University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
2011

Anomaly-based Correlation of IDS
Alarms

Tjhai, Gina C.
http://hdl.handle.net/10026.1/308

http://dx.doi.org/10.24382/3248
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



STORE|
B EDE R R = |'

IR
|
ANOMALY-BASED CORRELATION OF -;

DS ALARMS

JINA €. TIHAT -

Ph.ih 2611




888888888



ANOMALY-BASED CORRELATION OF IDS ALARMS

G.C. Tjhai

Ph.D.
January 2011




Copyright © 2011 Gina C. Tjhai

This copy of the thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with its author and that no quotation from the thesis and no
information derived from it may be published without author’s prior consent.




ANOMALY-BASED CORRELATION OF IDS ALARMS

A thesis submitted to the University of Plymouth
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Gina C. Tjhai
January 2011

wER,

School of Computing and Mathematics ;J
Faculty of Science and Technology ; |
University of Plymouth, UK~

+
-

&
%

*umo®



Anomaly-Based Correlation of IDS Alarms
Gina C. Tjhai

Abstract

An Intrusion Detection System (IDS) is one of the major techniques for securing information
systems and keeping pace with current and potential threats and vulnerabilities in computing sys-
tems. It is an indisputable fact that the art of detecting intrusions is still far from perfect, and IDSs
tend to generate a large number of false IDS alarms. Hence human has to inevitably validate those
alarms before any action can be taken. As IT infrastructure become larger and more complicated,
the number of alarms that need to be reviewed can escalate rapidly, making this task very difficult
to manage. The need for an automated correlation and reduction system is therefore very much ev-
ident. In addition, alarm correlation is valuable in providing the operators with a more condensed
view of potential security issues within the network infrastructure.

The thesis embraces a comprehensive evaluation of the problem of false alarms and a proposal
for an automated alarm correlation system. A critical analysis of existing alarm correlation systems
is presented along with a description of the need for an enhanced correlation system. The study
concludes that whilst a large number of works were carried out in improving correlation techniques,
none of them were perfect. They either required an extensive level of domain knowledge from the
human experts to effectively run the system or were unable to provide high level information of the
false alerts for future tuning. The overall objective of the research has therefore been to establish
an alarm correlation framework and system which enables the administrator to effectively group
alerts from the same attack instance and subsequently reduce the volume of false alarms without
the need of domain knowledge.

The achievement of this aim has comprised the proposal of an attribute-based approach, which
is used as a foundation to systematically develop an unsupervised-based two-stage correlation tech-
nique. From this formation, a novel SOM K-Means Alarm Reduction Tool (SMART) architecture
has been modelled as the framework from which time and attribute-based aggregation technique
is offered. The thesis describes the design and features of the proposed architecture, focusing on
the key components forming the underlying architecture, the alert attributes and the way they are
processed and applied to correlate alerts. The architecture is strengthened by the development of a
statistical tool, which offers a mean to perform results or alert analysis and comparisen.

The main concepts of the novel architecture are validated through the implementation of a pro-
totype system. A series of experiments were conducted to assess the effectiveness of SMART in
reducing false alarms. This aimed to prove the viability of implementing the system in a practical
environment and that the study has provided appropriate contribution to knowledge in this field.




Table of Contents

Page
1 Introduction .. cooe v v SRR K K R R S E R e a0 W el e R TIPTIOUR. |
1.1 ThelntrusionDetection BYstem . . . o o v v o v v 75w v 5 % 0 % s s e wigliaislael il o s 2
1.2 TheProblemofFalseAlarms . . .. .. ... ... ... ... iiiiunes S -
1.3 Aims and Objectives of the Research . . . . . . . . . . .. . . . . ... @ .. 3
1.4 ThesisStructure . . . . . . . . . . . L L L e e e e e e e e e e 4
2 Rationale of IDS Technology . ... .. R B S R oy S e W
2.1 Principles of Intrusion Detection . . . . . . . . . . . . .. . ... ... 7
2.1.1 Sepsor-based . . . . . ... L e e e e e e e e e e e 8
A L I 8 T T L T 9
22 ThaEvalation of' 1B . ccrvcvmimem o5 v v o o o o 6 8 0 o & @ % % 5 % Sl st ees s 10
2.3 Efficienty ob ID8 o vonnvmrirmmsssin s ¢ R R BB S0 0 5 T E TR 5 S B & R RGeS & 12
24 IDBAlarmGeneration . ..coauen 6 ¢ 8 E 5SS S5 BB EE 4 EE S G RemEE e |-
241 FalseNegative . ;- o m e s i 8 v i s ¥ v a0 5 5@ o 88 3 mi8 Srmimmne Hauih s A
2.4.2 False Positive . . . . . . . L L . . e e e e e e e e e e 13
2.5 Conventional Alarm Reduction Methods . . . . . . . . . .. .. .. ... ... .c... 15
2.5.1 Disabling Signature. . . . . . . . . . i i i i i it e e e e e e e e e e e e e e e 15
252 Pag RME ..o wmmaramimmmw® @ 8 2 5 5 8 8% R E E ¥ 5 R 8 68 8 RS 15
2.5.3 Thresholding and Suppression . . . . ... . ... .. .. ...t 15
2.6 ConCIuBIONS .« o i e e e W 4 2 5 LS S NS e AR E RN S e AR prrSen e |
3 Investigation into alert reduction methods using alarm clustering and correla-
tion techniques ... ... T Py R I D R e N R B I ievatess A
3.1 The Need for an Automated Alarm Correlation . . . . . . .. ... ........ g s e A9
3.2 ConceptofAlarm Correlation . . .. ... ... ... ... it 19
3.3 Alarm Reduction Methods . . . . . . . . . . . .. ... .. ... ... 21
3.3.1 Categonries of Alarm Reduction Approaches . . . . . ... ... ... ....... 21
3.3.2 Alarm Clagaification Teehnigues . . - - « « < 5 5 5 5 5 5 5 % 5 e avaendee s o s 22
3.3.3 Alarmn Correlation Tachniques .. . o - 2 v ¢ i v m s v s awu s amaame s o s 25
3.4 Underlying Mechanisms of Alarm Correlation System . . . . . .. ... ......... 27
341 Explicit Alarm Correlation . . ; . v ¢ v v v v 6 6 v a5 0o m n 5 i mmeioe o 3 28
3.4.2 Implicit Alarm Correlation. . . . . . . . . .. ... ... ... ... 28
3.5 Security Information and Event Management . . . ... .. ... ... ......... 33
36 CHEONE . o e ammra e A 6 S v B R F R E S E N R R R 5 % R e 4 34

4 An Experimental Study of the Problem of False Alarms . ................ 37

4.1 Expermnent DOSCTIPION . .oovmmmmmas & & 8 8 & 8 % 5 0 6 8 5 % & & 5 s 6 e e 37
4.1.1 Experiment DataSet . . couvwnv v v v v o w s o s s v a o 4 & % % BEe e e de 37
.32 Exparimental Tools -« ouvamumia g5 s ¥ v 0 0 8 ¥ 8 8 5 55 5 55 9 96 B el 38

4.2 An Experiment using the 1999 DARPADataSet . . . .. .. ... ............ 39
421 TruePosilives . . . . . . . L L L e e e e e e e e e e e e e e e 41
422 FalsePositives . . . . . . . . . . . . i e e e e e e e 42

4.3 An Experiment using the University of PlymouthDataSet . . . . .. ... .... ... 44

431 FaleeFoaliVes ;. : v vaianissi i 8 6 05 5§ £ 5 & 5 8BRS 5% 54 R RiiaeEEsd 45




TABLE OF CONTENTS

432 FineTuning . . . . . . . it it ot et et e e e e e e e e e e e e e e 50

4.4 DHSCUSSION . . . . v v it e e i e e e e e e e e e e e e e e e e e e e e e e e e e 54
45 CoNCIHBINNE ooov s isie mmras ol o & b ¥ 5 & % 5 8 5 5 5 0 S0 s R SR o b 55
5 A Novel ApproachtoAlarmCorrelation .. ... ... ... 0000ttt nnnas 57
5.1 Inmtroduction . . . . . . . . . 0 i e e e e e e e e e e e e e e 57
82 MothoolofI¥ ..oovmamammem aias oo 5 st & % o & & 5 5 F 56 & 5 s miE AR R K 57
52.1 Se Organising Map (BOM) . . . o« « < 5 4 5 % 5 e eners s we wer e & » 58
.22 H-MEABE onvcmsas B P g p @ s PSR DR TS 6 N SR e SRR S AT 8 59

5.3 A Proposed Alarm Reduction and Correlation System . . . . . .. ............ 59
531 ATwoTierArhiteetire . . i ita55 55 sarrsRnuiErmeamead ¢ ¥ 3 60
5.3.2 Stagel-AlarmAggregation. . . . . . . . . . . . . e 62
5.3.3 Stage 2 - False Alarm Classification . . . . . . . . . .. @ uiuiiauenn.. 65

54 Algorithms . . . . . . . o o e e e e e e e e e e e e e e e e e e e 68
BA.l Stage L Correlation . cosiwiwiw o a5 b w5 5 % 5 5 o5 e 8 e S Tae AR S S 68
542 Stage 2Corrlation < .cow i i x w5 5w & T B B B R o Y, SRR AR ST S 2 69

5.6 Experimental RESoMS . ..cowvn e o v e s =2 28 2 5 5 8 6 4 Aira s eamaaien & & 8 70
6i6.1 DARPA-I999DRtASEY =i oo v vs 5 56 5 5 5 a6 6 5 Sl e e s & & 71
56.2 University of Plymouth Private Dataset . .. :: ... vvmv@aves da o 74

56 CoRIBIONSE .. .. di 5w g g x e s 8 A DS E B G R R R GRS § 5 76
6 A Conceptual Architecture for an Automatic Alarm Correlation System . ... .. 77
5.1 Tatrodnetion o sra sy 15 TN RS E RAE 4 R S S e e B Y G 77
6.2 SOM K —Means Alarm Reduction Tool (SMART) . . . . . . .. .. oo v i i 77
6.3 Operational Charactenstics of SMART . . . . . . . . . . . . i i i i ittt e e e e 80
6.3.1 Offer an Attribute-based Alarm Correlation approach . . . . . . .. .. ... .. 80
6.3.2 Evaluate and Aggregate Alarms based on Time windows . . . . .. ... .. .. 81
6.3.3 Classify Alertsinto Trueand Falsealarms . . ... ... .. ..o ... 81
6.3.4 Offer a Flexible and High Level of Alarm Comparison using IDS signatures . . 82

6.4 SMART ModGles' o : vwwueoy s vc2d s 3 e moammreree e s e irae d 8 & o s 83
641 Userlnpul-TserTnlerfaee . - ¢ 5 & 5 ¢ 6 3 0o e s a5 o & § 3 ¢ 83
842 CorrelationEnfine. . . ;v oo in 5 iaoimidoee 4408 o8 ss s 83
643 Data SLOTAZE . i . ¢ it ¢ 4y o ovom o it e s kb e e e Y S R 87
6.44 System Output . . . . . . . L e e e e e e e e 89

6.5 Conclusions . . . . . . i i i it e e e e e e e e e e e e e e e 89
7 APrototypeAlarm Correlation System . . . + « ¢ s s s s e v s e s o s s 00 s0esses 91
7.1 Introduction . . . . . . . . . . o e e e e e e e e e e e e e e e e e e e e 91
7.2 Implementation Overview . . . . . . . . . .. .. . . it e 91
Tl TP oo coom v mon g ng x i w S W D R (e ) s K K KB B WK E S W 94
7.3.1 Startingand Ending Timestamp . . . .. . .. ..ottt 94
T3 TINBPIAMB - o ¢ o v5 5 2 5 5 5 5 5 WO EEEEIE R & b ¢ N 85 S e e E e s e 95
(L A R B R R P i e RSP e AT O A I R R - 95
141 AlarmBtabiatios : ; ;s s i anREmes by HNE SRR R dEE & 95
TA4A2 ChartReport. . . - - - = o v 0 2o it b e b b s b s G LS ST 88 a 95
7.4.3 Tablesof Signatures . . . . . . . . .. . . . i i i it ittt st 97

7.5 Demonstrating the SMART Prototype System . . . . . . . .. .. v u e nna. 99
751 DotRIIeaBBPRN . o o 2 v gowo% g s asseeea B R W T N R R R B R E R R e S E S 100
7.5.2 Example l-RunningtheCorrelation .. .. ... ... ... ... ..., 100
7.5.3 Example 2 - Viewing Overall Correlation Results . . . . .. ... ........ 103
7.5.4 Example 3 - Analysing SignatureRules . . . . . .. .. .............. 107

7.6 The Implications of the Practical Evaluation . . ... ... ................ 109
7.7 Experiment Results . . . . . . . .. . .. ... .. .. 113
7.7.1 DARPADataSet 1999 . . . . . . . . . it et e e e e e e 113

i



7.72 Universityof PlymouthDataSet . . . . . .. ... ..t innnn 116

T CONMEROBE o 5 56 %% % % % w5 S le ST P A R S M E R AR A A TR WA R RS 120
8 ConcluSions . .. .. v vttt o eneseeesssssessasssssssssnnsesoss 125
8.1 Achievements of the Research Programme . . ... ... ... ... ........... 125
8.2 Limitationsofthe Resgaith ... ccvvwmasis v v ws oo o w s s 66605 e 126
8.3 Suggestionsandscopeforfuturework . . . . . ... ... ... .. 127
8.4 The Future for Automated Alarm Correlation Systems . . . ... ... ... ...... 128
A Results of the Experiment on 1999 DARPA DataSetand SnortIDS. . . .. ..... 129
A.l1 True and False Alarmsper Signature . . . . .. ... ..ottt iiinnnnnn. 129
A.2 Tables of Attack Types DetectedperDay . . .. ... .. ... ... ... .. 133
B Results of the Experiments on Snort v SMART ............ e e e e e e e 141
C The Peendoeot : < « & & v i@ e s saelaes s 6 6 5 5 a e s 5% 5 0 mmmws 147
C.1 Main Alarm Aggregation Pseudocode . . . . . . . . . . .. . . . e e e e e 147
C.2 Called Functions Pseudocode . . . . . . . . . . . .. . ittt 148
C.2.1 GET the best size of map based on the smallest quantisation and topographic
BEPOYE . « v 5 s o 5 6w eSS SRR SR W ) W B S W e D e e I8 (8 He & 0N JEu 148
C.2.2 CLASSIFY data on the map using K-means algorithm and STORE the result
B Ly T e e T EEEEE e 149
C.2.3 CLUSTER sMap using K-means algorithm via kmeans_clusters method and
STORE the resultinto ¢, p,errandind . ...« v o i v i i it innn. 151
C.3 Main False Alarm Classification Pseudocode . . . . . . . ... ... ... ... ..... 152
€A Called Farncliona PReudocalle n i in s masni s a8 s & sl &% 5 8% 3G 5@ eiar 155
C.4.1 Classify data on the map using K-means algorithm and STORE the result into
data_indFinal and rec post . . . . . L . . L. e e e e e e e e e e e e e e e 155
D MATLAB Source Code . ..... AT R e @ % @ B e T 159
D.1 Counting Time Interval and Numberof Events . . . . . . ... ... ........... 159
D2 MainCorrelation FUREHONS = e v v s mm i b 6 § 5 8 538 5800 55 0 e jmies 165
D.3 Generating Input Data for Stage 1 Correlation . . . . . ... ... ... ......... 168
D.4 Generating Input Data for Stage 2 Correlation . . . . .. ... ... ... ........ 170
D.5 Alarm Aggregation Process . . . . . . . . . . i e e e 179
D.6 Alarm Filtering Process . . . . . . . . . .. e e e e e e e 183
D.7 k-MeansClustersProcessforStage 1. ... . . . . v v v v i o v v v i m c i et mee s aun 189
D.8 k-Means Clusters ProcessforStage 2. . . . . . ... .0 oo i i iiiiiiann... 190
E Functional Requirement Analysis . .. ... ... ...ttt nntinennsensas 193
F Running the CorrelationSystem .............. FEseessemne sl e 203
G PuBIEeaiBiemB - < v v 5 % 5 5 o0 SUsmie s e e e T AR W e % W M e e e e B 6 B B e 207

iii




List of Tables

Table Page
&1 Total Alerte PerSBRBRINE . oocommmeemuire v s n B B B R R ¥ o @ W E R N % G AV 47
5.1 The interpretation and data collection methods of the alarm attributes for second

stage classification . . . . . L L L e e e e e e e 66

5.2 Properties of DARPA and Plymouth Private DataSets . . .. .............. 71
5.3 SSE and Frequency Rate from DARPADataSetPart 1 . .. ... ... ......... 72
5.4 SSE and Frequency Rate from DARPADataSetPart2 . .. ... ... ......... 72
56 Result COMPANBINR . . wumirmmimmre @S 8 8 £ 9 85 6 5 s 5 48 5 & % % 5 W 5 e 73
5.6 SSE and Frequency Rate from PLYMOUTH DataSetPart 1 . . . .. ... .. .. ... 75
5.7 SSE and Frequency Rate from PLYMOUTH DataSetPart 2 . . . .. .. ... ..... 75
6.1 Alert Attributes of Stage 2 Correlation . . . . . . . . . . . i i i i i it e e e 80
62 Correlation AREriBHEER .. cccvmmmsnmmma s v a s e 8 8 5 5 5 5 8 8 F &SRR G A 83
7.1 DARPA - Reduction Rate of Top5 False Alarms . . . . . ... ... ... ... .. ... 114
7.2 DARPA —Misclassified Alerts . . . . . . . . . . i it e e e e 115
7.3 University of Plymouth Private Data — Reduction Rate of Top 5 False Alarms . . . . . 117
Al Falsealarms persignature . . . . . . . . . o v v i i i e et e e e e e e e e e e e e 129
A2 Truealarms persignature . . . . . . . . . i i v i i i e et e e e e e e e e e e 131
A3 Day 1-29" March 1999 . . . . . .. it i it e e e e e e e e e 133
A4 Day2-30" March 1999 . . . . . .. .. e e e e e 133
A5 Dy 3-3T" MR IO . ...oovvrvammins o o o o % 5 0 % & @ & W E B B R R 134
AN Dayd-1%Apwil 1998 .. . wovvvassaimmmim 5 6 S8 05 65 58 6 65 G B A EBGEGE R ewa 134
TR gl T I o R E L R L R R 135
A8 Doy S-S0 ApRI IO . . vveim v aa 5 o R o 5 B S 56 B 55 55D %S s B eepEas 136
A Doy T-GRArll OB - - . ccorii i s 8o s F SR B AR R A% TS B B 137
Al0Day8-TRAPril 1989 . . . . . o v vt v o s s s s ms oo mmma e e e 138
A11Day 9-8" April 1999 . . . . . . e e e e e e e e 138
Al2Day 10-9" April 1999 . . . . . L e e e e e e e e e e e 140
B.1 1999 DARPA Data Set —ReductionRate . . . . . . .. .. ... .. ... 141
B.2 1999 DARPA Data Set — Unfiltered False Alarms . . . . . . ... .. .. ........ 142
B.3 1999 DARPA Data Set — Correctly Identified True Alarms . . .. ... ... ... ... 143
B.4 Plymouth Data Set —ReductionRate . . . . . . . . . . . . @ . i ittt s enn 144
B.5 Plymouth Data Set — Unfiltered False Alarms . ... .. ................. 144
B.6 Plymouth Data Set — Correctly Identified True Alarms . . . ... ... ... ... ... 145
v




List of Figures

Figure

b

3.
3.

4.
4.
4.
4.

B

4.

n on

onon

o o

1
2

1
2
3
4
;]
6

?ﬁ
ot

=]

=1

=]

.
i
T

7

-] =3 =] =3 =3

=] =1

e e e M B

o ~1 3

W L3 BD

o

.10
(1
A%
13
14
15
.16
by
.18
19

Page
IDS architecture (Lundin and Jonsson, 2002) . . . . . . . . . & . . i i i i i 7
Correlation process overview (Valeuretal.,2004) .. .. ... ... ... .. . ..+«.. 21
The framework model of ALAC clasrifier. . . . . .. . ... .00 i i it eas 24
Percentage of true and false positive alerts on DARPAdataset . . . . . ... ...... 40
Overall alert generation persignature . . . . . . . . . . . . . i ittt it nnennn 41
Snort IDS alarm - True and false positive Venndiagram . . . .. ... ...... ... 41
Tops DARPAfalsealarms . . . . . . . . . . . . i ittt e e et e 43
Generation of alerts on University of Plymouth data before tuning . . . ... .. ... 46
Comparison between false positive and true positive alarms on University of Ply-
pEth At . - « = « = 5 6 e AR AT SRR R B S R B B s s R R G5B R G RS 46
MTEME PING NMATT aVeRt' - cogricasianilng e s & 0 N 3 S S8 5 85 % 4 6 6 & modrmi 50
Generation of alerts on University of Plymouth data after tuning . . . ... ... ... 51
Alarm rate before and aftertuning . . . . . . . . . ... ... ... . 51
Framework of alarm correlation system . . . . . .. .. .. ... ... .. 0uuuonnn 60
Architecture of alarm correlationsystem . .. ... .. ... ... ... .. ....-.. 62
Stage 1 classification using DARPA 1999 dataset . ... ... .. .. ... ....... 72
Stage 2 alarm classifier using DARPAdataset . .. ... ... .............. 73
Stage 1 classification using University of Plymouthdataset . . . .. . ... ... ... 74
Stage 2 alarm classifier using privatedata . . . ... ... ... ... . ......... 75
BMART arehIteriit. .« oo ae & & & & & & @ @ @ 6 F & 8 6 5 5 % 5 e e 8
Prototype implementation . . . . . . . . . . ... ... e 92
Prototype IOAHeR . . . s smsmmmummrsmmme s & o 5w 0w B B Y ¥ s B 5 B B N e 93
SMART - 580P IR < = woemianormsm i % ¢ 0 8 88 S 8 8 5 T % % A 5 5 e 94
SENMART <Aletttabletal v 65 5 65 5 8 S S5 E 5 0 5 b B 5 LT 96
BMART <Chart report LBl - & n i s i e s S G s E F e d a s o 3 e o R ERT 97
SMART bar diagram - Time(hours) vs False Signatures . . . ... ... ......... 98
SMART line diagram - Time(hours) vs False Signatures . . . .. ... .......... 99
SMART - Signatore analysis 18l . . coocaraviras ot s e 5w @ 5 8 W & G G % % e 100
SMART -Sighature plot diaBram . vvomiu @ odi s s 6 S C 5 5 5 5 950 5 & 5 5 e eresems 101
SMART -Signaturetables < . s v o m s ea i ir n s i v b o o o 6 5 a6 5 % % B miaws 102
BASE - Payload page . . . . . . . . e e e e e e 103
Anexampleofstage Imap . . . . . . .. .. ... .. e 104
An exaimple of 86age 2MAP . . .o e e @ e R @ a R s A E G e 105
BMART - Correlation completed . - «uiviems immimie 25 905 555 % o & 4 % s i G5 0alars 106
SMART - Time (hours) vs Noof Falsealarms . . . .. ..., ... ............ 107
SMART - Time (days) ve Noof Falsealarms . . . . . . .. .. .. .. . ... . . ..... 108
SMART - Time (months) vs Noof Falsealarms . . ... ... ............... 109
SMART - Time (hours) vs Noof Truealarms . . .. ... ... .. ...t oun 110
SMART - Time (days) vs Noof Truealarms . . . . . . o v v v v v v v v o s v e e e e 111

vii




20

'}

(VL]

i{.
7.
7.22

f.
T

I,

Lo

-~
(=

al =) =] o) =) =3 =3

S o G0 B

-1 <N

ac

1 P 0

™
=]

o
i

F.2
F.3
F.4
F.5
F.6

SMART - Time (months) vs Noof Truealarms . . . . . . ... ... ........... 112
SMART - True Alarms vs False Alarms (hours) . . . . . ... ... ... ......... 113
SMART - True Alarms vs False Alarms(days) . ... ... ... ... ... ..., 114
SMART - True Alarms vs False Alarms(months) . . . . . .. . ... ... ... ..... 115
SMART - Time (hours) vs False Signatures . . . . . . .. . .. i .. 116
SMART - Time (days) ves False Signatures . . . . . . ... ... 000 117
SMART - Time (months) vs False Signatures . . . . . ... ... ............. 118
SMART - Time (hours) vs True Signatures . . . ... ... ... ............ . 119
SMART - Time (days) vs True Signatures . . . . . .. ... . ... . 120
SMART - Time (months) va True Signatures . . . ... . ... @@ttt wnn. 121
SMART - ATTACK-RESPONSES 403 Forbidden (Plot Diagram) . . . . .. .. ... .. 122
SMART - ATTACK-RESPONSES 403 Forbidden (Alert Table) . . . . ... ... .... 123
Tanmng VA SMART . . . oo ammee e s 6 6 5 & & & 8 @ % & 6 8 6 & 6 @ wEe 123
SMART use case di@gram . . . . . . . . o ottt vttt i e et e e e e e e e, 193
Activity diagram - Runcorrelation . . .. .. .. ... ... .. ..., 194
Activity diagram - View statistic . . .. ... ... ...ttt ana. 195
Adtivity diagraim ~'Crebteehart . covs n vosmm v s v e nw s o w5 5 % 5 5 8 5 @ EcarewEs 195
Activity diagram - Analysesignatures . . . . . . . . . . 0.0ttt e e 196
Activity diagram - Cancelcorrelation . . . . . .. .. ..o o i it eee. 197
Activity diagram - Reset theinterface . . .. ... ... ... ... .. ... ... 198
SMART sesuenee Magram < v o v i s v 0 P 98 8 8 S s G e & 8 & 8% & 8 1 6 6 s . 201
SMART class dEagTam ....ocmipdrnn s m VS 5§ 7 E5 S s S E RSN B S S H B STEEES 202
Opening SMART application - viacommand prompt . . . . . . . ... ... ... 203
Opening SMART application - viadouble-clicked . . . . . .. ... .. .......... 204
SMART -Frontpage: s 5 0 9 v 0 ¥ 8 e 0 S S S5 A5 R S % % ¥ ja W IN0gyiaass s 205
SMART dialog box - Incorrect input format . . . .. ... ... .............. 205
SMART -Progress bar . . . . . . . . . @ i i i i i i e e e e e e 206
SMART - Confirmation box . . . . . . . . .. .. . i ittt ittt et e e e 206



Acknowledgements

This thesis presents the results of three and half year research into numerous aspects of IDS alarm
correlation, in the field of information security. All works were carried out within the Centre for
Security, Communications and Network Research (CSCAN), at University of Plymouth, Plymouth,
UK

This thesis would not have been possible without the guidance and the help of several individuals
who in one way or another contributed and extended their valuable assistance in the preparation
and completion of this study.

In the first place 1 would like to show my gratitude to Prof. Steven M. Furnell, my Director of
Studies and Research Director of the CSCAN group, for his supervision and advice from the very
early stage of this research until the completion of this thesis. His wide knowledge, understanding
and support have been invaluable for me.

Secondly, I would like to thank Dr. Maria Papadaki, my second supervisor, without whose knowl-
edge and assistance this study would not have been successful. The good supervision, personal
guidance and support of hers have been of great value on both an academic and a personal level,
for which I am extremely grateful.

I also wish to express my sincere thanks to my third supervisor, Dr. Nathan L. Clarke for his
excellent advices and constructive comments that have been very valuable to this study. Without
his kind support, it would be impossible to complete this research. I also thank Dr Bogdan Ghita
for his help in capturing the network traffic and for his support until the completion of this thesis.

I am indebted to many of my fellow researchers for their support, and I would like to extend my
warmest thanks to those who have helped me with my work in CSCAN Group at the University of
Plymouth. Special thanks go to my brother; Dr. Cen Jung Tjhai, without whose personal advice and
assistance, | would not have finished this study. Of course, thanks must also go to all my friends in
Plymouth and Indonesia for their endless support.

Lastly, and most importantly, I am grateful to my parents, brothers and sister for their unlimited
support and patience. Without them, this work would never come into existence.

For those who have contributed but not mentioned, please accept my thanks.




Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been regis-

tered for any other University award without prior agreement of the Graduate Committee.

This study was financed with the aid of scholarship from Faculty of Science and Technology. Uni-
versity of Plymouth. Plymouth, United Kingdom.

Relevant seminars and conferences were regularly attended at which work was often presented.
Several papers were published in the course of this research project, details of which are listed in
the appendices.

Word count of main body of thesis: 46,951 words

Signed

Date 2 sy ol




Introduction

The information security threat landscape is changing rapidly; many organisations are struggling
to keep up with the changes of nature, complexity and scale of attacks or intrusions. In its 2010
security threat report, Sophos has highlighted six major IT security threats, including social net-
working, data loss and encryption, web threats, email threats, spam and malware (Sophos, 2010).
One prominent example is the rise of social networking threats, with a 70% rise in the proportion of
firms that report encountering spam and malware via social networks during 2009 (Sophos, 2010).
It is also predicted that social networking sites will face more sophisticated threats as the number
of users grows (McAfee, 2010). In general, intrusion is defined as

any actions or attempts made to compromise the integrity, the confidentiality or avail-
ability of a resource (Heady et al., 1990).

According to the report presented by Symantec (2010), there are a number of recent and growing
trends in the threat activity landscape that were observed by Symantec (2010) in 2009. The trends
include attacks targeted on enterprise are increasing, with web application continuing to be the
favoured vector of attacks over the Internet.

In discovering the security threat landscape, there are two fundamental issues that have been
affected by the information security domain over the years (Kark, 2010). Firstly, the threat land-
scape keeps evolving and gains sophistication and secondly, the attackers will always be a step
ahead of the defenders in exploiting the vulnerabilities in the domain of people, processes and tech-
nologies. Given these issues, attention should now be directed to focus on the changing nature of
the threat landscape that includes the motivation of the attackers, the attacking methods and tools.
The attacking techniques have also evolved from a simple and visible attack to a more sophisticated
or stealth attack. In terms of the tools, the process has moved from manual to more automated tech-
niques that are easy enough to implement that even people with minimal technical knowiedge can
use them effectively (Symantec, 2010).

Changes in the current threat landscape (in other words, the complexity, the evolution of at-
tackers and attack patierns) show not only the attack sophistication (the trend of threats) but also
the need for enhanced security mechanisms to combat these changes. In fact, the use of authenti-
cation, cryptography, firewalls and antivirus systems do not provide a complete solution to secure
information system. In spite of those security tools, one of the most apparent network tools be-
ing developed, and which has continuously grown in popularity, is the Intrusion Detection System
(IDS) (Bace, 2000).

This chapter presents a brief introduction to the context of this research by presenting an
overview of the main problems related to the subject of study. Next, the goals and objectives of
the research are determined, followed by a brief summary of each chapter.




Chapter 1. Introduction

1.1 The Intrusion Detection System

An Intrusion Detection System (IDS) is essentially a burglar alarm or a security tool, which is
aimed at detecting attacks against computer systems and network. IDS, much like the security
industry itself. has grown rapidly over the past two decades (Goeldenitz, 2002). It has become one
of the most vital components of a defensive tool protecting computer system and networks from
abuse.

The Intrusion Detection System is required in today’s computing because it is unfeasible to keep
pace with current and potential threats and vulnerabilities in computing systems. The environment
is continuously evolving and changing motivated by new technology and the Internet. Intrusion de-
tection products help in protecting a company from intrusion and securing its information. This
security appliance is used to detect an intruder, identify and block the intruder, support investiga-
tions to find out how the incident occurs and stop the possibility of future exploits. Such a measure
should be applied across the enterprise and could serve as a very powerful tool in the information
security practitioner’s tool kit.

Owing to this fact, the existence of intrusion detection has acted as a second line of defense
by monitoring, detecting or even responding to the unauthorised activities which could bypass the
firewall system. It is worth remembering that IDS is not a silver bullet when it comes to protect-
ing systems or network infrastructure. Instead, it is only one aspect of multi-layered protective
mechanism, an approach referred to as 'defense in depth’ (McHugh et al., 2000).

Although intrusion detection technology has been well established and been an active research
for more than two decades, the art of detecting intrusion is still far from perfect. In fact, the system
still suffers from the problem of false alarms, which is considered the major limiting factor for the
performance of IDS (Axelsson, 2000). The following subsection briefly discusses the issue and its

impact on the overall security implementation.

1.2 The Problem of False Alarms

While IDSs have been used for years and shown to be an invaluable improvement towards organisa-
tion’s security, they endure the problem of high false alarm (alert)’ rate (Khosravifar et al., 2009).
The false alarm rate, which is also known as a false positive, is the frequency with which the IDS
reports the malicious activities in error. This issue is aggravated by the fact that some commercial
IDSs may generate thousands of alarms per day (El-Hajj et al., 2010). Recognising the real alarms
from the significant volume of alarms is a frustrating task for security officers. False alerts always
cause an additional workload for IT personnel, who must handle and verify every single alert gen-
erated to inhibit or block possible loss of data confidentiality, integrity and availability. The manual
verification of these true and false alarms among the flood of alerts is not only deemed to be labour
intensive but also error prone (Bolzoni et al., 2007).

The number of alerts generated by an IDS on a Local Area Network (LAN) could be very large,
for example 15,000 alerts per day per sensor (Cuff, 2006). Reducing the false alarm rate is not
an easy task. Indeed, it often worsens the situation by causing poorer IDS reliability or accuracy.

"The terms alarm and alert are used interchangeably throughout the thesis




1.3. Aims and Objectives of the Research

Accordingly, further research is needed to devise a better approach to reducing false alarms while
improving the quality of alerts generated.

Traditional IDSs raise alerts independently, though there may be logical links between them.
A successful intrusion could trigger a sequence of alerts that correspond to different stages of the
attack (Ning et al., 2002). Thus, identifving alerts related to an intrusion could help construct the
attack scenarios. In fact, knowing the real attack patterns and the tactics used by the criminals
to launch the attacks enable the network administrators to take appropriate actions to block or
prevent them from escalating. Therefore, in order to support the security administrators in the
analysis of the security incidents and to provide them with a comprehensive view of the events, an
alert correlation technique is introduced. Such a technique has become well-liked and commonly
studied in current IDS research (the literature of the existing techniques is presented in Chapter 3.
It provides a mean to find the causal relationships in data by associating alerts, which are parts of
linked chains of events. Thus, it is anticipated that the method will enable the administrators to
discover the general attacks pattern from raw intrusion alerts, manage large volume of intrusion
alerts and help reducing false alarms.

1.3 Aims and Objectives of the Research

This study focuses on the issue of an automated alarm correlation system and specifically the se-
lection of the features used in the alert mapping processes, enabling the design and evaluation of a
novel prototype system for an automated alert correlation and filtering method.

The main objective of this research is to evaluate and design an improved alarm reduction and
correlation method. This encompasses the following stages:

1. Investigation of the extent of the false alarm issue and its impact on IDS detection perfor-
mance.

2. Critically review existing alarm correlation approaches. This was achieved by investigating
the use of Al for the improvement of false alarm handling.

3. Identify factors that influence the alert correlation process. It is expected that the appropriate
alarm correlation method to particular IDSs will vary depending on the features of alarms
generated. The suitability of such a method on a particular detection system relies on its abil-
ity to properly and effectively interpret the features of alarms generated by the IDS. Not only
is this approach anticipated to aggregate alerts from the same event, but also to distinguish
between true and false alerts.

4. Propose a novel architectural framework and a new approach to an unsupervised automated
alarm correlation system. The framework will be designed focusing on its alert mapping pro-
cesses.

5. Evaluate the effectiveness of the architecture by designing and implementing a prototype
system. The main objective of developing a prototype system is to facilitate the practical
evaluation of the proposed unsupervised automated alarm correlation method.



Chapter 1. Introduction

The objectives presented above relate to the general sequence of the material presented in this
thesis, the structure of which will be discussed in the next session.

1.4 Thesis Structure

Chapter 2 presents the evolution and basic concepts of intrusion detection, by introducing the IDS
architecture and responsibilities of each IDS component, followed by the fundamental principles of
the technology. This is followed by an introduction to the taxonomy of IDS and gquality parameters
of the technology. It also highlights five key measurement criteria that determine the proficiency
of the intrusion detection technologies. The chapter then provides an overview of the IDS alarm
generation and the conventional alarm reduction method, aiming to underline the main concepts of
traditional tuning methods.

Chapter 3 focuses on the existing studies on alarm clustering and reduction and begins with
an introduction of the basic concepts of alarm correlation. It then continues with a review of sev-
eral existing correlation approaches, highlighting their strengths and weaknesses in tackling false
alarms. The chapter concludes with a discussion of the Security Information and Event Manage-
ment (SIEM) tool, a significant example of a correlation system that collects all security-related
information generated by software running on the network to provide a more condensed view of
intrusive activities. This chapter highlights the advantages of the product and also indicating the
requirement of further improvements on alarm correlation system based on the concept SIEM.

Chapter 4 assesses the extent of the problem of false alarms based on experiments involving
the popular open source network IDS, Snort (Caswell and Roesch, 1998). A number of potential
issues are presented along with the IDS performance analysis on both the synthesised 1999 DARPA
evaluation data set and real network traffic (University of Plymouth private data set). This chapter
then continues to explore the issue of false alarm generation and critically scrutinise the impact of
false alarms on the IDS detection rate.

Chapter 5 presents the main contribution of this research, an automatic unsupervised alarm
correlation system. The aim of developing this system is to process alerts generated by signature-
based IDS, including aggregating and correlating alerts associated with the same attack instance
and clustering the alerts into groups of true and false alarms. The new correlation approach should
help the IDS filter the unnecessary alerts and provide a more concise and high level view of oc-
curring or attempted intrusions. Hence, the automatic alarm correlation and filtering system is
developed using unsupervised techniques, namely Self Organising Map (SOM) and K —Means al-
gorithm. The chapter begins by introducing the concepts of the applied methodologies and the
rationale behind their implementation. The effectiveness of the proposed system is tested in pre-
liminary experiments on both 1999 DARPA data set and University of Plymouth private data.

Chapter 6 extends the research by presenting a novel architectural framework of an automated
unsupervised alarm correlation system. The principal focus of the research is then presented,
briefly describing the main components of the proposed architecture, followed by the underlying
concepts of the system. Initially, the operational characteristics of the SMART (SOM K —Means
Alarm Reduction Tool) system, as a novel approach to existing research in the domain of automated

alarm correlation is described, followed by a detailed presentation of its main modules.




1.4. Thesis Structure

Chapter 7 defines the implementation of a prototype system, which embodies a subset of the key
elements of the proposed architecture, describing the interactions or relationships among them.
Initially, the chapter begins with an overview of the system development process, the software ap-
plications used to develop the system as well as its system/software requirements. In addition,
example scenarios are provided, in order to demonstrate how the correlation is run, how a graph-
ical chart can be created from the correlation results and a false signature rule can be further
scrutinised. Subsequently, a user-friendly I/O interface is defined, highlighting its features and its
role in processing and presenting IDS alerts. The chapter continues to discuss the implications of
the practical evaluation, underlining the prospective changes to the system architecture. Finally,
the chapter concludes with a comparison on the overall correlations results (false alarms reduction)
from DARPA 1999 and private data sets against the results of false alarm evaluation discussed
previously in Chapter 4.

Finally, Chapter 8 presents the main conclusions from this research, highlighting the principle
achievements and limitations of the work, along with suggestions for potential further enhance-
ment.

The thesis also includes a number of appendices, which contain a variety of additional informa-
tion in support of the main discussion, including a number of published papers from the research
project,




Rationale of IDS Technology

Although Intrusion Detection technology has existed for three decades, it still remains the subject
of active research area. So far, a large number of research studies have been conducted to improve
the effectiveness of IDS technology as an essential part of organisational security infrastructure. In
spite of its improvement, there is always significant scope for further enhancement. This chapter
will begin by exploring the fundamental principle and evolution of IDS technology in its research
domain; followed by the underlying problem of IDS alerts. Having presented a brief description of
the false alarms, this chapter will continue to describe a traditional alarm reduction method.

2.1 Principles of Intrusion Detection

In terms of its components, IDS technology consists of three main aspects; namely a sensor (analysis
engine), an event generator and a response module. In order to have a better understanding about

the IDS' components, Figure 2.1 depicts a simple example an of IDS architecture (Lundin and
Jonsson, 2002).

Protected System

System
Information

Figure 2.1: IDS architecture (Lundin and Jonsson, 2002)

The sensor, the core element of IDS, is responsible for filtering information and discarding any
irrelevant data obtained from the event collector, thus detecting suspicious activities. This com-

ponent, which comprises a decision-making mechanism, obtains raw data from 3 major informa-

=1




Chapter 2. Rationale of IDS Technology

tion sources namely IDS detection policy database (knowledge base), system information and audit
trails. A host-based IDS will rely on system information and audit trails as its major information
sources to detect potential intrusions. By receiving those 3 types of information, therefore, the
sensor (analyser) is expected to utilise the data received as the basis for further decision-making
process.

As a main information source of the IDS, the policy database does not only comprise the attack
signatures or user behaviour profile, but it also holds the IDS configuration parameters, including
the communication method with the response modules. The database will determine how the detec-
tion result should be presented to the end users (passive IDS) or whether further action is required
to stop the attack (active IDS). Moreover, in order to effectively detect the intrusions, the sensor has
its own database containing the details of potential complex intrusions (multistep attacks). The in-
formation enables the sensor not only to discover malicious activity but also to link two or more
activities into a single attack (complex attack).

In order to enable the system to collect data from the network packets, the sensor is integrated
with one component responsible for data collection, known as event generator. The role of the
event generator is to produce a policy-consistent set of events that may be an audit (log) of system
activities or network packets. Owing to its position as the event collector, this component could
be an operating system, network or application depending on the type of IDS. In order to properly
perform its task as data collector, the event generator will receive information from the information
collection policy; containing the rules of filtering event notification information.

On the other hand, the response module, the last component of IDS, is responsible for taking
an appropriate response action regarding the detection result. This component is known as the
extension of the traditional IDS. More specifically, an IDS that comes with a response module is
recognised as an Intrusion Prevention System (IPS). The actions taken by the IPS involve for ex-
ample alerting the administrator about the intrusion via email or even a more active response;
reconfiguring the firewall settings to inhibit the attacks. In most cases, the response module is
known as the user interface. In this instance, the response module facilitates the user to view the
output from the system or even to monitor the behaviour of the system (Grandison and Terzi, 2007).

IDSs are classified in many different ways, including sensor-based and detection model.

2.1.1 Sensor-based

Based on the location of its sensor, the IDS can be divided into 3 types, namely network, host and
hybrid IDS.

Network Intrusion Detection Systems (NIDS), such as Snort, CISCO Secure IDS and Clog, are
IDSs that aim to detect malevolent activities such as denial of service attack, port scanning or even
any suspicious activity or attempt made to crack into the protected system, by monitoring the net-
work traffic (Herberlain et al., 1990). Due to its operational characteristic, the NIDS has become one
of the most popular types of IDS in the current market (Scarfone and Mell, 2007). The cost-efficient
(only one IDS required to monitor all devices or hosts in a network) and easy deplovment of the
system (Operating System independent, in other words, the implementation of IDS does not affect

existing systems or network infrastructure) are few of its main advantages (Carter, 2002). Unlike
the network-based sensor which performs a packet level analysis, a host-based IDS (HIDS), such as




2.1. Principles of Intrusion Detection

OSSEC, Tripwire and Symantec Critical System Protection (Timberline Technologies, 2009), mon-
itors system level activities and event log consolidation. With the ability to access all system calls
and application logs, the HIDS sensor can detect any improper change of event activities as soon as
it is executed, thus determining the occurrence of an attack with greater accuracy and lesser false
alerts than network-based 1DS.

Given the advantages of both network and host-based IDS, it is more beneficial that the IDS
is developed by combining multiple different IDS technologies, for example, network-based and
host-based IDSs, into a single system or also known as Hybrid IDS. The examples of which are
RealSecure, Cisco Security Monitoring Analysis and Response System (MARS), NetlQ's Security
Manager and OSSIM (Open Source Security Information Management) (CISCO, 2010). The hybrid
IDS is commonly created based on a model which brings multiple agents of multiple types such
network-based IDS, host-based IDS, network packet capture and filtering, for example, TCPdump,
and other multi-vendor IDS systems; all of which are integrated and analysed by the centralised
management console (Bashah et al., 2005). The advanced hybrid system is now known as Security
Information and Event Management (SIEM) (Zoho, 2007). The aim of developing the hybrid tech-
nology is to bring more flexibility, expandability and greater accuracy of alerts by cross-checking
anomalies against other systems; hence reducing the rate of false alerts.

2.1.2 Detection Model

Based on its detection method (triggering mechanism), IDS can be classified into 2 common types,
namely misuse detection and anomaly detection.

Misuse detection is also referred to as signature-based detection. The idea behind the concept
of misuse detection is the application of a signature pattern that represents an attack’s behaviour
or even the variations of the attack. Misuse detection IDS, such as Snort IDS, offers various ben-
efits including the ability to detect known intrusive activity and to provide detailed information
about the attack the IDS is programmed to alert on. Despite the benefits offered, it has a prob-
lem in maintaining the state of information for signatures. In order to maintain the IDS detection
performance, the signature database must define all possible attacks that an attacker may launch
against the network. This, therefore, requires a frequent signature updates to keep the knowledge
base up-to-date (Bon, 2005).

On the contrary, an anomaly detection system (also known as statistical-based IDS) detects an
intrusive activity by monitoring the traffic or system activities and classifying it as either anoma-
lous or normal. One example of this IDS is SPADE (Statistical Packet of Anomaly Detection En-
gine) (SecurityFocus, 2010). An anomaly detection system can effectively detect insider attacks
and unknown (novel) attacks since it merely relies on the normal behaviour profile and no prior
knowledge of attacks is required. Such method is opposed to the signature-based IDS which can
only identify known attacks for which signatures have been created previously. Having said that,
the biggest drawback of anomaly detection is the issue of false alarms. The unusual behaviour of a
legitimate user, which is not defined in the user profile, could possibly raise the issue of false alarm.
Therefore, selecting an appropriate threshold level to achieve a balance between the rates of false
alerts (false positives) and missed attacks (false negatives) is a challenge (Garcia-Teodoro et al.,
2009).




Chapter 2. {i’qtiona}e of IDS Technology

2.2 The Evolution of IDS

Intrusion detection technology has evolved significantly over the past few decades. Modern IDS

has grown into a mature and feature rich technology that provides advanced features to detect

intrusion, provide responses and also the management system that allows the security analyst

to monitor, configure and analyse the intrusion data. In order to gain a better understanding of

how intrusion detection has evolved, the following description presents several faces of intrusion
detection technology.

10

e Primordial Intrusion Detection Technology - Simple Pattern Matching

The very first Intrusion Detection System (IDS) relied on operating system log files as a main
data source and run on a critical server to detect an intrusion (Kumar and Spafford, 1994).
The systems applied a simple pattern matching approach on the incoming logs. In order to
perform the pattern matching, a table of patterns (signatures), representing known intrusive
tactics was used to match with the analysed patterns (usually presented as ASCII strings or
string fragments).

The earliest Network Intrusion Detection System (NIDS) applying this simple approach was
then introduced (Herberlain et al., 1990). The system performed a comparison on every packet
passing over a network with a list known attack strings. Each string would be compared byte-
by-byte with all of the traffic monitored by the sensor. Although this system was easy to
implement, it did not scale well. A rise in the number of patterns and data sources requires
an exponential increase in processing power.

Protocol Awareness

The next level of the technology was the application of the knowledge of packets to the network
traffic. The effectiveness of the IDS heavily hinged on the knowledge of packets and protocol
standards in identifying malicious behaviours. The ability to decode the protocol header cer-
tainly allowed improvements in the pattern matching technique. Not only could the pattern
matching be directed to focus on the appropriate part of a packet, for example, packet header
or payload, other enhancements could be done in what traffic was monitored.

Over time, attackers became more sophisticated. Packet fragmentation was one of the cun-
ning techniques used to evade the IDS (Carlo, 2003). The attackers could break each packet
into smaller pieces to avoid the detection since the IDS was designed to merely detect a com-
plete pattern. In this case, no attack was seen by the IDS. The target network would then
reassembly the packets and be successfully compromised. In order to address this issue, frag-
mentation reassembly was added to the IDS (Song et al., 1999). Every monitored network
packet would be retained, reassembled and then evaluated to look for the suspicious patterns.
This allowed the sensor to search for the potential fragmented packets effectively.

Understanding Network Sessions

Shifting beyond a single packet analysis, IDS technology developed a better approach to
counter session-based attacks that occurred in a form of a dialog between two systems and
would not be held in a single packet. In order to effectively uncover this type of attacks,



2.2. The Evolution of IDS

stream reassembly was introduced to IDS (Necker et al., 2002). This method enabled the IDS
to observe the complete exchange between a source and destination instead of a small slice of
the exchange and fully review it for malicious activity.

Full Protocol Analysis

With the improvements made on the IDS detection approaches (as described above), the IDS
technology moved to the next level. The next development of the IDS technology was the im-
plementation of the full protocol analysis (in other words, the application of specific knowledge
of protocols) (Baba and Matsuda, 2004). This technique is proved effective to not only detect
known bad behaviours but also to flag anomalous behaviour as suspicious, discovering new
attack tactics even before they are announced.

Intrusion detection based on protocol analysis was the earlier version of an anomaly-based
IDS. Unlike the basic pattern matching technique, which detects an intrusion based on a
matching string, the protocol-based evaluation identifies the intrusive behaviours using the
pre-defined policy, thus enabling the system to detect variant of the attacks. As the full proto-
col analysis uses knowledge of protocol to identify how the packets would be interpreted by the
destinations, most variations of the attacks can be identified via one mechanism. In addition,
the attackers can easily evade the detection by simply creating a variation of the same string
if only the pattern matching technique is applied in the detection system. Another benefit of
advanced protocol analysis is that it can be applied to anticipate attack patterns. Any attempt
made to send an attack against the pre-defined protocol can be detected as an anomaly.

Intrusion Prevention System (IPS)

The primary achievement of IDS development is the successful migration of IDS from a pas-
sive monitoring system to an active prevention system, which is known as Intrusion Preven-
tion System (IPS). IPS or IDPS (Intrusion Detection and Prevention System) is considered
the extension of IDS, since both are designed to monitor network traffic or system activity for
malevolent activity (Enterasys, 2010). Unlike IDS, IPS is able to actively prevent or block
detected event by taking appropriate actions, such as dropping malicious packets, sending an
alarm to the administrator or resetting the connection to stop/block the ongoing attack.

Security Information and Event Management

Despite the success of the established IPS, the latest realisation of IDS development is the in-
troduction of Security Information and Event Management (SIEM) system, an analysis centre
that will combine all IDS outputs, network traffic analysis and other information to provide a
more condensed picture of adversarial activity (Smith, 2006). It is actually a hybrid solution
from two distinct security-related products, Security Information Management (SIM) and Se-
curity Event Management (SEM) systems. Unlike IDS/IPS, which relies on a single source
of information to flag potential breaches, SIEM is capable of assessing log data and corre-
lating information coming from various sources. The system can provide a mean to detect
security-related events in two distinct ways: by offering a real-time detection or evaluation of
security-related information directed to it (inherited from SEM) and by supporting non-real-
time forensic analysis of consolidated log record collected (archive) from various disparate
security measures (such as packet filter, IDS/IPS, servers) (inherited from SIM).

11




Chapter 2. Rationale of IDS Technology

2.3 Efficiency of IDS

As to the success or failure of IDS technology, the effectiveness of the IDS event analysis largely
hinges on the qualities of its detection. This involves three main metrics or parameters that deter-
mine the proficiency of intrusion detection technology (Porras and Valdes, 1998).

1. Accuracy. This parameter can be quantitatively measured by looking at the rate of false
alarms generated by the system. Inaccuracy is shown in the number of legitimate transactions
being flagged as intrusive activities (false alarms).

2. Performance. The rate at which transaction or audit events are processed determines the
value of IDS performance. The lower number of packets dropped by IDS, the better the per-
formance it has.

3. Completeness. Completeness refers to the ability of an 1DS to detect all attacks. Incom-
pleteness is reflected when IDS fails to raise an alert when malicious activities actually occur
(false negative). Unlike the "accuracy” parameter, which can be measured based on the false
positive rate; the "completeness” is assessed based on IDS detection rate.

Aside from these main characteristics determining overall IDS’ detection performance, there are
two other properties that have also reflected the additional values of IDS consistency (Debar, 2000).
Those parameters are fault tolerance and timeliness. Fault tolerance indicates IDS’ resistance to
attacks or its immunity to any attempted damage made to break down the detection system itself.
This is particularly important because this attribute determines the reliability of IDS technology
as a security defense tool. The second attribute, timeliness, refers to the response time required by
the IDS to disseminate and react to the information received. A good IDS should not only provide
a fast processing speed of the information but also enable the security-conscious administrator to
promptly act in response to the detected intrusion before further damage has been made (Porras
and Valdes, 1998).

2.4 1IDS Alarm Generation

Today, there exist a number of deployment issues faced by current IDS. One of the most significant
problems facing this technology nowadays is the level of false alarms. The issue of false positive
has become the major limiting factor for the performance of an IDS (Axelsson, 2000). The sheer
number of alarms triggered by an IDS can be overwhelming. It is believed that a high rate of
false alarms is a significant challenge for current network intrusion detection systems, which could
possibly trigger 80-90% of fake alarms from the total alerts generated (Julisch, 2001; Laskov, 2007).
In order to gain a better perception about the issue of IDS alarms, the following subsections discuss
two critical problems of IDS alert generation.

2.4.1 False Negative

False negative is a real or genuine attack that is undetected by IDS. Ultimately this is the most
dangerous type of error could possibly faced by IDS. Principally, false negative is difficult to com-
pute since no evidence can be found from the IDS when the error occurs. Nevertheless, a proper

12



24. IDS Alarr_n Gen_eratior_l

implementation of network defense in depth strategy can help to keep false negatives at a mini-

mum. Significantly, the following are several prominent causes of false negatives (missed alerts)
defined by Cox and Gerg (2004).

» Traffic Encryption

Encrypted traffic is often used to perform a secure web communication and it is commonly
applied to deliver confidential information. Encrypted data does not raise alerts because the
signature rules do not match. As explained in the previous section, the limitation of NIDS in
interpreting encrypted traffic becomes one of the major causes of false negative. Having said
that, modern IDSs are now able to decode the encrypted traffic as long as the encryption keys
are given. One of the research studies has been conducted to work on a NIDS that makes use
of IPsec ("Two-Key IPsec”) to decrypt the traffic before being processed by the IDS (McLain
et al., 2007).

¢ IDS Evasion Techniques

The ability of the attackers to evade the detection could be one of the main causes of the false
negatives, Blackhats, security researchers and security developers are now competing with
each other when it comes to network-based IDS. Blackhats community continually develops
techniques to evade IDS sensors, whilst security vendors defeat these methods by releasing
new patches. Examples of common IDS evasion techniques are fragmentation attacks, session
splicing and basic string matching weakness (Ptacek and Newsham, 1998).

+ Badly Written Signatures

Too specific signatures could also be the factor of false negatives. This signature might not
watch for the correct attack since a variant of an attack might not be detected by the same
rule as its ancestor (Koziol, 2003).

¢ Poor Change Management

Poor management within an organisation could possibly result in a poor organisational se-
curity posture. Without proper security management, a malicious alteration made on the
organisational security infrastructure (environment) may go unnoticed by network security
defense (IDS).

» IDS Sensor Administration Problem

The issue of false negative could possibly be engendered by the problem fine tuning. A thor-
ough knowledge of the protected system is required by a qualified IT staff. Indeed, a detailed
examination of the environment, in-depth knowledge of attacking techniques and awareness
of new vulnerabilities or threats are required before tuning can be carried out. A careless tun-
ing of IDS signatures to control the number of false positives might indeed render the system
to miss a real security event (Amoroso, 1999).

2.4.2 False Positive

A false positive is an alert raised by the IDS because the system has reported malicious activity
in error. False positive errors will lead users of the intrusion detection system to ignore its output,

13




Chapter 2. Rationale of IDS Technology

as it flags legitimate actions as intrusions; thus leading to an actual intrusion being detected yet
ignored by the users, Indeed, this error is the major bane of a security administrator’s assistance.
The occurrences of this type of error should be diminished (it may not be possible to completely
eliminate them) in order to provide useful information to the system administrators,

Although IDS has been used for more than a decade. current detection systems still suffer from
high false alarms and low detection rate (Bolzoni, 2009). An ideal detection system is the one that
has 0% false positive rate with 100% attack detection rate. In actual fact, both signature-based
and anomaly-based systems can be duped to raising thousands of alerts. Usually, with anomaly-
based detectors the abnormality is determined by calculating the distinction between the monitored
behaviour and the model. Indeed, a selected threshold is used as the benchmark for behaviour
classification. The value of threshold has a direct impact on both false positives and false negatives.
Increasing the threshold does tighten the system security but it is likely to provoke more false
alarms. Conversely, the lower the value of threshold, the lesser the number of alarms generated,
but this might result in a high number of false negatives. Similar to anomaly-based IDS, the more
specific the rule set of signature-based IDS, the stronger the security that can be achieved, but this
will lead to a higher false alarm rate.

In order to explore more about the issue of false positives, there are several common causes of
false alarms discussed here (Pietraszek and Tanner, 2005).

¢ Runtime Limitation

In practice, it is reasonably hard to distinguish between a real intrusion and normal activity.
A detailed knowledge of the protected system and a thorough investigation are required to
accurately isolate malicious events from normal traffic. It is worth remembering that IDS
cannot analyse the contexts of all activities in details (Ptacek and Newsham, 1998). Owing to
this limitation, detection system is relatively prone to the false positive issue.

¢ Specificity of attack signatures

Writing a good signature rule for IDS is not a straightforward task, it is a challenging job
instead (Paxson, 1999). In many cases, a right balance between a very specific signature
and an overly general one is very difficult to determine. An overly specific signature is very
prone to cause the system to miss a real attack (false negative). In contrast, an overly general
signature is likely to induce a large number of false positive alarms.

¢ Dependency on environment

An activity that is normal in one environment might be harmful in certain situations. For
example, performing a network scanning is a malicious act unless it is carried out by some-
one authorised such as a network administrator. Hence, a thoughtless investigation of this

instance might render the system to produce a large volume of false positives.

The accuracy of intrusion detection largely depends on its detection rate and false alarm rate.
More to the point, the inaccuracy of the alerts generated can be classified into two forms, namely (De-
bar and Wespi, 2001):

1. Inirinsic inaccuracy

14



2.5. (Eom'entioncxf Alaﬂﬁeduczion Methods

This inaccuracy occurred as a result of poorly written rule. As such it does not differentiate
well between normal and harmful activity for a particular attack.

2. Relative inaccuracy

This inaccuracy happened owing to the resemblance of normal activity (from the monitored
system) to those of malicious activities.

Both aspects need to be taken into account in calculating the best value of detection system. In
fact, based on the analysis of Axelsson (2000), it is believed that the substantial values of Bayesian
detection rate (Intrusion/Alarm) will be achieved if the detection system has attained a very low
false alarm rate. Unfortunately, according to the 1998 DARPA off-line Intrusion Detection Evalua-
tion, the false alarm rate of the best IDS is not satisfactory (Lippmann et al., 2000).

2.5 Conventional Alarm Reduction Methods

In order to achieve the best performance of an intrusion detection system, the issue of false alarms
has to be tackled. One of the best ways to reduce the false alarm rate is by performing a tuning.
Fine tuning is a process of adapting the signature policy to the specific environment and modifying
or disabling the signatures to reduce false alarms (Chapple, 2003). This is also driven by the fact
that some vulnerabilities exist in a particular OS (Operating System) platform only.

In practice, there exist several common techniques applied to the tuning process, namely:

2.5.1 Disabling Signature

Disabling signature is carried out by deactivating the signatures relative to the vulnerabilities
that are not present in a given environment. This method is usually applied to signature-based
detectors. Some signatures can be switched off as the monitored systems are not exposed to certain
vulnerabilities or the vulnerability itself only affects certain Operating System platforms. These
irrelevant signatures are likely to trigger false alarms if the monitored packets happen to match
one of the signature rules.

2.5.2 Pass Rule

This type of tuning technique can only be applied to a signature-based IDS, which largely hinges
on the pattern matching for detecting an intrusion. In spite of alert rule, pass rule can be used to
ignore alerts from certain hosts, networks and rules (Roesch, 1999). A poorly written pass rule can
cause all the signatures to be missed, making the IDS sensor futile. Ignoring alerts from port 21
for example, might render the actual attack go unnoticed.

2.5.3 Thresholding and Suppression

Thresholding and suppression are the most effective tuning techniques, which enable the adminis-
trator to handle the number of logged alerts for noisy rule, generated from or to a given host or for a




Chapter 2. Rationale of IDS Technology

particular signature. Instead of controlling the alerts per signature, this technique also introduces
global thresholds; enabling the administrator to control the amount of alerts for all rules.

Principally, thresholding commands regulate the number of times a particular event is logged
during a pre-defined time interval. Significantly, threshold rules come in three categories (Beale
and Caswell, 2004), namely:

o Limit
Alerts on the first n events during the time interval, and then ignores events for the rest of
the time interval.

e Threshold

Alerts every n times once this event is seen during the time interval.

e Both

Alerts once per time interval after seeing n occurrences of the event and then ignores any
additional events during the time interval.

Additionally, thresholding can be included as part of IDS rule signature (rule key format) or
even written as a standalone command (standalone format). Although there is no functional differ-
ence between the rule key and the standalone format, there is a logical difference between them.
Some rules can only work with the thresholds. For example, a rule for detecting brute force attack
requires a threshold of 5 attempts before the alert can be triggered.

