in a proportion 

of thousands. The number of false positives generated is presented per unit time (per day) for the 

X-axis, while t rue positives are portrayed for the Y-axis. 

Significantly, the research has also produced a similar result to that yielded in Brugger and 

Chow's evaluation (Brugger and Chow, 2007). Their study reported that the number of false posi­

tives generated was massive. This indicates that Snort's false positive performance on resd network 

could be much worse than described in their evaluation. 

This experiment focused on the analysis of false positive alarms, as opposed to other studies (Ma-

honey and Chan, 2003; Brugger and Chow, 2007). which were directed to explore the issue of false 

negatives. The main objective of this analysis is to merely provide a general view of the scale of 

false positives that may be generated by current IDS. The following subsections discuss this case in 

greater detail. 

4.3.1 False Positives 

A large volume of alerts. largely comprised of false alarms and irrelevant positives, drives the need 

to verify the vaUdity of the alerts generated. Interestingly, apart from the false positives, the study 

reveals that some alerts were raised due to informational events, which merely occurred as a result 

of a network problem, not owing to the detection of real attacks. These types of alerts are known as 
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Figure 4.5; Generation of alerts on University of Plymouth data before tuning 

irrelevant positives. Indeed, the unsuccessful attacks, or at tempts that aim at an invincible target, 

might cause the system to generate such alarms. 
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Figure 4.6: Comparison between false positive and true positive alarms on University of Plymouth 
data 

Figure 4,6 provides a clear picture of the number of true and false alarms generated per day. To 

clearly map the figures of true alarms, the plot diagram uses secondary axis to plot the values of 

t rue positives. In this case, the right hand side y-axis represents true positives, whilst the left hand 
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side is for the false positives. In this context, it is obvious that the false alarms highly outnumbered 

the true alarms. Significantly, this experiment has revealed a similar result to that yielded in 

the DARPA evaluation (Section 4.2). The result is similar to the previous findings, which further 

confirms the severity of the problem of false alarms. Approximately 96% of alerts generated are 

false positives, while less than 1% of the total alerts are afRrraed to be irrelevant positives. In 

order to make it simpler, irrelevant alarms are r ^ a r d e d as false positives alerts in this case since 

DO immediate and crucial responses required from these events. By looking at the Snort alerts 

generated from the University's web server, most of the false positive alarms came from the category 

of webapphcation activity. Table 4.1 shows a complete list of the Snort alerts triggered by the data. 

The first three alerts are the false positives alerts, which will be further investigated later on. The 

reason for focusing on these alerts is due to the quantity generated, which accounts for more than 

80% of total alerts raised by the system. 

Table 4.1: Total Alerts per Signature 

N o 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Signatures 

WEB-US view source via translate header 

WEB-MISC robots.txt access 

ICMP L3retriever Ping 

BARE BYTE UNICODE ENCODING 

POLICY Google Desktop activity 

SPYWARE-PUT Trackware fiinwebproducts 

mywebsearchtoolbar-fiintools runtime detection 

ATTACK-RESPONSE 403 Forbidden 

ICMP PING Cyberkit 2.2 Windows 

DOUBLE DECODING ATTACK 

ICMP Destination Unreachable Communication 

Administratively Prohibited 

TCP Portsweep 

SPYWARE-PUT Hijacker searchmiracle-elitebar runtime detection 

WEB-MISC .DS-Store access 

IIS UNICODE CODEPOINT ENCODING 

WEBROOT DIRECTORY TRAVERSAL 

SPYWARE-PUT Adware hotbar runtime detection hotbar user-agent 

WEB-nS asp-dot at tempt 

TCP Portscan 

SPYWARE-PUT Trackware alexa runtime detection 

WEB-PHP IGeneric Free Shopping Cart page.php access 

ICMP PING NMAP 

ICMP Destination Unreachable Communication with Destination Host 

is Administratively Prohibited 

Total Alerts 

78865 

30011 

10254 

6392 

3258 

1873 

720 

651 

504 

151 

124 

80 

60 

49 

35 

27 

26 

19 

19 

17 

17 

13 

Continued on next page 
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Table 4.1 - cont inued from previous page 

N o 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

Signatures 

WEB-CGI calendar access 

MULTIMEDIA Quicktime User Agent Access 

WEB-MISC intranet access 

ICMP redirect host 

ICMPPINGspeedera 

SPYWARE-PUT Hijacker marketscore runtime detection 

WARNING: ICMP Original IP Fragmented and Offset Not 0! 

WEB-MISC WebDAV search access 

WEB-FRONTPAGE /_vti_bin/access 

Open Port 

WEB-PHP remote include path 

WEB-CGI formmail access 

WEB-FRONTPAGE _vti_in£html access 

False a larms 

11 

10 

8 

8 

7 

7 

6 

5 

5 

5 

4 

3 

3 

SPYWARE-PUT Trickier teomasearchbar runtime detection , 2 

WEB-PHP xmlrpcphp post at tempt 

WEB-CLIENT Microsoft wmf metafile access 

WEB-MISC Domino webadmin.nsf access 

OVERSIZE CHUNK ENCODING 

ICMP Source Quench 

WEB-PHP test.php access 

WEB-PHP caJendar.php access 

WEB-PHP admin.php access 

2 

2 

2 

2 

2 

2 

1 

1 

4.3.1.1 WEB-IIS v iew source v ia t r a n s l a t e header 

This event is categorised as web application activity, which targets the Microsoft IIS 5.0 source 

disclosure vulnerability (Snort, 2010c). Since Microsoft IIS has the capability of handling various 

advanced scriptahle files such as ASP, ASA and HTR, the use of specialised header T r a n s l a t e P 

on HTTP GET request is likely to force the web server to present the complete source code of the 

requested file to the chent without being executed first by the scripting engine. In addition, this 

attack only works well if the trailing slash "/" is appended to the end of requested URL (Bugtraq, 

2010a,b). 

Surprisingly, this signature accounted for 59% of the total alerts. Therefore, approximately 

1970 alerts were generated per day by this event. Although the signature was solely created to 

detect an attack targeting the Microsoft IIS source disclosure vulnerability, there is a certainty 

that this signature will generate a false alarms in a certain case. Some apphcations. for example 

Web-based Distributed Authoring and Versioning (WebDAV) that make use of T rans l a t e F as a 

legitimate header, might cause this rule to produce an excessive amount of false alarms (WebDAV, 
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2001). Moreover, WebDAV PROPFIND and OPTION methods also make use of this "Translate T 

as a legitimate header to retrieve the information or properties of the resources identified by the 

Uniform Resource Identifier (URI) (nearly 96% of alerts generated by this signature were not HTTP 

GET requests). Significantly, in thjB experiment, none of the alerts generated by this signature were 

triggered as a result of a real attack, so no further acts were required to handle these alerts. 

4^.1.2 WEB-MISC robots.tzt access 

This event is raised when an at tempt has been made to access robots.txt file directly (Snort, 2010d). 

Basically, robots.txt file is a file that is created to keep the web pages from being indexed by search 

engines. More to the point, this file provides a specific instruction and determines which part of 

a website a spider robot may visit. Interestingly, the problem is that the webmaster may detail 

sensitive and hidden directories or even the location of the secret files within the robots.txt file. 

This is considered extremely unsafe since this file is located in web server's document root directory, 

which can be freely retrieved by anyone. 

Although this event is raised as the indicator of vulnerable information attack, there exists high 

possibility that all these alerts were raised due to legitimate activities from web robots or spiders. A 

spider is software that gathers information for search engines by crawling around the web indexing 

web pages and links in those pages. Robots.txt file is basically created to restrict the web spider 

from indexing pages that should not be indexed, for example, .submission pages or enquiry pages. 

As web indexing is regular and structurally repetitive, this activity tends to cause the IDS to t r i ^ e r 

a superfluous amount of alerts. In this study, approximately 23% of total alerts (approximately 750 

alarms per day) were accounted for by this web-misc activity. Given that all alerts generated from 

this event are owing to the activities of web spider, they are considered to be false positives. Signif­

icantly, this issue has apparently disclosed the drawback of Snort IDS in distinguishing legitimate 

activity from the malicious one; especially when it deals with the authorisation or file permission. 

4.3 .1^ LSRetriever P ing 

ICMP L3retriever Ping is an event that occurs when ICMP echo request is made from a host run­

ning LSRetriever scanner (Snort, 2010a), This type of ICMP echo request has a unique payload 

in the message, which significantly designates its distinctive characteristic. This traffic is consid­

ered to be an attempted reconnaissance since the attackers may use the ping command to obtain 

ICMP echo reply from a listening host. Surprisingly, in this EUialysis, quite a few alerts were gen­

erated from this event; contributing to 8% of the total alerts generated. This figure indicates that 

approximately 250 alerts were generated by this signature rule every day. 

Considering the source IP address associated with these alerts, it is obviously clear that all 

ICMP requests were sent from the external hosts. Further investigation was conducted to critically 

an2i]yse and discover if possible malicious events happened subsequent to the ICMP echo request. 

Surprisingly, there were no malevolent activities detected following the ICMP traffic. In addition, 

normal ICMP requests generated by Windows 2000 and Windows XP are also known to have simi­

lar payloads to the one generated by L3Retriever scanner (Greenwood, 2007). Generally, this traffic 

is routine activities run by computer systems (notably Windows 2000 and XP systems) to communi­

cate with their domain controllers or to perform network discovery. In view of this issue and given 

49 



Chapter 4. An Experimental Study of the Problem of False Alarms 

E 
a 
-a 

j 
0 -

Fal^ AldTm True Alarm 

Marm 

Figure 4.7: TCMP PING NMAP" event 

that no suspicious output detected following these ICMP requests; these alerts were labelled as 

false positives. 

4.3.2 Fine Tuning 

False alarms for one system might not be an erroneous alert for other systems. For example, port 

scanning might be a malicious activity for normal users, but it is a legitimate activity if it is per­

formed by a system administrator. Figure 4.7 shows an example of an event which triggered both 

false alarms and true alarms fi-om the experiment. From the IDS's perspective, as long the activ­

ity's pattern match to the -signature defined in the rule database, it is considered to be a malicious 

event. In view of this, fine tuning is exceptionally required to maintain the IDS performance and 

enable the administrator to adapt the signature rule to the protected environment. 

In order to optimize Snort performance, fine tuning is necessary to reduce the number of alerts 

raised. Since only three signatures were tuned in this experiment, the false alarm rate accounted 

for 86.8% of total alarms after tuning was performed. Figure 4.8 depicts the ROC plots for the 

overall result after tuning was performed. Obviously, only less than two thousands alerts per alert 

type have been generated by Snort. In order to understand the effectiveness of fine tuning, the 

alarm ra te between default and tuned Snort is presented in Figure 4.9. This figure does not seem 

particularly impressive, but fine tuning did fare well on those signatures: reducing up to 90% of fjdse 

alarms p)er signature, excluding WEB-MISC robots.txt access. The following subsections discuss the 

tuning processes in more details. 

4.3.2.1 WEB-IIS v iew source via t r a n s l a t e header 

Regarding the information disclosure vulnerabihty attack, Snort does not seem proficient enough 

to detect this type of event. The signature rule appears to be very loosely written, by searching for 

a particular string in the packet payload (in this case, 'Translate: f"). Since the T rans l a t e ; f" is a 

valid header used in WebDAV application, as discussed previously, this rule tends to trigger a vast 
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Figure 4.9: Alarm rate before and after tuning 

volume of alerts from the legitimate activities. Hence, tuning is needed to search for a more speciSc 

pattern of the attack signature. 

As this attack is basically launched through HTTP GET request, searching for "GET" command 

in the content of analysed packet can be a good start . The attack is launched by requesting a specific 

resource using HTTP GET command, followed by "Translate: P as the header of HTTP request. In 
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this case, a tuning can be performed by modifyii^ the signature rule to: 

a l e r t t c p SEXTERNAL_NET any - > SHXTP_SERVERS $HTTP_P0RT3 

(msg: 'WEB-IIS v iew s o u r c e v i a t r a n s l a t e h e a d e r " ; 

f l o w : t o _ 3 e r v e r , e s t a b l i s h e d ; c o n t e n t : " G E T | 2 0 | " ; 

c o n t e n t : " T r a n s l a t e I 3 A I F " ; d i s t a n c e : 0 ; n o c a s e ; 

r e f e r e n c e : a r a c h n i d s , 3 0 5 ; r e f e r e n c e : b u g t r a q , 14764; 

r e f e r e n c e : b u g t r a q , 1 5 7 8 ; r e f e r e n c e : e v e , 2 0 0 0 - 0 7 7 8 ; 

r e f e r e n c e : n e s s u s , 1 0 4 9 1 ; c l a s s t y p e : w e b - a p p l i c a t i o n - a c t i v i t y ; 

s i d : 1 0 4 2 ; r e v : 1 3 ; ) 

The tuning process significantly reduced the number of alerts, with only 3,463 generated by this 

rule as against 78,865 alerts in the first case (that is without tuning) Significantly, this tuned rule 

was proved to effectively eliminate 95% of the initial false alarms from this event. 

Although the tuning process decreased the volume of alerts, there is still a possibility that tliose 

5% alerts were false positives. Searching for GET command and the Translate f header is not 

effective enough to detect such attack. Putt ing trailing slash T a t the end of requested URL to 

HTTP request for example could lead in the security bug (Bugtraq, 2010a). Thus, matching the T 

pattern against the packet payload will be helpful. Unfortunately, this idea seems hardly possible 

to achieve. Snort does not have a specific rule option that can be used to match a specific pattern at 

a particular location. 

As to the signatures of Snort, looking for an overly specific pattern of a particular attack may 

effectively reduce the fslse alarms; however, this method can highly increase the risk of missing its 

range. A skilful attacker can easily alter and abuse the vulnerability in various ways as an at tempt 

to evade the IDS. This might lead to false negatives as a consequence. 

4.3.2.2 WEB-MISC robots-txt acces s 

Since accessing the robots.txt file is a legitimate request for Internet hots (web spiders), a subjective 

rule, which mainly focuses on the source IP addresses, is necessary to verify user authorisation in 

accessing a certain file. This approach, however seems to be hardly feasible to deploy. Of course, 

identifying all authorised hosts from their source EP addresses is impractical. There is an infinite 

number of IP addresses need to be discovered before the rule can be written. Indeed, lawfully 

allowing specific hosts to access certain file might increase the risk of having false negatives. 

In this case, the only solution to suppress the number of false alarms generated is by using 

event thresholding (Beale and Ciifiwell, 2004). As robots.txt access requests generate regular and 

repetitive traffic, a "limit" type of threshold command is the most suitable tuning in this case. Such 

a threshold configuration would be as follows: 

threshold gen_id 1, sig_id 1852, type limit, track by_src, count 
1, seconds 60 
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This rule i t ^ the first event every 60 seconds, and ignores events for the rest of the time in­

terval. The result showed that approximately 10% of false alarms were effectively reduced. This 

indicates that only an insignificant number of false alarms can be reduced in this scenario. The 

frequency of fetching robots.txt files greatly depends on the web spider's policy. Hence, deploying 

event suppression and thresholding cannot effectively trim down the number of false alarms l o ^ e d 

by the system. Having said that, suppressing the number of alerts generated can also create a 

possibility of ignoring or missing real alerts. For example, a malicious user can hide his/her action 

within the excessive number of alerts generated by using a spoofed address from web spider agent. 

4.3.2.3 ICMP LSRetriever Ping 

The only method that can be deployed to suppress the number of false positive triggered from this 

event is by applying event suppressing or thresholding command. Similar to the one applied to 

"WEB-MISC robotstxt access' signature, a threshold command is written to limit the number of 

alarms logged. Instead of using "hmit" type of threshold command as previous signature, this rule 

utihsed Txjth" type of command to log alerts once per time interval and ignore additional alerts 

generated during that period: 

a l e r t icmp SEXTERNAL_NET any -> SHOME_NET any (mag:"ICMP 

L 3 r e t r i e v e r P i n g " ; i c o d e : 0 ; i t y p e r S ; 

content:"ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI"; d e p t h : 3 2 ; 

r e f e r e n c e : a r a c h n i d s , 3 1 1 ; c l a s s t y p e : a t t e m p t e d - r e c o n ; t h r e s h o l d : 

t y p e b o t h , t r a c k b y _ s r c , c o u n t 3 , s e c o n d s 60; s i d : 4 6 6 ; r e v : 5 ; ) 

Similar to the previous signature (robots.txt access), the threshold applied will not prevent the 

generation of false positives, but it will significantly reduce the number of redundant false positives 

triggered. Importantly, the threshold is written to detect brisk ICMP echo requests by logging alerts 

once per 60 seconds after seeing 3 occurrences of this event. 

The result showed tha t only 1,143 alerts were generated from this event in 40 days experiment 

data. This experiment has also proved that the event thresholding can successfully reduce up to 

89% of the false alarms generated by this activity. Despite its abihty in suppressing redundant 

alarms, the system is prone to missing stealthy ICMP requests, for example, requests sent once 

every 60 seconds can be missed by the system. 

Although such technique effectively suppresses the alerts, it potentially increases the risk of 

false negatives. In a case where an attacker sends the request only once, the IDS might miss 

this event if the thresholding is enabled. The mahcious request might have assimilated into the 

superfluous number of genuine requests. 

In consideration of this issue, it is highly advised that tuning and thresholding should only be 

carried out by a security expert who has broad knowledge of the network security and also the 

protected system. It is often a case of trading off between sensitivity (that is false negative) and 

specificity (that is false positive). 
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4.4 Discussion 

Similar to this experiment, an evaluation was carried out by Brugger and Chow (2007) to assess 

the performance of traditional IDS, Snort. This evaluation was conducted using the baseline De­

fense Advanced Research Projects Agency (DARPA) dataset 1999 against a contemporary version of 

Snort. This assessment was performed to appraise the usefulness of DARPA as an IDS evaluation 

dataset and the effectiveness of the Snort ruleset against the dataset. In order to analyse Snort's 

alarms, a perl matcher script was used to report the false negative and positive rates; thus generat­

ing the ROC curve for a given set of attacks. Given the six year time span between the ruleset and 

the creation of the dataset, it was expected that Snort could have effectively identified all attacks 

contained in the dataset. Conversely, what they found instead was the detection performance was 

very low and the system produced an unacceptably high rate of false positives, which rose above the 

50% ROC's guess line rate. This might be due to the fact that Snort has a problem detecting attacks 

modelled by the DARPA dataset, which focused on denial of service and probing activities (Lipp-

mann et al., 2000). In particular, the false alarm rate reported in this evaluation was not creditable 

enough to prove Snort false positive performance in a real network, which might be much worse or 

much better. In view of that , the research decided to utilise more reahstic da ta to critically evaluate 

the false positive issue of the system. 

The experiment presented here has revealed a similar result to the work of Brugger and Chow 

(2007). Over a span of two years since their research was published, the issue of false positives 

remains a critical challenge for the Snort IDS. Obviously, Snort performance does not look partic­

ularly remarkable as illustrated in Figure 4.5. The bottom right scattered plots demonstrate that 

the number of false positives largely overwhelms the number of true positives. Approximately 3,000 

alerts were generated per day. requiring manual verification to validate their legitimacy. Although 

the administrator can effectively distinguish the false and true positives from the list of alerts, the 

massive amount of false alarms triggered by one signature rule might cause the administrator to 

miss a malicious attack. 

The overall effectiveness of Snort greatly hinges on the effectiveness of keyword spotting (in 

other words, matching the packet content to the signature rule). This has rendered the system 

prone to generating a superfluous number of false alerts. Interestingly, most of the rules looking 

for web traffic related attacks are loosely written and merely check for the presence of a particular 

string in the packet payload. This could trigger a large number of false alerts if a particular string is 

included in the content distributed by the web server. Hence, from this perspective, Snort is deemed 

not to be ideal enough to detect more complex attacks, which are not detectable by a pre-defined 

signature. 

As for the DARPA experiment, it was initially thought that Snort could fare weU in detecting 

DARPA attacks. However, the fact is Snort detection performance is low, only 32 attacks were 

detected, and Snort produced a large volume of false positives. Indeed, Snort also missed numerous 

attack instances from those 32 attacks. From this experiment, it is obvious that the issue of false 

alarm has become very much critical. The false positives generated greatly outnumbered the t rue 

positive alarms, as depicted in Figure 4,1. In fact, more than half of the signatures producing both 

true and false positives in this evaluation t r i ^ e r e d more false positive and true positive alarms. 

This issue would critically decline IDS detection performance; not only in this simulated network 
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environment but also hound to happen in a real environment. 

Regarding the quality of alerts. Snort generated a significant number of redundant alerts, which 

critically highlighted the performance issue of its alert reporting system. This often leaves the 

administrator with the overwhelming alerts, which then render the alert validation job hard to 

man^%. Importantly, this issue has also driven the need to have an improved or better alarm 

reporting system through the implementation of alarm suppression and correlation methods. 

Snort raised 28340 pure false positive alarms that accounted for 31% of total alarms generated. 

Such issue is also likely to happen in a real-network environment. However, in this experiment, the 

cause of these alerts was not individually tracked. Having said that , it is beheved that this might be 

caused by the nature of Snort IDS, which relies on keyword spotting (in other words, matching the 

packet content to signature rule) to detect malicious activity. Significantly, this finding underlines 

another weakness of Snort IDS, which render the system prone to produce excessive alerts. 

4.5 Conclusions 

This chapter discussed the results of false alarm evaluation on both the DARPA 1999 data set and 

the University of Plymouth private data set. It then continued to highHght the issue of false alarms 

and critically examine the impact of false alarms on the IDS detection rate. 

In general, the study has confirmed the criticahty of IDS false alarm issue. Given the findings 

in the DARPA evaluation, endorsed by the experiment results on University private data set, it 

is clear that false alarm is a never-ending issue faced by current IDS. This motivates the need to 

enhance the system performance or even to improve the quality of alerts generated. 

Having investigated the problem of false alarms, the next chapter presents the architectural 

framework of a proposed alarm correlation and reduction system. This is followed by the descrip­

tions of the main modules involved in such an approach. 
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5.1 Introduction 

Having identified current literatta^e or studies on LDS alarm correlation methods and the draw­

backs associated with them, this chapter introduces a new alarm correlation system, which aims 

to aggregate alerts from the same attack instances and classify alerts into two classes, the true 

and the false alarm. This chapter begins by introducing the concepts of the appUed methodologies 

and the rationale behind the implementation. The proposed model is then presented, followed by 

preliminary experiment results on both 1999 DARPA data set and University of Plymouth private 

data. 

5.2 Methodology 

To answer the issues of current correlation systems (as described in Chapter 3). an automatic alarm 

correlation and Sltering system for signature-based IDS is proposed using unsupervised clustering 

techniques, namely Self Organising Map (SOM) (Kohonen, 1995) and A ' -means algorithm (Mac-

Queen. 1967), The data mining techniques are commonly used in data reduction and data cluster­

ing. The reason of choosing these a l ^ r i t h m s is because they are easy to Implement and able to 

show or clarify the relationship between the classified data. 

The proposed system is developed to process alerts generated by signature-based IDS, including 

segregating or correlating alerts associated with the same attack instance and clustering the alerts 

into groups of true and false alarms. Existing alarm correlation studies (as presented in Chapter 3) 

were conducted to achieve either of these purposes; to construct an attack sceneirio by aggregating 

alerts related to the same attack (Ning et al., 2002; Debar and Wespi, 2001; Cuppens and Miege, 

2002) or to identify false alerts (Maggi et al., 2009; Spathoulas and Katsikas, 2010). Unlike the 

previous works, the proposed system aims to achieve both objectives by introducing a two-stage cor­

relation. The rationale behind this is to propose an automated tool that not only can discover the 

relationship between alerts but can also identify false alarms without the need of domain knowl­

edge. 

The following subsections introduce the basic concepts and the operational features of the ap­

plied algorithms (SOM and A - m e a n s ) . 
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5.2.1 Self Organis ing Map (SOM) 

A Self Organising Map (SOM) is an unsupervised neural network which produces a feature map 

that maintains the topology of the input data according to their similarity. Unlike typical neural 

networks that need to be trained with their desired outputs, SOM can automatically categorise the 

varieties of input presented during training without any external supervision whatsoever and as­

sess the accuracy of its classification. In other words, SOM is a type of learning process in which 

the neighbouring cells in a neural network are competing in their activities through mutual lat­

eral interactions and are specifically tuned to adapt to various input signal patterns or classes of 

patterns (Kohonen, 1995). It relies on the absence or presence of an active response given by the 

cell or local cell group, not so much on the input-output signal transformation itself, to provide an 

interpretation of the input information. 

Some SOM applications require a proficient construction of large maps. Searching the best 

matching unit from a large map is usually the computationally heaviest operation in the SOM. How­

ever, using a tree-structured SOM, it is possible to use hierarchical search for the best unit (Koikkalainen, 

1994). The idea behind this method is to build a hierEirchy of SOMs, in other words, multiple maps, 

training the SOM on each layer before proceeding to the next level. In this work, a standard version 

of SOM was applied instead of the tree-structured SOM, which could be applied as an alternative 

method for the fiiture work. 

The SOMs have been commonly used in a wide range of fields: involving data mining, pattern 

recognition, image processing, robotic, process controls and visualization methods for complex da ta 

sets. In fact, it is one of the most popular unsupervised learning algorithms apphed in IDS re­

search (Albayrak et al., 2005). The initial applications of a SOM architecture to the IDS issue were 

already proposed (as discussed in Chapter 3) (Ramadas et al., 2003; Kayacik et al., 2007; Xiao and 

Han, 2006; Powers and He, 2008). Moreover, the appropriateness of such a method in the study of 

large data sets was also established (Kohonen et al., 2000). 

Unsupervised learning using SOM offers a simple yet efificient way of clustering data sets. I t 

is empirically proven that SOM is best suited to data classiiicatioo due to their high speed and 

fast conversion rates as compared with other learning techniques (Labib and Vemuri, 2002). Also, 

in terms of its data representation, this method is deemed to outperform other algorithms,for ex­

ample, ART (Adaptive Resonance Theory), owing to i ts ability to preserve topological mappings 

between the input data. This represents a significant feature, which is desired when introducing 

the relationship between the generated alerts. In other words, the oi^anisation of the data using 

the SOM-based approach enables the system to learn the relationship between alerts based on the 

defined attributes. 

The idea of the SOM algorithm is to perform a data compression technique (vector quantisation) 

where a high dimensional data is represented or mapped into something that is better understood 

visually such as a 2-dimensional array. The approach is considered as being highly effective as a 

complex visualisation tool for picturing extensive, multidimensional space with the intrinsic rela­

tionship among the various attributes comprising the data. Given these benefits, SOM is selected 

as the main correlation method in the proposed architecture. The basic concept, architecture and 

implementation technique of SOM can be found in (Kohonen, 1995). 
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5.2.2 A'-Means 

A"—means (MacQueen, 1967) is a simple unsupervised learning algorithm that answers the well-

known clustering problem by grouping n objects based on attributes into k partitions, where k < n. 

The implementation of A' - m e a n s assumes all at tr ibutes to be independent and normally dispersed. 

The main concept of this approach is to define k appropriate centroids, one for each cluster and 

then group all data into tbe pre-defined k subsets. The grouping is done by calculating the sum of 

distances or sum of squared EucUdean distances from the mean of each cluster, as shown below. 

l / ( p i - 9 i ) ' + { p 2 - 9 2 ) ' + • • - + (?«-«„)= = 
N Y,iP' - «•)' (5.1) 

1 = 1 

, where p and tj are the cluster points and v is the number of attributes. 

Hence, the objective of this clustering is to minimise a measure of dispersion within the clusters 

and to maximise the distance betw&en clusters (Kanungo et al., 2002). 

In this work, the A"-means procedure will be started by assigning the data to k initial clusters 

at random. It is also worth noting that the cluster solutions can be influenced by the order of 

the input data. The randomised trials therefore involve randomising both the initial clusters and 

the data order. To get the best clustering solution, the proposed system looks for the top solution 

by exploring a range of cluster solutions produced by the procedure and examining their criterion 

value; involving the minimum sum of squared error and the highest frequency rate. 

The popularity of the A'-means algorithm is mainly attributed to its simplicity, scalability and 

fast convergence. The rationale behind the application of the A - means algorithm is to overcome 

the limitation of the Self Organizing Map, the lack of automatic cluster detection in U-Matrix repre­

sentation. The detail ofthis issue is discussed in Section 5.3, The idea of combining Self Organizing 

Map and A -Means algorithm was already demonstrated in data clustering and visualisation (Ong 

and Ahidi, 1999). 

Similar to other algorithms. A" -means clustering also has weaknesses. A ' -means is considered 

to be unstable; running the procedure several times will give several different cluster solutions (van 

der Heijden et al., 2004). Depending on its initial condition, the algorithm may converge or be 

trapped in the local optimum (minima). In addition, when the number of pre-specified classes is 

high, it often happens that some clusters are ignored during the classification as no sufficient sup­

port is given. In that case, the number of effective clusters will turn out to be much less than fe. 

With the issues of classification in mind, the proposed approach is directed to focus only on a n inter­

action between the intrinsic structures (alerts' attributes) in the instances and the representation 

of the data in the Kohonen map. 

5.3 A Proposed Alarm Reduction and Correlation System 

The system comprises two main components; the first module is responsible for aggregating alerts 

raised by the same attack instances into clusters whilst the second component classifies the formed 

clusters into meta-clusters of t rue and false alarms. Meta-cluster is a cluster that is made of other 
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smaller clusters. The main objectives of the proposed correlation system are to filter the false 

alarms, enable the security operators to scrutinise or learn the trends of false alarms through 

statistical figures or charts provided; thus assisting them in tuning the IDS signatures for future 

detection. 

5.3.1 A Two-Tier Architecture 

The main benefit of using the unsupervised algorithms is the automated clustering of IDS alerts 

based on their feature similarity. To perform a correlation, features (attributes) are extracted from 

the alerts and fed into the correlation engine. Building accurate and efficient classifiers largely 

depends on the accuracy of the attributes, which are used as the input data for the classification. 

Figure 5.1 depicts the proposed classification model. 
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Figure 5.1: Framework of alarm correlation system 

In order to achieve both objectives (as explained in Section 5.2), the whole correlation procedure 

consists of four phases: feature extraction, aggregation, cluster classification + feature selection and 

alarm, classification. The feature extraction and aggregation phases have been commonly imple­

mented in alert classification and correlation model (Jan et al., 2009; Al-Mamory and Zhang, 2009; 

Julisch, 2001; Julisch and Dacier, 2002; Sadoddin and Ghorbani, 2009; Smith et al., 2008). 

As described in Figure 5.1, raw alerts from IDS sensors are collected and stored in a database. 

In the feature extraction phase, the alerts are retrieved from the database and several attributes, 

which are considered effective to correlate alerts coming from a single activity, are extracted from 

each alert. The alert attributes are the characteristics of alerts that are commonly used to identify 

an intrusion, for example the IP addresses or the protocols. The extracted data are then normalised 

since the value of the data are varied depending on the type of attributes used. A significant vari­

ance between attributes value will produce an uneven or biased result. 

Given a set of u-dimensional input vectors, where ii is the number attributes for each alert, from 

the first phase, the system is trained unsupervised using SOM algorithm in the second phase to map 

the inputs so that similar vectors are reflected in their arrangement. The map created by SOM con­

sists of a number of nodes, where each node contains a vector of weights of the same dimension as 

the input vectors. The distance between two input vectors is presented on the map, not by their 
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absolute dissimilarity (which can be calculated), but the relative differences of the data properties. 

The created map would be especially useful as a visual feedback to the user (network administra­

tor), which is one of the main reasons why this approach is used. Whilst many other t e c h n i q u e 

offer a better or more accurate result for clustering and multidimensional scaling (Flexer, 1997), 

they were deemed not as suitable for online, real-time data processing as SOM (Kohonen, 1990) (a 

future enhancement for the system). 

The SOM training process, t h r o u ^ which the relationships are built, is fairly simple. During 

the training. SOM is expected to randomise the map's prototype (node) vector elements within the 

range of the input value. The iteration is carried out to obtain a node which is most similar to the 

input vector. Once it is found, the node and its neighbours on the map are incrementally adjusted 

to more closely resemble the data. 

As soon as the final Kohonen map is produced, the trained SOM can be automatically visualised 

using the U-Matrix method. Having said that , SOM clustering alone is not good enough to describe 

the boundaries between the data items since there are no clear walls to separate them from the 

other items. Classifying the data without any prior knowledge, is therefore inconsistent and diffi­

cult. The result of this U-Matrix is merely used for visualisation purposes and the interpretation 

of the U-Matrix values is considered subjective. To avoid this issue, therefore, the system applies 

a traditional clustering method, A ' -means clustering. Based on the map produced by the trained 

SOM, A - m e a n s clustering is implemented to further define the boundaries between the data and 

concurrently classify the input vectors into a number of pre-defined clusters. At the end of the sec­

ond phase, the system is expected to form clusters by correlating all alerts generated by a single 

activity, meaning one cluster for each evenf activity. 

In the third phase, cluster classification + feature selection, the clusters formed in the previous 

phase are further evaluated and the attributes of each cluster are extracted. Seven alert attributes 

(features) were chosen from each cluster to represent the value of each input vector in the final 

clustering. Whilst five attributes can be automatically extracted from the clusters, the other two 

attributes, namely the number of occurrences of an event triggering a particular alarm signatuir 

and the average time interval between the events in a pre-defined time frame will need to be com­

puted individually. These features are considered to be the most crucial attributes influencing the 

magnitude of the alert signatures. 

A high generation of alerts from a single signature provides a good indication of noisy false 

alerts, such as ones triggered by the ICMP traffic. However, it can also indicate the occurrence of a 

denial of service attack if the alerts are raised within a short time interval. To answer this problem, 

the recurrence rate of an event triggering a particular signature and the average time interval 

between the events are selected to determine the authenticity of the alerts. The combination of 

both features will ultimately decide the validity of the alerts, whether they are t rue or false alarms. 

To achieve an optimal result, the number of events and time interval features are emphasised 

and it is necessary to examine how the at tr ibutes ' w e i g h s from the two features can greatly affect 

the outcome of the classification. In which case, fine-tuning is performed before the classification 

to determine the most appropriate at tr ibute weights and to ensure that such attributes contribute 

more to the grouping processes. 

Using the similar clustering concepts applied in the aggregation phase, the SOM and K - means 

algorithm are re-apphed in the final phase to classify the input data produced in the third phase. In 
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this scenario, a set of seven-dimensional input vectors are fed into the clustering engine. And the 

final outcome of this classification is two meta-clusters, namely t rue positives and false positives. 

The final clustering reveals that a cluster containing a signature with higher event frequency 

rate and a shorter time Interval between events are prone to represent a false alarm class and 

vice versa for t rue alarms. The diagram of the correlation process emd the relationships among 

the components appear in Figure n.2. In addition to this, the fiill algorithms of the correlation are 

presented in Section 5.4. 
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Figure 5.2: Architecture of alarm correlation system 

5.3.2 Stage 1 - Alarm Aggregation 

Following subsections present alarm attributes and fundamental concepts of the alarm aggregation 

phase: 

5.3.2.1 Alarm attr ibutes 

In order to correlate related alarms, it is necessary to remove the inapt at tr ibutes and select only 

the most appropriate ones. After evaluating a number of potential features, three significant at­

tributes have been chosen to represent the relationships between alerts. Those are the timestamp, 

the source and destination IP addresses. IP address is deemed to be the most critical feature deter­

mining the subject of the occurrence. Conversely, the t imestamp determines the time of the event 

and whether a particular alert within a specific time period should be aggregated. By using the 

combination of these features, alerts triggered by particular IP addresses were correlated within a 

particular period of time. 
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ID order to correctly spot the events i n h e r e d by particular hosts, the combination of both source 

and destination IP addresses was used. So, instead of using the original IP addresses, the system 

is designed to compute the addition and the subtraction between the source and destination IP ad­

dresses. Before the computation, the IP addresses were converted into their decimal value from the 

common dotted decimal notation, for example, 123.7.1.10 becomes 2064056586. The idea of trans­

lating dotted decimal IP address to its decimal equivalent is commonly used by MySQL database. 

The main objective of this pre-processing step is to obtain a distinctive pair of IP addresses 

from an alert without the need of identifying the source and destination addresses. Such approach 

enables the system to connect all alerts which involve the two IP addresses within a particular 

t ime frame. For example, alerts generated by ICMP Ping and ICMP Echo Reply signatures can 

be correlated since they commonly associate to a same pair of IP addresses. In order to obtain a 

same pair of addition and subtraction values of two IP addresses in any order, only the absolute 

value of the subtraction is taken. For example, if the subtraction between 2886758706 (source) 

and 2886759119 (dest) is -413, then the absolute value 413 is selected. So, although the source 

and destination IP addresses are reversed, the subtraction will still yield the same value. As this 

technique uses the characteristics of both difference and addition of IP addresses, which are taken 

in time context, the likelihood of having collisions is low (different pair of IP addresses are mapped 

into the same cluster) (Chyssler et al., 2004). A unique combination of the value, hence, indicates a 

unique event triggered by the corresponding IP addresses. 

Apart from the IP addresses, the third attribute, limestamp, also requires a slight conversion. 

As the timestamp is represented as date string format rather than a number, an alteration is 

necessary. The timestamp is normally presented as date vector, consisting of 6 elements speci­

fying year, month, day, hour, minute and second. So, in order to perform the conversion whilst 

keeping the value of the attribute, "datenum" function from MATLAB was utilised to convert the 

string or date vector into a serial date number. For example, "2002-08-15 18:16:00' is converted to 

731443.7611111112. In addition, in order to prevent the issue of over-fitting caused by the over-

specified timestamp, this is very important to modify the last element of the attribute (seconds). 

And to make it even, this element is set to "00". 

5.3.2.2 Concepts of alarm a g ^ e g a t i o n 

The main idea of this stage is to aggregate alerts that belong to the same attack instance (activ­

ity) within a particular time window. Prior to the mapping process, a data conversion is carried 

out, as presented in previous subsection. Since three alarm attributes are selected, a set of three-

dimensional input vectors is fed into the classification function. 

Using nodes with three-dimensional vectors to build the SOM map directly is likely to be biased 

to a certain dimension, as different at tr ibutes values tend to be in different units. If some vector 

components have variance which is considerably higher than other components, they will certainly 

dominate the map formation. Therefore, normalisation is performed to control the variance of the 

vector components. The experiments utilise variance normalisation method, which is known as 

var (CIS, 2005). This is a linear transformation which scales the values such that their variance is 

equal to 1. 

In the A' -means algorithm, each at t r ibute is assumed to have the same weight; which then 
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makes it impossible to know which feature contributes more to the grouping process. Having said 

that , the value of the attributes' weights can be completely adjusted if the fine-tuning is desired. In 

this stage, the key attributes of the classification are the IP addresses. To achieve the best outcome, 

it is necessary to ensure two IP address features, namely addition and subtraction, contribute more 

to the clustering process than the timestamp feature. In order to do so, a weight adjustment is a 

necessity. 

In order to achieve an ideal weight, a number of classifications were run using three-dimensional 

input vectors and different weights of IP address were used for each classification. This experiment 

was conducted to search for the best classification outcome by setting the weights of the IP address 

at tr ibutes to be higher than the timestamp feature. The default weight value of an at t r ibute is 1. If 

the weight of a particular attribute is set to 2; then the final attribute value itself can be computed 

by multiplying the weight value to the original at tr ibute value. 

Although the main objective of this weight adjustment method is to prioritise the attributes 

on the classification processes, the alert features should not be over-weighted, which could lead 

to a biased clustering result. From the observation, it was found that the data started producing 

inequitable classification outcome once the weights of the source and destination IP address were 

set to more than 3 times higher than the weight of t imestamp attribute. To avoid this problem, the 

weight values of the IP addresses (a) should only be set to 1 to 3 times higher than the timestamp's 

(1 < w < = 3 ) . 

The classification was run several times with the weights of IP addresses range between 1 and 3. 

The start ing weight value is 1.1 and it gradually increases by 0.1 in each iteration (classification). 

The ideal weight is determined by the best classification outcome. In this system, the finest weight 

values for the IP address attributes are set to be 1.8. 

The number of neurons or the size of the map itself greatly influences the performance of the 

SOM system. In the classical SOM, the number of neurons should usually be selected as big as 

possible, with the neighbourhood function maintaining the efficiency and generalisation of the 

mapping. The increase of the map size, however, could cause the training phase to become com­

putationally and impractically heavy for most apphcants. With the aim of gaining the best map 

result, the system needs to select the number of neurons based on the smallest quantisation and 

topographic errors, in which case the error values of less than 0.1 are selected. In order to do so, the 

system runs a loop programme creating maps with different number of units and the programme 

will be terminated once the map has the quantisation and topographic errors less than 0.1. The 

quantisation and topographic errors are computed after training to measure the quality of the gen­

erated map. However it is worth noticing tha t a low quantisation error does not necessarily mean 

a good result; it might lead to the issue of overfitting. This may happen when the numbers of units 

are larger than the number of training data (CIS, 2005). Having said that , overfitting is not a real 

problem since A—means is applied as a second classifier. In fact, the implementation of multi-stage 

classifiers can actually avoid the issue of overfitting (Weijters et al., 1997), 

One of the most significant weaknesses of A" -means clustering is the need to determine the 

number of clusters prior to classification. The default setting for A'-means initialisation value 

k'lia.T (maximum number of clusters), set by SOM Toolbox, is the square root of the length of data. 

As in the first stage, the real number of the clusters is not known, and it is believed that the data 

can be classified into more clusters than specified by the default setting above. To affirm this idea. 
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four chunks of sample data were taken and manually analysed to estimate the expected number of 

clusters and three of them had clusters reached up to two fifth of the number of input data (alerts). 

Hence, in order to avoid possible misclassification, the system determines to increase the kmax 

value (the maximum number of clusters) for A ' -means to half of the length of data (alerts). For 

example, if there are 3000 alerts fed into the system, a mairimiim of 1500 clusters will be formed. 

In this stage, a number of classifications are run using different A' (number of clusters), start ing 

from 2 to kmax value. The best number of clusters (k value) is selected based on the lowest SSE 

value of the corresponding classification. 

Again, the problem of overfitting is very common in the subject of data mining and neural net­

work. Such issue occurs when the number of nodes (clusters) is as lai^e as or larger than the 

number of training cases (CIS, 2005). Since the number of training data used in the experiment is 

two times more than the clusters {k = data), the network is unlikely to suffer from overfitting. 

Appendix Cand D provides the pseudocode and full codings for stage one and two correlations. 

5.3.3 Stage 2 - False Alarm Classification 

Having correlated the related alerts into a number of clusters, the second stage of classification is 

carried out to label the alerts into true and false alarms. The main objective of this false alarm 

classification stage is to obtain a better alarm management by reducing the number of false alarms 

generated before being presented to the administrator. 

5.3.3.1 Alarm attributes 

Similar to the first mapping, the alert attributes are selected and pre-processed prior to the clas­

sification. However, in this case, the outcome of the first classification will be fed into the second 

alarm classifier; meaning that the clusters generated in stage 1 correlation will act as inputs for 

the stage 2 classification. In this stage, seven alert features are selected from each cluster. Those 

are the number of alerts, number of signatures, port number, protocol, priority, t ime interval and 

the number of events. The attributes are carefully selected to represent the dimensions of the input 

data and to describe the inherent relationship between alerts. Table 5.1 presents a brief description 

of the selected alarms' attributes and their data collection methods. 

5.3.3.2 Concept of true and false alarm classif ication 

In this false alarm classification module, the final result of the classification largely h i n g ^ on the 

dimensions or the attributes apphed in the SOM mappings. Typically i \ ' -means algorithm treats 

all features fairly and distributes the weights on all at tr ibutes equally. The features' weights can be 

derived based on the importance of the feature to the clustering quality. The higher the attribute's 

weight, the more the contribution it has on the clustering process. Amongst the seven features, 

two attributes, namely the number of events and the time intervals between events, are deemed 

to be the most influential ones. So, to ensure such features contribute more to the clustering pro­

cesses than the remaining five, the fine-tuning was carried out by properly adjusting the attributes ' 

weights. Using the similar method as carried out in the previous alarm aggregation stage, the ideal 
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Table 5.1; The interpretation and data collection methods of the alarm attributes for second stage 
classification 

ALERT FEATURES 
No of alerts 

No of signatures 

Protocol 

Port Dumber 

Alert priority 

Time interval 

No of events 

DESCRIPTION 
Total number of alerts grouped 
in one cluster 
Total number of signature type 
in a cluster 
Type of traffic from event trig­
gering the alerts 

Only the service port number is 
applied in the classification. 

Criticality of the alerts. There 
are 3 types of alert priority, 
namely 1st, 2nd, and 3rd. 

Time interval between events' 
from a particular signature 

The number of events'in which 
a particular alert signature is 
triggered within a time frame, 
for example, every two hours, 
one hour or half an hour 

COLLECTION METHODS 
N/A 

N/A 

There are only three values tha t can 
be assigned to this feature. Alert with 
the protocol number below 255 is as­
signed to a value of 1 and 3 for proto­
col number 255, If there are two types 
of protocol number found in a cluster, 
the value is set to 2. 

If the alert contains a well-known 
port number (< 1024), the value will 
be set to 1; if not (> 1024) value of 3 
will be given. If the cluster has two 
types of port numbers, then the value 
will he set to 2. 

Based on the type of signature, alert 
with the 1st priority is assigned to a 
value of 300. 2nd to 200 and 3rd to 
100. If multiple signatures are found 
in a cluster, the priority value for each 
signature could be added together. 
Should an alert signature occur in 3 
different events in a particular time 
frame, the mean of the time inter­
val between each event is calculated. 
This attribute is computed in seconds. 
However, if there are multiple signa­
ture types in one cluster, the highest 
time interval will be selected-

If there are multiple signature types 
in a cluster, the lowest no of events is 
selected. 

' One event may contain one or mnltiple tyi>eBof alert signature, which are triggered by a particular activity or attack. 

weights were then computed to be 2.5 for the 6th attribute, namely time interval and 2.8 for 7th 

attribute, namely number of events. 

To overcome the weakness of A—means clustering, the system generates 500 randomised trials 

or iterative classifications, involviog randomising both the initial k clusters and the data order. 

The number of clusters {k value) of the stage 2 correlation is set to 2 as the classification aims to 

generate two meta-clusters, namely the true and the false alarms. In each trial, the input data order 

is randomised and the first two input data are selected as the initial centroids for the A' -Means 

algorithm. The objective of randomising the data order is to simply have distinct classification 

66 



5.3. A Proposed Alarm Reduction and Correlation System 

results with different initial clusters for 500 interations. 

In A' -means , the most essential approach to determining the best classification result is by 

looking into its SSE value (MacQueen. 1967). Hence, this feature is taken as one of the selection 

criteria to select the finest cluster solution. The sum of squared error refers to the least distance 

between the data and the corresponding cluster centroid. A map is considered equal to other maps 

if they have the same SSE value. 

For A ' -means algorithm, the lower the sum of squared error, the more accurate the classification 

should be. This theory, however, in some cases, might not apply to the system. In the map with the 

lowest SSE value, the algorithm tends to assign the centroids to the data points with the farthest 

distance; generating two clusters with highly unbalanced cluster sizes. This definitely indicates 

two poor outcomes; either a tighter security level with a lower reduction r^te or a loose security 

level with the risk of false n ^ a t i v e s . Such an issue clearly demonstrates the trade-off between 

maintaining the security level and the need for reducing the false alarms. 

In view of this trade-off issue, thresholding is required to balance the security issue and the 

alarm reduction. Since the randomised experiments were used to select the best cluster solution, 

evaluating the frequency rate of each solution (map) is necessary. So, instead of merely focusing 

on the lowest SSE value, the best map is also selected based on its frequency rate (frequency 

distribution). The concepts of the SSE values and frequency rate are explained as follows: 

1. Each classification yields a SSE (sum of squared error) value, which can be computed using 

Euclidean distance of data inputs to the mean of their corresponding clusters. The details 

have been described in subsection 5.2.2. 

2. The frequency rate refers to the count of the occurrences of a SSE value within the 500 clas­

sifications. 

To use both elements to assess the quality of the generated maps, an experiment, consisting of 

five classifications, wascarr iedout using five set of sample data to examine the frequency rate of the 

SSE value. From the observation, a cluster solution (map) that had a SSE value with a frequency 

rate above 0.6 (300 out of 500) had the best classification result compared to other solutions. From 

the study, it is evident that a solution with a high occurrence rate (reassuringly occurs in at least the 

third fifth of the random trials) generates a better grouping compared to those with low frequency 

rates. The higher the frequency rate of a SSE value from a map. the more stable the map is. The 

best classification solution is, therefore, selected based on the highest frequency rate and set the 

thresholding value to 0.6. Any map with a frequency rate exceeding the thresholding value (0.6), 

will be automatically selected as the finest choice without any further evaluation. 

Conversely, if the highest frequency rate falls below the value (it does not dominate other so­

lutions), further evaluation will be required in this case. To find which of the maps are worth 

evaluated, it is necessary to set another threshold to select the dominant solutions. The second 

thresholding (s). which is derived from a standard deviation of the SSE or map's probability distri­

bution, will determine which of the cluster solutions need further investigation. The standard de­

viation represents the a v e r s e variation of the frequency rates from the mean distribution. Again, 

by observing the results of five sample classifications, it is concluded that the maps with frequen­

cies range from t tot - s are Ukely to produce better clustering results compared to those with low 
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frequency rates. So, for this reason, only those solutions with frequency rates that fall between ( 

(highest frequency) and (f - s) are evaluated. 

Hence, to conclude this , the procedure of the map selection is described as follows: 

Step 1 : Check If any map or SSE has a frequency rate above 

0.6. If yes, go to step 4.1, 

Step 2 : ChecJc if the highest frequency rate exceeds other 

solutions (t-s > second highest frequency rate). If yes, go to 

Step 4.1. 

Step 3 : If the number of maps whose frequency rate are between 

t and t-s is equal to 2, go to Step 4.2; else calculate the 

average SSE value of the maps whose frequency rates are between t 

and t-s las shown in equation 5.2). Go to Step 4.3 

Step 4.1: Take the map with the highest frequency rate as tJie 

best cluster solution. 

Step 4,2: Take the map with the lowest SSE value as the best 

map choice 

Step 4.3: Select the cluster solution with the ESE value 

closest to the average SSE as the best map choice. 

-YSSEi, (5.2) 
•=i 

where n is the number of map solutions whose ft^quency rates range from tlot - s. 

5.4 Algorithms 

The complete algorithms of the whole correlation process can be defined as follows: 

5.4.1 Stage 1 Correlation 

ten = the length of input data (alerts) 

munit = len +100 — munit is the initial size of map (number of units in a map) 

1. Extracting alert at tr ibutes • source, destination I P addresses and t imestamp are extracted 

fi-om each input alert 

(a) The output of this process is a set of 3-dimensionaJ input vectors 

2. Nurmahsing the input vectors using mr method from MATLAB 

3. Increasing the weights of source and destination I P addresses to 1.8 

4. Determining the best size of map units based on the smallest topographic and quantisation 

errors 
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(a) Creating a SOM map with the number of units is equal to munit 

(b) Calculating topographic (terr) and quantisation errors (qerr) 

(c) While tp.TT > 0.1 II qerr > 0.1 

• Increase munit by 10 

• Creating a SOM map with the number of units is equal to munit 

• Calculating topographic and quantisation errors 

(d) End 

5. Training the created SOM map with the input vectors using SOM algorithms 

(a) The output of this process is a U-Matrix map with the plotted input vectors. 

6- Clustering the vectors plotted in the SOM map into several pre-definedclustersusing A—means 

algorithm 

(a) kmax is set to 1/2 often 

(b) Set SSE to the largest number of the floating point number 

(c) Set itr to kmax 

(d) Run the classifications several times using different k values ranging between 2 and 

kmai 

While ifr > 1 

• Randomising input data order 

• Assigning the first itr input data as the centroids 

• Clustering the data using A ' -Means algorithm 

• Calculating SSE value 

• If the SSE < err. 

Set err to the SSE 

Set k bo itr 

• Decrease the itr by 1 

7. The final output of this stage is the input vectors being grouped into k clusters 

5.4.2 Stage 2 Correlation 

leu = k (number of clusters formed in the previous stage) 

munit = ten + lOfl - munit is the initifil size of map (number of units in a map) 

1. The clusters formed in stage 1 correlation will become the input of stage 2 correlation. 

2. Extracting alert attributes- no of alerts, no of signatures, protocol, port number, priority, no of 

events and time interval are extracted from each cluster 

(a) The output of this process is a set of 7-dimensional input vectors 

3. Normalising the input vectors using var method from MATLAB 
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4. Tuning the weights of no of event to 2.8 and time interval to 2.5 

5. Determining the best size of map units based on the smallest topographic {terr) and quanti­

sation errors (t^err) 

(a) Creating a SOM map with the number of units is equal to munit 

(b) Calculating topographic (/err) and quantisation errors (qerr) 

(c) While trrr > 0.1 || ^err > 0.1 

• Increase munii by 10 

• Creating a SOM map with the number of uni ts is equal to munit 

m Calculating topographic and quantisation errors 

(d) End 

6. Training the created SOM map with the input vectors using SOM algorithms 

(a) The output of this process is a U-Matrix map with the plotted input vectors. 

7. Clustering the vectors plotted in the SOM map into several pre-definedclustersusing A - m e a n s 

algorithm 

(a) S e t * to 2 

(b) Set itr to 500 

(c) Run the classifications 500 times using different k values ranging between 2 and kmax 

While itr > 0 

• Randomising input data order 

• Assigning the first k input data as the centroids 

• Clustering the data using A - M e a n s algorithm 

• Calculating and storing the SSE 

• Decrease the itr by 1 

End 

8. Selecting the best map from the 500 maps generated based on the SSE value and the fre­

quency rate 

9. Thef ina loutputof this stage is the input vectors (clusters) being grouped into 2 meta-clusters 

5.5 Experimental Results 

In order to evaluate the performance of this proposed system, two experiments were carried out. 