In order to maximise the performance of an IDS, there are 3 methods of tuning IDS sensors (Raikar
and Ramarao, 2007). Those are:

1. Tuning based on the deployment of the sensor

If the sensors are deployed to monitor the external traffic, then to reduce the number of false
positives, the sensors must be finely tuned based on the perimeter defense firewall, This aims
to alert only those attacks that have the potential to penetrate the firewall.

2. Tuning based on the information about the protected system

In order to effectively protect the monitored system, the IDS rules must be tuned based on
the system's vulnerabilities, such as what application or operating systems are the attacks
intended to affect. This must be accurately mapped with a superset of all the information
from the protected system.

3. Tuning based on observing production environment monitoring

Apart from tuning the sensors based on its deployment objectives and the information of the
protected system, alerts from the sensors need to be monitored in a production environment
for a certain period. Additionally, an extra tuning of the attack signature should also be carried
out. If the alerts are found to be generated from the normal traffic, then further tuning should
be conducted for example by disabling the signatures or lowering the severity of the alerts.

Although tuning does offer a good solution in reducing a large number false alarms, this pro-
cedure could possibly exacerbate the situation by degrading the security level and increasing the

16



2.6 Cpnci usions

risk of missing noteworthy incidents. Therefore, the tuning problem is actually a trade-off between
reducing false alarms and maintaining the security level. Furthermore, tuning requires a thorough
examination of the environment by qualified IT personnel and requires a frequent updating to keep
up with the flow of new vulnerabilities or threats discovered.

2.6 Conclusions

This chapter initially presents the conecept and evolution of IDS technology in its research domain,
followed by the fundamental principles of the technology. The components of the IDS technology
are briefly described in this stage; by introducing the IDS architecture as well as the responsibility
of each IDS component. Lastly, the issue of false alarms was briefly highlighted by including a
discussion about two critical problems of IDS alert generations and the facts relative to these issues.
And to address such problems, a conventional alarm reduction method (that is fine tuning) was
introduced.

Despite the fact that IDS technology has grown into a mature product, the problem of false
alarms is still far from being solved. Although tuning does offer a good solution in reducing a large
number false alarms, this procedure increases the risk of missing noteworthy incidents. In fact,
it requires a thorough examination of the environment by qualified IT personnel and requires a
frequent updating to keep up with the flow of new vulnerabilities or threats discovered. With this
issue in mind, it is of paramount importance to focus on an intelligent alarm reduction tool that
could improve the quality of alerts generated by effectively filtering the false alarms without the
need of human intervention. The following chapter will present a review of current literature or
studies on IDS alarm correlation methods as well as the drawbacks associated with them.

17




Investigation into alert reduction
methods using alarm clustering
and correlation techniques

Apart from tuning, research has recently focused on alternative alarm reduction techniques. This
chapter covers the state of the art specifically in the area of IDS alarm correlation using Artificial
Intelligence (AI) techniques. It begins with an introduction of the concepts of alarm correlation
approaches, highlighting the need for correlation systems. Existing works on false alarm reduction
approaches are then presented, followed by the characteristics of correlation systems proposed in
current IDS research.

3.1 The Need for an Automated Alarm Correlation

It is very common that an attack is performed by sending a significant number of malicious packets
to the targeted network. As a signature-based IDS triggers an alarm for each detected malicious
packet, alarm flooding may occur. Additionally, many attacks are launched as a sequence of steps
(that is multi-stage attacks), which depict the logical relationship (in other words, cause and ef-
fect) between each stage of the attacks. Whilst each attack step can be identified by the IDS, it is
worthwhile for the security administrators to obtain information about the detected attack based on
the aggregation of alarms related to different steps rather than on each single alarm. Moreover, a
single alert analysis provides only partial information on the attack, which is deemed not valuable
enough to uncover the real patterns or scenario of the attack.

In order to allow the administrators to perform a complete alert analysis on the aggregated
alerts and to cope with the issue of false alarms, an alarm correlation system is now a necessity. In
general, alarm correlation is a process that analyses the intrusion alerts generated by IDS, filters
the false alarms and then provides a more concise and high level view of occurring or attempted

intrusions.

3.2 Concept of Alarm Correlation

In terms of their underlying concepts, alarm correlation methods can be classified into several
prominent classes. Those are:

* Correlating alerts based on the prerequisites of intrusions

This approach is based on the assumption that most intrusions are not isolated, but are re-
lated to the different stages of attack sequences, with the early one prepared for the later one.

19



Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques - - S B
It is believed that most of the traditional IDSs only focus on low level attacks and raise alerts
independently, without considering the possible logical connection between them or the poten-
tial attack strategies behind them. Another problem is that they cannot fully detect unknown
attacks, or the variation of known attacks, without generating a large volume of alerts.

Several studies, including works from Cuppens and Miege (2002) and Ning et al. (2002) were
based on this concept. The authors proposed a novel system that correlated alarms by us-
ing the prerequisites and consequences of corresponding attacks, for example, the existence
of a vulnerable service can serve as the prerequisite for the remote buffer overflow attacks.
Furthermore, such an approach provides an intuitive mechanism to represent potential at-
tack scenarios, known as hyper alert correlation. Even though this technique helps removing
insignificant alerts and discovering a sequence of attack plans, it cannot correlate unknown
attacks (without attack patterns).

e Alert correlation based on the similarity between alert features

This approach correlates alerts based on the similarities of selected features, for example
source IP address, destination IP address or port number (Debar and Wespi, 2001). Alerts
with a higher value of overall feature similarity will be correlated. Another research study
were also conducted in evaluating the use of a feature similarity function to fuse alerts that
match closely but not perfectly (Valdes and Skinner, 2001). The similarity function was used
to calculate the likeness of the features that match at least the minimum similarity speci-
fication, regardless of the match on the feature set as a whole. Several works from Julisch
(2001); Al-Mamory and Zhang (2009); Maggi et al. (2009) were also based on this approach.
Although such method seems to effectively reduce false alarms, it cannot fully discover the
causal relationship between related alerts.

e Alert correlation based on known attack scenarios

The last approach correlates alerts based on the known attack scenario. One of the methods

to fuse alerts into a scenario is by using a data mining technique (Dain and Cunningham,

2001). This technique can produce a real time algorithm to combine the alerts produced by

heterogeneous IDSs into a scenario. The main purpose of this work is to simply group alerts

which share a common cause, thus providing a better view of the security issue to the system

administrator. Such approach works well in reducing the false alarms, since either individ-

ual alerts or the whole scenario could be labelled as false alarm. Significantly, it could also

effectively uncover the causal relationship between alerts; however, it could not be applied to |

correlate alerts generated by unknown attack scenarios. |
|

It is worth remembering that the process of correlating alerts does not only involve a single or
few components of procedure, instead it is a complete process involving various or a comprehensive
set of components.

A study was carried out to propose a general correlation model that identified a comprehensive
set of components and a framework that analysed how each component contributes to the overall
goal of the correlation (Valeur et al., 2004). Figure 3.1 shows a graphical representation of the
integrated correlation process. The main purpose of this process is to gain a better understanding

of the features of the intrusions, for example, the alerts generated, the target and source host of




3.3. A_{arm_Rega_{ctiin M_n_’thna'_s

¥ ¥ T

| Actve
Prooeg

~ { f
Sqn:-;rl'-:. 3 Mocmadcsson Pre-Procsssing {  Aler Fusseor A e heabor "Toead
__..—_—.-./ 3 | Recongtructon

AZRch Soseon
S ] Reconstrucion

[ |
i = [
- - Aals-S3 [ -
. < Intrusao Impact Analyas . ‘: - A o
Conrresastoy | Rerograbor

Secunty AGmanisy ator

Figure 3.1: Correlation process overview (Valeur et al., 2004)

the attacks, the impact of attacks as well as the priority of alerts. Although numerous correlation
methods were proposed in recent studies, not all of them provided a detailed account of how these
components should be evaluated and implemented in a real life environment. For example, the
identification of alarm patterns into scenarios using prerequisites and consequences features do
not provide enough detail on how the incoming alerts will be pre-processed before heing correlated
into scenarios.

3.3 Alarm Reduction Methods

In order to better understand the roles of correlation systems in IDS technology, this section presents
the development or techniques of existing false alarm reduction models.

3.3.1 Categories of Alarm Reduction Approaches

One of the main objectives of performing alarm correlation is to reduce false alarms. Alarm re-
duction is not a trivial task as numerous aspects, for example, attack features, need to be consid-
ered (Kruegel and Robertson, 2004). In addition to the conventional tuning method, two reduction
approaches have been proposed so far, namely alarm classification and alarm correlation.

3.3.1.1 Alarm classification

Alarm classification is a process of identifying true and false alerts based on a pre-defined alarm
model or pattern. This technique is commonly used to detect abnormal pattern from an alarm
sequence using a pre-defined normal alarm model (Law and Kwok, 2004; Alharby and Imai, 2005).

3.3.1.2 Alarm correlation

Alert correlation is known to be the first step of the alert management processes. The main objective
of the alert eorrelation technique is to reduce redundant alerts while keeping the important infor-
mation. Besides, it could also provide a more succinct or high level view of security issues occurring
in the protected network. This technique is designed to discover the logical connections (causal re-
lationships) between alerts and also structural relationship in data by grouping/aggregating alerts

21




Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques

with common features (their similarity) (Ning et al., 2004; Julisch, 2001). Alarm correlation is also
used to manage large volumes of alerts generated by heterogeneous IDSs (Zurutuza and Uribeetxe-
berria, 2004).

Moreover, knowing the sequence and outcome of an attack does not only help filtering false
alarms but also enable more appropriate responses to stop and prevent attacks from escalating.
This is another primary goal of alert correlation.

Having identified two common alarm reduction approaches, the following subsections describe
how both techniques are applied in current IDS research.

3.3.2 Alarm Classification Techniques

One of the reasons that causes IDS technology to generate a high false positive rate is the lack of
correlation between input and output traffic, which can be essentially used to look for abnormal
output traffic (Bolzoni and Etalle, 2006). The main concept behind this study was the idea that a
successful intrusion to a system usually generates an anomaly in the outgoing traffic; otherwise
it is a normal activity. The proposed system, which was known as APHRODITE, consisted of two
main components, namely Output Anomaly Detector (OAD) and correlation engine (Bolzoni and
Etalle, 2006). OAD had a responsibility for monitoring the output of the system and by referring
to a statistical model describing the normal output, flagging any behaviour that deviates from the
pre-defined model as a possible attack. On the other hand, the correlation engine was responsible
for correlating the input to the output of the system belonging to a same connection.

APHRODITE had various advantages in terms of operational factors. It worked effectively with-
out optimal training (without using attack-free traffic) and could successfully detect an unknown
attack without the need for a new signature. In addition, it was also proved to effectively reduce up
to 99% of false positives generated by Snort. Despite the benefits offered, the system was unable
to reduce the number of redundant alerts produced by the same event, and not able to conduct a
real-time inspection, since the output of the event was required as the prerequisite of the detection
process.

A post-processing filter based on the concept of neighbouring alerts and high alert frequency
was presented by Spathoulas and Katsikas (2010). The proposed filtering scheme was developed
according to two major assumptions; first, the distribution of the number of the neighbouring alerts
varies significantly from false to true positives. Second. it is more probable for an alert to be a true
positive if it occurs in higher frequency compared to the mean frequency of alerts from the same
signature. There were three main components implemented in this proposed system, namely the
Neighbouring Related Alerts (NRA) component, the High Alert Frequency (HAF) component and
the Usual False Positives (UFP) component. For each alert received, each component should give a
score (belief) which represented the probability that such alert was a true positive. The total scores
from the three components were then calculated and a final verdict was produced to determine
whether the alert is a false or true positive. Evaluation carried out using the DARPA 1999 data set
pointed out that such approach ean significantly reduce the false positives by 75%. However, one
major weakness is that there is still no clear explanation been given to justify how an alert caused

by a stealth attack can be detected as a true positive as such intrusion does not fire a large number
of alerts, that is low frequency, in the network.




3.3. Alarm Reduction Methods

Data mining technique has been commonly applied by numerous research studies; one of them
was proposed by (Law and Kwok, 2004). The authors suggested a novel system that modelled
normal alarm patterns and detected anomaly from incoming alarm streams using a K-Nearest-
Neighbour (KNN) classifier. The system monitored and detected abnormal patterns (in other words,
suspicious events), from tones of alert generated by an IDS. It was believed that when an attack
occurs, the alerts will have different patterns from the one generated in an attack-free environ-
ment. The main idea of the study was to let the false alarms be generated as they are, and then to
determine whether the incoming alarm sequence generated are deviated from normal situations.

Although this model successfully reduced up to 93% of false alarms while maintaining its detec-
tion rate, it was not applied on live data and implemented in the real life environment. For that
reason, there is still much more work to be undertaken in order to assert that this idea is applicable
to existing IDSs under real life environment.

Another research based on the similar concept was proposed by Alharby and Imai (2005). By
observing the frequent behaviours within an extended period of time, it was believed that a normal
alarm pattern could be accurately formed. Based on the created model, the system could flag a
sudden burst of a sequence of alarms that has never been seen before as a suspicious activity.

Given that the historical alarms pattern was used to learn the future alarms by using the ex-
traction of the sequential pattern, this approach overcame some limitations of existing systems by
constructing a more systematic model. The proposed system matched the extracted newly arrived
sequence pattern with the extracted sequential pattern that represented the normal behaviours.
The more matches found in this process, the more likely it is a normal behaviour.

Like other proposed methods, the system has a major drawback. The classification accuracy of
both approaches from Law and Kwok and Alharby and Imai relied on the length of the time window
for each alarm set. Since the alarm patterns are varied depending on the allocated time frame, the
anomalous alarm pattern will share similarity with the normal pattern if the time allotment is
amiss,

Unlike other works that focused on off-line analysis, Jan et al. (2009) proposed a decision sup-
port system for constructing alert classification behaviour patterns for on-line network behaviour
monitoring through a large volume of alerts. The authors proposed three kinds of alert classification
rule classes including normal behaviour, intrusion behaviour, and suspicious behaviour classifica-
tion rule classes. Each class consisted of a fixed number of classification rules.

The experiment conducted showed the effectiveness of the proposed decision support system.
Besides being able to run an on-line monitoring, the system also enabled domain experts to quickly
and accurately discover suspicious behaviour patterns, ease the workload of on-line alert analysis
for the administrators and effectively reduced up to 80% of false alerts. Having said that, the system
also suffers from several common limitations. Firstly, in order to ensure that the alert sequences
are properly flagged, the classification rules need to be frequently refined. This requires high com-
putational overhead and sufficient domain knowledge from the experts. In fact, labelled data (rules)
are not readily available in most cases. With a very large volume of network data encountered, it
is undoubtedly expensive to classify them manually. Secondly, since the system can only support a
limited number of rules (up to 200 rules) in each classification class, they need to be wisely selected
to provide adequate coverage for whole attack variants. Lastly, the system appears to be not cost
efficient enough since the rule classes are created for each target host (each sensor). A significant

23




Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques

number of rules will be required for IDS implemented on a multi hosts network environment.

Viinikka et al. (2009) presented a novel system that aggregated alerts into an alert sequence.
There were two basic assumptions applied in this study: first, normal system behaviours in alert
flow can be identified by the regularities and smooth changes in the alert intensity. Second, the nor-
mal behaviour is not observable at an individual alert but at alert sequence (flow). To follow these
hypotheses, the system modelled the regularities of the alert flows from the normal behaviours
and used the created model to filter out the irrelevant or low impact alarms from the alarm log.
Although the system revealed a great performance, still, there is a risk of modelling abnormal be-
haviours into a normal behaviour model if no abrupt changes in the alert intensity caused by true
alarms have been detected.

Aside from the data mining techniques, a novel system utilising machine learning technique,
known as Adaptive Learner for Alert Classification (ALAC), was proposed by Pietraszek (2004). By
building an alert classifier using such technique, the system would classify the alerts and send the
classification outcome to the security analyst for further feedback. Once the feedback was received,
the system would initially build and subsequently update the classifier, which was then used to
classify new alerts in the future (as shown in Figure 3.2).

Training
Examplas

pr, 61 ) —-| T8 Positives Sent o
JUpdate Ganerate ‘

Y |

Alert Classifier

Intrusion Detection
Analysl

el N | F 531582 P05 IVES Sent i f

F eadback

Figure 3.2: The framework model of ALAC classifier

The system offered a greater efficiency in terms of its operation. ALAC could be set to process
autonomously alerts that were classified previously. For example, it could remove any alerts that
have been classified as false positive in high confidence. Indeed, the experiment proved that the

system could reduce the false alerts by more than 50%.

Along with the strengths, the system also has its share of drawbacks. One of the biggest prob-
lems is the dependency of the system on human intervention for a decision-making process. The
ability of the analyst to correctly classify the alerts determines the accuracy or performance of the
method. Another drawback is that the system must be able to adapt to the new changes as a new
data arrives; in order to perform a real-time analysis. Besides, applying additional background
knowledge, for example, network topology, alert database, to build an accurate alert classifier will




3.3. Alar_m Reduction Methoﬁ

increase the complexity of learning tasks.

Another similar piece of study developing an adaptive learner detection system was proposed by
Yu et al. (2008). The authors proposed an adaptive and automatically tuning intrusion detection
system (ADAT) that controlled the number of alarms presented to the administrators and tuned the
detection model according to the feedback provided by the administrators when false predictions
were identified. The proposed system built a detection model in the training stage and controlled a
prediction filter to push the most suspicious alarms (predictions) to be verified and labelled by the
administrators. The volume of alerts presented must be restricted according to system operators’
ability to respond to the predictions.

In terms of its performance, the system appeared to be very effective: with the total misclassifi-
cation cost dropped at least 25.5% from the cost of systems with a fixed detection model. Unfortu-
nately, one major common limitation of the system is that the system greatly relies on human inter-
vention, in other words, security operators, in creating the detection model. The administrators are
urged to verify intrusive predictions made by the prediction engine and to ensure any possible false
predictions are identified. Additionally, it is very difficult to work out the optimal tuning strength
(threshold) required in order to reduce the number of false predictions on future unknown data.
This, hence, requires a thorough work or analysis to prevent the issue of false negatives.

3.3.3 Alarm Correlation Techniques

Julisch (2001) suggested a technique to efficiently handle large groups of redundant alerts by cor-
relating alerts into clusters based on their root causes. The main purpose is to identify and remove
the root causes of the false alarms. For each alarm cluster, a model of alarms, which is known as
generalised alarm, is derived. Clearly, a generalised alarm is a pattern that an alarm must match in
order to fit into a respective cluster. The knowledge of these generalised alarms vastly simplifies the
identification of alarms’ similarities. The author observed that over 90% of all alarms corresponded
to a small number of root causes. By knowing the root causes, the IDS can be regularly adjusted
and root causes can be removed, reducing the false alarms by 82%. Unfortunately, as such method
focused merely on a large group of superfluous alarms, it was considered not effective enough in
identifying false alarms in a small cluster. Julisch and Dacier (2002) also developed a technique to
mine historical IDS alarms for episode rules. The rules are created to predict a prospective alert
when a specific set of alarms was generated. Whilst this approach is deemed outstanding enough to
give an insight into the pattern of false alarms and the potential future attacks, it could only offer
1% reduction in alarm rate, whilst 99% of alarms were still left for manual processing.

Al-Mamory and Zhang (2009) also proposed a novel system using a root cause analysis and
clustering, which is extended from previous work done by Julisch (2001). The main eontribution of
this work was a development of a new data mining technique, Attribute-Oriented Induction (AOI),
which has a new generalisation technique to avoid over-generalisation and has a good distance
measure between the values of alarms’ features. Although the experiments conducted with DARPA
data sets and real network traffic clearly demonstrated the efficiency of the system, with a reduction
ratio of 74%, it does suffer from the same limitation as Julisch’s work. Extensive knowledge and
experiences from the administrators are required to help creating a safe filtering rule in order to
avoid the issue of false negative.

25




Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques

Another significant study conducted was the application of alert fusion to correlate alerts from
multiple sensors in a distributed environment (Siraj and Vaughn, 2005). Alert fusion is a process of
interpretation, combination and analysis of alerts to determine and provide a quantitative view of
the status of the system being monitored. Importantly, the infrastructure consisted of three essen-
tial components; namely alert prioritisation, alert clustering and alert correlation. Thus, in order
to fuse the alerts, a causal knowledge-based inference technique with Fuzzy Cognitive Modelling
was implemented to find out the causal relationship in sensor data.

Overall, Fuzzy Cognitive modelling offers a good representation of data that enables the human
operator to learn and interpret the data much easier. The technique also had an advantage in
describing an attack scenario for Distributed Denial of Service Attacks (DDoS) by using the concept
of "cause and effect”. Besides, it also had a capability in discovering the causal relationship of
alerts; which then could lead to the identification of a series of attacks. However, in spite of the
advantages offered, it has one major limitation; namely its inability to deal with unknown alerts.

Another similar piece of work was also proposed by Maggi et al. (2009) to aggregate IDS alerts
based on the concept of an alert fusion. The core components of the alert fusion process were ag-
gregation and correlation modules. The first module was responsible for clustering alerts sharing
common features, whilst the second one identified the logical relationships between alerts. The au-
thors explored the concept of fuzzy set theory and fuzzy measure to semantically define the notion
of "closeness” in time. The proposed technique was claimed to be simple yet robust approach for
computing the time distance between alerts as it took into account major uncertainties on times-
tamps, in other words, the choice of window size is less sensitive due the concept of the applied fuzzy
theory. Furthermore, it was able to decrease the false positives rate at the price of small reduction
of the detection rate.

Similar to the previous study conducted by Siraj and Vaughn (2005); Perdisci et al. (2006) sug-
gested a novel nearest neighbour-based on-line alarm clustering or fusion algorithm, which pro-
duced a unified description of attacks from alarms produced by multiple IDSs. The system com-
prised three architectural components, namely alert pre-processing module, classification module
and clustering/fusion module. In the initial phase, an alert pre-processing module translated every
alert into a standardised format that was understood by all correlation processes. On the other
hand, a classification module labelled an alarm message as belonging to one or more attack classes.
Finally, a clustering/fusion module determined whether the received alarm could be clustered, thus
fused to the pre-defined clusters or to initialise a new meta alarm. Initially, the proposed system
processed a sequence of alarms produced by IDSs and then produced meta-alarms, that is a sum-
mary description of events obtained by aggregating correlated alarms generated by various IDS
sensors. The main objective of this new strategy was to provide a concise high-level description
of the attacks and to reduce the volume of alarms presented to the administrators. Although the
system was demonstrated to effectively reduce up to 80% of false alarms, it had a difficulty in ob-
taining sufficient attack data for the classifier to model and build the attack classes and the data
acquisition is always time-consuming and greatly relied on the domain experts.

While several research studies have been focused on finding the relationships between alerts
automatically, not much attention has been given to the issue of real-time correlation. Sadoddin
and Ghorbani (2009) proposed a new framework for real-time alert correlation, which applied a
novel technigque for aggregating alerts into meaningful patterns and incremental mining of frequent

26



3.4. Underlying Mechanisms of Alarm Correlation System

structured patterns. The authors presented several generalisation rules to improve the constructed
pattern and generate an abstract signature for the patterns. A new algorithm, known as Frequent
Structure Mining (FSP_Growth) was introduced to mine frequent pattern by considering the struc-
ture of the alerts. Such method not only offered more accurate frequency analysis of patterns but
also gave the exact structure of the extracted pattern within the network. The core strength of the
proposed framework lies on its ability to maintain time-sensitive statistical relationship between
alerts in an efficient data structure and update the relationship incrementally to reflect the latest
trend of patterns. The result of the experiments conducted with DARPA 2000 clearly demonstrated
the effectiveness of the proposed technique. Approximately 96% of total alerts can be reduced ef-
fectively. Having said that, as the system included time lapse between alerts in the correlation,
selecting a right (optimal) value to balance a security threshold is still a challenge.

3.4 Underlying Mechanisms of Alarm Correlation System

Unlike the comprehensive correlation framework proposed by Valeur et al. (2004), the majority of
alert correlation studies deployed only a few major correlation components, involving only alert
fusion and alert verification approaches, as deseribed in Figure 3.1 (Siraj and Vaughn, 2005; Dondo
et al., 2006). Alert merging (alert fusion) has a task of grouping alerts that represent independent
detections of the same attack instance into a cluster. Each cluster is then passed onto the alert
verification module (alert filtering), which is responsible for determining the success of an attack
from the corresponding alert and filtering the insignificant alerts.

The correlation methods can be categorised into two different approaches, namely (Cuppens and
Miege, 2002):

1. Explicit Correlation. Explicit correlation is a type of correlation that relies solely on intrusion
knowledge of the security administrator to correlate alerts. The relationship of alerts can be
discovered from its logical link based on the knowledge of the alerts, instead of the outcome
of data mapping (Zhu and Ghorbani, 2006). Such correlation can express explicitly the known
logical links between attacks. In addition, it forms and utilises correlation rules to define
alerts’ condition and the potential events generated from the corresponding intrusion.

2. Implicit Correlation. Implicit correlation is a correlation that depends on the analysis or
computation of the alert data instead of the domain knowledge of the experts. By utilising
the data mapping (either statistical or graphical data) produced by the generated events, the
relations between alerts or events can be identified. The key objective of this approach is
to investigate the behaviour of the alerts and extract the implicit connection between them.
Many research studies were conducted to prove that IDS sensors can properly produce alerts
based on the feature, traffic or the topology of information systems. And the correlation can
be achieved by implementing learning techniques, such as machine learning, data mining and
neural network.

In order to gain a better perception of the alert correlation model, following subsections present the
evolving studies of both explicit and implicit methods in more details.

27



Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques

3.4.1 Explicit Alarm Correlation

A correlation method using consequence mechanism was proposed by Debar and Wespi (2001) and
Ning et al. (2002). The proposed algorithm used the knowledge of prerequisite and consequence to
group all possibly related alerts.

In this context, the prereguisite of an attack is the necessary condition for the attack to be suc-
cessful. For example, the existence of vulnerable system is the main prerequisite for the attack
to succeed. On the other hand. the consequence is the outcome of an attack. In a series of at-
tacks where the attackers launch earlier attacks to set up the following attack, there exists strong
connection between the consequences of the earlier attacks and the prerequisites of the later one.
Moreover, the notion of hyper alert type is built to represent the prerequisite and consequence of
each type of alert. Despite its benefits, this technique is deemed not effective enough to prevent
the occurrence of false negative. For example, if a particular alert is generated by a specific attack
that does not correspond to any other subsequent attack, it might not be correlated into a hyper
alert. This alarm might be considered as a low priority alert that does not require full attention
from security analyst. This situation might thus generate a false negative.

Apart from the consequences mechanisms, another novel system based on the concept of similar-
ity between the alert features was proposed by Valdes and Skinner (2001). The system was created
using a probabilistic method, which heavily relied on the parameters selected by human experts,
for example, alert features. Owing to this fact, it is not suitable for fully discovering the causal
relationship between alerts.

3.4.2 Implicit Alarm Correlation

Following subsections describe how data mining, machine learning and neural networks are applied

in current IDS research.

3.4.2.1 Data Mining

Data mining, which is known as knowledge discovery. is a process of analysing data from differ-
ent perspectives and summarising the valuable information from a large data set, for example,
relational database (Zaiane, 1999).

Various different data mining techniques exist for cluster analysis and the suitability of the
different approaches heavily depend on the area of their applications and features. One of the
examples is to use data mining to look for alert clusters corresponding to root causes (Julisch, 2001;
Julisch and Dacier, 2002); as described previously in subsection 3.3.3.

To achieve an effective data mining mechanism, a proposed system should satisfy several fune-
tional requirements, as described below (Julisch and Dacier, 2002):

e Scalability

As the main task of data mining technique is to deal with a large data set, scalability has
become its necessity. Scalability is a desirable property which indicates its ability to either
handle growing amounts of data or to be readily enlarged.

e Noise Tolerance




~ 3.4. Underlying Mechanisms of Alarm Correlation System

Intrusion detection alarms can be very noisy (Paxson, 1999); thus the capability of filtering
the noise from the real data is desirable.

e Multiple attribute types

Alarms can be made of various types of data attributes such as numerical, categorical, time
and free-text attributes (Julisch, 2001). An ideal data mining technique should support all
attribute types.

o Ease of use

The usability of data mining is of importance. Setting the parameters, for example, should not
require an extensive and profound knowledge of data mining and statistics from the users.

» Interpretability and relevance of patterns

Since the process of analysing the outcomes of data mining is iterative or it has to be repeated
to keep up with changes of IDS alarm patterns, this feature become highly important. Other-
wise, the human cost of learning from these patterns would become excessively expensive.

One of the fundamental techniques of data mining is associated with finding association rule.
The concept of association (episode) rule has become well-accepted in the area of IDS research.
Typically, episode rules are a data mining technique that was created to find patterns in event se-
quences (Shin et al., 2003). This method refers to a set of inference rules that predict the occurrence
of an alarm based on the occurrence of other alarms. Indeed, it allows one to extract useful infor-
mation from an unknown attack. Knowing the episodes of a legitimate activity makes the filtering
of fake alarms effective, thus preventing false positives in the future. Similarly, if a number of
redundant alarms have been discovered by episode rules, then overall alarm load can be reduced
by fusing those duplicate alarms into a single, better meta-alarm. Ultimately, episodes that are
generated from a real attack can be reliably applied to effectively detect future attacks.

Apart from using the theory of refationship to mine the historical alerts in a more inferential
manner, a data mining technique can also be deployed for a virtual data mapping. It can be applied
to map alerts data into a set of data points in order to provide a more descriptive view of the anal-
ysis. One prominent example of such application is the usage of KNN classifier to classify normal
and abnormal IDS alerts (Law and Kwok, 2004). The KNN technique models the normal alerts
patterns into an N-dimensional space. In fact, it was also commeonly used in anomaly detection to
observe the behaviours and to detect the intrusion from audit data (Li et al., 2007).

3.4.2.2 Machine Learning

Machine learning is a broad subfield of artificial intelligence, which is concerned with the design
and development of algorithms and techniques that enable computers to learn (Bishop, 2007). Its
major focus is similar to the data mining technique, to extract useful information automatically
either by computational or statistical methods.

In the context of intrusion detection technology, machine learning can be used to store user-input
stream of commands in a vectorial form and is implemented as model of normal user behaviour
profile (Nilsson, 1996). Having developed the profile of normal behaviour patterns, they are then
clustered in a group containing user commands with similar characteristics. Another significant



Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
techniques B o B S
example of machine learning is the Adaptive Learner for Alert Classification (ALAC) (Pietraszek,
2004). It utilises the idea of labelled alerts to create the patterns or training examples for the input

of machine learning.

3.4.2.3 Neural Networks

An artificial neural network is a broad subfield of artificial intelligence technique. It consists of col-
lection of processing nodes that are highly interconnected and convert a set of input into a set of re-
quired output. The outcome of the alteration is determined by the nodes’ attributes and the weights
associated with the relationships or connections between them (Stergiou and Siganos, 1996). By ad-
justing the characteristics and connection between the elements, the network is able to adapt to the
final outputs.

An increasing number of research studies so far investigated the application of neural networks
to intrusion detection. If well designed and implemented, it has the potential to alleviate a number
of problems encountered by other current approaches. Neural network is specifically created to
learn the typical behaviours of actors in the system and to statistically recognise the significant
variations from the established patterns (Bishop, 1995). The main advantage of using this appreach
is that it gives a simple method to express nonlinear relationships between parameters and learns
the relationship automatically.

There are several typical neural network approaches applied in the area of intrusion detection.
Further descriptions of those techniques are presented in the subsections below.

3.4.23.1 Self Organising Map (SOM)

The Self Organising Map (SOM), developed by Kohonen, is one of the most popular neural network
models. It is a fully connected, single layer neural network (Kohonen, 1995). The SOM algorithm
performs a smooth and linear mapping of a high-dimensional data set into 1-or 2-dimensional space.
More to the point, it transforms non-linear statistical variables in a multi-dimensional map into
geometrical connections between data points in a 2 dimensional space.

To date, the implementation of SOM algorithm to intrusion detection technology is prevalent.
Ramadas et al. (2003) proposed an anomalous network traffic detector using the SOM algorithm. In
this context, the SOM was trained by using the normal network. If the minimum distance between a
network connection and the trained neurons exceeded the pre-defined threshold, the connection was
flagged as an intrusion. This technique was also applied to perform the clustering of network traf-
fic (Labib and Vemuri, 2002). It was implemented to plot network connections onto 2-dimensional
maps, which were then presented to the network analyst. With the visual representation of data,
such approach can effectively facilitate the detection of malicious network activities.

A work proposed by Rhodes et al. (2003) suggested the implementation of SOM as a network
monitor stack, which utilised a protocol analyser to profile the network and to shrink or isolate
the traffic before it was subjected to map analysis. The monitor stack was constructed at various
layers of TCP/IP protocol stack. The proposed system monitored the activities at every laver of the
monitoring stack since malicious attacks could target any protocol layer. Moreover, it was particu-
larly tested to investigate one of the most well-known attacks, buffer overflow attack. Vectorisation

scheme was adapted, consisting of a simple six-category histogram specifying the percentage of




3.4. Underlying Mechanisms of Alarm Correlation System

bytes each packet fits a particular character class such as alphabetic, numeric, control and non
ASCII.

An anomaly-based intrusion detection using self organising map approach was proposed by Li-
chodzijewski et al. (2002) and Vokorokos et al. (2006). Lichodzijewski et al. (2002) built an anomaly-
based detection system by firstly identifying the characteristics of the normal connection to the tar-
get host using DARPA 1998 Intrusion Detection Evaluation data set. The proposed architecture
comprised two levels, in which the first level is responsible for feature specification or detector for
six basic TCP features, whereas the second level aims to combine the features identified by the
six first level features into a single map. Vokorokos et al. (2006) suggested an anomaly IDS, which
heavily relied on user behavioural patterns to distinguish between normal and abnormal behaviour.
In order to properly model the user behaviours, the system log information was used as the main
sources for the SOM networks.

Kayacik et al. (2007) proposed a novel NIDS based on a hierarchy self-organising feature maps
(SOMs), which was evaluated on KDD-99 data set. An extensive analysis was conducted to assess
the significance of features employed, partitioning of training data and the complexity of the ar-
chitecture. The study also performed an evaluation to select the most significant basic features
for IDS detection patterns. A two-layer SOM hierarchy system based on all 41 basic features from
KDD data set was selected as the best detector.

The system offered excellent detection rate and false positive rate of 90.4% and 1.38% under test
conditions. Having said that, SOM methodology was deployed on a new IDS solely to improve IDS
detection rate, it was not implemented to enhance the quality of the alerts. Therefore, there was no
alert correlation being proposed and none of the works were conducted to interpret the alerts.

Another novel SOM-based system using artificial immune system was presented by Powers and
He (2008). The authors proposed a hybrid system, which combined both an anomaly detection com-
ponent and a misuse component. The key concept was to deploy separate components for anomaly
detection and attack classification. The idea behind this was to detect abnormal activity using
anomaly-based detector and analyse examples of known attacks for common statistical patterns or
features, thereby allowing the attacks with similar properties to be grouped into a cluster. A cluster
centre should share common properties of many attacks by providing a higher level abstraction of
attack patterns. After the cluster centres were created, an anomalous activity could be matched to
the cluster that it was most similar to. By combining both anomaly and misuse detection, the pro-
posed system could ensure that the known attacks were recognised and the novel attack patterns
were detected. However, as the attack classification component classified the detected intrusions
solely based on the known signature patterns, it is unclear how the detected novel attacks are
grouped into the pre-defined clusters.

Apart from attack identification, SOM has also been widely applied to alarm clustering systems.
A new clustering method, Improved Evolving Self Organising Maps (IESOM), was proposed by Xiao
and Han (2006) to aggregate multiple alerts into attack scenarios. The proposed correlation system
consisted of four modules, namely filtering, aggregation, condensing and combination modules. In
the initial phase, the filtering component deleted alerts belonging to invalid value set, for example
an alert with an invalid timestamp. Next, an aggregation component would group similar alerts
together. The condensing component was responsible for discarding redundant alerts in each cluster
while reserving only one alert per cluster. On the other hand, the combination component was in

31




Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
technigues

charge of discovering an attack scenario based on the intrusive events. Finally, a visual attack
scenario is given as the output of the system.

Notably, SOM has excellent capabilities for visualising high dimensional data onto one or two
dimensional space. However, it has a major weakness in the context of alarm clustering. The
number of neurons used in data mapping could affect the performance of the clustering. Therefore,
it should be carefully selected in order to gain a better clustering result. Increasing the number of
nodes implemented in the data mapping might increase the resolution of map.

3.4.2.3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a set of unsupervised learning techniques used for pattern clas-
sification and nonlinear regression (Cristianini and Shawe-Taylor, 2000). It is deemed to be one of
the most successful classification algorithms in neural networks and it is commonly applied in the
area of intrusion detection. Zhu and Ghorbani (2006) described the implementation of alert corre-
lation system using SVM. In this approach, the SVM was trained with a small number of patterns,
which were manually generated and labeled. Indeed, it did not require probability correlation to be
assigned to the training patterns, but only the class labels were assigned (in this case, 1 and -1).
This appears to be one of the major advantages of using SVM. Moreover, its fast training speed has
made it possible to incrementally update such approach in a real time environment.

Khan et al. (2007) presented a study for enhancing the training time of SVM, specifically when
dealing with large data sets, using hierarchical clustering analysis. Hierarchical clustering is a
method of cluster analysis that develops a hierarchy (tree like structure) of clusters to see the
relationship among entities (Sambamoorthi, 2003). The clustering analysis was proposed to help
find the boundary poeints, which were the most qualified data points to train SVM, between 2 groups.
It was also used to generate support vectors to improve the accuracy and effectiveness of SVM
classifier. Hence, by introducing a reduction technique to reduce the training data set using the
clustering analysis, it was expected that the training process could be expedited.

3.4.2.3.3 Multilayer Perceptron (MLP)

One of the most widely used neural classifier today is the Multilayer Perceptron Network, a type of
supervised neural network, which has been extensively investigated and for which various learning
algorithm have been created (Seung, 2003). The MLP network is a flexible and nonlinear model
comprising of a number of nodes arranged inte multiple layers (Kanellopoulos et al., 1997).

Zhu and Ghorbani (2006) proposed an alert correlation engine using both MLP and SVM tech-
niques, which has been discussed in subsection 3.4.2.3 2. In this work, the training data similar
to that given to SVM approach was adapted to MLP network. The main objective of the proposed
work was to verify the suitability of both correlation methods in correlating alerts and extracting
attack strategies. The final outcome revealed that both approaches have their own strengths and
weaknesses. MLP seems to have the potential to generate more precise correlation probabilities
than SVM if the knowledge for assigning accurate probabilities to training data is available. On

the other hand, labeling training examples for SVM is much easier since only two variables, 1 and
-1. are used for the class labels.

Cannady (1998) proposed a hybrid model of SOM and MLP. The model was created to detect
complicated and possibly collaborative attacks. Aside from alert correlation engine, MLP network




3.5. Security Information and Event Management

was also been deployed in keyword selection approach. Lippmann and Cunningham (2000) utilised
back propagation technique as the learning algorithm for a classification function. The method was
implemented to adapt the weights of the neural networks, and revealed a detection rate of 80%
when it was tested against the DARPA 1998 evaluation data set. The study also described the
implementation of MLP in anomaly detection system with a remarkable result of 77% detection
rate and 2.2% false alarms.

3.5 Security Information and Event Management

Security Information and Event Management (SIEM) is a piece of software used on enterprise
data networks to collect input logs and alerts from a variety of security systems such as Firewalls,
Routers and Servers and attempt to interpret the collected events as well as inform the security
operators of unusual occurrences (Miller et al., 2010). SIEM is relatively a new idea, pioneered a
decade ago and still evolving rapidly as yet. More importantly, it has now grown into a very powerful
security tool that obtains information from many systems at both network and application level,
having a perception of security events and ability to access vulnerability databases, for example,
system known weaknesses and their exploitation. SIEM may have also feature a reporting tool to
assist the security analysts with an event investigation and a report production.

Many studies have focused on optimising security event interpretation via event correlation to
improve the process of security investigation. Libeau (2008) defined three options of event anal-
ysis, namely log management (collection and storage of events in a repository), security informa-
tion management (historical analysis of security events) and security event management (real-time
analysis of security events). The process of event analysis can be summarised into a life cycle, which
entails 7 sub-processes. Those are generation, collection, transport, real-time analysis, storage, re-
porting and forensics. These processes can be further simplified into 5 phases to reflect details of
the investigation procedure. Those are data collection, normalisation, enrichment, correlation and
report (3601S, 2010). Data collection refers to a process of receiving event logs and alerts from var-
ious security tools, whilst normalisation is a process of converting numerous data formats into a
standardised version; for example common date format and address notation. In order to perform a
comprehensive analysis, it is necessary to involve extra security information such as publicly known
exploit data, inventory of enterprise and vulnerability scan results. The data are then grouped, pri-
oritised using an event correlation method to flag the events and subsequently eliminate the false
positives. Finally, a real-time event display and activity report can be performed for example by
dispatching email notification, SMS, or other means.

The development of SIEM technology is driven by the need for improved security monitoring
capabilities (Nicolett and Kavanagh, 2008). The main goals of its deployment are to primarily con-
solidate logs from different security systems into single events and to reduce false positives. The
technology has become an established security product in the field of security management and is
deemed to be one of the fastest growing security markets in 2007 (Nicolett and Kavanagh, 2008).
Its market is motivated by the demand for a real-time security event analysis (for threat manage-
ment on network events) and log analysis as well as report (for security compliance monitoring on
host and application events). Numerous security organisations have funded the development of

33




Chapter 3. Investigation into alert reduction methods using alarm clustering and correlation
technigues

such technology and commonly integrated it with various related security products. Examples of
which are IDS, system management functions, event management and IT governance or risk and

compliance management.

3.6 Conclusions

This chapter focused on the existing studies on false alarm reduction system using alarm classi-
fication and correlation methods. Numerous correlation methods are reviewed; highlighting their
strengths and weaknesses in tackling false alarms.

The main purposes of deploying an alert correlation engine are to improve the quality of the
generated alerts and to help automatically extracting attack strategies from a large volume of in-
trusion alerts. Based on the reviewed works, the key objectives of alarm correlation systems can be
concluded as follows:

e to construct attack scenario by aggregating alerts related to the same attack (Ning et al., 2002;
Debar and Wespi, 2001; Cuppens and Miege, 2002)

e to classify alerts into two classes (in other words, true and false alarms) (Maggi et al., 2009;
Spathoulas and Katsikas, 2010)

In general, two main correlation methods have been applied in existing works. The first category
is called explicit approach (that is knowledge-based correlation), in which the correlation relies
solely on intrusion knowledge of the systems to correlate alerts. These methods are limited to the
experience of the system itself and cannot correlate alerts of new attack. The second category is
known as a learning-based correlation (that is implicit approach). Instead of relying on the domain
knowledge of the experts or systems, this method depends on the analysis or the computation of
the alert data. By utilising the data mapping (either statistical or graphical data) produced by the
generated events, the relations between alerts or events can be identified. The key objective of this
approach is to investigate the behaviour of the alerts and extract the implicit connection between
them.

Although most proposed methods were proved to effectively reduce false alarms, none of them
were perfect. They either required an extensive level of domain knowledge from the human experts
to effectively run the system or were unable to provide high level information of the false alerts
for future tuning. On the other hand, those, which were able to discover attack patterns from the
aggregated alerts, did not have an ability to determine the validity of the alerts. The administrator
was, therefore, left with a task of identifying the real and the false alarms.

In fact, the rule-based or explicit approaches (Julisch and Dacier, 2002; Cuppens and Miege,
2002; Ning et al., 2002; Sadoddin and Ghorbani, 2009; Jan et al., 2009) and the supervised algo-
rithms (Law and Kwok, 2004; Alharby and Imai, 2005; Pietraszek, 2004; Zhu and Ghorbani, 2006;
Viinikka et al., 2009) are not ideal approaches for alert correlation owing to the dynamic growth
of network attacks. Such techniques require extensive knowledge of the administrators to create

rules for defining any potential relationships between alerts. On the contrary, implicit correlation
method using unsupervised approach (Kayacik et al., 2007; Powers and He, 2008; Lichodzijewski




3.6. Ca_rl cl usions

et al., 2002; Xiao and Han, 2006) is considered a better technique than the rule-based method in cre-
ating an automated correlation engine. Such an approach applies a competitive learning algorithm,
which does not require any human intervention to classify the alerts.

Given that the concepts of data mining, unsupervised neural network and machine learning
techniques are so powerful and it is believed that they are holding the future of IDSs, it is worth-
while that future research study should be devoted to investigating these approaches in alarm
correlation engine. The key objective of the research is to establish an alarm correlation framework
and system which enables the administrator to effectively group alerts from the same attack in-
stance and subsequently reduce the volume of false alarms without the need of domain knowledge
(that is based on implicit approach). In fact, the purpose of SIEM technology has become another
main objective of the proposed system. Unlike STEM, which focuses on various security tools, the
proposed engine collects alerts from a single tool, network intrusion detection system. Moreover,
an ideal system should not only classify alerts as true or false alarms but also provide a mean to
facilitate alert analysis for future tuning.

Finally, in order to better understand the fundamental issue of current IDS, the following chap-
ter presents a series of experiments conducted to explore the extent of the problem of false alarms
and to assess the effectiveness of tuning method and the impact of it on the IDS detection rate.

35




An Experimental Study of the
Problem of False Alarms

After evaluating or reviewing the existing research on IDS alarm correlation and false alarm re-
duction methods, it is now essential to look at the main issue that has significantly highlighted the
need for an automated false alarm reduction system. And in order to investigate the extent of the
problem of false alarms faced by current IDS technology, a series of experiments were conducted in
Snort (Caswell and Roesch, 1998), using the DARPA’99 data set as well as a private data set, before
and after fine tuning Snort’s signature set.

This chapter discusses the design of the experiments, and the rationale behind it. This is then
followed by an analysis of the experimental results, the aim of which is to assess the impact of false
alarms on the IDS detection rate.

4.1 Experiment Description

Prior to presenting the experimental results, this section provides a brief description of the experi-
ments data set as well as the tools used to carry out the evaluation.

4.1.1 Experiment Data Set

A number of research efforts have been conducted to evaluate the performance of IDS in terms
of its detection rate and false positive rate. One of the most well-known and determined 1DS as-
sessments to date was undertaken by Defense Advanced Research Projects Agency (DARPA) IDS
evaluation (Lincoln Lab, 2010). This quantitative evaluation was performed by building a small
network (test bed), which aimed to generate live background traffic similar to that on a government
site connected to the Internet. The generated data set, which included a number of injected attacks
at well defined points, were presented as tcpdump data, Basic Security Model (BSM), Windows NT
audit data, process and File system information. The data were then used to evaluate the detection
performance of signature-based as well as anomaly-based IDSs (Lippmann et al., 2000).

Although this data set appears to be one of the most preferred evaluation data sets used in IDS
research and addressed some of the concerns raised in the IDS research community, it received
in-depth criticisms on how this data was collected. The degree to which the stimulated background
traffic is representative of real traffic is questionable, especially when it deals with the reservation
about the value of the assessment made to explore the problem of the false alarm rate in real
network traffic (McHugh, 2000). Significantly, Mahoney and Chan (2003) also critically discuss how
this data can be further used to evaluate the performance of network anomaly detector. Although
the DARPA dataset can help to evaluate the detection (true positive) performance on a network, it

37




Cheper 4. An -Bipevonental Study of thse Probiepsof False Aldrms, — e
is doubtful whether it can be used to evaluate false positive performance. In fact, the time span
between the dataset creation and its application to the current research has resulted in another
reservation about the degree to which the data is representative of modern traffic. However, despite
all of these criticisms, the dataset still remains of interest and appears to be the largest publicly
available benchmark for IDS researchers (McHugh, 2000). Moreover, it is also significant that an
assessment of the DARPA dataset is carried out to further investigate the potential false alarms
generated from this synthetic network traffic. It is expected that the result of this analysis could
describe or provide a general picture of the false alert issue faced by the existing IDSs.

Given that DARPA dataset is deemed to be the largest publicly available benchmark and the
baseline of many research (Thomas et al., 2008), the first experiment was designed to utilise such
data as the source of the investigation. The primary data source of this evaluation was collected
from 1999 DARPA IDS evaluation dataset. Without training the Snort IDS with the three weeks
training data provided for DARPA off-line evaluation beforehand, two weeks testing data (fourth
and fifth week of test data) were downloaded and tested against Snort IDS.

Although DARPA allows comparison with other research studies, it is still just synthesised traf-
fie that was collected ten years ago. Owing to this issue, the second experiment involved the evalua-
tion of Snort on a private data set, based on the collection of network traffic (100-150 MB/s network)
to and from the University of Plymouth’s web server over a period of 40 days, starting from May
17th to June 25th 2007. Technically, the data was collected by port mirroring the external inter-
face of the UoP Internet connection. The capture was performed using a conventional network
capturing tool, tepdump, filtering for external requests to port 80 and the UoP extranet server IP
address. The purpose of conducting an experiment on the University's private data set is to test
IDS performance on a more recent and real life data set than DARPA. In fact, an evaluation, which
is conducted merely on a synthetic data such as DARPA data set is not adequate enough to provide
an insight into the issue of IDS implementation on a real life environment.

The experiments involved a process of identifying real and false alarms; before and after tuning
was performed. The main purpose of comparing results with or without tuning is to assess the
effectiveness of tuning IDS signatures in reducing false alarms and the impact of it on the overall
IDS performance.

4.1.2 Experimental Tools

To carry out the experiments, there are three software applications are required, namely Snort
(an open source network intrusion detection), Wireshark (a network protocol analyser) and BASE
(a web front-end application that is used to query and analyse Snort IDS alerts). The following
subsections briefly define these applications.

4.1.2.1 Snort

Snort is a lightweight Network-based IDS created by Caswell and Roesch (1998). It is a primarily
a signature-based IDS that monitors network traffic in real time, examining each packet carefully
to detect harmful payload or suspicious behaviours. Snort uses rules written in text files to capture

suspicious data. It comes with a full set of pre-defined rules to detect intrusive activities and the




 4.2. An Experiment using the 1999 DARPA Data Set

administrators are free to edit, disable the built-in rules or even to create new rules in an attempt
to improve the Snort detection rate.

The reason for utilising Snort was due to its openness and public availability. Moreover, an
investigation involving such a commonly used IDS can give an insight into the extent of the false
alarm problem in other IDS systems as well.

Snort version 2.6 was selected as the main detector, whilst the Snort ruleset deployed in this
evaluation is VRT Certified Rules for Snort v2.6 registered user release (released on 14 May 2007).
And since the objective of this research is to explore the extent of false alarm problem on IDS
detection rate, only the Snort’s default configuration could be deployed in this evaluation; with all
signature rules enabled.

4.1.2.2 Wireshark

Wireshark is a free open source GUI-based packet analyser for Windows and Unix (Wireshark,
2010). It uses pcap to capture data and is commonly used for network troubleshooting and packet
analysis. The reason for using Wireshark as the analysis tool is its user-friendliness. Unlike some
of the more complicated command-line driven tools like Tcpdump, Wireshark has a graphical front-
end and features various sorting or filtering options that enables the users to interactively analyse
and filter the content based on the different protocols, ports, and other data.

4.1.2.3 Basic Analysis and Security Engine (BASE)

BASE is a front-end tool for Snort IDS system and has been created based on previous Analysis
Console for Intrusion Database (ACID) project (BASE, 2009). It provides a web-front end to per-
form an analysis of alerts coming from the Snort IDS system. This application processes database
containing security incidents logged by IDS programs and presents the information to the users
in a user-friendly web interface. In addition, the product also features a graph creation tool that
allows the users to present the data in a graphical report. The reason of choosing BASE is because
it is one of the well-known alert analysis tools that has been specifically developed for Snort IDS.

In this experiment, the Snort alert output was stored in a MySQL database and the front-end
tool BASE was utilised as the intrusion analyst console. The investigation was accomplished by
exhaustively examining every single alert that was generated by Snort. And to help analyse the
alerts, the Wireshark was run to read the packet capture dump file and identify the network packets
associated with the triggered alerts.

4.2 An Experiment using the 1999 DARPA Data Set

The first stage of the experiment was to run Snort in NIDS mode against the DARPA dataset. The
manual validation and analysis of alerts produced by Snort were undertaken by matching against
the Detection and Identification Scoring Truth. The Detection Scoring Truth is comprised of a list
of all attack instances in the 1999 test data, while Identification Scoring Truth consists of alert
entries of all attack instances in those test data (Lincoln Lab, 2010). A match is identified as same
source or destination IP address, port numbers and their protocol type. In this case, timestamp does
not really help identifying the true alerts since the attacks were labelled by the time the malicious

39



Chapter 4. An Experimental Study of the Problem of False Alarms

activities set off while Snort spotted them when malevolent packets occurred. This might render the
system missing numerous matches. Hence, by recognising the matches for those attack instances,
the number of false positives alarms will then be identified.

Once the alerts were manually verified and the false positives were isolated, the results were
presented in several diagrams to give a clear picture on the issue of false alarms. In this experi-
ment, the main purpose is to depict the severity of the false alert issue based on the type of sig-
nature raised. Given that Snort IDS enables the user to freely access the ruleset, this facilitates
an investigation of the causes of false alarms generation. Hence, by examining each signature rule
associated with the false alarms, this will provide an insight into the extent of false alarms issue
and the impact of false alarms on the IDS detection rate.

This section presents the findings of the experiment. There were a total of 91,671 alerts, made
up of 115 signature rules, generated by Snort in this experiment. In order to visualise the number
of alerts, a pie chart is presented in Figure 4.1. Of the roughly 90,000 alerts generated from this
dataset, 69% are false positives.

B False Positives

@ True Paositives

Figure 4.1: Percentage of true and false positive alerts on DARPA dataset

To gain a more in-depth understanding of the nature of Snort's alert generation, Figure 4.2
portrays a ROC (Receiver Operating Characteristic) plot for the overall result, which illustrates the
overall alert generation of Snort’s signature rule. The number of false positives is presented per
signature for the X-axis, while true positive is portrayed on the Y-axis, This diagram also describes
the random guess line (non-discriminatory line), which gives a point along a diagonal line from
the left bottom (0, 0) to the top right corner (10, 10). This diagonal line divides the space into two
domains; namely good and bad zones. Ideally, a good detection system should yield a point above
the line, meaning the number of real alerts (true positives) triggered should not be exceeded by the
number of false positives generated. The area below the line represents a higher number of false
positives than true positives. Thus, the more plots are scattered on this area, the poorer the IDS is.

As the plot diagram can only give an overview of IDS alert generation, Figure 4.3 provides the




ms

-

=

: o AlanSignature
-}

=

-

- 100¢ —Fandom suass
= Line

L

r=

=

2 10

> 1

1 10 100 1060 L0000
Number of false alarms

Figure 4.2: Overall alert generation per signature

exact figures of Snort’s signatures generating the false and true positive alerts in a Venn diagram.
Seventy three signatures raised the false positive alarms; of which 26 of them triggered both true
and false positives. It is also worth noticing that of those 26 rules, 14 signatures had false positives
outnumbering the true positives. This seems to be a very critical issue faced by contemporary IDSs.
The following subsections discuss this issue in greater detail.

False
True Positives
Positives 26
47 Signatures 42 Signatures

Figure 4.3: Snort IDS alarm - True and false positive Venn diagram

A complete list of true and false alarms as well as the attack types detected on this data set is
presented in Appendix A.

4.2.1 True Positives

Given that the objective of this experiment is to investigate the issue of IDS false alarms, evaluating
Snort’s detection performance on DARPA dataset is beyond the scope of this study. Therefore, the
extent of Snort’s detection performance on a particular attack will not be further evaluated in a

greater detail. However, this subsection presents a brief overview of the generation of Snort’s true

E3l



alarms on 4 attack categories, namely probe, Denial of Services (DoS), Remote to Local (R2L) and
User to Root (U2R).

Interestingly, about 72% of true positives were generated due to the probing activities. Gener-
ally, Snort fares well in detecting probe attacks, which largely generate noisy connections. In this
study, it was found that Snort has a very low threshold for detecting probing activity; for example in
detecting ICMP packets. This has made up of 40% (37,322 alerts) of the total alerts. In spite of its
sensitivity, Snort generated a low level of true ICMP alarms in this experiment, which accounted
for only 13% of those 37,322 alerts. This significantly highlights the underlying flaw of Snort IDS
alarms.

In terms of the DoS attacks, Snort does not perform well. Only one attack, "Back” (a denial
of service attack against the Apache web server) (Lincoln Lab, 2010), could be perfectly detected
without generating any false positives. This has contributed to 20% of total true alarms. As for
remote to local attacks, about 16 out of 20 types of attacks were detected. This, however, only made
up of 2% of true alarms. Although Snort seems to fare well in this category, it critically missed
numerous attack instances.

The last attack category, user to root (U2R), is the most challenging attack for Snort IDS. Since
UZ2R attack typically occurs on a local machine, which attempts to elevate administrator’s privi-
leges, it relies solely on a system log or computer’s file system. As such, Snort, a network-based
IDS which merely depends on network connections, does not work well in detecting such attacks.
Such attack could only be detected if it is launched by a remote machine to a local host across the
network. In this case, only a small proportion of true alerts (less than 1%) were generated owing to
this category.

4.2.2 False Positives

A large volume of alerts, largely comprised of false positives, were generated by Snort IDS. Approx-
imately, 69% of total alarms are false positives. Figure 4.4 shows the top five false alarms raised
by Snort. Interestingly, 48% of the total false alarms were made up of ICMP alerts. This explains
one of the flaws of Snort IDS. As Snort has a very low threshold for ICMP traffic, logging every
connection associated with probing, for example all ping activities, will only tend to generate a sig-
nificant number of false positives. In fact, all detected ICMP traffic did not imply the occurrence
of probing actions, but it was merely an informational event; indicating the occurrence of network
outage. Thus, this concern drives the need to verify every single alert generated or even to improve
the performance of IDS alarm reporting system.

In terms of the category of alerts generated, 39% (24,835 alerts) of the total false alerts were
triggered due to policy violations. Significantly, this type of alerts is more related to irrelevant
positives than false positives. Irrelevant positives refer to the alerts generated from unsuccessful

attempts or unrelated vulnerability. However, as those informational alerts were not related to any
suspicious activity from DARPA attack database and in order to make it simpler, they were flagged
as false positives.

The highest number of false alarms in this experiment was triggered by INFO web bug 1x1
gif attempt signature. This signature rule was raised when the privacy policy violation was de-
tected (Snort, 2010b). Theoretically, the web bug is a graphic on the web page, which is used to




4.2. An Experiment using the 1999 DARPA Data Set

25000

é 20000 - — - = -
2
< 15000 - R - —
o
E’, 10000 l : _ -
g I
Z 5000 + — — -— - —
INFO web ICMF ICMP Echo ICMP PING CHAT IRC
buglixl gif Destination Reply message
attempt  Unreachable
Port
Unreachable
Signatures

Figure 4.4: Top 5 DARPA false alarms

monitor users’ behaviours. This is often invisible (typically only 1x1 pixel in size) and hidden to
hide the fact that the surveillance is taking place (Smith, 1999). In fact, it is also possible to place
web bug in a Word document as it allows html in a document or images to be downloaded from
the external server. This is particularly useful if the document is supposed to be kept private, and
web bug provides the information if the the document had leaked by finding out how many IP ad-
dresses had looked at it. Owing to its legitimate use and since none of these web bug alerts fitted
in any attack instances described in DARPA attack database, the study reveals that no true alarms
associated with this signature was generated. Therefore, total 22 559 alerts from this signature
were entirely asserted as false positives. This contributed to 35% of total false alarms raised by the
system.

Another similar policy-related alarms logged in this experiment is CHAT IRC alerts. These
alerts accounted for 3.6% (2,276 alerts) of total false alarms. Snort generates these IRC alerts
because the network chat clients have been detected. In common with the previous "web bug”
signature, IRC alerts were not truly false positives. Principally, Snort, given the correct rule, fares
well in detecting policy violation. Indeed, through the investigation of the DARPA packet payload,
it was noticeable that the chat activily did take place on a certain time. However, since these alerts
did not contribute to any attack instances in the attack list, they were considered as false positives.
These CHAT IRC alerts were triggered by three signature rules; namely CHAT IRC message, CHAT
IRC nick change and CHAT IRC channel join.

Interestingly enough, 25 web-related signatures triggered pure false positives. A signature is
considered to generate pure false positive if no true alarm associated with this signature is gener-
ated. Although port 80 was one of the most vulnerable ports for DARPA attacks, these signatures
did not correspond to any attack instances listed in the attack database. Aside from the web-related
alerts, other 22 signatures, involving ICMP informational rule, policy, preprocessors, exploit at-

43




Chapter 4. An Experimental Study of the Problem of False Alarms

tempt and SQL rules, also generated a significant number of pure false positives in this evaluation.
In view of that, all these alerts made up of 44% (28,340 alerts) of total false alarms raised by the
system.

As described in the previous section, 14 signatures produced more false positives than true pos-
itives. This certainly becomes a good example, which highlights the critical issue of false alarms in
the real world. If the false positives per signature highly outnumbered the true positives, this could
undermine the process of identifying real attacks. In addition, this often renders the administrator
less concerned about the alerts: thus tending to conclude them as false positives. This problem
could seriously inhibit IDS detection performance in a real environment.