For the experiments, two types of datasets were used; the public (DARPA 1999 data set) and the 

private (University of Plymouth data set). Table 5,2 presents the properties of data set selected 

for the experiments. Following subsections present the experimental results of the false alarm 

classifier. 
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Table 5.2: Properties of DARPA and Plymouth Private Data Sets 

STAGE 1 

STAGE 2 

No of Alerts 
Map Unite 

Errors 

t-value 
Map Units 

Errors 

/:-value 

RESULT 

DABPA 1 
P A R T I 

1224 
1333 

Q = n.OOl 
T = 0.019 

612 
19U 

Q = 0.048 
T = 0.012 

2 
F A - 1 1 3 1 

TA - 'Xi 

PART 2 1 
1M8 
1924 

g = 0.009 
r ^ 0.041 

919 
299 

£? = 0.097 
r = 0.054 

2 
FA = 1297 
TA = 54i 1 

PLYMOUTH 
P A R T I 

:m) 
437 

Q = 0.050 
T = 0.048 

165 
290 

Q = 0.097 
T - 0 . 0 4 3 

2 
FA= 260 
TA = 70 

PART 2 
2226 
2385 

Q = 0.003 
T ^ 0.011 

1113 
260 

Q = 0,044 
T = 0.077 

2 
FA = 2139 

r ,4 = S7 
Q is Quantisation Error, T is Topt^raphic Error. FA is False Alarm and TA is True Alarm. 

5.5.1 DARPA 1999 Data Set 

Due to the criticisms that were raised over the DARPA data set, questioning the use of synthetic 

data to picture a real world network (as explained in Chapter 4), the experiments used not only a 

DARPA data set, but also a private data set, which will be discussed later in subsection 5.5.2. As the 

main objective is to facilitate alarm management for the administrator, the proposed technique is 

designed to process the generated IDS alerts in maximal two-hour alerts. With the aim of providing 

a quick oveirview of the system performance, the experiments randomly selected and evaluated only 

a chunk of DARPA 1999 data set as the input of the IDS system. In this case, only 4 hours data 

from week 4 DARPA testing data set is fed into the system. 

To obtain a set of network alarm data for the classification system. Snort was run (Caswell and 

Roesch, 1998) under Linux Fedora 7 against the DARPA data set. In order to facilitate the analysis 

of IDS alerts, a fi*ont-end tool Basic Analysis and Security Engine (BASE, 2009) was then utihsed 

as the intrusion analyst console. Regarding the neural networks, the SOM-based and A' -means 

system is implemented on the SOM Toolbox 2.0 (CIS, 2005) which is run on MATLAB 7.8.0. 

For DARPA data set. 4 hours of data (total 3,062 alerts) was extracted from the first day of the 

4th week testing data and was evaluated as two separate inputs. Figure 5.3 presents the result of 

the stage 1 DARPA classification. The maps as shown in Figure 5.3, 5.4, 5.5and 5.6 are examples of 

U-Matrix maps generated by SOM algorithms. With the pre-defined map units and input vectors 

presented, the maps are then created and trained by the mapping algorithms. 

A total of 790 clusters were generated in the first part of classification (first 2 hours); shown 

on the left map. Interestingly, only 203 of them were active whilst the rest were considered dead 

centres. Active cluster is a cluster that contains data whilst the dead centre is a centroid that has 

no members or associated data. Similarly, from 605 clusters generated in the second part (shown 

on the right map), only 86 classes were active. This seems obvious tha t A' - means clustering tends 

to generate a significant number of dead centres. Enhancing the A—means performance, however, 

is out of the scope of the study and is not discussed in this thesis. 

In general, the classification demonstrated a reasonable outcome. Approximately 93% of data 

from the first part of the classification was mapped and classified into the correct clusters, that is 
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Figure 5.3: Stage 1 classification using DARPA 1999 data set 

Table 5.3: SSE and Frequency Rate from DARPA Data Set Part 1 

[MAP 
SSE 

, Frequency 

1 
6.3276 
0.362U 

2 
6.3350 
0.3320 

3 
6..5053 
0.0620 

4 
6.5056 
0.0640 

5 
(i.S716 
0.0040 

6 

6.S721 
0.0040 

7 
fi.87.Sl 
0.1)040 

8 

6.8767 
0.0440 

9 

6-9091 
0.0020 

10 

7.6474 
0.0560 

11 

7.6807 
0.0660 

Table 5.4: SSE and Frequency Rate from DARPA Data Set Part 2 

MAP 
SSE 
Frequency 

1 
2.4721 
0.7860 

2 

2.9135 
0.1540 

3 

4.0591 
0.0600 

accuracy = 0.93. Conversely, 0.9 was revealed from the second classification. In terms of clustering 

accuracy (the number of clusters with the correct data), the first classification showed 0.86 accuracy, 

whilst second classification revealed 0,81. 

In the second stage, there were eleven maps (cluster solutions) tha t were produced in the first 

part of DARPA classification, as shown in Table 5.3. Only two clusters, the t rue and the false 

alarm classes, were desired in this stage. The result shows on the left map from Figure 5.4 is 

corresponding to criterion value in Table 5.3. 

Based on the map selection procedimi, it is obvious that the solution with the highest frequency 

rate in Table 5,3 does not conform to the first and second criterion rules (MAP 2 has the frequency 

rate higher than t - s;t = MAPI'sfrequencyrate; t = 0.362; s ~ 0.129). Since only two maps (MAP 

1 and MAP 2) have frequency rates higher than f - s(0.362 - 0.129 = 0,233), the one with the lowest 

SSE value is selected. In this scenario, MAP 1 is selected as the best map choice (presented on the 

leftside of Figure 5.4). On the other hand, the second part of DARPA classification, which is shown 

on Table 5,4, presents 3 possible cluster solutions. 

The solution with the highest frequency (MAP 1) is automatically chosen as the best map since 
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Figure 5.4: Stage 2 alarm classifier using DAEPA data set 

Table 5.5: Result comparisons 

No 

1. 

2. 

3. 

4. 

5. 

6. 

Proposed by 

Juiisch. 2001 

Al-Mamory and Zhang, 2009 

Perdisci et al., 2006 

Sadoddin and Ghorbani, 2009 

Khanchi and Adibnia, 2009 

Spathoulas and Katsikas, 2010 

Method 

Root cause clustering 

Root cause clustering 

Clustering: meta alarms 
Incremental mining of 

frequent s t r u c t i u ^ 
patterns 

Alert feature frequencies 
Neighbouring alerts 
and alert frequencies 

Data S e t 

Real network 
Real network, 
DARPA 1998 

and 1999 
DARPA 1999 

DARPA 2000 

DARPA 2000 

DARPA 1999 

False 
Alarm 

Reduct ion 
R a t e 

82% 

74';̂  

64.6̂ ;f 

m% 

71% 

75% 

the frequency rate (0.786) has exceeded the first thresholding value. The mapping result is pre­

sented on the right map in Figure 5.4. 

In this context, the proposed system is considered effective in reducing the number of false 

alarms; with 95% being correctly labelled in the first classification, whilst the second categorisation 

reduced approximately 99% of the total false alarms. Those alarms located in the upper portion 

were labelled as t rue alarms, whilst the lower portion was for the false alarms. The system also 

appears effective in detecting false alarms generated by noisy traffic such as the ICMP traffic (ICMP 

Ping and echo reply) and the web-bug alerts, which formed the highest number of false alarms 

triggered in the experiment (as discussed in Chapter 4). 

Table 5.5 shows the performance results of other existing false alarm classification or corre-
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lation methods. From this preliminary experiment, it is obvious that the proposed system has 

outperformed other existing methods. However, due to the small data set used in this experiment, 

the comparison is considered biased a t this stage. Therefore, a fiirther evaluation should only be 

conducted to assess the system performance at the final stage, that is using a complete data set. 

This will be presented in Chapter 7. Section 7.8. 

5.5.2 University of Plymouth Private Data set 

The UoP private data used in this experiment is the same as the one used for fine-tuning, as dis­

cussed in Chapter 4. Similar to the DARPA data set, 4 hours data from University's network data 

(2556 alerts) was analysed using two separate inputs. Figure 5.5 presents the result of the classifi­

cations. 

•y Jf-L' i; .^-.nza 

' " « . •«- •3 

Figure 5.5: Stage 1 classification using University of Plymouth data set 

The classification from this network data shows a slightly better result compared to those from 

DARPA data set. Approximately 0,92 and 0.94 are computed for the first and second classification, 

whilst the cluster accuracy accounts for 0.89 and 0.93 respectively. 

Unlike the stage 2 classifications on DARPA data set. the classifications on private data set 

reveal quite a straightforward result. The computation of the average SSE value is not required 

in this scenario as the highest frequency rates from both classifications shown on Tables 5,6 and 

5.7 conform to the first criterion. In view of this, the solutions with the highest frequency rate are 

determined to be the best maps. In addition, the selected maps have the lowest SSE value among 

all cluster solutions. The final results of both classifications are presented in Figure 5.6. 

As for the private data, the classification reveals that about 78.8% of false alarms have been 

identified in the first map, whereas 96% of them have been detected in the second mappings. It is 

notable that the .system has shown promising result in filtering all hectic and unnecessary alerts 

triggered by the IDS. For example, the alerts from WEB-IIS view source via translate header and 
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Figure 5,6: Stage 2 alarm classifier using private data 

Table 5.6: SSE and Frequency Rate from PLYMOUTH Data Set Par t 1 

MAP 
S S E 

1 Frequency 

1 
2.7161 
0.6360 

2 
2.8643 
0.1820 

3 
2.864.5 
0.1 S2U 

Table 5.7: SSE and Frequency Rate from PLYMOUTH Data Set Part 2 

MAP 
SSE 
Frequency 

1 
3.0918 
0.8180 

2 

5.3372 
0.1220 

3 

.'i.6675 
0.0320 

4 

5.6784 
0.0280 

WEB-MISC robots.txt access signatures, which caused 82% of false alarms fr«m the entire private 

data (as discussed in Chapter 4). 

The suggested alarm filtering system is believed to significantly outperform other existing meth­

ods. Unlike many proposed systems that need to be trained with a considerable volume (giga­

bytes) of attack-free data, this system applies unsupervised training to train the classifier; hence 

no attack-free data is necessary. In terms of its configuration, this approach is considered ef^cient 

enough as it is easy to set up and no knowledge of the attacks required to filter the alarms. More­

over, the system's filtering processes are independent from the intrusion detection process. As to 

its perfonQ£ince, the system does not only provide a better alarm management, but also shows the 

relationship between the generated alerts, thus enabling administrator to discover the potential 

attack scenarios. 
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5.6 Conclusions 

This chapter has discussed the proposed data mining techniques used in identifying and subse­

quently reducing the number of IDS false alarms. Unlike other existing alarm correlation methods, 

which focused on either discovering attack patterns or identifying true and false alarms, the pro­

posed system aims to achieve both objectives. To do so, a two-stage classification system using the 

combination of two data mining techniques, namely SOM and A'-means clustering were proposed. 

The first stage classification was developed to properly correlate alerts related to a particular activ­

ity. AU alerts, r ^ a r d l e s s the signature type, triggered by a single event are mapped and grouped 

into one cluster. In addition, the main objective of the second stage is to subsequently label al) 

clusters produced in the first classification into groups of true and false alarms. 

To verify the idea, preliminary experiments were carried out with two different datasets; the 

1999 DARPA IDS evaluation data set and the private network data. The result shows t h a t more 

than 90% of false alarms from DARPA data set were filtered without ignoring the t rue alarms 

whilst approximately 87% of false alarms from private data set can he correctly identified. Despite 

the lower false alarm detection rate in private data set than the DARPA data set, this system has 

demonstrated its effectiveness in filtering all noisy and unnecessary IDS alert-s;, which have usually 

contributed to more than 50% of false alarms from the common IDSs. 

To further investigate the characteristics of the proposed system, the following chapter presents 

a novel architectural framework along with the components of the proposed system. 
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6.1 Introduction 

Having developed a preliminary version of the alarm reduction system, it is of importance to design 

an automated correlation system to facilitate a review of IDS false alarm trends and to tune IDS 

signatures for future detection. The basis for developing a standalone IDS alarm correlation system 

is the fact that ciurent alert management tools do not have the abihty to veriiy the vahdity of the 

generated alarms, that is whether it is a true or false alarm. 

Based on the findings from the alarm reduction system, this chapter contemplates the issue 

of designing a generic alert correlation system that can facilitate IDS alarm validation as well as 

tuning or management of IDS ruleset. This chapter presents the fundamental components and the 

architectural framework of the proposed correlation system. Section 6.2 discusses the underlying 

concept of the system, whilst its operational characteristics are presented in Section 6..'1. The main 

modules of the system are introduced in Section 6.4; followed hy conclusions in Section 6.5. 

6.2 SOM A -Means Alarm Reduction Tool (SMART) 

An alert management tool is created based on the supervision of the collected logs or alerts and the 

representation of the data in a more comprehensible manner, for example, charts and statistical 

figures. The tool aims to offer various features, including an in-depth query or analysis on the alerts 

and also the generation of a final security report for the security administrators. Conventional 

management tool cannot verify the accuracy of alerts, the SOM K'-Means Alarm Reduction Tool 

(SMART) presents entirely new work in this context. 

SMART is based on the concept of the Security Information and Event Manager (SIEM). The 

rationale behind the apphcation of STEM as the underlying model relates to its ability to perform 

both a correlation (event investigation) and a report production. In addition, the complex analysis 

and the outstanding alerts management or presentation of SIEM do not only assist in identifying 

anomalous events but also help reducing the information overload. In a sense, this is considered 

the main benefit of SIEM and also the key objective of the proposed SMART system. 

In terms of the processing ability, the SIEM may also benefit from having available to it informa­

tion from various systems at both network and application level, information of the event severity, 

and also the knowledge of state of the protected network vulnerabilities. In a way, this can be re­

garded as a limitation of this research; in the sense that the SMART system merely focuses on the 
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alert correlation from a single IDS. However proving the feasibility of the SMART system and its 

concepts is the main focus of this study, and adapting these approaches to allow more input data 

from more than one security tool highlights a scope in which this research can be extended in the 

future. 

SMART enables the security administrator to correlate and filter false alarms generated by 

Snort IDS. The result of the correlation is then fed into a database, thus providing an efficient way 

for the administrator to further query and analyse the correlated alarms. The elements of SMART 

are illustrated in Figure fi 1 and discussed below. 

Figure 6.1: SMART architecture 

SMART comprises the following elements: 

1. Correlation Engine: This is the main engine of the proposed system. The Correlation Engine 

performs two stages of clustering processes; including aggregating as well as filtering the 

false alarms. With the information obtained from the alert and time event database, the 

correlations are carried out by applying the best map policy. 

2. Input Module: The Input Module is a front-end interface (GUI) of the system tha t enables 

78 



6.2. SOM K-Means Alarm Reduction Tbol (SMART) 

the user to provide input to the correlation as well as to instigate the clustering processes. In 

addition, it also allows the user to monitor the progress of the correlatioD. 

3. Output Module; Similar to the Input Module, the Output Module is a fi-ont-end interface that 

allows the user to view the classification results. Apart from presenting the final outcome, it 

generates statistical charts or graphs comparing both true and false alarms over a particular 

period of time. Moreover, such module enables the user to fiirther view the alerts details, for 

example, alert payload, by redirecting the user to the Alert Management Thol. 

4. Map Select ion Policj': In order to select the best map from the randomised trials, the rules 

that describe the characteristics of the best map are then specified in the Map Selection Policy. 

5. Alert data: The Alert data, which contains complete information about the alert attributes, 

such as sourcei'destination IP addresses, signature name, timestamp, port number, protocol 

and etc, is a database generated by the Detection Engine (IDS), The information stored in this 

database will be extracted by the Correlation Engine to perform the alert classification. 

6. Time Event: Before performing the second stage correlation, the sixth and the seventh at­

tributes, namely time interval and number of events for each signature, are computed for 

every two hours, one hour and half an hour and stored in the Time Event. Once the correla­

tion is carried out, the values of the sixth and the seventh alert attributes are retrieved from 

this file, 

7. Correlation Results: The Correlation Results hold the information of all classification re­

sults; including those from stage 1 and stage 2 correlations. In particular, the final results 

consist of the figures from the correlations, the cluster index the alerts belong to and the alert 

status, namely t rue or false alarm. 

8. Attribute Convers ion Policy: Attribute Conversion Policy holds all information needed to 

convert the alert at tr ibutes into appropriate values (format) used for the correlation. The 

details about the policy applied to each attribute are described in Table 5.3. 

9. Port No: Port No lists all official port nimibers (in other words, those that have been registered 

with lANA). The file is used to assist the system in determining which of the ports, namely 

source and destination port, from the captured traffic is a service port number Significantly, 

only the service port is used as the attribute of the correlation. 

In addition to the components of SMART, the external systems, which are adopted from the open 

source market, consist of the following tools. 

1. Detect ion Engine: The Detection Engine refers to the IDS used to monitor the network 

tra£Iic. In this case, the Snort IDS was used. 

2. Alert Management Tool: The Alert ManageTitent Thol is a front-end tool for IDS, which 

allows the administrators to organise as well as investigate the IDS alerts. In this study. 

BASE was used as the alert management tool. 
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Table 6.1: Alert Attributes of Stage 2 Correlation 

No 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

9. 
10. 

Attributes 

Number of alerts 
Number of signatures 
Alert priority 
Time stamp 
Source IP address 
Destination IP address 
Protocol 
Service port number 

Additional attributes 

Time interval 
Number of events 

Selected 
YES/NO , 

/ 
/ 
/ 

/ 
/ 

Selected 
YES/NO 

/ 
/ 

6.3 Operational Characteristics of SMART 

There are several distinct attributes of the system that apparently distinguish it frorn other tech­
nologies. These are 

• an ability to perform an attribute-based alarm correlation approach 

• its strength in aggregating and classifying alerts based on time windows 

• an abOity to classify alerts into true and false alarms 

• lastly, an abihty that allows the administrators to exhaustively evaluate and examine the IDS 
alerts in a more comprehensible statistical view 

The following sub-sections discuss these operational characteristics in more detail. 

6.3.1 Offer an Attribute-based Alarm Correlation approach 

The main goal of performing attribute-based correlation is to classify IDS alerts based on the most 
relevant features that highlight their behaviours. Most importantly, it is worth knowing that such 
an approach has been highly accepted or commonly used in the study of implicit correlation. 

Since the IDS alerts have numerous attributes ranging from the IP addresses to the length of the 
packet, selecting the best attributes that represent the characteristic of the alert is a challenging 
task. Therefore, a feature selection was carried out to choose the most appropriate attributes to 
symbolise an alert or even a group of alerts. As previously mentioned, seven attributes have been 
selected in the second stage to represent a cluster of alerts. The seven attributes are made of 
five main attributes and two additional attributes (as listed in Table 6.1) The rationale behind this 
selection is to choose the most relevant and basic featuu"es that properly represent the alert clusters. 
Following table simimarise the selected attributes in the second stage correlation. 

It is worth noticing that the timestamp and the source/destination IP addresses are not selected 
in this phase since these have been applied in the first correlation. 
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The underlying idea behind the application of the alert at tr ibutes in the IDS alert correlation is 

to measure the similarity between the generated alerts. The selected attributes need to be converted 

into correct values before any correlation is carried out. The closer the attributes values between 

two alerts, the more likely they are grouped into the same cluster. 

6.3.2 Evaluate and Aggregate Alarms based on Time windows 

Another important feature of the correlation system is the flexibility of the time windows applied 

in the correlation process. To alleviate the workload of the correlation, the system is designed to 

process or correlate the input data based on the predefined t ime frame. Generally, the number of 

the alert data presented to the clustering system could be massive; thus rendering the correlation 

unfeasible in the prevailing circumstances. In view of this constraint, it is necessary to limit the 

amount of data fed into the system. So, instead of running one correlation for the entire data set, it 

would be much more practical to run a correlation over a particular time period, for example every 

one or two hours. 

In order to alleviate the correlation processes whilst maintaining the value of it, the system 

offers three interval options, namely every half an hour, every hour and every two hours. Such 

choices are given to help the administrators determine the most suitable time frame. In theory, 

the bigger time frame the better the correlation should be. This is because more information or 

alerts are processed in the correlation. However, it is worth remembering that selecting a big time 

frame (in other words, higher number of alerts being processed) is not necessarily the best choice; in 

fact it might cause several operational constraints including high processing t ime and high system 

memory consumption. By contrast, the selection of a small time window could reduce or even 

obliterate the value of the correlation itself. For instance, alerts that belong to the same attack 

instance could be regarded as alerts from two separate activities due to the extreme data splitting. 

Such issue clearly indicates the trade-off between performance and accuracy of the correlation. 

Due to the high memory usage in the unsupervised-based correlation process (will be described 

in Chapter 8), a maximum of two hours data is run per correlation. The two hours correlation is 

the highest time frame available. Although three options are available, the highest interval is the 

most recommended one in order to achieve an optimal result. 

As discussed in Chapter 5, the additional features, namely the time interval and number of 

events, are implemented as the most influential and signiflcant inputs. Thereby, the administra­

tors are given the flexibility to select the most suitable interval options available for their alert 

correlations. The correlation file (database) is retrieved by the system according to the decision 

made by the administrators. For example, if "every 2 hours" interval is selected for the correla­

tion, then the sixth and the seventh alert attributes from "every 2 hours" Time Event file will be 

retrieved and applied in the correlation. 

6.3.3 Classify Alerts into True and False alarms 

One of the most s ^ i f i c a n t features and also the main goal of the system is the ability to classify 

alerts into groups of t rue and false alarms. Having computed two leading alert attributes, time 

interval and mmiber of events, and five other attributes, the second stage correlation is carried out 

to group the stage 1 clusters based on their 7 attributes into classes of t rue and false alarms. All 
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alerts from clusters (from stage 1 correlation) that are grouped into false alarm class are flagged as 

false alarms, otherwise they are true alarms. 

6.3.4 Offer a Flexible and High Level of Alarm Comparison using LDS 
signatures 

Unlike other conventional alert management tools, the proposed system offers a statistical tool 

that allows the administrator to further evaluate the trend of IDS alarms and to do a comparison 

between the t rue and false alarms. This distinctive tool introduces an extended feature, which 

offers numerous statistical charts, to assist the administrator with the alert analysis. 

Apart from the chart creation tool, the system also enables the administrators to perform an 

alarm comparison using IDS signatures. The generation of t rue and false alarms based on the IDS 

signature rules is presented; this facilitates the administrator in identifying which of the signature 

rules can be disabled and which of them need lobe further tuned. The key objective of this feature is 

solely to give an insight into the pattern of IDS signatures and also guidance for the administrators 

to properly tune signature rules for a future detection. If the signature has raised only the false 

alarms, then it is reasonable to remove that signature from the detection rules. Conversely, if it has 

triggered both t rue and false alarms, then a fine-tuning is required. 

As for the comparison charts, there are five types of statistical charts proposed by the SMART 

system. Tbe charts are described as follow: 

• Time Vs False alarms 

In this category, the charts present the number of generated false alarms in every hour, day 

and month. 

• Time Vs True alarms 

Similar to the previous category, the number of t rue fdarms is computed and charted in every 

hour, day and month 

• True alarms Vs False alarms 

This group does a comparison between the number of true and false al^u^ns in every hour, day 

or month. In other words, this is the combination of the first and second category. 

• Time Vs False signatures 

The charts represent the number of false alarms triggered in every hour, day and month by 

each signature rule. 

• Time Vs True signatures 

This category is similar to the previous one except that it presents tbe number of t rue alarms 

instead of the false alarms. 

In addition, the SMART system also features a too! that allows the administrators to specially 

evaluate the signature rules that have triggered both t rue and false alarms. A chart is also created 

to plot the alerts according to their source IP addresses and the hour of occurrence. On top of the 

graphical view, the system will also provide two tables containing the cluster index, time interval 
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and the number of events from a particular signature rule. Therefore, with the information pro­

vided, the administrators are now able to learn the signature patterns and perform a signature 

revision if a fine tuning is needed. 

6.4 SMART Modules 

As previously discussed, there are four key components that have essentially formed the architec­

ture of the SMART system, namely the input module, the output module, the correlation engine 

and the storage. Two of these modules are related to the front-end interfaces while the others are 

the back-end system. In order to obtain a better understanding about the structure of the system, 

the following sub-sections describe the elements involved in each of the four components. 

6.4.1 User Input - User Interface 

To effectively run the system, there are two user inputs required to initiate the correlation engine. 

The first input will be the starting and the ending timestamp of the alerts processed whilst the 

second input will be the time frame (interval) for each correlation. In the main application interface, 

the administrators are prompted to specify which alerts to be processed by entering the alerts 

t imestamp and also prompted to select one from three interval options provided before a correlation 

can be executed. 

6.4.2 Correlation Engine 

As the main clustering algorithms reside within the correlation engine, this module is considered to 

be the most signiUcant as well as the core component of the SMART system. In order to provide an 

overview of the key elements relevant to the main back-end system, the at tr ibutes of the correlation 

are presented in Table 6.2. 

Table 6.2: Correlation Attributes 

N o 

1 

2 

Attributes 

Alarm ID 

Source and destination IP ad­

dresses 

D e s c r i p t i o n 

Alarm ID is a unique identifier of alerts that differen­

tiate one alert from others. In most correlation tables, 

the attribute is used as the primary key that distinc­

tively identifies each alert. Based on the occurrence 

time of the alerts, each alarm is assigned a unique ID 

in ascending order, start ing from 1. 

As described previously in Chapter 5, these attributes 

are appUed in the first stage of correlation. The val­

ues of both attributes are converted into their decimal 

notations before being applied in the correlation. 

Continued on next page 
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Table 6.2 - cont inued firom previous page 

No 
3 

4 

5 

6 

7 

8 

9 

Attributes 

Timestamp 

Number of alarms per cluster 

Number of signatures per clus­

te r 

Protocol 

Port number 

Alarm priority 

Time interval 

Descript ion 

The timestamp indicates the occurrence time of the 

alerts. Similar to the source and destination I P ad­

dresses, this attribute is used the feature of the first 

correlation. 

This at tr ibute is the first feature of the second stage 

correlation. Having run the first correlation, the num­

ber of alerts grouped in each cluster is computed. 

Instead of counting the number of alerts per cluster 

as previous attribute, this feature identifies the signa­

tures, which have triggered the alerts in each cluster. 

The number of signature type in each cluster is deter­

mined and used as the second attribute. 

The protocol type of the packet triggering the alert is 
retrieved as one of the correlations attr ibutes. The de­

tail about how the protocol is used in the correlation as 

well as the value assigned to this at tr ibute is described 

in Table 5-3. 

Similar to the protocol, the apphcation of port number 

in the correlation is mainly aimed to inspect the type 

of traffic or service triggering the alerts. Again, the 

information about the value assigned to th is at tr ibute 

is presented in Table 5-3. 

AleuTn priority is a unique feature that ranks the alerts 

in order of severity. Such attr ibute is given by the Snort 

IDS. The higher the rank is given, the more critical the 

alert is or the higher the priority it has. 

Time interval is one of the leading features of the sec­

ond stage correlation. It is the time span between the 

occurrences of events from a specific signature. Prior 

to running the correlation, the time span of all signa­

tures within a particular time frame is computed. As 

there are three choices of time frames, namely half an 

hour, an hour and two hours, available, the time in­

terval between events from all signatures within each 

time frame is gauged. 

Continued on next page 
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l ^ b l e 6.2 - cont inued firom previous page 

N o 

10 

U 

12 

13 

A t t r i b u t e 

Ntimber of events 

Cluster number 

Alert s tatus 

Signature 

D e s c r i p t i o n 

Similar to the time interval, this at tr ibute is another 

leading feature of the second correlation. The number 

of events is calculated per signature within a particu­

lar t ime frame, for example, half an hour, an hour, two 

hours. 

Cluster number is the indexes assigned to the clusters 

generated in the first stage correlation. It is also used 

as the input references for the second correlation. 

The alert status, which is the final outcome of the sec­

ond correlation, indicates the validity of the generated 

alert ( that is whether it is a true or false alarm). Zero 

(0) indicates false alarm whilst 1 indicates the t rue 

alarm. 

The last important feature of the alerts that consider­

ably influences the t rend of IDS alert generation is the 

IDS signature. This attribute indicates the type of IDS 

signature rules that have rjused the alarms. 

In order to provide a clearer picture of how the two leading attributes, namely the time interval 

and the number of events are calculated, the following description provides the complete pseudocode 

of the calculations of both attributes. 

Algorithm: Counting the Number of Events and Time Interval 

-4 <- s tar t ing timestamp 

B <- endingtimestamp 

dayAlfTts *- database table 

{Calculating the number of events and the time interval) 

A <- curTime 

whi le curTime ?̂  B d o 

curVec *- datevecicurTime) {curVecis [year, month, day, hour, minute, second]) 

NextVec i- curVec\ho\ir] + 1 

NextTime *- datestr(.Vf j-^Ver) {NexfTime is in "yyyy-mm-dd HH:MM:SS" format} 

sig <— signatures in range curTime to NextTime {Retrieve signatures that have triggered alerts 

fitnn curTime to NextTime from table dayAlerts} 

STORE the values into .^ig 

pj <— \sig\ {pj is the size o{ sig} 

Timetb *- pjx3 zero matrix 

CREATE a sql table named Tim^EventOne 
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for ct* — 1 to pj d o 

Trmrtt^co,!) = sigico) {Insert distinct signatures into matrix Timetb) 

e n d for 

for r = 1 to pJ do 
arc <— source IP addresses 

dst —̂ destination IP addresses 

ti <- t imestamp {RETRIEVE the values of timestamp, source and destination IP addresses 

from table dayAlerts, where the signature is equal to the sigij-) and the t imestamp starts 

from curTime to NexlTime} 

noALerts i— \STC\ {noAlerts is the size of ,sr<} 

for I' = 1 to TioAli'rt d o 
i'et"= datevec(t!(v)) 

tiec(6) <- 0 

time{v) •(— vec 

e n d for 
for col =lto2do 

for rov = 1 to JioAterf d o 

if rot is equal to I t h e n 

data{row,a)l] <~ src{rme) 

e lse 

data{row.col) <— dsf.{row) 

end if 
end for 

end for 

T <— IxnoAlert zero mat r ix 

event \— 0 

index <— 0 

for II = 1 to noAlcrf d o 

{Check if the alarm has been covered by previous alarm} 

if n c T then 

event *- event 

e lse 

eve7ri + 1 

if event = 1 then 

e lse 

difTime *— \time(n) — time(indeT)\ 

t*-t + difTime 

end if 

inde.x *- n 

T(l,i) <-index 
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t + 1 

j •*- n + 1 

{Finding the a larms covered by the current alert} 

if n / noAlert then 

wh i l e \time{j) — h'me{7i)| < 180 do 

{If the elapsed time is less than equal to 3 minutes} 

ifdatn[j,2) = data{ti.2) \\ data(j.l) = data{^.l] then 

{If either the destination or the source IP addresses are match} 

T{l.i)^j 

i + \ 

e n d if 
INCREMENT j 

if J > noAlf-rt then 

Break out of the loop 

e n d if 
e n d whi le 

end if 
e n d if 

end for 

rnfjt'(6fj-. 2) *- event 

if f -r event = 0 then 
Timeib{x. 3) <- 7200 

{No of seconds in two hours} 

e lse 

Timc.tblx.:i) *- t -f {event - 1) 

end if 

INSERT the values Timetb{x,:) to the sql table TimeEventOne 

end for 
end whi le 

An event is considered the same as others from the same signature if it is triggered within a time 

frame of three minutes. In other words, all alerts that have been triggered by the same signature 

within a time frame of three minutes will be counted as one event. Several observations were 

carried out beforehand to determine the average time span between the occurrence of events. As 

a result, the three-minute t ime frame is considered the most sensible threshold value; thus being 

selected and applied in the computation-

Once the values are computed, the results are stored in a table named TimeEventOnetimeatavip; 

only if the values are calculated for a time frame of 1 hour, TimeEventTwotimestamp for tv/o hours 

time frame and Thne Event Half timestamp for half an hour time frame. 

6.4.3 Data Storage 

Havi i^ looked into the components or the attributes of the correlation system, it is now essentia) 

to discover the type of data storage used in the correlation as well as the information stored in each 
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of the files or databases. 

It is worth remembering that the SMART system is deploying a relational database as the main 

information sources. Following sub-sections provide a brief description of the database files created 

during the correlation processes. 

6.4.3.1 BASE database 

The BASE database is the main information resource of the proposed correlation system. In fact, 

the system is currently developed to work with the BASE system only. This database, created by 

the Snort IDS and BASE, holds ail the information required to perform an alert correlation and 

analysis. 

6.4.3^ Time^vtmt table 

This table stores the values of the time interval and number of events pre-computed by the system 

for each signature within a particular t ime window. The table consists of three fields, namely the 

signature index, the time interval and the number of events. The values of the time interval and 

the number of events are calculated for all interval (time frame) options and the results of the 

computation are stored in separate tables. 

6.4.3.3 TitncEventRfci/rd table 

This table holds the values of the sixth and seventh alert attributes, namely the time interval and 

the number of events, per cluster index. In other words, the values of time interval and the number 

of events for the inputs of the second correlation are recorded in the TimeEveiitRecord table. 

6.4.3.4 Stage! table 

This table is fundamentally created to store the result of the first stage classification. It holds the 

information about the alert ID as well as the cluster the alert belongs to. The table consists of two 

columns, namely the alert ID and the cluster index. 

6.4.3.5 Stage2 table 

Similar to the previous table, the Stage2 table keeps the final outcome of the classification (second 

stage). There are primarily two fields created in this table, namely the cluster index and the alert 

status. The alert status is a grade assigned by the system to a cluster tha t indicates the vahdity 

of the alerts, that is whether they are t rue or false alarms, inside the cluster. For example, if the 

status of a particular cluster is set to 0, then all alerts inside the cluster are considered false alarms. 

6.4.3.6 PortNo table 

A;r(.Vo table contains a fist of all official port numbers. The idea of creating this table is to match 

the port numbers of a packet triggering the alert with the Ust of the official port numbers. If a match 

is found, the port is regarded as a service port and will be used a s an a t t r ibute for the classification. 
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6.4.4 System Output 

In addition to the statistical figures and charts presented in the front-end interface, the system also 

produces several output files, which are saved in the local drive. Owing to the proposed two stages 

of correlation, there are two parts of classification results generated in this context. Therefore, 

in order to gain more understanding about the outcome or the end product of each stage, brief 

descriptioDS about the final outputs of two stages are presented as follows. 

6.4.4.1 S tage l classif ication result 

In this level, there are ultimately two files generated during the process. Those are: 

• Stagel input file 

Prior to executing the main correlation engine, the system is programmed to automatically 

collect and process all necessary alert attributes for the correlation. Once they have been 

processed, then the attributes are written into a simple text file and serves as the input data 

for the classification. The filename format for this text file is set to "st^ltbtimestamp.txt", 

for example stgltbl9990330120000.txt. The t imestamp starts from year, month, day, hour, 

minute and second. 

• A figure file &-om stage 1 correlation 

The map, which is generated by the SOM and A'- mean correlation and presented in the shape 

of U-Matrix, is saved as a figure file. 

6.4.4.2 Staee2 classificatioD result 

Similar to the stage 1 classification, there are two files produced in this stage, namely: 

• Stage2 input file 

The file contains all selected and pre-processed attributes for the alerts. The information is 

then used as the input data for the second classification. Moreover, the filename format is set 

to "Btg2tbtimestamp.txt', for example. 5tg2tb 19990408220000, with stg2 refers to stage 2. 

• A figure file from stage 2 correlation 

This file is similar to the stage 1 figure except that it is a map figure generated by the stage 2 

correlation. 

6.5 Conclusions 

This chapter has focused on the conceptual architecture for a SOM A' -Means Alarm Reduction 

Tool. The descriptions include an introduction of the main concepts or the characteristics of the ar­

chitecture, and the modules within it. Key focus was given to the role of each module, and especially 

its contribution in the alert correlation process. 

Although identifying the underlying features of the SMART system is a significant process, it is 

necessary to eveUuate the practical viabifity of the system and demonstrate how the main features 
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of SMART would work in a practical scenario. Having established this, it is also important to 

describe the implementation or the deployment view of such a system. As such, the next chapter 

presents the implementation of the SMART prototype system, which aims to prove the feasibility 

of implementing the system in a practical environment. 
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7 A Prototype Alarm Correlation 
System 

7.1 Introduction 

This chapter describes the development process, in other words, the implementation stage of the 

prototype system, which represents a subset of the key elements of the proposed architecture, 

namely the ability to aggregate and filter the false alarms, and to provide a flexible and high level 

IDS alert compsuison. Several modelling languages, including a behavioural diagram, an interac­

tion diagram, an activity diagram and a static structural diagram are then presented, offering a 

standard way to visualise the system architectural model. Finally, the interface of the alarm cor­

relation tool is described, highlighting its features and its role in processing and presenting IDS 

alerts. 

7.2 Implementation Overview 

The elements of the SMART architecture that have been implemented in the prototype are depicted 

in Figure 7.1. The figure also shows the elements that have been incorporated into architecture 

rather than developed, such as Snort IDS and BASE (refer to subsection 4.1.2.1 and 4.1.2.3. Sig­

nificantly, focus has been given to the features that correlate and cluster alerts into groups of t rue 

and false alarms, and organise the correlated alarms in a statistical view. It should be noted that 

the implementation of a complex and fully functional interface of the SMART system would re­

quire a further study, in order to develop or enhance the performance of elements, such as the Alert 

Management Tool. 

In general, the prototype system consists of three modules, namely the I/O Interface, the Cor­

relation Engine and the Knowledge Database. The I/O Interface enables user interaction on the 

system. The Correlation Engine encompasses the functionality of feature extraction, at tr ibutes 

conversion and the correlation itself. Finally, the Knowledge Database serves as the main informa­

tion source and incorporates the feature of Map Selection Pohcy, Attribute Conversion Policy, Alert 

Database. Time Event and Port No. The three modules of the prototype system are illustrated in 

Figure 7.2. As depicted in the figure, the users are able to provide inputs to the system via the 

interactive 1/0 interfaces. The Correlation Engine then communicates with the Database to either 

retrieve essential information for the correlation or store the outcome of the classification. Once the 

correlation process is completed, the final results are presented to the users using the I/O interfaces. 

As described in Chapter n, SMAKTuses a collaboration of SOM Neural Network and A ' -means 

clustering a^or i thm, which serves as the main correlation engine. The reason of choosing these 

technologies is due to their ability to preserve topological mappings between the input data , which 
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is very important for the representation of complex data (Kohonen, 1995). The proposed corre­

lation engine (back-end) was developed in the MATLAB environment, using SOM Toolhox. SOM 

Toolbox is a software library for MATLAB 5 or above implementing various clustering algorithms; 

including Self Organising Map and A"-means (CIS, 2005). On the other hand, the front-end that 

features the input and output of the application interface was written in Java. Although other 

well-known programming languages, such as C#, are commonly used to develop front-end tools, 

they are not platform independent as Java program. In fact, Java support is becoming ubiquitous; 

it is integrated into practically all major operating systems (Flanagan, 2005). Also, in order to in­

tegrate both back-end (that is Correlation Engine) and front-end systems (that is I/O Interface), 

the MATLAB Builder JA (MathWorks. 2010) is utihsed. It enables the system to deploy MATLAB 

code as Java classes. The builder creates deployable components that allow the MATLAB based 

computation and visualisations to be accessible to the end users of the Java programs. 
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Figure 7.1: Prototype implemeniaiion 

Considering that the MATLAB code has been deployed as Java classes, the prototype system is 
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Ouipu: 

l O Inteiface Coiretadon Enggw Kno^icdse Database 

Figure 7.2: Prototype modules 

now regarded as a stand-alone application, which can be run independently of any other applica­

tions. Indeed, the system is compiled into an executable JAR (Java Archive) file, which aggregates 

many files into one. The JAR file format is commonly used to distribute the Java applications or 

libraries, in the form of classes and associated resources. 

The prototype system has the following dependencies, which are not included in the distributed 

application package and need to be installed separately before the prototype system is executed: 

1. Java Runtime Environment (JRE) (version 6 or above) 

The JRE provides a rn^in platform for the deployment of the prototype system. 

2. MySQL Database 

A relational database is required to store all necessary information for the correlation process 

and also to keep the final result of the correlation. 

3. BASE 

Prior to executing the prototype system, it is crucial to set up an alert management tool, which 

is connected to the Detection Engine ( that is Snort IDS). More importantly, it enables the 

alerts to be studied to a much greater degree, for example, by examining the packet payload. 

Bear in mind that before installing BASE, there are several prerequisite configurations or 

software requirements to be met. These requirements are external to the BASE system and 

are listed below. 

• Snort IDS system 

. MySQL 

• Apache Server 

• PHP 

• Pear, which includes Image-Gj*aph, Image.Canvas, Image_Color, Numbers_Roman and 

Mail_Mime 

• ADODB 

The details of RASE installation can be found in (BASE, 2009). 

For more details of system functional requirements, please refer to Appendix E. 
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7.3 Input 

Ultimately there are three main user inputs required to initiate a correlation, namely the starting 

timestamp, the ending timestamp and the correlation time frame. The input interface, which is 

created as the starting interface ( that is the main page) of the prototype system, is primarily re­

sponsible for providing a media for those inputs. The following subsections demonstrate how the 

input interface has been practically designed to enable basic user interactions. 

7.3.1 Starting and Ending Timestamp 

In the main page of the prototype system, the users are prompted to specify the range of alerts to 

be processed in the correlation by providing the starting and the ending t imestamps of the alerts; 

as shown in Figure 7,3, 

Welcome to SMART (SOM K-Means Alarm Reduction Tool) 
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Figure 7.3: SMART - user input 

Two text boxes, as shown in Figure 7.3, are provided to allow the users to enter the aforemen­

tioned starting and e n d i i ^ t imestamps. The date and time format used in this input module is of 

the complete date plus hours, minutes and seconds (that is yyyy-mm-dd hh:mm:ss). In order to 

ensure the correctness of the date and time format entered by the users, an input validation is per­

formed once the "Submit" button is pressed. The failure to provide the correct format may result in 

a correlation error. Additionally, an error dialog box will be raised to notify the users of the invalid 

inputs and subsequently, the users are prompted to re-enter the timestamps. 
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7.3.2 Time Frame 

The third user input required in the correlation process is the time frame. The time frame refers 

to the time interval between each correlation. There are three options of interval available in the 

combo box namely every two hours, every one hour and every hour; as described in Figure 7.3. 

By choosing one of these options, the alerts are then divided into separate groups based on the 

chosen interval and fed into different correlations. Bear in mind that the correlations are not run in 

parallel, instead they are executed in temporal order. If there is no action has been made to select 

the time interval, the two hours time interval is set by default. 

7.4 Output 

The final outcomes of the correlations are presented in several methods, including the presentation 

of the statistic figures, the alert and signature tables as well as a feature, which facilitates the 

analysis of the signature and the packet payloads. An output interface, which is responsible for 

presenting the final correlation results, consists of three tabbed panels. The following subsections 

will describe the features as well as the layout of each panel in greater detail. 

7.4.1 Alarm Stat ist ics 

The first panel, which is named "Alert Table" tab, holds an alert table containing ail alerts features, 

the cluster number the alerts are belong to and also the s ta tus of the alerts (either true or false 

alarms). Apart from the table described, there is also a statistic pie chart tha t depicts the proportion 

of true to false alarms in the total alerts. The layout of the "Alert Table" tab is shown in Figure 7.4. 

The 16 columns table, shown in Figure 7.4, is composed of 12 feature columns, one counter 

column, one id column and two result columns, namely the results of the first and second stage 

correlations. The CIuster_No field, which holds the outcome of the stagel classification, is the index 

number of the cluster the alert is grouped into. Conversely, the last column of the table (Alert 

Status), which contains the final result of gtage2 correlation, shows the class the alert belongs to. 

whether it is a t rue or false alarm. 

7.4.2 Chart Report 

In terms of a graphical report, SMART prototype enables the administrators to produce statistical 

charts based on the results of the correlations. The second tab, "Chart Report" is therefore created to 

allow the users to generate a statistical chart by simply fiUing in the chart at tr ibute form provided; 

as shown in Figure 7.5. 

The key objective of fadhtat ing a chart feature is to primarily provide a better view of the false 

alarm issue to the administrators and also to allow the users to observe the trend of the false alarms 

generation over a part icular period. A total of 15 charts can be generated from this feature, namely: 

1. Time (hours) vs No of False Alarms 

2. Time (days) vs No of False Alarms 
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Figure 7.4: SMART - Alert table tab 

3. Time (months) vs No of False Alarms 

4. Time (hours) vs No of True Alarms 

5. Time (days) vs No of True Alarms 

6. Time (months) vs No of True Alarms 

7. True Alarms vs False Alarms (hours) 

8. True Alarms vs False Alarms (days) 

9. True Alarm VB False Alarms (months) 

10. Time (hours) vs False Signatures 

11. Time (days) vs False Signatures 

12. Time (months) vs False Signatures 

13. Time (hours) vs True Signatures 

14. Time (days) vs True Signatures 

15. Time (months) vs True Signatures 
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Figure 7.5: SMART - Char t report tab 

The idea of using the timing information in the the context of false alarms is to simply provide an 

overview of the trend of the false alarms for the administrators. In fact, such a method has been 

commonly used by most well-know alert analysis tool, such as BASE. 

By investigating the false alarms over time, the administrators could identify the behaviours of 

the false signatures triggering the alarms. In this way, the signatures could be analysed by critically 

examining the payload of the packets triggering the false alarms. The final act of this analysis 

would be either disabling or tuning the signature rules. Moreover, if the signatures generate both 

t rue and false alarms, the administrators need to further evaluate the clusters (in other words, the 

result of stage 1 correlation), to which the alerts belong to. Subsequently, the cause of the alerts 

could be identified based on the time interval and number of events of the corresponding clusters. 

The process of signature analysis will be detailed in subsection 7.4.3. 

Each chart is created in a separate frame and presented in the form of either bar (histogram) or 

line chart. Apart from choosing the style and type of the chart created, the users are also allowed 

to set the t ime window for each diagram by determining the starting and ending time of the chart. 

Thus, instead of reviewing alerts in general, such option enables the administrators to specifically 

focus on alerts from a particular time frame. Figures 7.6 and 7.7 illustrate the samples of bar and 

line diagrams generated by the chart report tool. 

7.4.3 Tables of Signatures 

The last tab. "Signature Analysis", is responsible for listing all signatures rules triggering the alerts 

and also identifying which of the signatures from the list that have solely raised the false alarms, 

true alarms or both true and false alarms. Figure 7.8 shows a sample of the "Signature Analy­

sis" tab. This feature aims to facilitate the administrator in performing a signature analysis by 

presenting hsts of t rue and false alarms generated by the particular signature. 

The signatures that have purely triggered true alarms are shown in red fonts, whilst those tha t 

have generated only false alarms are displayed in green fonts. On the contrary, the blue wording 

represents the rules that have raised both true and false alarms. The classification of the signatures 
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Figure 7.6; SMART bar diagram - Time<hours) vs False Signatures 

according to the type of generated alerts not only allows the administrators to focus on the false 

signatures but also enables them to review or revise the signature pattern. 

Having been presented with a list of signatures, the users are then prompted to select one 

signature from the signature hst for a further analysis. The details of the selected signature is then 

described in a plot diagram depicting the distribution of the source I P addresses (from both t rue 

and false alarms) related to a particular signature in every hour (as shown in Figure 7.9). 

Besides, two tables, which contain the attributes, for example, Cluster index number. Number 

of events, time interval and signature rules, of the true and false alerts triggered by the corre­

sponding signature, are also presented. The values of the at tr ibutes described in the tables are 

fundamentally retrieved from the features of the clusters resulted from the s tagel correlation. The 

idea behind these tables is IA let the administrators observe the variance between alerts from the 

same signature as well as to compare the characteristics of the alerts from both categories, namely 

true and false alarms. Figure 7,10 displays a sample ofthe t rue and the false alarms tables. 

In the process of reducing the false alarm rate in the future detection, the administrators are 

required to properly inspect the signature pattern and if necessary to tune the signature rules that 

could potentially generate the false alarms. In order to perform such task, it is essential for an alert 

management tool to provide the administrator with access to the payload of the packet triggering 

the alerts. Although the presentation of the payload is only intended to highlight the cause of the 

alert generation, it certainly could help the users understand the inherent behaviours or patterns of 

the applied signature niles. So, with this benefit in mind, the prototype system allows the users to 

gain access to the packet payload via BASE (Basic Analysis and Security Engine). The ID number 
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Figure 7,7: SMART line diagram - Time(hours) vs False Signatures 

from each alert shown in the signature table is linked to the BASE page containing the details 

of the packet header and payload. Figure 7.11 shows a sample of the packet payload taken from 

BASE. 

7.5 Demonstrating the SMART Prototype System 

Having described the role and main features of the prototype system, this section will provide exam­

ples of how alert at tr ibutes can influence the correlation decision process and how the classification 

system can utilise the features of the IDS alerts to cluster as well as to determine the vahdity of 

the alerts presented. Specifically, the examples presented demonstrate how the occurrence of alerts 

from the same signature can be classified into different categories (either t rue or false alarms) in 

different context. The alerts, which are correlated in examples, are generated by Snort IDS, which 

run on both real data (University of Plymouth data set) and DARPA data set 1999. The processes 

of running the correlation and examining the correlation results are demonstrated in the examples 

and the context in which the correlation outcome are evaluated reflect two parts of output assess­

ment. The first section of the assessment exhibits the overall result of the alarm reduction method, 

for instance by presenting a comparison chart between the t rue and the false alarms. On the other 

hand, the second segment enables the users to individuaUy analyse the false signatures and sub­

sequently allows access to the packet payload via BASE page. Finally, it should be noted that, the 

correlation time frame has been configured in all cases to the highest time windows available (that 

is two hotu^ time frame). All of the examples will be demonstrated in practice on the prototype 

system. 
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Figure 7.8: SMART - Signature analysis tab 

7.5.1 Data Description 

Similar to the previous experiments conducted on the false alarm issue (Chapter 4) and the pre­

liminary study (Chapter 5; two types of data sets, namely the University of Plymouth and the 1999 

DARPA data sets are used in the demonstration. As for the DARPA data set. the 4th and 5th weeks 

of tesli ng data is used, whilst for the Uraversity of Plymouth data set, only the first two weeks of 

data is selected. 

Total of 91,671 alerts, which were recorded from the two weeks DARPA testing data, will be 

fed into the prototype system. Unfortunately, due to the memory issue suffered by the MATLAB 

apphcation. the system is unable to process more than 3,000 alerts per correlation (this issue is 

further discussed in Chapter S, Conclusions). As a result, the correlations, which process more 

than 3,000 alerts in each two-hour time frame, are omitted; thus resulting in only 56.119 alerts 

handled by the correlation system. As for the University private dataset, fortunately, none of the 

correlation processes are required to run more than 3,000 alerts; thus the complete alerts (54,893 

alerts) from the two weeks data set can be successfully correlated by the system. 

Since the section aims to simply demonstrate how to run the prototype system, only the DARPA 

data set is described in these examples. A detailed discussion of the correlation result from both 

DARPA and University data sets will be presented later in Section 7.8. 

7.5.2 Example 1 - Running the Correlation 

The manual for running the correlation can be found in Appendix F. 

During the correlation process, several files and database tables are created and saved in the 

local hard drive. Following lists the files created throughout the process of correlation: 

Text Files: 
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Figure 7.9: SMART - Signature plot diagram 

1- Stagel Input data 

Prior to the correlation, the alert features for s tage l correlation, namely timestamp and IP 

addresses, are extracted, pre-processed and written into an input text file. 

2. Stage2 Input data 

Once the first correlation is completed, the cluster at tr ibutes for the second stage correlation 

are extracted from the first outcome. Total five attributes are retrieved from the s tagel result, 

whilst the rest 2 attributes, namely time interval and number of events are obtained frwm 

the Time.i:veut table (see subsection 6.4,3.2). Similar to the stagel input data; the collected 

attributes are pre-processed and written into a text file. 

3. Stagel Result 

This text file contains the output of the stagel correlation. I t l i s t s the index numbers of alerts 

per cluster in row; one row for each cluster. 

4. Stage2 Result 

This file, which holds the final outcome of the stage2 correlation, contains only two rows of 

data since only two classes, namely true and false alarm classes are formed in the final classi­

fication. The index mmibers of the clusters created in the first correlation are hsted in either 

row depending on the category the clusters are grouped into. 

101 



Chapter 7. A Prototype Alarm Corrdation System 

FUtSHVIIt 

p i ' 

m 
S i r -

nc) 
fM" 
kit; 
""_ 
MM 

' l i m 

I'm 
i i n " 

.«4 i l 
[ l H » 
WIM 
IIWM 

' m i l 
u m 
,UIt4 

;!•*«•_ 

mil l 

.-Jisw 
Iktttkl 

' ' - • . 

^« 
•?«_ 

T t i V 

• I t l ' 

i t ir 

inr 
' m ' 

1»H 

' id I 

W" 
MH 
'JN4 
W > 
4 » l 
11*1 
11(1 

Viw 

''UM 

.?«• 

• i n '«» 
I4«1 

'•in 

' i i*". 
« K 
'<n 
'nM •™ 
« l l 

€ » 

HO' 
">_ '«• 
MO 
'•an 

_ w _ 
MO 

1 
1 

" t ' • 

— - . 

:t^|rT«Brt 

t V H W 

r b r a a 

•1.S-:-

>7M 

!"" 

'<'m 

' lou 
IMS 

"•OM" 

ItifriBH 

Figure 7.10: SMART - Signature tables 

MATLAB Figures: 

1. Stagel Result 

The figure is generated by the MATLAB application and contains the final map of the fii^t 

classification. Figure 7.12 displays an example of the map produced by the s t ^ e l correlation. 

2. Stage2 Result 

Stage2 map is similar to the stagel map except that the former is divided into two clusters 

only (see Figure 7.13). 

Database tables: 

1. Stagfl result table (Subsection 6.4.3.4) 

2. Stage? result table (Subsection 6.4.3.5). 

3. Table of selected time interval and number of events {TimeEventReayrd table; Subsection 6.4.3.3). 

4. Table of time interval and number of events per time window (Time-Event table; see Subsec­

tion 6.4.3.2). 
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Figure 7.11: BASE - Payload page 

7.5.3 Example 2 - Viewing Overall Correlat ion Results 

As soon as the correlation is completed, the result is ready for analysis. In order to view the out­

comes, the user is required to press the "View Result" button as shown in Figure 7.14. Should 

the user need to return to the main page without viewing the result, the "Reset" button should be 

pressed. 

As discussed previously in Section 7.4, the result is presented in a new tabbed window, which 

is the same as shown in Figure 7,4, There are total three tabs included in the window, namely the 

"Alert Table", the "Chart Report" and the "Signature Analysis", In order for the user to evaluate 

and compare the values of the true and false alarms classes resulted from the correlation, a chart 

tool is provided in the "Chart Report" tab to assist the user with the creation of a graphical report. 