While Snort’s performance looks sufficiently impressive by detecting 32 types of attacks, it pro-
duced a large volume of unnecessary alerts; for example the alerts triggered due to the detection
of a DoS attack (that is "Back” attack), by WEB-MISC apache directory disclosure attempt signa-
ture. Only seven instances from this attack were included into the DARPA dataset, but surprisingly
Snort detected all seven instances by triggering 5,628 alerts from single signature. Obviously, Snort
has generated a significant number of redundant alerts in this case. Indeed, this often leaves the
administrator with the difficulty of verifying every single alert logged by the system.

4.3 An Experiment using the University of Plymouth Data
Set

The next phase of the experiments is to assess the problem of false alarm using University of
Plymouth data set.

Although storing the full packet information significantly increased the storage requirements
for the experiment, it was important to maintain this information for the validation and analysis of
IDS alarms. It should also be noted that traffic containing web pages with the potential of having
sensitive / confidential information was excluded from the packet capture, in order to preserve the
privacy of web users. This was accomplished by parsing the packet trace using ngrep to ensure that
no personal data (such as personal details on contact/feedback web pages) existed in the trace.

The first stage of the experiment was to run Snort in NIDS mode, in its default configuration.
This means that no tuning whatsoever was conducted. The idea behind this is to investigate the
extent of the problem of false alarms and to compare the effect that tuning can have on false alarm
reduction. The next phase of the experiment involved the analysis of the same traffic, after tuning
was performed on Snort. A number of techniques were applied for the tuning, including setting up
the event thresholds and adjusting Snort’s rules (Beale and Caswell, 2004). A necessary reguire-
ment for this was the manual validation and analysis of alerts produced by Snort in the first phase,
and identification of signatures that are prone to false alarms. The analysis of IDS alerts was su-
pervised by a certified intrusion analyst, and BASE was utilised to assist the intrusion analysis
process

Once the alerts were manually verified, the result was presented in a ROC diagram; a graphi-
cal plot of Snort alarm generation. In order to reveal a clear picture of the false alarm problem, a
ROC plot is preferable. Unfortunately, there were no true negative (number of benevolent activities

passed) and false negative (number of real attacks missed) value known in this analysis since no




4.3. An Experiment using the University of Plymouth Data Set

alarms were triggered due to these events. In fact, the only way to obtain these figures is via packet
analysis. Unfortunately, no traffic analysis was conducted on the captured traffic to identify true
and false negatives. As an alternative, the plot diagram is drawn to represent the actual number
of false and true alarms instead of their alarms rate. This diagram provides a simple graphical
representation of the false alarm problem, thus enabling the analyser to easily comprehend the
performance of Snort IDS in a real network environment. By demonstrating the graphical plot of
false positive versus true positive, this approach visibly explains the criticality of the false alarm
issue. As the values of false and true negatives are unknown in this case, the alarm rate is calcu-
lated per total generated alarms instead of its total negative and positive values. The formula is
presented as follows:
False Alarms

= hosseniae i )
False Alarm Rate Total Alarms * 10€

True Alarms
_—— 00
True Alarm Rate Total Al SxIH

The lack of knowledge or awareness about the complexity of network by IDS technology has led
to the generation of excessive amount of false alarms. Generally, there are three possible alert types
raised by the system, namely true positives (alerts from real attacks), false positives (legitimate
activities thought to be malicious) and irrelevant positives (alerts from unsuccessful attacks or
attempts (Kruegel and Robertson, 2004). The last two alerts are the main concerns in this study.

This section presents the results of the experiment. Figure 4.5 depicts the overall result, which
represents the general detection performance of Snort IDS using a similar ROC plot diagram as il-
lustrated in Figure 4.2. In order to create a simpler illustrative graph, which facilitates the compre-
hension of Snort’s detection ability, the false and true positives values are presented in a proportion
of thousands. The number of false positives generated is presented per unit time (per day) for the
X-axis, while true positives are portrayed for the Y-axis.

Significantly, the research has also produced a similar result to that yielded in Brugger and
Chow's evaluation (Brugger and Chow, 2007). Their study reported that the number of false posi-
tives generated was massive. This indicates that Snort’s false positive performance on real network
could be much worse than described in their evaluation.

This experiment focused on the analysis of false positive alarms, as opposed to other studies (Ma-
honey and Chan, 2003; Brugger and Chow, 2007), which were directed to explore the issue of false
negatives. The main objective of this analysis is to merely provide a general view of the scale of
false positives that may be generated by current IDS. The following subsections discuss this case in
greater detail.

4.3.1 False Positives

A large volume of alerts, largely comprised of false alarms and irrelevant positives, drives the need
to verify the validity of the alerts generated. Interestingly, apart from the false positives, the study
reveals that some alerts were raised due to informational events, which merely occurred as a result
of a network problem, not owing to the detection of real attacks. These types of alerts are known as

45



Chapter 4. An Experimental Study of the Problem of False Alarms

¢ Alsrtgeneration  =—FRandom Guess Lins
03
o 3
=
| =
s
3
= =
-
»
= ®
ko +
~
: : .
: L ] ‘ - »
> e o
@ - *
A ¢ Y
= L ]
z -+ &
t ¢ * s
* & L 2
w & L2
0.1 &
a 1 2 3 4 5 3 7 2 S
Number of false alarms Thousands

10

Figure 4.5: Generation of alerts an University of Plymouth data before tuning

irrelevant positives. Indeed. the unsuccessful attacks, or attempts that aim at an invincible target,
might cause the system to generate such alarms.

—tp—False Postives Trus Postives

250

% * 200
=
Lt P -
2 5000 \ Y
- 3500 —F3% : 150
4000 - A i ‘
@ 250
o F-LUL
£ 3000 - 100
=L Aaln]

2500
< 2000 -

1504 0

. F & F 9

149

i
—
A
o
b
N
w
(]
C

21 23 25 27 29

11 13 15 17
Day

Figure 4.6: Comparison between false positive and true positive alarms on University of Plymouth
data

Figure 4.6 provides a clear picture of the number of true and false alarms generated per day. To
clearly map the figures of true alarms, the plot diagram uses secondary axis to plot the values of
true positives. In this case, the right hand side y-axis represents true positives, whilst the left hand




4.3. An Experiment using the University of Plymouth Data Set

side is for the false positives. In this context. it is obvious that the false alarms highly outnumbered
the true alarms. Significantly, this experiment has revealed a similar result to that yielded in
the DARPA evaluation (Section 4.2). The result is similar to the previous findings, which further
confirms the severity of the problem of false alarms. Approximately 96% of alerts generated are
false positives, while less than 1% of the total alerts are affirmed to be irrelevant positives. In
order to make it simpler, irrelevant alarms are regarded as false positives alerts in this case since
no immediate and crucial responses required from these events. By looking at the Snort alerts
generated from the University's web server, most of the false positive alarms came from the category
of web application activity. Table 4.1 shows a complete list of the Snort alerts triggered by the data.
The first three alerts are the false positives alerts, which will be further investigated later on. The
reason for focusing on these alerts is due to the quantity generated, which aceounts for more than
80% of total alerts raised by the system.

Table 4.1: Total Alerts per Signature

No | B Signatures | Total Alerts
1. | WEB-IIS view source via translate header - | 78865 |
2. | WEB-MISC robots txt access - | 30011 |

IL 3. JCMP L3retriever ng_ o - | 10254
'L 4. | BAREBYTE U NICODE ENCODING - | 6392 :

5. | POLICY Google Desktop activity i 3258
6 ‘ SPYWARE-PUT Trackware funwebproduct‘-‘» ] 1873 '

| mywebsearchtoolbar-funtools runtime detection I _

7. | ATTACK-RESPONSE 403 Forbidden ] 720 |
8. | ICMP PING Cyberkit 2.2 Windows ' 651 |

f 9. | DOUBLE DECODING ATTACK - 504 |
|“ 10. | ICMP Destlnatwn Unreachable Communication . - o ;5_1
| Administratively Prohibited _I .
| 11. | TCP Portsweep - | 124
j 12. | SPYWARE- PDT Hljacker bearchmu'acle-ehtebar runtime detection I 80 |
13, | WEB-MISC .DS Store access 60|
| 14. | [1S UNICODE CODEPOINT ENCODING | 49 |
| 15. | WEBROOT DIRECTORY TRAVERSAL . 35
16. | SPYWARE- PUT Adware hotbar runtime det,etuon hotbar user-agent | _ 27
' 17. | WEB-TIS asp- -dot attempt ! o 26
‘ 18. | TCP Portscan B : 19
: 19. | SPYWARE-PUT Trackware alexa runtime detect,iu; g B ____ 19 |
| 20. | WEB-PHP IGenena Free Shopping Cart page. php access 17 |
| 21. | ICMP PING NMAP Rt
'_2; | ICMP Destination Unreachable Communication with Destination Host : - ia ‘

| is Administratively Prohibited | |

| Continued on next page |

417




Chapter 4. An Experimental Study of the Problem of False Alarms

Table 4.1 - continued from previous page

[ Nﬂ ~ Signatures | False alarms |

| [ 23. | WEB-CGI calendar access - 11

| 24. | MULTIMEDIA Quicktime User A_gent Access B 10
25. WEB»ESC intranet access - -_ 8 |
26. | ICMP redirect host | 8 |

| 27. "IOMP PING speedera - 7|

| 28. | SPYWARE-PUT H_uacker marketscore runtime detection 7

| 2. | WARNING: ICMP Original IP Fragmented and Offset Not 0! 6

| 30. | WEB-MISC WebDAV search access IR 5

| 31. | WEB-FRONTPAGE / vti bin/access o o 5
32. | Open Port - 5|
33. | WEB-PHP remote include path a 4
34 | WEB CGI formmail access - B 3
35. | WEB-FRONTPAGE vti infhtml access B 3
36. | SPYWARE-PUT Trickler teomasearchbar runtime detection 2
37. | WEB-PHP xmlrpe.php post attempt o . 2

' 38. | WEB-CLIENT Microsoft wmf metaﬁle aceess o ' 2

. ' 39. | WEB-MISC Domino webadmin.nsf access _-! 2

| 40. | OVERSIZE CHUNK ENCODING N 2|

| 41. | ICMP Source Quench o o | 2

| 42. | WEB-PHP test.php access B - 2

| 43. | WEB-PHP calendar.php access - '| - %1

44, WEB-P}Eadmin.php access - | 1|

4.3.1.1 WEB-IIS view source via translate header

This event is categorised as web application activity, which targets the Microsoft 1IS 5.0 source
disclosure vulnerability (Snort, 2010¢). Since Microsoft IIS has the capability of handling various
advanced scriptable files such as ASP, ASA and HTR, the use of specialised header "Translate
on HTTP GET request is likely to force the web server to present the complete source code of the
requested file to the client without being executed first by the scripting engine. In addition, this
attack only works well if the trailing slash ”/" is appended to the end of requested URL (Bugtraq,
2010a,b).

Surprisingly, this signature accounted for 59% of the total alerts. Therefore, approximately
1970 alerts were generated per day by this event. Although the signature was solely created to
detect an attack targeting the Microsoft IIS source disclosure vulnerability, there is a certainty

that this signature will generate a false alarms in a certain case. Some applications, for example
Web-based Distributed Authoring and Versioning (WebDAV) that make use of "Translate {” as a
legitimate header, might cause this rule to produce an excessive amount of false alarms (WebDAV,




 4.3. An Experiment using the University of Plymouth Data Set

2001). Moreover, WebDAV PROPFIND and OPTION methods also make use of this "Translate {”
as a legitimate header to retrieve the information or properties of the resources identified by the
Uniform Resource Identifier (URI) (nearly 96% of alerts generated by this signature were not HTTP
GET requests). Significantly, in this experiment, none of the alerts generated by this signature were
triggered as a result of a real attack, so no further acts were required to handle these alerts.

4.3.1.2 WEB-MISC robots.txt access

This event is raised when an attempt has been made to access robots.txt file directly (Snort, 2010d).
Basically, robots.txt file is a file that is created to keep the web pages from being indexed by search
engines. More to the point, this file provides a specific instruction and determines which part of
a website a spider robot may visit. Interestingly, the problem is that the webmaster may detail
sensitive and hidden directories or even the location of the secret files within the robots.txt file.
This is considered extremely unsafe since this file is located in web server’s document root directory,
which can be freely retrieved by anyone.

Although this event is raised as the indicator of vulnerable information attack, there exists high
possibility that all these alerts were raised due to legitimate activities from web robots or spiders. A
spider is software that gathers information for search engines by crawling around the web indexing
web pages and links in those pages. Robots.txt file is basically created to restrict the web spider
from indexing pages that should not be indexed, for example, submission pages or enquiry pages.
As web indexing is regular and structurally repetitive, this activity tends to cause the IDS to trigger
a superfluous amount of alerts. In this study, approximately 23% of total alerts (approximately 750
alarms per day) were accounted for by this web-mise activity. Given that all alerts generated from
this event are owing to the activities of web spider, they are considered to be false positives. Signif-
icantly, this issue has apparently disclosed the drawback of Snort IDS in distinguishing legitimate
activity from the malicious one; especially when it deals with the authorisation or file permission.

4.3.1.3 L3Retriever Ping

ICMP L3retriever Ping is an event that occurs when ICMP echo request is made from a host run-
ning L3Retriever scanner (Snort, 2010a). This type of ICMP echo request has a unique payload
in the message, which significantly designates its distinctive characteristic. This traffic is consid-
ered to be an attempted reconnaissance since the attackers may use the ping command to obtain
ICMP echo reply from a listening host. Surprisingly, in this analysis, quite a few alerts were gen-
erated from this event; contributing to 8% of the total alerts generated. This figure indicates that
approximately 250 alerts were generated by this signature rule every day.

Considering the source IP address associated with these alerts, it is obviously clear that all
ICMP requests were sent from the external hosts. Further investigation was conducted to critically
analyse and discover if possible malicious events happened subsequent to the ICMP echo request.
Surprisingly, there were no malevolent activities detected following the ICMP traffic. In addition,
normal ICMP requests generated by Windows 2000 and Windows XP are also known to have simi-
lar payloads to the one generated by L3Retriever scanner (Greenwood, 2007). Generally, this traffic
is routine activities run by computer systems (notably Windows 2000 and XP systems) to communi-
cate with their domain controllers or to perform network discovery. In view of this issue and given

49




16 15 —

Number of alarms

-
£

Falsz Alarm Truz Alarm

Alarm

Figure 4.7: "ICMP PING NMAP” event

that no suspicious output detected following these ICMP requests; these alerts were labelled as

false positives.

4.3.2 Fine Tuning

False alarms for one system might not be an erroneous alert for other systems. For example, port
scanning might be a malicious activity for normal users, but it is a legitimate activity if it is per-
formed by a system administrator. Figure 4.7 shows an example of an event which triggered both
false alarms and true alarms from the experiment. From the IDS’s perspective, as long the activ-
ity’s pattern match to the signature defined in the rule database, it is considered to be a malicious
event. In view of this, fine tuning is exceptionally required to maintain the IDS performance and
enable the administrator to adapt the signature rule to the protected environment.

In order to optimize Snort performance, fine tuning is necessary to reduce the number of alerts
raised. Since only three signatures were tuned in this experiment, the false alarm rate accounted
for 86.8% of total alarms after tuning was performed. Figure 4.8 depicts the ROC plots for the
overall result after tuning was performed. Obviously. only less than two thousands alerts per alert
type have been generated by Snort. In order to understand the effectiveness of fine tuning, the
alarm rate between default and tuned Snort is presented in Figure 4.9. This figure does not seem
particularly impressive, but fine tuning did fare well on those signatures: reducing up to 90% of false
alarms per signature, excluding WEB-MISC robots.txt access. The following subsections discuss the
tuning processes in more details.

4.3.2.1 WEB-IIS view source via translate header

Regarding the information disclosure vulnerability attack, Snort does not seem proficient enough
to detect this type of event. The signature rule appears to be very loosely written, by searching for
a particular string in the packet payload (in this case, "Translate: f”). Since the "Translate: " is a

valid header used in WebDAV application, as discussed previously, this rule tends to trigger a vast




& Alertgeneration

O T
=
5
- }
[ =]
£
=
: J
502 -
T Rl
: -
= :
(=]
: %’
: * .0
) y %y
J R
o1 -
) 1

-
“

Number of false alarms

—Random GUess Line

)

3
Thousands

Figure 4.8: Generation of alerts on University of Plymouth data after tuning

T =] o
== =]

Alarm Rate (Percentage)
W
|

Before Tuning

After Tuning

_ B Falsz Alarm Rate

True Alarm Rate

Figure 4.9: Alarm rate before and after tuning

 4.3. An Experiment using the University of Plymouth Data Set

volume of alerts from the legitimate activities. Hence, tuning is needed to search for a more specific

pattern of the attack signature.

As this attack is basically launched through HTTP GET request, searching for "GET” command
in the content of analysed packet can be a good start. The attack is launched by requesting a specific

resource using HTTP GET command, followed by "Translate: f” as the header of HTTP request. In

51




Chapter 4. An Experimental Study of the Problem of False Alarms

this case, a tuning can be performed by modifying the signature rule to:

alert tcp SEXTERNAL NET any —> SHTTP_SERVERS SHITP_PORTS
(msg:"WEB-IIS view scurce via translate header"™;
flow:to_server,established; content:"GET|20|";
content :"Translate|3A| F"™; distance:0; nocase;
reference:arachnids, 305; reference:bugtraq,14764;
reference:bugtrag,1578; reference:cve, 2000-0778;
reference:nessus,10421; classtype:web—application-activity;
8id:1042; rev:13;)

The tuning process significantly reduced the number of alerts, with only 3,463 generated by this
rule as against 78,865 alerts in the first case (that is without tuning). Significantly, this tuned rule
was proved to effectively eliminate 95% of the initial false alarms from this event.

Although the tuning process decreased the volume of alerts, there is still a possibility that those
5% alerts were false positives. Searching for GET command and the Translate f header is not
effective enough to detect such attack. Putting trailing slash "/” at the end of requested URL to
HTTP request for example could lead in the security bug (Bugtraq, 2010a). Thus, matching the */
pattern against the packet payload will be helpful. Unfortunately, this idea seems hardly possible
to achieve. Snort does not have a specific rule option that can be used to match a specific pattern at
a particular location.

As to the signatures of Snort, looking for an overly specific pattern of a particular attack may
effectively reduce the false alarms; however, this method can highly increase the risk of missing its
range. A skilful attacker can easily alter and abuse the vulnerability in various ways as an attempt
to evade the IDS. This might lead to false negatives as a consequence.

4.3.2.2 WEB-MISC robots.txt access

Since accessing the robots.txt file is a legitimate request for Internet bots (web spiders), a subjective
rule, which mainly focuses on the source IP addresses, is necessary to verify user authorisation in
accessing a certain file. This approach, however, seems to be hardly feasible to deploy. Of course,
identifying all authorised hosts from their source IP addresses is impractical. There is an infinite
number of IP addresses need to be discovered before the rule can be written. Indeed, lawfully
allowing specific hosts to access certain file might increase the risk of having false negatives.

In this case, the only solution to suppress the number of false alarms generated is by using
event thresholding (Beale and Caswell, 2004). As robots.txt access requests generate regular and
repetitive traffic, a "limit” type of threshold command is the most suitable tuning in this case. Such
a threshold configuration would be as follows:

threshold gen_id 1, sig_id 1852, type limit, track by src, count
1, seconds 60




4.3. An Experiment using the Universily of Flymouth Dala Set

This rule logs the first event every 60 seconds, and ignores events for the rest of the time in-
terval. The result showed that approximately 10% of false alarms were effectively reduced. This
indicates that only an insignificant number of false alarms can be reduced in this scenario. The
frequency of fetching robots.txt files greatly depends on the web spider’s policy. Hence, deploying
event suppression and thresholding cannot effectively trim down the number of false alarms logged
by the system. Having said that, suppressing the number of alerts generated can also create a
possibility of ignoring or missing real alerts. For example, a malicious user can hide his/her action
within the excessive number of alerts generated by using a spoofed address from web spider agent.

4.3.2.3 ICMP L3Retriever Ping

The only method that can be deployed to suppress the number of false positive triggered from this
event is by applying event suppressing or thresholding command. Similar to the one applied to
"WEB-MISC robots.txt access” signature, a threshold command is written to limit the number of
alarms logged. Instead of using "limit” type of threshold command as previous signature, this rule
utilised "both” type of command to log alerts once per time interval and ignore additional alerts
generated during that period:

alert icmp SEXTERNAL NET any —> SHOME_NET any (msg:"ICMP
L3retriever Ping"; icode:0; itype:8;
content : "ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI™; depth:32;
reference:arachnids, 311; classtype:attempted-recon; threshold:
type both, track by src, count 3, seconds 60; sid:466; rev:5;)

Similar to the previous signature (robots.txt access), the threshold applied will not prevent the
generation of false positives, but it will significantly reduce the number of redundant false positives
triggered. Importantly, the threshold is written to detect brisk ICMP echo requests by logging alerts
once per 60 seconds after seeing 3 occurrences of this event.

The result showed that only 1,143 alerts were generated from this event in 40 days experiment
data. This experiment has also proved that the event thresholding can successfully reduce up to
89% of the false alarms generated by this activity. Despite its ability in suppressing redundant
alarms, the system is prone to missing stealthy ICMP requests, for example, requests sent once
every 60 seconds can be misged by the system.

Although such technique effectively suppresses the alerts, it potentially increases the risk of
false negatives. In a case where an attacker sends the request only once, the IDS might miss
this event if the thresholding is enabled. The malicious request might have assimilated into the
superfluous number of genuine requests.

In consideration of this issue, it is highly advised that tuning and thresholding should only be
carried out by a security expert who has broad knowledge of the network security and also the
protected system. It is often a case of trading off between sensitivity (that is false negative) and
specificity (that is false positive).

53



Chapter 4. An Experimental Study of the Problem of False Alarms

4.4 Discussion

Similar to this experiment, an evaluation was carried out by Brugger and Chow (2007) to assess
the performance of traditional IDS, Snort. This evaluation was conducted using the baseline De-
fense Advanced Research Projects Agency (DARPA) dataset 1999 against a contemporary version of
Snort. This assessment was performed to appraise the usefulness of DARPA as an IDS evaluation
dataset and the effectiveness of the Snort ruleset against the dataset. In order to analyse Snort’s
alarms, a perl matcher script was used to report the false negative and positive rates; thus generat-
ing the ROC curve for a given set of attacks. Given the six year time span between the ruleset and
the creation of the dataset, it was expected that Snort could have effectively identified all attacks
contained in the dataset. Conversely, what they found instead was the detection performance was
very low and the system produced an unacceptably high rate of false positives, which rose above the
50% ROC’s guess line rate. This might be due to the fact that Snort has a problem detecting attacks
modelled by the DARPA dataset, which focused on denial of service and probing activities (Lipp-
mann et al., 2000). In particular, the false alarm rate reported in this evaluation was not creditable
enough to prove Snort false positive performance in a real network, which might be much worse or
much better. In view of that, the research decided to utilise more realistic data to critically evaluate
the false positive issue of the system.

The experiment presented here has revealed a similar result to the werk of Brugger and Chow
(2007). Over a span of two years since their research was published, the issue of false positives
remains a critical challenge for the Snort IDS. Obviously, Snort performance does not look partic-
ularly remarkable as illustrated in Figure 4.5. The bottom right scattered plots demonstrate that
the number of false positives largely overwhelms the number of true positives. Approximately 3,000
alerts were generated per day, requiring manual verification to validate their legitimacy. Although
the administrator can effectively distinguish the false and true positives from the list of alerts, the
massive amount of false alarms triggered by one signature rule might cause the administrator to
miss a malicious attack.

The overall effectiveness of Snort greatly hinges on the effectiveness of keyword spotting (in
other words, matching the packet content to the signature rule). This has rendered the system
prone to generating a superfluous number of false alerts. Interestingly, most of the rules looking
for web traffic related attacks are loosely written and merely check for the presence of a particular
string in the packet payload. This could trigger a large number of false alerts if a particular string is
included in the content distributed by the web server. Hence, from this perspective, Snort is deemed
not to be ideal enough to detect more complex attacks, which are not detectable by a pre-defined
signature.

As for the DARPA experiment, it was initially thought that Snort could fare well in detecting
DARPA attacks. However, the fact is Snort detection performance is low, only 32 attacks were
detected, and Snort produced a large volume of false positives. Indeed, Snort also missed numerous
attack instances from those 32 attacks. From this experiment, it is obvious that the issue of false
alarm has become very much critical. The false positives generated greatly outnumbered the true
positive alarms, as depicted in Figure 4.1. In fact, more than half of the signatures producing both
true and false positives in this evaluation triggered more false positive and true positive alarms.

This issue would critically decline IDS detection performance; not only in this simulated network




4.5. Conclusions

environment but also bound to happen in a real environment.

Regarding the quality of alerts, Snort generated a significant number of redundant alerts, which
critically highlighted the performance issue of its alert reporting system. This often leaves the
administrator with the overwhelming alerts, which then render the alert validation job hard to
manage. Importantly, this issue has also driven the need to have an improved or better alarm
reporting system through the implementation of alarm suppression and correlation methods.

Snort raised 28340 pure false positive alarms that accounted for 31% of total alarms generated.
Such issue is also likely to happen in a real-network environment. However, in this experiment, the
cause of these alerts was not individually tracked. Having said that, it is believed that this might be
caused by the nature of Snort IDS, which relies on keyword spotting (in other words, matching the
packet content to signature rule) to detect malicious activity. Significantly, this finding underlines
another weakness of Snort IDS, which render the system prone to produce excessive alerts.

4.5 Conclusions

This chapter discussed the results of false alarm evaluation on both the DARPA 1999 data set and
the University of Plymouth private data set. It then continued to highlight the issue of false alarms
and critically examine the impact of false alarms on the IDS detection rate.

In general, the study has confirmed the criticality of IDS false alarm issue. Given the findings
in the DARPA evaluation, endorsed by the experiment results on University private data set, it
is clear that false alarm is a never-ending issue faced by current IDS. This motivates the need to
enhance the system performance or even to improve the quality of alerts generated.

Having investigated the problem of false alarms, the next chapter presents the architectural
framework of a proposed alarm correlation and reduction system. This is followed by the descrip-
tions of the main modules involved in such an approach.

55



A Novel Approach to Alarm
Correlation

5.1 Introduction

Having identified current literature or studies on IDS alarm correlation methods and the draw-
backs associated with them, this chapter introduces a new alarm correlation system, which aims
to aggregate alerts from the same attack instances and classify alerts into two classes, the true
and the false alarm. This chapter begins by introducing the concepts of the applied methodologies
and the rationale behind the implementation. The proeposed model is then presented, followed by
preliminary experiment results on both 1999 DARPA data set and University of Plymouth private
data.

5.2 Methodology

To answer the issues of current correlation systems (as described in Chapter 3), an automatic alarm
correlation and filtering system for signature-based IDS is proposed using unsupervised clustering
techniques, namely Self Organising Map (SOM) (Kohonen, 1995) and K —means algorithm (Mac-
Queen, 1967). The data mining techniques are commonly used in data reduction and data cluster-
ing. The reason of choosing these algorithms is because they are easy to implement and able to
show or clarify the relationship between the classified data.

The proposed system is developed to process alerts generated by signature-based IDS, including
aggregating or correlating alerts associated with the same attack instance and clustering the alerts
into groups of true and false alarms. Existing alarm correlation studies (as presented in Chapter 3)
were conducted to achieve either of these purposes; to construct an attack scenario by aggregating
alerts related to the same attack (Ning et al., 2002; Debar and Wespi, 2001; Cuppens and Miege,
2002) or to identify false alerts (Maggi et al., 2009; Spathoulas and Katsikas, 2010). Unlike the
previous works, the proposed system aims to achieve both objectives by introducing a two-stage cor-
relation. The rationale behind this is to propose an automated tool that not only can discover the
relationship between alerts but can also identify false alarms without the need of domain knowl-
edge.

The following subsections introduce the basic concepts and the operational features of the ap-
plied algorithms (SOM and K —means).



Chapter 5. A Novel Appiroach to Alarm Correlation
5.2.1 Self Organising Map (SOM)

A Self Organising Map (SOM) is an unsupervised neural network which produces a feature map
that maintains the topology of the input data according to their similarity. Unlike typical neural
networks that need to be trained with their desired outputs, SOM can automatically categorise the
varieties of input presented during training without any external supervision whatsoever and as-
sess the accuracy of its classification. In other words, SOM is a type of learning process in which
the neighbouring cells in a neural network are competing in their activities through mutual lat-
eral interactions and are specifically tuned to adapt to various input signal patterns or classes of
patterns (Kohonen, 1995). It relies on the absence or presence of an active response given by the
cell or local cell group, not so much on the input-output signal transformation itself, to provide an

interpretation of the input information.

Some SOM applications require a proficient construction of large maps. Searching the best
matching unit from a large map is usually the computationally heaviest operation in the SOM. How-
ever, using a tree-structured SOM, it is possible to use hierarchical search for the best unit (Koikkalainen,
1994). The idea behind this method is to build a hierarchy of SOMs, in other words, multiple maps,
training the SOM on each layer before proceeding to the next level. In this work, a standard version
of SOM was applied instead of the tree-structured SOM, which could be applied as an alternative
method for the future work.

The SOMs have been commonly used in a wide range of fields; involving data mining, pattern
recognition, image processing, robotic, process controls and visualization methods for complex data
sets. In fact, it is one of the most popular unsupervised learning algorithms applied in IDS re-
search (Albayrak et al., 2005). The initial applications of a SOM architecture to the IDS issue were
already proposed (as discussed in Chapter 3) (Ramadas et al., 2003; Kayacik et al., 2007; Xiao and
Han, 2006; Powers and He, 2008). Moreover, the appropriateness of such a method in the study of
large data sets was also established (Kohonen et al., 2000).

Unsupervised learning using SOM offers a simple yet efficient way of clustering data sets. It
is empirically proven that SOM is best suited to data classification due to their high speed and
fast conversion rates as compared with other learning techniques (Labib and Vemuri, 2002). Also,
in terms of its data representation, this method is deemed to outperform other algorithms,for ex-
ample, ART (Adaptive Resonance Theory), owing to its ability to preserve topological mappings
between the input data. This represents a significant feature, which is desired when introducing
the relationship between the generated alerts. In other words, the organisation of the data using
the SOM-based approach enables the system to learn the relationship between alerts based on the
defined attributes.

The idea of the SOM algorithm is to perform a data compression technique (vector quantisation)
where a high dimensional data is represented or mapped into something that is better understood
visually such as a 2-dimensional array. The approach is considered as being highly effective as a
complex visualisation tool for picturing extensive, multidimensional space with the intrinsic rela-
tionship among the various attributes comprising the data. Given these benefits, SOM is selected

as the main correlation method in the proposed architecture. The basic concept, architecture and
implementation technique of SOM can be found in (Kohonen, 1995).




5.3. A Proposed Alarm Reduction and Correlation System

5.2.2 KA —Means

K —means (MacQueen, 1967) is a simple unsupervised learning algorithm that answers the well-
known clustering problem by grouping n objects based on attributes into k partitions, where k < n.
The implementation of A —means assumes all attributes to be independent and normally dispersed.
The main concept of this approach is to define k appropriate centroids, one for each cluster and
then group all data into the pre-defined k subsets. The grouping is done by calculating the sum of
distances or sum of squared Euclidean distances from the mean of each cluster, as shown below.

Vi —a)? + (2 — @)+ + (pn —a)* = \J Z{P. - qi)? (5.1)
=1

, where p and ¢ are the cluster points and n is the number of attributes.

Hence, the objective of this clustering is to minimise a measure of dispersion within the clusters
and to maximise the distance between clusters (Kanungo et al., 2002).

In this work, the K —means procedure will be started by assigning the data to k initial clusters
at random. It is also worth noting that the cluster solutions can be influenced by the order of
the input data. The randomised trials therefore involve randomising both the initial clusters and
the data order. To get the best clustering solution, the proposed system looks for the top solution
by exploring a range of cluster solutions produced by the procedure and examining their criterion
value; involving the minimum sum of squared error and the highest frequency rate.

The popularity of the K —means algorithm is mainly attributed to its simplicity, scalability and
fast convergence. The rationale behind the application of the K —means algorithm is to overcome
the limitation of the Self Organizing Map, the lack of automatic cluster detection in U-Matrix repre-
sentation. The detail of this issue is discussed in Section 5.3. The idea of combining Self Organizing
Map and A —Means algorithm was already demonstrated in data clustering and visualisation (Ong
and Abidi, 1999).

Similar to other algorithms, A —means clustering also has weaknesses., K —means is considered
to be unstable; running the procedure several times will give several different cluster solutions (van
der Heijden et al., 2004). Depending on its initial condition, the algorithm may converge or be
trapped in the local optimum (minima). In addition, when the number of pre-specified classes is
high, it often happens that some clusters are ignored during the classification as no sufficient sup-
port is given. In that case, the number of effective clusters will turn out to be much less than k.
With the issues of classifieation in mind, the proposed approach is directed to forus only on an inter-
action between the intrinsic structures (alerts’ attributes) in the instances and the representation
of the data in the Kohonen map.

5.3 A Proposed Alarm Reduction and Correlation System

The system comprises two main components; the first module is responsible for aggregating alerts
raised by the same attack instances into clusters whilst the second component classifies the formed
clusters into meta-clusters of true and false alarms. Meta-cluster is a cluster that is made of other

59



smaller clusters. The main objectives of the proposed correlation system are to filter the false
alarms, enable the security operators to scrutinise or learn the trends of false alarms through
statistical figures or charts provided; thus assisting them in tuning the IDS signatures for future
detection.

5.3.1 A Two-Tier Architecture

The main benefit of using the unsupervised algorithms is the automated clustering of IDS alerts

based on their feature similarity. To perform a correlation, features (attributes) are extracted from

the alerts and fed into the correlation engine. Building accurate and efficient classifiers largely

depends on the accuracy of the attributes, which are used as the input data for the classification.
Figure 5.1 depicts the proposed classification model.

o STAGE 1
glerts e Feature 2 tion
—_ extraction agregal

s ——————
Aggregation rasut

s STAGE 2 l

Network IS Sersor ;

Chrsler Alamm .
;e Aemigio
Feature seiecton J - i
e e — ——
v v
05 Sersor Fake postves & rue postves
Y Query Engine
Raw alerts & comelation reaults

Figure 5.1: Framework of alarm correlation system

In order to achieve both objectives (as explained in Section 5.2), the whole correlation procedure
consists of four phases: feature extraction, aggregation, cluster classification + feature selection and
alarm classification. The fealure extraction and aggregation phases have been commonly imple-
mented in alert classification and correlation model (Jan et al., 2009; Al-Mamory and Zhang, 2009;
Julisch, 2001; Julisch and Dacier, 2002: Sadoddin and Ghorbani, 2009: Smith et al., 2008).

As described in Figure 5.1, raw alerts from IDS sensors are collected and stored in a database.
In the feature extraction phase, the alerts are retrieved from the database and several attributes,
which are considered effective to correlate alerts coming from a single activity, are extracted from
each alert. The alert attributes are the characteristics of alerts that are commonly used to identify
an intrusion, for example the IP addresses or the protocols. The extracted data are then normalised
since the value of the data are varied depending on the type of attributes used. A significant vari-
ance between attributes value will produce an uneven or biased result.

Given a set of n-dimensional input vectors, where n is the number attributes for each alert, from
the first phase, the system is trained unsupervised using SOM algorithm in the second phase to map
the inputs so that similar vectors are reflected in their arrangement. The map created by SOM con-
sists of a number of nodes, where each node contains a vector of weights of the same dimension as

the input vectors. The distance between two input vectors is presented on the map, not by their




5.3. A Proposed Alarm Reduction and Correlation System

absolute dissimilarity (which can be calculated), but the relative differences of the data properties.
The created map would be especially useful as a visual feedback to the user (network administra-
tor), which is one of the main reasons why this approach is used. Whilst many other techniques
offer a better or more accurate result for clustering and multidimensional scaling (Flexer, 1997),
they were deemed not as suitable for online, real-time data processing as SOM (Kohonen, 1990) (a
future enhancement for the system).

The SOM training process, through which the relationships are built, is fairly simple. During
the training, SOM is expected to randomise the map's prototype (node) vector elements within the
range of the input value. The iteration is carried out to obtain a node which is most similar to the
input vector. Once it is found, the node and its neighbours on the map are incrementally adjusted
to more closely resemble the data.

As soon as the final Kohonen map is produced, the trained SOM can be automatically visualised
using the U-Matrix method. Having said that, SOM clustering alone is not good enough to describe
the boundaries between the data items since there are no clear walls to separate them from the
other items. Classifying the data without any prior knowledge, is therefore inconsistent and diffi-
cult. The result of this U-Matrix is merely used for visualisation purposes and the interpretation
of the U-Matrix values is considered subjective. To avoid this issue, therefore, the system applies
a traditional clustering method, K —means clustering. Based on the map produced by the trained
SOM, K —means clustering is implemented to further define the boundaries between the data and
concurrently classify the input vectors into a number of pre-defined clusters. At the end of the sec-
ond phase, the system is expected to form clusters by correlating all alerts generated by a single
activity, meaning one cluster for each event/activity.

In the third phase, cluster classification + feature selection, the clusters formed in the previous
phase are further evaluated and the attributes of each cluster are extracted. Seven alert attributes
(features) were chosen from each cluster to represent the value of each input vector in the final
clustering. Whilst five attributes can be automatically extracted from the clusters, the other two
attributes, namely the number of occurrences of an event triggering a particular alarm signature
and the average time interval between the events in a pre-defined time frame will need to be com-
puted individually. These features are considered to be the most crucial attributes influencing the
magnitude of the alert signatures.

A high generation of alerts from a single signature provides a good indication of noisy false
alerts, such as ones triggered by the ICMP traffic. However, it can also indicate the occurrence of a
denial of service attack if the alerts are raised within a short time interval. To answer this problem,
the recurrence rate of an event triggering a particular signature and the average time interval
between the events are selected to determine the authenticity of the alerts. The combination of
both features will ultimately decide the validity of the alerts, whether they are true or false alarms.

To achieve an optimal result, the number of events and time interval features are emphasised
and it is necessary to examine how the attributes’ weights from the two features can greatly affect
the outcome of the classification. In which case, fine-tuning is performed before the classification
to determine the most appropriate attribute weights and to ensure that such attributes contribute
more to the grouping processes.

Using the similar clustering concepts applied in the aggregation phase, the SOM and K —means
algorithm are re-applied in the final phase to classify the input data produced in the third phase. In

61




Chapter 5. A Novel Approach to Alarm Correlation

this scenario, a set of seven-dimensional input vectors are fed into the clustering engine. And the
final outcome of this classification is two meta-clusters, namely true positives and false positives.

The final clustering reveals that a cluster containing a signature with higher event frequency
rate and a shorter time interval between events are prone to represent a false alarm class and
vice versa for true alarms. The diagram of the correlation process and the relationships among
the components appear in Figure 5.2. In addition to this, the full algorithms of the correlation are
presented in Section 5.4.

I

Input vectors = best ot vectors + bes!
= | e
| spcmaten s g |
o A rmp & £h platted
el e e
N o T o B T T
P ) : - N
CLUSTERS ) 2 £ | META-CLUSTERS
2 ="k ¥ f e ‘/
_4 .

Figure 5.2: Architecture of alarm correlation system

5.3.2 Stage 1 - Alarm Aggregation

Following subsections present alarm attributes and fundamental concepts of the alarm aggregation
phase:

5.3.2.1 Alarm attributes

In order to correlate related alarms, it is necessary to remove the inapt attributes and select only
the most appropriate ones. After evaluating a number of potential features, three significant at-
tributes have been chosen to represent the relationships between alerts. Those are the timestamp,
the source and destination [P addresses. IP address is deemed to be the most critical feature deter-
mining the subject of the occurrence. Conversely, the timestamp determines the time of the event
and whether a particular alert within a specific time period should be aggregated. By using the
combination of these features, alerts triggered by particular IP addresses were correlated within a

particular period of time.




5.3. A Proposed Alarm Reduction and Correlation System

In order to correctly spot the events triggered by particular hosts, the combination of both source
and destination IP addresses was used. So, instead of using the original IP addresses, the system
is designed to compute the addition and the subtraction between the source and destination IP ad-
dresses. Before the computation, the IP addresses were converted into their decimal value from the
common dotted decimal notation, for example, 123.7.1.10 becomes 2064056586. The idea of trans-
lating dotted decimal IP address to its decimal equivalent is commonly used by MySQL database.

The main objective of this pre-processing step is to obtain a distinctive pair of IP addresses
from an alert without the need of identifying the source and destination addresses. Such approach
enables the system to connect all alerts which involve the two IP addresses within a particular
time frame. For example, alerts generated by ICMP Ping and ICMP Echo Reply signatures can
be correlated since they commonly associate to a same pair of IP addresses. In order to obtain a
same pair of addition and subtraction values of two IP addresses in any order, only the absolute
value of the subtraction is taken. For example, if the subtraction between 2886758706 (source)
and 2886759119 (dest) is -413, then the absolute value 413 is selected. So, although the source
and destination TP addresses are reversed, the subtraction will still yield the same value. As this
technique uses the characteristics of both difference and addition of IP addresses, which are taken
in time context, the likelihood of having collisions is low (different pair of [P addresses are mapped
into the same cluster) (Chyssler et al., 2004). A unique combination of the value, hence, indicates a
unique event triggered by the corresponding IP addresses.

Apart from the [P addresses, the third attribute, timestamp, also requires a slight conversion.
As the timestamp is represented as date string format rather than a number, an alteration is
necessary. The timestamp is normally presented as date vector, consisting of 6 elements speci-
fying year, month, day, hour, minute and second. So, in order to perform the conversion whilst
keeping the value of the attribute, "datenum” function from MATLAB was utilised to convert the
string or date vector into a serial date number. For example, "2002-08-15 18:16:00" is converted to
731443.7611111112. In addition, in order to prevent the issue of over-fitting caused by the over-
specified timestamp, this is very important to modify the last element of the attribute (seconds).
And to make it even, this element is set to "00".

5.3.2.2 Concepts of alarm aggregation

The main idea of this stage is to aggregate alerts that belong to the same attack instance (activ-
ity) within a particular time window. Prior to the mapping process, a data conversion is carried
out, as presented in previous subsection. Since three alarm attributes are selected, a set of three-
dimensional inpul vectors is fed into the classification function.

Using nodes with three-dimensional vectors to build the SOM map directly is likely to be biased
to a certain dimension, as different attributes values tend to be in different units. If some vector
components have variance which is considerably higher than other components, they will certainly
dominate the map formation. Therefore, normalisation is performed to control the variance of the
vector components. The experiments utilise variance normalisation method, which is known as
var (CIS, 2005). This is a linear transformation which scales the values such that their variance is
equal to 1.

In the K —means algorithm, each attribute is assumed to have the same weight; which then

63




Chapéer 5..A Novel Approuch io Alarm Correlation

makes it impossible to know which feature contributes more to the grouping process. Having said
that, the value of the attributes’ weights can be completely adjusted if the fine-tuning is desired. In
this stage, the key attributes of the classification are the IP addresses. To achieve the best outcome,
it is necessary to ensure two IP address features, namely addition and subtraction, contribute more
to the clustering process than the timestamp feature. In order to do so, a weight adjustment is a
necessity.

In order to achieve an ideal weight, a number of classifications were run using three-dimensional
input vectors and different weights of IP address were used for each classification. This experiment
was conducted to search for the best classification outcome by setting the weights of the IP address
attributes to be higher than the timestamp feature. The default weight value of an attribute is 1. If
the weight of a particular attribute is set to 2; then the final attribute value itself can be computed
by multiplying the weight value to the original attribute value.

Although the main objective of this weight adjustment method is to prioritise the attributes
on the classification processes, the alert features should not be over-weighted, which could lead
to a biased clustering result. From the observation, it was found that the data started producing
inequitable classification outcome once the weights of the source and destination IP address were
set to more than 3 times higher than the weight of timestamp attribute. To avoid this problem, the
weight values of the IP addresses (u') should only be set to 1 to 3 times higher than the timestamp’s
(1 <uw<=3).

The classification was run several times with the weights of IP addresses range between 1 and 3.
The starting weight value is 1.1 and it gradually increases by 0.1 in each iteration (classification).
The ideal weight is determined by the best classification outcome. In this system, the finest weight
values for the [P address attributes are set to be 1.8.

The number of neurons or the size of the map itself greatly influences the performance of the
SOM system. In the classical SOM, the number of neurons should usually be selected as big as
possible, with the neighbourhood function maintaining the efficiency and generalisation of the
mapping. The increase of the map size, however, could cause the training phase to become com-
putationally and impractically heavy for most applicants. With the aim of gaining the best map
result, the system needs to select the number of neurons based on the smallest quantisation and
topographic errors, in which case the error values of less than 0.1 are selected. In order to do so, the
system runs a loop programme creating maps with different number of units and the programme
will be terminated once the map has the quantisation and topographic errors less than 0.1. The
quantisation and topographic errors are computed after training to measure the quality of the gen-
erated map. However, it is worth noticing that a low quantisation error does not necessarily mean
a good result; it might lead to the issue of overfitting. This may happen when the numbers of units
are larger than the number of training data (CIS, 2005). Having said that, overfitting is not a real
problem since K —means is applied as a second classifier. In fact, the implementation of multi-stage
classifiers can actually avoid the issue of overfitting (Weijters et al., 1997).

One of the most significant weaknesses of K —means clustering is the need to determine the
number of clusters prior to classification. The default setting for K —means initialisation value
kmar (maximum number of clusters), set by SOM Toolboex, is the square root of the length of data.
As in the first stage, the real number of the clusters is not known, and it is believed that the data
can be classified into more clusters than specified by the default setting above. To affirm this idea,




5.3. A Proposed _A_Ia rm Reduction an_d Eoz?ia_t_ion System

four chunks of sample data were taken and manually analysed to estimate the expected number of
clusters and three of them had clusters reached up to two fifth of the number of input data (alerts).
Hence, in order to avoid possible misclassification, the system determines to increase the kmar
value (the maximum number of clusters) for K —means to half of the length of data (alerts). For
example, if there are 3000 alerts fed into the system, a maximum of 1500 clusters will be formed.
In this stage, a number of classifications are run using different & (number of clusters), starting
from 2 to kmar value. The best number of clusters (k value) is selected based on the lowest SSE
value of the corresponding classification.

Again, the problem of overfitting is very common in the subject of data mining and neural net-
work. Such issue occurs when the number of nodes (clusters) is as large as or larger than the
number of training cases (CIS, 2005). Since the number of training data used in the experiment is
two times more than the clusters (k = data), the network is unlikely to suffer from overfitting.

Appendix Cand D provides the pseudocode and full codings for stage one and two correlations.

5.3.3 Stage 2 - False Alarm Classification

Having correlated the related alerts into a number of clusters, the second stage of classification is
carried out to [abel the alerts into true and false alarms. The main objective of this false alarm
classification stage is to obtain a better alarm management by reducing the number of false alarms
generated before being presented to the administrator.

5.3.3.1 Alarm attributes

Similar to the first mapping, the alert attributes are selected and pre-processed prior to the clas-
sification. However, in this case, the outcome of the first classification will be fed into the second
alarm classifier; meaning that the clusters generated in stage 1 correlation will act as inputs for
the stage 2 classification. In this stage, seven alert features are selected from each cluster. Those
are the number of alerts, number of signatures, port number, protocol, priority, time interval and
the number of events. The attributes are carefully selected to represent the dimensions of the input
data and to describe the inherent relationship between alerts. Table 5.1 presents a brief deseription
of the selected alarms’ attributes and their data collection methods.

5.3.3.2 Concept of true and false alarm classification

In this false alarm classification module, the final result of the classification largely hinges on the
dimensions or the attributes applied in the SOM mappings. Typically K —means algorithm treats
all features fairly and distributes the weights on all attributes equally. The features’ weights can be
derived based on the importance of the feature to the clustering quality. The higher the attribute’s
weight, the more the contribution it has on the clustering process. Amongst the seven features,
two attributes, namely the number of events and the time intervals between events, are deemed
to be the most influential ones. So, to ensure such features contribute more to the clustering pro-
cesses than the remaining five, the fine-tuning was carried out by properly adjusting the attributes’
weights. Using the similar method as carried out in the previous alarm aggregation stage, the ideal



Cfm;_)tef 5. A Novel x@g}:imaih to Alarm C_qrrela_?.ion - -

Table 5.1: The interpretation and data collection methods of the alarm attributes for second stage
classification

ALERT FEATURES | DESCRIPTION | COLLECTION METHODS |
| No of alerts Total number of alerts grouped | N/A
in one cluster J
| No of signatures | Total number of signature type | N/A
in a cluster
Protocol | Type of traffic from event trig- | There are only three values that can |
gering the alerts be assigned to this feature. Alert with

signed to a value of 1 and 3 for proto-

col number 255. If there are two types

of protocol number found in a cluster,
the value is set to 2.

Port number Only the service port numberis | If the alert contains a well-known

applied in the classification. port number (< 1024), the value will

be set to 1; if not (> 1024) value of 3

| will be given. If the cluster has two |

| tyvpes of port numbers, then the value |

will be set to 2.

‘ | the protocol number below 255 is as-
[

Alert priority - | Criticality of the alerts. There | Based on the type of signature, alert
are 3 types of alert priority, | with the 1st priority is assigned to a
| namely 1st, 2nd, and 3rd. value of 300, 2nd to 200 and 3rd to

100. If multiple signatures are found
in a cluster, the priority value for each
- | B signature could be added together.

Time interval Time interval between events'' Should an alert signature occur in 3
| from a particular signature | different events in a particular time
I frame, the mean of the time inter-
| val between each event is calculated.

This attribute is computed in seconds.

However, if there are multiple signa-

ture types in one cluster, the highest

time interval will be selected.

No of events The number of events’in which | If there are multiple signature types

a particular alert signature is | in a cluster, the lowest no of events is

triggered within a time frame, | selected.

‘ for example, every two hours, |

one hour or half an hour i

# One event may contain one or multiple types of alert signature, which are triggered by a particular activity or attack.

weights were then computed to be 2.5 for the 6th attribute, namely time interval and 2.8 for 7th
attribute, namely number of events.

To overcome the weakness of A’ —means clustering, the system generates 500 randomised trials
or iterative classifications, involving randomising both the initial & clusters and the data order.
The number of clusters (k value) of the stage 2 correlation is set to 2 as the classification aims to
generate two meta-clusters, namely the true and the false alarms. In each trial, the input data order
is randomised and the first two input data are selected as the initial centroids for the A —Means

algorithm. The objective of randomising the data order is to simply have distinct classification




5.3. A Proposed-Alarm Réduction and Cornelation System

results with different initial clusters for 560 interations.

In K —means, the most essential approach to determining the best classification result is by
looking into its SSE value (MacQueen, 1967). Hence, this feature is taken as one of the selection
criteria to select the finest cluster solution. The sum of squared error refers to the least distance
between the data and the corresponding cluster centroid. A map is considered equal to other maps
if they have the same SSE value.

For K —means algorithm, the lower the sum of squared error, the more accurate the classification
should be. This theory, however, in some cases, might not apply to the system. In the map with the
lowest SSE value, the algorithm tends to assign the centroids to the data points with the farthest
distance; generating two clusters with highly unbalanced cluster sizes. This definitely indicates
two poor outcomes; either a tighter security level with a lower reduction rate or a loose security
level with the risk of false negatives. Such an issue clearly demonstrates the trade-off between
maintaining the security level and the need for reducing the false alarms.

In view of this trade-off issue, thresholding is required to balance the security issue and the
alarm reduction. Since the randomised experiments were used to select the best cluster solution,
evaluating the frequency rate of each solution (map) is necessary. So, instead of merely focusing
on the lowest SSE value, the best map is also selected based on its frequency rate (frequency
distribution). The concepts of the SSE values and frequency rate are explained as follows:

1. Each classification yields a SSE (sum of squared error) value, which can be computed using
Euclidean distance of data inputs to the mean of their corresponding clusters. The details
have been described in subsection 5.2.2,

2. The frequency rate refers to the count of the oceurrences of a SSE value within the 500 clas-
sifications.

To use both elements to assess the quality of the generated maps, an experiment, consisting of
five classifications, was carried out using five set of sample data to examine the frequency rate of the
SSE value. From the observation, a cluster solution (map) that had a SSE value with a frequency
rate above 0.6 (300 out of 500) had the best classification result compared to other solutions. From
the study, it is evident that a solution with a high occurrence rate (reassuringly occurs in at least the
third fifth of the random trials) generates a better grouping compared to those with low frequency
rates. The higher the frequency rate of a SSE value from a map, the more stable the map is. The
best classification solution is, therefore, selected based on the highest frequency rate and set the
thresholding value to 0.6. Any map with a frequency rate exceeding the thresholding value (0.6),
will be automatically selected as Lhe finest choice without any further evaluation.

Conversely, if the highest frequency rate falls below the value (it does not dominate other so-
lutions), further evaluation will be required in this case. To find which of the maps are worth
evaluated, it is necessary to set another threshold to select the dominant solutions. The second
thresholding (s), which is derived from a standard deviation of the SSE or map’s probability distri-
bution, will determine which of the cluster solutions need further investigation. The standard de-
viation represents the average variation of the frequency rates from the mean distribution. Again,
by observing the results of five sample classifications, it is concluded that the maps with frequen-
cies range from ¢ to t — s are likely to produce better clustering results compared to those with low

67




frequency rates. So, for this reason, only those solutions with frequency rates that fall between 1
(highest frequency) and (f — s) are evaluated.
Hence, to conclude this, the procedure of the map selection is described as follows:

Step 1 - a freguency rate above
Step 2 uency rate exceeds other
est frequency rate). If yes, go to
Step 3 fregquency rate are between
to Step 4.2; else calculate the
s whose fregquency rates are between
atien 5.2). Go to Step 4.3
Step 4.1 t freguency rate as the
Step 4,2 SSE value as the best
Step 4.3 with the SS5E value

(5.2)

where 7 is the number of map solutions whose frequency rates range fromf to ¢ — s.

5.4 Algorithms

The complete algorithms of the whole correlation process can be defined as follows:

5.4.1 Stage 1 Correlation

len = the length of input data (alerts)
munit = len + 100 — munit is the initial size of map (number of units in a map)

1. Extracting alert attributes - source, destination TP addresses and timestamp are extracted
from each input alert

(a) The output of this process is a set of 3-dimensional input vectors
2. Normalising the input vectors using var method from MATLAB
3. Increasing the weights of source and destination TP addresses to 1.8

4. Determining the best size of map units based on the smallest topographic and quantisation
errors




5.4: Al_ggri_{hn_ls

(a) Creating a SOM map with the number of units is equal to munit

(b) Calculating topographic (terr) and quantisation errors {(gerr)

(c) While terr > 0.1 || gerr > 0.1
¢ Increase munit by 10
e Creating a SOM map with the number of units is equal to munit
e Calculating topographic and quantisation errors

(d) End
5. Training the created SOM map with the input vectors using SOM algorithms
(a) The output of this process is a U-Matrix map with the plotted input vectors.

6. Clustering the vectors plotted in the SOM map into several pre-defined clusters using K —means
algorithm
(a) kmaxr is set to 1/2 of len
(b) Set SSE to the largest number of the floating point number
(c) Set itr to kmar

(d) Run the classifications several times using different k values ranging between 2 and
kmax
While itr > 1
¢ Randomising input data order
* Assigning the first :tr input data as the centroids

Clustering the data using K —Means algorithm

Calculating SSE value
If the SSE < err,

Set err to the SSE

Set k to itr

e Decrease the iftr by 1

7. The final output of this stage is the input vectors being grouped into k clusters

5.4.2 Stage 2 Correlation

len = k (number of clusters formed in the previous stage)
munit = len + 100 — munit is the initial size of map (number of units in a map)

1. The clusters formed in stage 1 correlation will become the input of stage 2 correlation.

2. Extracting alert attributes- no of alerts, no of signatures, protocol, port number, priority, no of
events and time interval are extracted from each cluster

(a) The output of this process is a set of 7-dimensional input vectors

3. Normalising the input vectors using var method from MATLAB

69



Chapter 5. A Novel Approach to Alarm Correlation

4. Tuning the weights of no of event to 2.8 and time interval to 2.5

5. Determining the best size of map units based on the smallest topographic (terr) and quanti-
sation errors (gerr)
(a) Creating a SOM map with the number of units is equal to munit
(b) Calculating topographic (ferr) and quantisation errors (gerr)
(c) While terr > 0.1 || gerr > 0.1
e Increase munit by 10

e Creating a SOM map with the number of units is equal to munat

e Calculating topographic and quantisation errors
(d) End

6. Training the created SOM map with the input vectors using SOM algorithms
(a) The output of this process is a U-Matrix map with the plotted input vectors.

7. Clustering the vectors plotted in the SOM map into several pre-defined clusters using A —means
algorithm

(a) Set k to 2
(b) Set 1tr to 500
(c) Run the classifications 500 times using different k& values ranging between 2 and kmar
While itr > 0
« Randomising input data order
e Assigning the first & input data as the centroids
e Clustering the data using K —Means algorithm
e Calculating and storing the SSE
e Decrease the itr by 1
End

8. Selecting the best map from the 500 maps generated based on the SSE value and the fre-
quency rate

9. The final output of this stage is the input vectors (clusters) being grouped into 2 meta-clusters

5.5 Experimental Results

In order to evaluate the performance of this proposed system, two experiments were carried out.
For the experiments, two types of datasets were used; the public (DARPA 1999 data set) and the
private (University of Plymouth data set). Table 5.2 presents the properties of data set selected
for the experiments. Following subsections present the experimental results of the false alarm

classifier.




5.5. Experimental Results

Table 5.2: Properties of DARPA and Plymouth Private Data Sets

[ DARPA PLYMOUTH
| PART1 | PART2 | PART1 | PART2
| Noof Alerts | 1224 1838 330 | 2226
| MapUnits | 1333 1924 437 | 2385
= [Q=0001 | Q=0009 || @=0050 | Q=0003 |
STAGE1 |  Ermors | 7 _ 019 | T=0041 | T=0.048 | T=0011 |
k-value 612 919 165 1113
| Map Units 190 _ 299 | 290 | 260
Q=0048 | Q=0.097 | @=0.097 | Q =0.044
HIAGES | Houm T=0012 | T=0054 || T=0043 | T =0.077 |
| k-value 2 2 2 ' 2
FA=1131 | FA=1297 | FA=260 | FA=2139
RESULEY TA=193 TA=>541 TA=T70 | TA=87

Q) is Quantisation Error, T is Topographic Error. F A is False Alarm and T A is True Alarm.

5.5.1 DARPA 1999 Data Set

Due to the criticisms that were raised over the DARPA data set, questioning the use of synthetic
data to picture a real world network (as explained in Chapter 4), the experiments used not only a
DARPA data set, but also a private data set, which will be discussed later in subsection 5.5.2. As the
main objective is to facilitate alarm management for the administrator, the proposed technique is
designed to process the generated IDS alerts in maximal two-hour alerts. With the aim of providing
a quick overview of the system performance, the experiments randomly selected and evaluated only
a chunk of DARPA 1999 data set as the input of the IDS system. In this case, only 4 hours data
from week 4 DARPA testing data set is fed into the system.

To obtain a set of network alarm data for the classification system, Snort was run (Caswell and
Roesch, 1998) under Linux Fedora 7 against the DARPA data set. In order to facilitate the analysis
of IDS alerts, a front-end tool Basic Analysis and Security Engine (BASE, 2009) was then utilised
as the intrusion analyst console. Regarding the neural networks, the SOM-based and K —means
system is implemented on the SOM Toolbox 2.0 (CIS, 2005) which is run on MATLAB 7.8.0.

For DARPA data set, 4 hours of data (total 3,062 alerts) was extracted from the first day of the
4th week testing data and was evaluated as two separate inputs. Figure 5.3 presents the result of
the stage 1 DARPA classification. The maps as shown in Figure 5.3, 5.4, 5.5and 5.6 are examples of
U-Matrix maps generated by SOM algorithms. With the pre-defined map units and input vectors
presented, the maps are then created and trained by the mapping algorithms.

A total of 790 clusters were generated in the first part of classification (first 2 hours); shown
on the left map. Interestingly, only 203 of them were active whilst the rest were considered dead
centres. Active cluster is a cluster that contains data whilst the dead centre is a centroid that has
no members or associated data. Similarly, from 605 clusters generated in the second part (shown
on the right map), only 86 classes were active. This seems obvious that A'—means clustering tends
to generate a significant number of dead centres. Enhancing the K —means performance, however,
is out of the scope of the study and is not discussed in this thesis.

In general, the classification demonstrated a reasonable outcome. Approximately 93% of data
from the first part of the classification was mapped and classified into the correct clusters, that is

71



Chapter 5. A Novel Approach to Alarm Correlation

T
{

}
!

Fopare - "ap name: 50 Stage | Fart DARPA O » x Piges
L] . . adiee -

LT
T

%

R At

4
§

41

4 Wy B
- LR - 1’_ L]
-
-
-
.
- LR} -::::: -
Figure 5.3: Stage 1 classification using DARPA 1999 data set
Table 5.3: SSE and Frequency Rate from DARPA Data Set Part 1
MAP [ 1T | 2 3 [ 4 5 [ 6 [ 7 [ 8 9 [10 [ 11

SSE [6.3276 | 6.3350 | 6.5053 | 6.5056 6.8716 { 6.8721 | 6.8731| 6.8767 | 6.9001 | 7.6474 | 7.6807 |
Frequency | 0.3620[0.3320 | 0.0620 | 0.0640 | 0.0040 | 0.0040 [ 0.0040 [ 0.0440 [ 0.0020 | 0.0560 [ 0.0660 |

Table 5.4: SSE and Frequency Rate from DARPA Data Set Part 2

MAP i 1 2 [ 3
SSE | 24721 29135 | 40591 |
Frequency 0.7860 01540 | 0.0600 |

accuracy = 0.93. Conversely, (0.9 was revealed from the second classification. In terms of clustering
accuracy (the number of clusters with the correct data), the first classification showed 0.86 accuracy,
whilst second classification revealed 0.81.

In the second stage, there were eleven maps (cluster solutions) that were produced in the first
part of DARPA classification, as shown in Table 5.3. Only two clusters, the true and the false
alarm classes, were desired in this stage. The result shows on the left map from Figure 5.4 is
corresponding to criterion value in Table 5.3.

Based on the map selection procedure, it is obvious that the solution with the highest frequency
rate in Table 5.3 does not conform to the first and second criterion rules (MAP 2 has the frequency
rate higher than t — s; t = M AP1'sfrequencyrate; t = 0.362; s = 0.129), Since only two maps (MAP
1 and MAP 2) have frequency rates higher than ¢ — s(0.362 — (0.129 = 0.233), the one with the lowest
SSE value is selected. In this scenario, MAP 1 is selected as the best map choice (presented on the
left side of Figure 5.4). On the other hand, the second part of DARPA classification, which is shown
on Table 5.4, presents 3 possible cluster solutions.

The solution with the highest frequency (MAP 1) is automatically chosen as the best map since




5.5. Experimental Results

girs 2 Map e W Magel Fat ] 0 C ¢ = i PSS S5 S P Caee. - - 7]
O . as - [
i iystery 1 chashary

-
"
| - “
L ] - L .
w w ¥ -
= o
» x -
- & -~
- -
-1} -
: I 3 %
r w W -
— iy 8] =
% sz 32
w s
e - e ™ n
e’ B o » N
W oy W had .
- oy 2w 3
e W - -
w aw N w b
L - L = LR ] - . -

Figure 5.4: Stage 2 alarm classifier using DARPA data set

Table 5.5: Result comparisons

‘ | : False
| No | Proposed by | Method Data Set R:;::’;.‘on
| Rate
[1. ] Julisch, 2001 Root cause clustering Real network | 82% |
i Real network, |
2. Al-Mamory and Zhang, 2009 Root cause clustering DARPA 1998 74%
and 1999
3. Perdisci et al., 2006 Clustering: meta alarms | DARPA 1999 64.6%
Incremental mining of |
4. | Sadoddin and Ghorbani, 2009 frequent structured DARPA 2000 96Y%
| patterns
| 5. Khanchi and Adibnia, 2009 | Alert feature frequencies | DARPA 2000 |  7i%
i 6. | Spathoulas and Katsikas, 2010 |  Neighbouring alerjt-s DARPA 1999 5%
and alert frequencies

the frequency rate (0.786) has exceeded the first thresholding value. The mapping result is pre-
sented on the right map in Figure 5.4.

In this context, the proposed system is considered effective in reducing the number of false
alarms; with 95% being correctly labelled in the first classification, whilst the second categorisation
reduced approximately 99% of the total false alarms. Those alarms located in the upper portion
were labelled as true alarms, whilst the lower portion was for the false alarms. The system also
appears effective in detecting false alarms generated by noisy traffic such as the ICMP traffic (ICMP
Ping and echo reply) and the web-bug alerts, which formed the highest number of false alarms
triggered in the experiment (as discussed in Chapter 4).

Table 5.5 shows the performance results of other existing false alarm classification or corre-



Chapter 5. A Novel Approach to Alarm Correlation

lation methods. From this preliminary experiment, it is obvious that the proposed system has
outperformed other existing methods. However, due to the small data set used in this experiment,
the comparison is considered biased at this stage. Therefore, a further evaluation should only be
conducted to assess the system performance at the final stage, that is using a complete data set.
This will be presented in Chapter 7, Section 7.8.

5.5.2 University of Plymouth Private Data set

The UoP private data used in this experiment is the same as the one used for fine-tuning, as dis-
cussed in Chapter 4. Similar to the DARPA data set, 4 hours data from University’s network data
(2556 alerts) was analysed using two separate inputs. Figure 5.5 presents the result of the classifi-

cations.

e S e S0 Mt Pt Prems s ] fepere  ™ap newme: S0M aoel Partl Privatr Dats

. ? - s : 3
] . i

Figure 5.5: Stage 1 classification using University of Plymouth data set

The classification from this network data shows a slightly better result compared to those from
DARPA data set. Approximately 0.92 and 0.94 are computed for the first and second classification,
whilst the cluster accuracy accounts for 0.89 and 0.93 respectively.

Unlike the stage 2 classifications on DARPA data set, the classifications on private data set
reveal quite a straightforward result. The computation of the average SSE value is not required
in this scenario as the highest frequency rates from both classifications shown on Tables 5.6 and
5.7 conform to the first criterion. In view of this, the solutions with the highest frequency rate are
determined to be the best maps. In addition, the selected maps have the lowest SSE value among
all cluster solutions. The final results of both classifications are presented in Figure 5.6.

As for the private data, the classification reveals that about 78.8% of false alarms have been
identified in the first map, whereas 96% of them have been detected in the second mappings. It is
notable that the system has shown promising result in filtering all hectic and unnecessary alerts
triggered by the IDS. For example, the alerts from WEB-IIS view source via translate header and




5.5. Experimental Results

3

- -
-
- r
-
¥ -
- r s = -
- - - L -
- - i = 3
: o N b
" . 11 e
- - % = yere
"] o - — = wa
) . - e
L " [Tt
':m‘ 1y
5 .
w . v «
» _: Ty o cu- .’_"" roa -
- * - . - - o ::
w a - » 1t oy W #: -
- - - e - -~
w x4 e -
w . -
- - - -- - - -

Figure 5.6: Stage 2 alarm classifier using private data

Table 5.6: SSE and Frequency Rate from PLYMOUTH Data Set Part 1

[ MAP | 1 | 2 3
SSE [ 27161 | 2.8643 2.8645 |
Frequency | 06360 | 01820 | 01820 |

Table 5.7: SSE and Frequency Rate from PLYMOUTH Data Set Part 2

| MAP 1 | 2 _ 3 4
SSE 3.0918 5.3372 56675 | 5.6784
Frequency 0.8180 0.1220 | 0.0320 0.0280

WEB-MISC robots.txt access signatures, which caused 82% of false alarms from the entire private
data (as discussed in Chapter 4).

The suggested alarm filtering system ie believed to significantly outperform other existing meth-
ods. Unlike many proposed systems that need to be trained with a considerable volume (giga-
bytes) of attack-free data. this system applies unsupervised training to train the classifier; hence
no attack-free data is necessary. In terms of its configuration, this approach is considered efficient
enough as it is easy to set up and no knowledge of the attacks required to filter the alarms. More-
over, the system's filtering processes are independent from the intrusion detection process. As to
its performance, the system does not only provide a better alarm management, but also shows the
relationship between the generated alerts, thus enabling administrator to discover the potential
attack scenarios.

75



Chapter 5. A Novel Approach to Alarm Correlation

5.6 Conclusions

This chapter has discussed the proposed data mining techniques used in identifying and subse-
quently reducing the number of IDS false alarms. Unlike other existing alarm correlation methods.
which focused on either discovering attack patterns or identifying true and false alarms, the pro-
posed system aims to achieve both objectives. To do so, a two-stage classification system using the
combination of two data mining techniques, namely SOM and K —means clustering were proposed.
The first stage classification was developed to properly correlate alerts related to a particular activ-
ity. All alerts, regardless the signature type, triggered by a single event are mapped and grouped
into one cluster. In addition, the main objective of the second stage is to subsequently label all
clusters produced in the first classification into groups of true and false alarms.

To verify the idea, preliminary experiments were carried out with two different datasets; the
1999 DARPA 1DS evaluation data set and the private network data. The result shows that more
than 90% of false alarms from DARPA data set were filtered without ignoring the true alarms
whilst approximately 87% of false alarms from private data set can be correctly identified. Despite
the lower false alarm detection rate in private data set than the DARPA data set, this system has
demonstrated its effectiveness in filtering all noisy and unnecessary IDS alerts, which have usually
contributed to more than 50% of false alarms from the common IDSs.

To further investigate the characteristics of the proposed system, the following chapter presents

a novel architectural framework along with the components of the proposed system.




A Conceptual Architecture for an
Automatic Alarm Correlation
System

6.1 Introduction

Having developed a preliminary version of the alarm reduction system, it is of importance to design
an automated correlation system to facilitate a review of IDS false alarm trends and to tune IDS
signatures for future detection. The basis for developing a standalone IDS alarm correlation system
is the fact that current alert management tools do not have the ability to verify the validity of the
generated alarms, that is whether it is a true or false alarm.

Based on the findings from the alarm reduction system, this chapter contemplates the issue
of designing a generic alert correlation system that can facilitate IDS alarm validation as well as
tuning or management of IDS ruleset. This chapter presents the fundamental components and the
architectural framework of the proposed correlation system. Section 6.2 discusses the underlying
concept of the system, whilst its operational characteristics are presented in Section 6.3. The main
modules of the system are introduced in Section 6.4; followed by conclusions in Section 6.5.

6.2 SOM A —Means Alarm Reduction Tool (SMART)

An alert management tool is created based on the supervision of the collected logs or alerts and the
representation of the data in a more comprehensible manner, for example, charts and statistical
figures. The tool aims to offer various features, including an in-depth query or analysis on the alerts
and also the generation of a final security report for the security administrators. Conventional
management tool cannot verify the accuracy of alerts, the SOM K —Means Alarm Reduction Tool
(SMART) presents entirely new work in this context.

SMART is based on the concept of the Security Information and Event Manager (SIEM). The
rationale behind the application of STEM as the underlying model relates to its ability to perform
both a correlation (event investigation) and a report production. In addition, the complex analysis
and the outstanding alerts management or presentation of SIEM do not only assist in identifying
anomalous events but also help reducing the information overload. In a sense, this is considered
the main benefit of STEM and also the key objective of the proposed SMART system.

In terms of the processing ability, the SIEM may also benefit from having available to it informa-
tion from various systems at both network and application level, information of the event severity,
and also the knowledge of state of the protected network vulnerabilities. In a way, this can be re-
garded as a limitation of this research; in the sense that the SMART system merely focuses on the

71



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

alert correlation from a single IDS. However, proving the feasibility of the SMART system and its
concepts is the main focus of this study, and adapting these approaches to allow more input data
from more than one security tool highlights a scope in which this research can be extended in the
future.

SMART enables the security administrator to correlate and filter false alarms generated by
Snort IDS. The result of the correlation is then fed into a database, thus providing an efficient way
for the administrator to further query and analyse the correlated alarms. The elements of SMART
are illustrated in Figure 6.1 and discussed below.

..........................................................................

'
1
' 1 e la: T etle el "1 Wl
ADMINIETRATOR. | ! ¢ B
[} L} [
L} ‘ L]

OUTPLT
: MODULE

ATIRIBUTE
CONVEESION
| POLICY

........................................................................ -

. External Systems l !
=5 ormcmios AANAGEMENT '
i l Diilens E

Figure 6.1: SMART architecture

SMART comprises the following elements;

1. Correlation Engine: This is the main engine of the proposed system. The Correlation Engine
performs two stages of clustering processes; including aggregating as well as filtering the
false alarms. With the information obtained from the alert and time event database, the
correlations are carried out by applying the best map policy.

2. Input Module: The Input Module is a front-end interface {(GUI) of the system that enables




6.2. SOM K —Means Alarm Reduction Tool (SMART)

the user to provide input to the correlation as well as to instigate the clustering processes. In
addition, it also allows the user to monitor the progress of the correlation.

3. Output Module: Similar to the Input Module, the Output Module is a front-end interface that

allows the user to view the classification results. Apart from presenting the final outcome, it
generates statistical charts or graphs comparing both true and false alarms over a particular
period of time. Moreover, such module enables the user to further view the alerts details, for
example, alert payload, by redirecting the user to the Alert Management Tool.

. Map Selection Policy: In order to select the best map from the randomised trials, the rules
that describe the characteristics of the best map are then specified in the Map Selection Policy.

. Alert data: The Alert data, which contains complete information about the alert attributes,
such as source/destination IP addresses, signature name, timestamp, port number, protocol
and etc, is a database generated by the Detection Engine (IDS). The information stored in this
database will be extracted by the Correlation Engine to perform the alert classification.

. Time Event: Before performing the second stage correlation, the sixth and the seventh at-
tributes, namely time interval and number of events for each signature, are computed for
every two hours, one hour and half an hour and stored in the Time Event. Once the correla-
tion is carried out, the values of the sixth and the seventh alert attributes are retrieved from
this file.

. Correlation Results: The Correlation Results hold the information of all classification re-
sults; including those from stage 1 and stage 2 correlations. In particular, the final results
consist of the figures from the correlations, the cluster index the alerts belong to and the alert
status, namely true or false alarm.

. Attribute Conversion Policy: Atiribute Conversion Policy holds all information needed to
convert the alert attributes into appropriate values (format) used for the correlation. The
details about the policy applied to each attribute are described in Table 5.3.

9. Port No: Port No lists all official port numbers (in other words, those that have been registered

with IANA). The file is used to assist the system in determining which of the ports, namely
source and destination port, from the captured traffic is a service port number. Significantly,
only the service port is used as the attribute of the correlation.

In addition to the components of SMART, the external systems, which are adopted from the open

source market, consist of the following tools.

1. Detection Engine: The Detection Engine refers to the IDS used to monitor the network

traffic. In this case, the Snort IDS was used.

2. Alert Management Tool: The Alert Management Tool is a front-end tool for IDS, which

allows the administrators to organise as well as investigate the IDS alerts. In this study,
BASE was used as the alert management tool.

79



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

Table 6.1: Alert Attributes of Stage 2 Correlation

[ . | Selected
| No Attributes ‘ YES/NO
| 1. | Number of alerts v ’|
2. | Number of signatures v
3. | Alert priority v '
4. | Timestamp X
5. | Source IP address X
6. | Destination IP address X
| 7. | Protocol v
| 8. | Service port number v
ais ; Selected
Additional attributes YES/NO
4. | Time interval -
‘ 10. | Number of events v

6.3 Operational Characteristics of SMART

There are several distinct attributes of the system that apparently distinguish it from other tech-
nologies. These are

e an ability to perform an attribute-based alarm correlation approach
e its strength in aggregating and classifying alerts based on time windows
e an ability to classify alerts into true and false alarms

e lastly, an ability that allows the administrators to exhaustively evaluate and examine the IDS
alerts in a more comprehensible statistical view

The following sub-sections discuss these operational characteristics in more detail.

6.3.1 Offer an Attribute-based Alarm Correlation approach

The main goal of performing attribute-based correlation is to classify IDS alerts based on the most
relevant features that highlight their behaviours. Most importantly, it is worth knowing that such
an approach has been highly accepted or commonly used in the study of implicit correlation.

Since the IDS alerts have numerous attributes ranging from the IP addresses to the length of the
packet, selecting the best attributes that represent the characteristic of the alert is a challenging
task. Therefore, a feature selection was carried out to choose the most appropriate attributes to
symbolise an alert or even a group of alerts. As previously mentioned, seven attributes have been
selected in the second stage to represent a cluster of alerts. The seven attributes are made of
five main attributes and two additional attributes (as listed in Table 6.1) The rationale behind this
selection is to choose the most relevant and basic features that properly represent the alert clusters.
Following table summarise the selected attributes in the second stage correlation.

1t is worth noticing that the timestamp and the source/destination IP addresses are not selected

in this phase since these have been applied in the first correlation.




6.3. Operational Characteristics of SMART

The underlying idea behind the application of the alert attributes in the IDS alert correlation is
to measure the similarity between the generated alerts. The selected attributes need to be converted
into correct values before any correlation is carried out. The closer the attributes values between
two alerts, the more likely they are grouped into the same cluster.

6.3.2 Evaluate and Aggregate Alarms based on Time windows

Another important feature of the correlation system is the flexibility of the time windows applied
in the correlation process. To alleviate the workload of the correlation, the system is designed to
process or correlate the input data based on the predefined time frame. Generally, the number of
the alert data presented to the clustering system could be massive; thus rendering the correlation
unfeasible in the prevailing circumstances. In view of this constraint, it is necessary to limit the
amount of data fed into the system. So, instead of running one correlation for the entire data set, it
would be much more practical to run a correlation over a particular time period, for example every
one or two hours,

In order to alleviate the correlation processes whilst maintaining the value of it, the system
offers three interval options, namely every half an hour, every hour and every two hours. Such
choices are given to help the administrators determine the most suitable time frame. In theory,
the bigger time frame the better the correlation should be. This is because more information or
alerts are processed in the correlation. However, it is worth remembering that selecting a big time
frame (in other words, higher number of alerts being processed) is not necessarily the best choice; in
fact it might cause several operational constraints including high processing time and high system
memory consumption. By contrast, the selection of a small time window could reduce or even
obliterate the value of the correlation itself. For instance, alerts that belong to the same attack
instance could be regarded as alerts from two separate activities due to the extreme data splitting.
Such issue clearly indicates the trade-off between performance and accuracy of the correlation.

Due to the high memory usage in the unsupervised-based correlation process (will be described
in Chapter 8), a maximum of two hours data is run per correlation. The two hours correlation is
the highest time frame available. Although three options are available, the highest interval is the
most recommended one in order to achieve an optimal result.

As discussed in Chapter 5, the additional features, namely the time interval and number of
events, are implemented as the most influential and significant inputs. Thereby, the administra-
tors are given the flexibility to select the most suitable interval options available for their alert
correlations. The correlation file (database) is retrieved by the system according to the decision
made by the administrators. For example, if "every 2 hours” interval is selected for the correla-
tion, then the sixth and the seventh alert attributes from "every 2 hours” Time Event file will be
retrieved and applied in the correlation.

6.3.3 Classify Alerts into True and False alarms

One of the most significant features and also the main goal of the system is the ability to classify
alerts into groups of true and false alarms. Having computed two leading alert attributes, time
interval and number of events, and five other attributes, the second stage correlation is carried out
to group the stage 1 clusters based on their 7 attributes into classes of true and false alarms. All

81



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

alerts from clusters (from stage 1 correlation) that are grouped into false alarm class are flagged as
false alarms, otherwise they are true alarms.

6.3.4 Offer a Flexible and High Level of Alarm Comparison using IDS
signatures

Unlike other conventional alert management tools, the proposed system offers a statistical tool
that allows the administrator to further evaluate the trend of IDS alarms and to do a comparison
between the true and false alarms. This distinctive tool introduces an extended feature, which
offers numerous statistical charts, to assist the administrator with the alert analysis.

Apart from the chart creation tool. the system also enables the administrators to perform an
alarm comparison using IDS signatures. The generation of true and false alarms based on the IDS
signature rules is presented: this facilitates the administrator in identifying which of the signature
rules can be disabled and which of them need to be further tuned. The key objective of this feature is
solely to give an insight into the pattern of IDS signatures and also guidance for the administrators
to properly tune signature rules for a future detection. If the signature has raised only the false
alarms, then it is reasonable to remove that signature from the detection rules. Conversely, if it has
triggered both true and false alarms, then a fine-tuning is required.

As for the comparison charts. there are five types of statistical charts proposed by the SMART
system. The charts are described as follow:

¢ Time Vs False alarms
In this category, the charts present the number of generated false alarms in every hour, day
and month.

e Time Vs True alarms
Similar to the previous category, the number of true alarms is computed and charted in every
hour, day and month

e True alarms Vs False alarms
This group does a comparison between the number of true and false alarms in every hour. day
or month. In other words, this is the combination of the first and second category.

e Time Vs False signatures
The charts represent the number of false alarms triggered in every hour, day and month by
each signature rule.

e Time Vs True signatures
This category is similar to the previous one except that it presents the number of true alarms

instead of the false alarms.

In addition, the SMART system also features a tool that allows the administrators to specially
evaluate the signature rules that have triggered both true and false alarms. A chart is also created
to plot the alerts according to their source IP addresses and the hour of occurrence. On top of the

graphical view, the system will also provide two tables containing the cluster index, time interval




6.4. _SMART Modules

and the number of events from a particular signature ruie. Therefore, with the information pro-
vided, the administrators are now able to learn the signature patterns and perform a signature
revision if a fine tuning is needed.

6.4 SMART Modules

As previously discussed. there are four key components that have essentially formed the architec-
ture of the SMART system, namely the input module, the output module, the correlation engine
and the storage. Two of these modules are related to the front-end interfaces while the others are
the back-end system. In order to obtain a better understanding about the structure of the system,
the following sub-sections desecribe the elements involved in each of the four components.

6.4.1 User Input - User Interface

To effectively run the system, there are two user inputs required to initiate the correlation engine.
The first input will be the starting and the ending timestamp of the alerts processed whilst the
second input will be the time frame (interval) for each correlation. In the main application interface,
the administrators are prompted to specify which alerts to be processed by entering the alerts
timestamp and also prompted to select one from three interval options provided before a correlation
can be executed.

6.4.2 Correlation Engine

As the main clustering algorithms reside within the correlation engine, this module is considered to
be the most significant as well as the core component of the SMART system. In order to provide an
overview of the key elements relevant to the main back-end system, the attributes of the correlation
are presented in Table 6.2.

Table 6.2: Correlation Attributes

_ No | Attribuies ' Description !

‘ 1 Alarm ID Alarm ID is a unique identifier of alerts that differen-
- tiate one alert from others. In most correlation tables, |
‘ the attribute is used as the primary key that distinc- |
i | tively identifies each alert. Based on the occurrence |
' time of the alerts, each alarm is assigned a unique ID
[ in ascending order, starting from 1.

2 | Source and destination IP ad- | As described previously in Chapter 5, these attributes
| dresses are applied in the first stage of correlation. The val- |

ues of both attributes are converted into their decimal |
| | | notations before being applied in the correlation. |

| Continued on next page |

83



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

Table 6.2 - continued from previous page

|Nol

Attributes

Description

3

Timestam p

| The timestamp indicates the occurrence time of the
alerts, Similar to the source and destination I[P ad-
dresses, this attribute is used the feature of the first
correlation.

Number of alarms per cluster

This attribute is the first feature of the second stage
correlation. Having run the first correlation, the num-
ber of alerts grouped in each cluster is computed.

| 5

Number of signatures per clus-
ter

Instead of counting the number of alerts per cluster
as previous attribute, this feature identifies the signa-
tures, which have triggered the alerts in each cluster.
The number of signature type in each cluster is deter-
mined and used as the second attribute.

Protocol

The protocol type of the packet triggering the alert is
retrieved as one of the correlations attributes. The de-
tail about how the protocol is used in the correlation as
well as the value assigned to this attribute is described
in Table 5-3.

Port number

Similar to the protocol, the appl_ication of port number
in the correlation is mainly aimed to inspect the type
of traffic or service triggering the alerts. Again, the
information about the value assigned to this attribute
is presented in Table 5-3.

Alarm priority

Alarm priority is a unique feature that ranks the alerts
in order of severity. Such attribute is given by the Snort
IDS. The higher the rank is given, the more critical the
alert is or the higher the priority it has.

Time interval

Time interval is one of the leading features of the sec-
ond stage correlation. It is the time span between the
occurrences of events from a specific signature. Prior
to running the correlation, the time span of all signa-

tures within a particular time frame is computed. As
there are three choices of time frames, namely half an
hour, an hour and two hours, available, the time in-
terval between events from all signatures within each
time frame is gauged.

—

Continued on next page |




6.4. SMART Modules

Table 6.2 - continued from previous page

No |; Atiributes Description .!

10 | Number of events Similar to the time interval, this attribute is another

leading feature of the second correlation. The number
of events 1s calculated per signature within a particu-
lar time frame, for example, half an hour, an hour, two
hours.

11 | Cluster number Cluster number is the indexes assigned to the clusters

generated in the first stage correlation. It is also used
| | as the input references for the second correlation.

12 | Alert status The alert status, which is the final outcome of the sec-
‘ ond correlation, indicates the validity of the generated

alert (that is whether it is a true or false alarm). Zero
‘ (0) indicates false alarm whilst 1 indicates the true |
alarm.

13 | Signature The last important feature of the alerts that consider- '
| ably influences the trend of IDS alert generation is the
IDS signature. This attribute indicates the type of IDS |
signature rules that have raised the alarms.

In order to provide a clearer picture of how the two leading attributes, namely the time interval
and the number of events are calculated, the following description provides the complete pseudocode
of the calculations of both attributes.

Algorithm: Counting the Number of Events and Time Interval

A « starting timestamp

B «— endingtimestamp

dayAlerts + database table

{Calculating the number of events and the time interval}

A — curTime

while curTime # B do
curVec «— datevec{curTime) {curVec is [year, month, day, hour, minute, second])
NertVee + curVeclhour| + 1
NextTime « datestr(NertVec) { NextTime is in “yyyy-mm-dd HH:MM:SS” format }
s1g + signatures in range curT ime to NexrtTime {Retrieve signatures that have triggered alerts
from curTime to NextTime from table dayAlerts}
STORE the values into sig
pj + |sigl {pj is the size of sig}
Timeth + pjx3 zero matrix
CREATE a sql table named T'imeEventOne

85




Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

for co = 1 to pj do
Timethleo,l) = sig(eo) {Insert distinct signatures into matrix Timetb}
end for
for r =1 to pj do
sre + source IP addresses
dst +— destination IP addresses
ti « timestamp {RETRIEVE the values of timestamp, source and destination IP addresses
from table dayAlerts, where the signature is equal to the sig(r) and the timestamp starts
from curTime to NextTime)}
noALerts «+ |src| {noAlerts is the size of src}
for v =1 to noAlert do
vec = datevec(ti(v))
vec(6) «— 0
fime(v) +— vec
end for
for col=1to2do
for row = 1 to noAlert do
if col is equal to 1 then
data(row, col) +— sre(row)
else
data(row. col) + dst(rou)
end if
end for
end for
i 0
11
T + 1xnoAlert zero matrix
event «+ 0
inder — 0
for n =1 to noAlert do
{Check if the alarm has been covered by previous alarm}
if n = T then
event « event

else

cvent + 1

if event = 1 then
t+0

else
di fTime + |[time(n) — time(index)|
t 1t +difTime

end if

inder «— n

T(1,1) + index

86




6.4. SMART Modules

1+ 1
]J+—mn+1
{Finding the alarms covered by the current alert}
if n # noAlert then
while [time()) — time(n)| < 180 do
{If the elapsed time is less than equal to 3 minutes}

if data(j.2) = data(n.2) || data(j.1) = data(n.1) then
{If either the destination or the source IP addresses are match}
T(1,1) + 7
1+ 1

end if

INCREMENT
if j > noAlert then
Break out of the loop
end if
end while
end if
end if
end for
Timeth(r.2) «— event
if t + event = 0 then
Timetb(x,3) < 7200
{No of seconds in two hours}
else
Timeth(xr,3) «— t = (event — 1)
end if
INSERT the values Timeth(z.:) to the sql table TimeEventOne
end for
end while

An event is considered the same as others from the same signature if it is triggered within a time
frame of three minutes. In other words. all alerts that have been triggered by the same signature
within a time frame of three minutes will be counted as one event. Several observations were
carried out beforehand to determine the average time span between the occurrence of events. As
a result, the three-minute time frame is considered the most sensible threshold value; thus being
selected and applied in the computation.

Once the values are computed, the results are stored in a table named Time EventOnetimestamp,
only if the values are calculated for a time frame of 1 hour, TimeEventTwotinestamp for two hours
time frame and TimeEvent Hal ftimestamp for half an hour time frame.

6.4.3 Data Storage

Having looked into the components or the attributes of the correlation system, it is now essential

to discover the type of data storage used in the correlation as well as the information stored in each

87



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

of the files or databases.
It is worth remembering that the SMART system is deploying a relational database as the main
information sources. Following sub-sections provide a brief description of the database files created

during the correlation processes.

6.4.3.1 BASE database

The BASE database is the main information resource of the proposed correlation system. In fact,
the system is currently developed to work with the BASE system only. This database, created by
the Snort IDS and BASE, holds all the information required to perform an alert correlation and
analysis,

6.4.3.2 Time_Event table

This table stores the values of the time interval and number of events pre-computed by the system
for each signature within a particular time window. The table consists of three fields, namely the
signature index, the time interval and the number of events. The values of the time interval and
the number of events are calculated for all interval (time frame) options and the results of the

computation are stored in separate tables.

6.4.3.3 TimeEventRecord table

This table holds the values of the sixth and seventh alert attributes, namely the time interval and
the number of events, per cluster index. In other words, the values of time interval and the number
of events for the inputs of the second correlation are recorded in the TimeEvent Record table.

6.4.3.4 Stagel table

This table is fundamentally created to store the result of the first stage classification. It holds the
information about the alert ID as well as the cluster the alert belongs to. The table consists of two
columns, namely the alert ID and the cluster index.

6.4.3.5 Stage2 table

Similar to the previous table, the Stage2 table keeps the final outcome of the classification (second
stage). There are primarily two fields created in this table, namely the cluster index and the alert
status. The alert status is a grade assigned by the system to a cluster that indicates the validity
of the alerts, that is whether they are true or false alarms, inside the cluster. For example, if the
status of a particular cluster is set to 0, then all alerts inside the cluster are considered false alarms.

6.4.3.6 FPoriNo table

PortNo table contains a list of all official port numbers. The idea of creating this table is to match
the port numbers of a packet triggering the alert with the list of the official port numbers. If a match

is found, the port is regarded as a service port and will be used as an attribute for the classification.




6.5. Conclusions

6.4.4 System Output

In addition to the statistical figures and charts presented in the front-end interface, the system also
produces several output files, which are saved in the local drive. Owing to the proposed two stages
of correlation, there are two parts of classification results generated in this context. Therefore,
in order to gain more understanding about the outcome or the end product of each stage, brief
descriptions about the final outputs of two stages are presented as follows.

6.4.4.1 Stagel classification result
In this level, there are ultimately two files generated during the process. Those are:

e Stagel input file

Prior to executing the main correlation engine, the system is programmed to automatically
collect and process all necessary alert attributes for the correlation. Once they have been
processed, then the attributes are written into a simple text file and serves as the input data
for the classification. The filename format for this text file is set to "stgltbtimestamp.txt”,
for example stg1th19990330120000.txt. The timestamp starts from year, month, day, hour,
minute and second.

e A figure file from stage 1 correlation

The map, which is generated by the SOM and K —mean correlation and presented in the shape
of U-Matrix, is saved as a figure file.

6.4.4.2 Stage?2 classification result
Similar to the stage 1 classification, there are two files produced in this stage, namely:

e Stage2 input file
The file contains all selected and pre-processed attributes for the alerts. The information is

then used as the input data for the second classification. Moreover, the filename format is set
to "stg2tbtimestamp.txt”, for example, stg2tb19990408220000, with stg2 refers to stage 2.

* A figure file from stage 2 correlation

This file is similar to the stage 1 figure except that it is a map figure generated by the stage 2
correlation.

6.5 Conclusions

This chapter has focused on the conceptual architecture for a SOM K —Means Alarm Reduction
Tool. The descriptions include an introduction of the main concepts or the characteristics of the ar-
chitecture, and the modules within it. Key focus was given to the role of each module, and especially
its contribution in the alert correlation process.

Although identifying the underlying features of the SMART system is a significant process, it is
necessary to evaluate the practical viability of the system and demonstrate how the main features

89



Chapter 6. A Conceptual Architecture for an Automatic Alarm Correlation System

of SMART would work in a practical scenario. Having established this, it is also important to
describe the implementation or the deployment view of such a system. As such, the next chapter

presents the implementation of the SMART prototype system, which aims to prove the feasibility

of implementing the system in a practical environment.




A Prototype Alarm Correlation
System

7.1 Introduction

This chapter describes the development process, in other words, the implementation stage of the
prototype system, which represents a subset of the key elements of the proposed architecture,
namely the ability to aggregate and filter the false alarms, and to provide a flexible and high level
IDS alert comparison. Several modelling languages, including a behavioural diagram, an interac-
tion diagram, an activity diagram and a static structural diagram are then presented, offering a
standard way to visualise the system architectural model. Finally, the interface of the alarm cor-
relation tool is described, highlighting its features and its role in processing and presenting IDS
alerts.

7.2 Implementation Overview

The elements of the SMART architecture that have been implemented in the prototype are depicted
in Figure 7.1. The figure also shows the elements that have been incorporated into architecture
rather than developed, such as Snort IDS and BASE (refer to subsection 4.1.2.1 and 4.1.2.3. Sig-
nificantly, focus has been given to the features that correlate and cluster alerts into groups of true
and false alarms, and organise the correlated alarms in a statistical view. It should be noted that
the implementation of a complex and fully functional interface of the SMART system would re-
quire a further study, in order to develop or enhance the performance of elements, such as the Alert
Management Tool.

In general, the prototype system consists of three modules, namely the /O Interface, the Cor-
relation Engine and the Knowledge Database. The I/O Interface enables user interaction on the
system. The Correlation Engine encompasses the functionality of feature extraction, attributes
conversion and the correlation itself. Finally, the Knowledge Database serves as the main informa-
tion source and incorporates the feature of Map Selection Policy, Attribute Conversion Policy, Alert
Database, Time Event and Port No. The three modules of the prototype system are illustrated in
Figure 7.2. As depicted in the figure, the users are able to provide inputs to the system via the
interactive I/O interfaces. The Correlation Engine then communicates with the Database to either
retrieve essential information for the correlation or store the outecome of the classification. Once the
correlation process is completed, the final results are presented to the users using the /O interfaces.

As described in Chapter 5, SMART uses a collaboration of SOM Neural Network and A —means
clustering algorithm, which serves as the main correlation engine. The reason of choosing these
technologies is due to their ability to preserve topological mappings between the input data, which

91



Chapter 7. A Prototype Alarm Correlation System

is very important for the representation of complex data (Kohonen, 1995). The proposed corre-
lation engine (back-end) was developed in the MATLAB environment, using SOM Toolbox. SOM
Toolbox is a software library for MATLAB 5 or above implementing various clustering algorithms;
including Self Organising Map and K —means (CIS, 2005). On the other hand, the front-end that
features the input and output of the application interface was written in Java. Although other
well-known programming languages, such as C#, are commonly used to develop front-end tools,
they are not platform independent as Java program. In fact, Java support is becoming ubiquitous;
it is integrated into practically all major operating systems (Flanagan, 2005). Also, in order to in-
tegrate both back-end (that is Correlation Engine) and front-end systems (that is I/O Interface),
the MATLAB Builder JA (MathWorks, 2010) is utilised. It enables the system to deploy MATLAB
code as Java classes. The builder creates deployable components that allow the MATLAB based
computation and visualisations to be accessible to the end users of the Java programs.

_ \LAP i
: Uies15p B INPUY Uses tmpu Bast e policy SELECTION -
‘ — > MODULE POLICY '
E b y T E
| | ADMNITRATOR |' : sreimics sl | CORREY ATION A | ATERT i
! ] ENGISK DATA :
H v 1 4 "
i 1 oUTFrT 1
! ——= MODTLE '
H g ]
E E : Alus 7an E
' s rumbar PORT '
i )} 50 !
1] L] ] [}
b o S T | R r L
 External Systems ! 5

' Taf ALFRT
: DETECTION ; !
‘ e MANAGEMEST ‘
- 1 Ctaem E

Fully Devalopsd and Implemented Adopted

Figure 7.1: Prototype implementation

Considering that the MATLAB code has been deployed as Java classes, the prototype system is

92



7.2. Implementation Overview

\4

I'O Interface Correlation Engme Knowledge Database

Figure 7.2: Prototype modules

now regarded as a stand-alone application, which can be run independently of any other applica-
tions. Indeed, the system is compiled into an executable JAR (Java Archive) file, which aggregates
many files into one. The JAR file format is commonly used to distribute the Java applications or
libraries, in the form of classes and associated resources.

The prototype system has the following dependencies, which are not included in the distributed
application package and need to be installed separately before the prototype system is executed:

1. Java Runtime Environment (JRE) (version 6 or above)

The JRE provides a main platform for the deployment of the prototype system.

2. MySQL Database

A relational database is required to store all necessary information for the correlation process
and also to keep the final result of the correlation.

3. BASE

Prior to executing the prototype system, it is crucial to set up an alert management tool, which
is connected to the Detection Engine (that is Snort IDS). More importantly, it enables the
alerts to be studied to a much greater degree, for example, by examining the packet payload.
Bear in mind that before installing BASE, there are several prerequisite configurations or
software requirements to be met. These requirements are external to the BASE system and
are listed below.

e Snort IDS system
* MySQL

Apache Server

« PHP

Pear, which includes Image Graph, Image Canvas, Image Color, Numbers Roman and
Mail Mime

« ADODB
The details of BASE installation can be found in (BASE, 2009).

For more details of system functional requirements, please refer to Appendix E.

93



Chapter 7. A Prototype Alarm Correlation System

7.3 Input

Ultimately there are three main user inputs required to initiate a correlation, namely the starting
timestamp, the ending timestamp and the correlation time frame. The input interface. which is
created as the starting interface (that is the main page) of the prototype system, is primarily re-
sponsible for providing a media for those inputs. The following subsections demonstrate how the
input interface has been practically designed to enable basic user interactions.

7.3.1 Starting and Ending Timestamp

In the main page of the prototype system, the users are prompted to specify the range of alerts to
be processed in the correlation by providing the starting and the ending timestamps of the alerts;
as shown in Figure 7.3.

Welcome to SMART (SOM K-Means Alarm Reduction Tool)

Slarimg trmestsnp (yyyy mem dd ommess): 1596 G487 1B00 6
Endeng imestar (vyyy mim dd blomerss e 1909-04-0) 1 7 00 00

Select a tume wterval Evary lwo hean's -
Two how s
o ot 1
12 hoan

._:

| Subeng

Figure 7.3: SMART - user input

Two text boxes, as shown in Figure 7.3, are provided to allow the users to enter the aforemen-
tioned starting and ending timestamps. The date and time format used in this input module is of
the complete date plus hours, minutes and seconds (that is yyyy-mm-dd hh:mm:ss). In order to
ensure the correctness of the date and time format entered by the users, an input validation is per-
formed once the "Submit” button is pressed. The failure to provide the correct format may result in
a correlation error. Additionally, an error dialog box will be raised to notify the users of the invalid
inputs and subsequently, the users are prompted to re-enter the timestamps.

94



7.4. Output

7.3.2 Time Frame

The third user input required in the correlation process is the time frame. The time frame refers
to the time interval between each correlation. There are three options of interval available in the
combo box namely every two hours, every one hour and every hour; as described in Figure 7.3.
By choosing one of these options, the alerts are then divided into separate groups based on the
chosen interval and fed into different correlations. Bear in mind that the correlations are not run in
parallel, instead they are executed in temporal order. If there is no action has been made to select
the time interval, the two hours time interval is set by default.

7.4 Output

The final outcomes of the correlations are presented in several methods, including the presentation
of the statistic figures, the alert and signature tables as well as a feature, which facilitates the
analysis of the signature and the packet payloads. An output interface, which is responsible for
presenting the final correlation results, consists of three tabbed panels. The following subsections
will describe the features as well as the layout of each panel in greater detail.

7.4.1 Alarm Statistics

The first panel, which is named "Alert Table” tab, holds an alert table containing all alerts features,
the cluster number the alerts are belong to and also the status of the alerts (either true or false
alarms). Apart from the table described, there is also a statistic pie chart that depicts the proportion
of true to false alarms in the total alerts. The layout of the "Alert Table” tab is shown in Figure 7.4

The 16 columns table, shown in Figure 7.4, is composed of 12 feature columns, one eounter
column, one id column and two result columns, namely the results of the first and second stage
correlations. The Cluster No field, which holds the outcome of the stagel classification, is the index
number of the cluster the alert is grouped into. Conversely, the last column of the table (Alert
Status), which contains the final result of stage2 correlation, shows the class the alert belongs to,
whether it is a true or false alarm.

7.4.2 Chart Report

In terms of a graphical report, SMART prototype enables the administrators to produce statistical
charts based on the results of the correlations. The second tab, "Chart Report” is therefore created to
allow the users to generate a statistical chart by simply filling in the chart attribute form provided;
as shown in Figure 7.5.

The key objective of facilitating a chart feature is to primarily provide a better view of the false
alarm issue to the administrators and also to allow the users to observe the trend of the false alarms
generation over a particular period. A total of 15 charts can be generated from this feature, namely:

1. Time (hours) vs No of False Alarms

2. Time (days)} vs No of False Atarms

95



Chapter 7. A Prototype Alarm Correlation System

o talee  Chu epert  Sagatio e aslysn
| M - ‘e L - B SO by Ut g proely  Seasiety " = e o

171 - lrum s, 0 - | one skarmmd

True alarms vs False alarms

Figure 7.4: SMART - Alert table tab

3. Time (months) vs No of False Alarms
4. Time (hours) vs No of True Alarms

5. Time (days) vs No of True Alarms

6. Time (months) vs No of True Alarms
7. True Alarms vs False Alarms (hours)
8. True Alarms vs False Alarms (days)
9. True Alarm vs False Alarms (months)

10. Time (hours) vs False Signatures

11. Time (days) vs False Signatures
12. Time (months) vs False Signatures

13. Time (hours) vs True Signatures

14. Time (days) vs True Signatures

15. Time (months) vs True Signatures




7.4. Output

Alerttable Charl Hepa!  Signasure Jnalyss
Chast Type: Temeitou vt va N of | abee da -
Shyte: | ] . Lime
T v 17 e | ogl ot Char! begens: 00 v - M - 1955 -
Chan! endx 10 - M - M - 1N -
Chart Mawve: Torsp{howrs) va NG Of F alye atamng DEM
ot e R i

Figure 7.5: SMART - Chart report tab

The idea of using the timing information in the the context of false alarms is to simply provide an
overview of the trend of the false alarms for the administrators. In fact, such a method has been
commonly used by most well-know alert analysis tool, such as BASE.

By investigating the false alarms over time, the administrators could identify the behaviours of
the false signatures triggering the alarms. In this way, the signatures could be analysed by critically
examining the payload of the packets triggering the false alarms. The final act of this analysis
would be either disabling or tuning the signature rules. Moreover, if the signatures generate both
true and false alarms, the administrators need to further evaluate the clusters (in other words, the
result of stage 1 correlation), to which the alerts belong to. Subsequently, the cause of the alerts
could be identified based on the time interval and number of events of the corresponding clusters.
The process of signature analysis will be detailed in subsection 7.4.3.

Each chart is created in a separate frame and presented in the form of either bar (histogram) or
line chart. Apart from choosing the style and type of the chart created, the users are also allowed
to set the time window for each diagram by determining the starting and ending time of the chart.
Thus, instead of reviewing alerts in general, such option enables the administrators to specifically
focus on alerts from a particular time frame. Figures 7.6 and 7.7 illustrate the samples of bar and
line diagrams generated by the chart report tool.

7.4.3 Tables of Signatures

The last tab, "Signature Analysis”, is responsible for listing all signatures rules triggering the alerts
and also identifying which of the signatures from the list that have solely raised the false alarms,
true alarms or both true and false alarms. Figure 7.8 shows a sample of the "Signature Analy-
sis” tab. This feature aims to facilitate the administrator in performing a signature analysis by
presenting lists of true and false alarms generated by the particular signature.

The signatures that have purely triggered true alarms are shown in red fonts, whilst those that
have generated only false alarms are displayed in green fonts. On the contrary, the blue wording
represents the rules that have raised both true and false alarms. The classification of the signatures

97



Chapter 7. A Prototype Alarm Correlation System

Y0 e JEI1X
Time(hours) vs False Signatures

o of Alerts

Figure 7.6: SMART bar diagram - Time(hours) vs False Signatures

according to the type of generated alerts not only allows the administrators to focus on the false
signatures but also enables them to review or revise the signature pattern.

Having been presented with a list of signatures, the users are then prompted to select one
signature from the signature list for a further analysis. The details of the selected signature is then
described in a plot diagram depicting the distribution of the source [P addresses (from both true
and false alarms) related to a particular signature in every hour (as shown in Figure 7.9).

Besides, two tables, which contain the attributes, for example, Cluster index number, Number
of events, time interval and signature rules, of the true and false alerts triggered by the corre-
sponding signature, are also presented. The values of the attributes described in the tables are
fundamentally retrieved from the features of the clusters resulted from the stagel correlation. The
idea behind these tables is to let the administrators observe the variance between alerts from the
same signature as well as to compare the characteristics of the alerts from both categories, namely
true and false alarms. Figure 7.10 displays a sample of the true and the false alarms tables.

In the process of reducing the false alarm rate in the future detection, the administrators are
required to properly inspect the signature pattern and if necessary to tune the signature rules that
could potentially generate the false alarms. In order to perform such task, it is essential for an alert
management tool to provide the administrator with access to the payload of the packet triggering
the alerts. Although the presentation of the payload is only intended to highlight the cause of the
alert generation, it certainly could help the users understand the inherent behaviours or patterns of
the applied signature rules. So, with this benefit in mind, the prototype system allows the users to
gain access to the packet payload via BASE (Basic Analysis and Security Engine). The ID number

98



7.5. Demonstrating the SMART Prototype System

443
Tune{ hours) vs False Signatures

Figure 7.7: SMART line diagram - Time(hours) vs False Signatures

from each alert shown in the signature table is linked to the BASE page containing the details

of the packet header and payload. Figure 7.11 shows a sample of the packet payload taken from
BASE.

7.5 Demonstrating the SMART Prototype System

Having described the role and main features of the prototype system, this section will provide exam-
ples of how alert attributes can influence the correlation decision process and how the classification
system can utilise the features of the IDS alerts to cluster as well as to determine the validity of
the alerts presented. Specifically, the examples presented demonstrate how the oceurrence of alerts
from the same signature can be classified into different categories (either true or false alarms) in
different context. The alerts, which are correlated in examples, are generated by Snort IDS, which
run on both real data (University of Plymouth data set) and DARPA data set 1999. The processes
of running the correlation and examining the correlation results are demonstrated in the examples
and the context in which the correlation outcome are evaluated reflect two parts of output assess-
ment. The first section of the assessment exhibits the overall result of the alarm reduction method,
for instance by presenting a comparison chart between the true and the false alarms. On the other
hand, the second segment enables the users to individually analyse the false signatures and sub-
sequently allows access to the packet payload via BASE page. Finally, it should be noted that, the
correlation time frame has been configured in all cases to the highest time windows available (that
is two hours time frame). All of the examples will be demonstrated in practice on the prototype
system.



Chcrprer_?. A Prototype Alarm Correlation System

[ TR et Bt vl e SR

Signature List

Figure 7.8: SMART - Signature analysis tab

7.5.1 Data Description

Similar to the previous experiments conducted on the false alarm issue (Chapter 4) and the pre-
liminary study (Chapter 5; two types of data sets, namely the University of Plymouth and the 1999
DARPA data sets are used in the demonstration. As for the DARPA data set, the 4th and 5th weeks
of testing data is used, whilst for the University of Plymouth data set, only the first two weeks of
data is selected.

Total of 91,671 alerts, which were recorded from the two weeks DARPA testing data, will be
fed into the prototype system. Unfortunately, due to the memory issue suffered by the MATLAB
application, the system is unable to process more than 3,000 alerts per correlation (this issue is
further discussed in Chapter 8, Conclusions). As a result, the correlations, which process more
than 3,000 alerts in each two-hour time frame, are omitted; thus resulting in only 56,119 alerts
handled by the correlation system. As for the University private dataset, fortunately, none of the
correlation processes are required to run more than 3,000 alerts; thus the complete alerts (54,893
alerts) from the two weeks data set can be successfully correlated by the system.

Since the section aims to simply demonstrate how to run the prototype system, only the DARPA
data set is described in these examples. A detailed discussion of the correlation result from both
DARPA and University data sets will be presented later in Section 7.5,

7.5.2 Example 1 - Running the Correlation

The manual for running the correlation can be found in Appendix F.

During the correlation process, several files and database tables are created and saved in the

local hard drive. Following lists the files created throughout the process of correlation:

Text Files:




7.5. Demonsirating the SMART Prototype System

4343
WEB-CGI redirect access

sourae 1P

Time (HOUR ) |
I__. 3 e Fae Ay !

— E —— - e —— el

Figure 7.9: SMART - Signature plot diagram

Stagel Input data

Prior to the correlation, the alert features for stagel correlation, namely timestamp and IP
addresses, are extracted, pre-processed and written into an input text file.

Stage2 Input data

Once the first correlation is completed, the cluster attributes for the second stage correlation
are extracted from the first outcome. Total five attributes are retrieved from the stagel result,
whilst the rest 2 attributes, namely time interval and number of events are obtained from
the Time_Event table (see subsection 6.4.3.2). Similar to the stagel input data; the collected
attributes are pre-processed and written into a text file.

Stagel Result

This text file contains the output of the stagel correlation. It lists the index numbers of alerts

per cluster in row; one row for each cluster.

Stage2 Result

This file, which holds the final outcome of the stage2 correlation, contains only two rows of
data since only two classes, namely true and false alarm classes are formed in the final classi-
fication. The index numbers of the clusters created in the first correlation are listed in either

row depending on the category the clusters are grouped into.

101




Chapter 7. A Prototype Alarm Correlation System

Dimatinte < B om Mhee ghorf o W | 1ot ¢ chawt bo vhewr Bt paplond

Faite Alarm Trus Alarm

Figure 7.10: SMART - Signature tables

MATLAB Figures:

Stagel Result

The figure is generated by the MATLAB application and contains the final map of the first

classification. Figure 7.12 displays an example of the map produced by the stagel correlation.

. Stage2 Result

Stage2 map is similar to the stagel map except that the former is divided into two clusters

only (see Figure 7.13).

Database tables:

Stagel result table (Subsection 6.4.3.4)
Stage?2 result table (Subsection 6.4.3.5).

Table of selected time interval and number of events (TimeEvent Record table; Subsection 6.4.3.3).

. Table of time interval and number of events per time window (T'ime_FEvent table; see Subsec-

tion 6.4.3.2).




7.5. Demonstrating the SMART Prototype System

e bl T B G s T bt B G i (7L —

o o .
- .

e
e
waw
avwe
saw

-t - s —— — —

-
=

Figure 7.11: BASE - Payload page

7.5.3 Example 2 - Viewing Overall Correlation Results

As soon as the correlation is completed, the result is ready for analysis. In order to view the out-
comes, the user is required to press the "View Result” button as shown in Figure 7.14. Should
the user need to return to the main page without viewing the result, the "Reset” button should be
pressed.

As discussed previously in Section 7.4, the result is presented in a new tabbed window, which
is the same as shown in Figure 7 4. There are total three tabs included in the window, namely the
"Alert Table”, the "Chart Report” and the "Signature Analysis”. In order for the user to evaluate
and compare the values of the true and false alarms classes resulted from the correlation, a chart
tool is provided in the "Chart Report” tab to assist the user with the creation of a graphical report.
And in order to use this feature, the user needs to click on the "Chart Report” tab, as illustrated
previously in Figure 7.5.

A chart attribute form is presented and the user is prompted to create a graphical chart by filling
in the form provided. There are a number of chart types and style available in the "Chart Report”
tab for the user to choose from, Should the user need to produce a chart from a particular period,
an optional attribute called the time frame is available for the user to configure. Once the form is
completed, the user can subsequently press the "Graph Alerts” button, as shown in Figure 7.5, to
initiate the chart creation.

As described previously in subsection 7.4.2, a total of 15 charts from five categories can be pro-
duced by the chart engine. Following description explains the objectives and provides examples of
those 15 charts. The figures are presented in either bar or line chart.

1. Time vs No of False Alarms

Following charts present the trend of false alarm generation over time. The reason of present-
ing this category of chart is to simply provide an overview of the false alarm distribution for

103



| Chapter 7. A Prototype Alarm Correlation System

| B #igure 1 Map mame: SOM 28-Jul- 2008 SERCE "X
File Edr View Insert Tools Detktop Window Help »

tda k NN A-A 0& 0 Q

Figure 7.12: An example of stage 1 map

each hour, day and month and also enable the administrators to assess the IDS performance
in terms of its false alarm rate.

(a) Hours
The chart depicts the number of false alarms detected from the Snort alerts for each hour
of the day. Figure 7.15 shows an example of the chart.

(b) Days
This type of chart is similar to the previous one except that the alerts are charted per day.
An example can be seen from Figure 7.16.

(c) Months
The graph shown in Figure 7.17 portrays the generation of the false alarms per month.

2. Time vs No of True Alarms

A similar objective is aimed in this type of diagram. The generation of a graph representing
the figure of the true alarms aims to evaluate and grasp the trend of the real alerts (real
warnings); thus measuring the effectiveness or the capability of the Snort IDS in detecting
real attacks. It is worth noticing that the time of occurrence of a real alert can be used to




7.5. Demonstrating the SMART Prototype System

u Fagure 1: Map name: SOM 28-Jul- 2009 e
File B2 YVew lntert 7 Che top Wandow Help -
. 5 - o= a—
l‘ - - ' Fa T . - B =
-
15’ 2 clusters

' SOM 28- k- 2009

Figure 7.13: An example of stage 2 map

uncover the behaviours of the attack. In fact, the graphs also highlight the security status of
the monitored network based on the rate of the detected true alarms. Figure 7.18, 7.19 and
7.20 show examples of the true alarms figures graphed on different periods, namely hours,

days and months respectively.
(a) Hours
(b) Days

(¢) Months

True Alarms vs False Alarms

Figure 7.21, 7.22 and 7.23 are examples of charts that compare or evaluate the figures of
true and false alarms on different periods, namely hours, days and months. The key idea of
presenting a comparison chart between the generation of the true and the false alarms over
time is to evaluate the trend of the false alarms against the true alarms for a specific period.
Moreover, the charts also aim to highlight the severity of the false alarm issue and also to

assess the performance or the detection rate of the applied IDS.

(a) Hours

105




Chapter 7. A Prototype Alarm Correlation System

|
P hierm Corpiae ; . 439 l
Welcome to SMART (SOM K-Means Alarm Reduction Tool) '

Startaw temeestamp OAYY-onen ad hfcemss 199% 0402

)
ey temestang (WYY TN dd Mormercss) 169 04
Sabel g tane Eterval Every 12 how -

Figure 7.14: SMART - Correlation completed

(b) Days
(c) Months

4. Time vs False Signatures

This category of charts lists the number of false alarms triggered by each signature in a par-
ticular period, for instance hours, days and months. The benefit of having this chart is that it
provides an overview of the problem of false alarms for each signature rule and also it helps

the users identify the "noisy alerts” and the associated signatures for a future tuning. By ob-
serving the distribution of false alarms each period per signature rule, the user could discover
behaviours of that particular signature. The charts surely help the user determining which of
the signature rules need to be further reviewed. Figures 7.24, 7.25 and 7.26 are the examples
of the false signatures charts.

(a) Hours

(b) Days

(c) Months

5. Time vs True Signatures

These charts are the same as those shown in the previous category except that the figures

depict the true alarms. The idea behind this true signature chart is to help the user discover




7.5. Demﬂ_nstrati_ng the SB_L_ART Pr&m‘,vfe Svs!iril

< P gty *-"_---- e ERE S Amga 3o R Y T ——
P e DNPAS 97 8377451 993 97 3¢ 3343

Tm(hours) vs llo of False ahrlm 1

]

|
HOUR :|

_LI Ab r'_-.I |

B

NO of Alerts

Figure 7.15: SMART - Time (hours) vs No of False alarms

the potential threats detected by the IDS and also assist the user in evaluating the perfor-
mance of a particular signature rule in detecting real attacks. By looking at the signatures
triggering the true alarms for each period, the user could gain an insight into the criticality
of the monitored network and also to learn the type intrusive activities detected by the IDS.
Figures 7.27, 7.28 and 7.29 represent the samples of the charts.

(a) Hours
(b) Days
(¢) Months

7.5.4 Example 3 - Analysing Signature Rules

Aside from viewing and interpreting the results of the correlation through a graphical report, the
prototype system also allows the user to explore the signature rules in more details. Figure 7-18
has portrayed a sample of the third tab, "Signature Analysis”, which presents a list of signature
rules from the DARPA data set.

As mentioned earlier in subsection 7.4.3, the status of the signatures, whether it is a false or
true signature, is distinguished by the font colour of the signature name shown in the signature
table. With this significant colour difference, the user can decide which of the signatures presented
require an analysis or yet a future tuning. As shown in Figure 7.8, a selection column is available
for the user to pick one signature for a further investigation. And once the signature is selected,
then the user is expected to press the "Chart” button available below the signature table to initiate

the analysis.

107



Chapter 7. A Prototype Alarm Correlation System

r- PR ypereo AR 999037910 49950410 Ij —‘la‘
Time(days) vs No of False alarms |

i -t B [
LA |
|
|
]
|
' |
| A | |
. e | |
Ty 1
- ! | | |
|
‘ ! |
| | | ‘
e | | |
: | y |
1 |
| | 1
£ ! |
|
| | I | -I.
| |

DAY

N off Aderts

et

Figure 7.16: SMART - Time (days) vs No of False alarms

To evaluate the selected signature, two new windows showing a plot diagram and tables of
true and false alarms are presented. In this scenario, the ATTACK-RESPONSES 403 forbidden
signature is selected for the analysis. Figure 7.30 and 7.31 display the plot diagram and the true
and false alarms tables associated to the signature respectively.

The plot diagram describes the distribution of the true and false alarms triggered by the ATTACK-
RESPONSES 403 Forbidden signature based on its source IP addresses and the time of its occur-
rence. The key idea behind this diagram is mainly to explore the relationships among the true/false
alerts, the source IP addresses of packets generating the alerts and also the occurrence time of the
alerts. In this example, the diagram demonstrates that traffic from a single IP address could have
triggered both true and false alarms from the same signature. This significantly indicates the is-
sue of ambiguous alerts, which commonly causes trouble for the administrators in identifying real
threats.

On the other hand, the second new window presents tables of true and false alarms contain-
ing the information of alerts from the ATTACK-RESPONSES 403 Forbidden signature. From
Figure 7.31, it is clearly shown that each table contains five columns, namely id, Cluster No,
Time Interval, No_of Event, and Signatures. The id refers to a unique number the alert is assigned
to, whilst the Cluster No is a unique number of the cluster the alert is grouped into in the first
stage correlation. The Time Interval and No_of Event are actually the dominant features used in
the stage2 correlation. These attributes are computed during the correlation process; as described
previously in subsection 6.4.2. Since both features are the leading attributes which significantly in-
fluence the final cutcome of the correlation, the Time Interval and No_of Event are presented in the
alert tables to help distinguish the characteristic between the true and the false alarms. Lastly, the

108




7.6. Thel mPIimt{oﬂ o[ the Practical Evaluation

il lIRC AL SyP 0,

| __ Tine(monihs) vs No of False alarms

[ A pﬁa‘uﬁqmr ﬂjpm“wmfawdga]

&4, X
|
|
15 (R
14 (x
10, O
|
RN
J ] -

MONTH

No of Alerts
i

Figure 7.17: SMART - Time (months) vs No of False alarms

Signatures column holds the names of the signature rules that are grouped into the same cluster
in the stagel classification. A click on the signature row could reveal the list of signatures names
in a combo box (see Figure 7.31).

Apart from dividing the alerts into two tables according to their status (either true or false
alarms), it would be worth enabling the administrator to inspect the pattern or the payload of the
packets triggering the alerts. This will surely aid the operator in his investigation on the signature
pattern and the packet payload; thus help identify the cause of the false alarms. The prototype
system allows the users to view the packet payload by double clicking on the alert’s id number in
the first column. Figure 7.11 has presented a sample of the payload page.

7.6 The Implications of the Practical Evaluation

The SMART prototype system is developed and compiled as a standalone application, which is
designed to run on any Windows or Linux system. The viability of the approach implemented on
the proposed system has been measured through the practical demonstrations run on the 1999
DARPA data set and the University of Plymouth private data set.

Despite its practicality, there are several problems encountered with the system during the
evaluation. The issues range from a less critical problem, for instance the interface design, to a
more serious subject, such as the issue of the memory consumption. To gain a better understanding
of these concerns, following explains the issues in more details and how they are implicated as the
most influential factors that affect the system performance.

1. Database change

109




Chapter 7. A Prototype Alarm Correlation System

8433

o ‘Tlﬁe(hoﬁrs) vs No of True alarms

HOUR

" s J

o of Alerts

Figure 7.18: SMART - Time (hours) vs No of True alarms

In terms of its data storage, the prototype system has been programmed to use only one pre-
defined database in whole correlations. In fact, there is no feature or option provided for the
user to change or add a new database. In the practical demonstration, "darpa2” is a database
that was generated by BASE tool and has been applied as the main database of the correlation.
It contains all details of alerts information from the 1999 DARPA testing data. Since the
system is not yet fully designed to optimise the system flexibility, the value for the database
is set in the coding itself. In the interest of efficiency, the system could be enhanced in the
future to enable the use of multiple databases and also allow the user to select a database as

a primary source of the correlation.

2. Logarithmic scale charts

All diagrams generated in the output module are categorised as a linear chart type (standard
type). However, due to a high number of data (that is alerts) being presented, the linear chart
type is not an optimal choice for the data illustration. The distance of which always represents
the same absclute changes in price. Owing to this issue, it might be worth describing the
data in a logarithmic chart type, which is useful to present data with large differences in
scale on the same chart. Unlike the linear chart that represents the same absolute change, a
given distance of the logarithmic chart represents the same percentage change in price. For
instance, the distance from 10 to 100 on a logarithmic chart is the same as the distance from
1 to 10 on a linear chart, but the former distance is ten times greater on a linear chart.