And in order to use this feature, the user needs to click on the "Chart Report" tab, as illustrated 

previously in Figure 7.5. 

A chart at t r ibute form is presented and the user is prompted to create a graphical chart by filling 

in the form provided. There are a number of chart types and style available in the "Chart Report" 

tab for the user to choose from. Should the user need to produce a chart from a particular period, 

an optional at t r ibute called the time frame is available for the user to configure. Once the form is 

cumpleLed, the user can subsequently press the "Graph Alerts" button, as shown in Figure 7.5, to 

initiate the chart creation. 

As described previously in subsection 7,4,2, a total of 15 charts from five categories can be pro­

duced by the chart engine. Following description explains the objectives and provides examples of 

those 15 charts. The figures are presented in either bar or line chart. 

1, Time vs No of False Alarms 

Following charts present the trend of false a larm generation over time. The reason of present­

ing this category of chart is to simply provide an overview of the false alarm distribution for 
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Figure 7.12: An example of stage 1 map 

each hour, day and month and also enable the administrators to assess the IDS performance 

in terms of i ts false alarm rate. 

(a) Hours 

The chart depicts the nmnber of false alarms detected from the Snort alerts for each hour 

of the day. Figure 7.15 shows an example of the chart. 

(b) Days 

This tj'pe of chart is similar to the previous one except that the alerts are charted per day. 

An example can be seen from Figure 7.16. 

(c) Months 

The graph shown in Figure 7.17 portrays the generation of the false alarms per month. 

2. Time VH No of True Alarms 

A similar objective is aimed in this type of diagram. The generation of a graph representing 

the figure of the t rue alarms aims to evaluate and grasp the trend of the real alerts (real 

warnings); thus measuring the effectiveness or the capability of the Snort IDS in detecting 

real attacks. It is worth noticing that the time of occurrence of a real alert can be used to 
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uncover the behaviours of the attack. In fact, the graphs also highlight the security status of 

the monitored network hased oo the rate of the detected t rue alarms. Figure 7,18, 7.19 and 

7.20 show examples of the true alarms figures graphed on different periods, namely hours, 

days and months respectively. 

(a) Hou)^ 

(h) Days 

(c) Months 

3. True Alarms vs False Alarms 

Figure 7.21, 7.22 and 7.23 are examples of charts that compare or evaluate the figures of 

t rue and false alarms on different periods, namely hours, days and months. The key idea of 

presenting a comparison chart between the generation of the true and the false alarms over 

time is to evaluate the trend of the false alarms against the true alarms for a specific period. 

Moreover, the charts also aim to highlight the severity of the false alarm issue and also to 

assess the performance or the detection rate of the apphed IDS. 

<a) Hours 
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Figure 7.14: SMART - Correlation completed 

(h) Days 

(c) Months 

4. Time vs False Signatures 

This category of charts lists the number of false alarms triggered by each signature in a par­

ticular period, for instance hours, days and months. The benefit of having this chart is tha t it 

provides an overview of the problem of false alarms for each signature rule and also it helps 

the users identify the "noisy alerts" and the associated signatures for a future tuning. By ob­

serving the distribution of false alarms each period per signature rule, the user could discover 

behaviours of that particular signature. The charts surely help the user determining which of 

the signature rules need to be further reviewed. Figures 7.24, 7.2!! and 7.26 are the examples 

of the false signatures charts. 

(a) Hours 

(b) Days 

(c) Months 

5. Time vs True Signatures 

These charts are the same as those shown in the previous category except that the figures 

depict the t rue alarms. The idea behind this true signature chart is to help the user discover 
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Figure 7.15: SMART • Time (hours) vs No of False alarms 

the potential threats detected by the IDS and also assist the user in evaluating the perfor­

mance of a particular signature rule in detecting real attacks. By looking at the signatures 

triggering the true alarms for each period, the user could gain an insight into the criticality 

of the monitored network and also to learn the type intrusive activities detected by the IDS. 

Figures 7,27,7.28 and 7.29 represent the samples of the charts. 

(a) Hours 

(b) Da j^ 

(c) Months 

7.5.4 Example 3 - Analysing Signature Rules 

Aside from viewing and interpreting the results of the correlation through a graphical report, the 

prototype system also allows the user to explore the signature rules in more details. Figure 7-18 

has portrayed a sample of the third tab, "Signatiu^ Analysis", which presents a list of signature 

rules from the DARPA data set. 

As mentioned earlier in subsection 7.4.3, the status of the signatures, whether it is a false or 

true signature, is distinguished by the font colour of the signature name shown in the signature 

table. With this significant colour difference, the user can decide which of the signatures p r e s e n t s 

require an analysis or yet a future tuning. As shown in Figure 7.8, a selection column is available 

for the user to pick one signature for a further investigation. And once the signature is selected, 

then the user is expected to press the "Chart" button available below the signature table to initiate 

the analysis. 
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Figure 7.16: SMART - Time (days) vs No of False alarms 

To evaluate the selected signature, two new windows showing a plot diagram and tables of 

true and false alarms are presented. In this scenario, the ATTACK-RESPONSES 403 forbidden 

signature is selected for the analysis. Figure 7.30 and 7.31 display the plot diagram and the t rue 

and false alarms tables associated to the signature respectively. 

The plot diagram describes the distribution of the true and false alarms triggered by the ATTACK-

RESPONSES 403 Forbidden signature based on its source I P addressee and the t ime of its occur­

rence. The key idea behind this diagram is mainly to explore the relationships among the true/false 

alerts, the source IP addresses of packets generating the alerts and also the occurrence time of the 

alerts. In this example, the diagram demonstrates that traffic from a single IP address couJd have 

triggered both true and false alarms from the same signature. This significantly indicates the is­

sue of ambiguous alerts, which commonly causes trouble for tbe administrators in identifying real 

threats. 

On the other hand, the second new window presents tables of t rue and false alarms contain­

ing the information of alerts from the ATTACK-RESPONSES 403 Forbidden signature. From 

Figure 7.31, it is clearly shown that each table contains five columns, namely id, Cluster_No, 

Time Jn terva l , No_of_Event, and Signatures. The id refers to a unique number the alert is assigned 

to. whilst the Cluster J*Io is a unique number of the cluster the alert is grouped into in the first 

stage correlation. The Time Jnterval and No_of_Event are actually the dominant features used in 

the stage2 correlation. These at tr ibutes are computed during the correlation process; as described 

previously in subsection 6,4.2. Since both features are the leading attr ibutes which significantly in­

fluence tbe final outcome of the correlation, the Time Jnterval and No_of_Event are presented in the 

alert tables to help distinguish the characteristic between tbe t rue and the false alarms. Lastly, the 

108 



7.6. 7%e Implications of the Practical Evaluation 

Tlme(nwntlis) vs No of False alarms 
».000- ,p • 

8.O00 

«,acu 
4 ' • 

n t 

M0N1H 

Figure 7.17: SMART - Time (months) vs No of False alarms 

Signatures column holds the names of the signature rules that are grouped into the same cluster 

in the s tagel classification. A click on the signature row could reveal the list of signatures names 

in a combo box (see Figure 7.31). 

Apart from dividing the alerts into two tables according to their s ta tus (either true or false 

alarms), it would be worth enabling the administrator to inspect the pat tern or the payload of the 

packets triggering the alerts. This will surely aid the operator in his investigation on the signature 

pattern and the packet payload; thus help identify the cause of the false alarms. The prototype 

system allows the users to view the packet payload hy double clicking on the alert's id number in 

the first column. Figure 7.11 has presented a sample of the payload page. 

7.6 The Implications of the Practical Evaluation 

The SMART prototype system is developed and compiled as a standalone application, which is 

designed to run on any Windows or Linux system. The viability of the approach implemented on 

the proposed system has been measured through the practical demonstrations run on the 1999 

DARPA data set and the University of Plymouth private data set. 

Despite its practicahty, there are several problems encountered with the system during the 

evaluation. The issues range from a less critical problem, for instance the interface design, to a 

more serious subject, such as the issue of the memory consumption. To gain a better understanding 

of these concerns, following explains the issues in more details and how they are implicated as the 

most influential factors that affect the system performance. 

1. Database change 
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Figure 7.18: SMART - Time (hours) vs No of True alarms 

In terms of its data storage, the prototype system has been programmed to use only one pre­

defined database in whole correlations. In fact, there is no feature or option provided for the 

user to change or add a new database. In the practical demonstration, ''darpa2~ is a database 

that was generated by BASE tool and has been applied as the main database of the correlation. 

It contains all details of alerts information from the 1999 DARPA testing data. Since the 

^ s t e m is not yet fully designed to optimise the system flexibility, the value for the database 

is set in the coding itself. In the interest of efficiency, the system could be enhanced in the 

future to enable the use of multiple databases and also allow the user to select a database as 

a primary source of the correlation. 

2. Logarithmic scale charts 

All diagrams generated in the output module are categorised as a linear chart type (standard 

type). However, due to a high number of data (that is alerts) being presented, the linear chart 

type is not an optimal choice for the data illustration. The distance of which always represents 

the same absolute changes in price. Owing to this issue, it might be worth describing the 

data in a logarithmic chart type, which is useful to present data with large differences in 

scale on the same chart. Unlike the linear chart tha t represents the same absolute change, a 

given distance of the logarithmic chart represents the same i>ercentage change in price. For 

instance, the distance from 10 to 100 on a logarithmic chart is the same as the distance from 

1 to 10 on a hnear chart, but the former distance is t«n times greater on a linear chart. 

3. Improved signature plot diagram 

The signature plot diagram presented on the "Signature Analysis" t ab undoubtedly provides 
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Figure 7.19: SMART - Time (days) vs No of True alarms 

a general overview about the distribution of IDS alerts from a particular signature. However, 

the diagram seems to be lack of informative details to trace the elements illustrated in the 

figure, such as the IP addresses and the exact time of occurrence. It would be better if an 

additional table/description or link is given in the future to connect the alerts described in the 

plot diagram to the main alert table. This way the diagram wiU be more useful for the analysis 

process. 

4. Memory usage 

If a Java apphcation involves a large amount of data processing (consumiag l a r ^ amounts of 

memory) or is long lived, there is a possibihty that out of memory exception can be thrown. 

With a significant (infinite) number of alerts processed by the apphcation. the system on which 

the program is running may have run out of physical and virtual memory. Besides, the cre­

ation of a large number of individual charts, tha t is chart window (without closing the un­

wanted charts) may jus t be another cause of this error. Therefore, several ways to address 

this problem is by modifying the maximum heap size of the virtual iiiachiae, creating multiple 

charts on a window, or even redesigning the apphcation. Designing applications for minimal 

memory consumption is not an easy job. Since it is more of a design problem, several p ro^am-

ming techniques, such as the use of more efficient algorithms or subdividing tasks into smaller 

pieces are recommended to solve this error In this scenario, the easiest way to answer this 

problem t« change the maximum memory heap size, for example by using the Xms and Xmx 

JVM options: -Xmx for maximum heap size and -Xma for initial heap size, for exEimple, 

-Xma256TO - Xmxbl2m 
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Figure 7.20: SMART - Time (months) vs No of True alarms 

In the future, an analysis on the Java memory usage should be conducted to ensure mini­

mal memory consumption and if necessary, the system could be redesign to achieve efficient 

algorithms. 

5. Processing time 

Since the system is implementing an unsupervised approach of correlation using SOM algo­

ri thm, the processing time may vary significantly and it is not uncommon that the processing 

time may take so long. This issue has certainly rendered the system inefficient. Bear in mind 

that the higher the number of clusters required, the longer the correlation will take. In the 

first stage correlation, there is no exact value of k ( that is number of clusters) variable in each 

correlation. In other words, the number of clusters to be formed in this stage is unknown; 

therefore the value is then set as half of the length of data. On the other hand, the k value of 

the stage2 correlation has been defined as 2 as the correlation aims to group the alerts into 

two classes, namely clusters of true and false alarms. Therefore, by looking at the k values 

from both stages, there is no doubt that the first correlation will take time longer than the 

second classification due to its large k value. The only solution to address this issue in the 

future is perhaps revising the applied method, for instance by reducing the size of the map or 

the number units (neurons) in each correlation. Although determining an ideal map size is 

not a straightforward task but surely this will speed up the correlation process. 

112 



7.7. Experiment Results 

True alarms vs False Alamis (hours] 

< 

1 
IS 

t • } - : • } . • . 

HOUf 

I^ 1 l-i 1- .1.' .1 J . .-.' 

Figure 7.21: SMART - True Alamis vs False Alairos (hours) 

7.7 Experiment Results 

Having demonstrated the prototype system, it is now essential to evaluate the performance of the 

system itself on the complete DARPA data set and the real network traffic (University data set). 

The results of the correlations run by the system on both data sets are compared with the outcomes 

of the previous experiments described in Chapter 4. In this case, an evaluation is conducted to find 

out whether the false alerts identified in the earlier experiments can be correctly classified by the 

prototype system. The results of the correlations on both data sets are presented in the following 

subsections. 

7.7.1 DARPA Data Set 1999 

As previously mentioned in subsection 7.5,1, due to the memory issue, only 56,119 alerts from the 

two weeks DARPA 1999 testing data set were fed into the correlation system. A total of 13 hours of 

alerts were skipped during the rnrrelations 

The evaluation revealed that 57% of the total alerts processed by the correlation system were 

classified as false alarms. And more importantly, at least 50% of the total false alamis identified in 

the earlier experiments were correctly detected as false alerts by the correlation engine. Table 7.1 

below presents top five false alarms and its reduction rate using the correlation system. 

Overall, the experiment yielded a quite promising result; with most of the noisy alerts such as 

the ICMP and web bug alerts were effectively eliminated up to 78% in the best scenario. Indeed, 

the superfluous alerts such as the web bug alerts (from TNFO web bug 1x1 gif attempt" signature) 

contributed to 35% of the total false alarms. Such alerts were r ^ a r d e d as pure false positives 
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Figure 7.22; SMART - True Alarms vs False Alarms (days) 

Table 7.1: DARPA - Reduction Hate of Top 5 False Alarms 

N o 

1. 
2. 
3. 
4. 
5. 

Signatures 

INFO web bug 1x1 gif at tempt 
ICMP Destination Unreachable Port Unreachable 

ICMP Echo Reply 
ICMP Ping 

CHAT m C message 

N o of Fa lse Alarms 
Before 
22,559 
14,017 
11,275 
5,259 
1.829 

After 
17,696 
6,465 
2,508 
2,639 
456 

Reduct ion 
Rate (%) 

78.44 
46.12 
22.24 
50.18 
24.93 

since they were not in common with any true alarms. A complete list of signatures and their 

corresponding reduction rate is presented in details in Appendix B. 

Although the preliminary experiment presented in Chapter 5 yielded a remarkable result; up 

to 99% reduction of false alarms, the experiment on the complete data set produced a far more 

realistic result, ranging between 20-70%. The cause of the difference is the amount of alerts used 

in the experiments and the variation of the corresptmding signatures. The preliminary experiment 

used only a small of chunk of DARPA data set, which inadvertently contains a high number of 

"noisy" false alerts that can be effortlessly filtered by the correlation engine. On the other hand, 

the complete data set contains a variety of false signatures, including uncommon false signatures, 

which are not easily spotted by the proposed system. 

Like other correlation engines, the proposed system does suffer from one major drawback, namely 

its inability t<» filter the false alarms from infi-equent signatures since it relies on the frequency and 

the time interval of alert occurrences to distinguish between the t rue and the false positives. In­

frequent signature refers to a signature that rarely triggers any alert. Only six percent of the total 

114 



7 7. Experiment Resulta 

- J ^ i_ j 

26.-

•3 I. 

True alarms vs Fab« alarms (months) 

•-WNTH 

> TlUE Jij-TK 

F ^ u r e 7.23: SMART - True Alarms vs False Alarms (months) 

Tahle 7.2: DARPA - Misclassified Alerts 

No 

1. 
2. 
3. 
4. 
5. 
6. 

Si^atures 

(portscan) TCP Portscan 
WEB-CGIphfarcess 

WEB-MISC handler access 
WEB-CGI test-cgi access 

RPC Portmap listing TCP 111 
SNMP missing community string attempt 

Bfisdassified Alerts 
Before 

5 
4 
2 
0 
0 
0 

After 
123 
72 
72 
73 
40 
2 

Reduct ion 
Rate {%) 

118 
68 
70 
73 
40 
2 

non-noisy false alerts (that is excluding the top four false alarms) were perfectly detected. The lists 

of the unfiltered false alarms and correctly identified t rue alarms &om the DARPA data set fire 

presented in Appendix B. 

In terms of the true positives, the system fared well in detecting the true alarms. It did perfectly 

identity and group the real alarms into the category of true positives. Having said that, there is a 

possibility that the correlation engine might have misclassified a relatively smalt percentage of the 

true alarms as false alarms. For example, the system incorrectly classified two out of five "SNMP 

missing community string attempt" alerts as false alarms. The cause of this error was that the 

misclassified alerts appeared to have higher frequency rate and lower time interval than the other 

three alerte. This occurs when the t rue alerts are classified into wrong clusters (that is cluster 

of false alerts) in the stagel correlation. Althot^h such an issue can seriously affect the system 

performance, it is deemed to be a common limitation in the field of unsupervised classification. 

Consequently, future works could he carried out to enhance the correlation algorithm by using 
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more enhanced SOM methods such as Time Adaptive Self Organizing Map (TASOM). TASOM is an 

extension of basic SOM, which provides flexible correlation parameters, such as learning rate and 

neighbourhood size (Shah-Hosseini and Safabakhsh,2n00). Table 7.2 presentsa l i s t of misclassiiied 

alerts. 

7.7.2 University of Plymouth Data Set 

As for the University private data set, the first 15 days (starting from 17th May 2007 to 31st May 

2007) of data that contributed to total 54,893 alerts were fed into the correlation engine. The alerts 

were tnggered by 37 signatures and 31 of which generated hundred per cent false positives. 

In this context, the false alarms highly outnumbered the t rue alarms. Approximately 99% of 

the total alerts were asserted as false positives in the previous experiments. Significantly, the 

correlation system yielded a remarkable result by detecting up to 72.5% of the total false alerts 

identified previously. Table 7.3 shows a list of top five signature rules, the number of alerts relative 

to the signatures and also their corresponding reduction rate. 

From the figures shown in Table 7,3, it is obvious that the prototype system is eflfective in fil­

tering noisy or excessive alerts, which accounted for 90% of the total false alerts, such as those 

from "WEB-IIS view source via translate header" and "WEB-MISC robots.txt access" signatures. 

Both signatures were are affirmed to raise only false positives and to have high frequency rate as 

well as short time lapse between alert occurrences. In this example, 93.15% of false alarms from 

WEB-MISC robots.txt access signature were effectively filtered, whilst the WEB-IIS view source 

via translate header alerts were reduced by 74.24%. 

More importantly, none of the t rue alarms in this example were misclassified as false alarms. A 
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Figure 7.25: SMART - Time (days) vs False Signatures 

Table 7.3: University of Plymouth Private Data - Reduction Rate of Top 5 P^lse Alarms 

No 

1. 
2. 
3. 
4. 
5. 

S i ^ a t u r e s 

WEB-IIS view source via t ransla te header 
WEB-\nSC robots.txt access 

ICMP L3retriever Ping 
(httpJnspect) BARE BYTE UNICODE ENCODING 

POLICY Google Desktop activity 

No of False Alarms 
Before 
33,902 
11,073 
4,355 
2.489 
1,272 

After 
25,170 
10,315 
2.097 
1,385 
456 

R e d u c t i o n 
R a t e (%) 

74.24 
93.15 
48.15 
55.64 
35.85 

complete list of correctly identi&ed true signatures as well as a hst unfiltered false alarms from the 

University of Plymouth data set are presented in Appendix B. 

Despite its abifity to effectively detect various noisy alerts, the system was unable to filter false 

positives from uncommon signatures. This means that a rare signature with a low frequency rate 

is more likely to be classified as a t rue alarm. In fact, only 37.6% of the total non-noisy false alerts 

(that is excluding the top three false alarms) were correctly flagged as false positives. 

Compared to tuning method, which was discussed in Chapter 4, SMART reveals a better average 

reduction rate, as shown in Figure 7.32. 

As depicted in Figure 7.32, SMART performed less well in both WEB-US view source via trans­

late header and ICMP LSRetriever Ping cases. As discussed in Chapter 5, the proposed system 

relies on the time interval and frequency rate of each signature to filter the false alarms. The oc­

currence rates of WEB-IIS view source via translate header event are varied, depending on the 

allocated time windows. Therefore, alerts with lower frequency rate (refers to Chapter 6 to see 
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how frequency rate and time interval are calculated) are more likely to be flagged as t rue than 

false alarms. Conversely, tuning looks for overly specific pattern to reduce false alarms. Whilst the 

technique effectively eliminates false alarms by 90*311, it is more inclined to produce false negatives. 

In terms of ICMP L3Retriever Ping, the thresholding method (refers to Chapter 4 to see how 

this signature is tuned) appeared to outperform the proposed system. This signature triggered 

a significant number of constant alerts, which could be easily suppressed using the thresholding 

technique. It is worth remembering that the only purpose of performing thresholding is to limit the 

occurrence of the alerts within a particular period. This, therefore, creates a po.ssibihty of missing 

real alerts. 

On the otber hand, SMART could only detect 4 8 ^ of false alerts from this signature. As the 

alerts contain the same destination IP address, SMART assumed the alerts were triggered due to 

the same event if they occurred within a three-minute time frame (as explained in Chapter 6). As 

such, the occurrence rate of events related to this alert was much lower than the frequency rate of 

the alert itself With the low event frequency rate, the alerts are therefore more likely flagged as 

t rue alarms. 

Although SMART appears less effective in both cases, it efficiently addresses the issue of sub­

jective rule suffered by the tuning method (as explained in Chapter 4). This is demonstrated by its 

ability to filter WEB-MISC robots.txt access up to 93%, whilst only 10% can be reduced by tuning 
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Figure 7.27: SMART - Time (hours) vs True Signatures 

(as shown in Figure 7.32). 

In order to achieve optimal results, SMART could be used to validate IDS alerts and tuning 

should be performed on signatures of the validated false alerts. The combination of both techniques 

could surely enhance the performance of IDS in filtering false alarms. Indeed, SMART presents 

a more condensed view of the false alarm issue that can significantly help the administrator in 

performing future tuning. 

Overall the system yielded a promising result, with an average reduction ratio of 65% was 

achieved on both DARPA and private data set. Although the result proved the efficiency of the 

proposed model in detecting noisy (superfluous) alerts, not all of them could be perfectly filtered. 

Alerts from the same signature could have different frequency rates and time intervals, depending 

on the time windows the alerts belonged to. Therefore, an alert with a lower frequency than others 

from the same signature could be detected as a true alarm. 

Compared to other existing machine learning techniques, such as data-mining and supervised 

learning, as listed in Table ."i.S in Chapter 5, the proposed system appears less effective in reduc­

ing the false alarm. The result, however, is positively biased given its reliance on the validation 

data set. On the other hand, the system demonstrates a reasonable outcome when it is compared 

to other unsupervised clustering algorithm, called autoassociator proposed by Smith et al. (2008). 

Their system obtained an accuracy of 67.4%, which is 5.1% lower than SMART (comparing with 

the SMARTS best performance on the Univereity of Plymouth data set - 72.5%). Moreover, this 

experiment also highlighted a common built-in shortage suSered by the unsupervised methods, 

namely the sensitivity of the detection results to the parameters, which are difficult to be deter-
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Figure 7.28: SMART - Time (days) vs True Signatures 

mined. In this context, the parameters are the number of clusters and the size of time windows for 

the correlation. 

7.8 Conclusions 

This chapter described the SMART prototype system, demonstrating the features and interfaces 

of the SMART prototype system, detailing the system functional requirements via modelling lan­

guages and evaluating the system performance based upon the experiments on DARPA and Uni­

versity private data sets. The system interface consists of two main components; input and output 

interfaces. The user-friendly input interface enables the user to enter inputs and initiate a correla­

tion, whilst the output interface presents the results of the correlation to the user. 

The key objective of describing the system functional requirements is to gain better understand­

ing of the inherent behaviours of the system. The functional requirements analysis specifies the 

interaction between the proposed system and the external agent — the administrator and explains 

the structure as well as the processes involved within the correlation. The analysis presents several 

modeUing languages; including a behavioural diagram, an interaction diagram, an activity diagram 

and a static structural diagram. 

Significantly, the result of the experiments proved the effectiveness of the SMART in filtering 

noisy alerts, with an average reduction rate of 65%. It is worth remembering that the accuracy of 

the unsupervised-based SMART system significantly depends on the initial parameters (in other 

words, the number clusters applied in the correlation and the size of time windows). This indicates 

120 



7.8. Conclusions 

i I H 

1 .... 

i.-tt 

Tkne<H« Mi lk* ) * i Trsc Si9H«Mrc« 

. 

• - • • M i l 

.,r . O M ' • h-

r>->M. A . ^ 'fiVJCV ^ * t ' J B h « > '^tP^.J k" > 4 4 d . -M • JM—KJfc* dW-4' ' ' ^ f t lVU .«%.^ * *« ^ 4 » ^ * « r « » . M a 
- _ . . « a f c . - M * ' ^ . l l ' V ^ b r — - . - . - • . •• . - " -^ , -a—• . . -^ . ^ M' . , i . . - ; r , _ . . , _ 

•w-i ,- . ivi.«~*u> -* tM»ri BJ" - -

O X ^ .-.^ . .--I 7' •- - -i."* •> ^4> IP- ' ***F . • -« r-im > •'*9^ U *>v*« « . n - - * '----«-: ^ — t f '̂ ~ 

gm,>iJT^ • • • J ^ - g * «• MMJ.'i * • - * «# 4 • ^^fri^t' *w^*^ * * • ' ! » * >̂4tf~> ' ' " . M T . — * j — <-»• n - j - ' , • - r^^'ija a ^ -cfci 

l » U ^ 4 > t f rrm^^lrr tfT^-fe* * LJiwlkfl- ' t - L v . b * • W # f - P ^ p r - - U # * * t f ( I * X A • * 1 ^ « ^ n ^ b.- ^ <ri«tf^J 4 » l d - V i - v a ^ 

* « • « • K,^rt-^iT *t^^ « I I V f T n 4 < 7 - ' * • • • ' ' O a M l •- • 4 * ' V B . * ^ ^ r ^k^^a^or ^ - 0 4 - ' ^ t»K>: A # - ^ t - - -

Figure 7,29: SMART - Time (months) vs True Signatures 

the major limitation of the unsupervised methods, which makes them less favourable than the su­

pervised learning methods. Having said that, unsupervised techniques involve less computational 

overhead than supervised learning since no domain knowledge and maintenance required once all 

the initial parameters are determined. 

Overall, the contributions of this study can be summarised as follows: 

1. Proposing a novel framework for off-hne correlation of alerts based on their attributes. The 

proposed framework classifies IDS alerts based on the most relevant features that highlight 

their behaviours. 

2. Developing a two-stage correlation approach based on time windows using unsupervised al­

gorithm. The key objectives of this method are to identify or aggregate alerts from the same 

attack instance and to classiiy alerts into two categories, true and false alarms 

3. Proposing a front-end interface that offers 3 statistical tool, allowing the administrators to 

evaluate the trend of IDS alarms and to do a comparison between the true and false alarms. 

The development of the prototype has also helped to enbghten the SMART architecture, especially 

in areas relating to how alert features are selected and used in the correlation. For instance, the 

two leading attributes: the t ime interval and number of events were chosen to reflect unique char­

acteristics of the alerts. Overall, the prototype has aided to prove the viability of the SMART 

architecture. It has provided a practical validation of the ability to achieve an automated alarm 

reduction tool. In a sense, the system in its current form is deemed to represent an enhancement 

on existing false alarm reduction approaches. 
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8 Conclusions 

This chapter summarises the thesis by reviewing the project's achievements and underlining the 

main limitations of the research. It then continues to detail potential new research fields within 

which the work proposed could be improved in the future. 

8.1 Achievements of the Research Programme 

On the whole, the research has achieved all of the objectives initially identified in Chapter 1, with 

a number of experiments and works carried out for the development of a new alarm correlation 

system. The detailed achievements are: 

1. A practical exploration of the problem of false alarms. The experiments conducted on both 

synthesized network data (DARPA) and real network traffic (University of Plymouth private 

data set) enabled first-hand assessment of the IDS pjerformance and the quality of alerts pre­

sented. 

2. A practical investigation and assessment of the feasibility of fine tuning (as described in Chap­

ter 4). This revealed that the conventional alarm reduction method does help reducing false 

alarms but it requires a thorough examination of the protected environment by the qualified 

IT personnel before the tuning can be performed. In fact, the tuning requires a frequent up­

date to keep up with the flow of new vulnerabilities or threats discovered: otherwise it might 

increase the risk of missing real attacks. 

3. Investigation ofthe drawbacks of existing alarm correlation techniques and the problems tha t 

lead to excessive false alarms (Chapter 2 and 3). Contributions of previous alarm correlation 

studies have also been reviewed, determining the scope and necessity for further enhancement 

(Chapters) . 

4. The proposal and realisation of a novel alarm correlation concept using unsupervised algo­

rithms {Self Organising Map and /v'-Means). The proposed technique consists of two stages 

of correlation, aggregating alerts from the same attack instance and classifying alerts into 

groups of t rue and false alarms, and has been assessed using alerts from both synthesised 

and real networks (Chapter 5). A number of alert attributes were selected and used to define 

the relationships between alerts by clustering them based on their similarity. 

5. The design and development of the SOM A'-Means Alarm Reduction Tool (SMART) architec­

ture, in which the unsupervised techniques are implemented to improve alarm management 

(Chapter 6). The main concepts ofthe proposed architecture, aside from minimising the false 

alarm rate, are the ability to correlate all alerts triggered by a single event and to help discover 

the potential attack scenarios. 
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Chapter 8. Conclusions 

6. The implementation of a working prototype of the SMART system in order to validate the 

viability of the proposed architecture and the ability to achieve an automated false alarm re­

duction tool (Chapter 7). Apart fi-om adopting the aforementioned correlation scheme within 

the system, the prototype system also feature a user-fi-iendly interface and a graphical report­

ing tool that enables the administrator to fully analyse the correlated alerts and also to create 

a graphical report. 

Several papers concerning the research topic hax'e been presented and pubhshed at refereed journal 

and conferences (the papers are attached in Appendix G) and have received positive feedback from 

the associated reviewers. Therefore, it is considered that the research has made appropriate and 

useful contributions to IT security field, and particularly in the domains of intrusion detection and 

alarm correlation. 

8.2 Limitations of the Research 

Despite having met all objectives defined in Chapter 1, a number of limitations associated with the 

work can be identified. The main points in this respect are listed below. 

1. Since in certain cases, a lai^e amount of data (alerts) will need to be processed in a single 

correlation, memory has always been an issue. The problem is derived from the MATLAB 

application that serves as the main language of the proposed correlation engine. It is not 

uncommon that MATLAB raises "Out of Memory" error when the system has in fact run out 

of heap space to hold all variables. In this contejct, it is believed that the engine could only 

process less than three thousand alerts per correlation (as mentioned previously in Chapter 7). 

As such, this memory limitation could render the system impractical in a wider context. In 

terms of its processing time, one correlation may take longer than other depending on the 

size of data correlated and the number of units (neurons) applied. The bigger the data is 

(consequently, a higher number of units applied), the longer the processing time will be. This 

issue has become one of the significant drawbacks suffered by the proposed system. The 

longest processing t ime ever measured is 7-8 hours, when the number of alerts processed 

close to three thousands. 

2. The correlation engine has been specifically designed and developed to process alerts from the 

signature-based IDS only; particularly Snort IDS. The available time did not permit the devel­

opment of such system to focus on other IDSs such as anomaly-based IDS or other signature-

based examples. Although the proposed system is not widely applicable and is limited to Snort 

only, it is considered valuable since Snort is the world's most widely used IDS and has been 

named one of the greatest open source programs of all time (Dineley and Mobley, 2009). 

3. The SMART system would not be applicable to on-line correlation since it heavily relies on two 

key features, the frequency and time interval between alerts to classify the alerts. Besides, 

both attributes could only be computed from off-line alerts (in other words, alerts that have 

been raised and logged into a database), meaning that the correlation could only be performed 

after the intrusion detection is carried out. In spite of this limitation, however, it is believed 
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8.3. Suggestions and scope for future work 

tha t the system would be more effective to run as an off-line filtering system as it allows the 

administrator to evaluate the original alerts before being correlated. 

8.3 Suggestions and scope for fiitiire w^ork 

As for potential future work, there are a number of areas, in which activities could be carried out to 

build on what was done in this project. The details of the prospective works are summarised below. 

1. Although overfitting has been compensated with the A - M e a n s algorithm (as explained in 

Chapter 5), there is still an issue of dead centres, caused by a large number of map units be­

ing generated compared to the data set. Due to the strong topology relations of the SOM. these 

dead centres are located between data clusters and thereby introduce data for the A'-Means 

algorithm in areas where no real data is. Thus, future work can be conducted to boost the sys­

tem performance by optimally minimising the number of neurons applied whilst preventing 

the issue of under-fitting. 

2. The correlation process involves several model selection procedures, for example choosing the 

best number of units for the correlation map and selecting a good model based on the frequency 

and the SSE value. Although current selection method is proved feasible in practice, however, 

it is deemed necessary to improve the quahty of the selection process by adopting a better 

measurement theory. This aspect, nevertheless, represents an issue for fiirther research in its 

own right. One of the potential methods to be applied in this context is Minifniim Description 

Length (MDL) principle. The MDL is a technique for inductive inference that provides a basic 

solution to the model selection problem (Rissanen, 1978). In fact, it is commonly used in 

model selection process to determine the model complexity and give a better indication on the 

model quahty. Apart from providing an approach to determine the finest model, MDL also 

provides a natural safeguard against overfitting (Grunwald, 2005). In the future work, it is 

also essential to review or take a dose look at the applied algorithm in order to enhan<% the 

correlation system; for example by replacing K - Means with a more robust algorithm such as 

Robust Growing Neural Gas. This, therefore, represents another research area, in which the 

work presented in the thesis can be enhanced. 

3. The proposed system a ^ r e g a t e s alerts related to the same attack into a cluster. A future 

work should be carried out to construct a potential attack scenario by identifying the logical 

connections between alerts for each cluster. 

4. As mentioned earher, the proposed system has been specifically designed for Snort IDS only. 

The input application, thereby, is limited to Snort-based alerts. Given this limitation, it is 

beneficial tha t the future works should be directed to further improve the correlation engine 

by focusing on more types of IDS such as other signature-based IDS and anomaly-based IDS. 

5. Improving the front-end of the system or creating a more interactive user interface, is another 

area tha t can significantly boost the presentation of the system. Therefore, revising the chart 

scale, the signature plot diagram (as described in Section 7.6) and providing a comparison 

of the results from different correlation time frames could represent other opportunities for 

development, in which the work presented can be expanded. 
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8.4 The Future for Automated Alarm Correlation Systems 

With the widespread use of computer networks, the number of attacks has grown extensively. In 

fact, the significant increase of everyday life dependency on Information and Communication Tech­

nologies has intensified the importance of survivability of networks. Intrusion Detection System 

(IDS) has been an essential component of a complete defense-in-depth architecture for computer 

network security. Although signature-based IDS is befieved to produce fewer false alarms than 

the anomaly-based system, the packet inspection method or the fine grain analysis apphed by 

signature-based IDS causes the system to produce a high number of false alarms. The source of 

such a Itirge amount of alarms is induced by the nature of some categories of attacks which send 

a large number of maievolent packets. Additionally, many attacks are launched in a sequence of 

steps. The valuable information for the network administrator relies on the aggregation aliirms 

related to the different steps, rather than on each single alarm. More importantly, the alarms gen­

erated are often vague and could report the details of the detected event that are either too generic 

or too specific. As a result, the abihty to automatically correlate the alarms and filter the false 

alarms is becoming increasingly important. 

The development of an automated alarm correlation system now represents an active research 

field in the intrusion detection domain, with a large number of research studies have been focused 

on improving the correlation methods. In fact, current studies have significantly contributed to the 

enhancement of the IDS false alarm filtering system. Nonetheless, the problem has still been far 

from solved and there is still a significant scope to improve its performance. This research project 

has contributed to the domain at several degrees. It has highlighted the importance of an alarm cor­

relation system, contributed in understanding of Snort-based alerts by proposing the Snort-based 

alarm reduction system (SMART). More importantly, it has focused on enhancing the filtering mech­

anism, by basing the correlation decision on the alarm frequency rate and time interval between 

events. As a consequence, the proposed alarm reduction system is able to aggregate alerts fi-om the 

same event or attack instance £ind significantly reduce the false alarms. From a wider perspective, 

the correlated alerts produced by the proposed system has significantly improved the quality of IDS 

alerts, thus providing a better or condensed view of security issues to the administrator. 

The implementation of such approach and the proposal of the user-fiiendly alarm analysis in­

terface will enable the IDS alarms correlation technologies to mature. This will eventually enhance 

the IDS performance without reducing the values of the alarms generated, instead offer a better 

alarm presentation (quahty) tha t allows the administrator to properly analyse the detected threats . 
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/ \ Results of the Experiment on 1999 
DARPA Data Set and Snort IDS 

A.1 True and False Alarms per Signature 

Table A.1: False alarms per signature 

No 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

S i g n a t u r e s 

E»fFO web bug 1x1 gif attempt 

ICMP Destination Unreachable Port Unreachable 

ICMP Echo Reply 

ICMP PING 

CHAT IRC message 

ICMP PING BSDtype 

ICMP PING *NIX 

ATTACK-RESPONSES 403 Forbidden 

WEB-CGI redirect access 

(portscan) Open F^rt 

INFO TELNET l ( ^ incorrect 

(spp Jrag3) Fragmentation overlap 

ATTACK-RESPONSES directory Usting 

UDP Portsweep 

WEB-CGI count.cgi access 

ICMP redirect net 

ATTACK-RESPONSES Invalid URL 

CHAT m C nick change 

CHAT IRC channel join 

WEB-FRONTPAGE /.vti hin/ access 

WEB-nS ^ o u n t access 

(snort_decoder) WARNING: ICMP Original IP Fragmented 

and Offset Not Ot 

WEB-CGI calendar access 

ICMP Time-To-Live Exceeded in Transit 

WEB-MISC searcb.dll access 

WEB-MISC backup access 

Fa l se a l a r m s 

22559 

14017 

11275 

5259 

1829 

883 

883 

792 

613 

601 

594 

431 

423 

353 

297 

281 

265 

228 

219 

174 

171 

168 

167 

157 

103 

99 

Continued on next page 
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AppendixA. Results of the Experiment on 1999 BAR PA Data Set and Snort IDS 

l ^ b l e A.1 - cont inued &om previous page 

N o 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51 . 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

S i g n a t u r e s 

WEB-CGI finger access 

SNMP trap tcp 

ICMP Destination Unreachable Host Unreachable 

(portscan) TCP Portsweep 

WEB-CGI db2www access 

WEB-MISC RBS ISP /newuser access 

(ftp_lelnet) Invalid FTP Command 

WEB-MISC intranet access 

False a larms 

83 

79 

78 

61 

60 

58 

45 

42 

WEB-US fpcount at tempt 38 

WEB-CGI wrap access 

WEB-MISC counter.exe access 

(httpJnspect) DOLTBLE DECODING ATTACK 

INFO FTP Bad login 

(Bpp-streain4) TTL LIMIT Exceeded 

WEB-CGI download, cgi access 

(ftp_teliiet) FTP traffic encrypted 

WEB-IIS iissamples access 

WEB-FRONTPAGE shtml.dll access 

XI1 xopen 

WEB-IIS iisadmin access 

WEB-MISC redirect.exe access 

WEB-CGI icat access 

BACKDOOR MISC Solaris 2.5 at tempt 

(portscan) TCP Portscan 

WEB-CLIENT Microsoft emf metafile access 

37 

32 

30 

23 

15 

14 

12 

12 

11 

11 

11 

9 

8 

8 

5 

5 

ICMP Fragment Reassembly Time Exceeded 4 

WEB-MISC Lotus Notes .pi script source download attempt 

WEB-CGI phf access 

MULTIMEDIA Windows Media download 

WEB-nS ISAPI .idq at tempt 

WEB-MISC cafS20 access 

FTP passwd retrieval attempt 

WEB-CGI phf arbitrary command execution at tempt 

WEB-CGI perl.exe command at tempt 

WEB-IIS ISAPI idq access 

WEB-MISC Iogin.htm access 

WEB-CGI search.cgi access 

(ftp.telnet) Telnet traffic encrypted 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

2 

2 
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A.]. True and False Alarms per Signaiure 

Table A.1 - continued from previous page 

N o 

65. 

66. 

67. 

68. 

69. 

70, 

71 . 

72. 

73. 

S i g n a t u r e s 

(http-inspect) BARE BYTE UNICODE ENCODING 

WEB-MISC oracle web application server access 

SNMP t rap udp 

WEB-MISC handler aixess 

False alarms 

2 

2 

2 

2 

RSERVICES rlogin root 1 

MS-SQL version overflow attempt ' 1 

MS-SQL ping at tempt 

WEB-FRONTPAGE shtml.exe access 

Bad Traffic Same Src/Dst I P 

1 

1 

1 

Table A.2: True alarms per signature 

N o 

1. 

2. 

Signatures 

Open port 

Web-misc apache directory disclosure attempt 

3. ICMP Destination unreachable port unreachable 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21 . 

22. 

23. 

TCP Portscan 

(spp-&ag3) Fragmentation overlap 

Web-cgi phf access 

Web-cgi test-cgi access 

Web-misc handler access 

RPC Portmap listing TCP 111 

ICMP PING 

Attack response directory listing 

INFO Telnet login incorrect 

INFO FTP bad login 

SNMP Agent X/TCP request 

SNMP Request TCP 

(sppJi-agS) Short fragment, possible DoS attempt 

(sppJragS) zero byte fi-agment packet 

(spp_frag3) fragment packet ends after defragmented packet 

UDP Portsweep 

SNMP Trap TCP 

TCP Portsweep 

Misc source port 20<1024 

Finger/execution a t tempt 

True alarms 

11130 

5628 

4634 

1283 

713 

700 

696 

696 

398 

339 

233 

225 

155 

147 

133 

123 

123 

118 

67 

54 

38 

26 

24 

Continued on next page 
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Appendix A. Results of the ExpeHment on 1999 DARPA Data Set and Snort IDS 

l ^ b l e A.2 - cont inued fi-om previous page 

N o 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41 . 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61 . 

Signatures 

X l l X o p e n 

Web-cgi perl.exe access 

ICMPPING*NIX 

ICMP PING BSD Type 

SHELLCODE X86 NOOP 

FTP command parameters were malformed 

FTP Port bounce attempt 

Web^gi perl.exe command at tempt 

Web-cgi cgi-bin /access 

Web-iis *.idc attempt 

Web-iis newdsn.exe access 

Web-iis perl access 

Web-cgi phf arbitrary commemd execution at tempt 

Web-misc cat "if: 20 access 

(ftp.teinet) FTP command parameters were too long 

(ftp-telnet) invalid TCP command 

Backdoor netbus active 

DNS TCP inverse query overflow 

ICMP echo reply 

NETBIOS SMB ADMINS Unicode share access 

NETBIOS SMB C$ unicode share access 

NETBIOS SMB D$ Unicode share access 

Web-frontpage /vti_bin/access 

Web-iis fpcount access 

Web-iis fpcount at tempt 

Web-iis perl browse newJine at tempt 

Web-misc /etc/passw 

Weh-misc queryhit-htm a c c ^ s 

SNMP missing commimity string at tempt 

Backdoor netbus getinfo 

Finger 0 query 

Finger redirection attempt 

Finger root query 

ICMP Fragment Reassembly Time Exceeded 

Scan myscan 

SHELLCODE Sparc NOOP 

UDP Portscan 

FTP rhosts 

True a larms 

22 

16 

13 

13 

13 

12 

12 

12 

8 

8 

8 

8 

7 

7 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

5 

4 

4 

4 

4 

4 

4 

4 

4 

3 
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A.2. Thbles of Attack Types Detected per Day 

Table A.2 - continued &oni previous page 

N o 

62. 

63 . 

64. 

65. 

66. 

67. 

68. 

S i g n a t u r e s 

IMAP login buffer overflow attempt 

SHELLCODE Linux shellcode 

Bad Traffic Same Src/Dst IP 

DOS BGP Spoofed connection reset at tempt 

FTP Satan scan 

MISC source port 53 to < 1024 

Warning: ICMP Original IP F^yioad > 576 bytes 

T r u e a l a r m s 

3 

3 

2 

2 

2 

2 

2 

A.2 Tables of Attack Types Detected per Day 

Table A.3: Day 1 - 29* March 1999 

Attack Type 

U2R 

R2L 

Probe 

N a m e 

yaga 
sendmail 

Xsnoop 

snmpget 

guesstelnet 

gueesflp 

ftp write 

portsweep 

Aler t 

Attack response directory listing 

SHELLCODE X86 NOOP 

x l l xopen 

SNMP missing community string attempt 

INTO Telnet \o^ incorrect 

INFO FTP bad login 

FTP .Rhosts 

ICMP destination unreachable port unreachable 

Q u a n t i t y 

5 

2 

2 

3 

14 

5 

2 

6 

Table A.4: Day 2 - 30** March 1999 

A t t a c k T y p e 

DOS 

U2R 

R2L 

Name 

land 

sechole 

phf 

A l o l 1 Quantity-

Bad trafBc Same src/dst IP 

Attack response directory listing 

Web-cgi phf arbitrary coramand execution at tempt 

Web-cgi phf access 

Web-misc cat%20 access 

1 

23 

1 

1 

1 
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Table A.5: Day 3 - 31*'' March 1999 

. ^ t a c k T y p e 

' R2L 

Probe 

N a m e 

netca t^etup 

imap 

netcat_breakin 

ncftp 
named 

guess ftp 

guest 

guess telnet 

smni^e t 

satan 

Alert 

ICMP Destination unreachable port unreachable 

SHELLCODE X86 NOOP 

SHELLCODE Linux shellcode 

[MAP login buffer overflow at tempt 

Attack response directory listing 

FTP Commands parameter were too long 

DNS TCP inverse query overflow 

SHELLCODE X86 NOOP 

X l l Xopen 

INTO FTP Bad login 

INFO Telnet login incorrect 

INFO Telnet login incorrect 

SNMP missing community string at tempt 

ICMP Destination unreachable port unreachable 

FINGER/EXECUTION attempt 

Q u a n t i t y 

6 

2 

2 

2 

4 

1 

2 

2 

2 

150 

16 

40 

2 

8 

12 

Finger 0 query 2 

Jilnger redirection attempt 2 

Finger root query 2 

Table A.6: Day 4 - 1« April 1999 

A t t a c k T y p e 

DOS 

R2L 

Probe 

N a m e | A l e r t 

teardrop 

netbus 

ncftp 

guest 

xlock 

phf 

•tJS 

(sppJragS) short fragment, possible DoS attempt 

(spp fragS) zero byte fragment packet 

(spp JragS) fragment packet ends 

after defragmented packet 

Backdoor netbus active 

(fLp_teInet) FTP command parameters were too long 

INFO Telnet login incorrect 

X l l X o p e n 

Web-cgi phf arbitrary command execution at tempt 

Web-misc cat %20 access 

Web-cgi phf access 

Web-misc /etc/passw 

Web-frontpage /vti .bin/access 

Web-iis fpcount access 

Web-iis fpcount at tempt 

Quant i ty 

13 

13 

12 

2 

1 

16 

4 

2 

2 

2 

2 

2 

2 

2 

Continued on next pfige 
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A.2. Thbles of Attack Types Detected per Day 

Table A.6 - c o n t i n u e d f rom p r e v i o u s page 

A t t a c k T y p e N a m e A l e r t 

Misc source port 20il024 

ipsweep 

Web-iis *.idc at tempt 

Weh-cgi cgi-bin /access 

Web-cgi perl.exe access 

Web-its oewdsD.exe access 

Web-iis perl browse newline a t tempt 

Web-iis perl access 

Web-misc queryhit.htm access 

NETBIOS SMB ADMIN$ Unicode share access 

NETBIOS SMB C$ Unicode share access 

NETBIOS SMB D$ Unicode share access 

ICMP PING 

Q u a n t i t y 

2 

2 

2 

4 

2 

1 

4 

2 

2 

2 

2 

12 

Table A.7: Day 5 - 2'"* April 1999 

A t t a c k T y p e 

U2R 

R2L 

Probe 

N a m e 

load module 

sechole 

xlock 

named 

ncftp 

netbus 

named 

ipsweep 

portsweep 

ipsweep 

A l e r t 

INFO TELNET login incorrect 

Attack response directory listing 

XI1Xopen 

DNS TCP inverse query overflow 

XI1Xopen 

SHELLCODE X86 NOOP 

FTP Command parameters were too long 

Backdoor net bus active 

Backdoor netbus getinfo 

SHELLCODE X86 NOOP 

DNS TCP inverse query overflow 

X l l X o p e n 

ICMP PING 

ICMP Destination unreachable port unr^kchable 

204.233.47.21 -> 172.16.114.50 

ICMP PING 

ICMP PING BSD Type 

ICMP PING * N K 

128.223.199.68 -f 172.16.112.3 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

Quantity 

4 
34 

4 
2 

2 

2 

2 

2 

2 

2 

2 

2 

12 

12 

2 

2 

2 

2 

2 

2 

Continued on next p t^e 

135 



Appendix A. Results of the Experiment on 1999 DAFPA Data Set and Snort IDS 

\ Attack Type 

lUble A.7 - cont inued from previous page 

Name 

ipsweep 

Alert 

204.71.51.16-> 172.16.114.5 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

207.114.237.57 ^ 172.16.114.4 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

209.1.12.46 -^ 172.16.114.1 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

194.7.248.153 -> 172.16.112.1-254 

ICMP PLNG 

Q u a n t i t y 

1 

1 

1 

1 

1 

1 

1 

1 

1 

262 

Table A.8: Day 6 - 5 ^ April 1999 

Attack Type Name Alert 

DOS 

U2R 

R2L 

pod 

pod 

pod 

neptune 

loadmodule 

fibconfig 

^ e s s t e t n e t 

imap 

ICMP PING 

(spp-ft"ag3) Fragmentation overlap 

ICMP Fragment Reassembly Time Exceeded 

ICMP Fragment Reassembly Time Exceeded 

Warning: ICMP Original IP Payload i 576 bytes 

ICMP PING 

ICMP PING 

TCP Portscan 

Open port 

SNMP request TCP 

SNMP Trap TCP 

Scan myscan 

SNMP Agent X/TCP request 

DOS BGP Spoofed connection reset at tempt 

INFO TELNET login incorrect 

SHELLCODE Sparc NOOP 

INFO TELNET login incorrect 

SHELLCODE Linux sheilcode 

SHELLCODE X86 NOOP 

IMAP login buffer overflow attempt 

Quantity 

6 

28 

2 

2 

2 

4 

6 

7 

36 

40 

40 

2 

40 

1 

1 

2 

40 

1 

1 

1 

Continued on next page 
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A.2. Tables of Attack Types Detected per Day 

Table A.8 ~ cont inued from previooa p a g e 

Attack Type 

Probe 

N a m e 

diet 

ncftp 

portsweep 

ipsweep 

Alert 

INFO TELNET login incorrect 

(ftp-telnet) FTP command parameters were too long 

TCP Portscan 

Open port 

128.223.199.68 • 172.16.113.3 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

204.71.51.16 -> 172.16.113.5 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

204.233.47.21 ^ 172.16.113.50 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

207.114.237.57 ^ 172.16.113.4 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

209.1.12.46 -y 172.16.113.1 

ICMP PING 

ICMP PING BSD Type 

ICMP PING *NIX 

Q u a n t i t y 

86 

1 

8 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

1 

1 

1 

1 

1 

1 

Table A 9 : Day 7 - 6*̂  April 1999 

Attack Type ' Name 

DOS teardrop 

back 

neptune 

Alert 

(spp Jrag3) Short Fragment, possible DoS attempt 

{spp_frag3) zero-byte fragment packet 

(spp_frag3) Fragment packet ends 

after defragmented packet 

Web-misc apache directory disclosure at tempt 

Open port 

TCP Portscan 

Open port 

SNMP request TCP 

Scan myscan 

Quant i ty 

90 

90 

88 

3530 

5 

14 

52 

81 

2 

Continued on next page 
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Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS 

Table A.9 - c o n t i n u e d fi-om p r e v i o u s p a g e 

A t t a c k Type 

U2R 

R2L 

N a m e Ale r t 

pod 

neptune 

ca&esen 

yaga 
zsnoop 

ftpwrite 

ncftp 

SNMP agent X/TCP request 

MISC source port 53 to i 1024 

DOS BGP spoofed connection reset at tempt 

ICMP PING 

(spp_frag3) Fragmentation overlap 

SNMP Request TCP 

SNMP Trap TCP 

SNMP agent X/TCP request 

Attack response directory listing 

Attack response directory listing 

XI1Xopen 

FTP .rhosts 

(ftp^telnet) FTP Commands parameters were too long 

Quantity 

80 

2 

1 

10 

685 

10 

10 

10 

8 

12 

2 

1 
1 

Table A.10: Day 8 - 7* April 1999 

Attack l ^ p e 

DOS 

U2R 

R2L 

Probe 

N a m e 

back 

back 

EEbconfig 

xlock 

phf 

netbus 

portsweep 

Ale r t Q u a n t i t y 

Web-misc apache directory disclosure at tempt 

Web-misc apache directory disclosure at tempt 

Shellcode Sparc NOOP 

X l l Xopen 

Web-cgi phf arbitrary command execution at tempt 

Web-misc cat %20 access 

Web-cgi phf access 

Web-misc /etc/passwd 

BACKDOOR netbus active 

BACKDOOR netbus getinfo 

TCP Portscan 

Open port 

1138 

480 

2 

2 

2 

2 

2 

2 

2 

2 

4 

16 

Table A.11: Day 9 - 8 * April 1999 

A t t a c k Type 

DOS 

1 

Name 

teardrop 

Aler t Q u a n t i t y 

<8pp^ag3) Short Fragment, possible DoS at tempt 20 

(8pp_frag3) zero byte fragment packet 20 

Continued on next page 
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A2. Tables of Attack Types Detected per Day 