3. Improved signature plot diagram

The signature plot diagram presented on the "Signature Analysis” tab undoubtedly provides




7.6. The Implications of the Practical Evaluation

W INREAIYTS 03 75 10 I ¥yy 8.

Time(days) vs No of True alarms
|

o |
l
Koe B . | II
l ‘ |
| 15 f
!
[ .
. |
B | 1 I.|l

!
4

Figure 7.19: SMART - Time (days) vs No of True alarms

[T eeer—_, 3 1)

~No of Alerts

’|i
. = —

a general overview about the distribution of IDS alerts from a particular signature. However,
the diagram seems to be lack of informative details to trace the elements illustrated in the
figure, such as the IP addresses and the exact time of occurrence. It would be better if an
additional table/description or link is given in the future to connect the alerts described in the
plot diagram to the main alert table. This way the diagram will be more useful for the analysis
process.

. Memory usage

If a Java application involves a large amount of data processing (consuming large amounts of
memory) or is long lived, there is a possibility that out of memory exception can be thrown.
With a significant (infinite) number of alerts processed by the application, the system on which
the program is running may have run out of physical and virtual memory. Besides, the cre-
ation of a large number of individual charts, that is chart window (without closing the un-
wanted charts) may just be another cause of this error. Therefore, several ways to address
this problem is by modifying the maximum heap size of the virtual machine, creating mulliple
charts on a window, or even redesigning the application. Designing applications for minimal
memory consumption is not an easy job. Since it is more of a design problem, several program-
ming techniques, such as the use of more efficient algorithms or subdividing tasks into smaller
pieces are recommended to solve this error. In this scenario, the easiest way to answer this
problem to change the maximum memory heap size, for example by using the Xms and Xmx
JVM options: — X mr for maximum heap size and — Xms for initial heap size, for example,

—Xms256m — Xmzb12m

111




| Chg._}_{ter 7. A Prototype Alarm Correla_ziﬁ-ygtem

‘ f 999937940 19550330 s S——— 4]
| T’Ine(months) vs No ol Trne alarms

r

MONTH

No of Alerts

Figure 7.20: SMART - Time (months) vs No of True alarms

In the future, an analysis on the Java memory usage should be conducted to ensure mini-
mal memory consumption and if necessary, the system could be redesign to achieve efficient
algorithms.

5. Processing time

Since the system is implementing an unsupervised approach of correlation using SOM algo-
rithm, the processing time may vary significantly and it is not uncommon that the processing
time may take so long. This issue has certainly rendered the system inefficient. Bear in mind
that the higher the number of clusters required, the longer the correlation will take. In the
first stage correlation, there is no exact value of k (that is number of clusters) variable in each
correlation. In other words, the number of clusters to be formed in this stage is unknown;
therefore the value is then set as half of the length of data. On the other hand, the k value of
the stage2 correlation has been defined as 2 as the correlation aims to group the alerts into

two classes, namely clusters of true and false alarms. Therefore, by looking at the k values
from both stages, there is no doubt that the first correlation will take time longer than the
second classification due to its large k value. The only solution to address this issue in the |
future is perhaps revising the applied method, for instance by reducing the size of the map or

the number units (neurons) in each correlation. Although determining an ideal map size is
not a straightforward task but surely this will speed up the correlation process.




7.7. Experiment Results

_L:l;;i‘i

No of Alerts

Figure 7.21: SMART - True Alarms vs False Alarms (hours)

7.7 Experiment Results

Having demonstrated the prototype system, it is now essential to evaluate the performance of the
system itself on the complete DARPA data set and the real network traffic (University data set).
The results of the correlations run by the system on both data sets are compared with the outcomes
of the previous experiments described in Chapter 4. In this case, an evaluation is conducted to find
out whether the false alerts identified in the earlier experiments can be correctly classified by the
prototype system. The results of the correlations on both data sets are presented in the following

subsections.

7.7.1 DARPA Data Set 1999

As previously mentioned in subsection 7.5.1, due to the memory issue, only 56,119 alerts from the
two weeks DARPA 1999 testing data set were fed into the correlation system. A total of 13 hours of
alerts were skipped during the correlations

The evaluation revealed that 57% of the total alerts processed by the correlation system were
classified as false alarms. And more importantly, at least 50% of the total false alarms identified in
the earlier experiments were correctly detected as false alerts by the correlation engine. Table 7.1
below presents top five false alarms and its reduction rate using the correlation system.

Overall, the experiment yielded a quite promising result; with most of the noisy alerts such as
the ICMP and web bug alerts were effectively eliminated up to 78% in the best scenario. Indeed,
the superfluous alerts such as the web bug alerts (from "INFO weh bug 1x1 gif attempt” signature)
contributed to 35% of the total false alarms. Such alerts were regarded as pure false positives

113




Chapter 7. A Prototype Alarm Correlation System

. = [B]%)!
True alarms vs False alarms (days)

:
5
DAY
[ Fatw s < T darm] |
Figure 7.22: SMART - True Alarms vs False Alarms (days)
Table 7.1: DARPA — Reduction Rate of Top 5 False Alarms
| . | No of False Alarms Reduction
B | Blgentures Before | After | Rate (%)
[, T INFO web bug 1x1 gif attempt ' [ 22,559 1769 | 78.44
2. | ICMP Destination Unreachable Port Unreachable | 14,017 | 6,465 | 46.12
3. ICMP Echo Reply | 11,275 2,508 | 22.24
4. ICMP Ping 75259 | 2639 | 50.18
[ 5. | ) CHAT IRC message - 11829 | 456 | 2493 |

since they were not in common with any true alarms. A complete list of signatures and their
corresponding reduction rate is presented in details in Appendix B.

Although the preliminary experiment presented in Chapter 5 yielded a remarkable result; up
to 99% reduction of false alarms, the experiment on the complete data set produced a far more
realistic result, ranging between 20-70%. The cause of the difference is the amount of alerts used
in the experiments and the variation of the corresponding signatures. The preliminary experiment
used only a small of chunk of DARPA data set, which inadvertently contains a high number of
"noisy” false alerts that can be effortlessly filtered by the correlation engine. On the other hand,
the complete data set contains a variety of false signatures, including uncommon false signatures,

which are not easily spotted by the proposed system.

Like other correlation engines, the proposed system does suffer from one major drawback, namely
its inability to filter the false alarms from infrequent signatures since it relies on the frequency and
the time interval of alert occurrences to distinguish between the true and the false positives. In-

frequent signature refers to a signature that rarely triggers any alert. Only six percent of the total




7.7. Experiment Results

True alarms vs Fabe alarms (months)

[:_-- AT ed PN TR IR 201200 L | T ———— dda!
|
7
[

‘i
| |
1 B |

3 . '
: |
2. 'i

|

1

|

MONTH
L |-*_.r- S B True Ao l
Figure 7.23: SMART - True Alarms vs False Alarms (months)
Table 7.2: DARPA — Misclassified Alerts
' | ; ' Misclassified Alerts | Reduction |
N Signatures “Before | After | Rate (%) |
L (portscan) TCP Portscan 5 123 [ 118
2. WEB-CGI phf access 4 72 68
3. WEB-MISC handler access 2 72 70
4 ~ WEB-CGI test-cgi access 0 73 73
| 5. RPC Portmap listing TCP 111 0 40 40
6. | SNMP missing community string attempt 0 2 2

non-noisy false alerts (that is excluding the top four false alarms) were perfectly detected. The lists
of the unfiltered false alarms and correctly identified true alarms from the DARPA data set are
presented in Appendix B.

In terms of the true positives, the system fared well in detecting the true alarms. It did perfectly
identify and group the real alarms into the category of true positives. Having said that, there is a
possibility that the correlation engine might have misclassified a relatively small percentage of the
true alarms as false alarms. For example, the system incorrectly classified two out of five "SNMP
missing community string attempt” alerts as false alarms. The cause of this error was that the
misclassified alerts appeared to have higher frequency rate and lower time interval than the other
three alerts. This occurs when the true alerts are classified into wrong clusters (that is cluster
of false alerts) in the stagel correlation. Although such an issue can seriously affect the system
performance, it is deemed to be a common limitation in the field of unsupervised classification.
Consequently, future works could be carried out to enhance the correlation algorithm by using

115




Chapter 7. A Prototype Alarm Correlation System

Time(hours ) vs False Signatures

f Adew iy

Figure 7.24: SMART - Time (hours) vs False Signatures

more enhanced SOM methods such as Time Adaptive Self Organizing Map (TASOM). TASOM is an
extension of basic SOM, which provides flexible correlation parameters, such as learning rate and
neighbourhood size (Shah-Hosseini and Safabakhsh, 2000). Table 7.2 presents a list of misclassified
alerts.

7.7.2 University of Plymouth Data Set

As for the University private data set, the first 15 days (starting from 17th May 2007 to 31st May
2007) of data that contributed to total 54,893 alerts were fed into the correlation engine. The alerts
were triggered by 37 signatures and 31 of which generated hundred per cent false positives.

In this context, the false alarms highly outnumbered the true alarms. Approximately 99% of
the total alerts were asserted as false positives in the previous experiments. Significantly, the
correlation system yielded a remarkable result by detecting up to 72.5% of the total false alerts
identified previously. Table 7.3 shows a list of top five signature rules, the number of alerts relative
to the signatures and also their corresponding reduction rate.

From the figures shown in Table 7.3, it is obvious that the prototype system is effective in fil-
tering noisy or excessive alerts, which accounted for 90% of the total false alerts, such as those
from "WEB-IIS view source via translate header” and "WEB-MISC robots.txt access” signatures.
Both signatures were are affirmed to raise only false positives and to have high frequency rate as
well as short time lapse between alert occurrences. In this example, 93.15% of false alarms from
WEB-MISC robots.txt access signature were effectively filtered, whilst the WEB-IIS view source
via translate header alerts were reduced by 74.24%.

More importantly, none of the true alarms in this example were misclassified as false alarms, A




7.7. Experiment Results

- JO N}

Time{days) vs False Signatures

& ' Adwrin

Figure 7.25: SMART - Time (days) vs False Signatures

Table 7.3: University of Plymouth Private Data — Reduction Rate of Top 5 False Alarms

No of False Alarms Reduction

| .

! N Blgnaiuxes Before | After Rate (%) |

[ 1 WEB-IIS view source via translate header [ 33902 [ 25,170 7424 |

[ 2. - WEB-MISC robots.txt access | 11,073 10,315 93.15 l
3. ICMP L3retriever Ping | 4,355 2,097 | 4815

| 4. | (bttp_inspect) BARE BYTE UNICODE ENCODING | 2,489 1,385 | 55.64

| 5. POLICY Google Desktop activity [ 1,272 456 | 3585

complete list of correctly identified true signatures as well as a list unfiltered false alarms from the
University of Plymouth data set are presented in Appendix B.

Despite its ability to effectively detect various noisy alerts, the system was unable to filter false
positives from uncommon signatures. This means that a rare signature with a low frequency rate
is more likely to be classified as a true alarm. In fact, only 37.6% of the total non-noisy false alerts
(that is excluding the top three false alarms) were correctly flagged as false positives.

Compared to tuning method, which was discussed in Chapter 4, SMART reveals a better average
reduction rate, as shown in Figure 7.32.

As depicted in Figure 7.32, SMART performed less well in both WEB-IIS view source via trans-
late header and ICMP L3Retriever Ping cases. As discussed in Chapter 5, the proposed system
relies on the time interval and frequency rate of each signature to filter the false alarms. The oc-
currence rates of WEB-IIS view source via translate header event are varied, depending on the
allocated time windows. Therefore, alerts with lower frequency rate (refers to Chapter 6 to see

117



(iapter 7.A Protot}_f;_;ﬂlarm Correlar_ion S}rﬂzm

- -0
Tme(months) vs False Signatures

o of Alerts

MEONTH

Figure 7.26: SMART - Time (months) vs False Signatures

how frequency rate and time interval are calculated) are more likely to be flagged as true than
false alarms. Conversely, tuning looks for overly specific pattern to reduce false alarms. Whilst the
technique effectively eliminates false alarms by 90%, it is more inclined to produce false negatives.

In terms of ICMP L3Retriever Ping, the thresholding method (refers to Chapter 4 to see how
this signature is tuned) appeared to outperform the proposed system. This signature triggered
a significant number of constant alerts, which could be easily suppressed using the thresholding
technique. It is worth remembering that the only purpose of performing thresholding is to limit the
occurrence of the alerts within a particular period. This, therefore, creates a possibility of missing
real alerts.

On the other hand, SMART could only detect 48% of false alerts from this signature. As the
alerts contain the same destination IP address, SMART assumed the alerts were triggered due to
the same event if they occurred within a three-minute time frame (as explained in Chapter 6). As
such, the occurrence rate of events related to this alert was much lower than the frequency rate of
the alert itself. With the low event frequency rate, the alerts are therefore more likely flagged as
true alarms.

Although SMART appears less effective in both cases, it efficiently addresses the issue of sub-
jective rule suffered by the tuning method (as explained in Chapter 4). This is demonstrated by its
ability to filter WEB-MISC robots.txt access up to 93%, whilst only 10% can be reduced by tuning




7.7. Experiment Results

Time({hours) vs True Signatures

Figure 7.27: SMART - Time (hours) vs True Signatures

(as shown in Figure 7.32).

In order to achieve optimal results, SMART could be used to validate IDS alerts and tuning
should be performed on signatures of the validated false alerts. The combination of both techniques
could surely enhance the performance of IDS in filtering false alarms. Indeed, SMART presents
a more condensed view of the false alarm issue that can significantly help the administrator in
performing future tuning.

Overall the system yielded a promising result, with an average reduction ratio of 65% was
achieved on both DARPA and private data set. Although the result proved the efficiency of the
proposed model in detecting noisy (superfluous) alerts, not all of them could be perfectly filtered.
Alerts from the same signature could have different frequency rates and time intervals, depending
on the time windows the alerts belonged to. Therefore, an alert with a lower frequency than others
from the same signature could be detected as a true alarm.

Compared to other existing machine learning techniques, such as data-mining and supervised
learning, as listed in Table 5.5 in Chapter 5, the proposed system appears less effective in reduc-
ing the false alarm. The result, however, is positively biased given its reliance on the validation
data set. On the other hand, the system demonstrates a reasonable outcome when it is compared
to other unsupervised clustering algorithm, called autoassociator proposed by Smith et al. (2008).
Their system obtained an aceuracy of 67.4%, which is 5.1% lower than SMART (comparing with
the SMART’s best performance on the University of Plymouth data set - 72.5%). Moreover, this
experiment also highlighted a common built-in shortage suffered by the unsupervised methods,
namely the sensitivity of the detection results to the parameters, which are difficult to be deter-

119



Chapter 7. A Prototype Alarm Correlation System

Time(days) vs True Signatures

Figure 7.28: SMART - Time (days) vs True Signatures

mined. In this context, the parameters are the number of clusters and the size of time windows for

the correlation.

7.8 Conclusions

This chapter described the SMART prototype system. demonstrating the features and interfaces
of the SMART prototype system, detailing the system functional requirements via modelling lan-
guages and evaluating the system performance based upon the experiments on DARPA and Uni-
versity private data sets. The system interface consists of two main components; input and output
interfaces. The user-friendly input interface enables the user to enter inputs and initiate a correla-
tion, whilst the output interface presents the results of the correlation to the user.

The key objective of describing the system functional requirements is to gain better understand-
ing of the inherent behaviours of the system. The functional requirements analysis specifies the
interaction between the proposed system and the external agent — the administrator and explains
the structure as well as the processes involved within the correlation. The analysis presents several
modelling languages; including a behavioural diagram, an interaction diagram, an activity diagram
and a static structural diagram.

Significantly, the result of the experiments proved the effectiveness of the SMART in filtering
noisy alerts, with an average reduction rate of 65%. It is worth remembering that the accuracy of

the unsupervised-based SMART system significantly depends on the initial parameters (in other

words, the number clusters applied in the correlation and the size of time windows). This indicates




7.8. Conclusions

Tme(months) vs True Sigaatures

Figure 7.29: SMART - Time (months) vs True Signatures

the major limitation of the unsupervised methods, which makes them less favourable than the su-
pervised learning methods. Having said that, unsupervised techniques involve less computational
overhead than supervised learning since no domain knowledge and maintenance required once all
the initial parameters are determined.

Overall, the contributions of this study can be summarised as follows:

1. Proposing a novel framework for off-line correlation of alerts based on their attributes. The
proposed framework classifies IDS alerts based on the most relevant features that highlight
their behaviours.

2. Developing a two-stage correlation approach based on time windows using unsupervised al-
gorithm. The key objectives of this method are to identify or aggregate alerts from the same
attack instance and to classify alerts into two categories, true and false alarms

3. Proposing a front-end interface that offers a statistical tool, allowing the administrators to
evaluate the trend of IDS alarms and to do a comparison between the true and false alarms.

The development of the prototype has also helped to enlighten the SMART architecture, especially
in areas relating to how alert features are selected and used in the correlation. For instance, the
two leading attributes; the time interval and number of events were chosen to reflect unique char-
acteristics of the alerts. Overall, the prototype has aided to prove the viability of the SMART
architecture. It has provided a practical validation of the ability to achieve an automated alarm
reduction tool. In a sense, the system in its current form is deemed to represent an enhancement
on existing false alarm reduction approaches.

121



Chapter 7. A Prototype Alarm Correlation System

ATTACK-RESPONSES 403 Forbidden Sl 5

ATTACK-RESPONSES 403 Forbidden
i EREREEE]

-]

3 -]

!-:- 5 (- -
> = =] B

I

P o " R0 2 9 F DO E DO BD

<]
H . a o

Tme (HOUR

Figure 7.30: SMART - ATTACK-RESPONSES 403 Forbidden (Plot Diagram)




Reduction rate

7.8. Conclusions

K
Dot CBCh on Tow sberTs W (190 C oty by wiew B poaybeod
False Alarm True Alarm
- - - T o - J
W - - -
o
I
Figure 7.31: SMART - ATTACK-RESPONSES 403 Forbidden (Alert Table)
95% ¢
30% 74% 728
— ¢ 65%
o 35% ®m Tunad
" ..« SMART
20 107
WEB-II5 vie: WEB-MIST ICMP L3Retriever Average
source viatrandate robotsttaccess Ping

header

Figure 7.32: Tuning vs SMART



Conclusions

This chapter summarises the thesis by reviewing the project’s achievements and underlining the
main limitations of the research. It then continues to detail potential new research fields within
which the work proposed could be improved in the future.

8.1 Achievements of the Research Programme

On the whole, the research has achieved all of the objectives initially identified in Chapter 1, with
a number of experiments and works carried out for the development of a new alarm correlation
system. The detailed achievements are:

1. A practical exploration of the problem of false alarms. The experiments conducted on both
synthesized network data (DARPA) and real network traffic (University of Plymouth private
data set) enabled first-hand assessment of the IDS performance and the quality of alerts pre-
sented.

2. A practical investigation and assessment of the feasibility of fine tuning (as described in Chap-
ter 4). This revealed that the eonventional alarm reduction method does help reducing false
alarms but it requires a thorough examination of the protected environment by the qualified
IT personnel before the tuning can be performed. In fact, the tuning requires a frequent up-
date to keep up with the flow of new vulnerabilities or threats discovered; otherwise it might
increase the risk of missing real attacks.

3. Investigation of the drawbacks of existing alarm correlation techniques and the problems that
lead to excessive false alarms (Chapter 2 and 3). Contributions of previous alarm correlation
studies have also been reviewed, determining the scope and necessity for further enhancement
(Chapter 3).

4. The proposal and realisation of a novel alarm correlation concept using unsupervised algo-
rithms (Self Organising Map and K —Means). The proposed technique consists of two stages
of correlation, aggregating alerts from the same attack instance and classifying alerts into
groups of true and false alarms, and has been assessed using alerts from both synthesised
and real networks (Chapter 5). A number of alert attributes were selected and used to define
the relationships between alerts by clustering them based on their similarity.

5. The design and development of the SOM K —~Means Alarm Reduction Tool (SMART) architec-
ture, in which the unsupervised techniques are implemented to improve alarm management
(Chapter 6). The main concepts of the proposed architecture, aside from minimising the false
alarm rate, are the ability to correlate all alerts triggered by a single event and to help discover
the potential attack scenarios.

125



Chapter 8. Conclusions

6.

The implementation of a working prototype of the SMART system in order to validate the
viability of the proposed architecture and the ability to achieve an automated false alarm re-
duction tool (Chapter 7). Apart from adopting the aforementioned correlation scheme within
the system, the prototype system also feature a user-friendly interface and a graphical report-
ing tool that enables the administrator to fully analyse the correlated alerts and also to create
a graphical report.

Several papers concerning the research topic have been presented and published at refereed journal

and conferences (the papers are attached in Appendix G) and have received positive feedback from

the associated reviewers. Therefore, it is considered that the research has made appropriate and

useful contributions to IT security field, and particularly in the domains of intrusion detection and

alarm correlation.

8.2 Limitations of the Research

Despite having met all objectives defined in Chapter 1, a number of limitations associated with the
work can be identified. The main points in this respect are listed below.

1.

126

Since in certain cases, a large amount of data (alerts) will need to be processed in a single
correlation, memory has always been an issue. The problem is derived from the MATLAB
application that serves as the main language of the proposed correlation engine. It is not
uncommon that MATLAB raises "Out of Memory” error when the system has in fact run out
of heap space to hold all variables. In this context, it is believed that the engine could only
process less than three thousand alerts per correlation (as mentioned previously in Chapter 7).
As such, this memory limitation could render the system impractical in a wider context. In
terms of its processing time, one correlation may take longer than other depending on the
size of data correlated and the number of units (neurons) applied. The bigger the data is
(consequently, a higher number of units applied), the longer the processing time will be. This
issue has become one of the significant drawbacks suffered by the proposed system. The
longest processing time ever measured is 7-8 hours, when the number of alerts processed
close to three thousands.

The correlation engine has been specifically designed and developed to process alerts from the
signature-based IDS only; particularly Snort IDS. The available time did not permit the devel-
opment of such system to focus on other IDSs such as anomaly-based IDS or other signature-
based examples. Although the proposed system is not widely applicable and is limited to Snort
only, it is considered valuable since Snort is the world’s most widely used IDS and has been
named one of the greatest open source programs of all time (Dineley and Mobley, 2009).

The SMART system would not be applicable to on-line correlation since it heavily relies on two
key features, the frequency and time interval between alerts to classify the alerts. Besides,
both attributes could only be computed from off-line alerts (in other words, alerts that have
been raised and logged into a database), meaning that the correlation could only be performed
after the intrusion detection is carried out. In spite of this limitation, however, it is believed




8.3. Suggestions and scope for future work

that the system would be more effective to run as an off-line filtering system as it allows the
administrator to evaluate the original alerts before being correlated.

8.3 Suggestions and scope for future work

As for potential future work, there are a number of areas, in which activities could be carried out to
build on what was done in this project. The details of the prospective works are summarised below.

1. Although overfitting has been compensated with the A —~Means algorithm (as explained in
Chapter 5), there is still an issue of dead centres, caused by a large number of map units be-
ing generated compared to the data set. Due to the strong topology relations of the SOM, these
dead centres are located between data clusters and thereby introduce data for the K —Means
algorithm in areas where no real data is. Thus, future work can be conducted to boost the sys-
tem performance by optimally minimising the number of neurons applied whilst preventing
the issue of under-fitting.

2. The correlation process involves several model selection procedures, for example choosing the
best number of units for the correlation map and selecting a good model based on the frequency
and the SSE value. Although current selection method is proved feasible in practice, however,
it is deemed necessary to improve the quality of the selection process by adopting a better
measurement theory. This aspect, nevertheless, represents an issue for further research in its
own right. One of the potential methods to be applied in this context is Minimum Description
Length (MDL) principle. The MDL is a technique for inductive inference that provides a basic
solution to the model selection problem (Rissanen, 1978). In fact, it is commonly used in
model selection process to determine the model complexity and give a better indication on the
model quality. Apart from providing an approach to determine the finest model, MDL also
provides a natural safeguard against overfitting (Grunwald, 2005). In the future work, it is
also essential to review or take a close look at the applied algorithm in order to enhance the
correlation system; for example by replacing A — Means with a more robust algorithm such as
Robust Growing Neural Gas. This, therefore, represents another research area, in which the
work presented in the thesis can be enhanced.

3. The proposed system aggregates alerts related to the same attack into a cluster. A future
work should be carried out to construct a potential attack scenario by identifying the logical
connections between alerts for each cluster.

4. As mentioned earlier, the proposed system has been specifically designed for Snort IDS only.
The input application, thereby, is limited to Snort-based alerts. Given this limitation, it is
beneficial that the future works should be directed to further improve the correlation engine
by focusing on more types of IDS such as other signature-based IDS and anomaly-based IDS.

5. Improving the front-end of the system or creating a more interactive user interface, is another
area that can significantly boost the presentation of the system. Therefore, revising the chart
scale, the signature plot diagram (as described in Section 7.6) and providing a comparison
of the results from different correlation time frames could represent other opportunities for
development, in which the work presented can be expanded.

127



Chapter 8. Conclusions

8.4 The Future for Automated Alarm Correlation Systems

With the widespread use of computer networks, the number of attacks has grown extensively. In
fact, the significant increase of everyday life dependency on Information and Communication Tech-
nologies has intensified the importance of survivability of networks. Intrusion Detection System
(IDS) has been an essential component of a complete defense-in-depth architecture for computer
network security. Although signature-based 1DS is believed to produce fewer false alarms than
the anomaly-based system, the packet inspection method or the fine grain analysis applied by
signature-based IDS causes the system to produce a high number of false alarms. The source of
such a large amount of alarms is induced by the nature of some categories of attacks which send
a large number of malevolent packets. Additionally, many attacks are launched in a sequence of
steps. The valuable information for the network administrator relies on the aggregation alarms
related to the different steps, rather than on each single alarm. More importantly, the alarms gen-
erated are often vague and could report the details of the detected event that are either too generic
or too specific. As a result, the ability to automatically correlate the alarms and filter the false
alarms is becoming increasingly important.

The development of an automated alarm correlation system now represents an active research
field in the intrusion detection domain, with a large number of research studies have been focused
on improving the correlation methods. In fact, current studies have significantly contributed to the
enhancement of the IDS false alarm filtering system. Nonetheless, the problem has still been far
from solved and there is still a significant scope to improve its performance. This research project
has contributed to the domain at several degrees. It has highlighted the importance of an alarm cor-
relation system, contributed in understanding of Snort-based alerts by proposing the Snort-based
alarm reduction system (SMART). More importantly, it has focused on enhancing the filtering mech-
anism, by basing the correlation decision on the alarm frequency rate and time interval between
events. As a consequence, the proposed alarm reduction system is able to aggregate alerts from the
same event or attack instance and significantly reduce the false alarms. From a wider perspective,
the correlated alerts produced by the proposed system has significantly improved the quality of IDS
alerts, thus providing a better or condensed view of security issues to the administrator.

The implementation of such approach and the proposal of the user-friendly alarm analysis in-
terface will enable the IDS alarms correlation technologies to mature. This will eventually enhance
the 1DS performance without reducing the values of the alarms generated, instead offer a better
alarm presentation (quality) that allows the administrator Lo properly analyse the detected threats.

128




A Results of the Experiment on 1999
DARPA Data Set and Snort IDS

A.1 True and False Alarms per Signature

Table A.1: False alarms per signature

' No ‘ Signatures_ ] False alarms ‘
1. | INFO web bug 1x1 gif attempt | 22559 |
2. | ICMP Destination Unreachable Port Unreachable ’ 14017 :

| 3. | ICMP Echo Reply 11275 |

| 4. | ICMP PING 5259
5. | CHAT IRC message 1829 |
6. | ICMP PING BSDtype 883 |
7. | ICMP PING *NIX 883 |
8 ATTACK-RESPONSES 403 Forbidden 792 |
9. | WEB-CGI redirect access 613

| 10. | (portscan) Open Port 601

| 11. | INFO TELNET login incorrect 594

12, | (spp-frag3) Fragmentation overlap 431

| 13. | ATTACK-RESPONSES directory listing 423

| 14. | UDP Portsweep | 353
15. | WEB-CGI count.cgi access ; 297 |
16. | ICMP redirect net ' 281 |

| 17. | ATTACK-RESPONSES Invalid URL 265
18. | CHAT IRC nick change 228
19. | CHAT IRC channel join o 219

| 20. | WEB-FRONTPAGE /_vti bin/ access 174 |

| 21. | WEB-IIS fpcount access 171 |
35 | (snort_decoder) WARNING: ICMP Original IP Fragmented 168 |

- | and Offset Not 0!

| 23. | WEB-CGI calendar access 167

| 24. | ICMP Time-To-Live Exceeded in Transit 157

.r_.-?_g. | WEB-MISC search.dll access 103

| 26. | WEB-MISC l;ackup access 99

Continued on next page

129



Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS

Table A.1 - continued from previous page

' No Signatures ' False alarms |

| 27. | WEB-CGI finger access : 83

| 28. | SNMP trap tep 79

; 29. | ICMP Destination Unreachable Host Unreachable 78

|. 30. | (portscan) TCP Portsweep 61
31. | WEB-CGI db2www access [ e0]
32. | WEB-MISC RBS ISP /newuser access '; 58 |
33. | (ftp_telnet) Invalid FTP Command _ 45

| 34. | WEB-MISC intranet access i 42 |
35. | WEB-IIS fpcount attempt 38 |

' 36. | WEB-CGI wrap access _ 37 |
37. | WEB-MISC counter.exe access 32 |
38. | (http_inspect) DOUBLE DECODING ATTACK 30 |

| 39.  INFO FTP Bad login 23

| 40. | (spp_stream4) TTL LIMIT Exceeded : 15
41. | WEB-CGI download.cgi access . - _ 14
42. | (ftp_telnet) FTP traffic encrypted 1 12 _

| 43. | WEB-IIS iissamples access 12 |
44. | WEB-FRONTPAGE shtml.dll access 11
45. | X11 xopen o 11
46. | WEB-IIS iisadmin access I 11 |
47. | WEB-MISC redirect.exe access 9

|‘ 48. | WEB-CGI icat access 8

| 49. | BACKDOOR MISC Solaris 2.5 attempt ' 8

| 50. | (portscan)_TCP Portscan B | 5
51. | WEB-CLIENT Microsoft emf metafile access 5 |
52. | ICMP Fragment Reassembiy Time Exceeded 4 |
53. | WEB-MISC Lotus Notes .pl script source download attempt 4|
54. | WEB-CGI phf access 4
55. | MULTIMEDIA Windows Media download 4

' 56. | WEB-IIS ISAPI .idq attempt 4
57. | WEB-MISC cat%20 access 4
58. | FTP passwd retrieval attempt 4|
59. | WEB-CGI phf arbitrary command execution attempt o 4
60. | WEB-CGI perl.exe command attempt : 4 |
61. | WEB-IIS ISAPI .idq access I 4|

"62. | WEB-MISC login.htm access i 4|

' 63. | WEB-CGI search.cgi access I_ 2 |
64. {i_’tpjelnet) Telnet traffic encryptéd .i_ 2|

Continued on next page



ftp://ftp.telnet

A.1. True and False Alarms per Signature

Table A.1 - continued from previous page

No Signatures | False alarms |
65. | (http_inspect) BARE BYTE UNICODE ENCODING 2

| 66. | WEB-MISC oracle web application server access 2

' 67. | SNMP trap udp 2 |

| 68. | WEB-MISC handler access 2
69. | RSERVICES rlogin root 1
70. | MS-SQL versicon overflow attempt 1

| 71. | MS-SQL ping attempt 1

| 72. | WEB-FRONTPAGE shtml.exe access 1]
73. | Bad Traffic Same Src/Dst IP B 1|

Table A.2: True alarms per signature

No | : - Signatures : True alarms

[ 1. : Open port - 11130

| 2. | Web-misc apache directory disclosure attempt 5628

i 3. | ICMP Destination unreachable port unreachable 4634 |

| 4. | TCP Portscan 1283
5. | (spp_frag3) Fragmentation overlap 713 |

|T Web-cgi phf access 700

! 7. | Web-cgi test-cgi access 696

. 8. | Web-misc handler access 696 |

| 9. | RPC Portmap listing TCP 111 398 |
10. | ICMP PING - 339 |

| 11. | Attack response directory listing 233

| 12. | INFO Telnet login incorrect 295 |

| 13. | INFO FTP bad login - 155
14. | SNMP Agent X/TCP request i 147
15. | SNMP Request TCP . - 133
16. | (sppfrag3) Short fragmen{ _p(_)sqible DoS attempt 123
17. | (spp_frag3) zero byte fragment packet 123

| 18. | (spp_frag3) fragment packet ends after defragmented packet 118

| 19. | UDP Portsweep 67

| 20. | SNMP Trap TCP 54

| 21. | TCP Portsweep : 38 |

| 22. | Misc source port 20< 1024 26 |

E= Finger/execution atitempt 24

Continued on next page

131



Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS

Table A.2 - continued from previous page

' No Signatures | True alarms |

| 24. | X11 Xopen 22 |
25. | Web-cgi perl.exe access 16 |
26. | ICMP PING *NIX 13 |
27. | ICMP PING BSD Type 13
28. | SHELLCODE X86 NOOP 13
29. l FTP command parameters were malformed 12 |
30. | FTP Port bounce attempt | 12 |

—
b

31. | Web-cgi perl.exe command attempt |

32. | Web-cgi cgi-bin /access
33. | Web-iis *.idc attempt

34. | Web-iis newdsn.exe access
35.

Web-iis perl access

Web-cgi phf arbitrary command execution attempt
37. | Web-misc cat %20 access

38. | (ftp_telnet) FTP command parameters were too long
39. | (ftp_telnet) invalid TCP command '
40. | Backdoor netbus active

w
]

41. | DNS TCP inverse query_overﬂuw

42. | ICMP echo reply

43. | NETBIOS SMB ADMIN$ unicode share access
| 44. | NETBIOS SMB C$ unicode share access

45. | NETBIOS SMB D$ unicode share access i
46. | Web-frontpage /vti_bin/access .
47. | Web-iis fpcount access

48. | Web-iis fpcount attempt
49. | Web-iis perl browse newline attempt |

50. | Web-misc /etc/passw

| 51 Web-misc queryhit.htm access

52. | SNMP missing community string attempt_
53. | Backdoor netbus getinfo )

54. | Finger 0 query

| 55.
| 56. | Finger root query

| 57. | ICMP Fragment Reassembly Time Exceeded

Finger redirection attempt

cum-p‘hﬂm.hAﬁplmlmmmmmmmmmmmma:m,-ql-qoomanoo

| 58. | Scan myscan B
| 59. | SHELLCODE Sparc NOOP
60. | UDP Portscan B

61. | FTP .rhosts |

Continued on next page



ftp://ftp.teinet

A.2. Tables of Attack Types Detected per Day

Table A.2 - continued from previous page

No Signatures True alarms |
62. | IMAP login buffer overflow attempt ! 3 |
63. | SHELLCODE Linux shellcode 3 |
64. | Bad Traffic Same Sr¢/Dst IP ' 2
| 65. | DOS BGP Spoofed connection reset attempt | 2 |
66. | FTP Satan scan : 2 |
67. | MISC source port 53 to < 1024 | 2 |
68. | Warning: ICMP Original IP Payload > 576 bytes ' 2 |
A.2 Tables of Attack Types Detected per Day
Table A.3: Day 1 - 29" March 1999
:_Aack Type ‘ Name Alert Quantit_y_|
: U2R yaga Attack response directory listing N 5_:
| R2L sendmail SHELLCODE X86 NOOP 2
I Xsnoop x11 xopen 2
snmpget SNMP missing community string attempt [ 3 |
guesstelnet | INFO Telnet login incorrect . : 14
guessfip [ INFO FTP bad login | 5|
__ ftpwrite | FTP .Rhosts T 2
Probe portsweep | ICMP destination unreachable port unreachable | 6
Table A 4: Day 2 - 30 March 1999
| Attack Type = Name | Alert ! Qaantity_
' DOS land Bad traffic Same sre/dst IP [ 1|
U2R sechole | Attack response directory listing 23
| R2L | phf Web-cgi phf arbitrary command execution attempt 1
| | Web-cgi phf access 1
! ! | Web-misc cat%20 access 1

133



Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS

Table A.5: Day 3 - 31* March 1999

Eﬁack Type Name Alert | Quantity |
"R2L neteat_setup ICMP Destination unreachable port unreachable | 6
imap SHELLCODE X86 NOOP 2
SHELLCODE Linux shellcode 2
IMAP login buffer overflow attempt 2 |
netcat_breakin | Attack response directory listing | 4]
| ncftp FTP Commands parameter were too long 1 |
named DNS TCP inverse query overflow 2
SHELLCODE X86 NOOP 2
X11 Xopen R 2
guessfip INFO FTP Bad login 150
| guest INFO Telnet login incorrect 16
guess telnet INFO Telnet login incorrect 40
: snmpget SNMP missing community string attempt 2
Probe satan ICMP Destination unreachable port unreachable | 8
' FINGER/EXECUTION attempt 12
‘ Finge; 0 query 2
i | Finger redirection attempt 2
| Finger root query 2

Table A.6: Day 4 - 1% April 1999

mck Type | Name Alert l Quantity |
DOS | teardrop | (spp_frag3) short fragment, possible DoS attempt 13
(spp frag3) zero byte fragment packet 13
| (spp_frag3) fragment packet ends 19

! after defragmented packet

R2L netbus Backdoor netbus active 2
ncftp _(l’tp._telnet) FTP command parameters were too long 1

guest INFO Telnet login incorrect [ 16 |
' xlock X11 Xopen [ 4
phf Web-cgi phf arbitrary command execution attempt 2
: Web-misc cat %20 access 2
Web-cgi phf access 2
| Web-misc /etc/passw ' 2
i Probe | ntis Web-frontpage /vti_bin/access 2
| Web-iis fpcount access 2
| Web-iis fpcount attempt 2

Continued on next page |




Table A.6 - continued from previous page

A.2. Tables of Attack Types Detected per Day

Attack Type | Name Alert Quantity |
Misc source port 20;1024 _ Al
Web-iis *.idc attempt 2 |
Web-cgi cgi-bin /access 2
| Web-cgi perl.exe access 4
Web-iis newdsn.exe access 2 |
Web-iis perl browse newline attempt 1 !
Web-iis perl access 4
Web-misc queryhit.htm access 2
NETBIOS SMB ADMINS$ unicode share access 2
NETBIOS SMB C$ unicode share access 2
NETBIOS SMB D$ unicode share access 2|
ipsweep | ICMP PING [ 12 |
Table A.7: Day 5 - 2" April 1999
| Attack Type | Name ‘ : Alert | Quantity |
U2R | loadmodule | INFO TELNET login incorrect : 4
| sechole | Attack response directory listing 34
' R2L | xlock | X11 Xopen o 4]
named DNS TCP inverse query overflow 2
| . X11 Xopen 2
' SHELLCODE X86 NOOP 2
. ncftp | FTP Command parameters were too long 2|
| netbus Backdoor netbus active 2
! | Backdoor netbus getinfo 2
| named SHELLCODE X86 NOOP 2]
iﬁ?cp inverse query overflow ]
!‘_Xll )_’Eupen : 2
Probe ipsweep | ICMP PING 12
;_portsweep | ICMP Destination unreachable port unreachable | 12
| ipsweep 204.233.47.21 — 172.16.114.50 ]
ICMP PING | 2 |
| ICMP PING BSD Type I 2 |
ICMP PING *NIX | 2 |
| | 128.223.199.68 — 172.16.112.3
| | ICMP PING 2
‘ ICMP PING BSD Type 2
ICMP PING *NIX 2

Continued on next page




Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS

Table A.7 - continued from previous page
| Attack Type Name Alert Quantity |

[ 204.71.51.16 — 172.16.114.5 ‘

ICMP PING

ICMP PING BSD Type 1

ICMP PING *NIX ‘

207.114.237.57 — 172.16.114 .4 '

ICMP PING

ICMP PING BSD Type 1

ICMP PING *NIX

209.1.12.46 — 172.16.114.1
|
|
|

ICMP PING
ICMP PING BSD Type

ICMP PING *NIX

194.7.248.153 — 172.16.112.1-254
| ICMP PING

ipsweep

262

Table A.8: Day 6 - 5" April 1999

_ Attack Type Name
' DOS pod

Alert ! Quantity |
ICMP PING ) 6
(spp_frag3) Fragmentation overlap 28
ICMP Fragment Reassembly Time Exceeded '
pod ICMP Fragment Reassembly Time Exceeded

Warning: ICMP Original IP Payload ; 576 bytes

ICMP PING
| pod | ICMP PING
' neptune | TCP Portscan
Open port 36
SNMP request TCP 40
SNMP Trap TCP 40
Scan myscan 2
SNMP Agent X/TCP request 40
| DOS BGP Spoofed connection reset attempt
U2R loadmodule | INFO TELNET login incorrect
fibconfig SHELLCODE Sparc NOOP
R2L guesstelnet | INFO TELNET login incorrect !
imap SHELLCODE Linux shellcode :
SHELLCODE X86 NOOP
IMAP login buffer overflow attempt

I

S| D N NN

Y
= b | O B |

Continued on next page




A.2. Tables of Attack Types Detected per Day

Table A.8 ~ continued from previous page

' Attack Type | Name | Alert | Quantity |
| dict | INFO TELNET login incorrect ] 86 |
| ncftp | (ftp_telnet) FTP command parameters were too lor_:_g | 1]
Probe portsweep | TCP Portscan ' 8 |
| Open port 1
| ipsweep | 128.223.199.68 - 172.16.113.3 )
, i ICMP PING 1
| ICMP PING BSD Type ‘ 1
ICMP PING *NIX | L
204.71.51.16 — 172.16.113.5 ‘ |
ICMP PING ! 1]
ICMP PING BSD Type 1]
ICMP PING *NIX 1|
| 204.233.47.21 — 172.16.113.50 |
: | ICMP PING 2 |
| ' ICMP PING BSD Type 9
| ICMP PING *NIX 2
207.114.237.57 — 172.16.113.4
' ICMP PING | it
ICMP PING BSD Type - 1|
ICMP PING *NIX 1
209.1.12.46 — 172.16.113.1
ICMP PING 1
| ICMP PING BSD Type 1
| ICMP PING *NIX 1

Table A.9: Day 7 - 6 April 1999

Attack Type Name | Alert Quantity |
| DOS : teardrop | (spp_frag3) Short F'ragmeni._possii:nle_DoS attempt . 90 |
| . (spp_frag3) zero-byte fragment packet | 90 |
‘ | (spp_frag3) Fragment packet ends 88

after defragmented packet |
. back | Web-mise apache directory disclosure attempt 3530 |
Open port 5 ‘
neptune | TCP Portscan : 14 l
Open port 52
| SNMP request TCP 81
j Scan myscan 2

~ Continued on next page ]

137



Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS

Table A.9 - continued from previous page

I Attack Type | Name Alert | Qliantity |
| SNMP agent X/TCP request 80

MISC source port 53 to | 1024 2

DOS BGP spoofed connection reset attempt 1
pod ICMP PING 10 I
| (spp_frag3) Fragmentation overlap 685 |
neptune | SNMP Request TCP 10 |

SNMP Trap TCP 10

| SNMP agent X/TCP request 10
U2R casesen | Attack response directory listing 8 |
| yaga | Attack response directory listing 12 |
| R2L XSNoop X11 Xopen . _2-
ftpwrite | FTP .rhosts 1|

ncftp (ftp_telnet) FTP Commands parameters were too long | 1

Table A.10: Day 8 - 7 April 1999

Attack Type | Name | Alert Quantity |
DOS | back | Web-misc apache directory disclosure attempt | 1138 |
 back Web-misc apache directory disclosure attempt | 480
U2R | fibconfig Shelicode Sparc NOOP : 2
R2L xlock X11 Xopen . | 2
phf Web-cgi phf arbitrary command execution attempt 2
Web-misc cat %20 access 2
Web-cgi phf access 2
Web-misc /ete/passwd 2
netbus BACKDOOR netbus active | 2 |
BACKDOOR netbus getinfo 2
Probe portsweep | TCP Portscan 4
Open port 16
Table A.11: Day 9 - 8" April 1999
| Attack Type | Name ~ Alert Quantity |
| DOS | teardro_p ] kspp_frag3) Short Fragment, possible DoS attempt 20 |
| (spp_frag3) zero byte fragment packet 20 I

Continued on next page |




Attack Typ

U2R

A.2. Tables of Attack Types Detected per Day

Table A.11 - continued from previous page

Name

casesen

yaga

Alert | Quantity _

i {za.m;:frag!i) Fragment packet ends

18

after defragmented packet

Attack response directory listing . 47 |
Attack response directory listing 26 |

sechole

R2L

phf

Attack response directory listing _ 42
Web-mise .-‘eLo?asswd i [
Web-cgi phf arbitrary command execution attempt
Web-misc cat%20 access

Probe

portsweep

ICMP Destination unreachable port unreachable

ntinfoscan |

Web-frontpage /vti bin/access
Web-iis fpcount access
Web-iis fpcount attempt
Misc source port 201024
Web-iis *.idc attempt
Web-cgi cgi-bin /access

o]

et
MN=QCNKGNMJ~&4\%%U!O‘-M5}C’)&ulh-hnhlml\bh;‘t\:

Web-iis newdsn.exe access

Web-cgi perl.exe access i
|

Web-iis perl browse newline attempt

Web-iis perl access

Web-misc queryhit.htm access I
NETBIOS SMB ADMINS unicode share access
NETBIOS SMB C$ unicode share access

NETBIOS SMB D$ unicode share access

Web-cgi perl.exe command attempt

FTP Port bounce attempt

FTP command parameters were malformed

TCP Portscan
Open port |
ICMP PING '
ICMP echo reply I
ICMP Destination unreachable port unreachable | 2682

|

Finger/execution attempt ' 12
Finger 0 query 2

| Finger redirection attempt 2

Finger root query ' 2
SNMP request TCP ‘ 2 |
SNMP Trap TCP 2
SNMP agentX/TCP request ‘

UDP Portscan 4

Continued on next page

139



Appendix A. Results of the Experiment on 1999 DARPA Data Set and Snort IDS B
Table A.11 - continued from previous page
Attack Type | Name - Alert | Quantity |
SNMP trap UDP 2
| FTP Satan scan 2
ipsweep | ICMP PING 12
_ ‘ ICMP echo reply 4
mscan | TCP Portscan 1248
‘ Open port 11011
| | TCP Portsweep 38
| ICMP Destination unreachable port unreachable | 1908
! | UDP Portsweep ' 67
| Web-cgi phf access 695
Web-misc handler access 696
SNMP agentX/TCP request 16
‘ RPC Portmap listing TCP 111 398
| Web-cgi test-cgi access 696

Table A.12: Day 10 - 9™ April 1999

| Attack Name | Alert | Quantity |
DOS | back | Web-misc apache directory disclosure attempt 480
land | Bad Traffic Same Src/Dst IP 1

UZR yaga | Attack response directory listing 16 |
| eject (ftp_telnet) invalid TCP command ’ 6
| casesen Attack response direclury-listing T 16

| R2L XSNoop X11 Xepeﬁ ' 2 |

I guest INFO Telnet Login incorrect 1 8~|
sendmail SHELLCODE X86 NOOP 2

Probe Portsweep ICMP Destination unreachable port unreachable 6




B Results of the Experiments on
Snort vs SMART

Table B.1: 1999 DARPA Data Set — Reduction Rate

| No of False Alarms @ Reduction |

| No Bigosiures Before '|-— After Rate (%)
1 | INFO web bug 1x1 gif attempt 22,559 } 17,696 78.44
2. | ICMP Destination Unreachable Port Unreachable | 14,017 6_,_465 | 46.12
3, ICMP Echo Reply 11,275 2508 | 2224
4 ICMP Ping | 5,259 2639 | 5018
| 5. CHAT IRC message 1,829 456 ’ 2493
6. ICMP PING *NIX 883 ’ 17 1.93
7. 1 ICMP PING BSD Type 883 | 17 | 193 |
8. | ATTACK Responses 403 forbidden 792 | 109 13.76 |
9. WEB-CGI redirect access 613 | 95 _ 15.5 '
10. | (portscan) Open Port 601 | 230 | 3827 |
11. INFO Telnet login incorrect 594 | 80 | 1347 ‘
12. | - (spp_frag3) Fragmentation overlap 431 | 160 37.12 |
13 Attack response directory listing 423 61 14.42
14, | UDP Portsweep 353 | 67 18.98
15. | WEB-CGI count.cgi access 297 | 29 9.76
16. ICMP Redirect net 281 | 30 | 1068 |
[ 17. ATTACK Responses invalid URL 265 41 15.47 '
18. CHAT IRC Nick change 228 | 43 | 1886 |
19 CHAT IRC Channel join 219 43 | 1963
20. | Web-iis fpcount access 174 | 10 . 5.75
21. | WEB-CGI calendar access . 167 12 | 7.19
{ 22. | WEB-MISC search.dll access 103 4 | 3.88
EX WEB-MISC backup access 99 | 8 8.08
l 24. | WEB-CGI f:1r1g_er access 83 : 9 1084
| 25. | TCP Portsweep 61 | 7 1148
26. | Web-frontpage /vti_bin/access 38 10 2632 |
[ 27. | WEB-CGI wrap access 37 2 5.41
' 28. | (http_inspect) DOUBLE DECODING ATTACK 30 8 26.67

141



Appendix B. Results of the Experiments on Snort vs SMART

Table B.2: 1999 DARPA Data Set — Unfiltered False Alarms

[No | ) Signatures
1] ) WEB-IIS fpcount attempt
| 2 ICMP Time-To-Live Exceeded in Transit
3 ICMP Destination Unreachable Host Unreachable
4 WEB-MISC RBS ISP /newuser access
5 (ftp_telnet) invalid FTP command
6 WEB-MISC intranet access
7 N WEB-MISC counter.exe access
8 INFO FTP bad login
9 (spp_stream4) TTL LIMIT Exceeded i
10 WEB-CGI download.cgi access
11 - (ftp_telnet) FTP traffic encrypted
| 12 ) WEB-1IS iissamples access
| 13 | WEB-FRONTPAGE shtml.dll access
14 1 a x11 xopen
15  WEB-IIS iisadmin access
16 WEB-MISC redirect.exe access |
17 WEB-CGI icat access
18 BACKDOOR MISC Solaris 2.5 attempt |
19 | WEB-CLIENT Microsoft emf metafile access |
20 WEB-MISC Lotus Notes .pl script source download atter;:lpt
21 MULTIMEDIA Windows Media download
| 22 WEB-IIS ISAPI .idq attempt
23 WEB-CGI phf arbitrary command execution attempt
24 o FTP passwd retrieval attempt
25 WEB-MISC cat %20 access B
26 ~ WEB-CGI perl.exe command attempt |
27 WEB-IIS ISAPI .idq access
28 WEB-MISC login.htm access
29 WEB-CGI search.cgi access
30 | RSERVICES rlogin root
31 | MS-SQL version overflow attempt
32 MS-SQL ping attempt
| 33 WEB-FRONTPAGE shtml.exe access
34 (snort decoder) Bad Traffic Same Sre/Dst IP
35 WEB-CGI db2www access




Table B.3: 1999 DARPA Data Set — Correctly Identified True Alarms

Sig;atures

SNMP Trap TCP

(ftp_telnet) FTP command parameters were too long

FTP Port bounce attempt
WEB-MISC queryhit.htm access

5 | WEB-IIS perl access
[ 6 ‘ Misc source port 20;1024
7 | FTP .rhosts
8 ' WEB-MISC apache disclosure attempt
9 | WEB-IIS newdsn.exe access
10 | WEB-IIS *.idc attempt o
11 IMAP login buffer overflow attempt
12 SHELLCODE Linux shellcode o
13 Backdoor netbus active
14 | WEB-IIS perl browse newline attempt
15 Finger redirection attempt
16 Finger 0 query
17 Finger root query o
| 18 DNS TCP inverse query overflow
19 | FTP Satan scan
(20 Finger/execution attempt
| 21 SNMP Agent X/TCP request
22 | WEB-MISC /etc/passw
23 | Scan myscan
24 SHELLCODE Sparc NOOP
25 SNMP Request TCP
26 | (spp_frag3) fragment packe_t ends after defragmented packet
27 |  NETBIOS SMB D$ unicode share access
28 : DOS BGP Spoofed connection reset attempt
29 | SHELLCODE X856 NOOP
30 ! (spp_frag3) zero byte fragment packet
31 | NETBIOS SMB ADMINS$ unicode share access
32 NETBIOS SMB C$ unicode share access
| 33 (ﬁp__t,elnet) FTP command parameters were malformed
| 34 | (spp_frag3) Short fragment, possible DoS attempt
35 | Backdoor netbus getinfo J
36 | WEB-CGI perl.exe access
37 o WEB-CGI cgi-bin /access

143


ftp://ftp.telnet

Appendix B. Results of the Eitpen'men.ts on Snort vs SMART

Table B.4: Plymouth Data Set — Reduction Rate

No e sitavon No of Fallse Alarms_ Reduction
- Before @~ After Rate (%)
" 1. | (http_inspect) BARE BYTE UNICODE ENCODING | 2489 | 1385 55.64
2. | (http_inspect) DOUBLE DECODING ATTACK 207 | 3 | 145 |
2 (portscan) TCP Portsweep 56 1 1.79
| 4. ATTACK-RESPONSES 403 Forbidden 313 21 6.71
| 5. | ICMP La3retriever Ping 4355 2097 48.15
6. | POLICY Google Desktop activity 1272 | 456 | 3585
| SPYWARE-PUT Trackware funwebproducts
7 , _ 763 123 16.12
mywebsearchtoolbar-funtools runtime detection

' 8 |  WEB-IIS view source via translate header 33902 | 25170 | 74.24
9. WEB-MISC robots.txt access 11073 | 10315 | 93.15

Table B.5: Plymouth Data Set — Unfiltered False Alarms

‘ o Signatures |
(http_inspect) IIS UNICODE CODEPOINT ENCODING |
(http.inspect) WEBROOT DIRECTORY TRAVERSAL '

1

2

3 (portscan) Open Port
4 | (portscan__}_'rc_?f’ Portscan
5

-

[ (snort_decoder) WARNING: ICMP Original IP Fragmented and Offset Not 0! |
| ICMP Destination Unreachable Communication Administratively Prohibited |

ICMP Destination Unreachable Communication with Destination
| | Host is Administratively Prohibited
| 8 | o ICMP PING NMAP
9 - ICMP redirect host
| 10 ICMP Source Quench
| 11 MULTIMEDIA Quicktime User Agent access
12 SPYWARE-PUT Trickler teomasearchbar runtime detection
13 | WEB-CGI calendar access
14 WEB-FRONTPAGE /_vti_bin/ access
15 WEB-IIS asp-dot attempt
16 | WEB-MISC .DS Store access
17 | WEB-MISC WebDAV search access
18 | WEB-PHP calendar.php access
19 | WEB-PHP remote include path
20 | WEB-PHP test.php access

Continued on next page




Table B.5 - continued from previous page

No Signatures
21 . WEB-PHP xmlrpc.php post &-3[;111;!1
Table B.6: Plymouth Data Set — Correctly Identified True Alarms
No _ . o Signatures - -
1 | . ICMP PING CyberKit 2.2 Windows ]
2 i SPYWARE-PUT Adware hotbar runtime detection - hotb_ar_use_r-a—ge-.n_t_
3 | 'SPYWARE-PUT Hijac.k_er Marketscore runtime detection
4 SPYWARE-PUT Hijacker searchmiracle — elitebar runtime detection
5 SPYWARE-PUT Trackware alexa runtime detection |
6 WEB-CGI formmail access :

WEB-MISC Domino webadmin.nsf access




C The Pseudocode

C.1 Main Alarm Aggregation Pseudocode

dataTert]l as the data containing alarm attributes
figureNamel as the name of final mapping figure
stagel Res as the name of text file that will contain the classification result
minl D as the smallest alert ID from the processed alerts
{Data Mapping}
READ dataTextl
OBTAIN normalised data via var method
COMPUTE IP address attributes’ weights as 1.8 times current values
GET the best size of map based on the smallest quantisation and topographic errors
{This called function will be expanded in subsection C.2.1}
CREATE the map via som_make method
CLASSIFY data on the map using K-means algorithm and STORE the result into data_ind
{This called function will be expanded in subsection C.2.2}
{data_ind is a cell array with size of (maximum number of clusters x 1)}
COMPUTE y as the length data_ind
{¥ = number of clusters resulted from the classification}
COMPUTE =z as length of input data
{Output Writing(MySQL database)}
SET No.alerts to x
SET No_clusters to y
INIT result as a cell array size (2, 1)
{A cell array with size of 2 rows and 1 column}
{DETERMINE num as the highest cluster number from table stagel }
if num is not a number then
SET hto0
else
SET h to num
end if
fori=1to No.alerts do
for j = 1 to No_clusters do
COMPUTE clust as sum of h and j
COMPUTE [en as the length of data_ind with array position ()
for r = 1tolen do

if minl D is equal to data_ind with array position (j) and element number (z) then



Appendix C. The Pseudocode

APPEND minl D to result with array position (1)
APPEND clust to result with array position (2)
Break out of loop
end if
end for
if length of result with array position (1) is not equal to 0 and the last element of result with
array position (1) is equal to i then
Break out of loop
end if
end for

Increment minlD
end for
for c = 1 to No_alerts do
INSERT into table Stagel (MySQL database) the values of result array position (1), element
number () and result array position (2), element number (¢).
end for
{Writing data index into a file}
OPEN a file named stagel Res for writing; discard existing contents
SET pj to No_clusters
for: =1top;do
SET len to length of data_ind with array position (z)
if len = 0 then
WRITE "NA”
INSERT carriage return
else
WRITE the values of data_ind with array position (z) and element number 1 to (len — 1)
INSERT "~
WRITE the values of data_ind with array position () and element number [en
INSERT carriage return
end if

end for

C.2 Called Functions Pseudocode

C.2.1 GET the best size of map based on the smallest quantisation and
topographic errors

SET sA as data struct

OBTAIN data field from sA and STORE it into D

DETERMINE the size of D and STORE into variables dlen and dim

{dlen (row) is the number of alerts being processed, whilst dim (column) is the number of at-
tributes per alert}

SET munit to the sum of dlen and 100



http://stageiB.es

C.2. Called Functions Pseudocode

CREATE a map via som make function with the number of units set to munit
CALCULATE its quantitative and topographic errors via som_quality method and STORE the
values into an array [mge, fge]
{mge is a quantitative error, whilst tge is a topographic error}
ROUND mge to not more than three decimal points
ROUND tge to not more than three decimal points
while mge > 0.1 or tge > 0.1 do
COMPUTE munit as munit + 10
CREATE a map via som_make function with the number of units set to munit
CALCULATE its quantitative and topographic errors via som_quality method and STORE the
values into an array [mge, ige]
ROUND mge to not more than three decimal points
ROUND tge to not more than three decimal points
end while
RETURN munit

C.2.2 CLASSIFY data on the map using K-means algorithm and STORE
the result into data_ind

SET sA as data struct

sMap as trained map struct

figureNamel is a string containing the name of final mapping figure

minl D as the smallest alert ID from the processed alerts

n_maxr as maxium number of clusters

c_mar as maximum number of k-means runs

verbose as verbose level, 0 by devault

OBTAIN data field from s4 and STORE it into IJ

DETERMINE the size of D and STORE into variable dlen and dim

{dlen is the number of alerts being processed (row), whilst dimn is the number of attributes per

alert (column)}

CALCULATE ¢! as dlen divided by 2

if number of input argumens < 5 or n_maxr is not defined or n_maxz is not a number then
SET n_mazx to cl

end if

if number of input arguments < 6 or c_max is not defined or c_maz is not a number then
SET cmar to b

end if

if number of input arguments < 7 or verbose is not defined or verbose is not a number then
SET verbose =0

end if

SET t.maz to 1

{t_maxz is the number of randomised trials run by K-means algorithm}

INIT e as a zero t_max-by-1 matrix

149



Appendix C. The Pseudocode

{the matrix has t.max row(s) and 1 column}
INIT data_post as a zero 1-by n_max matrix
{the matrix has 1 row and n max column(s)}
{data post holds the number of data per cluster}
INIT data_ind as a cell array size (n_mar, 1)
{ A cell array with size of n_maxr row(s) and 1 column}
{data_1nd contains the data's ID number in each cluster}
SET errcomp to the largest double precision floating point number
{ Choosing the best map}
for w = | tot_mar do
[CLUSTER sM ap using K-means algorithm via kmeans clusters method and STORE the result
into ¢, p, err and ind}
{This called function will be explained in subsection C.2.3}
{¢ (cell array) contains cluster centroids, p (cell array) contains cluster indexes, #rr (row vector)
contains squared sum of errors. and ind (row vector) contains Davies-Bouldin index value for
each clustering}
SELECT the minimum values from ¢ and STORE the value as well as its index number into
dummy and i respectively
SET (u'. 1) entry of matrix ¢ to (1) entry of row vector err
if (7) entry of err < erreomp then
SET errcomp to (i) entry of err
SET best Map to p
SET inder to i
SET iter to w
end if
end for
SHOW the selected map using som show method
{som show is a default method from SOM Toolbox }
ADD label automatically to trained struct map (s\/op) via som _autolabel method
{som _autolabel is a default method from SOM Toolbox }
SHOW the label on the map using som_show_add method
[som_show _add is a default method from SOM Toolbox}
SAVE the selected map as a figure named figure Namel
DETERMINE the index for each unit in s\ ap that best matched the vectors in 5.4 using som bmus
method and STORE the indexes into binus
{bmus is a column vector}
{som_bmus is a default method from SOM Toolbox |
SET :z¢ to best M ap with array position mder