' A t t a c k I V p e 

U2R 

Pt2L 

Probe 

Tab le A.I1 - c o n t i n u e d from p r e v i o u s p a g e 

N a m e 

casesen 

yaga 

sechole 

phf 

portsweep 

ntinfoscan 

sa tao 

Alert 

(spp_frag3) Fragment packet ends 

after defragmented packet 

Attack response directory listing 

Attack respoDse directory listing 

Attack response directory listing 

Web-misc /etc/passwd 

Web-cgi phf arbitrary command execution attempt 

Web-misc cat%20 access 

ICMP Destination unreachable port unreachable 

Web-frontpage / v t i - b i n / a c c ^ 

Web-lis fpcount access 

Web-iis fpcount a t tempt 

Misc source port 20; 1024 

Web-iis *.idc at tempt 

Web-cgi cgi-bin /access 

Web-cgi perl.exe access 

Web-iis newdsn-exe access 

Web-iis perl browse newline at tempt 

Web-iis perl access 

Web-misc queryhit.htm a c c e ^ 

NETBIOS SMB ADM1N$ Unicode share access 

NETBIOS SMB C$ Unicode share access 

NETBIOS SMB D$ Unicode share access 

Web-cgi perl.exe command at tempt 

t'lf Port bounce at tempt 

FTP command parameters were malformed 

TCP Portscan 

Open port 

ICMP PING 

ICMP echo reply 

ICMP Destination unreachable port unreachable 

Filler/execution at tempt 

P i n ^ r 0 query 

Finger redirection attempt 

Finger root query 

SNMP request TCP 

SNMP Trap TCP 

SNMP ageotX/TCP request 

UDP Portscan 

Continued o 

Q u a n t i t y 

18 

47 

26 

42 

2 

2 

2 

6 

4 

4 

4 

24 

6 

6 

12 

6 

5 

4 

4 

4 

4 

4 

12 

12 

12 

2 

9 

2 

2 

2682 

12 

2 

2 

2 

2 

2 

1 

4 

n next page 
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Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS 

Table A.11 - continued from previous page 
, Attack Type Name Alert 

ipsweep 

mscan 

SNMP t rap UDP 

FTP Satan scan 

ICMP PING 

ICMP echo reply 

TCP Portscan 

Open port 

TCP Portsweep 

ICMP Destination unreachable port unreacbable 

UDP Portsweep 

Web-cgi phf access 

Web-misc handler access 

SNMP agentX/TCP request 

RPC Portmap listing TCP 111 

Web-cgi test-cgi access 

Quant i ty 

2 

2 

12 

4 

1248 

11011 

38 

1908 

67 

695 

696 

16 

398 

69fi 

Table A. 12: Day 10 • 9"" April 1999 

Attack Type 

DOS 

U2R 

R2L 

Probe 

Name 

back 

land 

yaga 

eject 

casesen 

xsnoop 

guest 

Alert 

Web-misc apache directory disclosure at tempt 

Bad Traffic Same Src/Dst IP 

Attack response directory listing 

(ftp-telnet) invalid TCP command 

Attack response directory listing 

XI1Xopen 

INFO Telnet Login incorrect 

sendmail SHELLCODE X86 NOOP 

Portsweep ICMP Destination unreachable port unreachable 

Quantify 

480 

1 

16 

6 

16 

2 

8 

2 

6 
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r ^ Results of the Experiments on 
Snort vs SMART 

Table B.1: 1999 DARPA Data Set - Reduction Rate 

No 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

S i g n a t u r e s 

INFO web bug 1x1 gif at tempt 

ICMP Destination Unreachable Port Unreachable 

ICMP Echo Reply 

ICMP Ping 

CHAT IRC message 

ICMP PING *NIX 

ICMP PING BSD Type 

ATTACK Responses 403 forbidden 

WEB-CGI redirect access 

(portscan) Open Port 

N o of Fa lse A l a r m s 

Before 

22,559 

14,017 

11,275 

5,259 

1.829 

883 

883 

792 

613 

601 

INFO Telnet login incorrect 594 

(spp-£rag3) Fragmentation overlap 

Attack response directory listing 

UDP Portsweep 

WEB-CGI count.cgi access 

ICMP Redirect net 

ATTACK Responses invalid URL 

CHAT IRC Nick change 

CHAT IRC Channel join 

Web-iis fpcount access 

WEB-CGI calendar access 

WEB-MISC search.dll access 

WEB-MISC backup access 

WEB-CGI finger access 

TCP Portsweep 

Web-frontpage /vti.bin/access 

WEB-CGI wrap access 

(httpJnspect) DOUBLE DECODING ATTACK 

431 

423 

353 

297 

261 

265 

228 

219 

174 

167 

103 

99 

83 

61 

38 

37 

30 

After 

17,696 

6,465 

2,508 

2,639 

456 

17 

17 

109 

95 

230 

80 

160 

61 

67 

29 

30 

41 

43 

43 

10 

12 

4 

8 

9 

7 

10 

2 

8 

R e d u c t i o n 

R a t e ( % ) 

78.44 

46.12 

22.24 

50.18 

24.93 

1.93 

1.93 

13.76 

15.5 

38.27 

13.47 

37.12 

14.42 

18.98 

9-76 

10.68 

15.47 

18.86 

19.63 

5.75 

7.19 

3.88 

8.08 

10.84 

11.48 

26.32 

5.41 

26.67 
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Appendix R Results of the Experiments on Snort vs SMART 

Table B.2: 1999 DARPA Data Set - Unfiltered False Alarms 

N o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Sipiatnres 

WEB-irS rpcount attempt 

ICMP Time-To-Live Exceeded in Transi t 

ICMP Destination Unreachable Host Unreachable 

WEB-MISC RBS ISP /newuser access 

(ftp-telnet) invalid FTP command 

WEB-MISC intranet access 

WEB-MISC counter.exe access 

INFO FTP bad login 

(spp stream4) TTL LIMIT Exceeded 

WEB-CGI download.cgi access 

(ftp_telnet) FTP traffic cncr\pted 

WEB-US iissamples access 

WEE-FRONTPAGE shtml.dll access 

x l l xopen 

WEB-IIS iisadmin access 

WEB-MISC redirect.exe access 

17 WEB-CGI icat access 

18 

19 

BACKDOOR MISC Solaris 2.5 at tempt 

WEB-CUENT Microsoft emf metafile access 

20 WEB-MISC Lotus Notes .pi script source download at tempt 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

MULTIMEDIA Windows Media download 

WEB-IIS ISAPI idq attempt 

WEB-CGI phf arbjtrar>- command execution attempt 

FTP passwd retrieval at tempt 

WEB-MISC cat %20 across 

WEB-CGI perl.exe command attempt 

WEB-nS ISAPI .idq access 

WEB-MISC login.htm access 

WEB-CGI searcb.cgi access 

RSERVICES rlogin root 

MS-SQL version overflow attempt 

MS-SQL ping attempt 

WEB-FRONTPAGE shtml.exe access 

(snort decoder) Bad Traffic Same Src/Dst IP 

WEB-CGI db2www access 
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Table B.3: 1999 DARPA Data Set - Correctly Identified True Alarms 

N o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

Siffaatnres 

SNMP Trap TCP 

(ftp-teinet) FTP command parameters were too long 

FTP Port bounce attempt 

WEB-MISC queryhit.htm access 

WEB-nS perl access 

Misc source port 20il024 

FTP .rhosts 

WEB-MISC apache disclosure at tempt 

WEB-IIS newdsn.exe access 

WEB-IIS *.idc at tempt 

IMAP login buffer overflow attempt 

SHELLCODE Linux shellcode 

Backdoor netbus active 

WEB-IIS perl browse newline attempt 

Finger redirection attempt 

Finger 0 query 

Finger root query 

DNS TCP inverse query overflow 

FTP Satan scan 

Finger/execution at tempt 

SNMP Agent X/TCP request 

WEB-MISC /etc/passw 

Scan niyscan 

SHELLCODE Sparc NOOP 

SNMP Request TCP 

(sppJragS) fragment packet ends after defragmented packet 

NETBIOS SMB D$ Unicode share access 

DOS BGP Spoofed connection reset attempt 

SHELLCODE X86 NOOP 

(spp-fragS) zero byte fragment packet 

NETBIOS SMB ADMINS Unicode share access 

NETBIOS SMB C$ Unicode share access 

(ftp.telnet) F T P command parameters were malformed 

(spp-fragS) Short fragmeot, possible DoS attempt 

Backdoor netbus getinfo 

WEB-CGI perl.exe access 

WEB-CGI cgi-bin /access 
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Appendix B. MtswiU^ tffthe Experiments on Snort vs SMART 

Table B.4: Plymouth Data Set - Reduction Rate 

No 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

S i g n a t u r e s 

(httpJnspect) BARE BYTE UNICODE ENCODING 

(http-inspect) DOUBLE DECODING ATTACK 

(portscan) TCP Portsweep 

ATTACK-RESPONSES 403 Forbidden 

ICMP L3retriever Ping 

POLICY Google Desktop activity 

SPYWARE-PUT Trackware funwebproducts 

mywebsearchtoolhar-funtools runtime detection 

WEB-IIS view source via translate header 

WEB-MISC robotB.txt access 

N o of False Alarms 
Before 

2489 

207 

56 

313 

4355 

1272 

763 

33902 

11073 

After 

1385 

3 

1 

21 

2097 

456 

123 

25170 

10315 

R e d u c t i o n 

Bate(%) 

55.64 

1.45 

1.79 

6.71 

48.15 

35.85 

16.12 

74.24 

93.15 

Table B.5: Plymouth Data Set - Unfiltered False Alarms 

N o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

S i g n a t u r e s 

(httpJnspect) B S UNICODE CODEPOINT ENCODING 

(httpinspect) WEBROOT DIRECTORY TRAVERSAL 

(portscan) Open Port 

(portscan) TCP Port.scan 

(snort.decoder) WARNING: ICMP Original I P Fragmented and Offset Not 0! 

ICMP Destination Unreachable Communication Administratively Prohibited 

ICMP Destination Unreachable Communication with Destination 

Host is Administratively Prohibited 

ICMP PING NMAP 

ICMP redirect host 

ICMP Source Quench 

MULTIMEDIA Quicktime User Agent access 

SPYWARE-PUT Trickier teomasearchbar runtime detection 

WEB-CGI calendar access 

WEB-FRONTPAGE /.^vti J)in/ access 

WEB-IIS asp-dot a t tempt 

WEB-MISC .DS-Store access 

WEB-MISC WebDAV search access 

WEB-PHP calendar.php access 

WEB-PHP remote include path 

WEB-PHP test.php access 

Continutd on next page 
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Ikble B.5 - cont inued frtmi prev ious page 

N o S ignatures 

21 WEB-PHP xmlrpc.php post attempt 

Table B.6: Plymouth Da ta Set - Correctly Identified True Alarms 

No 

1 

2 

3 

4 

5 

6 

7 

Signatures 

ICMP PING CyberKit 2.2 Windows 

SPYWARE-PUT Adware hotbar runtime detection - hotbar user-agent 

SPYWARE-PUT Hijacker Marketscore runtime detection 

SPYWARE-PUT Hijacker searehmiracle - elitebar runtime detection 

SPYWARE-PUT Trackware alexa runtime detection 

WEB-CGI formmail access 

WEB-MISC Domino webadmin.nsf access 
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c The Pseudocode 

C.l Main Alarm Aggregation Pseudocode 

dataTe.xtl as the data containing alarm attributes 

figureNamel as the name of final mapping figure 

stagelRes as the name of text file that will contain the classification result 

mitilD as the smallest alert ID from the processed alerts 

{Data Mapping} 

READ dataTfxn 

OBTAIN normalised data via var method 

COMPUTE IP address attributes' weights as 1.8 times current values 

GET the best size of map based on the smallest quantisation and topographic errors 

{This called function will be expanded in subsection C.2.1} 

CREATE the map via som_make method 

CLASSIFY data on the map using K-means algorithm and STORE the result into data-iiut 

{This called function will be expanded in subsection C.2.2} 

{data.ind is a cell array with size of (maximum number of clusters x 1)} 

COMPUTE V as the length dntajnd 

{y = number of clusters resulted from the classification} 

COMPUTE J- as length of input data 

{Output Writing(MySQL daUbase)} 

SET NojaleHs to x 

SET No-dusters to y 

TNYT result as a cell array size (2, 1) 

{A cell array with size of 2 rows and I column} 

{DETERMINE num as the highest cluster number from table stagel] 

itnwn is not a number then 

SET A to 0 

e l se 

SET h to num 

e n d if 

few i = 1 to Nojjderts d o 

for j = 1 to NoMvsters d o 

COMPUTE dust as sum of/t and j 

COMPUTE leu as the length ofdataJnd with array position (jf) 

for J- = 1 to Icn d o 

if minID IB equfi) to data-ind with array position (j) and element number (x) then 
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Appendix C. The Pseudocode 

APPEND minJD to result with array position (1) 

APPEND dusf to result with array position (2) 

Break out of loop 

end if 

end for 

if length ofre^ult with array position (1) is not equal to 0 and the last element of resu/f with 

array position (1) is equal to ( t h e n 

Break out of loop 

end if 

e n d for 

Increment mhilD 

e n d for 

for (• = 1 to Nojilerts d o 

INSERT into table Stage\ (MySQL database) the values oi result array position (1), element 

number (c) and result array position (2), element number (c). 

end for 

{Writing data index into a file} 

OPEN a file named stageiB.es for writing; discard existing contents 

SET pj to No.dunt.er.s 

for z = Itopj d o 

SET len to length oFdataJud with array position is) 

i£ leii = 0 then 

WRITE "NA-

INSERT carriage return 

e l se 

WRITE the values of dafaJnt/with array position (;) and element niunber 1 to (len — 1) 

INSERT " " 

WRITE the values ofdatajnd with array position (z) and element number len 

INSERT carriage re turn 

e n d if 

end for 

C.2 Called Functions Pseudocode 

C.2.1 G E T t h e b e s t s i z e o f m a p b a s e d o n t h e s m a l l e s t q u a n t i s a t i o n a n d 

t o p o g r a p h i c e r r o r s 

SET .1.4 as data struct 

OBTAIN data field from s.4 and STORE it into D 

DETERMINE the size of D and STORE into variables dieii and dim. 

jdlen (row) is the number of alerts being processed, whilst dim (colutnn) is the number of at­

tributes per alert} 

SET munit to the sum of d(en and 100 
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C.2. Called Functions Pseudocode 

CREATE a map via somjnake function with the number of units set to munit 

CALCULATE its quantitative and topographic errors via som_quality method and STORE the 

values into an array ("ic/f, tyt] 

{mqe is a quantitative error, whilst tge is a topographic error} 

ROUND ttiqe to not more than three decimal points 

ROUND tgr- to not more than three decimal points 

whi le mtfF > 0,1 or tge > 0.1 d o 

COMPUTE munil as jnunit ^ lU 

CREATE a map via som-make function with the number of units set to munil 

CALCULATE its quantitative and topographic errors via som^quality method and STORE the 

values into an array h'fie, tge] 

ROUND mge to not more than three decimal points 

ROUND tge to not more than three decimal points 

e n d whi le 
RETURN munit 

C.2^ CLASSIFY data o n the map us ing K-means a lgori thm and STORE 

the result into dataJnd 

SET sA as data struct 
sMap as trained map struct 

JigureNamel is a string containing the name of final mapping figure 

minlD as the smallest alert ID from the processed alerts 

n j H o i as maxium number of clusters 

cjinax as maximum number of k-means runs 

verbose as verbose level, 0 by devault 

OBTAIN dutn field fi-om sA and STORE it into D 

DETERMINE the size of D and STORE into variable dlen and dim 

{dien is the number of alerts being processed (rou), whilst dhu is the number of attributes per 

alert (ro/u7nn)} 

CALCULATE d as dln> divided by 2 

if number of input albumens < 5 or junax is not defined or n-mar is not a number then 

SET njmax to cl 

e n d i f 

if number of input arguments < 6 or cjmax is not defined or cjnax is not a number then 

SET cjntix to 5 

e n d if 

if number of input arguments < 7 or verbose is not defined or verbose is not a number then 

SET verbose = 0 

e n d if 

SE?r t.TTiax to 1 

[t.maj is the number of randomised trials run by K-mean& algorithm} 

INIT e as a zero t_max-by-l matrix 
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{the matrix has t .max row(s) and 1 column} 

INIT data.pOBt as a zero 1-by n max matrix 

(the matrix has 1 row and n jnax eolumn(s)} 

{data-post holds the number of data per cluster} 

INIT data_md as a cell array size ( i i jna i , 1) 

jA celt array with size o( luiuis row(s) and 1 column} 

{datu.vid contains the data's ID number in each cluster} 

SET errconip to the largest double precision floating point number 

{Choosing the best map} 

for »' = I to ? jiifis do 

{CLUSTER sMap using K-means algorithm via kmeans_clusters method and STORE the result 

into c, p, err and ind} 

{This called function will be explained in subsection C.2.3} 

{c (cell array) contains cluster centroids, p (cell array) contains cluster indexes, err (row vector) 

contains squared sum of errors, and ind (row vector) contains Davies-Bouidin index value for 

each clustering} 

SELECT the minimum values from err and STORE the value as well as its index number into 

diiiiimi/ and i respectively 

SET (u', 1) entry of matrix e to {>) entry of row vector err 

if (i) entry of f7r < lyrrcomp then 

SET c-rrcomp to (i) entry of err 

SET best Map to p 

SET huitj- to i 

SET titr to w 

end if 

end for 

SHOW the selected map using som_show method 

{fiom show is a default method from SOM Toolbox} 

ADD label automatically to trained struct map (sMap) via som_autolabe! method 

{som_autolabel is a default method from SOM Toolbox} 

SHOW the label on the map using som.show-add method 

{som_show_add is a default method from SOM Toolbox} 

SAVE the selected map as a figure named figureNamel 

DETERMINE the index for each unit in fjMap tha t best matched the vectors in sA using som_bmus 

method and STORE the indexes into bmus 

(bmus is a column vector} 

{sora_bmuB is a default method from SOM Toolbox} 

SET zt to bestMap with array position index 

{Identifying cluster members} 

for s = 1 to dh 71 do 

INCREMENT rc(timus(s)) entry of matrix datajposi 

ADD niinID to data.ind with cell position ze{bmus{s)) 

INCREMENT minID 
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e n d for 
RETURN dataJnd 

C.2.3 CLUSTER fiMap u s ing K-means algorithm via kmeans-c lusters 
method and STORE the result into c^ p, err and ind 

SET sAIap as trained map struct 
SET n.ma3r as maxium number of clusters 

SET c_mux as maximuni number of k-means runs for each k (number of centroids) 

SET u' as an index number of the raudomised trial run by K-means 

SET verbose as verbose level, 0 by devault 

SET OBTAIN "codebook' field from sMap and STORE it into D 

SET DETERMINE the size of D and STORE into variable dleit and dm, 

{difii is the number of vectors in the map (row), whilst dim is the number of attributes per vector 

(column)} 

if number of input argumens < 2 or Ti_T7wijr is not defined or ri-tnax is not a number t h e n 

SET n-maj to the square root ofdlen and ROUND it to the nearest integer towards infinity 

e n d if 

if number of input arguments < 3or^_i7iax is not defined or c m o r i s not a number then 

SET c-max to 5 

e n d if 

if number of input arguments < 7 or verbose is not defined or verbose is not a number t h e n 

SET verbose = 0 

e n d if 

INIT rfjTiters as a cell array size (ri-maT, 1) 

{A cell array with size of 7i_f«oj row<s) and I column} 

{centers contmns the cluster centroids} 

INTT clusters as a cell array size {njnax,l) 

{A cell array with size of n-mox row(s) and 1 column} 

[dusters contains cluster indexes} 

INIT iri<l as a zero l-by-rimCJ" row vector 

{the matrix has 1 row and n .mas column(s)} 

{ind contains Davies-Bouldin index value for each clustering} 

INTT errors as a zero l-by-7i.7i*aar row vector 

{the matrix has 1 row and njnax column(s)} 

{Classification process} 

{For k (centroid) = 1 classification} 

SET INIT III as a zeroI-by-dJi» matrix 

§ar t = 1 to dim do 

CALCULATE the average value of the i* attributes from D 

end for 

SET the first array of centeTs to m 

SET the first array of dusters to a one d/en-by-1 matrix 
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DETERMINE the requested best matching unit for each vector in s.Uup and their corresponding 

quantisation errors using som_bmus method and STORE the indexes and errors into dummy and 

<]crr respectively 

{dummy and gcrr are column vectors} 

^som bmus is a default method from SOM Toolbox} 

SET the first entry of errors to the sum of the square qcrr from each vector 

(For k = 2Ui k - JJ„ia.r classification} 

for i = 2 to 7!„,uT d o 

SET best to the largest double precision Qoating point number 

for J = 1 to tmax do 

CLASSIFY the vectors on the sMap using somJtmeans function and STORE the cluster cen-

troids, cluster indexes and the sum of squared error for the classification into c, k and err 

respectively 

{som Juneans is a default method from SOM Toolbox} 

if err < best ihen 

SET kMst to fc 

SET rjKst to c 

SET l^fil to err 

end if 

end for 
end for 

{Storing the results} 

SET the i"" array of centers to fJ>est 

SET the ;"• array of clusters to k-best 

SET the i* entry of terrors to test 

CALCULATE the Davies-Bouldin index using dbindex method and STORE the value into the i * 

entry of ind 

C.3 Main False Alarm Classification Pseudocode 

dataTejr,t2 as the data containing alarm attributes 

figuTeName2 as the name affinal mapping figure 

fiviiUiidcj: as the name of text file that will contain final indexes of true and false alarms 

{Data Mapping} 

READ dataText2 

COMPUTE len as the length of input data 

if all values of the 4^̂  a t t r ibute (column) of the input data is not a number then 

SET all values of the •1''' column to -1 

end if 

OBTAIN normalised data via var method 

COMPUTE time intervals attribute's weight as 2.5 times current values 

COMPUTE number of events attribute's weight as 2.8 times current values 
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GET the best size of map based on the smallest quantisation and topographic errors 

{This called function has been expanded in subsection C.2.1} 

CREATE the map via som_make method 

CLASSIFY data on the map using K-means algorithm and STORE the result into dataJiidFinal 

and rec-post 

{This function will be further expanded in subsection C.4.1} 

[dataJnd is a cell array with size of (maximum number of clusters x 1)} 

{rec-post is a cell array with size of (2,1)} 

{Writing output into the database} 

SET al to the value of the first element and the first cell of cell array dataJndFinal 

SET u2 to the value of the first element and the second cell of cell array dataJndFinal 

for f = 1 to ten d o 

if a l is equal to the t element of the first cell of cell array rer-jpost ihea 

SET rjiijil to the t element of the second cell of cell array recpost 

Break out of the loop 

e n d if 

end for 

for t = 1 to /en do 

if a2 is equal to the I element of the first cell of cell array rec.posf t b e n 

SET cuip'l to the ( element of the second cell of cell array rccpust 

Break out of the loop 

end if 

e n d for 

if the 7''' attribute of the cmpl entry of the input data > the 7* at t r ibute of the cmp2 entry of the 

input data then 

SET J to 0 

SET y to 1 

e l se if the y*" attribute of the cinpl entry of the input data = the 7* attr ibute of the cnip2 entry 

of the input data then 

if the 1*' attribute of thecr/ipl entry of the data > the i**̂  at tr ibute ofthet7Hp2 entry of the data 

then 

SET T to 0 

SET y to 1 

e l s e if the l" attribute of the crnpl entry of the data i the 1"* at t r ibute of the ^^ip2 entry of the 

data then 

SET J- to 1 

SET 3 to 0 

e l s e 

CREATE array arras/ and ASSIGN the values 2, 5 and 6 to the array respectively 

for (/ = 1 to length of array do 

if the array(f/) at tr ibute of the cmpl entry of the data < the arTay((0 attribute of the cmp2 

entry of the data then 

SET J: to 0 
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SET n to 1 

Break out of the loop 

e l s e if the array (rf) attribute of the cmpl entry of the data > the array((/) at tr ibute of the 

(iiip2 entry of the data then 

SET J- to 1 

SET v to 0 

Break out of the loop 

e n d if 

e n d for 

e n d if 

e l se 

SET J- to 1 

SET y to 0 

e n d if 

INIT result as a cell array size (2,1) 

{A cell array with size of 2 rows and 1 column} 

DETERMINE num as the highest cluster number from table stagel 

if riuin is not a number then 

SET /( to 0 

e l se 

SET ft to num 

e n d if 

SET /il to the length of the first cell of cell array dataJndFinal 

for J = 1 to Irn do 

CALCULATE dust as the sum of/i and i 

for r/ = 1 to ;>] do 

if rlust is equal to the r/eiement of the first cell of cell array data JndFinat t h e n 

APPREHEND dusl to the first cell of cell array rt-sult 

APPREHEND .; to the second cell of cell array result 

Break out of tbe loop 

e n d if 

e n d for 

if the length of the first cell of cell array result is equal to 0 or the last element of the first cell 

of cell array /•( suit is not equal to dusf t h e n 

APPREHEND dust to the first cell of cell array result 

APPREHEND y to the second cell of cell array rej<ult 

e n d if 

e n d for 

for r = 1 to :Voji/fr(s do 

INSERT into table Stage'! the values of tbe c element, first cell of result and the r element, the 

second cell of rtsult 

end for 

{Writing data index to a file} 
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OPEN a file named finallndej for writing; discard exist i i^ contents 

SET pj to Sojclusters 

for z = 1 to 2 do 

SET Uii to length of the z cell of dataAndFinoX 

Ulen = 0 then 

WRITE "^A" 

e lse 

WRITE the values of data JndFinal with cell position z and element ntunber 1 to (len — 1) 

INSERT " " 

WRITE the values of data Jnd with cell position z and element number len 

INSERT carriage return 

end if 

end for 

C.4 Called Functions Pseudocode 

C.4.1 Classify data o n the map us ing K-means algorithm and STORE the 
resul t into dataJndFinal and recjposi 

sA as da ta struct 

sMap as trained map struct 

figureNQme2 is a s t r i i ^ containing the name of final mapping figure 

n_max as maxium number of clusters 

cjiiax as maximum number of k-means runs 

verbose- as verbose level, 0 by devault 

OBTAIN codebook field from .'^Miip and STORE it into D 

DETERMINE the size of D and STORE into variable dltu and dim 

{dlen is the number of alerts being processed (row), whilst dim is the number of attributes per 

alert (column)} 

CALCULATE d as dlen divided by 2 

if number of input argiunens < 4 or ;i jnax is not defined or n^mar is not a number then 

SET ?i.maj: to 2 

end if 

if number of input arguments < 5 or c^max is not defined or r.rriaz is not a number then 

SET cjmax to 5 

end if 

if number of input arguments < 6 or verboae is not defined or verbose is not a number then 

SET verbose = 0 

end if 

SET t.jnax to 500 

{t-max is the number of randomised trials run by K-means algorithm} 

SET it t o o 

{index for the possible cluster solutions (maps)} 
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INIT .s.s( as an empty array 

{sum of squared error for each unique map} 

I N n frrq as an empty array 

{number of occurrence for each unique map} 

INIT rlust.pQfit as a cell aray size (t.max, 1) 

{A cell array with size ort.inax row(s) and 1 column} 

INIT daUi.jHjsl as a zero 1-hyn.m.ax matrix 

{the matrix has 1 row and vjnax column(s)} 

{data.post holds the number of data per cluster} 

INIT daiajnd as a cell array size (njmax,\) 

{A cell a r ray with size of u .mux row(s) and 1 column} 

{dnta.uid contains the index number of the first stfige clusters in each second stage cluster} 

INIT rcr-iK'st as a cell array size (2, 1) 

{A cell array with size of 2 rows and 1 column} 

SET fotSSE to 0 

SET sol to 0 

INIT y as an empty array 

INIT no-du-st as an empty array 

SET close to the largest double precision floating point number 

{Choosing the best map} 

{Sorting the maps} 

for ir = 1 to (_')i«,r do 
CLUSTER sMap using K-means algorithm via kmeans_clusters method and STORE the result 

into c, p. i-rr and ijitl 

(This called function has been explained in subsection 0.2.3} 

[r (cell array) contains cluster centroids, ;i (cell array) contains cluster indexes, err (jtyi/i vector) 

contains squared sum of errors, and ind (row vector) contains Davies-Bouldin index value for 

each clustering) 

SELECT the minimum values from err and STORE the value as well as its index number into 

dummy and i respectively 

if (() entry of err is a member of .ssf array then 
STORE the index number of {i) entry of e r r in use into isavai 

INCREMENT {xsavai) entry of freq 

e lse 

INCREMENT A-

{Counting unique map} 

APPREHEND {i] entry of err to use array 

APPREHEND 1 to frexi array 

STORE cluster indexes of the unique map into (A) cell of cell array dust .post 

APPREHEND the number of clusters of the unique map into array no-dust 

end if 

end for 

{Compute the frequency rate} 
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SET rate to zero 1-hy-k matrix 
for / = ! to fr do 

COMPUTE the (f) entry of matrix rate as (() entry of/req divided by t.max 
{calculating the frequency rate} 

end for 
SELECT the highest frequency rate and STORE the value and its index number into high and 
indfj: respectively 
{Compute the second thresholding value (standard deviation)} 
COMPUTE the standard deviation of the maps' frequency rates and STORE the result into vari­
able sf 
{Apply the thresholding} 
it high > 0.6 then 

SET best Map to index 
else 

for in = i to k do 
if high <= st then. 

SET sol to k 
CALCULATE iotSSE as the sum of current totSSE value and the total values of sae array 

STORE the unique map indexes into array g 
Break out of the loop 

end if 
if (m) entry of array rate >= high subtracted by st then 

CALCULATE tatSSE as the sum of current liitSSE and TTJ entry of array use 
INCREMENT sol 
APPREHEND m to array g 

end if 
end for 
{Calculate the average SSE} 
COMPUTE avf-SSE as totSSE divided by sol 
if sol = 2 then 

if the sse value of the first entry of array g < the sse value of the second entry of array g 
then 

SET bestMap to the first entry of array g 
else 

SET bestMap to the second entry of array g 
end if 

else 
tor n~\tascAAo 

SEfT diff to the difference between the sse value of the n entry of array g and the ai'eSSE 
it dose > diff then 

SET dose to diff 
SET bestMap to the it entry of array g 
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e n d if 

e n d for 

end if 

end if 

SHOW the selected map using som_show method 

{som show is a default method from SOM Toolbox} 

ADD label automatically to trained struct map (sMap) via Bora_autolabel method 

{som_autolabel is a default method from SOM Toolbox) 

SHOW the label on the map using som_show-add method 

[som-show.add is a default method from SOM Toolbox) 

SAVE the selected map as a figure named fi.gureNamul 

{Identifying cluster members} 

DETERMINE the index for each unit in sMapthat best matched the vectors in sA using 5oni_hmus 

method and STORE the indexes into bmus 

{hmus is a column vector] 

{som-bmus is a default method from SOM Toolbox} 

SET zf to hcstMop with array position rn<l<. j-

COMPUTE the size of input data and STORE the values into variables / and ntfr 

{i (row) is the number input clusters from stagel, wbilst attr (column) is the number of features 

taken per cluster} 

DETERMINE the highest cluster number from table st,agi'2 and STORE the value into num 

ititum is not a number then 

SET /(to 0 

else 

SET h to iium 

end if 

for "i = 1 to / do 

SET labf^l to the sum of h and s 

APPREHEND hilxt to the first cell of cell array rec^post 

APPREHEND s to the second cell of cell array rec-post 

INCREMENT zelbmus(s)] entry of matrix data^>ost 

APPREHEND label to ze{bmus{s}) entry ofdafaJnd 

end for 
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D.l Counting Time Interval and Number of Events 

Listing D.l: source-code/countEventTimeTwo.m 

I f u n c t i o n Timetb = couiitEventTimeTwo (A, B, d a y A l e r C s ! 

2 

3 Sf C a l c u l a t i n g the number of events and t h e time interval 

4 add = [ 0 0 0 2 0 0 ] ; 

6 curTime = A; 

6 a h l l c ^vtcciqp (tzojrTime, B) , 

7 ^u iVec = d a t e v e c i c u r T i m e ) J 

8 HextVec = curVec+ add ; 

9 NeKtTitne =• d a t e s t r (NextVec, 3 1 ) ; 

10 s t i r = • p r i n t f C s e l e c t d i s t i n c t s i g n a t u i e from %s where c lmeatamp >* " % E " and t imes tan ip < 

" l a " ' , d a y A l e r t s , cu rT ime . Nex tT ime) ; 

11 s i q = myacjl ( a t r ) ; 

12 p j - • i M l s l g . l ) ; 

13 r i m e c b " B « x o s ( p j , 3 l ; 

14 £ M C = 1:4, 

15 i f c u r V e c ( c | < 10, 

16 s s l c l - B p r l n t « l ' 0 * d ' , c u r V e c ( c ) 1 ; 

17 e l s e 

18 5 x l c ) - B p t i n t f r % d ' , c a c V e c ( c ) 1 ; 

19 e n d 

20 and 

21 s t r = ^ r i n t f [ ' c r e a t e t a b l e Tini6EventTwo%s%s*s%a ( S i g n a t u r e c h a r ( l D ) , ( lo_of_avent i n t ( l O ) 

T i n i e _ i n c e r v a l f l o a c ) ' , sx{ 11 , sx { 2 | , sx< 3 ) , s x l 4 | ) > 

22 t a b ! = m y s q U s t r ) ; 

23 t o r CO " l : p j , 

24 T i r o e t b ( c o , l ) = 3 i g ( c o ) ; 

25 end 

36 
27 f o r X = l : p j . 

28 s t i = • p r i n t f C s e l e c t l p _ s r c , i p _ d s t , t l m e a t a m p £rom * s where s i g n a t u r e » *d and 

t imes ta iBp > - *%e* and Ci-iiies':a(i9 <-- * t s ' o r d e i by c i m e s t a m p ' , d a y A l e i L s , a l i j ( x ) , 

cucTime, Nex tT ime) ; 

29 [ s r c , d s t , zx] = m y s q l ( s c r ) ; 

30 fo iBBt long G, t i ; 

31 toima±, l ong G, s r c ; 

32 focmaC long G, d s t ; 

33 n o A l e r t ^ * ! • • ( s r t : , i ) ; 

34 f o r V ^ l : n o A l e r t , 

35 v e c = d a t e v e c ( t i ( v ) > ; 

36 v e c i 6 ) = 0 ; 

37 t i m e l v l = v e c ; 
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38 «nd 

39 f o r c c l = i : 2 , 

40 tax row = l : n o R l e r t , 

41 i f c o l ~ I , 

42 d a t a ( r o w . c o l i = s r c < r o w l ; 

43 e l s e 

44 d a t a ( r o w , c o l ) ^ d s t ( r o w ) ; 

45 Mid 

46 and 

47 a n d 

48 t = 0; S t i n e i n t e r v a l 
49 1 = 1 ; * i n d e x f o r T a r r a y 

50 T = i « r o « ( l , n o A l e r t ) ; 

51 e v e n t ^ 0 ; t no of event 

52 i n d e x = 0; * index of the counted alarm 

53 f o r n •^ l i n o A l e c t , 

54 % cJieck i f t h e al^ciT' h^s been coi-eied by previous alarm 

55 i t f i n d ( T - = n ) , 

56 e v e n t - ex ' en t ; 

57 a l M 

58 e v e n t = e v e n t + 1; 

59 i f e v e n t -^ 1, 

60 t - ri; 

61 e l s a 
62 t = L -̂  a t a l e t i B B f t i m e l n l , C i m e ( i n d e x l ) 1 ; 

63 and 

64 indej i - n ; 

65 T ( l , i ) = i n d e x ; 

66 i - i • 1 ; 

67 j = n + 1 ; 

63 % Finding t h e t h e a j a r m s c o v e r e d b y the current alert 

69 i f n '- n o A l e r t , 

70 w h i l e aba l a t l a a < t l n i e { J t , t i m e [n | ) ) c^ l e o , i if the elapsed time is less than equal 

CO 3 minutes 

71 i f d a t a ( j , 2) == d a t 3 f n , 2 ) I I d a t a ( j , 1) "-^ d a t a (n, 1 ) , % if e i t h e r t h e dsc IP 

addresses or s r c IP addresses a r e match 

72 T l l . i ) = i ; 
7U 1 = i + 1; 

74 and 

75 1 = j <- 1; 
76 i * j > n o A l e r t , 

77 b c a s k : 
78 and 

79 a n d 

SO m d 

81 end 

82 e n d 

83 T i m e t b f x , 2 ) = e v e n t ; 

84 i f t / e v e n t == 0, 

85 T l m e t b ( x , 3 ) = 72Q0; * No of seconds in two h o u r s 

66 e l s e 

87 foi:mBt s l i c r t G, Ti jue tbfx , 31 - t / ( e v e n t - l ) ; 

88 e n d 

89 3 t i = s p r i n t c ( ' i n s e r t i n t o TiineEventTwo%5%s%a%s ( S i g n a t u r e , No_of_even t , T i m e _ i n t e r w a i 
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) values [%d, %d, %.3f)', sxlI} , sx)21,KK(3|,sxl4).Timetb(x,11, Timetb(K,2), Timetb 

(lt,311; 

90 t a b l = i n y s q i ( s t r ) ; 

91 and 

92 f o m a t s h o r t G, Timecb I : , 1 ) ; 

93 EornMit s b o r t G, T imetb | : , 2 ) ; 

94 T i m e t b ( : , 3 ) ; 

95 curTiroe - HextTime; 

96 and 

Listing D.2: source—code/countEventTimeOne.m 

1 fuDctian Timetb = countEventTimeOne lA, B, dayAlertsj 

2 
3 * ! Calculacina the number o f e v e n t s and t h e t i m e i n t e r v a l 

4 add = [ 0 0 0 1 0 0},-

5 curTime - A; 

6 • f a l l a ' s t c o a p t c u c T l m e . B ) , 

7 cu rVec - d a t e v e c ( c u r T i m e l ; 

8 K e x t v e c = cu rvec+ add; 

9 NextTime = d a t e s t r ( N e x t V e c , 3 1 ) ; 

10 s t r = s p r i o t f ( ' s e l e c t d i s t i n c t s i g n a t u r e from %s where t i m e s t a m p >« " t s " and t imes t a inp < 

" % £ " , d a y A l e r t s , cu rT ime , N e x t T l m e ) ; 

11 s i g = m y s q l ( 3 t r l ; 

12 Pi ^ s i s a l s i g . l ) ; 

13 T ime tb ^ EaEO*(p j ,3 I i 

14 Cor c = l : i , 

1& i.£ c u r V e c ( c ) < 10, 

16 s x i c ) = • p r t o t e c o % d ' , c u r V e c ( c ) ) ; 

17 e l s e 

18 E x i c ! = » p r i n t f l ' * d ' , c u r V e c ( c ) ) ; 

19 «nd 

20 aTid 

21 s t r = « p E i n t I ( ' c c e a t e t a b l e TinieEvectOne%s%s4s%s ( S i g n a t u r e c h a r ( l O ) , No_of_evenl; i n t H O ) , 

T i r o e _ i n c e r v a l f l o a t ) ' , s x ) l l , s x i 2 1 , S K | 3 1 , s i t [ 1 ) ) > 

22 t a b l = m y s q l l s t r ) ; 

23 f o r CO " l : p j . 

24 Tiii iet .b[co, 1) = s i g l c o ) ; 

25 end 

26 

27 f o r X - l : p j , 

28 s t r = g p r i n t f C s e l e c t l p _ a r c , i p _ d s t , t i n i e s t a n y from %s whore s i g n a t u r e = *d and 

t i m e s t a m p >^ " % 3 " and t i m e s t a n ? ) <= "%a" o r d e r by t i m e s t a m p " , d a y A l e r t s , s i g ( x | , 

cu rT ime , N e x t r i B e ) ; 

W I s r c , d s t , t i ] " m y s q U s t r ) ; 

SO f o i B a t l o n g G, C l ; 

31 f o m a t long G, s r c ; 

S3 f o o w t t I cng G, dst-,* 

33 n o A l e r t = s i s a l s r c l ) ; 

34 £ o r V - l : n o A l e r t , 

36 vec - d a t e v e c ( t i ( v ) ) ; 

36 vec (6) - 0,-

37 t i m e l v l - v e c ; 

38 a n d 
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39 t o r c o l - 1 :2 , 

W f o r rcH = l i n c A l e r t , 

41 ±t c o l " I , 

42 d a t a I r o w , c c l ) = 5 r c ( r o H ) j 

43 e l se 

44 d a t a (row, c o l ) = < J s t ( r o « ) ; 

45 and 

46 end 

47 «Dd 

48 t ^ 0; S t i m e i n t e r v a l 

49 i '̂  1 ; t i n d e x f o r T ariay 

50 T ^ x e r o a d . n o A l e r t 1; 

51 e v e n t = 0 ; S no of event 

52 i n d e x = 0 ; I i n d e x of the cour.ted alarm 

53 tot n = l i n o A l e r t , 

54 i check if the alarm has been covered by previous alalia 

55 i f f i n d ( T ^ i i ) , 

56 sveri t = e v e n t ; 

57 a i M 

58 e v e n t = e v e n t + 1; 

59 i f e v e n t == : , 

60 t - D; 

61 e l s e 

62 sL = e + <dat3 in, 3)- data (index,3U; * c a l c u j a t i n g the sum Of t i m e i n i e r v a i 

63 t = t * * b » ( » t i ™ B l t i m e l n l , t i m e l i n d e x n 1 ; 

64 and 
65 index = n ; 

66 T ( l , i ) » i n d e x ; 

67 i = i + 1; 

68 

69 j = n + 1 ; 

70 * Finding the the alarms covered by the current alert 

71 i f n -= n o A l e r t , 

72 t w h i J e d a t a 0 » 3J <- (data(n,3) +• 0.000000020833334}, « check the a l a r m s which are 

under the Tims frame of 3 minutes 

73 i r i i l l e aba l e t i a B ( t ime I j ] . t i m e | n | 1 ) <" ISO, * j . f t j ie e l a p s e d Eijne is less than eijual 

to 3 m i n u t e s 

74 i £ d a t a ( j , 2 | = d a t a ( n , 2 ) I I d a t a ( j , 11 = d a t a (n, 1 ) , S i f e a t h e r Che d s t I P 

a d d r e s s e s o r s r c IP a d d r e s s e s a r e match 

75 T ( l , i l - j ; 
76 i » i * 1; 

77 end 

78 j = j + 1; 

79 i * J > n o A l e r t , 

80 bce iU; 
81 and 
62 and 

83 and 
64 a n d 

85 e n d 

86 Timet,b(K,2) - e v e n t ; 

87 i f t / e v e n t = 0, 

88 T i r ae tb (x ,31 = 3600; * Wo of seconds in one hour 

89 e l s e 
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90 eoEMBt s h o r t G, Tim6tb(M,3) - t / l e v e n t - l l ; 

91 B i d 

92 s t i = B p r i n t f ( ' i n s e r t i n t o TiiBeEveirtOne%s*s*s%s ( S i g n a t u r e , No_of_even t , 

T i m e _ i n t e r v a l 1 v a l u e s (%d, %d, % . 3 f ) ' , sx l 11 , SK 1 Z ) , s x l 3 1, sx I 4 I , Tiinetfcfx, I t , 

T i i i>e tb (x ,2 ) , T in ie tb (x , 3) ) ; 

93 t a b l ^ m y s q K s t r ) ; 

94 end 

95 fo rmat s h o r t G. T i m e t b ( : , 1 ) : 

96 fo rmat s h o r t G, T i m e t b ( : , Z ) ; 

97 T i m e t b ( ; , 3 ) ; 

98 curTime = NextTime; 

99 e n d 

Listing D.3; source—code/couDtEventTimcHalfm 

1 f u n c t i o n T ime tb = c o u n t Event t i a e H a l f (A, B, dayAle r r t s l 

2 

3 %% Cslculacinij t h e number o f e v e n t s and t h e -time i n t e r v a l 

4 add = [0 0 C 0 30 0 1 ; 

5 cii tTime " A; 

6 w h i l a s t r c i ^ l c u r l i m e , B ) , 

7 curVec = d a t e v e c ( c u r T i m e ) ; 

8 KextVec = curVec-t- add; 

9 KextTime = d a t e s t r ( N e x t V e c , 3 1 ) ; 

10 s t r = ^ E i n t f ( ' s e l e c t d i s t i n c t s i g n a t u r e from %s where t l m e a t a m p >- "%s" and t i m e s t a m p < 

' '%! i " , d a y A l e r t s , curTimet H e x t l i m e ) ; 

11 s i g — m y s q l ( 3 t r ) ; 

12 p j = • i x w t s i q , ! ) ; 

13 Timetb = i e r o a ( p j , 3 ) ; 

14 » s t - flprlatf f ' » d » d t d ' , ciirVec(l) ,curVee(2l ,curVec(3), curVe<:(4l. cuzVec(5))i 

15 f o r c - 1 : 5 , 

16 i f c u r v e c i c ) < 10, 

17 «x (o l = B p r i i i t « ( ' a % d ' , c u r V e c ( c ) ) ; 

I S a l a s 

19 sx<..c) = s p r i n t f ! " % d ' , c u r V e c ( c ) ) ; 

20 end 

21 and 

22 s t r = s p r i n t f ( ' c r e a t e t a b l e TiineEventffalf *s%s*s%s*s ( S i g n a t u r e c t i a r d O ) , No_cf_event i n t 

( 1 0 ) , T i i n e _ i n t e r v a l f l o a t ) ' , 3x 1 1 | , sx l 2 1, s x | 3 I , s x | 4 ) , sxf 5 ) ) ; 

23 t a b l = m y s q l l a t r l ; 

24 f o r CO = l : p 3 , 

25 T i r F e t b ( c o , l ) • s i g ( c o ) ; 

26 M d 

87 
28 fox X ^ 1 : p j , 

29 s t t = • p r i o t t C s e l e c t i p _ s r c , i p _ d s t , t lmeBtamp from \3 where s i g n a t u r e = %d and 

t i m e s t a m p >= " * s " and t imes t an ip <^ " I s " o r d e r by t i m e s t a n ? ) ' , d a y W e r t s , s i q ( x ) , 

cucTinie, Nex tT ime) ; 

30 f a r e , d s t , t i | '^ m y s q K s t r ) ; 

31 f o r m a t l o n g G, t i ; 

32 l o z m a t l o n g G. s r c ; 

£1 E o r a a t long G. d s t ; 

34 n o f t l e r t = B l a « ( s r c , l ) ; 

36 f o r V = ! : n o A l e r t , 
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36 v e c = d a t e v e c l t i (v) 1 ; 

37 v e c ( 6 1 = 0; 

38 t u n e l v ) - v e c ; 

39 WDd 
40 t o r c o l = 1:2, 

41 £or row = l i n o A l e r t , 

42 i f c o l = 1 , 

43 d a t a ( r o w , c o l ) ^ s r c ( r Q w ) ; 

44 • ! • • 

45 d a t a ( r o w , c o l ! - d a t i r o w ) ; 

46 and 

47 end 
48 wul 
49 t = 0; * time interval 

50 i = 1; I i n d e x for T array 

51 T = x e e o B l l . n o f t l e r t l ; 

52 e v e n t ^ 0; 1 no of event 

53 index = 0; ! index of Che counted alarm 

54 f o r n = ] ; n o A l e r t , 

55 S check it the alann has been i^overed by p r e v i o u s a l a m i 

56 i f f i n d ( T — n J , 

57 e v e n t = e v e n t ; 

5S e l s a 

59 even t - e v e n t + 1 ; 

60 i f e v e n t — I , 

61 t = 0; 

62 a l H 

fi3 t t = c * (data In, 3)- data (index, 3)}; % c a J c u J a t i n f f tfte sam of t i m e I n t e r v a J 

64 t - t •» a b « ( « t i « « ( t i n i e { n ) , C i n i e | i n d e x | J ) ; 

65 a n d 

66 i n d e x = n; 

67 T ( l , i ) - i n d e x ; 

68 1 = i -1 1; 

69 

70 j = n + l ; 

71 t f i n d i n g Che the alarms covered by the current d i e r t 

72 i f n -» n o A l e r t , 

73 iwf t i l e dataljr3! <= (daCafn . J J + 0.000000020B33334), i check the a l a r m s vhich a r e 

undeJ^ t i je ciine f r ame o f 3 minutes 

74 i r t i i l a aba (o t iB i« ( t ime( j | , t i m e l n M ! <= 180, f i f t h e e l a p s e d t i m e Is less than equal 

to 3 !r.inutes 

75 i f d a t a ( j , 2 l == d a t a ( n , 2 1 II d a t a ( j , l ) = c i a t a ( n , l ) , * i f either the dst IP 

addresses o r src LP addresses are match 

t l l . i ) = : ; 

i - 1 + 1 ; 

Mtd 

j = 3 * I j 

i f j > n o A l e r t , 

braak; 

and 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

• a d 

M ) d 

• n d 

u d 
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87 TiJDecb(x,2) - event; 

88 it t/event = 0, 

SQ TiBietb(K,^) -^ 1800; i So of seconds in half an hour 

90 e l s a 

91 f o r m a t s h o r t G, T i j»e tb (x ,3 ) = t / ( e v e n t - l l ; 

92 end 

93 s e t = * p r i i l t f l ' i n s e r t i n t o Tini6EventHalf%s%s%s%s%s IS ignaCuce , No_Qf_evene, 

T i i n e _ i r i t e r v a l ) v a l u e s (*d, %d, * . 3 f l ' , s x ) 1 1 , 3 x ( 2 i , s s { 3 1 , sx) 4 ! , sx ( 5 | , Tlnietb (x , I I 

, T i m e t b ( x , 2 1 , T i m e t b l x , 3 ) ) ; 

94 t a b l = mysql I s t r l ; 

95 end 

96 fo rma t s h o r t G, T i m e t b ( : , l ) ; 

97 f o m a t s h o r t G, T ime tb ( : , Z ) ; 

96 r i j i ! e t b ( : , 3 1 ; 

99 curTime = NextTime; 

100 and 

D.2 Main Correlation Functions 

Listing D.4: source-code/CompleteAlarmCorrelationTwo.m 

1 foDct io i i d a t a _ i n d f i i i a l = C o m p l e t e R l a n r C o r r e l a t l o n T w o l A . B ) 

2 l i Inpuc arguments and i n i t i a l i z a t i o n dat^ 

3 add - [0 0 0 2 0 0 ] ; 

4 curTime - ft; 

6 dateNuMfi = datenun\(curTlJi iel ,-

6 dateNumB = dateniuniBl ; 

7 mysql ( ' o p e n ' ) ; 

5 mysql ( ' u s e ' , 'aa4:pfl2 ' 1; 

9 tniysgl f a i r e r table acid—event add id i a t f l O t a i i c o _ i n c r e m e n t primary key first'); 

10 mysql ( ' c r e a t e t a b l e S tage lTwo ( Id i n t ( l O ) , C l u s t e r _ N o i n t ( l O l ) ' ) ; 

11 m y s q l C c r e a t e c a b l e Stage2Two (C lu3 te r_Bo i n t l l O ) , A l e r t _ S t a t u s t i n y i n t ( 1 1 ) ' ) ; 

12 m y s q l C c r e a t e t a b l e t lB ieEventRecord!wo ( T i m e _ i n t e r v a l f l o a t , Mo_of_event i n t ( 1 0 l , C l u 3 t e r _ N o 

i n t ( l O l l M . -

lS c o u l i t i E v e r t T i n i e T w o ( A , B , ' a c i d _ e v e n t ' ) ; 

U 

IS tt Harrnalising date and t i m e 

16 

17 wlLi.1* dateNumA < dateNufflB, 

18 m y s q K ' o p e n ' 1; 

19 m y s q l C u s e ' , ' d a r p a 2 ' I ; 

20 curVec •*• d a t e v e c f c u r l i m e ) ; 

21 l e n = l « i i g t l > ( c u r V e c ) ; 

22 f o r c - 1 :1en , 

23 i f c u r V e c ( c ) •: 10, 

24 sHfcl ' a p r l D t e C O l d ' . c u r V e c I c ) ) ; 

25 • ! . • • 

26 s x i d = • p r i n t f ( ' % d ' , c u r V e c ( c l 1; 

27 and 

28 and 
28 a t = s p r t n t e ( ' t b * E % E * s % 3 % s » s ' , s x l l l , s x | 2 l , a x | 3 | , s x H I , s x ( 5 l , s x l 6 1 ) ; 

30 d a t a l e x t l = • p c l n t f ( ' s t g l l w o S s . t x t * , s t ) ; 
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31 f igu reNamel = a p r i n t t C a t g l T w o l s * , s t > ; 

32 d a t a T e x t 2 = a p r i n t f I ' 5 t g Z T H o % s . t x t ' , s t ) ; 

33 f iguieKame2 = s p r i n t f ( ' s t g 2 T H 0 % s ' , s t ) ; 

34 f ina l lnsJe i t = a p r i n t f (' F i n a l T w o l s . t x t ' , s t ) ; 

35 s t a g e l F e B = s p r i n t f { ' s t a g e l R e s T w c i s - t x t ' , s t ) ; 

3G HextVec = c u r v e c t add; 

37 HextTime = d a t e s t r (NextVec, 3 1 ) ; 

38 dateNuinNext = datenuni(NextTii7ie); 

39 i f dateUurtiNeict > dateNumB. 