{Identifving cluster members}

for s = 1 to dlen do
INCREMENT :e(bmus(s)) entry of matrix data_post
ADD minlID to data_ind with cell position ze(lmus(s))
INCREMENT minlID




C.2. Called Functions Pseu(iqm)ds’

end for
RETURN data_ind

C.2.3 CLUSTER s\/up using K-means algorithm via kmeans clusters
method and STORE the result into ¢, p, err and nd

SET sMup as trained map struct

SET n_maxr as maxium number of clusters

SET c_mar as maximum number of k-means runs for each k (number of centroids)

SET w as an index number of the randomised trial run by K-means

SET verbose as verbose level, 0 by devault

SET OBTAIN "codebook” field from s\Map and STORE it into D

SET DETERMINE the size of D and STORE into variable dlen and dim

{dlen is the number of vectors in the map (row), whilst dim is the number of attributes per vector

(column)}

if number of input argumens < 2 or n_max is not defined or n_maz is not a number then
SET n_max to the square root of dlen and ROUND it to the nearest integer towards infinity

end if

if number of input arguments < 3 or ¢_max is not defined or ¢_maxr is not a number then
SET c_max to b

end if

if number of input arguments < 7 or verbose is not defined or verbose is not a number then
SET verbose = ()

end if

INIT centers as a cell array size (n_mar, 1)

{A cell array with size of n_mar row(s) and 1 column}

{centers contains the cluster centroids}

INIT clusters as a cell array size (n_max,1)

{A cell array with size of n_mar row(s) and 1 column}

{clusters contains cluster indexes}

INIT ind as a zero 1-by-n,,,ar row vector

{the matrix has 1 row and n_max column(s)}

{ind contains Davies-Bouldin index value for each clustering}

INIT errors as a zero 1-by-n_max row vector

{the matrix has 1 row and n_maxr column(s)}

{Classification process}

{For k (centroid) = 1 classification}

SET INIT m as a zerol-by-dimn matrix

for: =1todimdo
CALCULATE the average value of the i*" attributes from D

end for

SET the first array of centers tom

SET the first array of clusters to a one dlen-by-1 matrix



Appendix C. The Pseudocode

DETERMINE the requested best matching unit for each vector in sMap and their corresponding
quantisation errors using som_bmus method and STORE the indexes and errors into dummy and
gerr respectively
{dummy and gerr are column vectors}
{som bmus is a default method from SOM Toolbox}
SET the first entry of errors to the sum of the square gerr from each vector
{For k = 2 to k = n,,ar classification}
for i = 2 to n,,ar do

SET best to the largest double precision floating point number

for j = 1 to ¢,ar do

CLASSIFY the vectors on the sMap using som_kmeans function and STORE the cluster cen-

troids, cluster indexes and the sum of squared error for the classification into ¢, k and err
respectively

{som kmeans is a default method from SOM Toolbox}

if err < hest then

SET k_best to k
SET c_best to ¢
SET best to err
end if
end for
end for

{Storing the results}

SET the i*" array of centers to ¢_best

SET the i*" array of clusters to k_best

SET the i*" entry of errors to best

CALCULATE the Davies-Bouldin index using db_index method and STORE the value into the it
entry of ind

C.3 Main False Alarm Classification Pseudocode

dataTexrt2 as the data containing alarm attributes

figureName2 as the name of final mapping figure

finallndexr as the name of text file that will contain final indexes of true and false alarms

{Data Mapping}

READ dataText2

COMPUTE /en as the length of input data

if all values of the 4'" attribute (column) of the input data is not a number then
SET all values of the 4*" column to -1

end if

OBTAIN normalised data via var method

COMPUTE time intervals attribute’s weight as 2.5 times current values

COMPUTE number of events attribute’s weight as 2.8 times current values




 C.3. Main False Alarm Classification Pseudocode

GET the best size of map based on the smallest quantisation and topographic errors
{This called function has been expanded in subsection C.2.1}
CREATE the map via som_make method
CLASSIFY data on the map using K-means algorithm and STORE the result into data_indFinal
and rec_post
{This function will be further expanded in subsection C.4.1}
{data_ind is a cell array with size of (maximum number of clusters x 1)}
{rec_post is a cell array with size of (2,1)}
{Writing output into the database}
SET al to the value of the first element and the first cell of cell array data_indFinal
SET a2 to the value of the first element and the second cell of cell array data_indFinal
fort=1tolen do
if al is equal to the t element of the first cell of cell array rec_post then
SET empl to the t element of the second cell of cell array rec_post
Break out of the loop
end if
end for
fort =1tolen do
if a2 is equal to the ¢ element of the first cell of cell array rec_post then
SET emp? to the t element of the second cell of cell array rec_post
Break out of the loop
end if
end for
if the 7% attribute of the cmpl entry of the input data > the 7™ attribute of the cmp2 entry of the
input data then
SETrto 0
SET yto 1
else if the 7™ attribute of the empl entry of the input data = the 7" attribute of the ¢np2 entry
of the input data then
if the 15 attribute of the cmnpl entry of the data > the 1% attribute of the cmp2 entry of the data
then
SET x to 0
SET yto1l
else if the 1% attribute of the cmpl entry of the data | the 1% attribute of the cmp2 entry of the
data then
SET rto 1
SET y to 0
else
CREATE array array and ASSIGN the values 2, 5 and 6 to the array respectively
for d = 1 to length of array do
if the array(d) attribute of the cmpl entry of the data < the array(d) attribute of the emp2
entry of the data then
SET zto 0

153



Appendix C. The Pseudocode

SET yto 1l
Break out of the loop
else if the array (d) atiribute of the cmpl entry of the data > the array(d) attribute of the
cmp2 entry of the data then
SETrtol
SET yto 0
Break out of the loop
end if
end for
end if
else
SET rtol
SET yto 0
end if
INIT result as a cell array size (2, 1)
{A cell array with size of 2 rows and 1 column}
DETERMINE num as the highest cluster number from table stagel
if 7nuin is not a number then
SET /i to 0
else
SET h to num
end if
SET pl to the length of the first cell of cell array data_indFinal

for : = 1tolendo
CALCULATE clust as the sum of 1 and »
ford =1 topl do
if clust is equal to the J element of the first cell of cell array date_ind Final then
APPREHEND clust to the first cell of cell array resul
APPREHEND r to the second cell of cell array result
Break out of the loop
end if
end for
if the length of the first cell of cell array resulf is equal to 0 or the last element of the first cell
of cell array result is not equal to c/ust then
APPREHEND «lust to the first cell of cell array resulf
APPREHEND j to the second cell of cell array result
end if
end for
for ¢ =1 to No_alerts do
INSERT into table Stage2 the values of the ¢ element, first cell of resuit and the - element. the
second cell of result
end for

{Writing data index to a file}

154




C. 4 _(i(ﬂfled Functions Pseudowdzj

OPEN a file named finallnder for writing; discard existing contents
SET pj to No_clusters
forz: =1to2do
SET len to length of the = cell of data_indFinal
if len = 0 then
WRITE "NA”
else
WRITE the values of data_ind Final with cell position z and element number 1 to (len — 1)
INSERT "~
WRITE the values of data_ind with cell position z and element number [en
INSERT carriage return
end if
end for

C.4 Called Functions Pseudocode

C.4.1 Classify data on the map using K-means algorithm and STORE the
result into data_indFinal and rec_post

sA as data struct

sMap as trained map struct

figure Name?2 is a string containing the name of final mapping figure

n_mar as maxium number of clusters

c_mar as maximum number of k-means runs

verbose as verbose level, 0 by devault

OBTAIN codebook field from sMap and STORE it into D

DETERMINE the size of D and STORE into variable dlen and dim

{dlen is the number of alerts being processed (row), whilst dim is the number of attributes per

alert (column)}

CALCULATE ¢l as dlen divided by 2

if number of input argumens < 4 or n_max is not defined or n_mar is not a number then
SET n_max to 2

end if

if number of input arguments < 5 or c_max is not defined or c_max is not a number then
SET c_max to 5

end if

if number of input arguments < 6 or verbose is not defined or verbose is not a number then
SET verbose = 0

end if

SET t_max to 500

{t_max is the number of randomised trials run by K-means algorithm}

SET k to 0

{index for the possible cluster solutions (maps)}

155



A_pgen.dix C. The Pseudocode

INIT sse as an empty array

{sum of squared error for each unique map}

INTI freg as an empty array

{number of occurrence for each unique map}

INIT clust_post as a cell aray size (f_maxr.1)

{A cell array with size of ¢ maz row(s) and 1 column}

INIT data_post as a zero 1-by n_mar matrix

{the matrix has 1 row and n_mazr column(s)}

{data_post holds the number of data per cluster}

INIT data_ind as a cell array size (n_max. 1)

{A cell array with size of n_mar row(s) and 1 column}

{data_ind contains the index number of the first stage clusters in each second stage cluster}

INIT rec_post as a cell array size (2, 1)

{A cell array with size of 2 rows and 1 column}

SET totSSE to 0

SET sol to 0

INIT ¢ as an empty array

INIT no_clust as an empty array

SET close to the largest double precision floating point number

{Choosing the best map}

{Sorting the maps}

for v = 1 to t_maxr do
CLUSTER sMap using K-means algorithm via kmeans clusters method and STORE the result
into . p, err and ind

{This called function has been explained in subsection C.2.3}
{¢ (cell array) contains cluster centroids, p (cell array) contains cluster indexes, err (row vector)
contains squared sum of errors, and ind (row vector) contains Davies-Bouldin index value for
each clustering}
SELECT the minimum values from err and STORE the value as well as its index number into
durmmy and i respectively
if (1) entry of err is a member of sse array then
STORE the index number of (i) entry of err in sse into isavai
INCREMENT (isavai) entry of freg
else
INCREMENT £k
{Counting unique map}
APPREHEND (i) entry of err to sse array
APPREHEND 1 to freq array
STORE cluster indexes of the unique map into (k) cell of cell array clust_post
APPREHEND the number of clusters of the unique map into array no_clust
end if
end for

{Compute the {frequency rate}




C.A4. Called Functions Pseuduque

SET rate to zero 1-by-k matrix
fort =1tokdo
COMPUTE the (t) entry of matrix rate as (¢) entry of freq divided by t_max
{calculating the frequency rate}
end for
SELECT the highest frequency rate and STORE the value and its index number into high and
index respectively
{Compute the second thresholding value (standard deviation)}
COMPUTE the standard deviation of the maps’ frequency rates and STORE the result into vari-
able st
{Apply the thresholding}
if high > 0.6 then
SET bestMap to index
else
for m = 1tokdo
if high <= st then
SET sol to k
CALCULATE totSSE as the sum of current 10t SSE value and the total values of sse array

STORE the unique map indexes into array g
Break out of the loop
end if
if (m) entry of array rate >= high subtracted by st then
CALCULATE totSSE as the sum of current totSSE and m entry of array ss¢
INCREMENT sol
APPREHEND m to array g
end if
end for
{Calculate the average SSE}
COMPUTE aveSSE as tot SSE divided by sol
if sol = 2 then
if the sse value of the first entry of array ¢ < the sse value of the second entry of array g
then
SET best Map to the first entry of array g
else
SET best Map to the second entry of array ¢
end if
else
for n = 1 to sol do
SET dif f to the difference between the sse value of the n entry of array ¢ and the aveSSE
if close > dif f then
SET close to dif f
SET best Map to the n entry of array g

-]



Appendix C. The Pseudocode

end if
end for
end if
end if
SHOW the selected map using sem_show method
{som show is a default method from SOM Toolbox}
ADD label automatically to trained struct map (s.\fap) via som_autolabel method
{som_autolabel is a default method from SOM Toolbox}
SHOW the label on the map using som_show_add method
{som_show. add is a default method from SOM Toolbox}
SAVE the selected map as a figure named figureNamel
{Identifying cluster members}
DETERMINE the index for each unit in sA ap that best matched the vectors in s A using som bmus
method and STORE the indexes into bmus
{bmus is a column vector}
{som_bmus is a default method from SOM Toolbox}
SET :¢ to bestMop with array position inder
COMPUTE the size of input data and STORE the values into variables { and uftr
{t {row) is the number input clusters from stagel, whilst attr (colurnn) is the number of features
taken per cluster}
DETERMINE the highest cluster number from table stagr2 and STORE the value into num
if 7w is not 8 number then
SET hto O
else
SET A to num
end if
for s = 1{o!do
SET label to the sum of / and s
APPREHEND labet to the first cell of cell array rec_post
APPREHEND s to the second cell of cell array rec_post
INCREMENT :ze(bmus(s)) entry of matrix data_post
APPREHEND label to ze{lnmus(s)) entry of date_ind
end for




D MATLAB Source Code

1
2
3
4

1 & @

—
o O

11
12
13
14
15
16
18
19
20

2
' S U L

-3

(I R RO
on 2

0

29
30
31
3

33
34
35
36

D.1 Counting Time Interval and Number of Events

function

1

end

for

end

for

Listing D.1: source—code/countEventTimeTwo.m

' e
g
sizaisrc
f

159



Appendix D. MATLAB Source Code

38 end

39 for col = 1:2,

40 for row = l:noAlert,
41 if col == 1,

43 else
45 end

46 end
47 end

5
4 g e m heen covered by pre 2

64

65 (1,i) = index

66 1 i +

67 j = n+

68 £ Finding the the alarms covered by the cuprrent alert
69 if n "= nollert,

70 while

=]

U )

-3 =3

s

end

']
n

76 if i > noAlert

86 else
format short G, Timetb (X, 3 = t/{event-1);
88 end

89 str = sprintf (’'insert int IimeEventTwo%sksisis Signature; N f event, Time interval




T

[
(=T 7= T = I T - T B

11
12
13
14
15
16
17
18
19
20

21

end

aend

for

= myVsa str):
- = 1:IPJ,
- =

str = sprintf

end

Listing D.2: source—code/countEventTimeOne.m

D.1. Counting Time Interval and Number of Events

161



Appendix D. MATLARB Source Code

39 for ccl = 1:2,
40 for row = l:ncAlert,
41 Af col == 1,
42 data (row,col) = sroclrow);
else
44 data{row,col] = dat (row});
and
36 end
47 and
48 t = 0; § time interval
49 i =1; ¥ index for T array
50 T = zaros(l,nohlert);
51 event = 0; §% no of event
52 index = 0; & index of the counted zlarm
54 for n = l:ncAlert,
h4 Y check if the alarm has been covered by previous alarm
55 if find|(T=—n),
56 svent = eveant;
a7 alze
h8 event = event + 1;
59 if event == 1,
B t = Dy
61 else
52 ir = b + fdatain, 3)- datafindex, 3)}}; ¥ calcularing the sum of time interval
63 t =t + absi{etimp(time{n|,timelindex})};
64 end
65 index = n;
66 Til,i) = index;
87 i=41i+1;
68
6% 4 = ntl;
T t Finding the the alarms covered by the current alert
71 1f n "= neAlert,
T2 $while data(}, 3) <= {data(n,3) + 0.000D0GCOZ0833334), % check the alarms which are
under the time frame aof 3 minutes
73 while abs|etime(time|j),time{n)}) <= 180, % if the elapsed time is less than egual
to 3 minotes
T4 if datali,2) == datain,2) || deta(j,l} == datain,l), & if either the dst IF
addresses or src IP addresses are match
75 Til, iy = 35
76 i=14+1;
i end
78 j= 3+ 1;
79 Af 9 > podlert,
B0 break;
81 and
82 and
83 wnd
B4 and
85 end
B6 Timetb(x,2) = event;
8Y if t/event = 9,
#8 Timetb{x, 3) = 360G; % No of seconds in one hour

89 else




98
99

D.1. Counting Time Interval and Number of Events

format short G, imetbh(x,3) =t event-1);
end

= sprintf (’insert intc TimeEventCGne%sisisis ignacure, N E_event

Lime_ _Iinrerval a = ] ¥ ¥ [ i 1T
1 ' Ly i

end
Listing D.3: source—code/countEventTimeHalfm
function Ti = countEventTimeHalf (A, B, dayAlerts)

. e | ~2 1 e
£/ J X r i I F

else

end
end
str = sprintf(’'create table TimeEventHalfis%s%s%s%s (Signature char (10

| =3 | =] I = P . F4 I = -2
for =

16

3



Appendix D. MATLAB Source Code
36 vec = datevec(tiiv)):
37 vec (6} = 0;
38 timei{v] = vec;
s and
40 for col = 1:2,
41 for row = l:inodlert,
42 if col = 1,
43 data{row,col} = src(row);
4+ alse
45 data{row,col} = dsti{row};
48 art
47 end
48 end
49 t =0; ¢ time interval
50 i =1; § index for T array
5l T = zexos{l,nollert);
52 event = 0; % no of event
53 index = Q; § index of the counted alarm
54 for n = l:ncAlert,
a5 % check if the alarm has been covered by previous alarm
56 if find (T==n],
57 event = event;
58 elsa
59 event = event + 1;
60 if event == 1,
61 r =1
62 else
63 $#t = ¢ + (datain, 3} datarindex,3)); % calculating the som of time lnterval
64 t =t + abs(etizmitime{n},time(index)));
65 end
66 index = n;
67 Ti{1,i} = index;
68 i=1i+ 1;
69
70 j = n+l;
71 4 Finding the the alarms covered by the current alert
T2 if n "= noAlert,

i $while datailj,3) <= (data(n,3) + 0.000000020833334}, % check the alarms which are
under the time frame of 3 minutes

74 while abs /etime{time({j},time{n}t)} <= 180, ¥ if the elapsed time is less than equal
te § minutes

75 if datalj,2)} == data(n,2) || data(jf,i) == data(n,l), & If either the dst IP

addresses or src IP addresses are match

% TiL 4y = 3

77 i=1+1;

78 ond

73 3=13+1;

80 if j > neAlert,

81 break;

82 and

83 and

84 and

a3 and

86 and




94
95
96
97
98
99

100

=1 O O = QO B =

sl

if sveEnt ==
else
format
end
= sprintf m

format Timetr
format s! t Time

¥

D.2 Main Correlation Functions

Listing D.4: source—code/CompleteAlarmCorrelationTwo.m

| i ime
= tia um (B
pen’ )
= length
if
= sprintf
else
sprintf
and
sprintf (' tbis%sistisisis’

D.2. Main Correlation Functions

= sprintf (' stglTwod



Appendix D. MATLAB Source Code

31 figu

= sprintf(’stglTwois’, st);

32 dataText? = sprintf (’stgZTwo¥s.txt’, st);

33 figure e2 = sprintf ('’ stg2Twcis’', st);

34 finalIndex = sprintf('FinalTweis.txt’, st

sprintf (' stage

S = "
ime SME = S ang £
+ r = MB=W .4
ac mInil)
a2, dex) ;

o
57 return;

Listing D.5: source—code/CompleteAlarmCorrelationOne.m




95

43

. Main Correlation Functions

sprintf (" tbh¥s%si:

sprintf (" stgZCne%

Listing D.6: source—code/CompleteAlarmCorrelationHalf.m




13
14
15
16
17
18
19

20

& b

b b B R O
| = L

Ll <

40

57

Appendix D. MATLAB Source Code

E meHalf (B, B, 'ac .
untEventTimeHalrt B, = ;
while dare iat B,
i
curVec = da = Time)

sx(c) = sprintf (' 0%d

sx|c) = sprintf (' %d’,

= sprintf (’'s
= gprintf(’

! = sprintf (’stal

str = sprintf("selsct count (+) from acid _svent where timestamp »>= "$s" and timestamp

return;

D.3 Generating Input Data for Stage 1 Correlation

Listing D.7: source—code/generateDataStgl.m




]

-1

18

e
(2]

)

34

function

length

Zeros

ZBros (=0

= ZeIros

Zeros

12 = re

format

format

end

ros{len,l

= Z&rosl l.=

for
end
format 1
for
for = 1
if
alsaif 1 = 2
elseif
else
end
end
tu?Qﬂ
£ size
for
printf end
fprintf t , end

169



@ W
c:'{b:x

B

o oo

-1 @ O B W

Appendix D. MATLAB Source Code

fprintf (fid,*%.10f ’, stgldata(k,end-1));

fprint£(fid,"\""%d\’"\n’, stgldata(k,end));
end
fclose (fid);

return;

D.4 Generating Input Data for Stage 2 Correlation

Listing D.8: source—code/generateDataStgTwo.m

H
else
= um;
end
len = sizeldata i A =
for = len,
= Y= T = SIC = = C T = Yy = T = : m

i v
at{i,1 ma | 5 4), mat{i,5
end
for = o _alarts
if isnan (mat isnan (mat (h, 4
F T = noFort +
else

= gprintf(’'select distinct portNo from port where portl

41
str = sprintf(’'select distinct portNeo from port where portNeo = %d', mat
ik lenqth srec) == 0 && l‘l‘]g’th dst ) =

port (h) = str2num(cellZmat (dst));

elseif length(src) = 44 length (dst) ==

rt(h) = str2num (cellZmat (src));

elseif length(src) == 0 ii length(dst) == 0,




39

b e e
S b

X o
o

Qo
@

else
end
end
end
for =&,
for =
if
end
if

elseif find(pc

if find

else

and

else

end
for
if mat

D.4. Generating Input Data for Stage 2 Correlation

min (str2num(cel

-3

bt



SEEIERER

101
162
103
104
103
106
107
108
104

110
111
112
113
114
115
116
117
118
119
120

Appendix D. MATLAB Source Code

elseif mati{p, 5§ == 2,
prio = [prig, 200%1;
else
and
ard
stg2data{d,5} = sumiprivcl;
%% Calculate trime interval and no of events
for ct = 1:4,
if carVecler) < 10,
sxi{ct} = sprint®(*0%d" ,curVecict));
alse
sx{ct} = sprintf(’'kd’,corVecict));
and
and
for p = l:stg2data{d,2),
sty = sprintf (’select No_of_event, Time_interval from TimeEventTwoisis¥s%s where
Signature = %d', sx{11,s5x12|,5x(3},sxidi,t{l,p));
[ev, ti] = mysqlistr};
if isempty{ev),
HextcurVec = curVec + [0 0 0 2 0 0];

crie = lpria, 100];

for ct = 1:4,
if curvecict) < 10,
spictl = sprintf |’ 0%d’, curVec{ct));
alse
snice) = sprintf |’ %4*, curVeri{ct));
and
atul
str = sprintf {’selact No_of_event, Time_interval from TimeEventTwolstsisks
where Signature = %d’, =nli),spll),sni|3},sn{d], til,p});
[ev, ti] = mysgl(str);
and
event [p} = ev;
timeipr = ti;
end
format long G, event;
stgZdataid, f)] = max(rcime);
stg2data(d, 7] = minlevent];
stg2dataid,8) = pt;
str = aprintf{’insert into timeEventRecordTwo{Time interval, No of svent, Cluster_No}
values (%.23f, %d, %¥d)’, stg2darai{d, &), stgzdata(d,7), stgZdatald,B));
mysql (str);

alisxa

and
%3 Writing the formatted data to a file

fid = fopen(dataText2, ‘wt’);
lzows colg] = size{stgl2data);

for z = l:rows,
if stgl2datai{z,4) == -1,




144
145
146
147
148
149
150
151
152
153
154

15

16
17
18
19
20

=] & D e W=

end

el

fprintfi(fid, "%6.2F\t",

fprintf (fid, " %6.2€

fprintf(fid, "%6.2f

fprintf (fid,”’

se

fprintf(£id, ¥6.2L\t'

fprintf (£id,

and

return;

else

end

e

if isnan (num

Listing D.9: source—code/generateDataStgOne.m

= size(data

= e ¢
if isnan (ma
porx = 1

str = sprintf

if lengthis:c

elseif length

elseif length

e (data nd, dataText
r N 3= ster_| I T
= ; 4 H - i
in C
rCm - L= K o i) = =
mat 3
v
isnan (mat
Ls
fselect 18C1 F N
*select port} I

== .4 length (ds
strZ2num(cellZmat (dst));
src) "= (& length (dst) ==
strinum(cellZmat (src));
src) == 0 && length(dst

D.4. Generating Input Data for Stage 2 Correlation



Appendix D. MATLAB Source Code

39 port (h) = min(mat{h,3),mat{h,4));
40 else

41 port (h) min (str2num(cellZmat (S StrZnum(cellZmat (dst

60 end

80 if noPort == neo_alerts,

81 stg2data(d,4) = -1;

B2 elseif find(port 1024 & por =
83 if find(port >= 1024),

g5 else

87 end

B8 else

90 end




93

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124

135
136
137
138
139
140
141
142
143

D.4. Generating Input Dala for Stage 2 Correlation

for p = 1l:no_alerts,

if matip,5) ==

elseif mat (p,
else

end

and

for ct |
if
= sprintf(’0%d’ et
else
sxl(ct) = sprintf(’ %d’
end |
end
for
= sprintf (' selsct _of M erval from TimeEventOne¥sisisd here

11 i
if curVec
ct ) = sprintf (' 0%d’, curVec(ct)
else
= sprintf (' %4’
end
end
= gprintf(’select No_of event, Time interval from Tim %
end
end
format
= max
1 = min (event
str = sprintf EventBeco i t \ £ N .
alues b tg2 yB) . ata |
else
end
end



Appendix D. MATLAB Source Code

144 {1d = fopanidataText2, ‘wt"};
145 (rows cols] = size{stg2data;};
146 for z = l:rows,

147 if stg?darad{z.4) == -1,

148 fprintE{fid, *%6.2f\t*, stg2dataiz,l:end—§));
149 fprimt ¥ (fid, " %6.2F +\t‘, stg2dataiz,3));

150 fprintf{fid, “%6.28\t", stg2datalz, S:end-1));
151 fprint£1fid, "\ "%d\ " \n’, stg2data(z,end));
152 wlsa

153 fprintEifid, "%6.2f\t’, stgZdata{z,l:end-1));
154 fprintEi{fid, "'\ %d\ Y \n', stgldata(z,end));
155 and

156 snd

157

158 raturn;

Listing D.10: source—code/generateDataStgHallim

function v = generateDataStgHalf (data_ind, dataText2, curVec)

$t input arguments and initialization data

num = mysgl (*select max{Cluster No) as Cluster_No from StageZHalf’);
d = 0;

if isnan{num),

L= S B R R

[
-

#% Extracting data
len = size(data dind,1);

ot
L]

13 for count = l:len,

14 noPort = §;

15 mat = ([]}; port = []; sre = []; dst = [}; t = (J; £ = 1]; ¥ = 1]; pric = [1; time = [];
event = [];

15 if length {dasta_ind[counti) "= 0,

17 ot = pt + 17

18 d = d+l;

12 no_alerts = size(data_ind{ecount],2);

20 for i = l:noc_alerts,

21 str = sprintfi(’select signature, ip_proto, layerd sport, layerd_dport,

sig_pricrity from acid event where id = %d*, data_indicount} (i));

22 [mati{i,l}, mati{i, 2}, mat(i,3}, mat(i, 4, mat{i,51] = mysqlistr);
and

24 i% Filtering port numbers

‘ for h = l:no_alerts,

26 if ispanmat{h,3}} || isnan(matih, 41},

27 port (k) = -1;

28 nofort = nePert + 1;

29 elsa

30 sty = wprintf ('select distinct portNe from port where portNo = %d", matih, 31);

31 5rC = mysglistr);

32 str = sprintf (' select distinct portNo from port where portNo = %d', matih,4}};

33 dst = mysgl{str);

a4 if lengthisrc} == § && lengthidst) "= 0,




o Qo 0 00 Do oo
- & o &M

str2numicell’

elseif length (s:

elseif length (

else
aend
end
aend
for s = o_alert
for =
if
break;
end
if x ==
end
end
end
for k 1
end
if find "
if find =
else
end
else
end
if E

elseif find(port

if find|port
else

end
else

str2num(ce

min (mat

min (str2num |

D.4. Generating Input Data for Stage 2 Correlation

177



90
91
92
93
94
95
96
97
a8
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117

119
120
121
122
123
124

Appendix D. MATLAB Source Code

end

for |

end

for r

else

= sprintf(&d’, =
end
str = sprintf(’'select No_of eve

end

’

if curVec(ct) < 10,

snlct) = sprintf(’

t] = sprintf (' 0%4", curV

= gprintf (" &d’

FH

1))
fol Culx
d° ,Cur
event,

p S




140 end
141
142
143
144 fid
145

146 for

156 end

if stgidatalz,q4) ==
fprintf (fid,’
fprintf (£fid,’

fprintf(fid, ' %6,

fprintf (fid,’
else

fprintf(fid, " %6

fprintf (fid, "\’
end

158 return;

D.5 Alarm Aggregation Process

function dats

Listing D.11: source—code/alarmAggregateTwo.m

i

D.5. Alarm Aggregation Process

9



Appendix D. MATILAB Se

5]

o]

H
|

i3 for 1

14 if

37 break;

38 end

3 end

40 1f length:: - resilt ol ) feand

41 break;

42 end

end
46 for - = 1 le

47 i sprintf g = £z E
18 .

o3 for
54 - length (dz==
56 fprintf

else

fprintf 1 . = =
e fprintf

i) end

61 end

Listing D.12: source—code/alarmAggregateOne.m

1 funetion d=ta 1n3 = ridh =2a ] ext |, uretiams




43

if isnan

else

end

for i =
for
end

end

for =

end

fid = fopen

len = length

for » = 1:]

end

if length
break

and

P31 = length 4
for =z l:pP3,
= length
if len =
fprintf
else
fprintf
fprintf (£

end

end

return;

D.5. Alarm Aggregation Process

= » minIC
= 0 && result{l) (end) == i,
StagelOne i ster_ | alue

Listing D.13: source—code/alarmAggregateHalf m

181




Appendix D. MATLAB Source Code |

5 |
6 s2 = rea = 1

R R i

9 : - .

10 =i t hia < A);

11 sB = som_n sA, 'munits’,

3 end

48 1 r);
49 end
50 ita nde 3

51 = fopen Res, "wt'
52 = length ;
53 for = 111

55 if = 0,




D.6. Alarm Filtering Process

56 fprintf (fid, "Na\n')

a7 else

8 fprintf(fid,'%d ', data i {l:1len—
59 fprintf (fid, ' $d\n’, dats_dind|=z)

60 end

61 end

62

63 return;

D.6 Alarm Filtering Process

Listing D.14: source—code/alarmFilterTwo.m

G b e
it}

=] o W

[+ 2

if length{isnan(sA.data(:,4) == len,

e

aaCalz,4) = =317

10 end

[ -]
m R
[+
H

|
i

|
]I

o

b

L

B DY bS B B
; it
-
"
)
|
|

5 ipl = p t
6 break;

27 end

28 end

9 forx ’

10 if a L

7]

QO o W
a Q0 N -
o
=]
(+ 8
®
a
a
o
n =
)
oo
=
1

n

s
-
[
n.
2
G
5

36 x =

38 elseif sA.data(cmpl,’)
39 if sA.data(cmpl,l) > sA.data(cmp2,1),

183



Appendix D, MATLAB Source Code

40 % =
41 y = 1

42 elseif sA.data(cmpl,l
43 ¥ =

44 y =

45 else

1 break;
2 elseif =A . dats(ompl,array(d A.data(cmpZ,array(d))
3

54 y =

bb break;
56 end

end

58 end

59 else

62 end

64 result = 11 {

65 num = mysqgl (" select max (Cluster N 3s Cluster No from Stage2Two’ ) ;
66 if isnan

67 h =

68 else

69 h = num;

70 end

71 gl = length(data_indF
72 for i = f

73 clust =

74 for d = l:pl,

75 if clust == data

76 result{l] = |[result|l), ust];
i resul L) = resusl L

78 break;

79 end

80 end

81 if length (result |l == result{l] (end
82 result{l) = [result{l}, clust

83 result{2] = [result|2
84 end

B5 end
86

87 for c = l:len,

88 str = gprintf('insert into Stagel2Two(Cluster No, Alert Status) values(%d,%d)’, result(l)(c




93
94
95
96
97

99
100
101
102
103

=)} & On

[= ]

10
11
12
13

14 -

15
16
17
18
i9
20

for = = 2y
length (data
if ¢ -= (1,
fprint£(fid, ' NA'
else
fprintf
fprintf
end
end
return;

len = size(sAh._data,l

if length (isnan (sA.dat

end
for ¢ = le
if = rec p
break;
end
end
for = &
if
break;
end
end
if
elseif R o
- 1

D.6. Alarm Filtering Process

Listing D.15: source—code/alarmFilterOne.m

185



Appendix D. MATLAB Source Code

elseif sA.data(cmpl,l shA.dat mp 2,

break;

elseif sA.datalcmpl,arrayid)) sh.da

break;

end
end

else

aend

if isnan (; }e

else

end

if length(resulc{l = | result{l) (end)

11 1 [resul ’ st ];

end

end

for

end

for =z 1:2,




D.6. Alarm Filtering Process

return;

Listing D.16: source—code/alarmFilterHalf.m

function data_indFinzl = alarmFilterHalf(dataTextcs, figureNamel, fina

= SlzIe

if lengthiisnan (sA.gat T

end
for
it
break;
and
end
for
if

end
end

if sa.data(cmpl, s&.data (cmp2

elseif
if sA

187




Appendix D. MATLARB Source Code

elseif si.data(cmpl,l sA.dat mpZ, 11,
else
for 1 :length T
if sA.data({ompl,array 3t a
break;
elseif =i.datz F
break;
end
end
end
else
end
if isnan
else
end
length (- the
for i:le
for 4 = J:pl,
if - C 1
break;
end
end
if length(re il == end
end
end
for = 1l:1len,
sprintf (’ art T tage
end
f = fopen nall i
for = '
= length| E ;

188




95
96
97
98
99
1(4)
101
102

103

=] & O & & M

N~ O © ®

if len ==
fprintf
else
fprintf
fprintf
end

end

return;

D.7

function

L34,

if nargin
if nargin

if nargin

for w = 1:t

L

end
end

isnan

isnan(c_max)

isnan (verb

, Sprintf

D.7. k-Means Clusters Process for Stage 1

k-Means Clusters Process for Stage 1

Listing D.17: source—code/kmeans _beststgl.m

end
end

189




Appendix D. MATLAB Source Code

40
12 = trids

13 SET size

15 for
46 =% (2 = : |
48 AT
49 end
50 for =3
- |
52 l
33 end
55 return;

D.8 /-Means Clusters Process for Stage 2
Listing D.18: source—code/kmeans bestnew.m

! function 1 5| : =] peEtne i, =4, I° =Nam=

o if =

(] if 13

3 else O = (=

o end

1 else =L

10 end

= size | _
if nmargin < isempty ; isnan X 5T end

14 if nargin £ isempty (C ' isnan <) . = = ©; end

15 if nargin isempty (verlis isnan (vertk ely VE ge. = end

16 = _max =

19 £

20 -1 : E =

2 E I@ros

24

'6 =

27
29 close - realmax

190




end

end

end

if

else

= max
break;

D.8. k-Means Clusters Process for Stage 2

191




Appendix D. MATLAB Source Code

end
else
for n = :s0l,
diff = abs(s=e(c(n - avels
diff,

if close

close = diff;
end
end
end
end
1 ' ' jap|, sprintf

1 = = size (sA ta
if isnan (num),
else
= r
end
for s =
<4 [ € = 3 A s 11515

end

for j = l:n max,

end

return;




Functional Requirement Analysis

In order to gain insight into the main features of the prototype, several modelling languages are
presented, including use case diagram, activity diagram, sequence diagram and class diagram.

1. Use case diagram

A use case is a technique, which is typically used for visualising the functionality provided by
a system in terms of actors, their actions (represented as use cases) and any interactions be-
tween these use cases (Miles, 2006). In general, each use case provides one or more scenarios
that meticulously convey how the users should interact in order to perform a task. Bear in
mind that a use case diagram does not portray any internal processes of the system nor do
they explain the structure of the system. In fact, it is purely a functional description that is
completely separate from the system design In order to show the role of the administrator in
the system, a use case diagram is presented below:

Figure E.1: SMART use case diagram

To summarise the role of the administrator as illustrated in Figure E.1, a brief description of
the use case scenarios is given below:

193




Appendix E. Functiona_.fffequiremem Analysis

To summarise the role of the administrator as illustrated in Figure E.1, a brief description of

the use case scenarios is given below:

e The administrator has an ability to run the correlation after specifying inputs.

e The administrator also has a responsibility to evaluate the result of the correlation. It
includes the ability to view the correlation result statistics, to create a chart report and
to analyse the IDS signature rules. In terms of the signature analysis, the administrator
can inspect the generation of true and false alarms per signature and also to generate
a plot diagram that maps the generation of the alarms based on IP addresses and time
period. In addition, the system also allows the administrator to view the packet payload
and to examine the generated alerts individually.

e Apart from running the correlation, the administrator is also given an opportunity to
reset or clear the input interface and to re-run the correlation.

e He is also able to cancel an ongoing correlation.
Although the use case diagram has provided a brief description about the functionality of the
system and shown a nice roadmap of relationship between the administrator and the system,
it does not clarify how those tasks are performed. To provide a clearer picture of the system

and to show the steps that an administrator should follow to perform the tasks, an activity
diagram is presented in the next sub-section.

2. Activity diagram

{a} Run correlation

h (Choose s tme
[ ter. s fom e |
) % comes box
Dpen . ’ Wat for the
Agpicaton e Correlaton process
o e siwtng (e ~come” ) -
¢ erdeg i} N nuTIn b
m“-; *

| pteraatme |
[Teme ritervai » \mm

Figure E.2: Activity diagram - Run correlation

To run the correlation process, the administrator is prompted to specify the scope of the
alerts to be processed by entering the starting and the ending timestamp of the alerts.
Besides, the administrator is also required to make a decision whether to run the corre-
lation for a time interval of 2 hours or less than 2 hours (either every one hour or every

half an hour); as shown in Figure E.2.

(b) View Statistic

Once the correlation is completed, the administrator can view the result of the classifica-
tion by clicking the "View result” button. In this interface, there are 3 tabs available in a

194




The Correlation Alert table and statistic

(c)

The (

is completed E—— D figure is shown
™ Press View | (Woew "Mert table” | ™
result” bution ¥ ¥ tab L e,

s \ 3 s -

Figure E.3: Activity diagram - View statistic

single frame. The first tab "Alert table” presents a table containing the alerts attributes
as well as the final status of the alerts (whether it is a true or false alarm). Furthermore,
it algo displays a statistic figure, which compares the proportion of the true and false
alarms resulted from the correlation. This process is described in Figure E.3

Create Chart
Coresaton .
o [omoeted . = b = 1 = - neCwrls ceales
s | oress em E!’( [ Ve Tt "T-‘ Pnﬂ:zﬁ‘_‘ Press Gagh
Y | et oumoe | reotmd g bm } {mm Y v

(d)

(e)

H

”

Figure E.4: Activity diagram - Create chart

Besides allowing the administrator to look at the overall correlation result as featured
in the first tab, the second tab enables the administrator to fully inspect the generation
of the true and false alarms based on their signatures in a particular period of time
(Figure E.4). To conduct an alert evaluation, the system allows the administrator to
create a chart report, which conveys the trend of the IDS alarms, by filling in the chart
setting form.

Analyse Signatures

In the last tab, "Signature analysis” (Figure E.5), the tool allows the administrator to
analyse the alarms for each signature rule. A list of signatures is presented and the ad-
ministrator is required to select one signature to conduct a further investigation. Once
selected, a plot diagram and tables of the true and false alarms are automatically gener-
ated for the chosen signature. And to facilitate the alert evaluation, the payload of the
packet triggering the alert can be examined through the conventional alert management
tool, BASE.

Cancel Correlation

Apart from executing the correlation, the administrator is also allowed to stop the ongo-
ing correlation by pressing the "Cancel” button. Before the correlation is terminated, the
administrator is prompted to confirm whether the act should proceed or be withdrawn
(Figure E.8).

Reset the Interface

195




Appendix E. Functional Requirement Analysis

Presz "Thart”
button

Doubis cick onan
s [ on the

Figure E.5: Activity diagram - Analyse signatures

Present true ondd
false plarms tables
Fom e sorature

Creat= a pot
Sagram of the
true and false

The last but not least, the administrator can reset the system by pressing the "Reset”

button (Figure E.7). This enables the system to clear the input text boxes and return to

the start page (home page).

3. Sequence diagram

A sequence diagram is a type of interaction diagram that is primarily used to model the flow

of logic and processes within the system. It allows the documentation of the system’s run-

time scenarios in a graphical manner. The sequence diagram shown in Figure E.8 is created

to depict the logic behind the correlation processes and the interaction between objects in

sequential order.

196




Administrator System

The correlation is

running
i - Popup a
Press "Cancal . ;
[ Reply to the
' confirmation box
[Yes] {  Stopthe
correlation

Figure E.6: Activity diagram - Cancel correlation

There are apparently 12 objects involved in the interactions, as described in the sequence
diagram (Figure E.8). The first component is the actor (the administrator), which initiates
and takes an active part in the scenarios, whilst the rest 11 objects are the components from

either the external or internal systems.

(a) External system:

1. Signature-based IDS
ii. MySQL
i, VO files
(b) Internal system:

1. Input

ii. Output
iii. Pre-processing System
iv. Normalising System
v. Training System

vi. Aggregating System
vili. Alarm Classification

viii. Best Map Selector

197




Appendix E. Functional Requirement Analysis

Ad-m'iﬁigt-r_é&u; System_
£, The correlation is
V' completed
! .\-.‘ fdear the n'put\
f\ Prit"f;set j {,_buxe_s and retum
4 ‘@ the start '/-
! | :\L.- |
= ] —

Figure E.7: Activity diagram - Reset the interface

4. Class diagram

The main idea of creating a class diagram in this context is to describe the structure of the
SMART system by showing the system’s classes and the relationships between classes. Fig-

ure E.9 shows the static structure diagram of the system.

Instead of focusing on the attributes and methods of the elements in the system, the diagram
plainly depicts the association and the inheritance relationships between the classes. The
relationship between the administrator, IDS and SMART system classes is defined as a stan-
dard kind of association or known as a bi-directional association, which is indicated by a solid
line between the classes. On the other hand, a basic aggregation relationship is indicated by
a solid line with an unfilled diamond shape between SMART System and File classes. An
association with an aggregation relationship suggests that one class is part of another class
and the child class instance can outlive its parent class. Moreover, the generalisation relation-
ship can also be noticed from Sig-based IDS and Anomaly IDS classes, which inherit from the
parent class IDS.

To provide a better view of the structure of the proposed SMART system, the following list
summarises the classes, which form the structure of the system, as well as the relationships
between them.

(a) The Administrator class takes on the role of "monitored” in the bi-directional relation-
ships between both SMART system and IDS. The multiplicity value next to the Admin-
istrator class of 1..* means that when an instance of an IDS or SMART System exists, it

can have at least one instance of an Administrator associated with it.

(b) In the same association, the IDS takes on the role of "manages”; the diagram in Figure E.9
tells that the Administrator instance can be associated with no IDS or with up to an
infinite number of IDSs. Conversely, an Administrator instance can be associated with

198




(d)

(e)

(H

only one SMART System.

Sig-based IDS and Anomaly IDS classes (child class) inherit from the IDS class (parent
class). The inheritance relationship refers to the ability of a child class to inherit the

identical functionality of another class (super class).

A uni-directional association is explained by the relationship between the SMART Sys-
tem and the Sig-based IDS classes. This association is similar to the bi-directional associ-
ation except that it only contains the role name and multiplicity value for the know class.
For example, the SMART System knows about the Sig-based class, and the Sig-based
class plays the role of "connected”. However, unlike a standard association, the Sig-based
IDS class has no idea that it is associated with the SMART System class. A multiplicity
value of 1..* next to the Sig-based IDS class means that an instance of SMART System
class can be associated with either one Sig-based IDS or an infinite number of Sig-based
IDSs.

Database class is an association class, which influences the relationship between SMART
System and Sig-based IDS classes. An association class is a cross between an association
and is represented as a regular class box that is connected to the association between the
other two classes using a dashed line.

The relationship between the SMART System and File classes is regarded as a basic
aggregation relationship: in which case the lifecycle of the File class is independent from
the SMART System class's lifecycle.

199




Appendix E. Functional Requirement Analysis

=

kalalase
LS

< 1L
i

Jumie

CiERestal Gsadin

EFE H i

BTl B S Ey 1

LI RLET)

AL A mer

dslhim
B R

A

R TEY RS L SR

LA RN

et

200




Figure E.8: SMART sequence diagram

201




Lw ]
wn

Administrator . |

w

MART System y Sig-based IDS Anomaly 1DS

Database

m
F

Figure E.9: SMART class diagram

202




Running the Correlation System

There are two ways to start the SMART application, namely

1. Via command line argument

To open an application using a command line argument, the user needs to open a command

prompt and type a command as shown below (or see Figure F.1):

java -jar AlarmFrame.jar

B Administrator: C:\Windows\system3Z\cmd.exe =01} X
icrasoft Windows [Uersion 6.8.68088] a
2886 Microsoft Corporation. A1l reserved.
jar AlarmFrane

Figure F.1: Opening SMART application - via command prompt

Make sure the working directory is set to the application folder (that is SMART) and the Java
path has been added to the system variables. The latter allows the Java commands to be

executed outside the Java application folder.

2. Via double-click

In this option, the user is required to double-click on the executable jar file named "Alarm-

Frame. jar” available in the application folder (see Figure F.2)

l’_‘lp_(‘::i [hs: p_r‘r_.'g—r;;_r_r_n 12 exXeE |j'1_‘|_1_|§_-rf_ :_E';._- :_i_p;_'-.é'l._‘:_._l_f_]nn main 1_::_1_:_9:_* i8 [)!'f;‘--;!-_’l‘li_a—an'1 as shown in i‘-"i_f"lll'i- I

below.

In this example, two weeks DARPA alerts generated by the Snort IDS are retrieved from the
database and fed into the correlation system. Via the interface provided, the user is prompted to
enter the starting and the ending timestamp as well as the time frame for each correlation (see

Figure 7.3 in Chapter 7). It is worth noticing that the time windows for all correlations performed

in this demonstration are set to 2 hours.
As for the input pattern, the system has set a standard timestamp format (YYYY-MM-DD

HH:MM:SS) for the first two input arguments, namely the starting and the ending timestamps.

203




Appendix F. Running the Correlation System

| 2 :
| Q v » Computer » O5(C) » SMART » - s 2
| s

Fie Edt View Took Help

Mo

[ Fadaf e pre e rer

ScatierPictilent class

i v "E
’ KE
B Uesiacy
J KB
B 5o :
= o sbReval clany KB
S
. TabReraltl 5] cless L2
L ] g M
F = sbResultl cless
- =
abbesuli] cls
slarrn ctrelation pae
Al e
doclemg
i . e abumbceT s Evecutabile lar e
Lot ety pnd et '.!,‘
jemmeon- 1 016 Executabie lar File
frondhatt 1 017 j Evecutabie lar File
echgrie
i Mg (Onnectoe- e Exrcutable lar File
e Ay e TabRev ) e Lemcutable lor File
AN - PREVIOU
AlarmF g o8 IAVA File 11 68
e el
= Bt Temejova JAVA File 5B
e Fibe
Erowserlaunch e AVA Fde INE
LmneTene v AVA Fie ExE -

Figure F.2: Opening SMART application - via double-clicked

Failure to comply with the predefined format may result in a runtime error. Besides, an error
dialog box will pop up; indicating the incorrect format used for the inputs (see Figure F.4).

Once the correlation is carried out, a progress bar (as depicted in Figure F.5) is shown to monitor
the progress of a correlation run by the system.

Apart from executing the correlation, the user is also authorised to halt the ongoing correlation
by pressing the "Cancel” button. Before the program is terminated, a confirm box, which pops up
with both a Yes and a No button, is used to verify acceptance from the user (see Figure F.6). If the
user accepts, then the user presses the "Yes” button and the program exits immediately. If the user
rejects with the "No” button, then the correlation process continues.

204




Welcome to SMART (SOM K-Means Alarm Reduction Tool)

Figure F.3: SMART - Front page

Message

OK

I Sormy - invalid timastamp entered

Figure F.4: SMART dialog box -

Incorrect input format

205




Appendix F. Running the Correlation System

Welcome to SMART (SOM K-Means Alarm Reduction Tool)

Slarteng lamestan Cyyyy men-dd omarcs g
£ ndng teme st (vvyy mm dd hhommess e

Sebect a tane Elerval Bvery tiwd hous s -

Figure F.5: SMART - Progress bar

OBy Ernnalion ‘\j
Are you sure you want fo exit?

Yes No

Figure F.6: SMART - Confirmation box

206




G Poblications

. Tjhai, G.C. (2007), 'Comprehensive approaches of intrusion detection in handling false alarm
issue’, Proceedings of the Third Collaborative Research Symposium on Security, E-learning,
Internet and Networking (SEIN 2007), Plymouth, UK, ISBN: 978-1-8410-2173-7, pp. 53-66

2. Tjhai, G.C., Papadaki, M., Furnell, SM. and Clarke, N.L. (2008), 'The Problem of False

Alarms: Evaluation with Snort and DARPA 1999 dataset, 5th International Conference:
Trust, Privacy and Security in Digital Business (TrustBus 2008), Lecture Notes in Computer
Science, Vol. 5185/2008, 2008, pp. 139-150

3. Tjhai, G.C, Papadaki, M., Furnell, SM. and Clarke, N.L. (2008), 'Investigating the Problem

of IDS False Alarms: An Experimental Study using Snort’, In Proceedings of the IFIP TC
11 23rd International Information Security Conference. IFIP International Federation for
Information Processing, Vol. 278, Boston: Springer, 2008, pp. 253-267

. Tjhai, G.C., Furnell, S.M., Papadaki, M. and Clarke, N.L. (2010), 'A preliminary two-stage
alarm correlation and filtering system using SOM neural network and K-means algorithm’,
Computers & Security, Vol. 29, No. 6, 2010, pp. 712-723

207




Comprehensive Approaches of Intrusion Detection in handling
False Alarm Issue

Gina C. Tjhai

Network Research Group, University of Plymouth, Plymouth, United Kingdom
email: getjhai@plymouth.ac.uk

Abstract

Intrusion detection is one of the most important tools in computer security. Although the technology has been
actively developed for two decades, it is an indisputable fact that the art of detecting an intrusion is still far from
perfect. IDS systems tend to generate a large number of false alarms per day, which adds a heavy workload for
the administrator responsible in handling the alerts. In this paper, a number of current studies focusing upon the
reduction of false alarms are briefly discussed. This paper also critically analyses the approaches implemented
by current studies and provides recommendations to improve the performance of IDS in term of its alarm
generation.

Keywords

Intrusion Detection, False alarm. Alert Correlation

1. Introduction

The Internet is an extremely promising mean of facilitating electronic access, thus the profit
offered has motivated the growth of the Internet in many fields, such as eCommerce and
online banking. This has led to a substantial change in business model of organisations across
the world, and today, more and more people are getting connected to the Internet to take
advantage of the e-Business model. The effectiveness and efficiency offered has rendered it
invaluable for business activities.

Although the efficiency and effectiveness of email and Internet access for carrying out
business and email are certainly offering tremendous benefits to the companies. connecting an
internal LAN to the external Internet is a risky decision. In recent years, the security of
computer networks has become significantly important. Most discussions have been focused
on the tools or techniques by which network security could be effectively enhanced. It is also
worth noticing that a number of network security measures have been publicly introduced to
today’s IT community, such as firewall and anti virus systems. However, having firewalls and
anti-virus systems installed could not fully protect the network infrastructure from modem
network attacks and numerous system vulnerabilities. Indeed. the rapid growth of Internet
threats has rendered them inefficient in protecting company’s information assets. In spite of
those security tools, one of the most apparent network tools being developed, and which has
continuously grown in popularity, is the Intrusion Detection System (IDS).

Basically, an IDS is a system which refers to all processes used in detecting an unauthorised
uses of network and computer devices (Bruneau, 2001). IDS, much like the security industry
itself, has grown rapidly over the past two decades (Goeldenitz, 2002). This measure has
become one of the most vital components of defensive measure protecting computer system




and networks from abuse. Even though intrusion detection technology is still in its infancy,
and could not act as a complete security defence, it could definitely play a significant role in
an overall security architecture.

However. since ensuring security is a dynamic process, security tools are required to keep
pace with changes. There is no security measure that can be proved to be 100% effective in
protecting a network. Moreover, it is an indisputable fact that the art of detecting intrusions is
still far from perfect, and IDS systems tend to generate a large number of false alarms (Allen
et al., 2000). Hence a human has to validate alarms before any action can be taken. As IT
infrastructure become larger and more complicated, the number of alarms that need to be
reviewed can escalate rapidly, making this task very difficult to manage. Although fine-tuning
procedures and disabling signatures are known to be one of the most effective ways to reduce
false alarm rate in IDS technology, they might also degrade security level and subsequently
increase the risk of missing real attacks.

This paper particularly focuses on the extent of the IDS false alarm problem and what current
research has been done thus far in improving the performance of IDS by using alert
correlation methods. Section 2 provides an overview of IDS technology, as well as the major
challenges faced by the existing intrusion detection. Section 3 discusses significant research
carried out in the area of intrusion detection. The idea of alert correlation and corresponding
studies are presented in section 4. Finally, section 5 discusses significant alert correlation
research study that focuses upon Artificial Intelligence techniques. The conclusions and future
research direction are presented in section 6.

2. Background

IDS has played a vital role in the overall security infrastructure, as one last defence against
computer attacks behind secure network architecture design, secure program design and
firewalls (Allen et al., 2000). IDS products have become widely available in recent years, and
have started to gain acceptance in the enterprise domain as a valuable improvement on
security.

Although an IDS maybe used in combination with a firewall, which are aimed to control and
filter the flow of information, these two tools have a different responsibility in safeguarding
information security. Although a firewall does a good job in filtering traffic coming from the
Internet, there has been a certain way a malicious user can compromise or circumvent the
firewall system. The existence of intrusion detection which acts as a second line of defense
does offer an adequate level of security, by monitoring, detecting and responding to the
unauthorised activities which could bypass the firewall system. In addition, it is worth
remembering that IDS is not a silver bullet when it comes to protecting system or network
infrastructure. Instead, it is only one aspect of multi-layered protective mechanism, an
approach referred to as “defense in depth’ (McHugh et al., 2000).

2.1 Challenges of Intrusion Detection

Today, intrusion detection has become an integral part of multi-layer security infrastructure
and evolved into a viable and highly recommended piece of security technology that a
company should implement as part of its collection of security tool. However, the art of
detection is stili far from ideal; intrusion detection technology is still in its infancy. As a
result, current IDS technology has faced a number of challenges; one of them is the problem




of controlling a large number of triggered alerts. This issue is aggravated by the fact that some
commercial IDSs may generate thousands of alarms per day. Recognising the real alarms
from the huge volume of alarms is a frustrating task for security officers. Therefore, reducing
false alarms is a serious problem in IDS efficiency and usability. Indeed, a high rate of false
alarms is considered to be the limiting factor for the performance of intrusion detection
system. False alerts always cause an additional workload for IT personnel, who must handle
and verify every single alert generated to inhibit or block possible loss of data confidentiality,
integrity and availability. The manual verification of these true and false alarms among the
flood of alerts is not only deemed to be labour intensive but also error prone.

False positive alarms are caused by normal non-malicious background traffic. Especially for
IDS technology that depends on behaviour modelling (anomaly-based IDS), this appears to be
very critical issue. In leaming the system or users’ behaviours, not all behaviour could be
covered and identified in detail. Behaviour can change from time to time. Sometimes. a
legitimate user could act in an unusual manner or behaviour; differ from the expected
behaviour (i.e. that which is recognised and learnt previously by the system). If the IDS solely
relies on this model of normal or valid behaviours, a legitimate user who works in an
uncommon way might be suspected as malicious intruder. Moreover, the system might also
experience a real attack in learning phase (i.e. when the system is collecting and learning the
users behaviours profile) (Lundin and Jonsson, 2003). If this occurs, an intrusive behaviour
would be added into the behaviour profile, thus it would never be detected as anomalous.

One of the best ways to reduce the false alarm rate is by performing a tuning procedure.
Tuning an IDS can be done by adapting the signature policy to the specific environment and
disabling the signatures that are not related to it (Chapple, 2003). This is driven by the fact
that some vulnerabilities exist in a particular OS platform only. Although tuning does offer a
good solution in reducing a large number false alarms, this procedure could possibly
exacerbate the situation by degrading the security level and increasing the risk of missing
noteworthy incidents. Therefore, the tuning problem is actually a trade-off between reducing
false alarms and maintaining the security level. Furthermore, tuning requires a thorough
examination of the environment by qualified [T personnel and requires a frequent update to
keep up with the flow of new vulnerabilities or threats discovered.

The number of alerts generated by an IDS could be very large, for example 15,000 alerts per
day per sensor (Cuff, 2003). Reducing the false alarm rate is not an easy task. Indeed, it ofien
worsens the situation by causing poorer IDS reliability or accuracy. Due to this issue, a
plethora of research has been conducted to address this problem. The rest of this paper
examines the nature of the activity to date.

3. Research in alleviating the problem of false alarm

As the false positive alarm has become a universal problem, which affects both signature- and
anomaly-based IDS, providing a solution to this issue is critical for enhancing the efficiency
and usability of intrusion detection as an effective security tool. One of the reasons why IDS
technology generates a high false positive rate is the lack of correlation between input and
output traffic, which can essentially look for abnormal output traffic (Bolzoni and Etalle,
2006). The main concept which has motivated this study is the idea that a successful intrusion
to a system usually generates an anomaly in the outgoing traffic of the system. Conversely, if
there is no anomalous output being produced by the system even though something in the
input of the system causes the intrusion detection to raise alarms, those alarms are considered




to be false positives. Significantly, the system proposed, which is known as APHRODITE
consists of two main components, namely Output Anomaly Detector (OAD) and correlation
engine. OAD has responsibility for monitoring the output of the system and by referring to a
statistical model describing the normal output, it flags any behaviour that deviates from the
pre-defined model as a possible attack. On the other hand, the correlation engine, which is
implemented with a stateful-inspection mechanism, is assigned to correlate the input to the
output of the system belonging to a same communication. Through the process of tracking
and combining input and output traffic, it would make it easier for IT personnel to leam and
identify the possible result of a potential attack.

APHRODITE has various advantages in terms of operational factors. It is considered to work
effectively without an optimal training (without using attack-free traffic) and is able to
successfully detect an unknown attack without requiring the definition of new signatures. In
addition, this system has also been proved to effectively reduce the false positive rate while
increasing its detection rate. However, despite these benefits, this system is still not able to
reduce the number of redundant alerts produced by the same event, and not able to conduct a
real-time inspection, since the output of the event is required as the prerequisite of the
detection procedure.

Similar research has also been done to improve the usability and efficiency IDS technology by
reducing the number of false alarms while maintaining the level of security achieved (Law
and Kwok, 2004). This approach works by monitoring and detecting abnormal patterns, which
are then considered to be suspicious incident, from tones of alert generated by the system. It is
believed that when an attack occurs, the alerts produced from the IDS will have different
patterns from the one generated in an attack-free environment. In this approach, the main idea
of the study is to let the false alarms be generated as they are, and then to determine whether
the incoming alarm sequence generated are deviated from normal situations. Those alarms,
which are classified to be normal, can be ignored (considered as false positives). In this sense,
this method will reduce the number of alerts being triggered by the system before they are
transferred to the security officer for further investigation.

By using KNN (K-Nearest Neighbour) classification technique, this approach is achieved by
modelling normal alarm patterns with an N-dimensional space (using a data point). A new
data point will be created once newly arrived alarms have been detected by the system. If the
new point is close to the normal point, which has been modelled previously as a rule pattemn,
the novel data is considered as normal (false alarm), otherwise it 1s deemed to be a malicious
attack. In other words, the distances between the novel point and the normal point indicate the
differences between these two data; the further the new point from the normal one, the higher
the nisk of being attacked.

Although this model 1s believed to successfully reduce the number of false alarms triggered
by the system while maintaining its detection rate, it has not been applied on live data and
implemented in the real life environment. For that reason, there is still much more work to be
undertaken in order to assert that this idea is applicable to existing IDSs under real life
environment.

The idea to perform data mining in order to reduce false alarms has been explored by Julisch
(2001). The main idea of this research is to find alarm clusters and generalised forms of false
alarms to analyse root causes. Significantly, this study has also found that 90% of false alarms
are related to a small number of root causes. By identifying the root causes, it is believed that




human expertise could manage the IDS or remove the root causes in order to reduce the
number of false alarms. In addition, looking at potential reason of the alert generation, this
research has also been expanded to look for the rules, which could predict a prospective alert
when a specific set of alarms has been generated, or known as episode rules (Julisch and
Dacier. 2002). With the rule or knowledge of the alarm patterns representing legitimate users
being identified beforehand, it would be much easier for the system to filter out any similar
patterns (which are supposed to be legitimate as well) in the future. Even though this approach
is considered to be outstanding enough to improve alarm handling efficiency, it could only
offer a 1% reduction in alarm rate, while 99% of alarms were still left for manual processing.