40 NejttTime - B; 

41 eiul 

42 s t r = s p r i n t £ ( ' s e l e c t c o u n t ( - | from a c l d _ e v e n t where t i m e s t a m p >- " * s " and t i m e s t a m p < " I s 

" ' , curTi ine , Nex tTl ine ) ; 

43 coun t = m y s q l l s t r ) ; 

44 i £ c o u n t ~- 0 , 

45 s t r = ^ r i n t i C s e l e c t min ( id ) a s i d from a c i d _ e v e n t wliere t i m e s t a m p > - " » s " and 

t i i n e s t a n ^ t " % s " , curTin«e, NextTirae) ; 

46 minID = m y s g l l s t r l ; 

47 g e n e t a t e D a t a S t g l ( c u r T i m e , Next l i m e , d a t a T e x t l ) ; 

48 d a t a _ i n d = a l a r n i A g g r e g a t e l w o ( d a c a T e x t l , f I go reName l , s t a g e l R e s , rainID1; 

49 g e n e r a t e D a t a S t g l w o ( d a t a _ i i i d , d a t a T e x t Z , curVec) ; 

50 d a t a _ i n d F i n a l = a l a rn iF i l t e rTwc i l d a t a T e i : t 2 , f igureNarae2, f i n a l l n d e x ) ; 

51 and 

52 curTlme = N e x t l i m e ; 

53 dateNumA = datenuiB(curT±iTie) ; 

54 m y s q l I ' c l o s e ' 1 ; 

55 end 
56 

57 rofcnm; 

Listing D.5: source—code/CompleteAlannCoiTelationOne.in 

1 f u n c t i o n d a t a _ i D d F i n a l = Corap le teAla imCoi r ie la t ionOne (A, B) 

2 SS input arguments and iDltlalizatlon data 

3 add = [0 D 0 1 D 0 1 ; 

4 cu iTime = A; 

5 dateNumfl = d a t e n u m l c u r T i m e l ; 

S dateNumB •= da t enum(B) ; 

7 raysql (' open ' ) ; 

8 m y s q l ( ' u s e ' , ' d a r p a 2 ' ) ; 

9 imysql f alter table aci.d_evet7t add i d tntilO) aato_increinenz primary key first'); 

10 mysql ( ' c r e a t e t a b l e S t a q e l O n e ( i d i n t ( l O ) , C l u s t e r _ N o i n t ( 1 0 ) l ' l ; 

11 mysql ( ' c r e a t e t a b l e S t a g e 2 0 n e {Clus te r_Ko i n t ( 1 0 J , A l e r t _ S t a t u 3 t i n y i n t (1) 1' 1; 

12 mysql ( ' c r e a t e t a b l e t imeEvencRecordOne { T i m e _ i n t e r v a l f l o a t , t Jo_of_event I n t l l O f , C l u a t e r _ N o 

i n t l l O ) ) ' ) ; 

13 c o u n t E v e n t T i m e O n e { A , B , ' a c i d _ e v e n t ' ) ; 

14 

15 i% Normalising date and time 

16 

17 irtiila dateNumA < dateNumB, 

18 rayaql (' open ' I ; 

19 mysql (' u s e ' . ' d a r p a 2 ' | ; 

20 curVec ^ d a t e v e c ( cu rT i ine ) ; 

21 l e n ^ i a r a g t b t c u t V e c } ; 
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22 f o r c - l : L e n , 

23 It c u t V e c f c ) < 10 , 

24 S K i d = • p r l a t f ( ' 0 % d ' • c u r V e c ( c ) I ; 

25 •!>• 
26 s x i D = B p x i n t r i ' % d ' , c i i r V e c ( c l ),-

27 end 

28 and 

29 St = •px in te ( - tb%s%E%s»s%s%s ' , s x | 1 1 , a x 1 2 | , s n I 3 | , s x I 4 I , s x l 5 | , s x l 6 ) ) ; 

30 d a t a T e x t l ^ a p r i n t f ( ' s t g l O n e % s . t x t ' , s t 1; 

31 f igureNamel = a p r i n t f ( ' 3 t g l 0 i i e % 3 ' , a t ) ; 

32 d a t a T e x t Z = a p r i n t f C s t g 2 0 n e % s . t x t ' , a t ) ; 

33 f igureName2 " a p r i n t f ( ' s t g 2 0 n e % s ' , s t ) ; 

34 f i n a l l n d e x = s p r i n t f ( ' F i n a l O n e l s . t x t ' , a t ) ; 

35 s t a g e i R e s - s p r i n t f r s t a g e i R e 5 O n e t 5 . t x t ' , s t ) ; 

36 NextVec - curVec+ a d d ; 

37 ( Jex t r ime = d a t e s t r (NextVec, 3 1 ) ; 

38 dateKumMext - d a t e n u m ( K e x t T i m e l j 

39 i.1 dateKumnext > dateNomB, 

40 NextTime = B; 

41 and 
42 s t r = a p r i n t £ ( ' s e l e c t c o u n t (•) from ac id_ .event where t i m e s t a m p >= " i s " and t i m e s t a m p < " t s 

" ' , cu iT ime , Nex tT ime) ; 

43 count = mysql (sti:) ; 

44 if count '^ 0, 

45 s t r = • p i i J i t t C s e l e c t m i n f i d ) a s i d from a c i d _ e v e n t where t i r ae s t a i cp >- "%s" and 

t imes ta rnp < " % s " ' , c u t T i m e , Neic t r lme) ; 

46 mmlD = rayaqllstr); 

47 g e n e r a t e D a t a S t g l ( c u r l i m e , NextTirae , d a t a T e x t l ) ; 

4S d a t a _ i n d = a l a i m f t g g t e g a t e O n e t d a t a T e x t J . , f i g u r e N a m e l , s t a g e l R e s , m in ID) ; 

4d g e n e r a t e D a t a S t g O n e [ d a t a _ i n d , d a t a T e x t 2 , c u r V e c ) ; 

50 d a t a _ i n d F i i i a l = a l a r m F l I t e r p n e ( d a t a l e i t t 2 , f igureName2, f i n a l l n d e x ) ; 

51 m d 

52 cu rT ime = Bex tTime; 

53 dateNuBiA = datenuin(cur:TiDie); 

54 raysql ( ' c l o s e ' 1; 

55 and 

56 
57 r a t u r n ; 

Ij&tiiig D.6: source-code/CompleteA]armCorr6lationHalf.m 

1 f u n c t i o n d a t a _ i n d F i n a l = C D i r ^ l e t e A l a r m C o r r e l a t i o n H a l f (A, B) 

2 t% i n p u t a r g u m e n t s and initialization data 

3 add - la 0 0 0 30 0 ] ; 

4 curTipie = A; 

5 dateNuma = dacenuni (cu iT in ie ) ; 

6 dateHumB ' d a t e n u m ( B ) ; 

7 mysql (* open' 1 ; 

8 mysql ( ' u s e ' , ' d a r p a 2 ' ) ; 

9 Smysgl f a l t e r table acid_event add id iatflOl a u t o_ i n c rement primary key first'),-

10 m y s q l C c r e a t e t a b l e S t a g e l H a l f ( i d i n t ( l O ) , C l u s t e r _ N o i n t ( l O ) l ' ) ; 

11 mysql ( ' c r e a t e - t a b l e S t a g e 2 H a l f ( C l u s t e r _ B o i n t ( l O ) , A l e r t _ S t a t u s t i n y i n t (11 1') ; 

12 m y a q l ( ' c r e a t e t a b l e t l m e E v e n t R e c o r d H a l f ( T l m e _ i n t e r v a l f l o a t , Mo_of_event i n t l l O ) , C l u s t e r _ K o 

i n t ( l O ) ) ' ) ; 
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13 c o u n e E v e n t T i m e H a l f ( A , B < ' a c i d _ e v e n t ' | ; 
14 

15 %t Normalising d a t e ^nd t i m e 
16 

17 Nhi. le dateNumA < dateNumB, 

18 mysql ( ' o p e n ' ) ; 

19 mysq l ( ' u s e ' , ' d a r p a 2 ' ) ; 

20 curVec = d a t e v e c ( c u r T i m e ) ; 

21 i e n = l « n g t J i l c i i r V e c l ; 

22 f o r c = l : l e n , 

23 i £ c u r V e c I c ) < 10 , 

24 S K I C ) - » p r i n t f ( ' 0 * d ' , c u r V e c ( c ) ) , -

23 a l u 

26 sx-lcl - o p r i n t f ( ' % d ' , c u r V e c ( c ) ) ; 

27 a n d 

28 end 

29 S t - a p r i n t f ( ' tb%3*s%s%s*s%5' , S K U ) , s x { 2 ) , s x ) 3 | , sjitfll , s x l 5 } , s x ( 6 l ) ; 

30 da t aTeKtJ = s p r i n t f C s t g l H a l f % H . t x t ' , s t ! ; 

31 f igureNamel = B p r i n t f (' E t g l H a J f l s ' , s t ) ; 

32 d a t a l e x t Z = s p r i n t f ( ' s t . g 2 H a l f % s . t x t ' , s t ) ; 

33 EigureNajne2 = s p r i n t f r ' s t g Z H a l f * s ' , s t ) ; 

34 f i n a l l n d e x = s p r i n t f I ' f i n a l H a l f %s . c x t ' , s t ) ; 

35 a t a g e l S e s = a p r i n t f l ' s t a g e l R e s H a l f %s. t x t ' , s t ) ,-

36 NextVec = curVec + add; 

37 NextTime - d a t e s t r ( N e x t V e c , 3 1 ) ; 

38 dateNuiDNext = da t enumlNex t r ime) ; 

39 i t daceNumKext s dateNuroB, 

40 Nex t r ime = B; 

41 a n d 

42 : ; - r = B p i i n t C ( ' s e l e c t coun t (-) from aci (J_evei i t where t i m e s t a m p >= ' % s " and t i m e s t a m p < "%s 

• ' , c u r T i m e , Nex tT ime) ; 

43 c o u n t = mysql I s t r ) ; 

44 i f c o u n t "= 0 , 

45 s t r = ^ r i n t f C s e l e c t m i n ( i d ) a s i d from a c i d _ e v e n t where t i m e s t a m p >= " ^ s " and 

t imesta iDp < ' I s " , cu rT ime , NexcTime); 

46 minlO = m y s q l ( s t r l ; 

47 g e n e r a t e D a t a S t g i (i ;urTime, NextTime , d a t a T e x t l ) ; 

48 d a t a _ i n d = a l a r m A g g r e g a t e H a l f I d a t a T e x t l , f i g u r e N a m e l , s t a g e l R e s . n i in lD) ; 

49 g e o e r a t s D a t a S t g H a l f ( d a t a _ i n d , d a t a T e K t 2 , c u r V e c ) ; 

50 d a t a _ i n d F i n a l = a l a m i F i l t e r H a l f ( d a t a T e x t 2 , f i g u r e N a m e 2 , f i n a l l n d e x ) ; 

ol end 

52 curTime = NextTime; 

53 dateHumA = d a t e n u m ( c u r T i r o e ) ; 

54 m y s q l I ' c l o s e ' 1; 

55 end 

56 

57 c a t u z n ; 

D.3 Generating Input Data for Stage 1 Correlation 

Listing D.7: source—code/generateDataStgl.m 
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1 f u n c t i o n [a b c ] » g e n e r a t e D a c a S t g l ( c u r T i m e , NextTime, d a t a T e x t l l 

2 

3 41 Calculating time stamp u s i n g ' d a t e n u m ' 

4 

5 E t c = s p r i n t C I ' s e l e c t t p _ a E c , i p _ d s t , t i m e s t a m p , i d from a c i d _ e v e n t where t inres tarap >="%3" and 

t i m e s t a m p <: * % s " ' , c u r T i m e , N e x t T i m e ) ; 

6 (y , X, z, d l = m y s q l l s t r ) ; 
7 

8 I s n = l e n g t h l y ) ; 

9 a ^ seEoa l i e n , 1 ) ; 

10 b = i « r e i « ( l e n , l ) ; 

11 c = l a r o a l i e n , 1 ) ; 

12 91 >= i s E o X l e n . l l ,-

13 92 = s e r o B f l e n , ! ! ; 

U s t g l d a t a = l a r o a l i e n , 4 ) ; 

15 

16 toxaat icinq, y ; 

IT tozmat, lociq, K; 
18 

19 a ^ a b a l x -t y) ; 

20 t = a b a l x - y ) ; 

21 ( o r V - l : l e n , 

22 v e c = d a t e v e c f z ( V ) ) ; 

23 v e c ( 6 ) ^ 0; 

24 j l v ) - v e c ; 

25 «iHl 

26 

27 f o r I = l : l e n , 

28 c ( i ) - d a t e n i i m ( j l i } l ; 

29 a n d 
30 

31 t o m a t l o n g , c ; 

32 

33 

34 f o r c o l - 1;4, 

35 f o r row = l i l e n , 

36 i f c o l = 1, 

37 s t g l d a c a l r o w , c o l ) - a ( r o w ) ; 

38 v l a a i f c o l ~ 2 , 

39 s c g l d a c a ( r o w , c o l ) - b(EOw); 

40 a l M i f c o l = 3 , 

41 s t g l d a t a ( t o w , c o l ) - c ( r o H ) ; 

42 a m 

43 s t g l d a t a f r o v . c o l ) •^ d l i o w ) ; 

44 M d 

45 WBA 

46 wtd 

47 

48 %% Hi:icing tbe formattsd data to a file 

49 Eld - f ^ w K d a t a T e x t l , ' w t ' ) ; 

50 [ rows c o l a ) ^ a i s t f l s t g l d a t a ) ; 

5 1 f o r k - l ; r o w s , 

62 f p r i i i t « l f i d , ' % f ' , B t g l d a t 3 ( k , « n d - 3 ) 1 ; 

S3 f p r l n t f I f i d , ' % d ' , 5 t g l d a t a l X , * n d - 2 ) j ; 
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54 fprintC(fld,*l.lOf ' , stgldata (k,Bod-l H ; 
55 f p r i n t f { f i d , ' \ " % d \ " \ n ' , s t g l d a t a (k ,«nd) 1; 

56 end 
57 f d o s a U i d ) ; 

38 tdlmwiite ('stgldata.txt', stglJats, 'pzeclslon', 15, ' n e a J i u e ' , 'pc'. 'delimiter', ' '); 

59 

60 r e t u r n ; 

D.4 Generating Input Data for Stage 2 Correlation 

Listing D.8: source—code/generateDataStgTwo.m 

1 f u n c t i o n V = g e r i e r a t e D a t a S t g T u o t d a t a _ i n d , d a t a T e i t t Z , curVec) 

2 SS input a r g u m e n t s a n d inlnializatlon data 

3 num = m y s q l ( ' s e l e c t m a x ( C l u s t e r _ N o | a s C l u s t e t _ M o from 5 t a g e 2 T w o ' ) ; 

4 d = : ; 

5 i f i B n a n ( n u m ) , 

G p t - 0 ; 

7 e l s e 

8 pt = num; 

9 end 

10 

11 ** Extracting data 

12 l e n = * i « « ( d a t a _ i n d , l ) ; 

13 f o r coun t - l : l e n , 

14 n o P o r t = 0; 

15 mat = {[]); p o r t = [] ; s r c = [ ] ; dec = ! ) ; t - [ ] ; r = [] ; y = | 1 ; p r i o = [ ] ; t i m e = [ ) ; 

e v e n t = [ ] ; 

16 i f l B n g t h ( d a t a _ i n d I c o u n t 1) ' = 0 , 

17 p t - p t t 1; 

18 d = d + l ; 
19 n o _ a l e r t s = • i x « ldata_]. j idl c o u n t ) , Z) ; 

20 £ox i " l ; n o _ a l e i t s . 

Zl s t r « a p r i n t f 1 ' s e l e c t s i g n a t u r e , i p ^ p r o t o , l a y e r J _ s p o r t , l a y e r 4 _ d p o i r t , 

3 i g _ p r i o r i t y from a c i d _ e v e n t where id = %d', d a t a _ i n d ( c o u n t l ( 1 | I ; 

22 [mat 1 1 , 1 ) , mat I i , 2 l , m a t ( i , 3 | , m a c | i , 4 1 , m a t ( 1 , 5 | ] = m y e q l ( E t r l ; 

23 a n d 

24 t% Filtering port numbers 

25 f o r h = l : n o _ a l e r t 5 , 

26 1 * i«n«o( raa t Ih, 3) ) l | i s n a n in^at (h , 4 | ) , 

27 p o r t ( h ) = - 1 ; 

28 n o P o r t = ni^Port + 1; 

29 « 1 M 

30 B t r = s p c i J l t f ( ' s e l e c t d i s t i n c t p o r t H o from p o r t where p o r t N o = %d' , m a t ( r i , 3 ) ) ; 

31 a r c = m y s q l ( s t r ) ; 

32 a t r = • p t i n t f [ ' s e l e c t d i s t i n c t p o r t N o frocn p o r t where p o r t N o = %d', m a t ( r i , 4 | ) ; 

33 d s t - m y s q U s t r l ; 

34 i f l M » g t h ( 3 r c j == 0 ii I m n g t h i d s t J "= 0, 

35 p o r t ( h ) = B t r 2 n u M ( c e l l 2 m a t I d s t ) I ; 

36 a l s a i f l a n g t h i s i o '^ a tt, l a n g U K d ^ t ) ^^ • , 

37 p o r t (hi = • t r 2 n u m ( c e l l 2 r n a t ( s r c ) ) ; 

38 a l a e i f l a n g t l K s r c ) ^ 0 £& l a n g t b ( d £ t ) =^ 0, 
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39 p o r t (h) = • i n l m a t ( h , 3 l , n i a t ( h , 4 1 ) ; 

40 • ! • « 
4 1 p o r t (h) = M L n ( s t x 2 n i m ( c e l l 2 i n a t (SEC) l , s t c2[ iv iBlce l l2 ina t <dst J ) ) ; 

42 snd 

43 • n d 

44 end 

45 * l i d e n t i f y no of alerts 

46 s t q 2 d a t a ( d , 1 ) - n o _ a l e r t s ; 

47 

48 t% I d e n t i f y no of signatures 

49 c - 1 ; 

50 c = mat I I . I I ; 

5 1 tox s = 2 : n o _ _ a l e r t s , 

52 Cor ox - l : s - l , 

53 I f (n i a t{ox , I I = m 3 t l 3 , l l ) , 

54 c = c ; 

56 brABk; 

6 8 cold 

57 i t (ox = s - 1 ) , 

6 8 c - c * I j 

59 - = I t , m a t l s , ! ! ] ; 

fiO end 

8 1 end 

BZ e n d 

63 s t g 2 d a t a ( d , 2 ) - c j 

64 ** I d e n t i f y tfie protocol 

66 £ o r k - l : n o _ a l e r t s , 

66 t = [ r , mat I k, 2) J ; 

67 end 

68 i f t i n d U < 2 5 5 ) , 

69 i.e f i ndCr >- 2 5 5 ) , 

70 3 C g 2 d a t a ( d , 3 ) » 2 ; 

71 a l s B 

78 5 C g 2 d a t a ( d , 3 l = 1; 

73 end 

74 e l s e 

75 s t g 2 d a t a [ d , 3) = 3 ; 

76 *nd 
77 it Identify port number 

78 i f noPorC • « n o _ 3 l e r t s . 

79 s t g 2 d a c a ( d , 4 ) = - I j 

80 a l a a l f f i n d ( p o r t < 1024 s p o r t > - 0 ) , 

8 1 i f f l o d f p o r t > - 1 0 2 4 ) , 

82 s t g 2 d a c a ( d , 4 ) - 2 ; 

83 • ! • • 

84 s t g 2 d a t i i ( d , 4 ) » 1,-

86 M d 

86 • ! • « 
87 3 C g 2 d a t 3 ( d , 4 ) ^ 3 : 

88 M d 

89 ** Identity priority 

90 f o r p = l : n o _ a l e r t s , 

9 1 i f m a t l p . S I = I , 

92 p r i o = I p t i o , 3 0 0 1 ; 
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e l s e i e mat |p ,5) "^ 1, 
pr io = Ipirioi 200); 

e l s e 
p r i o = [prioi 100]; 

end 
maiA 

£tg2data Id.S) ^ saB(pr io l ; 
*t Calculate time interval and no of events 
for c t - 1:4, 

i * curVeclcl l < 10, 
sxlcth = api : io t«( '0%d' ,curVec(ct I ) f 

e l s e 
ax(ctf = apxintf ( ' *d ' , cn rVec (c t | 1 ; 

• ad 
n d 
fox p " 1 : s t g 2 d a t a ( d , 2 ) , 

E t t = • p r i n t f ( ' s e l e c t No_of_event, Tinie_interval £toni IijneEventTwa*5%s%E%a where 
Signature = *d ' , sx( 1) , Bxl 2 | , sx i 3 l , sxM I, t ( I , p) ) ; 

[ev, t i ] = inysql ( s t r ) ; 
i f is«q>ty<ev>, 

HextcurVec = curVec + [ 0 0 0 2 0 0 ] ; 
for c t - 1:4, 

i f cutVeclct) < 10, 
s n T t l » sprt i r t«<'0%d' ,curVec(ct) ) ; 

e l s e 
snfccl = sprintf ( '^d ' ,curVec{ct l ) ; 

s t r = •pr intf ( ' s e l e c t No_o£_event, Time__interval from TinieEventTwols*s%s*s 
where Signature = %d', s n ( l | , sn (2) , sn) 3 | , sn( 4 ) , t ( l , p ) ) , -

lev, t i l = Diysqi i s t t l ; 
•od 
event (p) - ev; 
t imelp) = t i ; 

end 
fonnot long G, event; 
Btq2data(d,€) = • • x l c i m e l ; 
s t g 2 d a t a ( d , 7 | " mii i l«ventl ; 
s t g2da ta (d , 8) = p t ; 
s t r = • p r i n t f C i n s e r t i n t o timeEventRecordTHD|Tlnie_interval, No_of_event, C l u s t e r ^ o ) 

values (%.3f. Id, %dl' , s tg2data (d, 6) , E tg2data(d ,71 , s tg2da ta (d, 8 ) ) ; 
mysql ( s t r ) ; 

alsa 

d = d; 
end 

:3e end 
:37 
38 tl Writing the formatted data to a file 
39 
40 f id - £e^ien(dataText2, ' w t ' ) ; 
41 ir^ws cois l - Bi««{stq2data) ; 
42 for z - l : rcws , 
43 i f s t g 2 d a t a U , 4 ) — - 1 , 
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144 E p r t n t f (f i d , ' %S.2f \ t ' , s t g Z d a t a {z, 1 ;«IKl-S) ) ,-

145 f p r i n t f ( f i d , ' * 6 . 2 f ' X t ' , s C g i d a t a i z , 3 ) l ; 

146 f p r i n t t t f i d , ' « 6 . 2 f \ t ' , s t g Z d a t a ( z , 5 : « o d - l ) 1 ; 

147 £ p r l n t f 1-fid, ' \ ' •%d\ ' ' \ n ' , s t g 2 d a t a ( z , « l d ) I ; 

148 e l s e 

149 f p r i n t f ( f i d , ' %6.2f \ t ' , 3 t g 2 d a t a [z , 1 : e i i d - l ) ) ; 

150 e p r i n t f l f i d , • \ " % d \ " \ n ' , s t g 2 d a t a ( z , « n d l ) ; 

151 . n d 

152 aaa 

153 

154 r a t u m ; 

Listing D,9: source-code/geaerateDataStgOne.m 

1 f u n c t i o n V = g e n e t a t e D a t a S t g o n e ( d a t a _ l n d , d a t a T e x t 2 , cu tVec l 

2 8S input a r g u m e n t s d/ld i n i c i a - I i z a t l o n d a t a 

3 nuro = m y s q l C s e l e c t max(Clus t e r_Nol a s C l a s t e t _ N c from S t a g e 2 0 n e ' l ; 

4 d = 0; 

5 I f i s o a a (lium) . 

6 pti = 0 ; 

7 alaa 

8 p t = num; 

9 Old 

10 

l i I t E x t r a c t i n g d a t a 

12 l e u = • l « « { d a t a _ i n d , 1 ) ; 

13 tox coun t " l : l e n , 

14 nopoc t = 0; 

15 mat - (111; port = []; src = []; dst - [); t - 11; r - H; y - [J; prio ^11; time = [1; 

event = [J; 

16 i « l « n g t l i ( d a t a _ i n d l c o u n t I) "= 0, 

17 p t = p t + 1; 

18 d. - d * l ; 

19 n o _ a l e r t 3 = • i « « ( d a t a _ _ i n d l c a u t i t | , 2 ) ; 

20 t o r i = l : n o _ a l e r t s , 

21 s t r = s p c i n t f C s e l e c t s i g n a t u r e , i p _ p r o t o , l a y e r 4 _ s p o r t , l a y e c 4 _ t l p o r t , 

s i g _ p r i a c i t y from a c i d _ e v e n t where i d = %d' , d a t a _ i n d ( c o u n t n i ) ) ; 

22 [mat 1 1 , 1 1 , mat l i , 2 l , inat <i , 3 ) , mat ( i , 4 | , mac | i , 51] - mysql ( s t r ) ; 

24 I I F i l t e r i n g p o r t numbers 

K f o r h ^ l : D O _ a l e r t 5 , 

2B if isnanlmat |h, 31) 11 Isnanlmat Ih, 4) 1. 

27 port(h) - -1; 

28 n o P o r t - n o F o r t + 1; 

29 • ! • • 

30 s t r = ^ r i n U C s e l e c t d i s t i n c t por tNo from p o r t where po r tHo " %d', m a t l h , 3 ) ) ; 

31 a r c — i n y s q l ( 5 t r ) ; 

32 s t r = a p r l n t f ( ' s e l e c t d i s t i n c t por tNo from p o r t where portWo = id', m a t ( h , 4 | | ; 

33 d s t -̂  mysql ( s t r ) ,-

34 I f l * c g t h ( s i c ) — D i& I m g t h l d s t ) ' = 0 , 

35 p o r t ( h ) - s t x 2 n n B ( c e l l 2 i n a t ( d s t l ) ; 

36 • l a « i £ l « i > g t h ( s r c ) ' ^ 0 £s l « i g t h < d s t ) ^ 0, 

37 p o r t ( h ) ^ BeE2ni iB(cel l2mat ( s r c l ) ; 

3 8 v l s a i e l « n g t l i < s r c ) — 0 t £ i M o g t h l d s t ) '= 0 , 

173 



Appendix D. MATLAB Source Code 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

I 85 

8G 

I 87 

I 88 
89 

90 

91 

92 

p; r t fh ) = min [mat (h, 3 | .mat (h, 4)) ; 
a lB« 

por t (h) = niii{Btr2nuB(cell2mdt (stc) I , s t r2nm(ce l l2 ina t (dsE) 11 ; 
Via 

and 
end 
*i Identify no of alerts 
5tq2data{d,J) " no_aler tE; 

if Identify no of signatures 
c " 1; 
t - mat (1 ,1 ) ; 
tor s = 2:nO_alBrtH, 

for ox « 1 :3- l . 
It (matlDx, II = ma t{ s , l l ) , 

c — c; 
broak; 

it (ox ^ s - 1 ) , 
c - c + I ; 
t = [ t , mat Is , 11 ] ; 

end 
end 

end 
s tg2data(d,21 = c; 

I I Identify tJie p ro toco l 
for It = l : n o _ 3 l e r t 3 , 

t = ! r . n!at |k ,2 | ] , -
end 
i f f ind( r < 255), 

i f f i nd ( r >= 255), 
3igZdata((l, 3) = 2; 

al9e 
s::g^data(d, 3) = 1; 

end 
• l a s 

sog2ddta(d,3) - 3; 
•nd 

%% Identify pore number 
i f noPort = iio_alertE, 

3 tg2daca(d,4 | 1; 
• I s s i f f i o d l p o r t < 1024 & po r t >= 0 ) , 

i f f ind ipor t >= 1024), 
£Cg2data(d, i) = 2; 

s tg2data(d ,4) = i ; 
end 

e l s e 
s tg2data(d , 4) = 3; 

•nd 

%% Identify priority 
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M f o r p - l : n o _ a l e r t s , 

94 i f i n a t l p , 5 l = 1 , 

95 p t i o = [ p r i o , 3 0 0 ] ; 

96 e l s a l £ m a t { p , 5 ) ^ ^ 2 , 

97 p r i o = I p t i o , 2 0 0 ] ; 

98 a l B * 

99 p r i ' 3 = [ p r i o , 1 0 0 ] ; 

100 BDd 

101 and 

102 £ t g 2 d a t a ( d , 5 ) = s u a F p r i o ) ; 

103 

104 ti Calculaze cime i n t e r v a l ajid no of events 

106 fox c t - l : i . 

106 i f c u r V e c i c t ) < 10, 

107 s x i c t i = s p r i n t f ! ' 0 % d ' , c u t V e c ( c t ) ) ; 

108 e l s e 

109 s x ( c t | = s p r i n t f l ' % d ' , c u r V e c l c t ) l ; 

110 and 

111 and 

112 f o r p ^ l : s t g 2 d a t a ( d , 2 l , 

113 sCc = B p r l n t f ( ' s e l e c t NQ_of_6vent, Tinie_ i n t e r v a l from TiroeEventOiie*s%s%s%s where 

S i g n a t u r e = * d ' , s x i 1 1 , s x ( 2 ) , s x | 3 1 , S H ( 4 ) , t ( 1 . P > ) ; 

114 rev , t i ] ^ m y s q U s t t ) ; 

115 I f l a i i^ i l i i I 1 

116 NextcurVec = curVec + 10 0 0 1 Q 0 ] ; 

117 f o r c t - 1:A, 

118 I f c u c v e c i c E i < 1(1, 

119 3 r { c t ) = B p r i n t f l ' 0 * d ' , c u r V e c ( c t ) ) i 

120 • ! • > 

121 s n ( c t | = B p r i n t f ( ' * d ' , c u E V e c ( c t H ; 

122 a n d 

123 and 

121 s t r = B p r i o t f ( ' s e l e c t (Jo_of_event , T l m e _ i n t . e r v a l frwn TimeEventOne%s%s%s%s 

where S i g n a t u r e - t d ' , sn l 1 1 , snf 2 ) . sn ( 3 J, sn H ( , t l l . p ) ) ; 

135 Eev, t i j = m y s q l ( s t r ) ; 

126 a n d 

127 e v e n t (p) - e v ; 

128 t i m e ( p ) = t i ; 

139 a n d 

130 f o r a a t long G, e v e n t ; 

131 s t g 2 d a t a ( d , 6 ) ' ^ • a x ( t i m e ) ; 

132 s t g 2 d a t a ( d , f ) ^ » i n ( e v e n t l ; 

133 s t 9 2 d a t a l d ; , 8 ) - p t ; 

134 a t r " > p r i i i t f ( ' I n s e r t i n t o timeEventfiecoirdOne ( T i m e _ i n t e r v a l , No_of_even t , C lus te r_I fo) 

v a l u e s ( * . 3 i , *d , * d ) ' , s t g 2 d a t a ( d , 6 ) , s t g 2 d a t a [ d , 7 ) , s c g 2 d a c a ( d , B ) ) ; 

136 m y s q K s t c ) ; 

136 

137 a l M 

138 d - d; 

139 and 

140 e n d 

141 

142 t f Writing the foraiacted data t o a file 

143 
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144 f i d = f tq>ui<d3taTe}(t2, ' w t ' ) ; 

145 (rows c o l s ] = « i r B ( s t q 2 d a t a j ; 

146 f o r z - l i r o H s , 

147 i f s t g 2 d a c a { : , 4 ) " - 1 , 

148 ^ c t n t f ( f i d , ' * 6 . 2 f \ t ' , s t g 2 d a t a l z , l:*iicJ-6) ) 

149 f p r i n t f I f i d , ' t 6 . 2 £ • \ t ' , 3 t g 2 d a t a (z , 3) ) ; 

150 f p r i n t f ( f i d , ' * 6 . 2 f \ - t ' , s t g 2 d a t a (z , 5 : « n d - l ) ) 

151 f p E i n t f ( f i d , ' \ " % d \ " Vn ' , s t g 2 d a t a U , « n d ) 1; 

152 a l s e 

153 fprintClfid,'%6.2E\t' , stg2data (z, 1 :«ndt-l)), 

154 fprintf (fid,'\"%dS"\n', Btg2dat3 (z.«Kl) I; 

155 end 

156 and 

157 

15S ratoxn; 

Listing D.IO; source-code/generateDataStgHalf.m 

1 f u n c t i o n v = g e n e r a t e D a t a S t g f l a l f ( c l a t a_ ind , d a t a T e x t 2 , curVecl 

2 %t i n p u t arguments ^ n d i n i t i a i i z a t i o n data 

3 niun = mysql ( ' s e l e c t max <Clus te r_Nc) a s C l u s t e r _ N o from S t a g e 2 H a l £ ' ) ; 

4 d = 0; 

5 i f ianAn{numj, 

6 ?t = 0; 
7 e l s « 

8 p t - num; 

9 s n d 

10 

11 i t Eatracting data 

12 l e n " • i « « ( d a t a „ l n d , l ) , -

13 f o r coun t = 1 : l e n , 

14 noPoc t - 0 ; 

15 mat = r i l l ! p o r t = [ ] ; s r c = i] ; d s t = [): t = | ) , - t = I] ,- y = 11 ; p r l o = [ ] ; t i m e - [ I ; 

e v e n t - [ ] ; 

16 if length(data_ird|count() "= Q, 

17 pt = pt •• 1; 

18 d ' dtl; 

19 n o _ a l e i r t s = • ! « • ( d a t a _ i n d ( c o u n t ] , 2) f 

20 £ o r i = 1 : no__a 1 R r t s , 

21 st jr = s p r i n t f r s e l e c t s i g n a t u r e , i p _ p r o t o , l a y e r 4 _ _ s p o r t , l a y e r 4 _ d p o r t , 

s l g _ p t : i o r i t y from ac id_evenL where i d = * d ' , d a t a _ i n d | c o u n t | ( i ) ) ; 

22 [ m a t l i . H , m a t ( i , 2 ( , roatli,3l, m a t l i , 4 i , m a t t ± , 5 l l = m y s q U s t r l ; 

23 ond 

24 fS FjJ . te-r ing p o r t numbers 

25 tOE h " l : n o _ a l 6 n . s , 

26 i f i s n o n d n a t | h , 3 n | | l « n « n (mat I h, 4) I , 

27 p a r t t h ) = - 1 ; 

28 n o P o r t = n o P o r t ^ 1; 

29 a l a a 

30 s t r = B p r i n t f ( ' s e l e c t d i s t i n c t p c r t N o from p o r t where po r tNo = I d " , m a t l h , 3 H ; 

31 s t c = mysq l I s t r l ; 

32 s t r ^ a p i i n t t C s e l e c t d i s t i n c t po r tNo from p o r t where por tNo = * d ' , m a t l h , 4 | l ; 

33 d s t = m y s q l ( s t r l ; 

34 i f l e n g t h ( s r c ) =« 0 SS l « n g t h ( d s t ) '= 0 , 
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35 p o r t l h l - • t r 2 m B » ( c e l l 2 m a t i d s t H ; 

36 a l a v i e i K n g t b l s i : : ! ~^ 0 St l « t g t l i | d s t ) - " 0 , 

37 p o r t (hi = a t c2 i«B»{ce l l2mat ( s r O ) ; 

3 8 a l s s i f i o n g t h l s c c ) — 0 s& l a n y t h f d s t ) = 0, 

39 pi:>i:t(h) = B l n l m a t (b , 3) .mat <h,4 I ) ; 

40 c l s a 

4 1 p o r t ( h ) = • i n ( r t r 2 m m l c e l _ 1 2 m a t ( s r c ) t , * t c 2 n u » l c e l l 2 n i a t ( d s t ) ) ) , 

42 «iKl 

43 end 

44 «nd 

48 IS Identify no of alerts 

46 S t g 2 d a t a ( d , I I = n c _ a l e r t s ; 

47 

48 fS Z<Sent±fy no of s i g n a t u r e s 

49 c - 1 ; 

50 t = mat"! 1 , 1 1 ; 

5 1 t o r s — 2 ; n o _ a l e r t s , 

52 f o r ox = l : s - l , 

53 i.e ( m a t ( o x , l | = n i a t ) s > l l l , 

54 c = c ; 

55 b r e a k ,-

56 and 

57 I t lex = s - l ) , 

58 c = c i- 1; 

OS r - 11, m a t | s , 1 1 J ; 

60 end 

61 and 

62 end 

63 s t g 2 d a t a ( d , 2 l ^ c ; 

64 

(B t t r d e n t i f y the prorocol 

66 t o r >i - l : c o _ a l e r t s , 

67 r - [ r , m a t ( k , 2 l ] ; 

6S end 

69 Lt f l n d l r < 2 5 5 ) , 

70 i f f i o d l r >= 2 5 5 ) , 

71 a t g 2 d a t a ( d , 3» - 2 ; 

72 e l s e 

73 s t g 2 d a t a ( d , 3 ) - 1; 

74 and 

7G B l s a 

76 s t g Z d a t a l d . S ) - 3 ; 

77 a n d 

78 

79 I* Zdent-i-fy p o r t number 

80 i.t n o P o r t — n o _ a I e r t s , 

8 1 s t g 2 d a t a ( d , 4 ) = - I ; 

82 « l s * l f f l n d { p o r t < 1024 E p o r t >= 0 ) , 

8 3 i f f i n d l p o i t >= 1 0 2 4 ) , 

84 3tg2d3ta{Ci , 41 = 2 ; 

85 a l M 

86 s t g 2 d a t a ( d , 4 ) = 1; 

87 and 

88 e l s e 
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s tg2da ta (d , 4) = 3,-

%i Identify priority 
tox p = 1 :no_alei- ts , 

it matip,&| = 1, 
pc io = Ip r io , 300]; 

alaai .£ mat)p,5) == 2, 
p r i o = [pr io , 200J; 

e l S B 

p r i o = t p r io , 100}; 
cnd 

•nd 
stg2clata (d, 5) = •SBUlptio); 

I * Calculate time i n t e r v a l and no of events 
for ct - 1:5, 

i f curVec(ctl < 10, 
s x i c t ) = «pr in t f ( '0%d' ,c i i rVec(c t l ) ; 

e l s e 
i ixict] = Bprintf ('%ci'-curVec ( c t ) ) ; 

ond 
for p = 1 zstg^data (d ,21, 

Etr = a p r i n t f I ' s e l e c t No_of_event. Tiine_intetval from TimeEventHaif%s%s*s%s%s 
where Signature = *d ' , sxl I I , sxl 2 ), sx I 3 | , sx | 4 ), sx IS i , c ( l ,pM ; 

[ev, t i ) = inysql{s t r ) ; 
i f i s e a p t y l e v ) , 

NextcurVec = curVec + [0 0 0 0 30 0] ; 
f o r c t = 1:5, 

it curVeclct) < 10, 
s n i c t i = Bpr in t f ( '0%d' ,curVec(ct) >,-

« l n 
snfc t l = • p r i n t f ( ' *d ' , curUec (ct J ) ; 

end 
end 
s t r = Bprinfcfl' s e l e c t KO_of_event, Time_interval from TlnieEventHalf *s%3%s%s*s 

where Signature » %d', sn 111, sn (2 | , sr.(3 | , snl 4 I, snl 5 }, t ( l , p ) l ; 
lev, t i ] = DiysqKstr l ; 

•nd 
event(p) - ev; 
t ime (pi = t i ; 

end 

format long G, event ; 
s t g2da t a (d , e i ^ B B X t i i n e ) ; 
s tg2data(d ,71 = »ii i(eventl ; 
s tq2data(d,8> = p t ; 
Etr = spc in t f ( ' i n s e r t i n t o titneEventBecordHalf (Tline_interval, Ho_of_event, Cluster_No 

) values (%.3f, %d, %dl' , s tg2data (d, 6) , s tg2data (d, T), 5lg2data (d, S] (; 
m y s q l ( s t r ) ; 

d = d; 

and 
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140 and 

141 

142 it Writing the f o r m a t t e d dats t o s fiJs 

143 

144 f i d ^ <^Bn<da;LaTexc2, ' u t ' ) ; 

145 [rows c o l s ] ^ • i x « ( 5 t g 2 c l a t ^ ) ; 

146 toe z = l : c o w s . 

e l s e 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 s n d 

157 
158 r o t u c n ; 

i £ s t q 2 d a t a ( z , 4 1 - = - 1 , 

f p c i n t f ( f i d , ' * 6 . 2 f \ t ' , 3 E g 2 d a c a ( z , l : « * d - 6 ) 1 ; 

f p r i n t f ( f l d , ' % 6 . 2 f ' \ t ' , s t g 2 d a t a (z , 31) ; 

f p r i n t « ( f i d , ' % 6 . 2 f \ t ' , s t g 2 d a t a {z, 5 :Mid - l ) ) ; 

f p r i n t f ( f i d , • \ " % d \ " \ n ' , s t g 2 d a t a (z , Bud) ) ; 

f p c i n t f ( f i d , ' 1 6 . 2 f \ t ' , s t g 2 d a t a ( z , l : « n d - l l 1 ; 

f p r i n t f I f i d , ' \ " % d \ " \ n ' , s t q 2 d a t a ( z , « i d ) 1 ; 

e n d 

D.5 Alarm Aggregation Process 

Listing D. l l : soiirce-code/alarniAggregateTwo.m 

1 f u n c t i o n d a t a _ i n d ^ a l a i r a a g g r e g a t e T w o ( d a t a T e x t l , f i g u r e N a m e l , s t a g e l R e s , mmlD) 

2 it i n p u t a r g u m e n t s and i n i t i a i i z a t i o n d a t a 

3 
4 %* ItoiTna-Lising data 

5 

6 sA = B o i i i _ r e a d _ d 3 t a ( d a t a T e x t l ) ; 

7 sa. = s o i n _ n o n n a l i z e ( s A , ' v a r ' 1 J 

8 s A . d a t a ( ; , l l = 1 .3 ' s A . d a t a ( : , 1) ; 

9 s A . ( l a t a ( : , 2 ) - 1.8 • s A . d a t a ( : , 2 ) , -

U) y - n i u n i t s _ b e s t (sA) i 

11 sB — sDni_nialce ( s A , ' m u n l t s ' , y) ; 

12 m y s q l C c l o s e ' ) ; 

13 d a t a _ i n d = k [ n e a n s _ b e 3 t s t g l (sB, sA, f i q u r e K a m e l , m i n l D ) ; 

14 mysql (' open ' I ; 

15 mysql ( ' u s e ' , ' d a r p a 2 ' ) ; 

18 d a t a _ i n d l c e l l f u n ( e i s e m p t y , d a t a _ i n d n - U ; 

17 

18 I f tfiriCe the cacput into the database 

19 

2D H o _ a l e r t s = l * n g t l i ( s A . d a t a l ; 

21 B o _ c l u s t e i s - l u i g t h ( d a t a _ i n d ) ; 

22 r e s u l t - c e l l ( 2 , l ) ; 

23 num = m y s q l ( ' s e l e c t max[Clus t e r_Nol a s Ciu3Cer_No from S t a g e l T w o ' ) ; 

24 i f i B n a n m u m ) , 

25 h - 0; 

26 e l M 

27 h = nnoi; 

28 a n d 
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29 f o r i " l ; N o _ a l e r t s , 

30 f o r j = l : K o _ c l u 3 t e r s , 

33 c l u s t = h + j ; 

32 l e n - l « n g t h ( d a t a _ i n d n H f 

33 f o r X - i:ien, 

34 i t minlD — d a t a _ l n d ( j l ( x | , 

35 r e s i i l t U I = [ t e s u l t l l i , m i n l D ] ; 

36 r e s u l t ( 2 | ' [ r e B u l t { 2 ) , c l u s t 1 ; 

37 br«Bk; 

38 end 

39 end 

40 i f l e n g t h t r e s u l t 11)) ' = 0 iS r e s u l t | 1 1 (•nd) ^ 1 , 

41 b r e a k ; 

42 a o d 

43 «Dd 

44 minlD = minlD + 1; 

45 a n d 

46 f o r c = l : N o _ a l e r t s , 

47 s t r = » p r i n t f 1 ' I n s e r t i n t o S t a g e l T w o ( I d , C lu3 te r_Nol v a l u e s ( % d , % d ) ' , r e s u l t l l K c l , r e s u l t 

U l ( c ) l ; 

48 m y s q l ( s t r ) ; 

49 e n d 

oO Si W r i t i n g d a t a i ndex i n t o a f i l e 

51 f i d " f o p e n ( s t a g e l R e s , ' w t M ; 

52 P : = l B n g t h ( d a t a _ i n d l J 

53 f o r z - l : p j -

54 l en = l * n g t b l < i a t a _ i n d ) z l l ; 

55 i f l en == • , 

56 f p r i n t f ( f i d , ' H A \ n ' I ; 

57 e l s e 

38 f p E l o t f { f i d , ' * d ' , d a t a _ i n i i f z l ( l : l e n - l n ; 

59 C p r i n t f ( f i d , ' % d \ n ' , c l a t a_ i i id )z 1 ( l e n ) > ; 

60 and 

61 end 

62 

63 r a t u r n ; 

Listing D.12: source-code/alarmAggregateOne.m 

1 f u n c t i o n d a t a _ i n d = a l a c m A g g x e g a t e O n e { d a t a T e x t l , f i g u r e K a m e l , s t a g e l R e s , minlD) 

2 %t input arguments and i n i t i a l i z a c i o n d a t a 

3 

4 ! i W o r m a l i s i n g da td 

5 

6 sA = EOTn_tead_data ( d a t a T e x t l ) ! 

7 sA = som__iiormalize [ s A , ' v a r ' 1 ; 

8 s A . d a t a C D = 1.8 * s A . d a t a ( : , 1 ) ; 

9 s A . d a C a l : , 2 1 ^ 1.8 • s A . d a t a ( : , 2 ) ; 

10 y = m u n i t s _ b e s t (sAl ; 

11 sB = soin_inake ( E A , ' m u n i t s ' , y I ; 

12 mysql ( ' c l o s e ' I ; 

13 dflta_ini3 = kn ieans_J jes t s tg l (sB, sA, f i gu t eKarae l , minlD) ; 

14 mysql (' o p e n ' ) ; 

15 mysql ( ' u s e ' , ' d a r p a Z ' ) ; 
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16 c f a t a _ i n d ( c e l l f u n i e i s e m p t y , d a t a _ i n d ) 1 = [ ] ; 

17 

18 %% Urite the output into the database 

19 

20 N o _ a l e r t s = l«ngth(£. '> . • i " ^ ' ; 

21 N o _ c l u s t e r 3 = l e n g t h ; ; ) ; 

22 r e s u l t = c e l l ( 2 , L ) ; 

23 num = m y s q l ( ' s e l e c t max(Clus te r_No) a s C l u s t e r ^ N o from S t a g e l O n e ' ) ; 

24 i f i snsD(i :u in) , 

25 h = 0; 

26 • ! > • 

2 7 h * nijm; 

2S end 

29 f o r I = l : N o _ a l e r t s , 

30 f o r j = l : N o _ c l u s t e r a , 

31 c l u s t ^ h + j ; 

32 l e n = l e n g t h ( d a t a _ i i ! d n ) 1; 
33 f o r X - l : l e n , 

34 i t mlnlD = d a t a „ i i i d | j H n l , 
35 r e s u l t l K ' [ r e s u l t d l , mlnlD] ; 

36 r e s u l t U i = [ c e s u l t U I . c l u s t ] ; 

37 faz«ak; 

38 and 

39 a n d 

40 i f l a n g t h ( r e s u l t ( l | ) ' = 0 it r e s u l t 111{andl -^ i , 

41 b r a a k ; 

42 end 

43 Snd 

44 minID — mlnlD + 1 ; 

45 end 

46 f o r c - 1 : H Q _ a l e r t s , 

47 s t r = a p r i n t f C i n s e r t i n t o S t a g e l O n e {id, Cluste i :_No) v a l u e s (*d, » d l ' , r e s u l t | l M c J , r e s u l t 

1 2 1 ( c l l ; 

48 m y s q l ( s t r ) ; 

49 and 

50 SS Kriclng data index into a file 

51 f i d -̂  f o p a n l s t a g e l R e s , ' u t ' ) ; 

52 P i = l an9 t . f a i da t a_ lnd ) ,-

53 toi z - l:pz, 

64 l e n = l«<l f l t lKdat3_ind( r M ; 

55 i f l e n = 0, 

56 f p r i n t f f f i d , *HA\n' 1; 

57 fllse 

58 f p r i n t f t E i d , ' * d ' , d a t a _ i n ( J U I ( 1 : l e n - 1 ) ) ; 

59 f p x i n t f l f l d , ' % d \ n ' , d a t a _ i n d l z | ( l e n ) ) ; 

60 and 

61 and 

62 

63 c a t u m ,-

Listing D.13: soiirce-code/alarTiiAggregateHalf.m 

1 f n n c t i o n d a t a _ i n d = a l a r m f l g g r e g a t e H a l f ( d a t a T e x t l , E lgureNamel , s t a g e l R e s , n l n l D ) 

2 SS input argiments and i n i t i a i i z a t i o n d a t a 

181 



Appt-ndix D. MATLAB Source Code 

4 tS N o r m a l i s i n g d a t a 

5 

6 BA = s o n u r e a d _ d a t a ( d a t a l e x t l ) ; 

7 sA = som_noi ina l ize ISA, ' v a r ' ) ; 

8 s A . d a t a ! : , 1 1 = 1.8 • s f i -da ta (: , 1) ; 

9 s A . d a t a ( : , 2 1 = l . e - s A . d a t a ( : , 2 ) ; 

10 y ^ n iuniEa_bes t {sSl f 

11 SB = s o m _ n i a k e { s A , ' i m i n i t s ' , y | ; 

12 m y s q K ' c l o s e * ) ; 
13 d a c a _ i n d = l u n e a n s _ b e s t s t g l ( s B , sA, f i g u r e N a m e l , m m l D ) ; 

14 m y s q l ( ' o p e n ' ) ; 

15 mysql ( ' u s e ' , ' d a i p a S ' ) ; 

16 d a t a _ i n d ( c e l l f i m ( e i 3 e i n p t y , d a t a _ i n d ) ) = [1 ; 

17 

18 t% W r i t e the o u t p u t i n t o the database 

19 

20 Ho_alert iB = I s n g t h l s A . d a t a } ; 

21 N o _ c i u s t e r E = l « n g t h ( d a c a _ i n d l ; 

22 r e s u l t = c e l H 2 . 1 J t 

23 num = roysql ( ' s e l e c t max IClusiier_Ho) a s C lus teE_Ns frniii S t a g e l H a l f ) ; 

24 I f i B n a n l n u m ) , 

2.T h = 0 ; 

26 e l s e 

27 h = num; 

25 end 

29 f o r i = l : N o _ a l e r t s , 

30 f o r j - l : N o _ c l u 3 t e r a , 

31 c l u s t ^ h + j ; 

32 l e n = l « n g t h ( d a t a _ i n d ) j ) ) ; 

33 f o r X = l i l e n , 

34 t * mlnlD == d a t a _ i n d i j } ( x ) , 

35 t e s u l t d ) - [ r e E u l t { l ) , m l n l D ] ; 

36 r e s u l t { 2 ) = [ j r e s u l t ( 2 l , c l u s c ] ; 

37 b r e a k ; 

38 end 

39 e n d 

40 I f iBDgth ( r e s u l t ( i n " - 0 ki r e s u l t {11 (and> = 1, 

41 b i a a k ; 

42 end 

43 end 

44 minID = minID • 1; 

45 end 

46 for c — l:No_alerts, 

47 s t t = • p r i n t f C i n s e r t in to- S t a g e l H a l f ( i d , C lus t e r_No) v a l u e s (%d, % d ) ' , r e s u l t ( l M c ) , r e s u l t 

12] ( O ) ; 

48 m y s q l ( s t r ) ; 

49 e n d 

50 S» W r i t i n g d a t a index i n t o a file 

51 f i d = f e i > « n ( s t a g e l R e 5 , ' w t ' l ; 

52 v'y ^ l e i i g t h ( d a t a _ i n d } ; 

• 53 f o r 2 = 1:p 1 • 
I 64 l e n = l « n g t h i d a t a _ i i i d l z ) ) ; 

I 55 i f len = 0, 
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« l s e 
56 
57 
58 
59 
60 «nd 
61 «cid 

62 

63 r a t n c n : 

f p r i n t f l f i d , ' N A \ n ' ) ; 

£ p r i . n t £ ( f i ( i , ' % d ' , d a t a _ i n d | i M l : l e n - 1 ) I j 

f p r i n t f ( f i d , ' % d \ D ' , d a t a _ l n d U ) ( l e n l t ; 

D.6 Alarm Filtering Process 

Listing D. 14: source-code/alarmFilterTwo.m 

i f u n c t i o n d a t a ^ i n d F i n a i - a l a r m F i l t e c T w o ( d a t a r e x t 2 , f i g u t e N a m e ? , f i n a i l n d e x ) 

2 * i mpuc a r g u m e n t s and i n i t i a l i z a t i o n data 

3 
4 J l Normalising data 

5 

6 sA = so in_read_da ta ( d a t a T e x t 2 , ' • ' ! ; 

7 l e n = B i z B l s A . d a t a , I I ; 

8 i f l a n g t h l i s n a i K s A . d a t a ( : , 4 ) ) ) '^ Len, 

9 s A , d 3 t a ( : , 1 | = - 1 ; 

10 UKl 

11 sA = 3on!_noniial ize ( s A , ' v a c ' 1 ; 

12 s A . d a c a d . T l = 2 . 8 • s A . d a t a C . l ) ; 

13 5 A . d a c a ( : , e i ^ 2 . 5 * s A . d a t a ( : , 6) ; 

14 y = inuniCH_beBt(sA| ,-

15 sB — sanumake ( s A , ' m u n i t s ' , y ) ; 

16 tsB = 30iti_fflafcefsfl, 'msize', f25 10]>; 

17 num " m y s q l C s e l e c c max(Clu3ter_ lJo l aa Clu3teE_No from S t a g e 2 T « o ' I ; 

18 [ d a t a _ i i i d r i i i a l , r e c _ p 0 3 t l " kmean3_bestnew(nuin, s a , sA, f igureNameZ) ; 

19 

20 14 K r i t e output into the d a t a b a s e 

21 a l = d a t a _ t n d F i n a l | l | ( 1 ) ; 

22 a2 = d a t a _ i n d F i n a l | 2 | ( 1 ) ; 

23 f o r t - l : l e n , 

24 i f a l = r e c _ p o B t l l ) ( t ) , 

26 cmpl - c e c _ p o s t l 2 ) I t t ; 

26 b c a a k ; 

27 snd 

25 moA 

29 f o i t ^ l : l e n , 

30 i f a2 = E e c _ p o a t { l H t ) , 

31 cmF2 - r e c _ p o s t ( 2 ) < t ) ; 

32 b r a s k : 

33 ma 
34 «nd 

35 i f 3 A . d a t a ( c m p l , 7 ) > s A . d a t a f c m p 2 , 7 ) , 

36 X - 0; 

37 y = 1; 

38 a l s e i f sA .daca (cmpl, 7) - - s A . d a t a (ciitp2, 7 ) , 

39 i f s A . d a t a ( c m p l . l ) > 3A .d3ra<c inp2 ,1 ) , 
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40 j i = 0; 

41 y = 1; 

42 a l s B i f s A . d a t a { c i n p l , l ) •: s A . d a t a <cinp2,1), 

43 M - 1; 

44 y = 0; 

45 a l a a 

46 a r r a y = [ 2 5 6 1 ; 

47 Cox d ^ l : l a n g t l l { a r r a y ) , 

4S iC s A . d a t a (cnipl, a r r a y (d) 1 < s A . d a t a | c m p 2 , a r r a y (d ) ) , 

49 X " 0 ; 

50 y = 1 ; 

51 b r e a k ,-

52 e l s a i f sA.data(C3npl , a r r a y |d) | > s A . d a t a ( cn ip2 , a r r ay (d>) , 

53 X - 1 ; 

54 y = 0 ; 

55 bxaak ; 

56 and 

57 a n d 

58 end 

59 e l se 
60 X = 1; 

61 y = 0; 

62 and 

ea 
64 r e s u l t - c e l U Z . l l ; 

65 riuir = mysql ( ' s e l e c t max (C lus t e r_No) a s C l u s t e r _ N o from StageZTwO') ; 

66 i t i s n a n ( n u s i ) , 

67 h = 0; 

66 a l a a 

69 h - num; 

70 end 

71 pi = l a n g t h ( d a t a _ i n d F i n a l l I H ; 

72 f o r 1 = l : l e n , 

73 c l u s t - h ^ i ; 

74 f o r d = l : p l , 

75 i f c l u s t == d a t a _ i n d F i n a l I I I ( d ) , 

76 r e s u l t U I = [ r e s u l t (1) . c l u e t ] ; 

77 r e s u l t ( 2 | - [ r e s u l t ( 2 1 , x ) ; 

78 b x a a k ; 

79 a n d 

HO end 

81 i f I c n g t l X r e s u l t I U ) = 0 | l r e s u l t U I (and) '= c l u s t , 

82 r e s u l t ( 1 1 = [ r e s u l t ) 1 | , e l u s t ] ; 

f3 r e s , u l t ( 2 ] ^ | r e s u l t ) 2 1 , yl ; 

84 end 

85 end 

86 

87 f o r c - l : l e n , 

88 s t r = B p r i n t f ( ' i n s e r t i n t o Stage2Two (C lu3 t e r_No , A l e r t _ E t a t u s l v a l o e s d d , % d ) ' , r e s u l t U M c 

) , t e s u l t l 2 l ( c ) ) ; 

89 i n y 5 q l ( s t t ) ; 

90 end 

91 !* W r i t i n g d a t a i n d e x i n t o a file 

92 f i d = f o p a n i f l n a a i n d e x , ' w t ' ) ; 
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93 f o r E = 1 :2 , 

94 l e n = l « » g t h ( d a t a _ i n d F i i i a i ( z ) ) ; 

95 i C len =- Q, 

96 f p r i n t C i f i d , ' K A ' ) ; 

97 e l s e 

98 f p i : i n t « ( f i d , - i d ' , d s c a _ L n d F i n a l U M l : l e n - l ) ) ,-

99 f p r i n t f l f i d , ' % d \ n ' , d a t a _ i n d F i n a l Izl a e n l ) ; 

100 end 

101 u i d 

102 

103 c v t u c n ; 

Listing D.15: source—code/alarmFilterOne.m 

1 funct - ion d a t a _ i n d F i n a l ^ a l a r n i F i l t e x O n e ( d a t a T e x t 2 , f lgureNameZ, f i n a l l n d e x ) 

2 ii i n p u c argaaencs and initialization daca 

3 
4 ** Iform^lising data 

5 

6 sft = so[n_read_data (da taTexi ;2 , ' • ' ! ; 

7 l e n ^ s i x * ( s A . d a t a , l ) ; 

8 i f l * n 9 t h ( i a n a i i ( s A . d a t a < : , 4 ) ) ) -^ l e u . 

9 s A . d a t a i : , 4 ] = - i ; 

10 end 

11 aA = a o m _ n o m i a l i i e (sAr ' v a r ' ) ; 

12 a A . d a t a ( : , 7 ) - 2 . 8 • s A . d a t a ( : , 7 ) ; 

13 s A . d a t a ( : , 6 1 = 2 , 5 - s A . d a t a ( : , 6) ; 

14 y = m u n i t s _ b e s t { s A ) ; 

15 sB - soni_inake i s A , ' m u n i t s ' , yl ; 

16 %sB -̂  soia_niakelsA,'iBsize',l25 10]}; 

17 nun = t n y s q l C s e l e c t fflax(Claster_No) a s Cluster_MQ from S t a g e Z O n e ' ) ; 

18 | d a t a _ i n d F i n a l , r e c _ p o s c ] '̂  kniean3_be3tnew(nuin, sB, sA, £igoreNaine2J ; 

19 

20 t l W r i t e o u c p u t i n t o t h e database 

31 a l - d a t a _ i n d F i n a H l | (1) J 

22 a2 ^ d a t a _ i n d F i n a l i 2 ) (1),-

23 f M t = 1 : l e n , 

24 i f a l -= r e c _ p o 3 e i l M t ) , 

25 =mpl - r 6 c _ p o s t ( 2 H t l ; 
36 b r w k ; 

27 end 

28 and 
29 tax z - l : l e t i , 

30 i f a2 — U ) ( t ) , 

31 cmp2 = r e c _ p o s t ) 2 M t ) ; 

32 bxMdc; 
33 and 

34 end 

35 i f s S . d a t a < c m p l , 7 ) > s A . d a t a lcirp2,7) , 

36 X - 0; 

37 y = i ; 
38 a l s e i f 5A.da ta(C] i ip l ,7) = s A . d a t a ( c i i i p 2 , 7 ) , 

39 t f s A . d a t a ( c n i p l , l | > s A . d a t a ( c i i 5 > 2 , l l , 

40 X - 0 ; 
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y - 1; 
e l a e i f BA. d a t a (crapl, 1 ( < s A . d a c a (ci i ip2,1), 

X - 1; 

: - 0; 

e l s e 

a r r a y = 12 5 6 ] ; 

f o r 6 ^ 1 : l « i i g t b l a r f a y ) , 

i f s A . d a t a (cmpl, a r r a y <dj) < s A . d a t a (cii5)2, a r r a y (d) ) , 

X - 0; 

y - 1 
braak 

elseif sA 

n - 1 

y - 0 

brMk 

end 

data (cmpl, array (d) ) > sA.data (cn!p2, array (d)), 

end 

and 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

5!̂  e l s e 

60 X = 1; 

61 y = 0; 

62 end 

63 

64 r e s u l t - c e l l ( 2 , l ) ; 

65 num = mysq l ( ' s e l e c t max ( C l u s t e t J J o ) a s C l o s t e t _ N o friwi S t a g e 2 0 n e ' l ; 

66 i f i onan (num) , 

67 I. = 0 ; 

68 e l s e 
69 h = num; 

70 and 

71 p i = l e n g t h ( d a t a _ i n d F i - n a l ( 1 | 1 ; 

72 f o r i = l : l e n , 

73 c l u s t = h i- i ; 

74 f o r d = 1 : p l , 

i f c l u s t = d a t a _ l n d F i n a H l ) ( d i , 

r e s u l t U ) - [ r e s u l t { l l , c l u s t ) ; 

t e s u l t ( 2 1 = I r e s u l t | 2 l , x]; 

b r e a k ; 

end 

and 

i f l a n g t h l t e s u i t U I ) = 0 11 r e s u l t { 1 | (end) *= c l u s t , 

r e s u l t l H = I r e s u l t ( l ) , c l u s t ] ; 

r e £ u l t | 2 J - [ t e s i i l t ( 2 | , y l ; 

end 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

S5 and 

86 

87 f o r c = i:len, 

88 s t r = • p t i n t f ) ' I n s e r t i n t o E t a g e 2 0 n e f C l u 3 t e r _ H o , A l e E t _ S t a t u s ) v a l u e s ( * d , % d l ' . r e s u l t l l | ( c 

) , c e s u l t U I (c) ) ; 

39 raysqUstr); 

90 end 

91 %% anting data index Lnto a file 

92 f i d = f c p m i f f i n a l l n d e x , ' w t ' l ; 

93 f o r z = 1;2 , 
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94 l e n = l « i : ^ t h ( c l a t a _ l n d F i n a H z l ) ; 

95 i l l e n — 0, 

96 ^ t i n t f ( £ i d , ' H A ' ) ; 

97 e lBS 

98 f p r i n t t l f i d , ' % c l ' , d a t a _ i n d F i n a l | z | ( l ; l e n - l l 1; 

99 f p r i n t f ( f i d , ' % d \ n ' , d a t a _ i n d F i n a H z | ( l en ) ) ; 

leO and 

101 and 
102 

103 r e t u r n ; 

Listing D.16: sonrce-code/alarmFilterHalf.ni 

1 t u n c t i O D data__andfi i ia l = a l a r m F i l C e r H a i f (dacaTeKt2 , f igureNanie2, f i n a l X n d e x ) 

2 * i i n p u t arguments and j j t J t i a i i i a t l o n iSats 

3 

4 ti fiormallslng data 

5 
6 sA = so in_ reac l_da t a{da t aTex t2 , '*'); 

7 len = B i s * ( E A . d a t a , l | ; 

9 i l l o n g t h ( i a n « n ( s a . d a i i a ( : , 4 K ) == l e n , 

9 5 A . d a t a ( T , 4) - - 1 ; 

10 v u l 

11 sA = soni_n.ormallze ( s A , ' v a r ' ) ; 

12 s & . d a t a ( : , 7 ) - 2 . 6 * s A . d a c a ( : , 7> ; 

13 s A . d a t a ( : , 6 ) • 2 - 5 • s A . d a t a | : . 6 ) ; 

14 y - i nun i t3_bes t ( sAl ; 

15 sB " 3am_mak.e ( s A , ' m i i n i t s ' , y) ; 

16 isB - sont_maks<sA,'msize', 125 lOJ); 

17 num = w y s q l C s e l e c t i i iax{Cli is tei_No) a s C l i j s t e r _ S o f iom S t a g e 2 H a l f ' 1 ; 

18 ( d a t a _ i n d F i n a l , r e c _ p o s c ] = lcmeans_bestnew (nuin, sB, sA, f i g u r e N a m e 2 ) ; 

19 
20 %% Write output xnto the database 

21 a l = d a t a _ i T i d F i n a m i ( 1 ) ; 
22 a2 = d a t a _ i n d F i n a H 2 l ( 1 ) ; 

23 Coz t = l : l e n , 

24 i f a l = r e c _ p o s C l l | ( t ) , 

25 cmpl - r e c _ p o 3 t [ 2 | ( t ) ; 

26 braak; 

27 and 

28 and 
29 f o r t = l : l c n , 

30 t f a2 = r e c _ p o s t i l l ( t t , 

31 cmp2 - r e c _ p o s c l 2 | ( t ) ; 

32 brB«k; 
33 and 
34 and 

35 i £ s A . d a c a ( c i n p l , 7 ) > s A . d a c a ( c n 9 2 , 7 ) , 

36 X - Di 

37 y - 1; 

38 « l B a i f 3 A . d a t a ( c n i p l , 7) " • s A . d a t a (crap2, 7 ) , 

39 i f s A . d a t a l c m p l , ! ) > s A . d a C a ( c m p 2 , 1 ) , 

40 X ^ 0; 

41 y = 1; 
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42 e l s e i f s A . d a t a (cinpl, 1) < s A . d a t ^ {cnipZ, 11 > 

4 3 >: = 1 ; 

44 y = 0; 

45 e l s e 

46 6irray = (2 5 6 ] ; 

47 f o r a = 1 : l e n g t h ( a r r a y ! , 

48 i f s A . d a t a i c n i F l . a r i r a y (d) I < s A . d a t a (cnip2, a r r a y (d) 1, 

49 s - 0; 

50 y = :,-

51 b r e a k ,-

52 e l s e i f E A . d a t a ( c n i p l , a r r a y (d l l > s f i . d a t a ( c m p 2 , a r r a y ( d ) ) , 

53 X - 1 ; 

54 y - 0; 

55 b r e a k ; 

56 end 

57 end 

SS Bud 

59 e l s e 

60 X = 1 ; 

61 y = 0; 

62 end 

6.3 

64 c e s u l t » c e l l ( 2 , 1 ) ; 

65 nun = mysql (* s e l e c t max (CluEtei_No) a s Clusi ;er_No frcjm 5 t a g e 2 i i s l f ' ! ; 

66 i f i a n a n l n u m l , 

6 7 •• = 0 ; 

66 e l M 

69 h = num; 

70 end 

71 pi = l e n g t h ( d a t a _ i t i d F i n a m H ; 

72 f o r 1 = l : l e n , 

73 c l u s t - h + i ; 

74 f o r d = l : p l , 

75 i f c l u s t = - d a t a _ i n d F i n a l | l H d ) , 

76 t e s u l t U ) - [ r e s u l t I D , c l u s t ] ; 

77 r e s u l t ( 2 ) - [ r e s u l t l 2 l , x ) ; 

78 b r e a k ; 

79 end 

80 end 

81 i f l e n g t h I r e s u l t {1)1 = - 0 1 1 r e s u l t (11 (•»*) ' = c l u s t , 

82 r e = u l t | l | - £ r e s u l t { l | , e l u s t ] ; 

83 r e s u l t 12 I = l r e s u l t [ 2 ) , y l ; 

S4 end 

85 a n d 

86 

87 f o r c = l : l e n , 

88 s c r = e p r i n t f C i n s e r t i n t o S t a g e 2 H a l f ( C l u s t e r _ N o , fllert_Status) v a l u e s (%d, %d) ' , r e s u l t 11) ( 

c ) , r e s u l t ( 2 l ( c l ) ; 

89 m y s q l ( 3 t c ) ; 

90 e n d 

91 ii Writing d a t a index into a file 

92 f i d = f o p e o d i n a l l n d e x , ' w t ' ) ; 

93 f o r z = i : 2 , 

94 l e n " l e n g t h < d a t a _ i n d F i n a l < z ) ) ; 
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95 i t l e n — 0, 

96 f p r t n t f ( f i d , ' N A ' ) ; 

97 a l a a 

96 EpEin t f (f i d , ' %d • , d a t a _ i n d F i r , a l ( z M l : l - e n - l ) 1; 

99 f p r l n t f i f i d , ' % d \ n ' , d a t a _ i n d F i n 3 H z l ( l en ) ) ; 

100 e n d 

101 a n d 

102 

103 r e t u x n ; 

D.7 /.-Means Cliisters Process for Stage 1 

last ing D,17: source—code/kmeans_beststgl.m 

1 f u n c t i o n d a t a _ i i i d - kniear!s_be3tst igi (sD, sA, f i g u t e N a m e l , minlD, ii_max, c_maK, v e r b o s e ) 

2 

3 %i input arguments and -initialization 

4 
5 i l i s s t r u c t I s A ) , 

6 i f i s f i e l d l s A . ' d a t a ' l , D = a A . d a t a ; 

7 a l a a D = sA.codebook ; 

S aad 

9 e l s e D ~ sA; 

10 a n d 

11 [ d l e n dim] ^ s i z a f D ) ; 

12 c l = K n j o d ( d l e n / 2 ) , -

13 I f n a r g i n < i I i s a q A y (n_niax) I i a i ian ln_inaKl , n_ni3x " c l ; end 

14 i f n o c g i o < 6 I i K W ^ t y (c_Biax) l i s o a n ( c _ m a x | , c_fflait = 5 ; end 

15 I f n a r g i n < 7 | i s e ^ i t y (ve rbose ) I i s n a n (ve rbose ) , v e r b o s e " 0; and 

16 t_max = 1; 

17 e = ( • x e s f t j n a x , ! ) ; 

18 d a t a _ p a s c - zaEoa ( 1 , n_;nax); 

19 d a t 3 _ i n ( i = c e i H n _ m a n , l l i 

20 e r r c o m p -̂  i a n 1 » » i . 

21 

22 t S choosing cAe best map 

23 

24 f o r w = l : t _ m a x , 

26 [ c , p , e r r , i n d j — l t m e a n s _ c l u s t e r s ( s D , n j n a x , c_max, w, v e r b o s e ) ; 

26 [duRBny.i] - a l D l e r r ) ; 

27 e (w, 1) = e r r d l ; 

28 I f e r r U J < e r r c o n ^ , 

29 e r r comp " e r r ( i ) ; 

30 b e s t H a p = p ; 

81 i n d e x = i ; 
32 i t e r - w,-

33 a n d 

34 end 

35 

36 sonL-showtsD, ' c o l o r ' , I bescKap | i n d e x I , ^ r i a t C ( ' % d c l u s t e r s ' , i n d e x ) 1, ' b a r ' , ' n o n e ' ) ; 

37 50^ 5 o n i _ a u t o l a b e l IsD, s A , ' a d d ' ) ,-

38 s o i i i _ 3 h D w _ a d d ( ' l a b e l ' , s O ) ; 
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39 s a v e a s ( g c £ , f igureMamel , ' f i g ' 1 ; 

40 

41 bmus = soiii_bmus (sD, s A ) ; 

42 l e - bes tMspt Index I ,-

43 [1 a c t t l = s i i o I S A . d a t a } ; 

44 

45 f o r s - 1 : 1 , 

46 (iata_j>ost (zefbmus (s) I ) * d a t a _ p o s t ( z e l b m u s f s ) ) ) + 1; 

47 d a t a _ i n d ( z e (bmus (a j ) 1 " tda ta_ inc i ) s e {bmQS (a) ) ) , m i n l D ] ; 

48 mlnlD = rainID -t 1; 

49 and 

50 f o r j - l :n_ inax , 

51 d a t a _ p o s t ( j ) ; 

52 datia_aiidl j | ; 

53 and 

54 

55 r e t u r n ; 

D.8 A -Means Clusters Process for Stage 2 

Listing D.18: source-code/kmeans_bestnew.m 

1 f u n c t i o n l d a t a _ i n d , r e c j j O E t ! = k m e a n a j j e s t n e w (num, sD, sA, f igureHanie2, n_niax, c_niax, v e r b o s e 

) 

i% input a r g n m e n t s a.Td i n i t i a l i z a t i o n 

2 

3 

4 

5 i f i s a t r u c t ( s D ) , 

6 i f i s f i e l d ( s D , ' d a t a ' ) , D = s D . d a t a ; 

7 a l B * D = aO.codebook; 

8 and 

9 « lsa D = sC; 

10 and 

11 [ d l e n dim] = « i E « ( D | ; 

12 

13 i f nairgin < ^ I i sanpty<r!_max] | ianantr i_ inaK), n_mav - 2; w id 

14 i f n a i g i n < '5 I i s o n p t y (c_inax) I lBnan{c_niax) , c_max - 5 ; e n d 

15 i f n a r g i n <- 1 I i s e n p t y ( v e r b o s e ) \ i a n a n ( v e r b o s e ) , v e r b o s e = 0 ,• and 

16 t_inait = 500; * number of random trials 

17 k - 0; % i n d e x for Che possible c l u s t e r s o l u t i o n s (maps) 

18 s s a = [ l ! 8 aura of squared error for each u n i q u e map 

19 f r e q = [ 3 ; » number of o c c u x r a n c e for each unique map 

20 c l u s t _ p o s t = c e l l ( t _ m a x , l ) ; I c l u s t e r index 

21 d a t s _ p o s t - z a x o s ( 1 , n_iiiaK) ,-

22 d a t a _ i n d = c e l l ( n _ i n a x , l ) ; 

23 cec_posl : = c e i l (2 ,1 ) ; 

24 ldata_post = ceJ J a _ m a x , 1) ,-

25 to tSSE = Q; 

26 s o l = 0; 

27 g = 11; 
28 iio_clu5t- = T!; 8 no o f clusters 

29 c lOS* = c a a l m a z ; 
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3D 
31 it Choosing the best map 
32 
33 * Sor t ing tfie maps 
34 f«r H = l:t_inax, 
35 (c, p , e r r , indl = kn ̂  is ter5(sD, n_rnaK, c_max, w, ve those ) ; 
36 [dummy,!] = « l o ( e r r > ; 
37 i s a v a l - fiadd-Stnember (sse, e r r ( i ) ) l ; %Check if sse a r r ay cantons ertfli and r e t u r n the 

index number 
38 i f ' l a a a p t y ( i s a v a i ) , t if the value is not empty 
39 freqCisavai) - f reqt i savaD-t 1; 
40 a l sa 
41 X = k + 1; icounting unique nap 
42 Ese = [sse, ercli)]; 
43 freq = [Ereq, L]; 
44 clust_postlfcl = p [ i l ; 
45 iio_cIust = Iiio_ciusc, 1 ] ; SideaJ no of clusters chosen per unique map 
46 and 
47 and 
48 
49 t Ccmpute tJie frequency r a t e 
50 race - s«roa (1, k) ,- 1 frequency r a t e 
51 for t = 1;k, 
52 j :a te (c l = f reqit)/t_inax,-
53 wxi 
54 Ihlgh, Index] ^ B u i U a t e } ; 
55 
56 t Compute the second thresho-Iding vaiue (s tandard deviation) 
67 St - rtdlrate); 
68 S Apply the thresholding 
69 i « hiqh > 0 .6 , 
60 bestHap = index; 
ei als« 
62 fox m ' 1:k, 
63 i f h i ^ <= St , 
64 so l ^ k; 
66 totSSE = tocSSE + •i»«(ssel ; 
66 g - [ l :k] , -
67 break; 
68 end 
9S i f r a t e |mj >~ (high - s t ) , 
70 tOtSSE - CotSSE ••- sse lm); 
71 sol = so l + 1; 

72 7 = (g. m]; 
73 end 
74 end 
75 
76 t Calculate the average SSE 
77 aveSSE = to tSSE/sol j 
78 i f s c l = 2, 
79 i f s s e f g d ) ) c s a e ( g ( 2 ) ) , 
80 bestMap - g< l ) ; 
a i a l M 
82 bestHap ^ glZ) ; 
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83 and 

S4 else 

85 for n = 1:sol* 

SB diff = ab8(sse(g(n) ) - a^-eSSE) ; 

87 if close > di££, 

i clo«* = diCf; 

89 bestMap. = g (n) ; 

90 end 

91 end 

92 end 

93 end 

94 

95 i f i g u r e (bestMap! / 

9G soni_s l low(s0 , ' c o l o r ' , ( c l u s C _ p o s t {bes tMap) , s p r i n t E i ' *d c l u s t e r s ' , n o _ c l u s t ( b e s t H a p l ) ) , ' b a r ' 

' 1; 

97 BD= s o n i _ a u t o l a b e l ( 3 D , S A , ' a d d ' ) ; 

98 soni_3how_add( ' l a b e l ' , sDi ; 

99 s a v e a s l g c f , f igureKa!ne2, ' f i g ' ) ; 

100 idaca_FCsr ibestfiapl 

101 

102 bmus = Eom_famu3(sD,sA); 

103 l e = c l u s t _ p D S t I b e s t M a p l ; 

104 [1 a t t r l = a i M ( s A - d a t a ) ; 

105 i f i s n a n (nTim), 

106 h = 0; 

107 e l s a 

108 t. = num; 

109 end 

!10 f o r s - 1 : 1 , 

111 l a b e l = h -f E ; 

112 r e c _ p o E t ( 1 1 " [ r e c _ p o s t ( 1 1 . l a b e l ] ; 

113 i:ec__postl2l = [ r e c _ p o s t | 2 ( , s ) ; 

134 

115 d a t a ^ p o s t ( z e ( b m u s ( s ) ) ) = d a t a _ p o s t ( z e ( b m u s ( s ) ) ) + 1; 

1!6 d d t a _ i n d l l e ( b m u B IS) ) I = [ d a t a _ i n d f z e ( b m u s I s ) ) 1 , l a b e l ] ; 

117 «nd 

118 f o r j - I z n j i a M , 

119 d a t a _ p o s t ( j ) ; 

120 d a l : a _ i n d l j l ; 

121 end 

122 

123 r e t u r n ; 

192 



r Functional Requirement Analysis 

In order to gain insight into the main features of the prototype, several modelling languages are 

presented, including use case diagram, activity diagram, sequence diagram and class diagram. 

1. Use case diagram 

A use case is a technique, which is typically used for visualising the functionality provided by 

a system in terms of actors, their actions (represented as use cases) and any interactions be­

tween these use cases (Miles, 2006). In general, each use case provides one or more scenarios 

that meticulously convey how the users should interact in order to perform a task. Bear in 

mind tha t a use case diagram does not portray any internal processes of the system nor do 

they explain the structure of the system. In fact, it is purely 8 functional description that is 

completely separate from the system design In order to show the role of the administrator in 

the system, a use case diagram is presented below: 

Figure E.l: SMART use case diagram 

To summarise the role of the administrator as illustrated in Figure E.l, a brief description of 

the use case scenarios is given below: 
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To summarise the role of the administrator as illustrated in Figure E.I, a brief description of 

the use case scenarios is given below: 

• The administrator has an ability to run the correlation after specifying inputs. 

• The administrator also has a responsibility to evaluate the result of the correlation. I t 

includes the ability to \ iew the correlation result statistics, to create a chart report and 

to analyse the IDS signature rules. In terms of the signature analysis, the administrator 

can inspect the generation of t rue and false alarms per signature and also to generate 

a plot diagram tha t maps the generation of the alarms based on I P addresses and time 

period. In addition, the system also allows the administrator to view the packet payload 

and to examine the generated alerts individually. 

• Apart from running the correlation, the administrator is also given an opportunity to 

reset or clear the input interface and to re-run the correlation. 

• He is also able to cancel an ongoing correlation. 

Although the use case diagram has provided a brief description about the functionality of the 

system and shown a nice roadmap of relationship between the administrator and the system, 

it does not clarify bow those tasks are performed. To provide a clearer picture of the system 

and to show the steps that an administrator should follow to perform the tasks, an activity 

diagram is presented in the next sub-section. 

2. Activity diagram 

(a) Run correlation 

• Ihon] 

Figure E.2: Activity diagram - Run correlation 

To run the correlation process, the administrator is prompted to specify the scope of the 

alerts to be processed by entering the starting and the ending t imestamp of the alerts. 

Besides, the administrator is also required to make a decision whether to run the corre­

lation for a time interval of 2 hours or less than 2 hours (either every one hour or every 

half an hour); as shown in Figure E.2. 

(b) View Statistic 

Once the correlation is completed, the administrator can view the result of the classifica­

tion by clicking the "View result" button. In this interface, there are 3 tabs available in a 
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The Correlsoon Wert table am statSBc 
iBcompleted - _^ ^_ ^ figureisdw*n 

-^ ^ ^ ^ s V e w ^ k nlL 'Alert t a W ^ 
V r e a i f buttoi^g w tab ^ 

Figure E.3: Activity diagram - View statistic 

single frame. The first tab "Alert table" presents a table containing the alerts attributes 

as well as the final s tatus of the alerts (whether it is a t rue or false alarm). Furthermore, 

it also displays a statistic figure, which compares the proportion of the true and false 

alarms resulted from the correlation. This process is described in Figure E.3 

(c) Create Chart 

Figure E.4: Activity diagram - Create chart 

Besides allowing the administrator to look at the overall correlation result as featured 

in the first tab, the second tab enables the administrator to fully inspect the generation 

of the true and false alarms based on their signatures in a particular period of time 

(Figure E.4). To conduct an alert evaluation, the system allows the administrator to 

create a chart report, which conveys the trend of the IDS alarms, by filhng in the chart 

setting form. 

(d) Analyse Signatures 

In the last tab, "Signature analysis" (Figure E.5), the tool allows the administrator to 

analyse the alarms for each signature rule. A list of signatures is presented and the ad­

ministrator is required to select one s^na tu re to conduct a further investigation. Once 

selected, a plot diagram and tables of the t rue and false alarms are automatically gener­

ated for the chosen signature. And to facihtate the alert evaluation, the payload of the 

packet triggering the alert can be examined through the conventional alert management 

tool. BASE. 

(e) Cancel Correlation 

Apart from executing the correlation, the administrator is also allowed to stop the ongo­

ing correiation by pressing the "Cancel" button. Before the correlation is terminated, the 

administrator is prompted to confirm whether the act should proceed or be withdrawn 

(Figure E.6). 

(0 Reset the Interface 
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Administrator 

>Pre*eTii true 

^ g » t w 

L 
Figure E,5: Activity diagram - Analyse signatures 

The last hut not least, the administrator can reset the system by pressing the "Reset" 

button (Figure E.7). This enables the system to clear the input text boxes and return to 

the start page (home page). 

3. Sequence diagram 

A sequence diagram is a type of interaction diagram that is primarily used to model the flow 

of logic and processes within the system. It allows the documentation of the system's run­

time scenarios in a graphical manner. The sequence diagram shown in Figure E.y is created 

to depict the logic behind the correlation processes and the interaction between objects in 

sequential order. 
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box 
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Figure E.6: Activity diagram - Cancel correlation 

There are apparently 12 objects involved in the interactions, as described in the sequence 

diagram (Figure E.8). The first component is the actor (the administrator), which initiates 

and takes an active par t in the scenarios, whilst the rest 11 objects are the components from 

either the external or internal systems. 

(a) External system: 

i. Signature-based IDS 

ii. MySQL 

iii. I/O files 

(b) Internal Bystem: 

i. Input 

ii. Output 

iii. Pre-processing System 

hr. Normalising System 

v. Training System 

vi. Aggregating System 

vii. Alarm Classification 

viii. Best Map Selector 
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Administrator 

The correlation is 
completed 

System 

the input 
ancj return 
start Daoe 

um 1 
aoe / 

i 
Figure E.7: Activity diagram - Reset the interface 

4. Class diagram 

The main idea of creating a class d i g r a m in this context is to describe the structure of the 

SMART system by showing the systems classes and the relationships between classes. Fig­

ure E.9 shows the static structure diagram of the system. 

Instead of focusing on the attributes and methods of the elements in the system, the diagram 

plainly depicts the association and the inheritance relationships between the classes. The 

relationship between the administrator, IDS and SMART system classes is defined as a stan­

dard kind of association or known as a bi-directional association, which is indicated by a solid 

line between the classes. On the other hand, a basic aggregation relationship is indicated by 

a solid line with an unfilled diamond shape between SMART System and File classes. An 

association with an aggregation relationship suggests tha t one class is par t of another class 

and the child class instance can outlive its parent class. Moreover, the generalisation relation­

ship can also be noticed from Sig-based IDS and Anomaly IDS classes, which inherit from the 

parent class IDS. 

To provide a better view of the structure of the proposed SMART system, the following hst 

summarises the classes, which form the structure of the system, as well as the relationships 

between them. 

(a) The Administrator class takes on the role of "monitored" in the bi-directional relation­

ships between both SMART system and IDS. The multipHcity value next to the Admin­

istrator class of 1..* means that when an instance of an IDS or SMART System exists, it 

can have at least one instance of an Administrator associated with it. 

(b) In the same association, the IDS takes on the role of "manages"; the diagram in Figure E.9 

tells that the Administrator instance can be associated with no IDS or with up to an 

infinite number of IDSs. Conversely, an Administrator instance can be associated with 
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only one SMART System. 

(c) Sig-based IDS and AaomaJy IDS classes (child class) inherit from the IDS class (parent 

class). The inheritance relationship refers to the abiUty of a child class to inherit the 

identical functionahty of another claBS (super class). 

(d) A uni-directional association is explained by the reiationship between the SMART Sys­

tem and the Sig-based IDS classes. This association is similar to the hi-directional associ­

ation except that it only contains the role name and multiphcity value for the know class. 

For example, the SMART System knows about the Sig-hased class, and the Sig-based 

class plays the role of "connected". However, unlike a standard association, the Sig-based 

IDS class has no idea tha t it is associated with the SMART System class. A multiplicity 

value of 1..* next to the Sig-based IDS class means that an instance of SMART System 

class can be associated with either one Sig-based IDS or an infinite number of Sig-based 

IDSs. 

(e) Database class is an association class, which influences the relationship between SMART 

System and Sig-based IDS classes. An association class is a cross between an association 

and is represented as a regular class box that is connected to the association between the 

other two classes using a dashed line. 

(0 The relationship between the SMART System and File classes is regarded as a basic 

aggregation relationship: in which case the lifecycle of the File class is inde[>endent from 

the SMART System class's lifecyde. •J 
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Figure E.9: SMART class diagram 
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^ Running the Correlation System 

There are two ways to s tar t the SMART apphcation, namely: 

1. Via command line argument 

To open an application using a command line a i l m e n t , the user needs to open a command 

prompt and type a command as shown below (or see Figure F.l): 

Java -jar AlarmFrameJar 

I AdmiriKtrator C:>W"mdow5\s>^em32''.cmd.exe 

i c r a s o f t Uindflus [Uei>sion 6 . a . 6 B 8 0 ] 
iopypight <c> 2806 n i c r o s o f t C a r i ^ r a t i a n . 

; : \>c t i StMKT 

;:\SMflRT>java - j a r d l ^ n d P r B W - J a n . 

_^n'x: 

A l l r i g h t s r e s e r v e d . 

H! 
Ld 

Figure F.l: Opening SMART application - via command prompt 

Make sure the working directory is set to the apphcation folder (that is SMART) and the Java 

path has been added to the system variables. The latter allows the Java commands to be 

executed outside the Java application folder. 

2. Via double-click 

In this option, the user is required to double-click on the executable ja r fiie named "Alarm-

Frame.jar ' available in the application folder (see Figure F.2). 

Once the program is executed, the application main page is presented; as shown in Figure F.3 

below. 

In this example, two weeks DARPA alerts generated by the Snort IDS are retrieved from the 

database and fed into the correlation system. Via the interface provided, the user is prompted to 

enter the start ing and the ending t imestamp as well as the time frame for each correlation (see 

Figure 7,3 in Chapter 7). It is worth noticing tha t the time windows for all correlations performed 

in this demonstration are set to 2 hours. 

As for the input pattern, the system has set a standard timestamp format (YYYY-MM-DD 

HH:MM:SS) for the first two input arguments, namely the start ing and the ending timestamps. 
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Figure F.2: Opening SMART application - via double-clicked 

Failure to comply with the predefined format may result in a runtime error. Besides, an error 

dialog box will pop up; indicating the incorrect format used for the inputs (see Figure F.4). 

Once the correlation is carried out, a progress bar (as depicted in Figure F.5) is shown to monitor 

the progress of a correlation run by the system. 

Apart from executing the correlation, the user is also authorised to halt the or^oing correlation 

by pressing the "Cancel" button. Before the program is terminated, a confirm box, which pops up 

with both a Yes and a No button, is used to verify acceptance from the user (see Figure F.6). If the 

user accepts, then the user presses the "Yes" button and the program exits immediately. If the user 

rejects with the "No" button, then the correlation process continues. 
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Welcome to SMART (SOM K-Means Alarm Reduction Tool) 
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Figure F.4: SMART dialog box - Incorrect input format 
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Figure F.5: SMART - Progress bar 
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Abstract 

IntJiLsion detection is one of the most important tools in computer security. Although the technology has been 
activety developed for two decades, it is an indisputable fact that the art of delecting an intrusion is still far from 
perfect. IDS sysiems tend lo generate a large number of false alarms per day, which adds a heavy workload for 
the administrator responsible in handling the alerts. In this paper, a number of current studies focusing upon the 
reduction of false alarms are bnefly discussed. This paper also critically analyses the approaches implemented 
by current studies and provides recommendations to improve the performance of IDS in term of its alarm 
generation. 
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1. Introduction 

The Internet is an extremely promising mean of facilitating electronic access, thus the profit 
offered has motivated the growih of the Internet in many fields, such as eCommerce and 
online banking. This has led to a substantial change in business model of organisations across 
the world, and today, more and more people are getting connected to the Internet to take 
advantage of the e-Business model. The effectiveness and efficiency offered has rendered it 
invaluable for business activities. 

Although the efficiency and effectiveness of email and Internet access for carrying out 
business and email are certainly offering tremendous benefits to the companies, connecting an 
internal LAN to the external Internet is a risky decision. In recent years, the security of 
computer networks has become significantly important. Most discussions have been focused 
on the tools or techniques by which network security could be effectively enhanced. It is also 
worth noticing that a number of network security measures have been publicly introduced to 
today's IT community, such as firewall and anti virus systems. However, having fu^ewalls and 
anti-virus systems installed could not fully protect the network infrastructure from modem 
network attacks and numerous system vulnerabilities. Indeed, the rapid growth of intemet 
threats has rendered them inefficient in protecting company's infonnation assets. In spite of 
those security tools, one of the most apparent network tools being developed, and which has 
continuously grown in popularity, is the Intrusion Detection System (IDS). 

Basically, an IDS is a system which refers to all processes used in detecting an unauthorised 
uses of network and computer devices (Bruneau, 2001). IDS, much like the security industry 
itself, has grown rapidly over the past two decades (Goeldenitz, 2002). This measure has 
become one of the most vital components of defensive measure protecting computer system 



and networks from abuse. Even though intrusion detection technology is still in its infancy, 
and could not act as a complete security defence, it could definitely play a significant role in 
an overall security architecture. 

However, since ensuring security is a dynamic process, security tools are required to keep 
pace With changes. There is no security measure that can be proved to be 100% etTective in 
protecting a network. Moreover, it is an indisputable fact that the art of detecting intrusions is 
still far from perfect, and IDS systems tend to generate a large number of false alanns (Allen 
et ai., 2000). Hence a human has to validate alanns before any action can be taken. As IT 
infrastructure become larger and more complicated, the number of alarms that need to be 
reviewed can escalate rapidly, making this task very difficult to manage. Although fine-tuning 
procedures and disabling signatures are known to be one of the most effective ways to reduce 
false alarm rate in IDS technology, they might also degrade security level and subsequently 
increase the risk of missing real attacks. 

This paper particularly focuses on the extent of the IDS false alarm problem and what current 
research has been done thus far in improving the performance of IDS by using alert 
correlation methods. Section 2 provides an overview of IDS tectmology, as well as the major 
challenges faced by the existing intrusion detection. Section 3 discusses significant research 
carried out in the area of intrusion detection. The idea of alert correlation and corresponding 
studies are presented in section 4. Fmally, section 5 discusses significant alert correlation 
research study that focuses upon Artificial Intelligence techniques. The conclusions and future 
research direction are presented in section 6. 

2. Background 

IDS has played a vital role in the overall security infrastructure, as one last defence against 
computer attacks behind secure network architecture desigtL secure program design and 
firewalls (Allen et al., 2000). IDS products have become widely available in recent years, and 
have started to gain acceptance in the enterprise dopnain as a valuable improvement on 
security. 

Although an IDS maybe used in combination with a firewall, which are aimed to control and 
filter the flow of information, these two tools have a different responsibility in safeguarding 
information security. Although a firewall does a good job in filtering traffic coming from the 
Internet, there has been a certain way a malicious user can compromise or circumvent the 
firewall system. The existence of intrusion detection which acts as a second line of defense 
does offer an adequate level of security, by monitoring, detectii^ and responding to the 
unauthorised activities which could bypass the firewall system. In addition, it is worth 
remembering that IDS is not a silver bullet when it comes to protecting system or network 
infi^structure. Instead, it is only one aspect of multi-layered protective mechanism, an 
approach referred to as 'defense in depth" (McHugh et al., 2000). 

2.1 Challenges of Intrusion Detection 

Today, intrusion detection has become an integral part of multi-layer security infrastructure 
and evolved into a viable and highly recommended piece of security technology that a 
company should implement as part of its collection of security tool. However, the art of 
detection is still far from ideal; intnision detection technology is still in its infancy. As a 
result, current IDS technology has faced a number of challenges; one of them is the problem 



of controlling a large number of triggered alerts. This issue is aggravated by the fact that some 
commercial IDSs may generate thousands of alarms per day. Recognising the real alarms 
from the huge volume of alarms is a frustrating task for security officers. Therefore, reducing 
false alarms is a serious problem in IDS efficiency and usabilitv'. Indeed, a high rate of false 
alarms is considered to be the limiting factor for the performance of intrusion detection 
system. False alerts always cause an additional workload for IT personnel, who must handle 
and verify every single alert generated to inhibit or block possible loss of data confidentiality, 
integrity and availability. The manual verification of these true and false alarms among the 
flood of alerts is not only deemed to be labour intensive but also error prone. 

False positive alarms are caused by norma! non-malicious backgroimd traffic. Especially for 
IDS technology that depends on behaviour modelling (anomaly-based IDS), this appears to be 
very critical issue. In learning the system or users' behaviours, not aU behaviour could be 
covered and identified in detail. Behaviour can change from time to time. Sometimes, a 
legitimate user could act in an unusual manner or behaviour; differ from the expected 
behavioiu- (i.e. that which is recognised and leaml previously by the system). If the IDS solely 
relies on this model of normal or vahd behaviours, a legitimate user who works in an 
uncommon way might be suspected as malicious intruder. Moreover, the system might also 
experience a real attack in learning phase (i.e. when the system is collecting and learning the 
users behaviours profile) (Lundin and Jonsson, 2003). If this occurs, an intrusive behaviour 
would be added into the behaviour profile, thus it would never be detected as anomalous. 

One of the best ways to reduce the false alann rate is by performing a tuning procedure. 
Tuning an IDS can be done by adapting the signature policy to the specific environment and 
disabling the signatures that are not related to it (Chappie. 2003). This is driven by the fact 
that some vuhierabihties exist in a panicular OS platform only. Although tuning does offer a 
good solution in reducing a large number false alarms, this procedure could possibly 
exacerbate the situation by degrading the security level and increasing the risk of missing 
noteworthy incidents. Therefore, the tuning problem is actually a trade-off between reducing 
false alarms and maintaining the security level. Furthermore, tuning requires a thorough 
examination of the environment by qualified IT personnel and requires a frequent update to 
keep up with the flow of new vulnerabilities or threats discovered. 

The number of alerts generated by an IDS could be very large, for example 15,000 alerts per 
day per sensor (Cuff 2003). Reducing the false alarm rate is not an easy task. Indeed, it often 
worsens the situation by causing poorer IDS reliability or accuracy. Due to this issue, a 
plethora of research has been conducted to address this problem. The i^st of this paper 
examines the nature of the activity to dale. 

3. Research in alleviating the problem of false alarm 

As the false positive alarm has become a universal problem, which affects both signature- and 
anomaly-based IDS, providing a solution to this issue is critical for enhancing the efficiency 
and usability of intrusion detection as an effective security tool. One of the reasons why IDS 
technology generates a high false positive rate is the lack of correlation between input and 
output traffic, which can essentially look for abnormal output traffic (Bolzoni and Elalle, 
2006). The main concept which has motivated this study is the idea that a successful imrusion 
to a system usually generates an anomaly in the outgoing traffic of the system. Conversely, if 
there is no anomalous output being produced by the system even though something in the 
input of the system causes the intrusion detection to raise alarms, those alarms are considered 



to be false positives. Significantly, the system proposed, which is known as APHRODITE 
consists of two main components, namely Output Anomaly Detector (OAD) and correlation 
engine. OAD has responsibility for monitoring the output of the system and by referring to a 
statistical model describing the normal output, it flags any behaviour that deviates from the 
pre-defined model as a possible attack. On the other hand, the correlation engine, which is 
implemented with a stateftil-inspection mechanism, is assigned to correlate the input to the 
output of the system belonging to a same communication. Through the process of tracking 
and combining input and output traffic, it would make it easier for IT personnel to learn and 
identify the possible result of a potential attack. 

APHRODFTE has various advantages in terms of operational factors. Il is considered to work 
effectively without an optimal training (without using attack-free traffic) and is able to 
successfully detect an unknown attack without requiring the definition of new signatures. In 
addition, this system has also been proved to effectively reduce the false positive rate while 
increasing its detection rate. However, despite these benefits, this system is still not able to 
reduce the number of redundant alerts produced by the same event, and not able to conduct a 
real-time inspection, since the output of the event is required as the prerequisite of the 
detection procedure. 

Similar research has also been done to improve the usability and efficiency IDS technology by 
reducing the number of false alarms while maintaining the level of security achieved (Law 
and Kwok, 2004). This approach works by monitoring and detecting abnormal patterns, which 
are then considered to be suspicious incident, from tones of alert generated by the system. It is 
believed that when an attack occurs, the alerts produced from the IDS will have different 
patterns from the one generated in an attack-free environment. In this approach, the main idea 
of the study is to let the false alarms be generated as they are, and then to determine whether 
the incoming alarm sequence generated are deviated from norma! situations. Those alarms, 
which are classified to be normal, can be ignored (considered as false positives). In this sense, 
this method will reduce the number of alerts being triggered by the system before they are 
tiansferred to the security officer for fiirther investigation. 

By using KNN (K-Nearest Neighbour) classification technique, this approach is achieved by 
modelling normal alarm patterns with an N-dimensional space (using a data point). A new 
data point will be created once newly arrived alarms have been detected by the system, if the 
new point is close to the normal point, which has been modelled previously as a mle pattem, 
the novel data is considered as normal (false alarm), otherwise it is deemed to be a malicious 
attack. In other words, the distances between the novel point and the normal point indicate the 
difFeren(^s between these two data; the further the new point from the nonnal one, the higher 
the risk of being attacked. 

Although this model is believed to successfully reduce the number of false alarms tnggered 
by the system while maintaining its detection rate, it has not been applied on live data and 
implemented in the real life environment. For that reason, there is still much more work to be 
undertaken in order to assert that this idea is applicable to existing IDSs under real life 
fflivironment. 

The idea to perform data mining in order lo reduce false alarms has been explored by Julisch 
(2001). The main idea of this research is to find alarm clusters and generalised forms of false 
alarms to analyse root causes. Significantly, this study has also found that 90% of false alarms 
are related to a small number of root causes. By identifying the root causes, it is believed that 



human expertise could manage the IDS or remove the root causes in order to reduce the 
number of false alarms, hi addition, looking at potential reason of the alert generation, this 
research has also been expanded to look for the rules, which could predict a prospective alert 
when a .specific set of alarms has been generated, or knowTi as episode rules (Julisch and 
Dacier, 2002). With the rule or knowledge of the alarm patterns representing legitimate users 
being identified beforehand, it would be much easier for the system to fiher out any similar 
patterns (which are supposed to be legitimate as well) in the ftiture. Even though this approach 
is considered to be outstanding enough to improve alarm handling efficiency, it could only 
offer a 1% reduction in alarm rate, while 99% of alarms were still left for manual processing. 

Another similar piece of research has been conducted to look for anomalous alarm behaviours 
by using sequential alarm patterns (Alharby and Imai. 2005). The underlying thought of this 
study is slightly sunilar to the previous one using the KNN classifier; namely the alarm 
sequence generated by the system under attack will definitely deviate from the normal alarm 
pattern. By observing the frequent behaviours within an extended period of time, a normal 
alarm pattern could be accurately formed. Therefore, through the use of this alarm model, a 
sudden burst of a sequence of alarms that has never been seen before could be alleged as a 
suspicious activity. 

Given that the historical alarms pattern is used to leam the future alarms in a more efficient 
way by using the extraction of the sequential pattern, this approach has overcome some 
limitations of existing detection systems by constructing a more systematic model. 
Significantly, this method works by matching the extracted newly arrived sequence pattern 
with the extracted sequential panem that is represented in the normal sequence patterns. The 
more matches found in this process, the higher the possibility of it being considered as normal 
behaviour. 

Since this approach is using a threshold value as a measure to determine the class of alarm 
pattern, deciding the best value of threshold would always be a challenge for a security 
administrator. A high threshold value offers high security, but it might suffer from a high false 
alarm rate. Conversely, a lower threshold value solves the problem of false alarms, but might 
bring a lot of risks, principally causing an IDS to be unable to detect major anacks. The only 
optimal solution to answer this issue is by setting a security policy, which is always a trade-
ofT between security and the reduction rate. Apart from this limitation, in terms of scalability, 
this method (the reduction algorithm) shows a good performance in handling such a large 
volume of data (alarms). Importantly, the a.spect of confidentiality is also considered in this 
model, as there is no prior knowledge about the users, i.e. users" features (source user id, 
target user id) are required. Lastly, it is also worth noting thai this approach is completely 
independent from the detection function, which means that it could be applied to almost any 
existing IDS technology. 

Besides using a data mining technique to reduce the number of false alarms produced by 
IDSs, there are still a lot approaches that have been proposed by research thus far. One of the 
most prominent approaches being presented, which has proved to effectively improve (he 
alarm handling efficiency (especially in false positive rate), is by using co-stimulation 
mechanism, based on the definition of intrusion and inspiration of immune mechanism (Qi^o 
and Weixin. 2002). This research has been done by building a new network IDS. which is 
capable of integrating the misuse detection technique with the anomaly detection technique. 
Basically, the principal concept of this work is the application of the biological immune 
mechanism into IDSs. 



This new network intmsion detection system, which is known as Artificial Immunological 
Network intrusion Detection System (AINIDS). consists of two main components: the 
detectors and monitor agents. As in biological immune mechanisms, the monitor agents works 
by supplying or sending a signal indicating the damage of the system according to the 
inlegrity. confidentiality or availability of the system resources. If there is an anomaly case 
being reported by three agents, a co-stimulation will be sent to the detector, and at the same 
lime a report will also be sent to the system administrator for further action taken; otherwise 
the activation will be considered as false positive. 

Unlike other IDS which constantly monitor the system, this system triggers the monitor agents 
only when a detector has been activated (several signs of anomalous activity have been 
identified). Instead of depending upon a system administrator's experience in responding to 
polenliat intrusion, this system provides a more objective mechanism with better autonomy ID 
controlling the signal. 

Since false alerts have always been a primary issue of current IDS technology, providing alert 
classification might be a valuable approach in enhancing its performance. A novel system 
utilising machine learning technique has been proposed to reduce false positive in intrusion 
detection by correctly identifying true positive (i.e. alerts related to attack) and false positive 
(Pietraszek. 2004). This new system is known as Ad^tive Learner for Alert Classification 
(ALAC). By building an alert classifier usii^ a machine learning technique, this method 
works by classifying the alerts and sending the classification to the intrusion detection analyst 
for further feedback. So. through getting a feedback fi^m the analyst, the system will initially 
build and subsequently update the classifier, which is then used to classify new alerts in the 
fiiture (as shown in Figure 1). 

The existence of this new system using an ad^tive learner does indicate a greater 
improvement in the area of intrusion detection system. It is worth noticing that this technique 
offers a great efficiency in term of its operation. ALAC can be set to process autonomously 
alerts that have been classified previously. For example, this system could remove any alerts 
that have been classified as false positive in high confidence. In this way the method could 
successfully trim down the workload presented to tlie security officer. 

Figure 1: The framework model of ALAC classifier 



However, apart from its strength, there are several limitations faced by this system. The ability 
of the analyst to correctly classify the alerts determines the accuracy or performance of this 
method. As no alert classification rules are written previously to respond to the alarm 
sequence generated, the analyst should be an expert in intrusion detection and able to initiate 
appropriate action to tackle the issue. Hence, this system seems to be inefficient in reducing 
the human workload. In addition, as the system is required to perform a real-lime analysis, 
adapting to the new changes {new logic) as a new data arrives is its biggest challenge. 
Moreover, applying additional background knowledge (e.g. network topology, alert database) 
can become another challenge for the system in building an accurate alert classifier, hideed, 
this idea will increase the complexity of learning tasks and only few machine learning 
techniques could suppon it. Having said that, from the research which has been done so far, 
the machine learning technique will produce a better or more concise rule if the background 
knowledge is used the basis for the classification. 

4. Alert Correlation methods 

In operation, the false alarm has always been a major factor determining the usability and 
efficiency of intrusion detection. So, in order to solve the problem of false alarms, simply 
identifying the false positives from a number of incoming alarms is no longer enough. A 
better approach is required to analyse the main causes of false alarms and to obtain a better 
understanding about intrusion behaviours from a set of alarms generated. For that reason, an 
alarm correlation might be required to describe the relationships and co-dependencies between 
alarms. Basically, alarm correlation is an important technique that is used to manage large 
volumes of alerts generated by heterogeneous IDSs. In other words, correlating alerts means 
combining the fragmented information contained in the alarm sequence and interpreting the 
whole flow of alarms. Importantly, the key objective of this mechanism is to pinpoint the 
triggering events from the incoming alarms and to help add meaning to the alarms generated. 
So. through the use of alarm correlation, it is expected that the number of alerts generated 
would be significantly reduced (e.g. by removing redundant alarms, filtering out low priority 
alarms, or even by replacing alarms by something else). 

A number of research studies have been conducted to improve the performance of alarm 
correlation methods in reducing false alarms. Therefore, below are several prominent classes 
of methods being used for the alarm correlation technique. 

• Correlating alerts based on the prerequisites of intrusions 
TTiis class of approach is based on the assumption that most intrusions are not isolated, but 
are related to the different stages of attack sequences, with the early one prepared for the 
later one. It is believed that most traditional intru.sion detection only focuses on low level 
attacks and raise alerts independently, without considering the possible logical connection 
between them or the potential attack strategies behind them. Another problem issue is that 
current IDSs technology cannot fully delect unknown att^ks, or the variation of known 
attacks, without generating a large volume of alerts. 

Several works have been done to apply this class of approach (e.g. Cuppens and Miege, 
2002; Ning et al.. 2002), which then proposed to correlate alarms by using prerequisites 
and consequences of corresponding attacks (e.g. the existence of a vulnerable service can 
serve as the prerequisite for the remote buffer overflow attacks). Furthermore, this 
approach also provides an intuitive mechanism to represent attack scenarios constructed 
through alert correlation, known as hyper alert correlation. Even though this kind of 



approach gives a better understanding about the intrusions' behaviours through the 
identification of logical connections between them, il has a major limitation: it cannot 
correlate unknown attacks (without attack patterns). Since the prerequisites and the 
consequences are required to build this correlation, only those known intrusions could be 
successfully identified in this approach (with the prerequisites and consequences having 
been previously defmed). 

" Alert Correlation based on the similarity' between alert features 
This class of methods correlate alerts based on the similarities of selected features, for 
example source IP address, destination IP address or port number (Debar and Wespi. 
2001). Alerts with a higher value of overall feature similarity will be correlated. Another 
research study has also been conducted in evaluating the use of a feature similarity 
function to fuse alerts that match closely but not perfectly (Valdes and Skinner, 2001). In 
this system, the similarity function is used to calculate the likeness of the features that 
match at least the minimum similarity specification, regardless of the match on the feature 
set as a whole. Once the alerts are considered having similar features, they will then be 
correlated using fusion algorithm. Although this method seems to effectively reduce a 
number of false alarms, it does suffer from one common weakness; it cannot fully 
discover the causal relationship between related alerts. 