Another similar piece of research has been conducted to look for anomalous alarm behaviours
by using sequential alarm patterns (Alharby and Imai, 2005). The underlying thought of this
study is slightly similar to the previous one using the KNN classifier; namely the alarm
sequence generated by the system under attack will definitely deviate from the normal alarm
pattern. By observing the frequent behaviours within an extended period of time, a normal
alarm pattern could be accurately formed. Therefore, through the use of this alarm model, a
sudden burst of a sequence of alarms that has never been seen before could be alleged as a
suspicious activity.

Given that the historical alarms pattern is used to learn the future alarms in a more efficient
way by using the extraction of the sequential pattern, this approach has overcome some
limitations of existing detection systems by constructing a more systematic model.
Significantly, this method works by matching the extracted newly arrived sequence pattern
with the extracted sequential pattern that is represented in the normal sequence patterns. The
more matches found in this process, the higher the possibility of it being considered as normal
behaviour.

Since this approach is using a threshold value as a measure to determine the class of alarm
pattern, deciding the best value of threshold would always be a challenge for a security
administrator. A high threshold value offers high security, but it might suffer from a high false
alarm rate. Conversely. a lower threshold value solves the problem of false alarms, but might
bring a lot of risks, principally causing an IDS to be unable to detect major attacks. The only
optimal solution to answer this issue is by setting a security policy, which is always a trade-
off between security and the reduction rate. Apart from this limitation, in terms of scalability,
this method (the reduction algorithm) shows a good performance in handling such a large
volume of data (alarms). Importantly, the aspect of confidentiality is also considered in this
model. as there is no prior knowledge about the users, i.e. users’ features (source user id,
target user id) are required. Lastly, it is also worth noting that this approach is completely
independent from the detection function, which means that it could be applied to almost any
existing IDS technology.

Besides using a data mining technique to reduce the number of false alarms produced by
IDSs, there are still a lot approaches that have been proposed by research thus far. One of the
most prominent approaches being presented, which has proved to effectively improve the
alarm handling efficiency (especially in false positive rate), is by using co-stimulation
mechanism, based on the definition of intrusion and inspiration of immune mechanism (Qiao
and Weixin, 2002). This research has been done by building a new network IDS, which is
capable of integrating the misuse detection technique with the anomaly detection technique.
Basically, the principal concept of this work is the application of the biological immune
mechanism into IDSs.




This new network intrusion detection system, which is known as Artificial Immunological
Network Intrusion Detection System (AINIDS), consists of two main components: the
detectors and monitor agents. As in biological immune mechanisms. the monitor agents works
by supplying or sending a signal indicating the damage of the system according to the
integrity, confidentiality or availability of the system resources. If there is an anomaly case
being reported by three agents, a co-stimulation will be sent to the detector, and at the same
time a report will also be sent to the system administrator for further action taken; otherwise
the activation will be considered as false positive.

Unlike other IDS which constantly monitor the system, this system triggers the monitor agents
only when a detector has been activated (several signs of anomalous activity have been
identified). Instead of depending upon a system administrator’s experience in responding to
potential intrusion, this system provides a more objective mechanism with better autonomy in
controlling the signal.

Since false alerts have always been a primary issue of current IDS technology, providing alert
classification might be a valuable approach in enhancing its performance. A novel system
utilising machine learning technique has been proposed to reduce false positive in intrusion
detection by correctly identifying true positive (i.e. alerts related to attack) and false positive
(Pietraszek. 2004). This new system is known as Adaptive Learner for Alert Classification
(ALAC). By building an alert classifier using a machine learning technique, this method
works by classifying the alerts and sending the classification to the intrusion detection analyst
for further feedback. So, through getting a feedback from the analyst, the system will initially
build and subsequently update the classifier, which is then used to classify new alerts in the
future (as shown in Figure 1).

The existence of this new system using an adaptive learmer does indicate a greater
improvement in the area of intrusion detection system. It is worth noticing that this technique
offers a great efficiency in term of its operation. ALAC can be set to process autonomously
alerts that have been classified previously. For example, this system could remove any alerts
that have been classified as false positive in high confidence. In this way the method could
successfully trim down the workload presented to the security officer.

Training
Examples

l ‘ | — T r3E POSIHVES  ——n]
Update Generate l I

Y

Alert Classifier Intrusion Detection

Analys!

I-—luemrfy—.- False Positi Sent |J

Feadback

Figure 1: The framework model of ALAC classifier




However, apart from its strength, there are several limitations faced by this system. The ability
of the analyst to correctly classify the alerts determines the accuracy or performance of this
method. As no alert classification rules are written previously to respond to the alarm
sequence generated, the analyst should be an expert in intrusion detection and able to initiate
appropriate action to tackle the issue. Hence, this system seems to be inefficient in reducing
the human workload. In addition, as the system is required to perform a real-time analysis,
adapting to the new changes (new logic) as a new data arrives is its biggest challenge.
Moreover, applying additional background knowledge (e.g. network topology, alert database)
can become another challenge for the system in building an accurate alert classifier. Indeed.
this idea will increase the complexity of learning tasks and only few machine learning
techniques could support it. Having said that, from the research which has been done so far,
the machine learning technique will produce a better or more concise rule if the background
knowledge is used the basis for the classification.

4. Alert Correlation methods

In operation, the false alarm has always been a major factor determining the usability and
efficiency of intrusion detection. So, in order to solve the problem of false alarms, simply
identifying the false positives from a number of incoming alarms is no longer enough. A
better approach is required to analyse the main causes of false alarms and to obtain a better
understanding about intrusion behaviours from a set of alarms generated. For that reason, an
alarm correlation might be required to describe the relationships and co-dependencies between
alarms. Basically, alarm correlation is an important technique that is used to manage large
volumes of alerts generated by heterogeneous IDSs. In other words, correlating alerts means
combining the fragmented information contained in the alarm sequence and interpreting the
whole flow of alarms. Importantly, the key objective of this mechanism is to pinpoint the
triggering events from the incoming alarms and to help add meaning to the alarms generated.
So, through the use of alarm correlation, it is expected that the number of alerts generated
would be significantly reduced (e.g. by removing redundant alarms, filtering out low priority
alarms, or even by replacing alarms by something else).

A number of research studies have been conducted to improve the performance of alarm
correlation methods in reducing false alarms. Therefore. below are several prominent classes
of methods being used for the alarm correlation technique.

®* Correlating alerts based on the prerequisites of intrusions

This class of approach is based on the assumption that most intrusions are not isolated, but
are related to the different stages of attack sequences, with the early one prepared for the
later one. It is believed that most traditional intrusion detection only focuses on low level
attacks and raise alerts independently, without considering the possible logical connection
between them or the potential attack strategies behind them. Another problem issue is that
current IDSs technology cannot fully detect unknown attacks, or the variation of known
attacks, without generating a large volume of alerts.

Several works have been done to apply this class of approach (e.g. Cuppens and Miege,
2002; Ning et al., 2002), which then proposed to correlate alarms by using prerequisites
and consequences of corresponding attacks (e.g. the existence of a vulnerable service can
serve as the prerequisite for the remote buffer overflow attacks). Furthermore, this
approach also provides an intuitive mechanism to represent attack scenarios constructed
through alert correlation, known as hyper alert correlation. Even though this kind of




approach gives a better understanding about the intrusions’ behaviours through the
identification of logical connections between them, it has a major limitation: it cannot
correlate unknown attacks (without attack patterns). Since the prerequisites and the
consequences are required to build this correlation, only those known intrusions could be
successfully identified in this approach (with the prerequisites and consequences having
been previously defined).

®= Alert Correlation based on the similarity between alert features

This class of methods correlate alerts based on the similarities of selected features, for
example source [P address, destination [P address or port number (Debar and Wespi.
2001). Alerts with a higher value of overall feature similarity will be correlated. Another
research study has also been conducted in evaluating the use of a feature similarity
function to fuse alerts that match closely but not perfectly (Valdes and Skinner, 2001). In
this system, the similarity function is used to calculate the likeness of the features that
match at least the minimum similarity specification, regardless of the match on the feature
set as a whole. Once the alerts are considered having similar features, they will then be
correlated using fusion algorithm. Although this method seems to effectively reduce a
number of false alarms, it does suffer from one common weakness; it cannot fully
discover the causal relationship between related alerts.

®* Alarm Correlation based on known attack scenario

This type of approaches correlates alerts based on the known attack scenario. One of the
methods used to correlate alerts or fuse alerts into a scenario is by using a data mining
technique (Dain and Cunningham, 2001). The data mining technique can be proposed to
produce a real time algorithm to combine the alerts produced by heterogeneous intrusion
detection system into a scenario. The main purpose of constructing these alert scenarios is
to simply group alerts which share a common cause, thus providing a better view of the
security issue to the system administrator. Moreover, this approach works well in reducing
the number false alarms, since either individual alerts or the whole scenario could be
labelled as false alarm possibility. Once a newly arrived alert is received, the probability
of this new alert belonging to a specific scenario must be calculated. Significantly, such an
approach could effectively uncover the causal relationship between alerts; however, it
could not be applied to correlate alerts generated by unknown attack scenarios.

Generally, one of the most significant objectives of applying alert correlation techniques in
intrusion detection 1s to provide a more succinct or high level view of security issues
occurring in the protected network (i.e. the knowledge of occurring or attempted intrusions). It
is worth remembering that the process of correlating alerts does not only involve a single or
few components of procedure, it is a complete process involving various or a comprehensive
set of components instead. For that reason, supplying an inclusive formalism and techniques
of each component of alert correlation might prove a better result in effectively achieving alert
reduction and abstraction.

A study has been done In generating a general correlation model that identifies a
comprehensive set of components and a framework that analyses how each component
contributes to the overall goal of the correlation (Valeur et al., 2004). As discussed above, a
number of alert correlation methods have been introduced so far with the main goal of
decreasing the false alarm rate. Unfortunately, not all of the published methods provide a
detailed account of how these correlation components should be evaluated and implemented
in a real life environment. Besides, current correlation methods only focus on few aspects of




alarm correlation components. For example, the identification and correlation of attacks into
scenarios using prerequisites and consequences features do not provide enough detail on how
the incoming alerts will be pre-processed before being correlated into scenarios. Due to this
issue, providing a functional approach or method of alarm correlation mechanism is not
enough; it should be followed by the procedure on how the complete set of components in
alarm correlation analysis should work or be implemented in a real life environment.
Significantly, the fundamental objective of presenting this comprehensive correlation process
is to gain more understanding about the feature of the intrusions (e.g. the alerts generated, the
target and source host of the attacks). Lastly, it should also be able to provide enough
information about the impact of attacks as well as to assign an appropriate priority for each
alert triggered by the events.

5. The application of Artificial Intelligence techniques in IDS alarm
correlation methods

Artificial Intelligence (Al) techniques have become one of the most common methods being
implemented in intrusion detection technology. Traditional intrusion detection has been
previously developed and implemented by current enterprises. However, these systems have
difficulty in successfully classifying the intruders, and require a large amount of
computational overhead, which then makes it difficult to create robust real time IDS systems.
Due to this issue, Al is playing an important role in reducing the human effort required to
build these systems and can improve its overall performance.

Generally, there are several types of benefits offered by Al techniques which outperform other
existing methods, namely flexibility, adaptability, pattern recognition, faster computing and
learning abilities. In term of flexibility, Al techniques enable the system to easily adjust
features such as the threshold value. Al also facilitates adaptation to new changes or rules if
new data arrives or when the environment of the system has changed. One of the most specific
and prominent functions of Al technique is its pattern recognition capability. This
functionality is essential in detecting a new pattern of attacks, as no prior knowledge of attack
behaviours is required. Moreover, self-learning is also another advantage of Al methods being
studied in the intrusion detection research area. The ability of performing self-learning
technique enables the system to effortlessly update to new changes (e.g. when a new rule or
attack signature of new intrusion has been found).

Several studies have been undertaken to improve the performance of alert correlation
mechanisms by using Al techniques. One of the significant studies being conducted in this
field is the application of alert fusion to correlate alerts from multiple sensors in a distributed
environment (Siraj and Vaughn, 2005). Alert fusion is a process of interpretation,
combination and analysis of alerts to determine and provide a quantitative view of the status
of the system being monitored. Importantly, this infrastructure consists of three essential
components; namely alert prioritization, alert clustering and alert correlation. Thus, in order
to fuse the alerts. a causal knowledge-based inference technique with Fuzzy Cognitive
Modelling is implemented to find out the causal relationship in sensor data.

Given that alert fusion is a main component this model, the principal objective of this research
is to gain an overall understanding or condensed view of the distributed system by assessing
the integrity, confidentiality and availability of the system resources in the network. In this
work, the Fuzzy Cognitive Map (FCM) is applied in this mechanism to represent our
perception or understanding about the network situation or intrusion’s behaviours in a more




structured way (e.g. by offering a structural representation of causal knowledge as well as the
reasoning for causal analysis of data). Through the idea of using “concept™ in this FCM, the
relationships of events occurred in the system which generate a sequence of alarms could be
described in a more systematic way. Fundamentally, “concept™ is an event that originates
from the system whose value change over time. The “concepts™ typically shows the causality
links between them; which then denote how much one “concept” affect the others.

Overall, Fuzzy Cognitive modelling offers a good representation of data that enables the
human operator to learn and interpret the data much easier. Moreover, this technique also has
advantage in describing an attack scenario for Distributed Denial of Service Attacks (DDoS)
by using cause and effect type of the “concepts™. Since this method uses cause and effect
events to interpret the data, it has a capability in discovering the causal relationship of alerts;
which then could lead to the identification of a series of attacks. However, in spite of the fact
that this technique offers numerous advantages in correlating the alerts, this mechanism has
one major limitation; namely its inability to deal with unknown alerts and mapping
requirements of sensor alert features into more a generalised structure.

Most of the existing alert correlation techniques do not provide detailed information about the
tactic or strategy of the intrusions, but simply cluster and correlate the alert into a specific
class without further investigation of the issue. Another significant model of new alert
correlation technique based on a neural network approach has also been proposed so far (Zhu
and Ghorbani, 2006). Basically, this research is conducted to focus on the development of
new alert correlation technique that can help to automatically extract attack strategies in a
huge volume of generated alerts. This proposed alert correlation model is built by using two
different neural network approaches; namely Multilayer Perceptron and Support Vector
Machine.

One of the most distinctive features of this Al approach is the use of supervised learning
technique for creating a function for training data. Once the function has been created, the
system could calculate or determine the probability that these two alerts should be correlated.
Moreover, in order to make it easier for the correlation engine to correlate the alerts and
perform attack strategy analysis, an alert correlation matrix is introduced to define the alert
strengths; which then determine whether the corresponding alerts should be correlated. Apart
from looking into strength of the alerts in investigating the potential correlation of the alerts,
feature selection has also played an important factor determining the probability of
correlation. Such features include the timestamp, source [P address, target [P address, source
port, destination port, as well as the type of attack.

In general, this proposed model offers tremendous benefits in operational terms. As the major
objective of this work is to provide a better or more condensed view of the security situation
to the network administrator through the extraction of attack strategy, this approach does
outperform other models in offering automated construction of attack graph from a large
volume of raw alerts. Unlike other approaches, which use pre-defined rules to correlate the
alerts, this model does not require any prior knowledge to correlate the alerts, thus unknown
alerts or attacks could be effectively detected. Despite the benefits offered, this approach has
not been applied yet in a real-time environment. Correlation methods would be more useful if
it could be implemented in a real-time environment, and could provide instant information
about the attack strategy or attack patterns of intrusion occurring in the network environment.




6. Conclusions and future work

Even though IDS have been used for years and have demonstrated their worth in protecting
organisation’s resources, most still suffer from the problem of high false alarms rate and low
detection rates. IDS systems are alleged to commonly trigger large volume of alarms, but
most alarms are actually false. IDS technology could be fine-tuned as an attempt to reduce
false alarm generation, but this may degrade the security level or even such action can be
more risky, causing IDS unable to detect real attacks. Therefore, the tuning problem is always
about searching for a balance of reducing false alarms while maintaining system security.

Alert correlation could serve as one of the most viable solution in handling the false alarm
problem. Various studies have already been conducted in this area, either by using a more
logical approach or more complex methods such as Artificial Intelligence techniques.
Although a lot of current research has been done by introducing new alert correlation
methods, all of these approaches have their own limitations. They either cannot discover the
causal relationship among alerts, or they require a large number of pre-defined rules in
correlating new alerts (inability in correlating unknown alerts or attacks). For that reason, a
better correlation mechanism is required, which enables the system to detect unknown attacks
as well as facilitating the security practitioners to learn and gain a better understanding about
the attack strategy and the intention of the attackers. Thus, knowing a real security condition
of the network and the strategies used by the attacker to launch the attacks would then enable
the administrator to take a more appropriate action to stop the attacks and prevent them from
worsening.

As Al techniques are deemed to be a powerful approach which could potentially ease human
workloads, they can play a key role or act as a key concept in the research of intrusion
detection. Hence, designing and developing a new approach using Al techniques for anomaly-
based (based on the behaviour modelling) alarm correlation methods is the main idea of the
author’s ongoing research. Additionally, this research is also directed to improving the
performance of alert correlation in providing a better quality of generated alarms and a
reduction of false alarm rate. Correlation techniques will become more valuable if they can
be designed to perform a real-life correlation and provide instantaneous information to the
administrator once the attack has been detected. Furthermore, supplying the information about
potential target of the attack can serve as a valuable source in designing an effective response
plan, which aims to prevent the attack form re-occurring. Hence, developing a better
approach, which focuses upon alarm reduction and enables the administrator to concentrate on
more the important decisions, is undoubtedly valuable research.

7. References

Alharby. A. and Imai, H. (2005), 'IDS False alarm reduction using continuous and discontinuous patterns’,
Lecture Notes in Computer Science 353 1. Third International Conference on Applied Cryptagraphy and Network
Security. ACNS 2005, New York, United State.

Allen, J., Christie, A. et al (2000). “State of the Practice of Intrusion Detection Technologies’, Technical Report
CMU/SEI-99-TR-028. Camegie Mellon University, available online:
http://www.sei.cmu.edw/publications/documents/99 reports/99tr028/99tr028abstract. html, date visited: 9 January
2007

Bolzoni, D. and Etalle, S. (2006), "APHRODITE: an Anomaly-based Architecture for False Positive Reduction’,
available from: http://arxiv.org/PS cache/cs/pdf/0604/0604026.pdf. date visited: 7 November 2006.



http://www.sei.cmu.edu/pubiications/documents/99.reports/99tri)28'99tr028absiraCLhtnil
http://arxiv.org/PS

Bruncau, G. (2001), 'The History and Evolution of Intrusion Detection, available from:
http://www_sans.org/reading room/whitepapers/detection/344 php. date visited: ¢ October 2006.

Chapple, M. (2003), ‘"Evaluating and Tuning an Intrusion Detection System', available from:
http://searchsecunity.techtarget.com/tip/ 1.289483 sid 14 gci918619,00.html. date visited: 1 November 2006.

Cuff, A. (2003), “Intrusion Detection Terminology (Part One)'. available from:
http://www.securityfocus.com/infocus/1728. date visited: 9 October 2006.

Cuppens F. and Miege A. (2002), ' Alert Correlation in a Cooperative Intrusion Detection Framework ',
Proceedings of the 2002 IEEE Symposium on Security and Privacy ', pp. 202.

Dain O. and Cunningham R. K. (2001). "Fusing a heterogeneous alert stream into scenarios’, In Proc. of the
2001 ACM Workshop on Data Mining for Security Application, Philadelphia, PA. pp. 1-13.

Debar H. and A. Wespi. (2001) "Aggregation and Correlation of Intrusion-Detecticn Alerts’, In Proceedings of
the 4th International Symposium on Recent Advances in Intrusion Detection, Davis, CA, USA, pp. 85-103.

Goeldenitz, T. (2002), 'IDS - Today and Tomorrow', available from: http://www sans.org/reading
room/whitepapers/detection/351 .php. date visited: 19 October 2006.

Julisch K. (2001), "Mining Alarm Clusters to Improve Alarm Handling Efficiency’, Proceedings of the 17"
Annual Conference on Computer Security Applications. pp. 12-21.

Julisch K. and Dacier M. (2002), "Mining Intrusion Detection Alarms for Actionable Knowledge’, Proceedings
of the 8" ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 266-375

Law, K. H. and Kwok, L. F. (2004), 'IDS false alarm Filtering using KNN classifer', Lecture Notes in Computer
Science 3325, Fifth International Workshop on Information Security Applications, WISA 2004, Jeju Island,
South Korea.

Lundin, E. and Jonsson. E. (2003), "Some Practical and Fundamental Problems with Anomaly Detection’,
available from: www.ce.chalmers.se/ »emilie/papers/Lundin_nordsec99.ps. date visited: 30 October 2006.

McHugh. J., Christie. A. and Allen, J. (2000), 'Defending Yourself: The Role of Intrusion Detection Systems’,
IEEE Software 17(5). available online: http://www.cert.org/archive/pdf/IEEE IDS.pdf, date visited: 5 October
2006.

Ning P. and Cui Y. and Reeves D. S. (2002), "Constructing Attack Scenarios through Correlation of Intrusion
Alerts’, In Proceedings of the 9th ACM Conference on Computer and Communications Security Washington,
D.C., pp. 245-254.

Pietraszek, T. (2004), 'Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection’
Congres RAID '04:Proc. 7th Symposium on Recent Advances in Intrusion Detection 3224 pp. 102-124

Qiao, Y., Weixin, X. (2002), "A Network IDS with Low False Positive Rate’, CEC '02. Proc. IEEE Congress on
Evolutionary Computation, IEEE Computer Society Press, pp. 1121-1126

Siraj, A., Vaughn, R. (2005), "A Cognitive Model for Alert Correlation in a Distributed Environment®, Lecture
Notes in Computer Science 3495, pp. 218-230.

Valdes, A. and Skinner, K. (2001), "Probabilistic Alert Correlation’, In Proceedings of the 4th International
Sympaosium on Recent Advances in Intrusion Detection, Davis, CA, USA, pp. 54-68,

Valeur F. and Vigna G. and Kruegel C. and Kemmerer R. A. (2004), "A comprechensive approach to intrusion
detection alert correlation’, I[EEE Transactions On Dependable and Secure Computing [{3). pp. 146-169,
available online: http://www.auto.tuwien.ac.at/~chris/research/doc/tdsc04 _correlation.pdf

Zhu, B., Ghorbani, A. (2006), "Alert Correlation for Exiractung Attack Strategies', International Journal of
Network Security 3(2), pp. 244-258.



http://www.sans.org/reading
http://www.sans.org/readmg
http://www.ce.chalmcrs.se/�cmilie/papers/Lundin
http://www.auto.tuwien.ac.at/--chris/researcIf

The problem of false alarms: Evaluation with Snort
and DARPA 1999 Dataset

Gina C. Tjhai', Maria Papadaki', Steven M. Furnell'-?, and Nathan L. Clarke'?

! Centre for Information Security & Network Research, University of Plymouth,
Plymouth, United Kingdom
cisnr@plymouth.ac.uk
2 School of Computer and Information Science, Edith Cowan University,
Perth., Western Australia

Abstract. It is a common issue that an Imtrusion Detection System (IDS)
might generate thousand of alerts per day. The problem has got worse by the fact
that IT infrastructure have become larger and more complicated, the number
of generated alarms that need to be reviewed can escalate rapidly, making the
task very difficult to manage. Moreover. a significant problem facing current
IDS technology now is the high level of false alarms. The main purpose of this
paper is to investigate the extent of false alarms problem in Snort, using the
1999 DARPA IDS evaluation dataset. A thorough investigation has been carried
out to assess the accuracy of alerts generated by Snort IDS. Significantly, this
experiment has revealed an unexpected result; with 69% of total generated alerts
are considered to be false alarms.

Key words: Intrusion Detection System, False positive, True positive, DARPA
dataset, Snort

1 Introduction

The issue of false positives has become the major limiting factor for the performance of
an IDS [5]. The generation of erroneous alerts is the Archilles” heel of TDS technology,
which could render the IDS inefficient in detecting attacks. It is also estimated that a
traditional IDS could possibly trigger 99% of fake alarms from total alerts generated
[10]. Recognising the real alarms from the large volume of false alarms can be a compli-
cated and time-consuming task. Therefore. prior to addressing the issue of false alarm,
a quantitative evaluation is required to assess the extent of the false positive problem
faced by current IDS.

A number of research or efforts have been conducted to evaluate the performance
of IDS in terms of its detection rate and false positive rate. One of the most well-
known and determined IDS assessments to date was undertaken by Defense Advanced
Research Projects Agency (DARPA) IDS evaluation [12]. This quantitative evaluation
was performed by building a small network (test bed). which aimed to generate live
background traffic similar to that on a government site connected to the Internet. The
generated data set, which included a number of injected attacks at well defined points,
were presented as tepdump data, Basic Security Model (BSM), Windows NT audit
data, process and file system information. The data were then used to evaluate the
detection performance of signature-based as well as anomaly-based IDSs [14].

Although this data set appears to be one of the most preferred evaluation data
sets used in IDS research and had addressed some of the concerns raised in the IDS
research community, it received in-depth criticisms on how this data had been collected.




2 G. Tjhai, M. Papadaki, S. Furnell and N. Clarke

I'he degree to which the stimulated background traffic is representative of real traffic
is questionable, especially when it deals with the reservation about the value of the
assessment made to explore the problem of the false alarm rate in real network trathe
[16]. Significantly, Mahoney and Chan [15] also critically discuss how this data can
be further used to evaluate the performance of network anomaly detector. Although
the DARPA IDS evalustion dataset can help to evaluate the detection (true positive)
performance on a network, it is doubtful whether it can be used to evaluate false positive
performance. In fact, the time span between the dataset creation and its application
to the current research has resulted in another reservation about the degree to which
the data is representative of modern traffic. However, despite all of these criticisms,
the dataset still remains of interest and appears to be the largest publicly available
benchmark for 1DS researchers [16]. Moreover, it is also significant that an assessment
of the DARPA dataset is carried out to further investigate the potential false alarms
generated from this synthetic network traffic. It is expected that the result of this
analysis could describe or provide a general picture of the false alert issue faced by the
existing 1DSs.

The main objective of the experiment described in this paper is to explore the
issue of false alarm generation on the synthesized 1999 DARPA evaluation dataset. An
investigation is also conducted to critically scrutinize the impact of false alarms on the
IDS detection rate. Section 2 presents a number of related studies carried out to evaluate
the performance of IDS. Section 3 discusses the methodology of the experiment. The
findings are presented in section 4 and lastly, followed by conclusions in section 5.

2 Related Works

As for IDS performance. a study has also been conducted to further assess the effec-
tiveness of Snort’s detection against 1998 DARPA dataset evaluation [8]. Snort is an
open source and signature-based IDS [9]. It is a lightweight ITDS which can be easily
deployed and configured by system administrators who need to implement a specific
security solution in a short amount of time [17]. In other words. Snort is a flexible pro-
gramming tool which enables the users to write their own detection rules rather than a
static IDS tool. The evaluation was performed o appraise the usefulness of DARPA as
IDS evaluation dataset and the effectiveness of the Snort ruleset against the dataset.
Surprisingly, the result showed that Snort’s detection performance was very low and
the system produced an unacceptably high rate of false positives. which rose above the
50% ROC's guess line rate, Unfortunately, no further explanation was given to describe
the nature of false alarms.

Interestingly, a paper by Kayacik and Zincir-Hevwood [11] discussed the benefit of
implementing intrusion detection systems working together with a firewall. The paper
had demonstrated a benchmark evaluation of three security management tools (Snort,
Pakemon and Cisco 108 firewall). Significantly. the result showed that none of the tools
could detect all the attacks. In fact. Snort IDS was found to have produced 99% of false
alarm rate, the highest rate compared to the other IDS (Pakemon). The result had also
revealed that Cisco 10S had performed well and raised only 68% of false alarm rate.
This has suggested the implementation of a firewall-based detection, which in turn
decreases the attack traffic being passed to the IDSs.

Apart from the two studies above, which focused upon Snort performance, there are
a large number of studies that have used the 1998 and 1999 DARPA dataset to evaluate
the performance of IDSs. One of those studies is that of Lippmann et al [13], which
managed to demonstrate the need for developing techniques to find new attacks instead




The problem of false alarms: Snort and DARPA 1999 Dataset 3

of extending existing rule-based approach. The result of the evaluation demonstrated
that current research systems can reliably detect many existing attacks with low false
alarm rate as long as examples of these attacks are available for training. In actual fact,
the research systems missed many dangerous new attacks when the attack mechanisms
differ from the old attacks. Interestingly. a similar paper had also been written by
Lippmann et al [14]. focusing upon the performance of different 1DS types, such as
host-based. anomaly-based and forensic-based in detecting novel and stealthy attacks.
The result of this analysis had proposed a number of practical approaches applied to
improve the performance of the existing systems.

Alharby and Imai [2] had also utilised 1999 DARPA dataset to evaluate the perfor-
mance of their proposed alarm reduction system. In order to obtain the normal alarm
model. alarm sequence is collected by processing the alerts generated by Snort from
the first and third weeks (free-attacks traffic) of DARPA 1999 dataset. From these
alarm sequences, the sequential patterns are then extracted to filter and reduce the
false alarms. The same dataset (using the first and third weeks of the 1999 DARPA
dataset) had also been applied by Bolzoni and Etalle [7] to train and evaluate the per-
formance of the proposed false positive reduction svstem. Similarly, Alshammari et al
[3] had also used such data to experiment their neural network based alarm reduction
system with the different background knowledge set. The final result has proved that
the proposed technique has significantly reduced the ninnber of false alarms without
requiring much background knowledge sets.

Unlike other papers discussed above. our experiment focuses specifically upon the
issue of false alarms, rather than the performance of IDS (true alarms) in general. In this
study, we propose to investigate in a more detailed manner some of the shortcomings
that caused the generation of false alarms,

3 Experiment Description

Given that the 1999 DARPA dataset is deemed to be the largest publicly available
benchmark. our experiment was designed to utilize such data as the source of our
investigation. The experiment was run under Linux Fedora 7, and Snort version 2.6 was
chosen as the main detector. The reason for utilising Snort was due to its openness and
public availability. The Snort ruleset deployed in this evaluation is VRT Certified Rules
for Snort v2.6 registered user release (released on 14 May 2007). In order to facilitate
the analysis of IDS alerts, a front-end tool Basic Analysis and Security Engine (BASE)
was utilized as the intrusion analyst console [6].

The primary data source of this evaluation was collected from DARPA evaluation
dataset 1999. Without training the Snort IDS with the three weeks training data pro-
vided for DARPA off-line evaluation beforehand. two weeks testing data (fourth and
fifth week of test data) were downloaded and tested. Snort ran in its default configu-
ration, with all signatures enabled.

The first stage of the experiment was to run Snort in NIDS mode against the
DARPA dataset. The manual validation and analysis of alerts produced by Snort were
undertaken by matching against the Detection and Identification Scoring Truth. The
Detection Scoring Truth is comprised of a list of all attack instances in the 1999 test
data, while Identification Scoring Truth consists of alert entries of all attack instances
in the test data [12]. A match is identified as same source or destination IP address. port
numbers and their protocol type. In this case, timestamp does not really help identifying
the true alerts since the attacks were labeled by the time the malicious activities set
off while Snort spotted them when malevolent packets oceurred. This might render the




1 G. Tjhai, M. Papadaki, S. Furnell and N. Clarke

system missing numerous matches. Hence, by recognizing the matches for those attack
instances, the number of false positives alarms will then be identified.

Once the alerts were manually verified and the false positives were isolated, the
results were presented in several diagrams to give a clear picture on the issue of false
alarms. Individual Snort rules were examined to further analyse the false alarms issue
and the impact of false alarms on IDS detection rate.

4 Results

Our earlier evaluation [21]. which was conducted to focus on the issue of false alarms
in real network traffic. asserted that the problem remains critical for current detection
systems. Hence, this experiment was carried out to endorse our previous findings by
highlighting the issue of the false alarm rate on the DARPA dataset.

Snort has generated a total of 91,671 alerts. triggered by 115 signature rules, in this
experiment. Of the alerts generated from this dataset, around 63,000 (69%) were false
positives. Significantly, this experiment had revealed a similar result to that yielded in
our previous evaluation as well as Kayacik and Zincir-Heywood [11]. The false alarms
have significantly outnumbered the true alarms.

To obtain a more in-depth understanding of the nature of Snort’s alert generation,
Figure 1 portrays a ROC plot [4] for the overall result, which illustrates the overall
alert generation of Snort’s signature rule. Since most plots have the value of X-axis
and Y-axis less than 2000. Figure 2 depicts a clearer picture by focusing upon the
area in coordinate 0 to 2000. The number of false positives generated is presented per
signature for the X-scale, while the true positive is portrayed for the Y-scale. This
diagram also describes the random guess line (non-discriminatory line), which gives a
point along a diagonal line from the left bottom (0, 0) to the top right corner (10. 10).
This diagonal line divides the space into two domains: namely good and bad figures.
Ideally. a good detection system should generate a zero value for the X-scale: meaning
no false positive has been generated by a particular signature rule. The area below the
line represents a higher number of false positives than true positives. Thus, the more
plots scattered on this area, the poorer the IDS is.

rureer of Thus Aarrme

20000 25000

Fig. 1. Overall Alert Generation per Signature




The problem of false alarms: Snort and DARPA 1999 Dataset ki)

As the plot diagram can only give an overview of IDS alert generation, Figure 3
provides the exact figures of Snort’s signatures generating the false and true positive
alerts in a Venn diagram [18]. Surprisingly. 73 signatures had raised the false positive
alarms; of which 26 of them had triggered both true and false positives. It is also
worth noticing that of those 26 rules, 14 signatures had false positives outnumbering
the true positives. This seems to be a very critical issue faced by contemporary [DSs.
The following subsections discuss this issue in greater detail.

4.1 True Positive

Given that the objective of this experiment is to investigate the issue of IDS false
alarms. evaluating Snort’s detection performance on DARPA dataset is bevond the
scope of this study. In this paper, therefore. we will not further evaluate the extent of
Snort’s detection performance on a particular attack in a greater detail. However. this
subsection presents a briel overview of the Snort detection performance on 4 attack
categories, namely probe, Denial of Services (DoS), Remote to Local (R2L) and User
to Root (TU2R).

In this experiment, 42 of the total 115 signatures had generated pure true positives.
Approximately only 317 (27.982 alerts) of total alerts generated by 68 signatures were
asserted as true positives. Interestingly, about 72% of them were generated due to the
probing activities.

Generally. Snort fares well in detecting probe attacks, which largely generate noisy
connections. In this study, we found that Snort has a very low threshold for detecting
probing activity: for example in detecting ICMP connections. This had made up of
40% (37.322 alerts) of the total alerts. In spite of its sensitivity. Snort had generated a
small number of true ICMP alarms in this experiment, which accounted for only 13%
of those 37.322 alerts. This significantly highlights the underlying Aaw of Snort IDS
alarms.

2500
2000 4 -
E 1500 4
<
é 1 000
5 500
0 4 -
o 500 1000 1800 2000 2600
Numbarof Faise Alerms
e Alen Sigreaus
—— Random Guessiine

Fig. 2. Alert Generation per Signature within Cartesian Coordinate (2000, 2000)

In term of the DoS attacks, Snort did not perform well. Only one attack, named
Back [12], was detected without generating any false positives. This had contributed




6 G. Tjhai, M. Papadaki. S. Furnell and N. Clarke

to 20% of total true alarms. As for remote to local (R2L) attacks, about 16 out of 20
types of attacks had been detected. This, however, only made up of 2% of true alarms,
Although Snort fares well in this category. it had critically rmissed numercus attack
instances, such as “ppmacro” attack [12].

I'he last attack category. user to root (U2R), is the most challenging attack for Snort
IDS. Since U2R attack typically occurs on a local machine, which attempts to elevate
administrator’s privileges. it relies solely on a system log or computer's filesystem. As
such, Snort, a network-based IDS that merely depends on network connections. does
not work well in detecting such attacks. Indeed. only a small proportion of true alerts
(less than 1%) were generated owing to this category.

Fig. 3. Snort DS Alarms - True and False Positives

Overall. the experiment has yielded a similar result as the one revealed by Brugger
and Chow [8]. Snort’s performance does not lock particularly impressive. Although
there were quite a significant number of true alarms (27,982 alerts), only 32 from 54
types of attacks were detected. In fact, not all instances from those 32 attacks were
perfectly detected by Snort. This emphasises the fact that Snort was not designed to
detect all types of attacks, but rather to work in conjunction with other [DSs to achieve
the best detection performance.

4.2 False Positive

Approximately, 69% of total alarms are affirmed to be false positives. Figure 4 shows
the top 5 false alarms raised by Snort. Interestingly, 48% of the total false alarms
were made up of ICMP alerts. Logging every connection associated with probing, for
example all ping activities, will only generate a huge number of false positives. In fact,
all detected ICMP traffic did not surely imply the oceurrence of probing actions, but if
was merely an informational event, which possibly indicates the oceurrence of network
outage

In term of the alert categories, 39% (24.835 alerts) of the total false alerts were
triggered due to a policy violation. Significantly, these types of alerts are more related to
irrelevant positives than false positives. Irrelevant positives refer to the alerts generated
from unsuccessful attempts or unrelated vulnerability, which do not require immediate
actions from the administrators. However, as those informational alerts were not related
to any suspicious activity from DARPA attack database and in order to make it simpler,
they will be referred to as false positives.

The highest number of false alarms in this experiment was triggered by INFO web
bug 1x1 gif attempt signature. This signature rule was raised when the privacy policy
violation was detected [20]. Theoretically, the web bug is a graphic on the web page
and email message. which is used to monitor users’ behaviours. This is often invisible




The problem of false alarms: Snort and DARPA 1999 Dataset 7

(tvpically only 1x1 pixel in size) and hidden to eonceal the fact that the surveillance
is taking place [19]. In fact, it is also possible to place web bug in a Word document
as it allows html in a document or images to be downloaded from the external server.
This is particularly useful if the document is supposed to be kept private. and web
bug provides the information if the document had leaked by finding out how many [P
addresses had looked at it [1]. Since none of these web bug alerts related to any attack
instances, our study reveals that no true alarms associated with this signature had
been generated. Therefore, 22.559 alerts from this signature were entirely asserted as
false positives. This contributed to 35% of the total false alarms raised by the system.
Although both ICMP and wel-bug alerts can be easily filtered by the administrator
through disabling or altering the signature rules, simply tuning the Snort signatures
could increase the risk of missing real attacks.

Another similar policy-related alarm logged in this experiment is CHAT IRC alerts.
These alerts accounted for 3.6% (2.276 alerts) of the total false alarms. Snort generates
these TRC alerts because the network chat clients have been detected. In common with
the previous “web bug™ signature. IRC alerts were not truly false positives. Principally.
Snort, given the correct rule, fares well in detecting policy violation. Indeed, through
the investigation of the DARPA packet pavload. it was noticeable that the chat activity
did take place on a certain time. However, since these alerts did not contribute to any
attack instances in the attack list. we would assume these as false positives. These
CHAT IRC alerts were trigeered by 3 signature rules; namely CHAT IRC message.
CHAT IRC nick change and CHAT IRC channel join.

Apart from those top 5 false alarms signatures shown in Figure 4. there were 68
other signatiures that generated false alarms. Of the total 115 signatures, 47 of them
had triggered one hundred per cent false positives. All these alerts are known as pure
false positive alarms since they are not in common with any true alarms. Significantly,
25 of those 47 signatures were web-related signatures. Although port 80 was one of
the most vulnerable ports for DARPA attacks. these signatures did not correspond to
any attack instances listed in the attack database. The effectiveness of Snort rules in
detecting web-related attacks largely hinges on the effectiveness of keyword spotting.
Maost of the rules looking for web-related attacks are loosely written and merely checked
on the presence of a particular string in the packet payload. This renders the system
prone generating a superfluous number of false alerts. Aside from the web-related alerts,
other 22 signatures, involving ICMP informational rule, policy, preprocessors, exploif
attempt and SQL rules. had also generated a significant number of false positives,
which accounted for 44% (28340 alerts) of total false alarms raised by the system.

Despite the informational and policy-related alerts, the pure false positives could
also De generated due to the loosely written rules of Snort IDS. For example, the
vulnerability of Snort in relying on the kevword spotting is intolerable. This has been
further discussed in Tjhai et al [21].

As described earlier, exact 14 signatures has produced more false positives than
true positives. This highlights the critical issue of false alarms in the real world. The
process of identifying the real attacks could be undermined if the false positives per
signature highly outnumbered the true positives. In addition. this eould render the
administrator apathetic: thus tending to conclude that any such alerts as false positives,
As a consequence, this problem could sericusly inhibit IDS detection performance in a
real environment.

While Snort could detect 32 types of attacks, it had produced a large volume of
unnecessary alerts: in term of its alerts’ quality. One of the good examples can be taken
from this experiment is the alerts triggered due to the detection of “Back™ DoS attack.



) G. Tjhai, M. Papadaki, S. Furnell and N. Clarke

25000
20000
e
T 1som0 S0
4 — 1zrs
¥ 10000 o= -
2 i s25%
5 5000 B : — e
_ S
3 =L ] " ) ] =
INFO w &b [ ¥ o CaE Echo 1P ANG CHAT RC
bug 1x1 gif Destmation Reply message
attempl unreac habie
Fort -
Unreac habie Signatwes

Fig. 4. Top 5 False Alarms

by WEB-MISC apache directory disclosure attempt signature. Only 7 instances from
this attack were included into the DARPA dataset, but surprisingly Snort detected
all 7 instances by triggering 5.628 alerts from single signature. Obviously, Snort has
generated a huge number of redundant alerts in this case. Indeed. this often leaves the
administrator with the difficulty of verifying every single alert.

In term of the false positives, the experiment revealed a slightly different result
as generated by Brugger and Chow [8]. A smaller number of false alarms, accounted
for 11% of total alerts, had been estimated by Brugger and Chow. compared to our
result (69% of total alerts). The insignificant number of false alarms was presumably
due to the removal of “web-bugs” rule that had generated a very significant number of
false alarms. This signature was believed to not provide any true positives. and could
potentially prevent an objective evaluation of false positives produced by an IDS. As
for Snort rules, only 36 signatures were triggered in their study. However, the “ICMP
Destination Unreachable Port Unreachable™ signature hiad produced the second highest
number of false alarms, similar to our result.

The experiment result has shown that Snort has produced an unacceptable number
of false alarms. However, the evaluation of 18 IDSs on 1999 DARPA dataset. had
vielded a remarkable result. indicating that most systems had false alarm rates which
were low and well below 10 false alarins per day [14]. This might be due to their ability
to tune the systems to reduce the false alarms on three weeks of training data prior to
running the two weeks of test data.

5 Conclusions

Given the time span between the creation of DARPA dataset and the Snort rules, we
initiallv thought that Snort could fare well in detecting DARPA attacks. What we found
instead was that the detection performance was low; only 32 attacks were detected, and
Snort has produced a large volume of false positives. Indeed, not all instances of those
32 attacks have been perfectly detected by Snort. From this experiment, it is obvious
that the issue of false alarm has become very critical. The false positives outnumbered
the true positive by a ratio of 2:1. In fact. more than half of the signatures producing
both true and false positives in this evaluation have triggered more false positive than
true positive alarms. This issue would critically reduce IDS detection performance: not
only in this simulated network environment but also in a real enviromment.




The problem of false alarms: Snort and DARPA 1999 Dataset ]

Regarding the quality of alerts generated, Snort generated a huge number of re-
dundant alerts, which critically highlighted the performance issue of the Snort alert
reporting system. This often leaves the administrator with overwhelming alerts, which
renders alert validation difficult to manage. Importantly, this issue has also driven the
need to have an improved or better alarm reporting system through the implementation
of alarm suppression and correlation methods.

Apart from total 39.849 false alerts triggered by 12 signatures generating both false
and true alarms, Snort has also produced 28,340 pure false positive alarms, which can
be arguably expected to happen in a real-network environment. Interestingly. this has
accounted for 31% of alarms. However, in this experiment. we have not had a chance to
individually track the cause of these alerts. Having said that, we believe that this might
be caused by the nature of Snort 1DS. which relies on keyword spotting (i.e. matching
the packet content to signature rule) to detect malicious activity. Significantly, this
finding underlines another weakness of Snort IDS, which could render the system prone
to produce excessive alerts.

Owerall. our study has confirmed the criticality of the IDS false alarm issue. Given
the findings in this evaluation, endorsed by our previous experimental results. it is clear
that false alarm is a never-ending issue faced by current IDS. The sensitivity of Snort
rules in detecting probing activities can generate a large volume of false positives.

The ideal solutions to this problem is either to tune the IDS signature rules: this
should be done by a skillful administrator who has the knowledge of security and
knows well the environment of the protected network. or alternatively to focus upon the
alarm correlation. which aims to improve the quality of the alerts generated. The idea of
reducing false alarm in alarm correlation system has become the main subject of current
IDS research. However, apart from the false alarm reduction, the alert management or
alert correlation should also be aimed at the presentation of the [DS alerts itself to the
svstemn administrator. This might include the reduction of the redundant alerts and
the aggregation of the related alerts (i.e. various alerts generated by a single attack).

References

1. Adoko (2008], "What Are Web Bugs?', available online:

http:/ /www.adoko.com/webbugs. html, date visited: 7 September 2007,

Alharby, A. and lmai, H, (2005), ‘1DS False alarm reduction using continuous and discon-

tinuous patterns’, Lecture Notes in Computer Science 3531. Third International Conference

on Applied Cryptography and Network Security. ACNS 2005, New York, United State.

3. Alshammari, R., Sonamthiang, S., Teimouri, M. and Riordan, D. (2007), "Using Neuro-
Fuzzy Appreach to Reduce False Positive Alerts’, Communication Networks and Services
Research, 2007. CNSR '07. Fifth Annual Conference on, pp. 345-349,

1. Anaesthetist (2007), "The magnificent ROC", available online:
hitp:/ /www.anaesthetist.com /mnm/stats /roc/Findex.htm, date visited: 17 August
2007.

5. Axelsson, S. (2000), 'The Base-Rate Fallacy and the Difficulty of Intrusion Detection’,
ACM Transactions on Information and System Security 3(3), pp. 186-205, available online:
http:/ /www.scs.carleton.ca/ soma/id-2007Tw /readings/axelsson-base-rate.pdf. date visited:
10 May 2007.

6. BASE (2007). 'Basic Analysis and Security Engine (BASE) Project’, available online:
http://base.secureideas.net /, date visited: 25 April 2007.

7. Bolzoni, D. and Etalle, S. (2006), ‘“APHRODITE: an Anomaly-based Architecture for False
Positive Reduction’, available from: http://arxiv.org/PS cache/cs/pdf/ (0604 /0604026, pdf.
date visited: 7 November 2006.


http://adoko.ro
http://www.ajiaEs1,hetLst.eoni/mnm/sHit�/roc/Findex.hlm
http://www.BC8.carleton.ca/
http://base.secureideas.npl/
http://arxiv.oi%5e/PS

10

16.

19,

20).

G. Tjhai. M. Papadaki, S. Furnell and N. Clarke

Brugger, S. T. and Chow, J. (2005), 'An Assessment of the DARPA IDS Evalua-
tion Dataset Using Snort’, available online: http://www.cs.ucdavis.edu/research/tech-
reports/ 2007 /CSE-2007-1.pdf, date visited: 2 May 2007.

Caswell, B. and M. Roesch (2004) Snort: The open source network intrusion detection
system, available online: http://www.snort.org/, date visited: 3 October 2006.

Julisch K. (2001), ‘Mining Alarm Clusters to Improve Alarm Handling Efficiency’, Pro-
ceedings of the 17th Annual Conference on Computer Security Applications. pp. 12-21.

. Kayacik, G. H. and Zincir-Heywood, A. N. (2003). "Using Intrusion Detection Systems with

a Firewall: Evaluation on DARPA 99 Dataset’, NIMS Technical Report #062003, June
2003, available online: hitp://projects.cs.dal.ca/projectx/files/NIMS06-2003. pdf, date vis-
ited: 9 September 2007.

Lincoln Lab (2001), 'DARPA Intrusion Detection Ewaluation’, available online:
http:/ /www.llmit.edu/IST /ideval /. date visited: 15 May 2007.

Lippmann, R. P., Fried, D. J.. Graf. [.. Haines, J. W., Kendall, K. R., Mec-
Clung, D., Weber, D., Webster, 8. E., Wyschogrod, D., Cunningham and R.
K. Zissman. M. A (1999). ’Evaluating Intrusion Detection Systems: The 1998
DARPA Off-line Intrusion Detection Evaluation™ In Proceedings of the 2000 DARPA
Information Survivability Conference and Expesition [(DISCEX), awvailable online:
http:/ /www. L. mit.edu/IST /ideval/pubs/2000 /discex00_paper.pdf, date visited: B .July
2007.

4. Lippmann, R. P., Haines, J. W., Fried. D. J., Korba, J., and Das, K. ..

(2000). "The 1999 DARPA off-line intrusion detection evaluation’, Computer Networks
34, pp. 579-595, available online: http://ngill.mit.edu/IST /ideval/pubs/2000/1999Eval-
ComputerNetworks2000.pdf, date visited: 20 June 2007.

. Mahoney, M. V. and P. K. Chan (2003), "An Analysis of the 1999 DARPA /Lincoln Labo-

ratory Evaluation Data for Network Anomaly Detection’. In Recent Advances in Intrusion
Detection (RAID2003), volume 2820 of Lecture Notes in Computer Science., Springer-
Verlag. pp. 220-237, available online: http://cs.fit.edu/ mmahoney/paper7.pdf, date vis-
ited: 22 June 2007.

McHugh, J. (2000), "Testing imtrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln Labe-
ratory’, ACM Trans. Information System Security 3(4), pp. 262-294, awailable online:
http://www.cc.gatech.edu/ wenke/ids-readings/mchugh 1l critique.pdf. date visited: 19
Jumne 2007.

Roesch, M. (1999), "Snort - Lightweight Intrusion Detection for Networks’. Proceedings of
LISA "99: 13th Systems Administration Conference, Seattle, Washington, USA, November
T-12, 1999

. Ruskey, F. and Weston, M. (2005), 'A Survey of Venn Diagrams’, available online:

http://www.combinatorics.org/Surveys/ds5/VennEJC.html, date visited: 10 October 2007
Smith, R. (19949), "The Web Bug FAQ', available online:
http://w2.eff.org/Privacy /Marketing /web_bug.html, date visited: 15 August 2007

Snort (2007}, 'INFO web bug 1x1 gif attempt’, available online: http://snort.org/pub-
bin/sigs.cgi?sid=2925, date visited: 9 August 2007

Tihai, G.. Papadaki. M.. Furnell. S. and Clarke. N. (2008), 'Investigating the problem of
IDS false alarms: An experimental study using Snort’, IFIP SEC 2008, Milan, Italy, 8-10
September 2008.


http://www.es
http://ucdavis.edu
http://www.anorl.org/
http://projects.cs,dal,ca/projectx/files/MMS06-2003.pdf
http://www.ll.mit.edu/lST/ideval/
http://www.ll.mit.edu/IST/ide�!/puW2000/dLscexOO.paper.pdf
http://ngi.ll.niit.edu/
http://cs.lit.edu/
http://www.cc.gat�;h.edu/
http://www.combiiiatofics.wg/Surveys/ds5/VennEJC-html
http://w2.eff.Mg/PrivBcy/Niarketing/web-bug,html

Investigating the problem of IDS false alarms:
An experimental study using Snort

G.C.Tjhai, M.Papadaki. S.M . Furnell. N.L .Clarke

Key words: Intrusion Detection System. False Alarm, Snort

1 Introduction

IDS can play a vital role in the overall security infrastructure, as one last defence
against attacks afier secure network architecture design, secure program design and
firewalls [1]. Although IDS technology has become an essential part of corporate
network architecture, the art of detecting intrusions is still far from perfect. A signif-
icant problem is that of false alarms, which correspond to legitimate activity that has
been mistakenly classed as malicious by the DS, Recognising the real alarms from
the huge volume of alarms is a complicated and time-consuming task. Therefore,
reducing false alarms is a serious problem in ensuring IDS efficiency and usability
12]

A common technigue for reducing the false alarm rate is by performing a tuning
procedure. This can be done by adapting the set of signatures to the specific en-
vironment and disabling the signatures that are not related to it (8. based on the
fact that some vulnerabilities exist in a particular OS platform only. However, al-
though this can offer a means of reducing the number of false alarms, the procedure
can also increase the risk of missing noteworthy incidents. Therefore. the tuning
process is actually a trade-off between reducing false alarms and maintaining the
security level. This ofien leaves administrators with the difficulty of determining a
proper balance between an ideal detection rate and the possibility of having false
alarms, Furthermore, tuning requires a thorough examination of the environment by
qualified IT personnel. and requires frequently updating to keep up with the flow of
new vulnerabilities or threats discovered [26].

The authors are with the University of Plymouth. UK
e-mail: { gina.tjhai,mania.papadaki.s. fumell,n.clarke } @ plymouth.ac.uk




3

G.C.Tjhai. M.Papadaki. S M _Furnell, N.L Clarke

This paper investigates the problem of false alarms based upon experiments in-
volving the popular open source network IDS, Snort [7]. A number of potential
issues are presented along with the analysis undertaken to evaluate the IDS perfor-
mance on real network traffic. Section 2 critically reviews background information
on the false alarm problem. and provides a critical analysis of existing research in
the area. The methodology of the experiment is presented in section 3. Section 4
provides the findings from the private dataset. followed by conclusions in section 5.

2 Related work

The problem of false alarms has become a major concern in the use of IDS. The vast
imbalance between actual and false alarms generated has undoubtedly undermined
the performance of IDS [9]. For that reason, the main challenge of IDS develop-
ment is now no longer focusing only upon its capability in correctly identifying
real attacks but also on its ability to suppress the false alarms. This issue had been
extensively explored and analysed by Axelsson [2] based on the base-rate fallacy
phenomenon. At present, a solution to restrain the alarms is not close at hand. as
numerous aspecis (e.g. attack features) need to be considered as the prerequisites to
develop a better alarm reduction technique [12]. Developing an alarms suppressing
technique is a continuing process rather than an isolated, one-off action. The num-
ber of reported attacks (and the associated IDS signatures). increases each month.
with the consequence that tuning becomes a requirement throughout the lifecycle of
an IDS.

Similar to our research, an evaluation had been carried out by Brugger and
Chow [4] to assess the performance of traditional IDS. Snort. This evaluation had
been conducted using the baseline Defense Advanced Research Projects Agency
(DARPA) dataset 1998 against a contemporary version of Snort. Although the use
of DARPA dataset had been strongly criticised in IDS evaluation, it still serves as a
benchmark by allowing the comparison of IDS tools with a common dataset [16].
This assessment was performed to appraise the usefulness of DARPA as an IDS
evaluation dataset and the effectiveness of the Snort ruleset against the dataset. In
order to analyse Snort’s alarms. a perl matcher script was used to report the false
negative and positive rates; thus generating the Receiver Operating Characteristic
(ROC) curve for a given set of attacks. Given the six year time span between the
ruleset and the creation of the dataset. it was expected that Snort could have effec-
tively identified all attacks contained in the dataset. Conversely, what they found
instead was the detection performance was very low and the system produced an
unacceptably high rate of false positives, which rose above the 50% ROC’s guess
line rate. This might be due to the fact that Snort has a problem detecting attacks
modelled by the DARPA dataset, which focused upon denial of service and probing
activities [13]. In particular, Snort is alleged to commonly generate a high level
of false alarms [17] and the alarm rate reported in this evaluation was not cred-
itable enough o prove Snort’s false positive performance m a real network, which



Investigating the problem of IDS false alarms: An expenmental study using Snont 3

might be much worse or much better. Moreover, the other experiments took place
a few years ago, which means that Snort’s performance may have changed since
then. In view of that, our research decided to assess the performance of Snort on a
more realistic data. as an attempt to critically evaluate the false positive issue of the
system.

3 Experiment Description

In order to further explore the problem of false alarms faced by current IDS tech-
nology, an experiment was conducted to analyse and evaluate IDS alerts generated
by real network traffic. In common with the earlier research referenced in the previ-
ous section, Snort, was chosen as the main detector. The reason for utilising Snort
was due 1o its openness and public availability. Moreover. an investigation involv-
ing such a commonly used IDS can give an insight into the extent of the false alarm
problem in other IDS systems as well.

A number of criticisms had been raised over DARPA dataset, questioning the
use of synthetic data to picture a real world network as well as the taxonomy used
to categorise the exploits involved in the evaluation [15]. Owing to these issues.
our experiments involved the evaluation of Snort on both DARPA [23] and private
dataset. However, this paper only presents an experimenl using a private dataset.
which was collected at University of Plymouth. The data was collected on a public
network (100-150 MB/s network) over a period of 40 days (starting from May 17th
to June 25th), logging all traffic to and from the University’s web server. This in-
cludes TCP (99.9%) and ICMP (0.1%) traffic. The traffic collection was conducted
with a conventional network analysis tool, tcpdump, and it involved the collection
of the full network packet, including the packet payload. Although storing the full
packet information significantly increased the storage requirements for the experi-
ment, it was important (o maintain this information for the validation and analysis of
IDS alarms. The collected payload data was then further processed by Snort IDS in
Network Intrusion Detection (NIDS) mode. It should also be noted that traffic con-
taining web pages with the potential of having sensitive / confidential information
was excluded from the packet capture. in order 1o preserve the privacy of web users.
This was accomplished by applying filters on the traffic, prior to it being captured
by tepdump. Ngrep was used for this purpose [18].

The first stage of the experiment was to run Snort in NIDS mode. in its default
configuration. This means that no tuning whatsoever was conducted. The aim of
this phase is to investigate the extent of the false alarm problem with Snort’s default
ruleset. The next phase of the experiment involved the analysis of the same traffic,
after tuning had been performed on Snort. A number of techniques were applied for
the tuning, including setting up the event thresholds and adjusting Snort’s rules [19].
A necessary requirement for this was the manual validation and analysis of alerts
produced by Snort in the first phase. and identification of signatures that are prone
to false alarms. The analysis of IDS alerts was supervised by a certified intrusion




4 G.C.Tjhai. M. Papadaki. S. M. Fumnell, N.L. Clarke

analyst, and the front-end tool Basic Analysis and Security Engine (BASE) was
utilised to assist the intrusion analysis process [3].

The analysis of alerts was supervised by a GIAC Certified Intrusion Analyst [10].
Once the alerts were manually verified, the result was presented in a ROC diagram:
a graphical plot of Snort alarm generation. In order 1o reveal a clear picture of the
false alarm problem, a ROC plot is preferable. This type of graph can demonstrate
the trade-off between the ability to identify correctly between true positives and the
risk of raising too many false positives. Unfortunately, there were no true negative
(number of benevolent activities passed) and false negative (number of real attacks
missed) value known in this analysis since real network traffic was used as the input
dataset. As an alternative, the plot diagram is drawn to represent the actual number
of false and true alarms instead of their alarms rate. This diagram provides a simple
graphical representation of the false alarm problem, thus enabling the analyzer to
easily comprehend the trend of false alerts. By demonstrating the graphical plot of
false positive versus true positive, this approach visibly explains the criticality of the
false alarm issue. The alarm rate is calculated as follows:

False Alarm Rate — % x 100
Total Alarm
True Alarm

True Alarm Rate = —— x 100
s R Total Alarm

4 Results

The lack of knowledge or awareness about the complexity of network by IDS tech-
nology has led to the generation of excessive amount of false alarms. Generally,
there are three possible alert types raised by the system, namely true positives (alerts
from real attacks), false positives (legitimate activities thought to be malicious) and
irrelevant positive (alerts from unsuccessful attacks or attempis [12]. The last two
alerts are the main concerns in this study.

This section presents the resufts of the experiment. Figure [ depicts the ROC plot
for the overall result, which represents the general detection performance of Snort
IDS. In order to create a simpler illustrative graph, which facilitates the comprehen-
sion of Snort’s detection ability. the false and true positives values are presented in
a proportion of thousands. The number of false positives generated is presented per
unit time (per day) for the X-scale, while true positives are portrayed for the Y-scale.
This diagram also represents the random guess (known as non-discriminatory line),
which gives a point along a diagonal line from the left botiom (0.0) to the top nght
comer (10,10). This diagonal line divides the space into two domains: namely good
and bad classification. Ideally, a good detection system should yield a point above
the line, meaning the number of real alerts (true positives) triggered should not be
exceeded by the number of false positives generated.



Lh

Investigating the problem of DS false alarms: An experimental study using Snort

l Al cenersiien

& HandsmGuss Lo

|
|
|

Huinbet of te slatms  Thousands
b
1LY

PRC L VL EOUPTNE

i 8 ® y e o W0

Nurmber of faise danms Thowssmd s

Fig. 1 Generation of alerts

Significantly, our research has also produced a similar result to that yielded in
Brugger and Chow s evaluation. The number of false positives generated is massive.
This indicates that the Snort’s false positive performance on real network could be
much worse than described in their evaluation.

This experiment focused on the analysis of false positive alarms, as opposed o
other studies [14. 4], which were directed to explore the issue of false negatives.
The main objective of this analysis is to merely provide a general view of the scale
of false positives that may be generated by current IDS. The following subsections
discuss this case in greater detail.

4.1 False Positives

A large volume of alens, largely comprised of false alarms and irrelevant positives,
drives the need to verify the validity of the alerts generated. Interestingly, apart from
the false positives, our study reveals that some alerts were raised due to informa-
tional events, which merely occurred as a result of a network problem. not owing to
the detection of real attacks. These types of alerts are known as irrelevant positives.
Indeed, the unsuccessful attacks, or attempts that aim at an invincible target, might
cause the system to generate such alarms.