" Alarm Correlation based on known attack scenario 
This type of approaches correlates alerts based on the known attack scenario. One of the 
methods used to correlate alerts or fijse alerts into a scenario is by using a data mining 
technique (Dain and Cunningham, 2001). The data mining technique can be proposed to 
produce a real time algorithm to combine the alerts produced by heterogeneous intrusion 
detection system into a scenario. The main purpose of constructing these alert scenarios is 
to simply group alerts which share a common cause, thus providing a better view of the 
security issue to the system administrator. Moreover, this approach works well in reducing 
the number false alarms, since either individual alerts or the whole scenario could be 
labelled as false alarm possibility. Once a newly arrived alert is received, the probability 
of this new alert belonging to a specific sceuMio must be calculated. Significantly, such an 
approach could effectively uncover the causal relationship between alerts; however, it 
could not be applied to correlate alerts generated by unknown attack scenarios. 

Generally, one of the most significant objectives of applying alert conelation techniques in 
intrusion detection is to provide a more succinct or high level view of security issues 
occurring in the protected network (i.e. the knowledge of occurring or attempted intrusions). It 
is worth remembering that the process of correlating alerts does not only involve a single or 
few components of procedure, it is a complete process involving various or a comprehensive 
set of components instead. For that reason, supplying an inclusive formalism and techniques 
of each component of aiert correlation might prove a better result ineffectively achieving alert 
reduction and abstraction. 

A smdy has been done in generating a general cortelation model that identifies a 
comprehensive set of components and a framework that analyses how each component 
contributes to the overall goal of the correlation (Valeur el al., 2(X)4}. As disclosed above, a 
number of alert correlation methods have been introduced so far with the main goal of 
decreasing the false alarm rate. Unfortunately, not all of the published methods provide a 
detailed account of how these correlation components should be evaluated and implemented 
in a real life enviroiunent. Besides, current correlation methods only focus on few aspects of 



alarm correlation components. For example, the identification and correlation of attacks into 
scenarios using prerequisites and consequences features do not provide enough detail on how 
the incoming alerts will be pre-processed before being correlated into scenarios. Due to this 
issue, providing a functional approach or method of alarm correlation mechanism is not 
enough; it should be followed by the procedure on how the complete set of components in 
alarm correlation analysis should work or be implemented in a real life environment. 
Significantly, the ftindamentai objective of presenting this comprehensive correlation process 
is to gain more understanding about the feature of the intrusions (e.g. the alerts generated, the 
target and source host of the attacks). Lastly, it should also be able to provide enough 
information about the impact of attacks as well as to assign an appropriate priority for each 
alert triggered by the events. 

5. The application of Artificial Intelligence techniques in IDS alarm 
correlation methods 

Artificial intelligence (Ai) techniques have become one of the most common methods being 
implemented in intrusion detection technology. Traditional intrusion detection has been 
previously developed and implemented by current enterprises. However, these systems have 
difficulty in successfully classifying the intruders, and require a large amoimt of 
computational overhead, which then makes it difficuh to create robust real time IDS systems. 
Due to this issue, AI is playing an important role in reducing the human effort required to 
build these systems and can improve its overall performance. 

Generally, there are several types of benefits offered by AI techniques which outperform other 
existing methods, namely flexibility, adaptability, pattern recognition, faster computing and 
learning abilities. In term of flexibility. AI techniques enable the system to easily adjust 
features such as the threshold value. AI also facilitates adaptation to new changes or rules if 
new data arrives or when the environment of the system has changed. One of the most specific 
and prominent fimctions of AI technique is its partem recognition capability. This 
functionahty is essential in detecting a new pattern of attacks, as no prior knowledge of attack 
behaviours is required. Moreover, self-learning is also another advantage of AI methods being 
studied in the intrusion detection research area. The ability of performing self-learning 
technique enables the system to effortlessly update to new changes (e.g. when a new rule or 
attack signature of new intrusion has been found). 

Several studies have been undertaken to improve the performance of alert correlation 
mechanisms by using AI techniques. One of the significant studies being conducted in this 
field is the application of alert ftision to correlate alerts fi^m muhiple sensors in a distributed 
environment (Siraj and Vaughn, 2005). Alert fusion is a process of interpretation, 
combination and analysis of alerts to determine and provide a quantitative view of the status 
of the system being monitored, importantly, this infrastructure consists of three essential 
components; namely alert prioritization, alert clustering and alert correlation. Thus, in order 
to fuse the alerts, a causal knowledge-based inference technique with Fuzzy Cognitive 
Modelling is implemented to find out the causal relationship in sensor data. 

Given that alert fusion is a main component this model, the principal objective of this research 
is 10 gain an overall understanding or condensed view of the distributed system by assessing 
the integrity, confidentiality and availability of the system resources in the network. In this 
work, the Fuzzy Cognitive Map (FCM) is applied in this mechanism to represent our 
perception or understanding about the network situation or intrusion's behaviours in a more 



structured way (e.g. by offering a structural representation of causal knowledge as well as the 
reasoning for causal analysis of data). Through the idea of using "concept" in this FCM, the 
relationships of events occurred in the system which generate a sequence of alarms could be 
described in a more systematic way. Fundamentally, "concept" is an event thai originates 
from the system whose value change over time. The "concepts" lypically shows the causality 
linlis between them; which then denote how much one "concept" affect the others. 

Overall. Fuzzy Cognitive modelling offers a good representation of data that enables the 
human operator to leam and interpret the data much easier. Moreover, this technique also has 
advantage in describing an attack scenario for Distributed Denial of Service Attacks (DDoS) 
by using cause and effect type of the "concepts". Since this method uses cause and effect 
events to interpret the data, it has a capability in discovering the causal relationship of alerts; 
which then could lead to the identification of a series of attacks. However, in spite of the fact 
that this technique offers numerous advantages in correlating the alerts, this mechanism has 
one major limitation; namely its inability to deal with unknown alerts and mapping 
requirements of sensor alert features into more a generalised structure. 

Most of the existing alert correlation techniques do not prov ide detailed information about the 
tactic or strategy of the intrusions, but simply cluster and correlate the alert into a specific 
class without further investigation of the issue. Another significant model of new alert 
correlation technique based on a neural network approach has also been proposed so far (Zhu 
and Ghorbani, 2006). Basically, this research is conducted to focus on the developmeni of 
new alert correlation technique that can help to automatically extract attack strategies in a 
huge volume of generated alerts. This proposed alert correlation model is buiU by using two 
different neural network approaches: namely Multilayer Pereeptron and Support Vector 
Machine. 

One of the most distinctive features of this AI approach is the use of supervised learning 
technique for creating a function for training data. Once the function has been created, the 
system could calculate or determine the probability that these two alerts should be correlated. 
Moreover, in order to make it easier for the correlation engine to correlate the alerts and 
perform attack strategy analysis, an alert correlation matrix is introduced to defme the alert 
strengths; which then determine whether the corresponding alerts should be correlated. Apart 
from looking into strength of the alerts in investigating the potential correlation of the alerts, 
feature selection has also played an important factor determining the probability of 
correlation. Such features include the timestamp. source IP address, target IP address, source 
port, destination port, as well as the type of attack. 

In generBl, this proposed model offers tremendous benefits in operational terms. As the major 
objective of this work is to provide a better or more condensed view of the security siwation 
to the network administrator through the extraction of attack strategy, this approach does 
outperform other models in offering automated construction of attack graph from a large 
volume of raw alerts. Unlike other approaches, which use pre-defined rules to correlate the 
alerts, this model does not require any prior knowledge to correlate the alerts, thus unknown 
alerts or attacks could be effectively delected. Despite the benefits offered, this approach has 
not been applied yet in a real-time environment. Correlation methods would be more useful if 
it could be implemented in a real-time environment, and could provide instant information 
about the attack strategy or attack patterns of intrusion occurring in the network environment. 



6. Conclusions and future work 

Even though IDS have been used for years and have demonstrated their worth in protecting 
organisation's resources, most still suffer from the problem of high false alarms rate and low 
detection rates. IDS systems are alleged to commonly trigger large volume of alarms, but 
most alarms are actually false, IDS technology could be fine-tuned as an attempt to reduce 
false alarm generation, but this may degrade the security level or even such action can be 
more risky, causing IDS unable to detect real attacks. Therefore, the tuning problem is always 
about searching for a balance of reducing false alarms while maintaining system security. 

Alen correlation could serve as one of the most viable solution in handling the false alarm 
problem. Various studies have already been conducted in this area, either by using a more 
logical approach or more complex methods such as Anificial intelligence techniques. 
Although a lot of current research has been done by introducing new alert correlation 
methods, all of these approaches have their own limitations. They either cannot discover the 
causal relationship among alerts, or they require a large nimiber of pre-defined rules in 
correlating new alerts (inability in correlating unknown alerts or attacks). For that reason, a 
better correlation mechanism is required, which enables the system to detect unknown anacks 
as well as facilitating the security practitioners to learn and gain a better understanding about 
the anack strategy and the intention of the anackers. Thus, knowing a real security condition 
of the network and the strategies used by the attacker to launch the attacks would then enable 
the administrator to take a more appropriate action to stop the attacks and prevent them from 
worsening. 

As AI techniques are deemed to be a powerful approach which could potentially ease human 
woritloads, they can play a key role or act as a key concept in the research of intrusion 
detection. Hence, designing and developing a new approach using AI techniques for anomaly-
based (based on the behaviour modelling) alarm correlation methods is the main idea of the 
author's ongoing research. Additionally, this research is also directed to improving the 
performance of alert correlation in providing a better quality of generated alarms and a 
reduction of false alarm rate. Correlaiion lechniques will become more valuable if they can 
be designed to perform a real-life correlation and provide instantaneous information to the 
administrator once the attack has been detected. Furthermore, supplying the information about 
potential target of the attack can serve as a valuable source in designing an effective response 
plan, which aims to prevent the attack form re-occurring. Hence, developing a better 
approach, which focuses upon alarm reduction and enables the administrator to concentrate on 
more the important decisions, is undoubtedly valuable research. 
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Abstract- It is a common issue that an Intrusion Detection System (IDS) 
mi^a generate thousand of aJerts per day. The problem has got worse by the &ct 
that IT inlraalnictute have become larger and more complieal.ed. the number 
of generated alarms that need to be reviewed can escalate rapidly, makuig the 
task verj' difficult to manage- Moreover, a significant problem facing curreut 
IDS technoiog>- now is the high level of false alarms. The niain purpose of iliis 
paper is to investigate the extent of fai-ie alariiLs problem in Snort, using the 
1999 D.AIIF'.A IDS p\-alnation datasel. .\ ihorougli inv'estigation has been carried 
out tu aSKes.s the acruraO" of alerts generated by Snort IDS. SignificanI )y. this 
experimeni has revealed an unexpected result: with 69% of total generated alerts 
are considered to he false alarms. 

Key words: Intrusion Detection System. False positive. True positiN-e. DARPA 
datasel. Snort 

1 Introduction 

Ihe issue of faLse ^tositiveshas become the major limiting factor for the peiibrniance of 
an TDS |5], Tiie generation of erroneous alerts is the Archilles" heel of IDS leclinolog>'. 
wiiich could render the IDS inefficient iti detecting attacks. Il is also estimated that a 
traditional IDS could possibly trigger W>^ of fake alarms from total alerts generated 
[10]. Recognising the real alarms from the large volume of false alarms can be a conipli-
cated and time-consuming task. Therefore, prior to addressing the issue of false alarm, 
a quantitaliv^ evaluation is required to assess the extent of the fatae positive problem 
fa<'ed by currcnl IDS. 

A number of research or efToris have l>een conducted to evaluat-e the performance 
of IDS in terms of its detection rate and false positive rate. One of the tnosl. well-
known and determined IDS assessments to date was undertaken by Defense Advanced 
Research Projects Agency (DARPA) ID.S evaluation [12]. This quaiititalive evaluation 
was performed by building a small network {test l)ed). which aimed to generate live 
background traffic similar to that, on a government site connected to the Internet. The 
generated data set, which included a numlxr of injected attacks at well defined points. 
were presented as ti'pdinnp daia, Ba.'iic Securitv Model (BSM). Windows NT audit 
data, process and file system information. The data were tliet) iLsed to evaluate the 
detection performance of signature-based as well as anomaly-based IDSs |14]. 

Although this data set appears to be one of the most p r e f e n ^ evaluation data 
sets used in IDS research and had addressed some of the concerns raised in the IDS 
research commnnily. it received in-depth criticisms on how this data had been collected. 



2 G. Tjhai, M. Pa[»doki, S. FuroeU and N. Clarke 

The degree to which the siiniiilsted background traffic is representative of real traffic 
is questionable, especially when it deals with llie reser^Wion about the value of the 
assessment made to explore the problem of the false alarm rate in real network traffic 
[16j. Significantly. Malionej- and Chan |15] also criticall.v discuss how this data can 
be further used to p\-aluate tlie performance of network anomaly detector. Altliough 
the DARPA IDS C'vahietion datasei can help to evaluate the detection (true positive) 
performance on a network, it is doubtfui whether it can be used to evaluate false positive 
performance. In fact, the time span between the dataset creation and its application 
to the current research has resulted in another reservation about the degree to which 
the data is representative of modem traffic. However, despite all of these criticisms, 
the dataset still remains of ijiieresi and appears to be the largest pubficly a\-ailable 
benchmark for IDS researchers |16]. Moreover, It is also significant that an assessment 
of the DARFA dataset is carried out to fiirther investigate the polenliai false alarms 
generated from this s>'ni.lielic network traffic. It is expected that the result of this 
analysis could describe or provide a general picture of the false alert issue faced by tlie 
existing IDSs. 

The main objective of the experiment described in this paper is to explore the 
issue of false alarm generation on the synthesized 1999 DARPA evaluation dataset. An 
investigation is also conducted lo critically scrutinize the impact of false alarms on the 
IDS detection rate. Section 2 presents a number of related studies carried out to evaluate 
the performance of IDS. Section 3 discusses the methodology of the experiment. The 
findings are presented in section 4 and lastly, followed by conclusions in section 5. 

2 Related Works 

As for IDS performance, a study has also been conducted to further assess the effcc-
t ivene^ of Snort's detection against 1998 DARPA dataset evaluation [Sj. Snort is an 
open source and signature-based IDS [9|. It is a hghtweighl IDS which ran be ea-sily 
deployed and configured by system administrators who need to implement a s[iecific 
security solution in a short amount of time [17]. In other words. Snort is a flexible pro­
gramming tool which enables the users to write I heir own detection rules rather than a 
static IDS tool. The evaluation was performed lo appraise the usefulness of DARPA as 
IDS evaluation dataset and the effectireness of the Snort ruleset against the dataset. 
Surprisingly, the result showed that Snort's detection performance was verj- iow and 
the system produced an uuacceplably high rate of false positives, which rose above the 
50% ROC's guess line rate. Unfortunately, no further explanation was given to describe 
the nature of false alarms. 

Interestingly, a paper by Kayacik and Zincir-Heywood | i l j discus*ed the benefit of 
unplementing intrusion detection systems working t c ^ t h e r with a fire«,-al!. The paper 
had demonstrated a benchmark evaluation of three security manf^ement tools (Snort, 
Pakemon and < 'isco lOS firewall). Significantly, the result showed thai none of the tools 
could detect ah the attacks. In fact. Snort IDS was foimd to have produced 99% of false 
alarm rate, the highest rate compared to the other IDS (Pakemon). The result had also 
revealed that Cii«» lOS had performed well and raised only 68% of false alarm rate. 
This has suggested the implementation of a Rrewall-based detection, which in turn 
decreases the attack traffic being passed to the IDSs. 

Apart from the two studies above, which focused upon Snort perlbnnance, there are 
a large number of studies that have iBed the 1998 and I9ffi DARP.A dataset to evaluate 
the performance of IDSs, One of those studies is that of Lippniann el ai |l.'Jj, which 
m a n n e d to deuiunstrate the need for developing techuicjues to find new attacks instead 
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of extending existing rule-based approach. The result of the evaluation demonstrated 
that current research systems can reliably detect many existing attacks with low false 
alarm rate as long as examples of these atlaclra are available for training. In actual fact, 
the research systems missed many dangerous new attacks when the alta<:li niechauisius 
differ from the old altai'ks. Interestingly, a similar paper had also been written by 
Lippmaim el al (14], fcK'using upon the performance of different IDS tj-pes. such as 
hosl-based. anomaly-based and forensic-based in detecting novel and stealthy attacks. 
The result of this analj-sis had proposed a number of pratrtical approaches applied to 
improve Ihe performance of the existing s>'stems. 

Alharby ajid Imai [2] had also utilised 1999 D.ARPA dataset to evaluate the perfor­
mance of their proposed alarm reduction sj-stem. In order to obtain the norma! alarm 
mode!, alarm sequence is collected by processing the alerts generated by Snort from 
the first and third weeks (free-attacks traffic) of DARPA 1999 datasei. FVoni these 
alarm sequences, the swiueiitial patterns are then extracted to filter and reduce the 
false alarms. I'he same dataset (using the first and third weeks of the 1999 DAKPA 
dataset) had also been applied by Bolzoni and Etalle [7] to train and evaluate the per­
formance of the proiHJsed false positive reduction sv'slem. Similarly. .^Ishammari el al 
[3j had also used such data to experiment their neural network based alarm reduction 
s>'stem with the different backgroimd knowledge set. 'i'he final result has proved tlial 
the proposed technique lias siguilicaiilly redticed the mmiber of false alarms without 
requiring much background knowledge sets. 

Unlike ()lher papers discu^ed above, our experiment focuses specifically upon the 
issue of false alarms, ral her ihau the performance of IDS (true alarms) in genej-al. In t h b 
study, we proptose lo investigate in a more detailed manner some of the shortcomings 
that caused the generation of false alarms. 

3 Experiment Description 

Given that the 1999 DARPA dataset is deemed lo be the largest publicly available 
benchmark, onr experiment was designed to utilize such data as the source of our 
invest.igation. I 'he experiment was run under Linux Fedora 7. and Snort version 2.6 was 
chosen as the main detwtor, Ihe reason for utilising Snort was due to it,s openness and 
public Hvailabihty. I'he Snort ruleset deployed in this evaluation is VRT Certified Hules 
for Snort v2-<J registered user release (released on 14 May 2007). In order to facilitate 
the analysis of IDS alerts, a front-end tool Basic Analysis and Security Engine (BASE) 
was utilized as the intrusion analyst console [6]. 

The primary data source of this evaluation was collected from DARPA evaluation 
daiasel 1999, Without training the Snort IDS with the three weeks irjuning data pro­
vided for DARPA off-line evaluation beforeliand. two weeks testing data (fourth and 
fifth week of test data) were downloaded and tested. Snort ran in its default configu­
ration, with all signatures enabled. 

The first stage of the experiment was to run Snort; in NIDS mode against the 
DARPA dataset. The manual validation and analysis of alerts produced by Snort were 
undertaken by matching against the Detection and Identification S<-oriiig Tnnli , The 
Detection Scoring Inilh is comprised of a list of all attack inslaiices in ilie 1999 test 
data, while Identification Scoring IVulh consists of alert entries of all aliacJc instances 
in the rest data |12], A match Ls identified as same source or destination IP address, port 
mmibersand their protocol type. In this case, timestamp does not really help identi{j*ing 
the true alerts since the altacJis were labeled by ihe lime the malicious artivilies set 
off while Snort spotted them when malevolent packets occiirred. Tliis might render the 
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System missing nunierotis matches. Hence, by recognizing the toatches for those attack 
instances, the number of false positives alarms will then be identified. 

Once the alerts were manually verified and ihe false fiositives were isolated, the 
results were presented in several diagrams to gi\-e a clear picture on the issue of fabe 
alarms. Individual Snort rules were exanuned to further analyse the blse alarms issue 
and the impact of false alarms on IDS detection rat«. 

4 Results 

Our earlier evaluation [21). whidi was conduct-ed to focus on the issue of false aJamis 
in real network tr^Bc. asserted that the problem remains critical for current detection 
systems. Hence, this experiment was carried out to endorse our previous findings by 
highlighting the issue of the false alarm rate on the DARPA dataset. 

Snort has generated a total of 91,671 alerts, triggered by 115 signature rules, in this 
experiment. Of the alerts geueroled from this dataaei, around 63.000 (69%) were false 
positives. Sigiiilicantiy, this experiment had revealed a similar result to that yielded in 
our previous e\-a!uation as well as Kayacik and 2incir-He>-wood [ l l ] . The false aiarnis 
have significantly outnumijered the true aiarms. 

' lb obtain a more in-deplh understanding of the natiu-c of Snort's alert generation, 
Figure 1 portrays a ROC plot [4| for the overall result, which illustrates the overall 
alert generation of Snort 's signature rule. Since most plots have the value of X-axis 
and Y-axis less than 2000. Flgiu-e 2 depicts a clearer picture by focusing upon the 
area in coordinate 0 to 201X). The number of false positives generated b presented per 
Signature for the X-scale, while the true positive is portrayed for the Y-scale. ITiis 
diagram also describes the random guess line {non-discriminatorj- tine), whicli gives a 
point along a diagonal line &om the left bottom (0, 0) to the top right comer (10, 10). 
This diagonal line divides the space into two domains: namely gootl and bad figures. 
Ideally, a good detection system should generate a zero value for the X-scale; meaning 
no false positive has been generated by a particular signature nJe . The area below the 
line represents a higher number of false positives than true positives. Thus, the more 
plots scattered on this area, the poorer the fDS is. 

14000 
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Fig. 1. Overall Alert Generation per Signature 
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As tlip plot diagram can only give an overview of IDS alert generation. Figure 3 
pro\ides the exact figures of Snort s signatures generating The false and true positive 
alerts in a Venn diagram [18]. Stnprisinglj'. 73 signatures had raised the false positive 
alarms: of which 26 of them had triggered both true and false positives. It is also 
worth noTicing that of those 26 rules, 14 signatures had false positives outnumbering 
tlbe true positives. This seems to be a verj' critical issue faced by contemporary IDSs. 
The following subsections discuss this issue in grea!,er detail. 

4 .1 TVue Pos i t ive 

Given that the objective of this experinienl is to investigate the issue of IDS false 
alarms, evaluating Snort's detection performance on DARPA dataset is beyond the 
scope of this study. In this paper, therefore, we will not further eraluate the extent of 
Snort 's detection perforinaiice on a particular attack in a greater detail. However, this 
subsection presents a brief overview of the Snort detection perforniaiice oti 4 attack 
categories, namely probe, Denial of Services (DoS). Remote to Local (R2L) aud User 
to Root (T'2R). 

In this experiment, 42 of tlie total ll.*] signatures had generated pure true positives. 
Approximately only 31!^ (27,982 alerts) of total alerts gen^ated by 68 signatures were 
asserted a.s true positi\'es. Interestingly, about 72'^ of them were generated due l<) the 
probing a<.ti\-ities. 

Generally. Snort fares well in delecting probe attacks, which largely generate noisy 
connections. In this study, we fomid that Snort. hft.s a very low threshold for detecting 
probing activity: for example in detecting ICMP connections. This had made up of 
^10^ (37.322 alerts) of the total alerts. In spite of its sensitivity. Snort liad getierated a 
small number of true ICMP alarms in this experiment, which accounted for only 13% 
of those 37,322 alerts. This significantly highlighU the miderlying flaw of Snort IDS 
alarms. 

^Ljinr*r a r r a t ^ Alwma 

• Aran &^^«fluB 

Fig. 2. Alert Ceueiaiiou per Signature within Cartesian Coordinate (2000. 2000) 

In term of the DoS attacks. Snort did not perform well. Only one attack, named 
Back [12j. was detected without generating any false positives. This had contributed 
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to 20% of total true alarms. As for remote to local {R2L) a t t a d s , about 16 out of 20 
tyfx* of attacks had been detected. This, however, only made up of 2% of true alarms. 
Although Snort fares a-ell in lliis calegoiT,-. it had critically nibsed numerous allatJt 
instances, such as '^pmacro'" at tadt |12]. 

The last attarJc calegon', user to root (U2R). is the most challenKing attack for Snort 
IDS. Sirne l '2R attack t\"pical]y occurs on a local machine, which attempts to elemie 
administrator's privileges, it reUes solely on a system log or computer's files\-stem. As 
such. Snort, a network-based IDS that merely depends on network connections, does 
not work weU in detecting such attacks. Indeed, only a small proportion of true alerts 
(less than 1%) were generated owing to this category. 

False 
Pttsilivcs 

47 
Signatuies 

26 

• f t » 
Ftsitiws 

42 
SigMtBOS / 

Fig. 3 . Snort JDS Alarms - True and False Positives 

Overall, the experiment has yielded a similar result as the one re\'ealed by B r u g ^ r 
and Chow [8], Snort's performance does not look particularly impressive. Although 
there v«-ere quite a significant number of tnie alarms (27,982 alerts), only 32 from .'>1 
tj-pes of at tacis were detected. In fact, not all instaaces from ttwese 32 attacks were 
perfectly detected by Snort. This emphasises the fact that Snort was not designed to 
detwt all types of attacks, but rather to work in conjimction with other IDSs to achieve 
the best detection performance. 

4.2 False Pos i t ive 

Approximately, 69% of total alarms are affirmed to be false positivre. Figure 4 shows 
the top b false alarms raised by Snort. Interestingly. 48'^ of the total false alarms 
were made up of ICMP alerts. Logging every connection a^ociated with probing, for 
example all ping activities, will only ^ n e r a t e a huge number of false posi t ive. In fact, 
all detected ICMP traffic did not surely imply the occurrence of probing actions, but it 
was merely an informational event, which possibly indicates tlie occurrence of network 
outage. 

In term of the alert categories. 39?{. (24,835 alerts) of the total false alerts were 
triggered due to a policy violation. Siguificantly, these types of alerts are more related to 
irrelevant poatives than false poaitives. Irrelevant positives refer to the alerts generated 
from umuccessful attempts or imrelated vulnerability, which do not require immediate 
actions from the administrators. However, as those informational alerts were not related 
to any suspicious activity from DARPA attack database and in order to make it simpler, 
they will be referred to as false positives. 

The highest number of false alarms in this experiment was triggered by LNFO web 
bug 1x1 gif attempt signature. This signaiiu'e rule was raised when the privacy policy 
violatbn was delected [20]. Theorerically. the web bug is a graphic on the web page 
and email message, which is used to monitor users' behaviours. This is often invisible 
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{(A'pically only IxJ pixel in size) and hidden to com-eal llie fat'l tliat ihe surveillance 
is taking place [19]. In fact, il is also possible lo place web bug in a Word docuinenl 
as it allows html in a dorinneiil or images lo be downloaded troni the exteriial server. 
This is particularly useful if the document is supposed (o i>e kept private, and web 
bug provides the information if the docunieni iiad leaJted by fmding out how many LP 
addresses had looked at it | l j . Since none of these web bug alerts related to any at rack 
instances, our study reveals that no true alariiL-i associated with this signature had 
been generated. Therefore, 22.559 alerts from this signature were entirely asserted as 
false positives. This contributed to 35'?! of the total false alarms raised by the systena. 
Although both ICMP and weli-hug alerts ran be easily filtered by the administrator 
through disabling or altering the signature rules, simply tuning the Snort signatures 
could increase the risk of missing real attacks. 

Another similar policy-related alarm logged in tliis experiment is CHAT IRC alerts. 
Tiiese aJerts accoiuited for ^.6% (2,276 alerts) of the total false alarms. Snort generates 
these IRC alerts because the neiwork <'hal clients have been detected, lu coiiiinou with 
the previous "web bug" signature. IRC alerts were not truly false positives. Principally, 
Snort, given the I'orrect rule, fares well in detecting policy violation. Indeed, through 
the in\'estigation of the DARPA packet payload. it was noticeable that the cliat acti\ity 
did take place on a certain time. However, since these alerts did not contribute to any 
attack instances in the attack list, we would assume these as false positives. These 
CHAT IflC alens were triggered by 3 signalure rules; namely CHA'l' IRC message, 
CHAT IRC nicic change and CHAT IRC channel join. 

Apart from those top 5 false alarms signatures shosoi in Figure 4. there were 68 
other signatures that generated false alarms. Of the total 115 signatures. 47 of them 
hEid triggered one imiidred per c-ent false positi^'es. All these aleils are known as pme 
false positive alarms since they are not in common with any true alarms. Significantly, 
25 of those 47 signalures were web-related signatures. Although port 80 was one of 
the most vulnerable ports for DARPA attacks, these signatures did not correspond to 
any attack instances listed in the attack database. The effectiveness of Suorl rules in 
detecting welj-reiated attacks largely iiinges on the effectiveness of keyword spotting. 
Most of the rules lookuig for wcl>related ai twks are loosely writt.en and tuerely checked 
on the presence of a particular string in the packet payload. This renders the system 
prone generating a superfluous number of false alerts. Aside from the web-related alerts, 
other 22 signaiures, involving K'MP informational rule, polii'y. preprocessors, exploit 
attempt and SQL rules, had also generated a significant number of false positives, 
which accounted for iiVf (28340 alerts) of total false alarms raised by the system. 

Despite the infomiatiotial and pohc\-reIated aJerts, the pure false positives could 
also be generated due to the loosel_\- written rules of Snort. IDS. For example, the 
vulnerability of Snort in relying on the kej-word spotting is intolerable. This has been 
furtter disctissed in Tjliai et al [21]. 

As described earlier, exact 14 signatures has produced more false positives than 
true posilix-es. This highlights the critical issue of false alarms in the real world. The 
process of identifying the real attacks i-ould l>e undermined if the false positives per 
signature highly out mini bered the true positives. In addition, this asuld render the 
administrator apathetic; thus tending lo conclude that any such alerts as false positives. 
As a consequence, this problem <»uld seriously inhibit IDS detection performance in a 
real environment. 

While Snort could detect 32 types of attacks, it had produced a large volume of 
mmecessary alerts: in term of its alerts' qualit.y. One of the good examples can be taken 
from this experiiiieiil is the alerts triggered due to the detection of "Back" DoS attack, 
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by WTlB-NflSC apache director\- disclosure attempt signature. Only 7 instances from 
this aitai-k were included into the DARP.\ dataset. but surprisingly Snort det^ctwl 
all 7 instances by triggering .5.62S alerts from single signature. Obviously, Snort lias 
generated a huge number of redundaiH alerts in this case. Indeed. thLs often leaves the 
administrator with the difficulty of veriljing every single alert. 

In tenn of the false pcKilives. the experimenl revealed a slightly different result 
as generated by Brugger and Chow [S]. . \ smaller number of false alarms, accounted 
fcff 11?E of total alerts, had been estimated by Brugger and Chow, c o m p t u ^ to our 
result (69% of total alerts). The insignificant number of false ^arnis was presumably 
due to the reuio^ul of "web-bu^* rule that had generated a very significant iiuinlier of 
false alanna. 'iTiia signature was Ijelieved to not provide any true positives, and could 
potentially prevent an objective evaluation of false positives produced by an IDS. As 
for Snorl rules, only 3fi signatures were triggered in their study. However, the "^ICMP 
Destination Unreachable Port Fnreachable" signature had produced the second highest 
number of false alarms, simihtf to our result. 

The experiment result has shown that Snort hafi produced an imart^ptable number 
of false alarms. However, the evaluation of 18 IDSs on 1999 DARPA dataaet. had 
yielded a remarkable result, indicating ihat most sj-stcms had false alarm rates which 
wem low and well below 10 false alanns per day [L4|- This might be due to their ability 
to tune the .systems to reduce the false alarms on three weeks of training data prior to 
running the two weeks of test data. 

5 Conclusions 

Given the time span between the creation of DARPA dataset and Che Sncnt rules, we 
initially thought thai Snort coiild fare well in delect.mg DARP.A attacks. What we found 
instead was that the detection performance was low; only :i2altaci» were detected, and 
Snort has produced a lai^e volimie of false positives. Indeed, not all instances of those 
32 attacks have been perfectly detected by SntHl. From t h b experiment, it is obvioiB 
that the issue of false alarm lias become very critical. The false positives outnumbered 
the true positive by a ratio of 2:1. In fact, more than half of the signatures producing 
both true and false positives in this evaluation have triggered more false positive than 
true positive alarms. This issue would critically reduce IDS detection performance; not 
only in this simulated network environment but also in a r^al environment. 
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Regarding The quality of alerts generated. Snort generated a huge number of re­
dundant alerts, which critically highlighted the performance issue of the ynort alert 
reporting system. This often leaves the administrator with overu'helniing alerts, whkh 
renders alert validation difficult 1,0 nianuge. Irnpor(.antIy. tiiis issue has also driven the 
ikeed to have an improx'ed or better alarm report ingsyst-em through the implemenlalion 
of alarm siippression and correlation methods. 

Apart from total 39.S19 false alerts triggered by 12 signatures generating both false 
and true aJarms, Snort has also produced 28.IM0 pure false positi'\'e alarms, whicii <'an 
he arguably expected to happen in a real-uet.work enviroiiTiient. Interestingly, this has 
accounted for 31%. of alarms. However, in this experiment, we have not had a chance to 
individually track the cause of these alerts. Ha^^ng said that, we believe that th'" might 
be caused by the nature of Snort IDS, which relies on ke\-word spotting (i.e. matching 
the packet content to signature rule) to detect iiialiciou.'; activity. Significantly, this 
finding underlines another weakness of Snort IDS, which could render the sj'stem prone 
to produce excessive alerts. 

Overall, our study has confirmed the criticality of the IDS false alarm issue. Given 
the findings in this evaluation, endorsed by our previous experimenta! results, it is clear 
that false alarm is a never-ending issue faced by current IDS. The sensitivitj' of Snort 
rules in detecting probing activities can generate a large volume of false positives. 

The ideal solutions to this problem is either to tune the IDS signature rules: this 
shotild be done by a skillful administrator who lias the knowledge of security and 
knows we!l the en\'ironment of the protected network, or alternatively to focus upon the 
alarm correlation, which aims to imiirow the qualitj'of the alerts generated. The idea of 
reducing false aJami in alarm twrrelalion syst«m has become the maan subject of current 
IDS research. However, apart from the false alarm reduction, the alert manageuieiit. or 
alert correlation should also be aimed at the presentation of the IDS alerts itself to the 
system administrator. This might include the reduction of the redundant alerts and 
the aggregation of the related alerts (i.e. \ ^ o u s alerts generated by a single attack). 
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1 Introduction 

IDS can play a vital role in ihc overall sccurily infrasmiL'ture, as one lasi defence 
againsi aiiai-ks after secure neiwort; architeciure design, secure program design and 
firewalls 111. Although IDS technology has become an essential part of corporate 
neiwork archiieclurt. Ihcanofdetecling intrusions is still far from perfect. A signif­
icant problem is [hat of false alarms, which correspond (o legiiimaie activity that has 
been mistakenly classed as malicious by the IDS. Recognising the real alarms from 
the huge volume of alarms is a complicated and lime-consuming task. Therefore, 
reducing false alarms is a serious problem in ensuring IDS efficiency and iLsability 
[2]. 

A common technique for reducing the false alarm n^c is by performing a tuning 
procedure. This can be done by adapting the set of signatures to the specific en-
vironmeni and disabling the signatures that are not related to it iSJ. based on the 
fact thai some vulnerabilities exist in a particular OS platform only. However, al­
though this can offer a means of reducing the number of false alarms, [he pntcedure 
can also increase the risk of missing noteworthy incidents. Therefore, the tuning 
process is actually a trade-off between reducing false alarms and maintaining the 
security level. This often leaves administrators with the difficulty of determining a 
proper balance between an ideal detection rate and the possihiliiy of having false 
alarms. Fuithermore, tuning requires a tht)rough examination of the environment by 
qualified IT personnel, and requires frequently updaiing to keep up with the llow of 
new vuinerabililies or threats discovered 126J. 

The aiillio[)> arc v.ilb the UnivciMly or Plymouth. UK 
e-maii: {gina.tjhai.maTia.papa(laki.̂ .fumell,n.ctaTke}@p1yiiH)ulh.ac.uk 
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This paper investigates the problem of false alanns based upon experiments in­
volving the piipular open sourvc network IDS. Smm [7]. A number of potential 
issues arc presented along with the analysis undertaken to evaluate the IDS pert'or-
manee on real network traffic. Section 2 critically reviews background information 
on the false alarm problem, and provide a critical analysis of existing research in 
tiffi area. The methtxlology of the experiment is presented in se«ion 3. Section 4 
im)vides the findings from the private d^asel. followed by cuttclusions in section 5. 

2 Related work 

The problem of false aiarms has ticcotne a major concern in liie use of IDS. The vast 
imbalance between actual and false alarms generated has undoubtedly undermined 
the performance of IDS |9i. For thai reason, the main challenge of IDS develop­
ment is now no longer focusing only upon its capability in correctly identifying 
real attacks but also on its ability to suppress the false alarms. This issue had been 
extensively explored and analysed by Axelsson |2] based on the base-rate fallacy 
phenomenon. At present, a solution to restrain the alarnu is not close at hand, as 
numerous aspects (e.g. attack features) need lobecon.Mdered as the pi^reijuisites to 
develop a better alarm reduction technique [121, Developing an alarms suppressing 
technique is a continuing prcx;ess rather than an isolated, one-off action. The num­
ber of reported attacks (and the associated IDS signatures), increases each month, 
with the eonseijuenee thai mning becomes a requirement throughout the lifecycle of 
an IDS. 

Similar to our ttsearch. an evaluation had been carried out by Brugger and 
Chow [4] 10 a.ssess the performance of traditional IDS. Snoit. This evaluation had 
been conducted using the baseline Defense Advanced Research Projects Agency 
(DARPA) dataset 1998 against a contemporary version of Snort. Alth<High the u.se 
of DARPA daiaset had been strongly criticised in IDS evaluation. i[ slill serves as a 
benchmark by allowing the comparison of IDS tools with a common daiasel [16]. 
This as.sessment was performed to appraise the usefulness of DARPA as an IDS 
evaluation datasei and the effectiveness of the Snort ruleset against the datasci. In 
order to analyse Snort's alarms, a perl matcher script was used to report the false 
negative and positive rales: thus generating the Receiver Operating Charaeierisiic 
(ROC) curve for a given set of attacks. Given the six year time span between the 
mlesel and the creation of the dataset. it was expected that Snort could have effec­
tively identilied all attacks contained in the datas^. Conversely, what they found 
instead was the detection performance was very low and the system produced an 
unacceptably high rate of false positives, which rose above the 50% ROC's guess 
line rate. This might be due to the fact that Snort has a pn^lem detecting attacks 
tiKXJelled by the DARPA dataset, which focused upon denial of ser\ice and probing 
activities | I3]. In particular. Snon is alleged to commonly generate a high level 
i>f false alarms [17] and the alarm rate reported in this evaluation was not cred-
i t^ le enough to prove Snort's lalse positive performance m a real network, which 



[nvestiganng ihe imtblemof IDS false alanns: An enpninienial htudy using Soon 3 

mighl be mui;h worse or much bcUcr. Moreover, ihc (jthcr experimenLs itiok place 
a few yeare ago. which means thai Snort's performanee may have changed sinre 
then. In view of that, our research decided lo assess the performance of Snort on a 
morc realistic data, as an attcmpH to critically evaluate the false positive issue of the 
system. 

3 Experiment Description 

In order to further explore the problem of false aliwrns faced by current IDS tech­
nology, an experiment was conducted to analyse and evaluate IDS alens generated 
by real network traffic. In common with the earlier research referenced in the previ­
ous section. .Snort, was chosen as the main detector. The rca,son for utilising Snort 
was due to its openness and public availability. Moreover, an investigation involv­
ing such a commonly used IDS can give an insight into the extent of the false alarm 
problem in other IDS systems as well. 

A number of criticisms had been raised over DARPA datasei. questioning the 
use of synthetic data to picnui; a real world network as well as the taxonomy used 
to categorise the exploits involved in the evaluation [ISJ. Owing to these issues, 
our experiments involved the evaluation of Snort on both DARPA [231 and private 
data.set. However, this paper only presents an experiment using a private daiasei, 
which was collected at University of Plymouth, The data was collected on a public 
network (100-150 MB/s nelwori) over a period of 40 days (starting from May I7ih 
to June 25thl. logging all traffic to and from the University's web server. This in­
cludes TCP (99.9%) and ICMP (I). 1 -Ji) traffic. The traffic collection was conducted 
with a conventional network analysis 1<HI1. icjxiump. and it involved the collection 
of the full networit packet, including the packet payload. Although storing the full 
packet information significantly increased the storage requirements for the experi­
ment, it was important to maintain this information for the validation and analysis of 
IDS alarms. Tlic collected payload data was then further processed by Snort IDS in 
Network Intrusion Detection iNIDSl mode. It should also be noted that traffic con-
lining web pages with the potential of having sensitive / contideniial information 
was excluded from the packet capture, in order to preserve the privacy of web users. 
This was accomplished by applying filters on the traffic, prior to it being captured 
by tcpdump, Ngrep was used for this purpose [18J, 

The first stage of the experiment was to run Snort in NIDS mode, in its default 
condguration. This means that no tuning whatsoever was conducted. The aim of 
this phase is to investigate the extent of the false alarm problem with Snorts default 
ruleset. The next phase of the experiment involved the analysis of tlie same traffic, 
after tuning had been performed on Snort A number of techniques were applied for 
the tuning, including setting up the event thresholds and adjusting Snort's rules [19], 
A necessary requirement for this was the manual validation and analysis of alerts 
pn'jduced by Snort in the first phase, and identification of signatures that are prone 
lo false alarms. The analysis of IDS alerts was supervised by a certified intrusion 
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analyst, and the fmnt-end tool Basic Analysis and Security Fjigine (BASE) was 
utilised to ELSsisi the inirosion analysis process |3]. 

The analysis of alerts was superv iscd by a GIAC Certified Intrusion Analyst [10]. 
OTKC \he alerts were manually verified, the result was presented in a ROC diagram: 
a graphical plot of Snod alarm gcnenilion. In order to reveal a clear picture of the 
false alarm problem, a RCKT ploi is preferable. This type of grafrii can demonstrate 
d^ trade-off between the ability to identify correcity between true positives and the 
risk of raising too many false positives. L.'nfortunately. there were iKi true negative 
(number of benevolent activities passed) and false negative (number of real attacks 
missed) value known in this analysis sitKc real network traffic was used as the input 
dataset. .^s an alternative, the plot diagram is drawn to represent the actual number 
of false and true alarms instead of their alarms rate. This diagram provides a simple 
grafriiical represcnEallon of the false alarm problem, thus enabling the analyser to 
easily comprehend the trend of false alerts. By demonstraiing the graphical pUx of 
false positive \^rsus true positive, this appRiach visibly explains the criticality of the 
false alarm issue. The alarm rale is calculated as follows: 

False Alarm 
False Alarm Rate = x l(K) 

Total Alarm 
^ „ True Alarm 
True Alarm Rate = x 100 

Total Alarm 

4 Resulte 

The lack of knowledge or awareness about the complexity of network by IDS tech­
nology IMS led to the generation of excessive amount of false alarms. Generdlly, 
there are three possible alert types raised by the system, oamely true pc^itivcs (alerts 
from real attacks), false positives (legitimate activities thought to be malicious) and 
irrelevant positive (alerts from unsuccessful attacks or t e m p t s |121. The last two 
alerts are the main concerns in this study. 

This section presents the results oftheenperimeni. Figure I depicts the R(X^ plot 
for the overall result, which represents the general detection performance of Snort 
IDS. In order to create a simpler illustrative graph, which facilitates the comprehen­
sion of Snort's detection abiliiy. the false and irue positives values are presented in 
a proptirtion of thousands. TTic number of false positives generated is presented per 
unit time (per day) fen'the X-scale, white true positives are portrayed for the Y-scaie. 
This diagram also represents the random guess (known as non-discriminatory line). 
which gives a point along a diagonal line from the left bottom (0.0) to the top right 
comer (10.10). This diagonal line divides the s p ^ e into two domains: namely good 
and bad classification. Ideally, a good detection system should yield a point above 
the line, meaning the number of real alerts (true positives) triggered should not be 
exceeded by the number of false positives generated. 



Investigating the problem oT IDS blse alarms: An experimemal *̂ udy a^ng Snort 

"^ ' 7 - * n M ^ l '. ••. * -
- I r e : 1 ^ :fi 

Hw^ei drorv Amna TliiiiiiMili 

F ^ 1 Geneianon of alens 

Signilicanlly. our research has also produced a similar result to thai yielded in 
Brugger and Chow's evaluation. The number of false positives generated is massive. 
This indicates thai the Snort's false p(isiti\e performance on real network could be 
much worse than described in their evaluation. 

This experiment focused on the analysis of false positive alarms, as opposed to 
other studies 114, 4|. which were directed to eitplore the issue of false negatives. 
The mam objecfive of this analysis is to merely provide a general view of the scale 
of false positives that may be generated by cufrcnt [DS. The following subsections 
discuss this case in greater detail. 

4.} False Positives 

A laige volume of alerts, largely comprised of false alarms and irrelevant positives, 
drives the need to verify the validity of the alerts generated. Interestingly, apart fnim 
the false positives, our study reveals that some alerts were raised due to informa­
tional events, wliich merely occurred as a result of a netwoit problem, not owing to 
the detection of real attacks. These types of alerts are known as irrelevant positives. 
Indeed, the unsuccessful attacks, or attempts that dm ai an invincible taiget. might 
cause the system to generate such alarms. 

Figure 2 provides a clear picture of the number of true and false alarms getterated 
per day. In this context, it is obvious that the false alarms highly outnumbered the 
true alarms. Approximately 96'? of alerts generated are asserted as false positives, 
while less than i'3 of the total alerts are affirmed lobe irrelevant positives. In order 
to make it simpler, irrelevant alarms are regarded as false positives alerts in this case 
since no immediate and crucial responses required from these events. By looking 
at the Snort alerts generated from the University's web server, most of the false 
positive alarms came from the category of web application activity. Table I shows 
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Fig. 2 Cunqnnson becwecD False Positive and True Positive alarms 

a compfeie lisi of the Snort alcm triggered by the data. The first 3 alem are the false 
positives alerts, which will be further investigated later in the subsubsections. The 
rea.son for focu.'sing upon these alerts is due to the quantity generated, which is m ^ e 
up of more than Wl':* of total alerts raised by the system. 

4.1.1 WEB-nS view source via translate header 

This event is categorized as web application acdvity. which targets Ihe Microsofi IIS 
5.0 source disclosure vulnenibiJiiy [201. Since Microsofi ITS has the capability of 
handling various advanced scriplable files such as ASP. ASA and HTK. the use of 
specialized header "Translate F" on HTTP GfcT request might force Ihe web server 
to present the complete sotircectxJe of the requested file to the client without being 
executed first by the scripting engine. In addition, this attack only works well if the 
trailing slash"/" isappended to the end of requested URL [5.6]. 

Surprisingly, this single alert accounted for 59*3 of the total aleas. Therefore, ap­
proximately 1970 alerts were generated per day by this event. Although this evenl is 
deemed to be an attack that targets the Microsofi IIS source disclosure vulnembilily, 
this could possibly be a false positive. Some applications, for example Web-bu.sed 
Distributed Authoring and Versioning (WebD.W) that make use of "Translate T as 
a legitimate header, might cause this mle to generate an excessive amount of false 
alarms (25 i Moreover. WebDAV PRtJHHND and t)PTK)N methods also make use 
of this Translate f ~ as a leigitimalc header to retrieve the information or properties 
of the restHiaes identified by tf»c Uniform Resource Identifier fURI) (nearly 96% of 
alerts generated by this event were ntri HTTP GET requests). Signiticandy. in this 
experiment, there is no alert generated by this signature, which required immediate 
ution or indicated ihe occurrence of [he real attack. 
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Table I Complele li-.t of Snoit alerts 

No SicnatQrc*^ Tola] alerts 

1 WEB-liS view si>ina: via translale header 78865 
2 WEB-MISCiobof^.ui acccvs 30011 
3 ICMP Llmricver Ping 10254 
4 BARE BYTE UNICODE ENCODING 63<»2 
5 POLICY Googte Desktop activity 3258 
6 SPYWARE-PIT TTackware funwehptoducls mv*el>seaichtciolt>ar-funi(xrfs 1873 

runtime dclecliun 
7 ATTACK-RESPONSE 40? Fortiidden 7W 
8 ICMP PiNG Cyberkjl 2.2 Windows 651 
9 DOUBLE DECODING ATTACK 504 
10 ICMP Destination UniEachable Communication Administratively Prohibiled ISI 
11 TCPPortsweep 124 
12 SPYWARE-PLT Hijacker searehmitacle-elilebar ixmiime detection 80 
13 WEBMISC DS_SlDreaccess 60 
14 IIS UNICODE CODEPOINT ENCODING « 
15 WEBROOT DIRECTORY TRAVERSAL 35 
16 SPYWAREPL'T Adware hocbar runtime detection - hothar uss'-agail 27 
17 WEB-1IS a.siMJot aneinpl 26 
18 TCP Ponscan 19 
19 SPYWARE-PLTTrackwarealexa niniimedetection 19 
20 WbB-PHf IGeneiic Free Shopping Can page.php access 17 
21 ICMP PING NMAP 17 
22 ICMP Dej.[inaliiin ITnreachable Communication with Destination Host is Ad- 13 

nuni.slialivcl} Ptohibiled 
23 WEB-CGl calendar acce•.̂  11 
24 MULTIMEDIA Quicktime User Agoil Access 10 
25 WEB-MISCimianet access 8 
26 ICMP redireci hosi 8 
27 ICMP PING speedera 7 
2K SPYWARE-PLT" Hijacker markeLscore niolime detection 7 
29 WARNING: ICMP Original IP Fragmented and Ofl^ei Not 0! 6 
30 WEB-MISC WebDAV search access 5 
31 WEB-FRONTPAGE/.viiJiin/sccess 5 
32 OpenPon 5 
33 WEB-PHP remote include path 4 
34 WEB-CGl fonnmail access 3 
35 WEB-FRONTPAGE-itiJnf.btml m:<x-^ 3 
36 SPYWARE-PUTTnckler teoma-seaichbar runtime daection 2 
37 WEB-PHP iLmlrpt,l*p P"" atlempl 2 
38 WEB-CLIENT Microsoft wmf metafile access 2 
39 WHB-MISC Domino tt'etudimn.nsla[x;esN 2 
40 OVERSIZE CHUNK ENCODING 2 
41 ICMP Souice guench 2 
42 WEB-PHP lesi.php access 2 
43 WEB-PHP calcndai.jriip access I 
4-1 WEB-PHP admin.php access T 
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4 . U WEB-MISC robots.txl access 

This event is raised when an attempt has been made to access robots.txl hie di­
rectly (211. Basically. R>bots.ixi file is a file that is created to keep the web pages 
from being indexed by search engines. More to the point, this file provides a specific 
instruction and determines which part of a website a spider robot may visit. IniciEsi-
ingty. the problem is thai the webmas[t;f may detail sensitive and hidden directories 
or even the liKation of ihe secret tiles within tiie robots.tsi tile. This is considered 
extremely unsafe siiKX this file i.s located in web server's document root directory, 
u'hich can be freely retrieved by anyone. 

/Although this event is raised as the indicatiir of vulnerable information attack, 
there exists high possibility that all these alerts were raised due to legitimate activ­
ities from web robots or spiders. A spider is software that gathers information for 
search engines by crawling around the wrf> indexing web pages and links in those 
pages. Robots,tM file is basically created to restrict the web spider from indexing 
pages thai should not be indexed (e.g. submission pages or enquiry pages). As web 
indexing is regular and structurally repetitive, this activity tends to cause the IDS 
to trigger a superfluous amount of alerts. In this study, approximately 2 3 ^ of to­
tal alerts (approximately 750 alarms per day) were accounted for by this web-misc 
activity. Given that all alerts generated frt)m this event are owing to ihe aciiviiies 
of web spider, they are considered to be false positives. Significantly, this issue has 
^iparently disclosed the drawback of Snort IDS in distinguishing legiiimaie activ­
ity from the malicious one; especially when il deals wiih the authorization or file 
permission. 

4.13 ICMP LJrttriever Pine 

ICMP L3retriever fSng is an event that occurs when ICMP ech<i request is made 
from a host running L3Retriever scanner [22]. This type of ICMP echo request 
has a unique payload in the ntessage. which significantly designates its distinctive 
characteristic. This traffic is considered to be an attempted reconnaissance since 
the attackers ntay use the ping command to obtain ICMP echo reply frtjm a lis­
tening host. Surprisingly, in this analysis, quite a few alerts were generated from 
this event: contributing to S% of the total alerts generated. This figure indicates that 
approximately 2.̂ 0 alerts were generated by this signature rule every day. 

Considering the source IP address associated with these alerts, it is obviously 
clear that all ICMP requests were- sunt from the external hosts. Further investigation 
was coiKliiaed to critically analyse and discover if possible malicious events hap­
pened subsequent to die ICMP echo request. Surprisingly, there were DO malevolent 
activities deteaed Following the ICMP traffic. In addition, nrnmal ICMP r^uests 
generated by Windows 21IIX) and Windows XP are also known to have similar pay-
loads to the one generated by L3Rctriever scanner 124|. Generally, this traffic is 
routine activities run by computer systems (especially Windows 2000 and XP sys­
tems) to communicate with their dc»nain controllent or to peri'orm network discov-
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ery. In view of this issue and given thai no suspicious output detected following 
these iCMP requesls; these alerts were likely false positives. 

4.2 Fine Tuning 

False alarm for one system might not be an erroneous alert for other systems. For 
example, port scanning might he a malicious activity for normal users, but il is a 
legitimate activity if it is performed by a system administrator. Figure .1 shows an 
example of an event which triggered both false alarms and true alarms from the 
experiment. From the IDS's perspective, as long the activity's pattern match lo the 
signature defined in the rule databa.sc. il is considered to be a malicious event. In 
view of this, line tuning is exceptionally required to maintain the IDS's performance 
and enable the administratorlo adapt the signature rule to the protected environmenL 

In oiiJer to optimize Snort's performance, fine tuning is necessary to reduce the 
number of alerts raised. Since only !* signatures were mned in this experiment, the 
false alarm rale accounted for S6.8^ of total alarms after tuning was pertiirmed. 
Figure 4 depicts the RCXT plots for the overall result after tuning was perlbrmed. 
Obviously, only less than two thousands alerts per alert type have been generated 
by Snort. In order lo understand the etTediveness of fine liming, the alarm rate be­
tween default and tuned Snort is presented in Figure 5. This figure does not seem 
particularly impre.ssive but fine tuning did fare well on those signatures; reducing up 
to 90'!r of false alarms per signature, excluding WEB-MISC robots.txi access. The 
following subsections discuss tuning processes in more details. 
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4X1 WEB-nS view source via translate header 

R^arding the information disclosure vulnerability attack. Snort does not seem pro­
ficient enough to detect this type of event. The signature rule appear^ to he very 
loosely written, by searching for u particular string in the packet payioad (in this 
case. 'Translate: f ) . Since the "Translate: f' is a valid header used in WebD.W 
application, as discussed preiiousiy. this rule tends to trigger a vast volume of alerts 
&om the It^iimab: activities. Heiice. tuning is needed to search for a more specific 
l»nem of the attack signature. 

As this attack is basically launched ihrou^ HTTP GET re^uesL searching for 
"GET' command in the content of analyzed packet can be a good start. Principally, 
this aitiick is performed by requesting a specific resource using HTTP GET com­
mand, followed by Translate: f as the header of HTTP request. In this case, a 
tuning can be performed by modifying the signature rule to: 

a l e r t t cp SEXTERJOLL_NET any -> SbTTi'_SERVEKS SHTTPJOBTS 
(msq:"MEB-IIS vieM source v ia t r a n s l a t e header"; 
f l ow: to_se rve r , e s t ab l i shed ) content:"GET1201";content: 
"Trans la te 13AI F"; d i s t a n c e : 0 ; nocase; r e fe rence :a rachn ids , 
305; referenceibugtcaq, 14764; reference:b! igt taq, 157B; 
reference:cve,2000-0778; re ference :nessus ,10491; 
c l a s S t y p e : w e b - a p p l i c a t i o n - a c t i v i t y ; s ld :1042; rev ;13; ) 

The tuning process significantly reduced the number of alerts, with only 3463 
generated by this rule as against 78S6.'i alerts in the first case (i.e. without tuning). 
Significantly, this tuned rule had been proved to efl'ectively reduce up to 95% of the 
initial false alarms from this event. 

.Although the tuning process had decreased the volume of alerts, there is still a 
possibility that those .>^ alerts were false positives. Searching for GKT command 
and the Translate f header is not effective enough to detect such attack. Putting tnil-
ing slash "/" at the end of requested URL to HTTP request for example could lead in 
the security bug [5J. Thus, matching the "/" pattern against the packet payioad will 
be helpful. Unfortunately, this idea .seems hardly possible to achieve, Snon does not 
have a specific rule option that can be used to match a specific pattern at a particular 
location. 

As to Snons signature, looking for an overly specific pattern of a particular at­
tack may effectively reduce the false alarms: however, this method can highly in­
crease the risk of missing its range. A skilful attacker can easily alter and abuse the 
vuhierabiiity in various ways as an attempt to evade the IDS. This m i ^ t lead to 
false negtUives as a con.sequence. 
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4.2.2 WEB-MISC ii>bots.tst access 

Since accessing ihc n^Kits.txl file is a legilim^e request for Inlcmet bots (web ^ i -
deiTi). a subjective rule, which mainly focuses on the source IP addresses, is nec­
essary to verify user authorizaiion in accessing a certain file. TTiis appniach. how­
ever, seems lo be hardly feasible to deploy. Of course, identifying all authorized 
hosts from their source IP addresses is impractical. Tliere is an infinite number of 
IP addresses need to be discovered before ihe rule can be writlen. Indeed, lawfully 
allowing specific hosts to access certain file might increa-se the risk of having false 
negatives. 

In this case, the only solution to sitppress the numberof false alanns generated is 
by using event thresholding [m| . As mbols.txiacceM requests generate regular and 
rcpclitive Irafhc. a "limi" type of threshold command is the most suitable tuning in 
this case. Such a threshold configuration wwild be as follows: 

tbreshoLd gen\_id 1, 3igS_ld 1852, type l i m i t , 
t r ack by \_s rc , count 1, seconds 60 

This rule logs the first event every 60 seconds, and ignores events for the rest 
of the lime interval. The result showed thai approximately 10^ of false alarms had 
been effectively reduced. This indicates thai only an in.<;tgnifican( niunber of false 
alarms can be reduced in this scenario. The frequency of fetching robots.lxl tiles 
greatly depends on the web spider's policy. Hence, deploying event suppression and 
thresholding cannot elfeclively trim down the number of false alarms logged by the 
system. Additionally, suppressing the number of alerts generated can also create 
a possibility of ignoring or missing significant alerts. A malicious user can hide 
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his/her action within the excessive number of alerts generated by using a spoofed 
address from web spider agent. 

4 i 3 ICMP L3Retricver Ping 

The only method that can be deployed to suppress the number of false positive 
triggered from this event is by applying event suppressing or ihiesholding command. 
Similar to the one applied to "WEB-MISC rc^ots.txt access" signatiu^. a threshold 
command is written to limit die number of alamis logged. Instead of using "limit" 
lype of threshold command as previous signature, Ihis rule utilized "both" type of 
command to log alerts once per time interval and ignore additional alerts generated 
during that period: 

a l e r t icmp SEXTEBKRL_NET any -> SRCWE_NST any Imsgi ' i aO ' 
LScetr iever Piog"; icode;0; i cype :8 ; con ten t : 
•ABCDEFGHIJKLMNOPQBSTUVWRBCDEFGiil'; deptii :32; r e fe rence : 
a rachnids , 31L; classcype:atceir5>ce£3-recon; t h r e s h c l d : t.ype 
boch, crack by_s rc , counc 3, seconds £0; s id:4G6; r ev :5 ; ) 

Similar lo the previixis signature (robois.txt access(, the threshold applied will 
not prevent the geneisiirm of false positives, but it will highly reduce the number 
of redundant fal.se positives triggered. Imponanlly. the threshold is written lo dc* 
lect brisk ICMP echo requests by logging alerts once per 60 seconds after seeing 3 
occurrences of this event. 

The result shoued thai only 1143 alerts had been generated frtim this event in 40 
days experiment data. Tliis experiment has also proved that the event thresholding 
can successfully reduce up to 89% of dw false alarms generated by this activity. 
Despite its ability in suppressing redundant alarms, tbe system is prone to missing 
stealthy ICMP requests (eg, requests sent once every 60 seciMids can be missed by 
the system). 

5 Conclusions and Future Work 

The issue of false positives has bccwnc a critical factor in determinii^ the success 
of IDS technology. Not only must an IDS he accurate in detecting real attacks, but 
it must also have Ihc ability to suppress the number of unnecessary alerts generated. 
The experimeni presented in this paper has revealed a similar result lo the wort of 
Brugger and Chow |4]. Ovcraspanof two years since their researeh was published, 
ihe issue of false posiiives remains a critical challenge for the current Snort IDS. 
Obviously. Snort's performance does nm look paiticutariy remark^le as illustrated 

http://fal.se
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in Figure I. The boilom right statlcred plots demonstrate ihal the number of false 
p«!vilives largely overwhelnisihenumherof true pusiiives generated. Approximately 
3.(XH) alert"; had been generated per daj. requiring manual verilication lo validate 
their legitimacy. Although the administrator can cflecuvely distinguish die false and 
true positives from the alens generated, the massive amount of false alarms triggered 
by one signature rule might cause the administrator to miss a malicious attack. 

Principally, the overall effectiveness of Snon greatly hinges on the effectiveness 
of keyword spoiling (i.e. matching the packet content to the signature rule). This has 
rendered the system prone to generating a superfluous number of false alerts. Inter­
estingly, most of the rules l<x)king for web traffic related attacks are loosely written 
and merely check for the presence of a parlicidar string in the packet payload. This 
could trigger a targe number of false alerts if a panieular string is included in the 
conU;ni distributed by the weh server. Hence, from this perspective. Snort is deemed 
not to he ideal enough to detect TOOTC complex attacks, which arc not deteciable by 
a pre-delined signature. 

In view of these issues, an improvement is required to advance Uie performance 
of IDS technology. This involves developing an automatic alert vcrifieaiion. which 
no longer relics on human participation. Through this enhancement, it is expected 
that the number of false aiamis can be substantially suppressed without increa,sing 
the possibility of false negatives. Also, a more intelligent system is required to help 
discover the logical lelationship between alerts generated and to reveal the potential 
attack scenario: thus providing a better picture of ihe security issue to the system 
adininisirator. Given the complexity of systems and the ingenuity of attacks, an IDS 
»ill never be perfect, and ihere is still significant scope to enhance its performance. 

Ackiiowledftemeiils We warn In ihank Dr. Bogdan Gliitu o( Dniverstty of Plymouth foe his help 
in capluring the nctwod: uaflic and fur his Mippon until Ihe complyliun of this paper 
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Intrusion Detection Systems (IDSs) play a vital role in the overall security infrastructure. 
Although the IDS has become an essential part of corporate network infrastructure, the art 
of detecting intrusion is still far from perfect A significant problem is that of false alarms, 
as generating a huge volume of such alarms could render the system inefficient. In this 
paper, we propose a new method to reduce the number of false alarms. We develop a two-
stage classification system using a SOM neural network and K-means algorithm to corre­
late the related alerts and to further classify the alerts into classes of tm& and false alarms. 
Preliminary experiments show that our approach effectively reduces all superfluous and 
noisy alerts, which often contribute to more than 50% of false alarms generated by 
a common IDS, 

e 2010 Qsevier Ltd. All r l ^ t s reserved. 

1. Introduction 

Networked systems have become inc r ea s ing prevalent, fast, 
and inexpensive, leading to a rapid growth in both demand 
and complesdry of the computing system. Unfortunately, this 
has also been accompanied by a growth in the threats to the 
systems. In 2008. the number of new maiicious code signa­
tures increased over 265 percent over 2007; more than 60 
percent of the total code threats were detected in 2008, as 
reported by Symantec (2009). The huge increase in the number 
of malicious ctxie threats demonstrates the growing need for 
more responsive and reliable secnority measures. 

An Intrusion Detection System (IDS) is a component of 
a network security architecture, which involves the monitoring 
of computer systems for intrusive activities (i.e. those behav­
iours that infringe the established security model). The rise of 
cybercrime on the global network has entailed a great demand 
for a remarkable use of IDS, which in turn forms the necessity 
of developing a belter detection system. Although IDS has 

become an essential part of a corporate network infrastructure, 
the art of detecting intrusion is still far from perfect IDS tends 
to generate a huge amount of alerts, which can be mixed with 
false alarms. False alarms, also known as false positives (Type I 
errors), occur when a lepbmate activity has been mistakenly 
classified as malicious by the IDS, The vast imbalatKe between 
the actual and false alarms generated has undoubtedly 
undermined the performance of IDS (Chyssler et al., 2004b). An 
alarm reduction system is an absolute need for this problem. 

ThispappTproposPsarwo-stagesciusteringsystem to reduce 
false alarm rate. The proposed method can classify the alarms 
^nerated by the IDS into false and true alarms. The main 
objective of this appiroach is to correlate the alerts into a more 
manageable form before they are presented to the adminis­
trator, and to reduce the sheer volume of alerts generated. 

Section 2 provides a critical analysis of existing research in 
the area. The framework of the proposed system is presented 
in Section 3. whilst the concept and algorithm of the meth­
odology is described in Section 4, Section 5 discusses the 
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performance of the proposed model in term of its alarm 
reduction rate, followed by conclusions in Section 6. 

2. Related works 

There have been a large number of IDS research efforts dealing 
with the alarm handling problem, but only few have considered 
applying alarm frequency rate when performing feature 
construction. Some techniques focus upon association-rule-
based feature selection to classify the alarms, as proposed by 
Shin et al. (2004). The authors suggested a mining-based false 
alarm classification model that filters the false alarms by using 
alarm classification rules. This approach used decision tree 
algorithm (C4.5) (C^nlan. 1993), which was extended to asso­
ciation based classification, to predict class labels of unknown 
objects (alarms) with high accuracy. The effectiveness or 
accuracy of these classifiers largely depends on the training 
data seL Although this method had been empirically evaluated 
to work effectively in reducing the false alarm rate, it is 
considered not efficient enough since the classification rules 
should be created for each type of attacks. The model was 
implemented in the domain of DDOS (Distributed Denial of 
Service) attack only and no other attacks luies had been tested 
in their experiment. 

Law and Kwok [2CXM) proprased to mode! the normal alarm 
patterns of IDSs and detect anomaly from incoming alarm 
streams using a K-Nearest-Neighbour classifier, in contrast, 
Alharby and Imai (2005) looked for anomalous alarm behav­
iour by using sequential alarm patterns. They believed that 
when an attack is occurring, the alerts triggered by the IDSs 
will have different patterns from that in an attack-free envi­
ronment. The classification accuracy of both approaches relies 
upon the length ol the time window for each alarm set. Since 
the alarm patterns are varied depending on the allocated time 
frame, the anomalous alarm pattern will share similarity with 
the normal pattern if the time allotment is amiss. 

\n terms of the alarm clustering. Juiisch (2001) suggested 
a technique to effidentiy handle large groups of redundant 
alerts by identifying and removing the root cause of an alarm. 
The author observed that over 90% of all alarms corresponded 
to a small number of root causes The study reported that by 
knowing the root causes, the IDS can be regularly adjusted and 
root causes can be removed, reducing the false alarms by 82%. 
Unfortunately, as such method focused merely upon a large 
group of suf>erfluous alarms, it was considered not effective 
enough in identifying false alarms in a small cluster. lulisch and 
Dader (2002) had also developed a technique to mine historical 
IDS alarms for episode rules. The rules are created to predict 
a prospective alert when a spedfic set of alarms had been 
generated. Whilst this approach is deemed outstanding enough 
to give an insight into the pattern of false alarms and the 
potential future attacks, it could only offer 1% reduction in 
alarm rate, whilst 99% of alarms were still left for manual 
processing. 

Other approaches correlate and dassify the false alarms by 
using conceptual clustering techniques (focusing upon the 
alarm attributes). Cuppens and Miegc (2002) pursued an 
aliribute-based correlation function that clusters and merges 
the alarms by using prerequisites and consequences of attacks. 

Similariy, Ning et al. (2002) suggested an approach to construct 
attack scenarios by correlating alerts on the basis of prerequi­
sites and consequences of intrusions. Both approaches provide 
an intuitive mechanism to represent attack scenarios con­
structed through alert correlation. However, neither of these 
can correlate unknown attacks since the prerequisites and 
consequences of the new attacks are not identified beforehand 

The likeness of alert features is considered effective to 
correlate and reduce the false alarms, as proposed by Debar 
and Wespi (2001) and Valdes and Skinner (2001). The authors 
conducted research to evaluate the use of a feature similarity 
function to fuse alerts that nnatch closely but not perfectly. 
The similarity function is used to calculate the likeness of the 
features that match at least the minimum similarity specifi­
cation, and correlate them using a fusion algorithm. Although 
this method seems to effectively reduce a number of false 
alarms, it does suffer from one common weakness; it cannot 
fully discover the causal relationship between related alerts. 
To solve this issue. Dain and Cunningham (2001) produced 
a real-time algorithm to combine the alerts into a scenario; 
thus effectively uncover the causal relationship between 
alerts. Unfortunately, such an approach cannot be applied to 
correlate alerts generated by unknown attack scenarios. 

Unlike previous approaches, which used pre-defined rules 
to correlate the alerts, Zhu and Ghorbani (2006) proposed 
a correlation technique that cannot only correlate the gener­
ated alerts but also automatically extract attack strategies 
from a huge volume of intrusion alerts. The technique was 
developed based on the use of a neural network supervised 
learning approach. The correlation system was designed to 
automatically determine or calculate the probability that the 
alerts should be correlated by using an alert correlation 
matrix. The experiments conducted using the DARPA 2000 
intrusion detection scenario specific data set demonstrated 
that this technique can successfully correlate a large number 
intrusion alerts into scenarios. Despite the benefits offered 
this approach had only been evaluated using the synthetic 
evaluation data set (DARPA 2000) and has not been applied yet 
in a real-time environment. 

Data mining technologies have broadly evolved and have 
shown their capabilities to reduce more than a half of false 
alarms. Our approach presented in this paper will trim dovra 
the nimii>er of false alarms by implementing a data mining, 
unsupervised neural network technique. 

3. Propi^ed technique 

Theideaofthisfalsealarmclassificationsystemis to filter the 
false alarms from Intrusion Detection Systems and minimise 
the false alarm rate by unsupervisedly clustering the alerts 
based on the their attributes. For this purpose, the proposed 
system will apply data mining techniques using a neural 
network, i.e. SOM (Kohonen, 1995) and K-means {MacQueen. 
1967), for the classification. The data naining techniques are 
commonly used in data reduction and data dustering. The 
reason of choosing these algorithms is because it is easy to 
implement and has the abihty to show and clarify the rela­
tionship between the dassified alerts. Our classification 
system is developed to identify the potential false alarms from 
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a huge number of alarms generated by the IDS. In general, 
with the extracted features from the alerts, the main task of 
the classi&cation is to map the input data into 2 classes of true 
and false alarms. The alert features are the attributes that are 
measured in order to identifir an intrusion, for example the IP 
addresses or the protocols. The multidimensional input data, 
whichconsistofmore than one attribute, are mapped into a 2-
dimensional space and are divided into two clusters, i.e. true 
and false alarms. 

The framewoA of our approach comprises two main 
stages; first is alarm aggregation and second is classification. 
as shown in Fig. 1. 

From the IDS sensora, the alert data are collected and 
stored in a database. The system then retrieves the data from 
the database and classifies them by extracting the attributes 
from the alerts and feeding them into the unsupervised SOM-
based clustering system. Building accurate and efficient clas­
sifiers largely depends on the accuracy of the attributes used 
for the classification. Our method applies unsupervised SOM 
and K-means-based feature classification, whereby the attri­
butes of the alerts are treated as the input data. 

The whole procedure consists of four phases: feature 
extraction, alarm aggregation, cluster analysis and classifica­
tion. In the feature extraction phase, the system will use 
several attributes extracted from the alert database, which are 
considered effective to correlate alerts generated from a single 
activity. The extracted data are then normalised since the 
value of the data is varied depending on the type of attributes 
used. A huge variance between attributes value will produce 
an uneven or biased result. Given a set of input vectors from 
the first phase, the SOM-based system is trained unsupervised 
in the second phase to map the data so that similar vectors are 
reflected in their arrangement. The distance between two 
input vectors is presented on the map, not by their absolute 
dissimilarity {which can be calculated), but the relative 
differences of the data properties. The maps created by SOM 
would be especially useful as a visual feedback to the user 
(network administrator), which is one of the main reasons 
why this approach is used. Whilst many other techniques 
oflier a better or more accurate result for clustering and 
multidimensional scaling [Flexer, 1997), they were deemed 
not suitable for online, real-time data processing as SOM (a 
future enhancement for our system). 

The SOM training process, through which the relarionship>s 
are built, is fairly simple. During the trairung, SOM is expected 
to randomise the map's prototype vector elements within the 
range of the input value. The iteration is carried out to obtain 
a prototype which is most similar to the input vector. Once it is 
found, the prototype and its neighbours on the map are 
incrementaUy adjusted to more closely resemble the data. 

As soon as the final Kohonen n u p is produced, the trained 
SOM can be automabcally visualised using U-Matrix method. 
Having said that, SOM clustering alone is not good enough to 
describe the boundary between the data items since there are 
no clear walls to separate them htim the other items. Classi­
fying the data without any prior knowledge, thus, is rather 
inconsistent and difficult. The result of this U-Matrix can 
merely be used for visualisation purpose and the interpreta­
tion of the U-Matrix values is considered subjective. To avoid 
this issue, therefore, our approach applies a traditional 

Fig. 1 - Framework of b l s e alarro dassificatioii model 

clustering method, K-means clustering. Based on the map 
produced by the trained SOM, K-means clustering is imple­
mented to fiirther define the boundary between the data and 
concurrently classify the input vectors into a number of pre­
defined clusters. At the end of the second phase, the system 
is expected to form clusters by correlating all alerts generated 
by a single activity, i.e. one cluster for each event/activity. 

In the third phase, duster aitalysis. the result of the clas­
sification is further evaluated to attain a set of attributes from 
each cluster created in the previous phase (the first classifi­
cation). Seven alert attributes (features) were chosen to 
represent the value of each input vector in the second clas­
sification. Two out of the seven attributes, namely the 
frequency of alarm signatures and the average time interval 
between the alerts each day will be computed. These features 
are considered to be the most crucial attributes inSuencing 
the magnitude of the alert signatures. 

The frequency of alarm signature defines the number of 
occurrences of an alarm signature from an event within a one-
day period. The recurrence rate of a signature provides insight 
into the issue of superfluous alarms such as the noisy false 
alerts triggered by the ICMP traffic. The higher the frequency 
rateof an alarm signature, the more likely it is a noisy alert In 
order to account for denial of service attacks, which could also 
generate high alarm frequency, the average time interval 
between events triggering a particular signature is chosen to 
describe the density of the signature and also to determine the 
validity of the triggered alerts. 

m the last phase, the SOM and K-means algorithm are 
applied for a second time to re-classify the data based on the 
a t t r i b u ^ extracted in the third phase into the classes of true 
and false alarms. In this stage, the frequency and time interval 
features are emphasised and it is necessary to examine how 
the attributes' weights from the two features can greatly affect 
the outcome of the classification. In which case, a fine-tuning 
is performed to adjust the attributes' weights and to ensure 
that such attributes contribute more to the grouping 
processes. The details of how the fine-tuning is performed will 
be presented later in Section 5.2. The final classification 
reveals that a cluster containing a higher frequency rate and 
a shorter time interval is prone to represent a false alarm 
class. The architecture of the false alarm classifier and the 
relationships among the components appear in Fig 2. 

4. Methodology 

The basic concept, architecture and implementation tech­
nique of SOM can be found in Kohonen (1995). A Self 



COMFUTEHS a SECURITY i g ( 3 D 1 0 ) J tZ-7 7-j 715 

subsets. The grouping is done by calculating the sum of 
distances or sum of squared Euclidean distances from the 
mean of each duster, as shown below, 

/ •* 

(1) \'{Pl-1lf-<-iP^-^^)'+-•+{p^<-'i'^f = J'^{p^-tl.)'. 

TST" 
fosnti^Timc 

ft NiJJIlv* 
JB 

Fig- 2 - Aichitecture of felse alann dassifigr. 

Organising Map (SOM) is an unsupervised neural network 
which produces a feature map that maintains the topology of 
the input data according to their similarity. Unlike typical 
neural networks that need to be trained with their desired 
outputs, SOM can automatically categorise the varieties of 
input presented during training v/ithout any external super­
vision whatsoever and assess the accuracy of its classification. 

Unsupervised learning using SOM offers a simple and 
efficient way of clustering data sets. It is empirically proven 
that SOM is best suited to data classification due to their high 
speed and fast conversion rates as compared with other 
learning techniques (Labib and Vemuri, 2002). Also, in terms of 
its data representation, this method is deemed to outperfonn 
other algorithms owing to its abihty to preserve topological 
mappings between the input data. This represents a signifi­
cant feature, which is desired when introducing the rela­
tionship betwreen the generated alerts. 

The idea of the SOM algorithm is to perform a data 
compression technique (vector quantisation) where a high 
dimensional data is represented or mapped into something 
that is better understood visually such as a 2-dimensional 
array. The approach is considered as being highly effective as 
a complex visualisation tool for picturing extensive, multidi­
mensional space with the intrinsic relationship among the 
various attributes comprising the data. 

Interestingly, the dimensional transformation of the input 
data leads to an automatic classification, whereby similar data 
items are mapped in proximity; thus forming clusters. To 
obtain distinct classes of similar data elements from the 
trained SOM, a clustering algorithm, K-means, is applied to 
formally determine the clusters inherent in the structure of 
the data at the K)M's output layer. The basic algorithms for 
the applications of SOM and K-means clustering can be found 
in SOMToolbox (CIS, 2005). Unlike K-means, SOM algorithm is 
resistant to the presence of outliers in the data, and is also 
robust with regard to the choice of the number of classes to 
divide the data into, which is a desirable property and the 
main reason of applying SOM in between (Zanero. 2005). K-
means (MacQueen, I9G7) is a simple unsupervised learning 
algorithm that answers the well-known clustering problem by 
grouping n objects based on attributes into k partitions, where 
fe <. n. The implementation of K-means assumes all attributes 
to be independent and normally dispersed. The main concept 
of this approach is to define fe appropriate centroids, one for 
each cluster and then group all data into the pre-defined k 

where p and q are the cluster points and n is the number of 
attributes. 

Hence, the objective of this clustering is to minimise 
a measure of dispersion within the clusters and to maximise 
the distance between clusters. 

Similar to other algorithms, K-means clustering also has 
weaknesses. K-means is considered to be unstable: running 
the procedure several times will give several different cluster 
solutions (Van der Heijden et al , 2004). Depending on its initial 
condition, the algorithm may converge or be trapped in the 
local optimum (minima). In addition, when the number of pre-
specified classes is high, it often happens that some clusters 
are ignored during the classification as no sufficient support is 
given, in that case, the number of effective clusters will turn 
out to be much less than k. 

With the issues of classification in mind, our approach is 
directed to focus upon an interaction between the intrinsic 
structures (alerts' attributes) in the instances, the represen­
tation of the data and the definition of the clustering problem. 
Solutions are suggested to overcome the issues, at least 
partially, and the effect of the problems will be considered 
when representing the data and interpreting the result of the 
clustering process. 

The K-means procedure will be started by assigning the data 
to b initial clusters at random. It is also worth noting that the 
cluster solutions can be influenced by the order of the input 
data. Therandomised trials therefore involve randomising both 
theinitialdustereandthedata order. To get the best clustering 
solution, the proposed system looks for the top solution by 
exploring a range of cluster solutions produced by the proce­
dure and examining their criterion value; involving the 
minimum sum of squared error and the h i ^ e s t frequency rate. 

5 . Exper iments a n d eva luat ion 

This section presents the experimental results of our false 
alarm dassifier. Two experiments were performed. For the 
experiments, we used two types of data sets; the public and the 
private data sets. Given that the 1999 DARPA evaluation data 
set is deemed to be the largest publidy available benchmark, 
our experiments aimed to utilise such data as the source of our 
evaluation. A number of criticisms had been raised over the 
DARPA data set. questioning the use of synthetic data to 
picture a real world network, as well as the taxonomy used to 
categorise the exploits involved in the evaluation. Owing to 
these issues, our experiments involved evaluation on both 
DARPA and a private data set- The pnvate data were collected 
al the University of Plymouth, on a public network (100-150 
MB/s network), logging all web traffic to and from the Uni­
versity's web server. It should also be noted that traffic con­
taining web pages with the potential of having sensitive/ 
confidential information was excluded from the packet 
capture, in order to preserve the privacy of the users. As the 
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main objective of the system is to facilitate alarm management 
for Che administrator, the proposed technique is designed to 
process the generated IDS alerts every 2 h. So, instead of using 
a whole data set, the experiments evaluated only a chunk of 
DARPA 1999 and the private data as the input of the IDS 
system. In this case, only week 4 testingdata from DARPA1999 
evaluation data set is fed into the system. Table 6 presents the 
properties of data set selected for the experiments. 

To obtain 3 set of network alarm data for our dassi£catiDn 
system, we firetiy run the Snort IDS (Caswell and Roesch, 2004) 
under Linux Fedora 7 against the DARPA and private data se t 
The reason for utiiising Snort is due to its openness and public 
availability. In order to facilitate the analysis of IDS alerts, 
a front-end tool Basic Analysis and Security Engine (BASE. 
2007) was then utilised as the intrusion analyst console. 
Regarding the neural networks, the SOM-based and K-means 
system is implemented on the SOMToolbox 2.0 (CIS, 2005) 
which is run on MATLAB 7.5.0. 

5.1. STAGE 1 - alarm aggr^ation 

Traditional IDS is believed to commonly produce a large 
volume of alerts, consisting of redundant and low priority 
alarms. To reduce the number of redundant alerts generated 
from the same event, therefore, our study proposes an alarm 
aggregation approach that effectively combines all alerts 
triggered from a single activity ot event in a particular time 
frame. The key objective of this mechanism is to pinpoint the 
tr i^ering events from the incoming alarms and to help add 
meaning to the alarms generated. It is not unusual for IDS to 
generate more than one signature from a single event. Pre­
senting those alerts individually could degrade the value of 
the alarms. By contrast, correlating all alerts triggered by 
a single event, could increase the meaning of the alarms, and 
make it possible to discover the potential attack scenario. 

In order to correlate related alarms, we need to remove the 
inapt attributes and select only appropriate attributes. After 
evaluating a number of potential features, three significant 
attributes have been chosen to represent the relationships 
between alerts. Tliose are the timestamp, the source and 
destination LP addresses. IP address is deemed to be the most 
critical feature determining the subject of the occurrence. 
Conversely, the timestamp determines the time of the event 
and whether a particular alert within a specific time period 
should be aggregated. By using the combination of these 
features, we expect to correlate alerts triggered by particular 
IP addresses within a particular period of time. 

In order to c^rrectiy spot the events t i l l e r e d by particular 
hosts, we decided to use the combination of both source and 
destination IP addresses. So, instead of using the original IP 
addresses, the system is designed to compute the addition 
and the subtraction between the source and destination IP 
addresses. Before the computation, the IP addresses were 
converted into their decimal value from the common dotted 
decimal notation (e.g. 123,7.1.10 becomes 2064056S86). The 
computed value is then fed into the system for the classifi­
cation. The main objective of this pre-processing step is to 
obtain a distinctive pair of IP addresses from an alert without 
the need of identifying the source and destination addresses. 
Such approach enables us to connect all alerts which involve 

the two IP addresses within a particular time frame. For 
example, alerts generated by ICMP Ping and \CMF Echo Reply 
signatures can be correlated since they commonly associate to 
a same pair of IP addresses. In order to obtain a same pair of 
addition and subtraction values of two IP addresses in any 
order, only the absolute value of the subtraction is taken. For 
example, if the subtraction between 288675fl706 (source) and 
2886759119 (destination) is -413, then the absolute value 413 
is selected. So, although the source/destination has changed 
(reply), the subtraction will still yield the same value. As this 
technique uses the characteristics of both difference and 
addition of IP addresses, which are taken in lime context, the 
likelihood of having collisioiis is low (different paira of IP 
addresses are mapped into the same cluster) (Chyssler et al., 
2004a). A unique combination of the value, hence, indicates 
a unique event t r i^ered by the corresponding IP addresses. 

Apart from the IP addresses, the third attribute, timestamp. 
also requires a s l i ^ t conversion. As the timestamp is repre­
sented as date string format rather than a number, an alter­
ation is necessary. The timestamp is normally presented as 
date vector, consisting of 6 elements specifying year, month, 
day, hour, minute and second. So, in order to perform the 
conversion whilst keeping the value of the attribute, we utilise 
"datenum" function from MATLAB to convert the string or 
date vector into a serial date number. 

Using the three-dimensional vectors to build SOM map 
directiy is likely to be biased to a certain dimension, as 
different attributes values tend to be in different units. If some 
vector components have variance which is considerably 
higher than other components, they will certainly dominate 
the map formation. Therefore, normalisation is performed to 
confrol the variance of the vector components. Our experi­
ments utilise variance normalisation method, which is known 
as "var" (CIS, 2005). This is a linear fransformation which 
scales the values such that their variance is equal to 1. 

Thenumber of neurons or the size of the map itself greatly 
influences the performance of SOM system. In the classical 
SOM, the number of neurons should usually be selected as big 
as possible, with the neighbourhood function maintaining the 
efficiency and generalisation of the mapping. The increase of 
the map size, however, could cause the training phase become 
computationally and impractically heavy for most applicants. 
With the aim of gaining the best map result, we decided to 
select the number of neurons based on the smallest quanti­
sation and topographic errors, where errors < 0.1. In order to 
do so, •we run a loop programme creating maps with different 
number of units and the programme will be terminated once 
the map has the quantisation and topographic errors less than 
0.1. The quantisation and topographic errors are computed 
after training to measure the quality of the generated map. 
However, bear in mind that a low quantisation error does not 
necessarily mean a good result; it might lead to the issue of 
overfitting. This may happen when the numbers of units are 
larger than the number of tiaining data (CIS. 2005). Having 
said that, overfitting is not a real problem since K-means is 
applied as a second classifier. In fact, the implementation of 
multi-stage classifiers can actually avoid the issue of over-
fitting (Weijters et a l , 1997). The number of units, the topo­
graphic and quantisation errors of the data are presented in 
table 6. 
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Fig. 3 - Stage 1 classification using DAKPA 1999 dataseL 

One of the most significant weaknesses of K-means clus­
tering is the need to determine the number of clusters prior to 
classification. The default setting for K-means initialisadon 
value k {majdmum number of clusters), set by SOMToolbojt, is 
the square root of the length of data. As in the first stage, we 
never know the real number of the dusters, and we believe that 
the data can be classified into more clusters than specified by 
the default setting above. To affirm this idea, 4 sample data were 
taken and manually analysed to estimate the expected nirmber 
of dusters and three of them had clusters readied up to two 
fifth of the length of data. Hence, in order to avoid possible 
misciassification, our system determines to increase the "fe" 
value for K-means to half of the length of data. Again, the 
problem of oveifitting is very conmion in the subject of data 
mining and neural network. Such issue occurs when the 
number of nodes (clusters) is as large or larger than the number 
of trairung cases (CIS. 2005). Since the number of training data 
used in our experiment is two dmes more than the dusters (fe 
W data), the network is unlikely to suffer from overfitting. 

To overcome the weakness of K-means dustering, the 
system generates 500 randomised trials, involving random­
ising both the initiai k clusters and the data order. The best 
classification is then selected based upon the highest 
frequency and the minimal sum of squared errors. The sum of 
squared error refers to the least distance between the data and 
the corresponding cluster centroid. In the K-means algorithm, 
each attribute is assumed to have the same weight; which 
then makes it impossible to know which feature contributes 
more to the grouping process. Having said that, the value of 
the attributes' weights can be completely adjusted if the fine-
tuning is desired. 

As mentioned before, two data sets are utilised in the 
experiments. For DARPA data set, 4 h of data (total 3062 alerts) 
was extracted from the first day of 4th week testing data and 
was evaluated as two separate inputs. Fig. 3 presents the 
result of the stage 1 DARPA classification. 

A total of 790 dusters have been generated in the first part 
ofdassification; shown on the left map. Interestingly, only 203 
of them are active whilst the rest are considered dead centres. 
Similarly, from 605 clusters generated in the second part 
(shown on the r i ^ t map), only 86 dasses are active. This 
seems obvious that K-means clustering tends to generate 
a significant number of dead centres. Enhancing the K-means 
performance, however, is out of the scope of the study and is 
not discussed in this paper. 

In general, the classification has demonstrated a reason­
able outcome. Approximately 93% of data from the first part 
classification have been mapped and classified into the 
correa clusters, i.e. accuracy 0.93. Conversely, 0.9 is 
revealed from the second dassification. in terms of dustering 
accuracy (the number of clusters with the correct data), the 
first classification shows 0.85 accuracy, whilst second dassi­
fication reveals 0.81. 

Similar to the DARPA data set, 4 h data from University's 
network data (2556 alerts) was analysed using two separate 
inputs. Fig. 4 presents the result of the classifications. 

The dassification from this network data shows a slightly 
better result compared to those from DARPA data set. 
Approximately 0.92 and 0.94 are computed for the first and 
second dassificabons, whilst the cluster accuracy accounts 
for 0.89 and 0.93 respectively. 

5.2. STAGE 2 - false alarm classi^cation 

Having correlated the related alerts into a number of dusters, 
the second stage ofdassification is carried out to further label 
the alerts into true and false alarms. The main objective of this 
false alarm classification stage is to obtain a better alarm 
management by reducing the number of false alarms gener­
ated before being presented to the administrator. Besides, the 
organisation of the data using the SOM-based system enables 



718 c o u p U T E s s a S E C U I I ; T Y 19 ( l o i o ) 7 1 2 - 7 3 3 

K g . 4 - Stage 1 classification u s i n g University of Plymoulfa Ne twork da t a . 

us to learn t he relat ionship be tween alerts based on the 

defined at t r ibutes. 

Similar to the firet m a p p i n g the alert a t t r ibutes are 
selected and pre-processed prior to the dassificadoiL 
Howevra. in this case, the ou tcome of t he first dassif icat ion 
will be fed in to the second a la rm classifier; m e a n i n g tha t each 
d u s t e r is an input for t he second d a s silica tion. Using the 
a s soda t ion- ru le me thod (Platetsky-Shapiro, 1991). w h i d i 
looks for the m o s t frequent i temsets . 7 alert features are 
selected from each alert d u s t e r . The selected a t t r ibutes are 
t he n u m b e r of alerts, n u m b e r of s ignatures, port n u m b e r , 
protocol, priority, t ime interval and the number of events , 

have been chosen as t h e d imens ions of the inpu t data . The 
a t t r ibutes are carefully selected to describe t he inheren t 
re la t ionship be tween alerts . Table 1 p re sen t s a brief descrip-
don of the selected a la rms ' a t t r ibutes and their da ta col tecdon 
me thods . 

T h e final result of t he K-means classification largely h inges 
upon the d imensions or t he a t t r ibutes applied in t he SOM 
mappings . Typically K-means algori thm t rea ts all features 
fairly and distributes t he weights on all at tr ibutes equally. The 
features ' weights can be derived based on the impor tance of 
the feature to the d u s t e r i n g quality. The higher t he a t t r ibute ' s 
w e i ^ t , t he more the contr ibut ion it h a s on t he d u s t e r i i ^ 

Table 1 - The in terpre ta t ion and da ta collection m e t h o d s of t he a l a rm at t r ibutes for second classification. 

Alert features Descrip don Collection m e t h o d s 

No of alerts Total number of alens ^ouped 

No of sipiatuTes 
Protocol 

Port number 

Aleit piiuiity 

Timeimeival 

• • -h?'^''^-
Noof e v o n s 

in one duster 
Total number of signature type in a duster 
Type of t r a^c from evott 
triggering the sbats 

Only the service pott number i i T ': •" 
a|5Sied in the classification. ": 

<ipit!eBfiqr<^Ae alerts. There are 
3 Qipes of alert piority, namely lat. 
2nd, and 3rd. 
Time interval between evMits' frmn 
a particular signature -,•--. 

I'rA' 
TbR number of events' in which 
a paiticulHT alert signature is tr^gHed 
within B d ^ 

N/A 

t%iiKBiz"biity'^£K vahiesl l iA'dintc u^^ic£riUti i&1£j£n^ 
Alert with the protocol number below 255 is assigned to a value of 
l a n d 3 for protocol number 255. [fthere are two types of protacoi>, 
number found in a cluster, the value is set to 2. "; > --.-.i" 
If the alert contains a well-known pon number (-:1024), the value wi8 ,.'-
be set to 1; if not {>1024) value of 3 will be gjuen. [f the duster has two-J,, ^ 
typesof port numbers, then die value win be set to 2. }/"" 
Based on the type of signature, alert with the Isiprionty is assigned to • 
Tihieof 300.2nd to20aand3rd to 100. If multiple signatures are found in a 
duster, the pritmty value for each signature could be added logedm. 
9iou]d an alert signamie occur in 3 different events in a particuUi t U l l ' . 
frame (one-day), the mean of the time interval between each event i* A-I . . 
calculated. This attribute is computed in seconds. However, if there aaA-
mulciple signature types in one cluster, the hi^iest time interval 

wis be selected. 

If dieie are multiple si^talute types in a duster, the lowest no of 
events is selected. 

a Oneevetit equals to a number of alerts from a s i n ^ signatures, which are triggered by a puticulai activity, 
• •,-i>~>---:-'.-A •:-...•' 
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Table 2 - SSE and frequency rate from DARPA data set part 1. 

MAP 1 2 3 4 & 

SSE 6.3276 6.335 65053 6.5056 6.8716 
Frequency 0362 0332 0.063 0.0G4 0.DD4 

6 

6.B721 
0.004 

7 

6.8731 
0,004 

S 

63767 
0,044 

9 

6,9091 
0.0O2 

10 

7.6474 
0.056 

11 

7.6807 
OJOGB 

process. Amongst the seven features two attributes, namely 
the alarm frequency rate and the time intervals between 
events are deemed to be the most influential one. So, to ensure 
such features contribute more to the clustering processes 
than the remaining five, we decided to carry out the fine-
tuning by properly adjusting the attributes' weights. 

In order to achieve an ideal weight, we conducted an 
experiment to search for the best classification outcome by 
randomly setting the weights of the two leading attributes to 
be higher than the remaining features. Although the main 
objective of this weight adjustment method is to prioritise the 
attributes on the classification processes, we do not want to 
"over-weight" the features; leading to a biased clustering 
result. From our observation, we had found that the data 
started producing inequitable classification once an attribute's 
weight was set more than 3 times higher than other features. 
So, to avoid this problem, the weight values of the primary 
attributes (lo) v/iil be selected from 1 to 3 times higher than the 
other attributes (1 < u; > 3J,To test the attributes'weights, the 
first selected value {e.g. ui = 1 -^ 0.1 = 1,1) is muitipiied to the 
corresponding attribute's value. The updated attribute is then 
evaluated and run on the classification algorithm. The exper­
iment will be further conducted to assess different weight 
valuesby gradually increasing the selected value by 0-1 {e.g. w 
= 1-1 -!- 0,1 1.2). The ideal weight is determined by the best 
classification outcome. In our system, the finest weight values 
for the two leading attributes are set to be 2.8, 

As mentioned before, 500 randomised trials are taken; the 
comparisonismadebasedon their sum of squared error (SSE), 
In K-means, the most essential approach in determining the 
best classification result is by looking into its SSE value 
{MacQueen, 1967). Hence, this feature is taken as orje of our 
selection criteria to select the finest cluster solution. A map is 
considered equal to other maps if they have the same SSE 
value. 

In K-means algorithm, the lower sum of squared error the 
more accurate the classification should be. This theory, 
however, in some cases, might not apply to our system. In the 
map with the lowest SSE value, the algorithm tends to assign 
the centroids to the data points with the farthest distance; 
generating two clusters with highly unbalanced cluster sizes. 
This definitely indicates two poor outcomes; either a tighter 
security level with a lower reduction rate or a loose security 
ievel with the risk of false negatives. Such an issue clearly 

demonstrates the trade-off between maintaining the security 
level and the need for reducing the false alarms. 

In view of this trade-off issue, thresholding is required to 
balance the security issue and the alaim reduction. Since we 
are using the randomised experiments to select the best cluster 
solution, evaluating the frequency distribution of each solution 
is necessary. So, instead of merely focusing upon the lowest 
SSE value, the best map is also selected based on its frequency 
rate (frequency distribution). The frequency refers to the 
number of occurrences a map with a particular SSE value is 
created within the 500 randomised trials. In order to properly 
evaluate the maps, we conducted 5 other classifications using 5 
sets of sample data to examine the maps' frequency distribu­
tion. From our observation, a cluster solution with a frequency 
rate above 0,6 (300 out of 500) had the best classification result 
compared to other solutions. From our study, it is evident that 
a solution with a high probability distribution (reassuringly 
occurs in at Jeast the third fifth of the random trials) generates 
a better grouping compared to those with low frequency rates. 
We. therefore, decided to select the best classification solution 
based on the highest frequency rate and set the thresholding 
value to 0,6 since it appears to practically balance both security 
and alarm reduction. Any map with a frequency rate exceeding 
the thresholding vahie will be automatically selected as the 
finest choice without any further evaluation. Conversely, if the 
highest frequency rate falls below the value (it does not 
dominate other solutions), further evaluation will be required 
in this case. To find which of the maps are worth considering, it 
is necessary to set another threshold to select the dominant 
solutions. The second thresholding (s), which is derived from 
a standard deviation of the maps' probability distribution, will 
determine which of the cluster solutions need further investi­
gation. The standard deviation represents the average variation 
of the frequency rates from the mean distribution. From our 5 
sample classifications, it is apparent that the maps with 
frequencies ranging from t to t - s are likely to produce better 
clustering results compared to those with low frequency rates. 
So. for this reason, only those solutions with frequency rates 
that fall between t {highest frequency) and (t - s) are evaluated. 

Tables 2-5 show the value of the SSE and the frequency 
rate from the University's network and the DARPA 
classifications. 

There were eleven maps (cluster solutions) that had been 
produced in the first part of DARPA classification, as shown in 

Tables -
part 2. 

MAP 

SSE 
Frequency 

SSE and frequency rate from DARPA data set 

1 2 3 

2A721 2,9135 4,0591 
0.7S6 0.154 0.06 

Table 4 - SSE and frequency rate from private data set 
part 1. 

MAP 

SSE 
Frequency 

2.7161 
0.636 

2J643 
0.182 

23645 
0.182 
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Table S 
pan 2. 

MAP 

SSE 
Pnq/atscf 

SSE a n d f requency ra te from private da ta se t 

1 2 3 4 

3,0918 5.3372 5,6775 5.6784 
0.818 a i22 0XB3 QJOB 

Table 2. Since none of the maps has a frequency rate above 0.6, 
further evaluation is required in this case. We need to re­
evaluate other mafra whose frequency range from { {highest 
frequency rate) to (t - s). The average SSE of the selected maps is 
then computed. The aim of calculating the average SSE is to 
approximate the value of SSE; thus enabling us to select the 
best map. The map. whose SSE vaiue is closest to the average 
SSE, will be determined to be the most optima! solution. If only 
two maps are being selected, there is no need for computing 
the average SSE, the map with the lowest SSE will be chosen. 

Hence, to conclude this, we will label the cluster solution to 
be the most appropriate model if only it follows one of the 
following rules: 

1, It has the frequency rate above 0,6; if not 
Z Its frequency rate greatly exceeds other solutions {t — s > y 

(second highest frequency]); if not 
3, The average SSE value of the maps whose frequency rates 

between t and t - s is calculated, as shown in equation (2). 
Tlie cluster solution with the SSE value closest to the 
average SSE is then selected as the best map choice. 

SH n. {2} 

where n is the number of map solutions whose frequency 
rates range from ! to (! - s). 

The answers for our second stage clustering are presented 
in the following figure, 

Oniy two clusters, the true and the false alarm classes, are 
desired in this stage. The result shown on the left map from 
Fig. S is corresponding to criterion value in Table 2. It is 
obvious that the solution with the highest frequency rate in 
Table 2 does not conform to the first and second criterion rules 
(MAP 2 has the frequency rate higher than t - s; t = MAP i"s 
frequency rate; ( = 0.362; s = 0.129). Since only two maps (MAP 

I and MAP 2) have frequency rates h i ^ e r than r - s (0,362 -
0,129 =• 0.233), the one with the lowest SSE value is selected. In 
this scenario. MAP 1 is selected as the best map choice (pre­
sented on the left side of Fig. 5), On the other hand, the second 
part of DARPA classification, which is shown on Table 3, 
presents 3 possible cluster solutions. The solution with the 
h i ^ e s t frequency (MAP 1) is automatically chosen as the best 
map since the frequency rate (0,786) has exceeded the first 
thresholding value. The mapping result is presented on the 
right map in Fig. 5. 

Unlike the first part of DARPA cl^sification, the classifi­
cations on private data set reveal quite a strai^tforward 
result. The computation of the average SSE value is not 
required in this scenario as the highest frequency rates from 
both classifications shovm on Tables 4 and S conform to the 
first criterion. In view of this, the solutions with the h i ^ e s t 
frequency rate are determined to be the best maps. In addi­
tion, the selected maps have the lowest SSE value among all 
duster solutions. The final results of both classifications are 
presented in Fig, 6. 

Regarding the DARPA data set, the proposed system is 
considered effective in reducing the number of false alarms; 
with 95% being correctly labelled in the first classification, 
whilst the second categorisation has reduced approxi­
mately 99% of the total false alarms. Those alarms located 
in the upper portion are labelled as true alarms, whilst the 
lower portion is for the false alarms. The system appears 
effective in reducing the false alarms generated by a noisy 
traffic such as the ICMP traffic (ICMP Ping and Echo Reply) 
and the web-bug alerts, which have formed the highest 
number of false alarms triggered in the experiment (Tjhai 
et al,, 2008a), 

In our previous experiment, false alarms such as ICMP and 
INFO web-bug alerts had contributed to 62% of total alerts 
generated from DARPA 1999 data set (Tjhai et aL, 2008a), 
Logging every connection associated with probing, for 
example all ping activities, will only generate a huge number 
of false positives. In fact, all detected ICMP traffic did not 
surely imply the occurrence of probing activities, but it was 
merely an information event, which possibly indicates the 
occurrence of network outage. The highest number of false 
alarms was triggered by INFO web-bug 1 » 1 gif attempt 
signature. Theoretically, the web bug is a graphic on the web 

Table 6 

DARPA 

- Proper t ies of DARPA and P lymouth private da t a se ts . 

No of Alerts 

Plymouth priuaiF data 

Q = quaniisaaon e r m , T = 

.-•*:.i.^:v, .^-
Map units 

" 3 3 

1934 

. t . •]"> 

t o p o ^ p h i c emn. 

Stage 1 

Errors 

Q-=O.Xi 
T = 0.019 
Q=^ 0.009 
T = 0 .0« 

Q âooa 
T-ao« 

'•H'! 

I t 

FA = false a]aim,TA^ 

"Value 

612 , ^ 

919 

•US 

1113 

: tniealann. 

Map units 

190 

• . . 1 - ' L ; 

Stage 2 

Errors 

Q ^ 0.048 
T = 0,012 
Q s 0.097 
T = 0J>S4 

Q = 0097 
T = 0.043 
Q = 0.044 
7 = 0077 

•••r-.!-^ i-h^-i. 

'k- Value 

• • - ? . : . -

2 

" • ' • • ' ^ - " - - " - ' 

2 

Re suit 

FA = 1131 
TA = 93 
FA = 1297 
TA = S41 

TA - 70 
FA = 213» 
T A - 8 7 

?-,=',5il^ .T 
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Fig. 5 - Stage 2 alarm classifier using DARFA dataseL 

p a ^ and email message, which b used to monitor users' 
behaviours. This is often invisible and hidden to conceal the 
fact that the surveillance is taking piace (Smith, 1999). Since 
none of these web-bug alerts reiated to any attack instances, 
the study revealed that no true alarms associated with this 
signature had been generated. 

As for the private data, the classification reveals that about 
78.8% of false alarms have been identified m the first map. 
whereas 96% of them have been detected in the second 
mappings. It is notable that our system has shown promising 
result in fiitering all hectic and unnecessary alerts triggered by 
the IDS. For example, the alerts from WEB-lIS view source via 
translate header and WEB-MISC robots.txt access signatures. 

which had caused 82% of false alarms from the entire private 
data (Tjhai el al.. 2008b). 

WEB-MISC robots,txt access is a signature raised when 
an attempt has been made to access robots.txt file directly. 
Robots.txt lile provides a specific instruction and deter­
mines which part of a website a spider robot may visit. 
Although this signature is triggered as the indicator of 
vulnerable information attack, there exits high possibihty 
that all these alerts were raised owing to the legitimate 
activities from web robots or spiders. As the spider's web 
indexing is regularly and structurally repetitive, this 
activity tends to cause the IDS to trigger a superfluous 
amount of false alerts. On the other hand, WEB-IIS view 
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source via t rans la te h e a d e r targets t h e Microsoft US S.O 
source disclosure vulnerabil i ty by us ing a special ised 
h e a d e r "Trans la te T on a n HTTP GET r e q u e s t (Snort, 2007). 
Al though this event is deemed to be a n a t tack tha t targets 
t h e Microsoft IIS source d isc losure vulnerabi l i ty , th i s could 
possibly be a false posit ive. S o m e appl ica t ions , for example 
Web-based Distr ibuted Author ing a n d Vers ioning (Web-
DAV) t h a t m a k e u s e of "Trans la te f as a legi t imate header , 
migh t c a u s e this ru le to genera te an excess ive a m o u n t of 
false a l a r m s {WebDAV Overview, 2001). 

Our suggested aiarni filtering system is believed to signifi­
cantly outperforoi o ther existing me thods . Unlike many 
proposed sys tems tha t need to be trained wi th a considerable 
vo lume (gigabytes) of attack-free data, our sys tem applies 
unsuperv ised t ra ining to train the classifier, h e n c e no attack-
(tee da ta are necessary. In t e r m s of i ts configuratiDn, our 
approach is considered efficient enough as it is easy to se t up 
and no knowledge of the a t tacks is required to filter the 
a larms. Moreover, the sys tem's filtering processes are inde­
p e n d e n t from the intrusion detection process. Therefore, we 
believe tha t our model can be applied to other s ignature-based 
IDSs wi thout changing the existing filtering configuration. As 
to its fjerformaiice, t he sys tem does no t only provide a bet ter 
a l a rm m a n a g e m e n t , but also shows the re la t ionship be tween 
the genera ted alerts, t hus enabl ing adminis t ra tor to discover 
t he potent ia l a t tack scenarios. 

R E F I R E N C E S 

6. Conclusion and future work 

In this paper, we have proposed a technique to de tec t and to 
subsequent ly reduce the n u m b e r of IDS false a larms. We 
develofied a two-stage classification sys tem using the 
combina t ion of two da ta min ing techniques , n a m e l y SOM and 
K-means clustering. The first stage classification was devel­
oped to properly correlate alerts related to a particular 
activity. All alerts, regardless the s ignature type, triggered by 
a s i n ^ e event are mapped and grouped into o n e d u s t e r . In 
addit ion, t he m a i n objective of t he second s tage is to subse­
quent ly label all clusters produced in t he first classification 
into groups of t rue and false a larms. 

To verify t he idea, we carried out prel iminary exper iments 
wi th two different da ta sets; t he 1999 DARPA IDS evaluation 
da ta se t and our o w n set based upon private network data . 
The resul t shows t h a t more than 90% of false a l a rms from 
DARPA data set were filtered wi thout ignoring the t rue a la rms 
whilst approximately 87% of false a la rms from private da ta set 
can be correctly identified. Despite t he lower false a la rm 
detect ion rate than the DARPA data set . our sys tem h a s 
demons t r a t ed its effectiveness in filtering all noisy and 
unnecessary IDS alerts, which have usually cont r ibuted to 
more t h a n 50% of false a l a rms from the c o m m o n IDSs. 

As our classifier is in 3 prel iminary s tage a n d w a s only 
eva lua ted us ing a small c h u n k of DARPA and private da ta , 
we p lan to fiirther a s sess the sys tem us ing t h e comple te 
DARPA a n d Plymouth da ta sets, W e also focus o n improving 
the approach by applying it to live da ta in order to p rove that 
our mode l is applicable unde r a real life opera t ional 
env i ronmen t . 
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