Figure 2 provides a clear picture of the number of true and false alarms generated
per day. In this context, it is obvious that the false alarms highly outnumbered the
true alarms. Approximately 96% of aleris generated are asserted as false positives,
while less than 19 of the total alerts are affirmed to be irrelevant positives. In order
to make it simpler, irrelevant alarms are regarded as false positives alerts in this case
since no immediate and crucial responses required from these events. By looking
at the Snont alerts generated from the University's web server, most of the false
positive alarms came from the category of web application activity. Table 1 shows




6 G.C.Tjhai, M.Papadaki, S.M.Furnell. N L. Clarke

o500

s
- o
i _IL‘

L3
\ )
ik | == o rmm

1 : . .
ol
= ¢ - - Tish Pat Swnt
o | = ——
= {
T

ary sl

Fig. 2 Comparison between False Positive and True Positive alarms

a complete list of the Snont alerts triggered by the data. The first 3 alerts are the false
positives alerts, which will be further investigated later in the subsubsections. The
reason for focusing upon these alerts is due to the quantity generated. which is made
up of more than 80% of total alerts raised by the system.

4.1.1 WEB-IIS view source via translate header

This event is categorized as web application activity, which targets the Microsoft IS
5.0 source disclosure vulnerability [20]. Since Microsoft IIS has the capability of
handling various advanced scriptable files such as ASP, ASA and HTR, the use of
specialized header “Translate " on HTTP GET request might force the web server
to present the complete source code of the requested file to the client without being
executed first by the scripting engine. In addition, this attack only works well if the
trailing slash “/” is appended to the end of requested URL [5, 6].

Surprisingly, this single alert accounted for 39% of the total alerts. Therefore. ap-
proximately 1970 alerts were generated per day by this event. Although this event is
deemed to be an atiack that targets the Microsoft [1S source disclosure vulnerability,
this could possibly be a false positive. Some applications, for example Web-based
Distributed Authoring and Versioning (WebDAV) that make use of “Translate ™ as
a legitimate header, might cause this rule to generate an excessive amount of false
alarms [25]. Moreover, WebDAV PROPFIND and OPTTON methods also make use
of this “Translate ™ as a legitimate header to retrieve the information or properties
of the resources identified by the Uniform Resource Identifier (URT) (nearly 96% of
alerts generated by this event were not HTTP GET requests). Significantly, in this
experiment, there is no alert generated by this signature, which required immediate
action or indicated the occurrence of the real attack.



Investigating the problem of IDS false alarms: An experimental study using Snort

Table 1 Complete list of Snort alerts

~J]

No Signatures Total alents
| WEB-IIS view source via translate header TRE63
2 WEB-MISC robots.ixt access 30011
3 ICMP Liretriever Ping 10254
4  BARE BYTE UNICODE ENCODING 6392
5  POLICY Google Desktop activity 3258
6  SPYWARE-PUT Trackware funwebproducts mywebsearchtoolbar-funtools 1873
runime detection
7 ATTACK-RESPONSE 403 Forbidden 720
¥ ICMP PING Cyberkit 2.2 Windows 651
9 DOUBLE DECODING ATTACK 504
10 ICMP Destunation Unreachable Communication Administratively Prohibited 151
11  TCP Porisweep 124
12 SPYWARE-PUT Hijacker searchmiracle-elitebar runtime detection 80
13 WEB-MISC .DS_Store access 60
14 1IS UNICODE CODEPOINT ENCODING 49
15 WEBROOT DIRECTORY TRAVERSAL 35
16 SPYWARE-PUT Adware hotbar runtime detection - hotbar user-agemt 27
17  WEB-IIS asp-dot attempt 26
I8 TCP Podscan 19
19 SPYWARE-PUT Trackware alexa runtime detection 19
20 WEB-PHP IGenenic Free Shopping Cant page.php access 17
21 ICMP PING NMAP 17
22 ICMP Destination Unreachable Communication with Destination Host is Ad- 13
mnistratively Prohibied

23 WEB-CGI calendar access 11
24 MULTIMEDIA Quicktime User Agent Access

25 WEB-MISC intranet access

26 ICMP redirect host

27 ICMP PING speedera

28  SPYWARE-PUT Hijacker marketscore runtime detection
29 WARNING: ICMP Original [P Fragmented and Offset Not 0!
30 WEB-MISC WebDAV search access

31 WEB-FRONTPAGE /_vu_bin/access

32 Open Pont

33  WEB-PHP remote include path

34 WEB-CGI formmail access

35 WEB-FRONTPAGE viiinf himl access

36  SPYWARE-PUT Trickler teomasearchbar runtime detection
37 WEB-PHP xmirmpc.php post attempt

38  WEB-CLIENT Microsoft wmf metafile access

39 WEB-MISC Domino webadmin.nsf access

40 OVERSIZE CHUNK ENCODING

4] ICMP Source Quench

42  WEBRB-PHP test.php access

43 WEB-PHP calendar.php access

44 WEB-PHP admin.php access

10

— e bJ P b B2 B B D W L de A A LA D~ =) 08 De




B G.C.Tjhai, M.Papadaki, S.M.Fumnell. N L Clarke

4.1.2 WEB-MISC robots.txt access

This event is raised when an attempt has been made (o access robots.ixt file di-
rectly [21]. Basically, robots.txt file is a file that is created to keep the web pages
from being indexed by search engines. More 1o the point, this file provides a specific
instruction and determines which part of a website a spider robot may visit. Interest-
ingly, the problem is that the webmaster may detail sensitive and hidden directories
or even the location of the secret files within the robots.txt file. This is considered
extremely unsafe since this file 1s located in web server’s document root directory,
which can be freely retrieved by anyone.

Although this event is raised as the indicator of vulnerable information attack.
there exists high possibility that all these alerts were raised due to legitimate activ-
ities from web robots or spiders. A spider is software that gathers information for
search engines by crawling around the web indexing web pages and links in those
pages. Robots.ixt file is basically created to restrict the web spider from indexing
pages thai should not be indexed (e.g. submission pages or enguiry pages). As web
indexing is regular and structurally repetitive, this activity tends to cause the IDS
to tngger a superfluous amount of alerts. In this study, approximately 23% of to-
tal alerts (approximately 750 alarms per day) were accounted for by this web-misc
activity. Given that all alerts generated from this event are owing to the activities
of web spider, they are considered to be false positives. Significantly, this issue has
apparenily disclosed the drawback of Snort IDS in distinguishing legitimate activ-
ity from the malicious one; especially when it deals with the authorization or file
permission.

4.1.3 ICMP L3retriever Ping

ICMP L3retriever Ping is an event that occurs when ICMP echo request is made
from a host running L3Retriever scanner [22]. This type of ICMP echo request
has a unique payload in the message. which significantly designates its distinctive
characteristic. This traffic is considered to be an attempled reconnaissance since
the anackers may use the ping command 1o obiain JICMP echo reply from a lis-
tening host. Surprisingly, in this analysis, quite a few alerts were gencrated from
this event; contributing to 8% of the total alerts generated. This figure indicates that
approximately 250 alerts were generated by this signature rule every day.
Considering the source 1P address associated with these alerts, it is obviously
clear that all ICMP requests were sent from the external hosts. Further investigation
was conducted to critically analyse and discover if possible malicious events hap-
pened subsequent to the ICMP echo request. Surprisingly, there were no malevolent
activities detected following the ICMP waffic. In addition. normal ICMP requesis
generated by Windows 2000 and Windows XP are also known to have similar pay-
loads to the one generated by L3Retriever scanner [24]. Generally, this traffic is
routine activities run by computer systems (especially Windows 2000 and XP sys-
tems) to communicate with their domain controllers or to perform network discov-



Investigating the problem of IDS false alarms: An experimental study using Snort 9

ery. In view of this issue and given that no suspicious output detected following
these ICMP requests; these alerts were likely false positives.

4.2 Fine Tuning

False alarm for one system might not be an erroneous alert for other systems. For
example, port scanning might be a malicious activity for normal users. but it is a
legiimate activity if it is performed by a system administrator. Figure 3 shows an
example of an event which triggered both false alarms and true alarms from the
experiment. From the 1DS’s perspective, as long the activity’s pattern match to the
signature defined in the rule database, it is considered to be a malicious event. In
view of this, fine tuning is exceptionally required to maintain the [DS’s performance
and enable the administrator to adapt the signature rule to the protected environment.

In order to optimize Snort’s performance, fine tuning is necessary to reduce the
number of alerts raised. Since only 3 signatures were uned in this experiment, the
false alarm rate accounted for 86.8% of total alarms after tuning was performed.
Figure 4 depicts the ROC plots for the overall result after tuning was performed.
Obviously, only less than two thousands alerts per alert type have been generated
by Snort. In order to understand the effectiveness of fine tuning, the alarm rate be-
tween default and wned Snort is presented in Figure 5. This figure does not seem
particularly impressive but fine tuning did fare well on those signatures: reducing up
to 90% of false alarms per signature, excluding WEB-MISC robots.ixt access. The
following subsections discuss tuning processes in more details.

Number of alarma

Fig. 3 "ICMP PING NMAP" event


http://databa.sc

10 G.C.Tjhai, M.Papadaki, S.M.Furnell, N.L.Clarke

4.2.1 WEB-IIS view source via translate header

Regarding the information disclosure vulnerability attack. Snort does not seem pro-
ficient enough to detect this type of event. The signature rule appears 1o be very
loosely written. by searching for a particular string in the packet payload (in this
case, “Translate: 7). Since the “Translate: f is a valid header used in WebDAV
application, as discussed previously, this rule tends Lo trigger a vast volume of aleris
from the legitimate activities. Hence, tuning is needed to search for a more specific
patiern of the attack signature.

As this attack is basically launched through HTTP GET request, searching for
“GET" command in the content of analyzed packet can be a good start. Principally,
this attack is performed by requesting a specific resource using HTTP GET com-
mand, followed by “Translate: " as the header of HTTP request. In this case, a
tuning can be performed by modifying the signature rule to:

alert tcp SEXTERNAL NET any -> SHTTP_SERVERS SHTTP_PORTS
(msg:"WEB-IIS view source via translate header®;
flow:to_server,established; content:"GET|20|";content:
"Translate|3A| F"; distance:0; nocase; reference:arachnids,
305; reference:bugtraqg, 14764; reference:bugtraqg,1578;
reference:cve, 2000-0778; reference:nessus,10491;
classtype:web—application-activity; sid:1042; rev:13;)

The tuning process significantly reduced the number of alerts, with only 3463
generated by this rule as against 78865 alerts in the first case (i.e. without ning).
Significantly, this tuned rule had been proved to effectively reduce up to 95% of the
initial false alarms from this event

Although the tuning process had decreased the volume of alerts, there is still a
possibility that those 5% alerts were false positives. Searching for GET command
and the Translate f header is not effective enough to detect such attack. Putting trail-
ing slash “/" at the end of requested URL to HTTP request for example could lead in
the security bug |5). Thus, matching the */" patiern agains! the packet payload will
be helpful. Unfortunately, this idea seems hardly possible 1o achieve. Snort does not
have a specific rule option that can be used to match a specific pattern at a particular
location.

As to Snort’s signature, looking for an overly specific pattern of a particular at-
tack may effectively reduce the false alarms; however, this method can highly in-
crease the risk of missing its range. A skilful attacker can easily alter and abuse the
vulnerability in various ways as an attempt to evade the IDS. This might lead to
false negatives as a consequence.



Investigating the problem of DS false alarms: An expenmental study using Snorn 11

4.2.2 WEB-MISC robots.txt access

Since accessing the robots.txt file is a legitimate request for Internet bots (web spi-
ders). a subjective rule. which mainly focuses on the source IP addresses. is nec-
essary to verify user authorization in accessing a certain file. This approach, how-
ever. seems o be hardly feasible to deploy. Of course. identifying all authorized
hosts from their source IP addresses is impractical. There is an infinite number of
IP addresses need to be discovered before the rule can be written. Indeed. lawfully
allowing specific hosts to access certain file might increase the risk of having false
negatives.

In this case. the only solution to suppress the number of false alarms generated is
by using event thresholding [19]. As robots.txt access requests generate regular and
repetitive traffic, a “limi” type of threshold command is the most suitable tuning in
this case. Such a threshold configuration would be as follows:

threshold gen\_id 1, sig\_id 1852, type limit,
track by\_src, count 1, seconds 60

This rule logs the first event every 60 seconds, and ignores events for the rest
of the time interval. The result showed that approximately 10% of false alarms had
been effectively reduced. This indicates that only an insignificant number of false
alarms can be reduced in this scenario. The frequency of fetching robots.ixt files
greatly depends on the web spider’s policy. Hence, deploying event suppression and
thresholding cannot effectively trim down the number of false alarms logged by the
system. Additionally, suppressing the number of alerts generated can also create
a possibility of ignoring or missing significant alerts. A malicious user can hide

- 12
=
g -
<
=
-
g er
-c- o%
z 95
‘E |
= 028 -
= ¥ -
= -t |
L4
1 2 A s |
J Humnbet of false alanns Thousands

Fig. 4 Alerts generation after fine tuning




12 G.C.Tjhai. M.Papadaki. S.M.Fumell, N.L.Clarke

his/her action within the excessive number of alerts generated by using a spoofed
address from web spider agent.

4.2.3 ICMP L3Retriever Ping

The only method that can be deployed to suppress the number of false positive
triggered from this event is by applying event suppressing or thresholding command.
Similar to the one applied o “WEB-MISC robots.ixt access™ signature, a threshold
command is written to limit the number of alarms logged. Instead of using “limit”™
type of threshold command as previous signature, this rule utilized “both” type of
command to log alerts once per time interval and ignore additional alerts generated
during that period:

alert icmp SEXTERNAL NET any —> SHOME _NET any (msg:"ICMP
Liretriever Ping"; icode:0; itype:8; content:

"ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI"; depth:32; reference:
arachnids, 311; classtype:attempted-recon; threshold: type
both, track by_src, count 3, seconds 60; sid:466; rev:5;)

Similar to the previous signature (robots.txt access), the threshold applied will
not prevent the generation of false positives. but it will highly reduce the number
of redundant false positives triggered. Importantly, the threshold is written to de-
tect brisk ICMP echo requests by logging alerts once per 60 seconds after seeing 3
occurrences of this event

The result showed that only 1143 alerts had been generated from this event in 40
days experiment data. This experiment has also proved that the event thresholding
can successfully reduce up to 89% of the false alarms generated by this activity.
Despite its ability in suppressing redundant alarms, the system is prone to missing
stealthy ICMP requests (e.g. requests sent once every 60 seconds can be missed by
the system).

5 Conclusions and Futare Work

The issue of false positives has become a critical factor in determining the success
of IDS technology. Not only must an [DS be accurate in detecting real attacks, but
it must also have the ability to suppress the number of unnecessary alerts generated.
The experiment presented in this paper has revealed a similar result to the work of
Brugger and Chow [4]. Over a span of two years since their research was published,
the issue of false positives remains a critical challenge for the current Snort IDS.
Obviously, Snort’s performance does not look particularly remarkable as illustrated


http://fal.se

Investigating the problem of IDS false alarms: An experimental study using Snon 13

@faise Alarm Rate
1 B Trus Siarm Rale

Al Rate (Percentage)
B EEBRIBER

Fig. 5 Alarm rate before and after tuning

in Figure |. The bottom right scattered plots demonstrate that the number of false
positives largely overwhelms the number of true positives generated. Approximately
3,000 alerts had been generated per day. requiring manual verification to validate
their legitimacy. Although the administrator can effectively distinguish the false and
true positives from the alerts generated, the massive amount of false alarms triggered
by one signature rule might cause the administrator (o miss a malicious attack.

Principally, the overall effectiveness of Snort greatly hinges on the effectivencss
of keyword spotting (i.e. matching the packet content to the signature rule). This has
rendered the system prone to generating a superfluous number of false alerts. Inter-
estingly, most of the rules looking for web traffic related attacks are loosely written
and merely check for the presence of a particular string in the packet payload. This
could trigger a large number of false alerts if a particular string is included in the
content distributed by the web server. Hence. from this perspective, Snort is deemed
not to be ideal enough to detect more complex attacks. which are not detectable by
a pre-defined signature.

In view of these issues, an improvement is required to advance the performance
of IDS technology. This involves developing an automatic alert verification, which
no longer relies on human participation. Through this enhancement, it is expected
that the number of false alarms can be substantially suppressed without increasing
the possibility of false negatives. Also, a more intelligent system is required to help
discover the logical relationship between alerts generated and to reveal the potential
attack scenario: thus providing a better picture of the security issue to the system
administrator. Given the complexity of systems and the ingenuity of attacks. an IDS
will never be perfect. and there is still significant scope to enhance its performance.

Acknowledgements We want to thank Dr. Bogdan Ghita of University of Plymouth for his help
in capturing the network traffic and for his support until the completion of this paper




14

G.C.Tjhai. M.Papadaki, S,M.Furnell, N L Clarke

References

10.

. Allen J. Christie A, Fithen W, McHugh J. Pickel J. Stone E (2000) Swute of the Practice of

Intrusion Detection Technologies. Available via Software Engineering Institute
httpz//www.sei.cmu.edu/publications/documents/99 _reports/99r(028/99tr(028abstract himl.
Cited 9 January 2007

. Axelsson S (2000) The Base-Rate Fallacy and the Difficulty of Intrusion Detection. ACM

Transactions on Information and System Security 3(3), 186-205

BASE (2007) Basic Analysis and Security Engine (BASE) Project. Available via BASE
Project.

hitp:/fbase secureideas.net/. Cited 25 April 2007

Brugger ST. and Chow J (2005) An Assessment of the DARPA IDS Evaluation Dataset Using
Snort. Available via UCDAVIS department of Computer Science.

hup:/fwww.cs uedavis edu/research/tech-reports/2007/CSE-2007- 1 pdf. Cited 2 May 2007
Bugtrag (2007a) Microsoft 1IS 5.0 "Translate: " Source Disclosure Vulnerability. Available
via Security Focus

hitp:/fwww.security focus.comv/bid/1 578, Cited 9 June 2007

Bugtrag (2007b) Microsoft 11S WebDAV HTTP Request Source Code Disclosure Vulnerabil-
ity. Available via Security Focus.

hittp:/fwww.security focus.com/Mid/ 1 4764, Cited 9 June 2007

. Caswell B and Roesch M (2004) Snort: The open source network intrusion detection system

Available via Snor.
httpz/fwww.snort.org/. Cited 3 October 2007

. Chapple M (2003) Evaluating and Tuning an Intrusion Detection System. Available online:

SearchSecurity.com.
hitp://searchsecurity.techtarger.com. Cited | November 2006

. Chyssler T. Burschka S, Semling M, Lingvall T and Burbeck K (2004) Alarm Reduction and

Correlation in Intrusion Detection Systems, Available via The Depantment of Computer and
Information Science Linkopings Universitet

hup://www.ida.liu.se/ nslab/publications/2004/Chyssler(4_DIMVA pdf. Cited 15 June 2007
GCIA (2008) GIAC Certified Intrusion Analyst (GCLA). Available via Global Information
Assurance Certification

hup:/fwww.giac.org/certifications/security/gcia.php. Cited 8 May 2007

. Koziol J (2003) Intrusion Detection with Snorr, 2Rev edition. Sams Publishing, United States

of America

. Kruggel C and Robertson W (2004) Alen Verification: Determining the Success of Intrusion

Attempts, Proc. First Workshop the Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA 2004), Available via Depurtment of Computer Science, University of
Califormu, Santa Barbara.

hup://www.cs.ucsh.edw wkrfpublications/dimvadverification.pdf. Cited 9 May 2007
Lippmann RP. Haines JW, Fried DJ, Korba J and Das KJ (2000) The 1999 DARPA ofi-line
intrusion detection evaluation. Computer Networks 34:579-595

Mzhoney MV and Chan PK (2003) An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. In Recent Advances in Intrusion Detection
(RAID2003). Lecture Notes in Computer Science, Springer-Verlag 2820:220-237

McHugh J (2000) Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA
Intrusion Detection System Evaluations as Performed by Lincoln Laboratory. ACM Transac-
tions on Information and System Secunty 3(4), 262-294

Mell P. Hu V, Lippmann R, Haines J and Zissman M (2003) An Overview of Issues in Testing
Intrusion Detection Systems. NISTIR 7007 Available via National Institute of Standards and
Technology

hirp:/fesre.mist. gov/publications/mistin/mistir- 7007 pdf. Cited 7 July 2007

Patton S, Yurcik W and Doss D (2001) An Archilles” Heel in Signature-Based 1DS: Squeal-
ing False Positives in SNORT. Recent Advanced in Intrusion Detection (RAID), Univ. of
California-Davis.


http://ba.se
http://www.securityfocuv-com/hid/l
http://www.snon.org/
http://iinty.lcchlarget.com
http://www.ida,liu.se/
http://www.giac.org/cenilications/security/gcia.php
http://www.cs.ucsb.edu/
http://csrc.nisJ.gov/publicalions/nistir/nistir-7007.pdf

Investigating the problem of TDS false slarms: An experimenital vudy using Snan 5

25,

26.

. Ritter ] (20061 Ngrep - network grep. Available via SourceForge.net
htp/ingrep. sowreforge net. Cited 36 June 2007
Snort (20074} Event Thresholding. Available via Snom.
htipffaww smort.arg/docssnort _hemanualy/hmanma] 2 dnodel2 mwl. Cited 1 July 2007
. Snort (2007b) WEB-IIS view source via translate header. Available via Snort.
htip oo org/pub-hindsigs ogi ad= 1042, Cied 9 June 2007
. Snort (2007¢y WEB-MISC mbots.ixt access. Available via Snor
hhp/Awwwsnort org/pub-binfsigs egi Tsid=1:1832. Cited 9 June 2007

22 Snort (2007d) ICMP L 3wetriever Ping. Available via Snonl.

hup:/iwww.snor org/pub-binfsigs cgi Msid=1:166. Cited L3 June 3007
. Tjhai GC. Papadaki M. Fumell SM and Clarke NL (2008) The problem of false alarms:
Evaluation with Snort and DARPA 1994 Dataset. Submitied to FrustBus 2008, Turin, ltaly.
1-5 September 2008
. 'Web Server Tulk (20X)5) L. 3Retriever false positives. Available vie Web Server Talk
hop-fww wwebservenatk com/message893082 mml. Cited 12 July 2007
WebDAV (2001) WehDAV Overview, Available via Sambar Server Documentation.
hitpefivew w.sambar.comsyshelp/webdav.him. Cited 20 Jure 2007
Zhou A. Bludein ), and Zincie-Heywood N (2000 Improving fmtrusion Detection Systems
Through Heunstic Evaluation. 17th Annual Canadian Conference on Electrical and Computes
Engincening.
http-ffusers.cs dal .ca/ jamie/pubnPDFZhou+CCECEM. pdf. Cited 25 June 2007


http://www.sambar.coni/syshelp/webdav.hlm

SOMPUTERS B SECURLITY 29 (20 1¢

-

“e.* ScienceDirect

available at www.sciencedirect.com

Computers

Security

journal homepage: www.eisevier.com/locate/cose

¥ A preliminary two-stage alarm correlation and filtering
system using SOM neural network and K-means algorithm

Gina C. Tjhai®, Steven M. Furnell, Maria Papadaki, Nathan L. Clarke

Centre for Security, Communications and Network Research, University of Plymouth, Plymouth PL4 8AA, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 21 July 2009
Received in revised form

5 February 2010

Accepted 25 February 2010

Keywaords:
Intrusion Detection System

False alarm

Self Organising Map (SOM)
K-means clustering

Alarm correlation

a common DS,

Intrusion Detection Systems (IDSs) play a vital role in the overall security infrastructure.
Although the IDS has become an essential part of corporate network infrastructure, the art
of detecting intrusion is still far from perfect. A significant problem is that of false alarms,
as generating a huge volume of such alarms could render the system inefficient. In this
paper, we propose a new method to reduce the number of false alarms. We develop a two-
stage classification system using a SOM neural network and K-means algorithm to corre-
late the related alerts and to further classify the alerts into classes of true and false alarms.
Preliminary experiments show that our approach effectively reduces all superfluous and
noisy alerts, which often contribute to more than 50% of false alarms generated by

@ 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Networked systems have become increasingly prevalent, fast,
and inexpensive, leading to a rapid growth in both demand
and complexity of the computing system. Unfortunately, this
has also been accompanied by a growth in the threats to the
systems. In 2008, the number of new malicious code signa-
tures increased over 265 percent over 2007; more than 60
percent of the total code threats were detected in 2008, as
reported by Symantec (2009). The huge increase in the number
of malicious code threats demonstrates the growing need for
more responsive and reliable security measures.

An Intrusion Detection System (IDS) is a component of
a netwaork security architecture, which involves the monitoring
of computer systems for intrusive activities (Le. those behav-
iours that infringe the established security model). The rise of
cybercrime on the global network has entailed a great demand
for a remarkable use of IDS, which in turn forms the necessity
of developing a better detection system. Although IDS has

ik Carres_pending author.
E-mail address: info@cscan.org (G.C. Tjhai).

become an essential part of a corporate network infrastructure,
the art of detecting intrusion is still far from perfect. IDS tends
to generate a huge amount of alerts, which can be mixed with
false alarms. False alarms, also known as false positives (Type I
errors), occur when a legitimate activity has been mistakenly
classified as malicious by the IDS. The vast imbalance between
the actual and false alarms generated has undoubtedly
undermined the performance of IDS (Chyssler et al., 2004b). An
alarm reduction system is an absolute need for this problem.
This paper proposes a two-stages clustering system to reduce
false alarm rate. The proposed method can classify the alarms
generated by the [DS into false and true alarms. The main
objective of this approach is to correlate the alerts into a more
manageable form before they are presented to the adminis-
trator; and to reduce the sheer volume of alerts generated.
Section 2 provides a critical analysis of existing research in
the area. The framework of the proposed system is presented
in Section 3, whilst the concept and algorithm of the meth-
odology is described in Section 4. Section 5 discusses the

0167-4048/% — see front matter ® 2010 Elsevier Ltd. All rights reserved.

doi:10,1016/j.cose.2010.02.001


http://wwrw.BciBncedirect.com
http://elsevier.com/locate/cos9
http://infoOcscan.org

COMPUTERS & SECURITY 29

(2010) 712—723 .

performance of the proposed model in term of its alarm
reduction rate, followed by conclusions in Section 6.

2. Related works

There have been a large number of IDS research efforts dealing
with the alarm handling problem, but only few have considered
applying alarm frequency rate when performing feature
construction. Some techniques focus upon association-rule-
based feature selection to classify the alarms, as proposed by
Shin et al. (2004). The authors suggested a mining-based false
alarm classification model that filters the false alarms by using
alarm classification rules. This approach used decision tree
algorithm (C4.5) (Quinlan, 1953), which was extended to asso-
ciation based classification, to predict class labels of unknown
objects (alarms) with high accuracy. The effectiveness or
accuracy of these classifiers largely depends on the training
data set. Although this method had been empirically evaluated
to work effectively in reducing the false alarm rate, it is
considered not efficient enough since the classification rules
should be created for each type of attacks. The model was
implemented in the domain of DDOS (Distributed Denial of
Service) attack only and no other attacks rules had been tested
in their experiment.

Law and Kwok (2004) proposed to model the normal alarm
patterns of IDSs and detect anomaly from incoming alarm
streams using a K-Nearest-Neighbour classifier. In contrast,
Alharby and Imai (2005) looked for anomalous alarm behav-
iour by using sequential alarm patterns. They believed that
when an attack is occurring, the alerts triggered by the IDSs
will have different patterns from that in an attack-free envi-
ronment. The classification accuracy of both approaches relies
upon the length of the time window for each alarm set. Since
the alarm patterns are varied depending on the allocated time
frame, the anomalous alarm pattern will share similarity with
the normal pattern if the time allotment is amiss.

In terms of the alarm clustering, Julisch (2001) suggested
a technique to efficiently handle large groups of redundant
alerts by identifying and removing the root cause of an alarm.
The author observed that over 30% of all alarms corresponded
to a small number of root causes. The study reported that by
knowing the root causes, the IDS can be regularly adjusted and
root causes can be removed, reducing the false alarms by 82%.
Unfortunately, as such method focused merely upon a large
group of superfluous alarms, it was considered not effective
enough in identifying false alarmsin a small cluster. Julisch and
Dacier (2002) had also developed a technique to mine historical
IDS alarms for episode rules. The rules are created to predict
a prospective alert when a specific set of alarms had been
generated. Whilst this approach is deemed outstanding enough
to give an insight into the pattern of false alarms and the
potential future attacks, it could only offer 1% reduction in
alarm rate, whilst 99% of alarms were still left for manual
processing.

Other approaches correlate and classify the false alarms by
using conceptual clustering techniques (focusing upon the
alarm attributes). Cuppens and Miege (2002) pursued an
attribute-based correlation function that clusters and merges
the alarms by using prerequisites and consequences of attacks.

Similarly, Ning et al. (2002) suggested an approach to construct
attack scenarios by correlating alerts on the basis of prerequi-
sites and consequences of intrusions. Both approaches provide
an intuitive mechanism to represent attack scenarios con-
structed through alert correlation. However, neither of these
can correlate unknown attacks since the prerequisites and
consequences of the new attacks are not identified beforehand.

The likeness of alert features is considered effective to
correlate and reduce the false alarms, as proposed by Debar
and Wespi (2001) and Valdes and Skinner (2001). The authors
conducted research to evaluate the use of a feature similarity
function to fuse alerts that match closely but not perfectly.
The similarity function is used to calculate the likeness of the
features that match at least the minimum similarity specifi-
cation, and correlate them using a fusion algorithm. Although
this method seems to effectively reduce a number of false
alarms, it does suffer from one common weakness; it cannot
fully discover the causal relationship between related alerts.
To solve this issue, Dain and Cunningham (2001) produced
a real-time algorithm to combine the alerts into a scenario;
thus effectively uncover the causal relationship between
alerts. Unfortunately, such an approach cannot be applied to
correlate alerts generated by unknown attack scenarios.

Unlike previous approaches, which used pre-defined rules
to correlate the alerts, Zhu and Ghorban (2006) proposed
a correlation technique that cannot only correlate the gener-
ated alerts but also automatically extract attack strategies
from a huge volume of intrusion alerts. The technique was
developed based on the use of a neural network supervised
learning approach. The correlation system was designed to
automatically determine or calculate the probability that the
alerts should be correlated by using an alert correlation
matrix. The experiments conducted using the DARPA 2000
intrusion detection scenario specific data set demonstrated
that this technique can successfully correlate a large number
intrusion alerts into scenarios. Despite the benefits offered
this approach had only been evaluated using the synthetic
evaluation data set (DARPA 2000) and has not been applied yet
in a real-time environment.

Data mining technologies have broadly evolved and have
shown their capabilities to reduce more than a half of false
alarms. Our approach presented in this paper will trim down
the number of false alarms by implementing a data mining,
unsupervised neural network technique.

3. Proposed technique

The idea of this false alarm classification system is to filter the
false alarms from Intrusion Detection Systems and minimise
the false alarm rate by unsupervisedly clustering the alerts
based on the their attributes. For this purpose, the proposed
system will apply data mining techniques using a neural
network, i.e. SOM (Kohonen, 1995) and K-means (MacQueen,
1967), for the classification. The data mining techniques are
commonly used in data reduction and data clustering. The
reason of choosing these algorithms is because it is easy to
implement and has the ability to show and clarify the rela-
tionship between the classified alerts. Our classification
system is developed to identify the potential false alarms from




714 COMPUTERS & SECURITY

a huge number of alarms generated by the IDS. In general,
with the extracted features from the alerts, the main task of
the classification is to map the input data into 2 classes of true
and false alarms. The alert features are the attributes that are
measured in order to identify an intrusion, for example the IP
addresses or the protocols. The multidimensional input data,
which consist of more than one attribute, are mapped into a 2-
dimensional space and are divided into two clusters, 1.e. true
and false alarms.

The framework of our approach comprises two main
stages, first is alarm aggregation and second is classification,
as shown in Fig. 1.

From the [DS sensors, the alert data are collected and
stored in a database. The system then retrieves the data from
the database and classifies them by extracting the attributes
from the alerts and feeding them into the unsupervised SOM-
based clustering system. Building accurate and efficient clas-
sifiers largely depends on the accuracy of the attributes used
for the classification. Our method applies unsupervised SOM
and K-means-based feature classification, whereby the attri-
butes of the alerts are treated as the input data.

The whole procedure consists of four phases: feature
extraction, alarm aggregation, cluster analysis and classifica-
tion. In the feature extraction phase, the system will use
several attributes extracted from the alert database, which are
considered effective to correlate alerts generated from a single
activity. The extracted data are then normalised since the
value of the data is varied depending on the type of attributes
used. A huge variance between attributes value will produce
an uneven or biased result. Given a set of input vectors from
the first phase, the SOM-based system is trained unsupervised
in the second phase to map the data so that similar vectors are
reflected in their arrangement. The distance between two
input vectors is presented on the map, not by their absolute
dissimilarity (which can be calculated), but the relative
differences of the data properties. The maps created by SOM
would be especially useful as a visual feedback to the user
(network administrator), which is one of the main reasons
why this approach is used. Whilst many other techniques
offer a better or more accurate result for clustering and
multidimensional scaling (Flexer, 1997), they were deemed
not suitable for online, real-time data processing as SOM (a
future enhancement for our system).

The SOM training process, through which the relationships
are built, is fairly simple. Duning the training, SOM is expected
to randemise the map's prototype vector elements within the
range of the input value, The iteration is carried out to obtain
a prototype which is most similar to the input vector. Onceitis
found, the prototype and its neighbours on the map are
incrementally adjusted to more closely resemble the data.

As soon as the final Kohonen map is produced, the trained
SOM can be automatically visualised using U-Matrix method.
Having said that, SOM clustering alone is not good enough to
describe the boundary between the data items since there are
no clear walls to separate them from the other items. Classi-
fying the data without any prior knowledge, thus, is rather
inconsistent and difficult. The result of this U-Matrix can
merely be used for visualisation purpose and the interpreta-
tion of the U-Matrix values is considered subjective. To avoid
this issue, therefore, our approach applies a traditional

Fig. 1 — Framework of false alarm classification model.

clustering method, K-means clustering. Based on the map
produced by the trained SOM, K-means clustering is imple-
mented to further define the boundary between the data and
concurrently classify the input vectors into a number of pre-
defined clusters. At the end of the second phase, the system
is expected to form clusters by correlating all alerts generated
by a single activity, i.e. one cluster for each event/activity.

In the third phase, cluster analysis, the result of the clas-
sification is further evaluated to attain a set of attributes from
each cluster created in the previous phase (the first classifi-
cation). Seven alert attributes (features) were chosen to
represent the value of each input vector in the second clas-
sification. Two out of the seven attributes, namely the
frequency of alarm signatures and the average time interval
between the alerts each day will be computed. These features
are considered to be the most crucial attributes influencing
the magnitude of the alert signatures.

The frequency of alarm signature defines the number of
occurrences of an alarm signature from an event within a one-
day period. The recurrence rate of a signature provides insight
into the issue of superfluous alarms such as the noisy false
alerts triggered by the ICMP traffic. The higher the frequency
rate of an alarm signature, the more likely it is a noisy alert. In
order to account for denial of service attacks, which could also
generate high alarm frequency, the average time interval
between events triggering a particular signature is chosen to
describe the density of the signature and also to determine the
validity of the triggered alerts.

In the last phase, the SOM and K-means algorithm are
applied for a second time to re-classify the data based on the
attributes extracted in the third phase into the classes of true
and false alarms. In this stage, the frequency and time interval
features are emphasised and it is necessary to examine how
the attributes’ weights from the two features can greatly affect
the outcome of the classification. In which case, a fine-tuning
is performed to adjust the attributes’ weights and to ensure
that such attributes contribute more to the grouping
processes. The details of how the fine-tuning is performed will
be presented later in Section 5.2. The final classification
reveals that a cluster containing a higher frequency rate and
a shorter time interval is prone to represent a false alarm
class. The architecture of the false alarm classifier and the
relationships among the components appear in Fig 2.

4. Methodology

The basic concept, architecture and implementation tech-
nique of SOM can be found in Kohonen (1995). A Self



COMPUTERS & SECURITY 2

2

(2010) 712-723 715

e}

subsets. The grouping is done by calculating the sum of
distances or sum of squared Euclidean distances from the
mean of each cluster, as shown below.

I

Fig. 2 — Architecture of false alarm classifier.

Organising Map (SOM) is an unsupervised neural network
which produces a feature map that maintains the topology of
the input data according to their similarity. Unlike typical
neural networks that need to be trained with their desired
outputs, SOM can automatically categorise the varieties of
input presented during training without any external super-
vision whatsoever and assess the accuracy of its classification.

Unsupervised learning using SOM offers a simple and
efficient way of clustering data sets. It is empinically proven
that SOM is best suited to data classification due to their high
speed and fast conversion rates as compared with other
learning techniques (Labib and Vemuri, 2002). Also, in terms of
its data representation, this method is deemed to outperform
other algorithms owing to its ability to preserve topological
mappings between the input data. This represents a signifi-
cant feature, which is desired when introducing the rela-
tionship between the generated alerts.

The idea of the SOM algorithm is to perform a data
compression technique (vector quantisation) where a high
dimensional data is represented or mapped into something
that is better understood visually such as a 2-dimensional
array. The approach is considered as being highly effective as
a complex visualisation tool for picturing extensive, multidi-
mensional space with the intrinsic relationship among the
various attributes comprising the data.

Interestingly, the dimensional transformation of the input
data leads to an automatic classification, whereby similar data
items are mapped in proximity; thus forming clusters. To
obtain distinct classes of similar data elements from the
trained SOM, a clustering algorithm, K-means, is applied to
formally determine the clusters inherent in the structure of
the data at the SOM's output layer. The basic algorithms for
the applications of SOM and K-means clustering can be found
in SOMToolbox (CIS, 2005). Unlike K-means, SOM algorithm is
resistant to the presence of outliers in the data, and is also
robust with regard to the choice of the number of classes to
divide the data into, which is a desirable property and the
main reason of applying SOM in between (Zanero, 2005). K-
means (MacQueen, 1967) is a simple unsupervised learning
algorithm that answers the well-known clustering problem by
grouping n objects based on attributes into k partitions, where
k < n. The implementation of K-means assumes all attributes
to be independent and normally dispersed. The main concept
of this approach is to define k appropriate centroids, one for
each cluster and then group all data into the pre-defined k

VP —a:)"+(p2 — @)+ + (P - @)= V"eri -q). ()
where p and q are the cluster points and n is the number of
attributes.

Hence, the objective of this clustering is to minimise
a measure of dispersion within the clusters and to maximise
the distance between clusters.

Similar to other algorithms, K-means clustering also has
weaknesses, K-means is considered to be unstable; running
the procedure several times will give several different cluster
solutions (Van der Heijden et al., 2004). Depending on its initial
condition, the algorithm may converge or be trapped in the
local optimum (minima). In addition, when the number of pre-
specified classes is high, it often happens that some clusters
are ignored during the classification as no sufficient support is
given. In that case, the number of effective clusters will turn
out to be much less than k.

With the issues of classification in mind, our approach is
directed to focus upon an interaction between the intrinsic
structures (alerts' attributes) in the instances, the represen-
tation of the data and the definition of the clustering problem.
Solutions are suggested to overcome the issues, at least
partially, and the effect of the problems will be considered
when representing the data and interpreting the result of the
clustering process.

The K-means procedure will be started by assigning the data
to k initial clusters at random. It is also worth noting that the
cluster solutions can be influenced by the order of the input
data. The randomised trials therefore involve randomising both
the initial clusters and the data order. To get the best clustering
solution, the proposed system looks for the top solution by
exploring a range of cluster solutions produced by the proce-
dure and examining their criterion value; involving the
minimum sum of squared error and the highest frequency rate.

S. Experiments and evaluation

This section presents the experimental results of our false
alarm classifier. Two experiments were performed. For the
experiments, we used two types of data sets; the public and the
private data sets. Given that the 1999 DARPA evaluation data
set is deemed to be the largest publicly available benchmark,
our experiments aimed to utilise such data as the source of our
evaluation. A number of criticisms had been raised over the
DARPA data set, questioning the use of synthetic data to
picture a real world network, as well as the taxonomy used to
categorise the exploits involved in the evaluation. Owing to
these issues, our experiments involved evaluation on both
DARPA and a private data set. The private data were collected
at the University of Plymouth, on a public network (100—150
MB/s network), logging all web traffic to and from the Uni-
versity's web server. It should also be noted that traffic con-
taining web pages with the potential of having sensitive/
confidential information was excluded from the packet
capture, in order to preserve the privacy of the users. As the




716

COMPUTERS & SECUEITY

main objective of the system is to facilitate alarm management
for the administrater, the proposed technique is designed to
process the generated [DS alerts every 2 h. So, instead of using
a whole data set, the experiments evaluated only a chunk of
DARPA 1999 and the private data as the input of the IDS
system. In this case, only week 4 testing data from DARFPA 1999
evaluation data set is fed into the system. Table 6 presents the
properties of data set selected for the experiments.

To obtain a set of network alarm data for our classification
system, we firstly run the Snort IDS (Caswell and Roesch, 2004)
under Linux Fedora 7 against the DARPA and private data set.
The reason for utilising Snort is due to its openness and public
availability. In order to facilitate the analysis of IDS alerts,
a front-end tool Basic Analysis and Security Engine (BASE,
2007) was then utilised as the intrusion analyst console.
Regarding the neural networks, the SOM-based and K-means
systemn 1s implemented on the SOMToolbox 2.0 (CIS, 2005)
which is run on MATLAB 7.5.0.

5.1.  STAGE 1 - alarm aggregation

Traditional IDS is believed to commonly produce a large
volume of alerts, consisting of redundant and low priorty
alarms. To reduce the number of redundant alerts generated
from the same event, therefore, our study proposes an alarm
aggregation approach that effectively combines all alerts
triggered from a single activity or event in a particular time
frame. The key objective of this mechanism is to pinpoint the
triggering events from the incoming alarms and to help add
meaning to the alarms generated. It is not unusual for IDS to
generate more than one signature from a single event. Pre-
senting those alerts individually could degrade the value of
the alarms. By contrast, correlating all alerts triggered by
a single event, could increase the meaning of the alarms, and
make it possible to discover the potential attack scenaria.

In order to correlate related alarms, we need to remove the
inapt attributes and select only appropriate attributes. After
evaluating a number of potential features, three significant
attributes have been chosen to represent the relationships
between alerts. Those are the timestamp, the source and
destination IP addresses. IP address is deemed to be the most
critical feature determining the subject of the occurrence.
Conversely, the timestamp determines the time of the event
and whether a particular alert within a specific time period
should be aggregated. By using the combination of these
features, we expect to correlate alerts triggered by particular
IP addresses within a particular period of time.

In order to correctly spot the events triggered by particular
hosts, we decided to use the combination of both source and
destination IP addresses. So, instead of using the original IP
addresses, the system is designed to compute the addition
and the subtraction between the source and destination P
addresses. Before the computation, the [P addresses were
converted into their decimal value from the common dotted
decimal notation (e.g. 123.7.1.10 becomes 2064056586). The
computed value is then fed into the system for the classifi-
cation. The main objective of this pre-processing step is to
obtain a distinctive pair of IP addresses from an alert without
the need of identifying the source and destination addresses.
Such approach enables us to connect all alerts which involve

the two IP addresses within a particular time frame. For
example, alerts generated by ICMP Ping and ICMP Echo Reply
signatures can be correlated since they commenly associate to
a same pair of IP addresses. In order to obtain a same pair of
addition and subtraction values of two IP addresses in any
order, only the absolute value of the subtraction is taken. For
example, if the subtraction between 2886758706 (source) and
2886759119 (destination) is —413, then the absglute value 413
is selected. So, although the source/destination has changed
(reply), the subtraction will still yield the same value. As this
technique uses the characteristics of both difference and
addition of IP addresses, which are taken in time context, the
likelihood of having collisions is low (different pairs of IP
addresses are mapped into the same cluster) (Chyssler et al,
2004a). A unique combination of the value, hence, indicates
a unique event triggered by the corresponding IP addresses.

Apart from the IP addresses, the third attribute, timestamp,
also requires a slight conversion. As the timestamp is repre-
sented as date string format rather than a number, an alter-
ation is necessary. The timestamp is normally presented as
date vector, consisting of 6 elements specifying year, month,
day, hour, minute and second. So, in order to perform the
conversion whilst keeping the value of the attribute, we utilise
“datenum” function from MATLAB to convert the string or
date vector into a serial date number.

Using the three-dimensional vectors to build SOM map
directly is likely to be biased to a certain dimension, as
different attributes values tend to be in different units. if some
vector components have variance which is considerably
higher than other components, they will certainly dominate
the map formation. Therefore, normalisation is performed to
control the variance of the vector components. Our experi-
ments utilise variance normalisation method, which is known
as "var” (CIS, 2005). This is a linear transformation which
scales the values such that their variance is equal to 1.

The number of neurons or the size of the map itself greatly
influences the performance of SOM system. In the classical
SOM, the number of neurons should usually be selected as big
as possible, with the neighbourhood function maintaining the
efficiency and generalisation of the mapping. The increase of
the map size, however, could cause the training phase become
computationally and impractically heavy for most applicants.
With the aim of gaining the best map result, we decided to
select the number of neurons based on the smallest quanti-
sation and topographic errors, where errors < 0.1. In order to
do so, we run a loop programme creating maps with different
number of units and the programme will be terminated once
the map has the quantisation and topographic errors less than
0.1. The quantisation and topographic errors are computed
after training to measure the quality of the generated map.
However, bear in mind that a low quantisation error does not
necessarily mean a good result; it might lead to the issue of
overfitting. This may happen when the numbers of units are
larger than the number of training data (CIS, 2005). Having
said that, overfitting is not a real problem since K-means is
applied as a second classifier. In fact, the implementation of
multi-stage classifiers can actually avoid the issue of over-
fitting (Weijters et al, 1997). The number of units, the topo-
graphic and quantisation errors of the data are presented in
table 6.



717

Fig. 3 — Stage 1 classification using DARPA 1999 dataset.

One of the most significant weaknesses of K-means clus-
tering is the need to determine the number of clusters prior to
classification. The default setting for K-means initialisation
value k (maximum number of clusters), set by SOMToolbox, is
the square root of the length of data. As in the first stage, we
never know the real number of the clusters, and we believe that
the data can be classified into more clusters than specified by
the default setting above. To affirm thisidea, 4 sample data were
taken and manually analysed to estimate the expected number
of clusters and three of them had clusters reached up to two
fifth of the length of data. Hence, in order to avoid possible
misclassification, our system determines to increase the “k”
value for K-means to half of the length of data. Again, the
problem of overfitting is very commeon in the subject of data
mining and neural network. Such issue occurs when the
number of nodes (clusters) is as large or larger than the number
of training cases (CIS, 2005). Since the number of training data
used in our experiment is two times more than the clusters (k -
¥% data), the network is unlikely to suffer from overfitting.

To overcome the weakness of K-means clustering, the
system generates 500 randomised trials, involving random-
ising both the initial k clusters and the data order. The best
classification is then selected based upon the highest
frequency and the minimal sum of squared errors. The sum of
squared error refers to the least distance between the data and
the corresponding cluster centroid. In the K-means algorithm,
each attribute is assumed to have the same weight; which
then makes it impossible to know which feature contributes
more to the grouping process, Having said that, the value of
the attributes’ weights can be completely adjusted if the fine-
tuning is desired.

As mentioned before, two data sets are utilised in the
experiments. For DARPA data set, 4 h of data (total 3062 alerts)
was extracted from the first day of 4th week testing data and
was evaluated as two separate inputs. Fig. 3 presents the
result of the stage 1 DARPA classification.

A total of 790 clusters have been generated in the first part
of classification; shown on the left map. Interestingly, only 203
of them are active whilst the rest are considered dead centres.
Similarly, from 605 clusters generated in the second part
(shown on the right map), only 86 classes are active. This
seems obvious that K-means clustering tends to generate
a significant number of dead centres. Enhancing the K-means
performance, however, is out of the scope of the study and is
not discussed in this paper.

In general, the classification has demonstrated a reason-
able outcome. Approximately 93% of data from the first part
classification have been mapped and classified into the
correct clusters, ie. accuracy 0.93. Conversely, 0.9 is
revealed from the second classification. In terms of clustering
accuracy (the number of clusters with the correct data), the
first classification shows 0.86 accuracy, whilst second classi-
fication reveals 0.81.

Similar to the DARPA data set, 4 h data from University's
network data (2556 alerts) was analysed using two separate
inputs. Fig. 4 presents the result of the classifications.

The classification from this network data shows a slightly
better result compared to those from DARPA data set.
Approximately 0.92 and 0.94 are computed for the first and
second classifications, whilst the cluster accuracy accounts
for 0.89 and 0.93 respectively.

5.2.  STAGE 2 — false alarm classification

Having correlated the related alerts into a number of clusters,
the second stage of classification is carried out to further label
the alerts into true and false alarms. The main objective of this
false alarm classification stage is to obtain a better alarm
management by reducing the number of false alarms gener-
ated before being presented to the administrator. Besides, the
organisation of the data using the SOM-based system enables



718 oo

Fig. 4 — Stage 1 classification using University of Plymouth Network data.

us to learn the relationship between alerts based on the
defined attributes.

Similar to the first mapping the alert attributes are
selected and pre-processed prior to the classification.
Howevert, in this case, the outcome of the first classification
will be fed into the second alarm classifier; meaning that each
cluster is an input for the second classification. Using the
association-rule method (Piatetsky-Shapiro, 1991), which
looks for the most frequent itemsets, 7 alert features are
selected from each alert cluster. The selected attributes are
the number of alerts, number of signatures, port number,
protocol, priority, time interval and the number of events,

have been chosen as the dimensions of the input data. The
attributes are carefully selected to describe the inherent
relationship between alerts. Table 1 presents a brief descrip-
tion of the selected alarms’ attributes and their data collection
methods.

The final result of the K-means classification largely hinges
upon the dimensions or the attributes applied in the SOM
mappings. Typically K-means algorithm treats all features
fairly and distributes the weights on all attributes equally. The
features’ weights can be derived based on the importance of
the feature to the clustering quality. The higher the attribute’s
weight, the more the contribution it has on the clustering

Table 1 — The interpretation and data collection methods of the alarm attributes for second classification.

Alert features Description Collection methods

No of alerts Total number of alerts grouped N/A
in one cluster

No of signatures  Total number of signature type in a cluster N/A

Protocol Type of traffic from event There are only three values that can be assigned to this feature.
triggering the alerts Alert with the protocol number below 255 is assigned to a value of

1 and 3 for protocol number 255. If there are two types of protocol
number found in & cluster, the valueis setto 2.

Port number Only the service port number is If the alert contains a well-known port number (<1024), the value will

applied in the classification. be set to 1; if not (>1024) value of 3 will be given. If the cluster has two
E types of port numbers, then the value will be set to 2.

Alert priority Criticality of the alerts, There are Based on the type of signature, alert with the 1st prionity is assigned to a
3 types of alert priority, namely 1st, value of 300, 2nd to 200 and 3rd to 100. If multiple signatures are found in a
2nd, and 3rd. cluster, the priority value for each signature could be added together.

Time interval Time interval between events” from Should an alert signature occur in 3 different events in a particular time
a particular signature frame (one-day), the mean of the time interval between each event is

calculated. This attribute is computed in seconds. However, if there are
will be selected.

No of events The number of events® in which If there are multiple signature types in a cluster, the lowest no of
a particular alert signature is triggered events is selected.
within a day

a One event equals 1o a number of alerts from a single signatures, which are triggered by a particular activity,




Table 2 — SSE and frequency rate from DARPA data set part 1.

= g 719

MAP 1 2 3 4 5 6 7 8 5 10 11
SSE 6.3276 6.335 6.5053 6.5056 6.8716 6.8721 6.8731 6.8767 6.9091 7.6474 7.6807
Frequency 0.362 0.332 0.062 0.064 0.004 0.004 0.004 0.044 0.002

0.056 0.066

process. Amongst the seven features two attributes, namely
the alarm frequency rate and the time intervals between
events are deemed to be the most influential one. So, to ensure
such features contribute more to the clustering processes
than the remaining five, we decided to carry out the fine-
tuning by properly adjusting the attributes’ weights

In order to achieve an ideal weight, we conducted an
experiment to search for the best classification outcome by
randomly setting the weights of the two leading attributes to
be higher than the remaining features. Although the main
objective of this weight adjustment method is to prioritise the
attributes on the classification processes, we do not want to
“over-weight” the features; leading to a biased clustering
result From our observation, we had found that the data
started producing inequitable classification once an attribute's
weight was set more than 3 times higher than other features.
So, to avoid this problem, the weight values of the primary
attributes (w) will be selected from 1 to 3 times higher than the
other attributes (1 < w > 3). To test the attributes’ weights, the
first selected value (e.g. w = 1 + 0.1 = 1.1) is multiplied to the
corresponding attribute’s value. The updated attribute is then
evaluated and run on the classification algorithm. The exper-
iment will be further conducted to assess different weight
values by gradually increasing the selected value by 0.1 (e.g. w

= 1.1 + 0.1 - 1.2). The ideal weight is determined by the best
classification outcome. In our system, the finest weight values
for the two leading attributes are set to be 2.8

As mentioned before, 500 randomised trials are taken; the
comparison is made based on their sum of squared error (SSE).
In K-means, the most essential approach in determining the
best classification result is by looking into its SSE value
(MacQueen, 1967). Hence, this feature is taken as one of our
selection criteria to select the finest cluster solution. A map is
considered equal to other maps if they have the same SSE
value.

In K-means algonthm, the lower sum of squared error the
more accurate the classification should be. This theory,
however, in some cases, might not apply to our system. In the
map with the lowest SSE value, the algorithm tends to assign
the centroids to the data points with the farthest distance;
generating two clusters with highly unbalanced cluster sizes.
This definitely indicates two poor outcomes; either a tighter
security level with a lower reduction rate or a loose security
level with the nsk of false negatives. Such an issue clearly

demonstrates the trade-off between maintaining the security
level and the need for reducing the false alarms.

In view of this trade-off issue, thresholding is required to
balance the security issue and the alarm reduction. Since we
are using the randomised experiments to select the best cluster
solution, evaluating the frequency distribution of each solution
is necessary. So, instead of merely focusing upon the lowest
SSE value, the best map is also selected based on its frequency
rate (frequency distribution). The frequency refers to the
number of occurrences a map with a particular SSE value is
created within the 500 randomised trials. In order to properly
evaluate the maps, we conducted 5 other classifications using 5
sets of sample data to examine the maps' frequency distribu-
tion. From our observation, a cluster solution with a frequency
rate above 0.6 (300 out of 500) had the best classification result
compared to other solutions. From our study, it is evident that
a solution with a high probability distribution (reassuringly
occurs in at least the third fifth of the random trials) generates
a better grouping compared to those with low frequency rates.
We, therefore, decided to select the best classification solution
based on the highest frequency rate and set the thresholding
value to 0.6 since it appears to practically balance both security
and alarm reduction. Any map with a frequency rate exceeding
the thresholding value will be automatically selected as the
finest choice without any further evaluation. Conversely, if the
highest frequency rate falls below the value (it does not
dominate other solutions), further evaluation will be required
in this case. To find which of the maps are worth considering, it
is necessary to set another threshold to select the dominant
solutions. The second thresholding (s), which is derived from
a standard deviation of the maps' probability distribution, will
determine which of the cluster solutions need further investi-
gation. The standard deviation represents the average variation
of the frequency rates from the mean distribution. From our 5
sample classifications, it is apparent that the maps with
frequencies ranging from t to t — s are likely to produce better
clustering results compared to those with low frequency rates.
So, for this reason, only those solutions with frequency rates
that fall between t (highest frequency) and (t — s) are evaluated.

Tables 2—5 show the value of the SSE and the frequency
rate from the University's network and the DARPA
classifications

There were eleven maps (cluster solutions) that had been
produced in the first part of DARPA classification, as shown in

Table 3 - SSE and frequency rate from DARPA data set Table 4 — SSE and frequency rate from private data set
part 1.

MAP 1 2 3

SSE 24T 29135 4.0591 SSE 2.7161 2.8643 28645

Frequency 0.786 0.154 0.086

Frequency 0.636 0.182 0.182




Table 5 - SSE and frequency rate from private data set
part 2.

MAP 1 2 3 4
SSE 3.0918 5.3372 58775 5.6784
Frequency 0.818 0.122 0.032 0.028

Table 2. Since none of the maps has a frequency rate above 0.6,
further evaluation is required in this case. We need to re-
evaluate other maps whose frequency range from t (highest
frequency rate) to (t — s). The average SSE of the selected maps is
then computed. The aim of calculating the average SSE is to
approximate the value of SSE; thus enabling us to select the
best map. The map, whose SSE value is closest to the average
SSE, will be determined to be the most optimal solution. If only
two maps are being selected, there is no need for computing
the average SSE, the map with the lowest SSE will be chosen.

Hence, to conclude this, we will label the cluster solution to
be the most appropriate model if only it follows one of the
following rules:

1. It has the frequency rate above 0.6; if not

2. Its frequency rate greatly exceeds other solutions (t —s > y
(second highest frequency)); if not

3. The average SSE value of the maps whose frequency rates
between t and t - s is calculated, as shown in equation (2)
The cluster solution with the SS5E value closest to the
average SSE is then selected as the best map choice.

(_Y"_'"SSE.).—n. ()

where n is the number of map solutions whose frequency
rates range fromt to (t — s)

The answers for cur second stage clustering are presented
in the following figure.

Only two clusters, the true and the false alarm classes, are
desired in this stage. The result shown on the left map from
Fig. 5 is corresponding to criterion value in Table 2. It is
obvious that the solution with the highest frequency rate in
Table 2 does not conform to the first and second criterion rules
(MAP 2 has the frequency rate higher than t — s; t = MAF 1's

frequency rate; t = 0.362, s = 0.129). Since only two maps (MAP

1 and MAP 2) have frequency rates higher than t - s (0.362
0.129 = 0.233), the one with the lowest SSE value is selected. In
this scenario, MAP 1 is selected as the best map choice (pre-
sented on the left side of Fig. 5). On the other hand, the second
part of DARPA classification, which is shown on Table 3,
presents 3 possible cluster solutions. The solution with the
highest frequency (MAP 1) is automatically chosen as the best
map since the frequency rate (0.786) has exceeded the first
thresholding value. The mapping result is presented on the
right map in Fig. 5

Unlike the first part of DARPA classification, the classifi-
cations on private data set reveal quite a straightforward
result. The computation of the average SSE value is not
required in this scenario as the highest frequency rates from
both classifications shown on Tables 4 and 5 conform to the
first criterion. In view of this, the solutions with the highest
frequerncy rate are determined to be the best maps. In addi-
tion, the selected maps have the lowest SSE value among all
cluster solutions. The final results of both classifications are
presented in Fig. 6

Regarding the DARPA data set, the proposed system is
considered effective in reducing the number of false alarms;
with 95% being correctly labelled in the first classification,
whilst the second categorisation has reduced approxi-
mately 99% of the total false alarms. Those alarms located
in the upper portion are labelled as true alarms, whilst the
lower portion is for the false alarms. The system appears
effective in reducing the false alarms generated by a noisy
traffic such as the ICMP traffic (ICMP Ping and Echo Reply)
and the web-bug alerts, which have formed the highest
number of false alarms triggered in the experiment (Tjhai
et al., 2008a).

In our previous experiment, false alarms such as ICMP and
INFO web-bug alerts had contributed to 62% of total alerts
generated from DARPA 1999 data set (Tihai et al, 2008a)
Logging every connection associated with probing, for
example all ping activities, will only generate a huge number
of false positives. In fact, all detected ICMP traffic did not
surely imply the occurrence of probing activities, but it was
merely an information event, which possibly indicates the
occurrence of network outage. The highest number of false
alarms was triggered by INFO web-bug 1 x 1 gif attempt
signature. Theoretically, the web bug is a graphic on the web

Table 6 — Properties of DARPA and Plymouth private data sets.
DARPA No of Alerts Stage 1 Stage 2 Result
Map units Errors “k” Value Map units Errors “R” Value

Part 1l 1224 1333 Q=0.001 612 190 Q=0048 2 FA = 1131
T=10.019 T=10.012 TA=93

Part 2 1838 1924 Q=0.009 919 299 Q=009 2 FA = 1297
T=0.041 T =0054 TA =541

Plymouth private data

Part1 330 437 Q=0.050 165 290 Q=0.097 2 FA =260
T=10048 T=0043 TA=70

Part2 2226 2385 Q= 0.003 1113 260 Q= 0.044 2 FA = 2139
T=0011 T=0077 TA=87

Q = quantisation error, T = topographic error, FA = false alarm, TA = true alarm.




721

COMPUTERS & SECURITY 29 (2 ( I12—723
Z”"'WSWW"“ DARPA = . & f 1 My erme- SUM St D e .__HE.J",-_'F“!.
2 tlusters 2 clusters
-
T ¥ * -
™
e
w
-
- -
= i ‘1 L ] ]
w s 2 %
1wy :‘
fod - o P
w ~d .3
W o -
107 w - -
wr - "
. - v;'], = I3
1y 7q Tay 5r #
e o ™ hed =
L L s e
™y - 1% " _ 153
M v e W T g
Xy ta e = ¥
- wr e k1 B w
W e W T -
e 0 _!I! k3 -
ar W -t
] - 1y ar == - B L

Fig. 5 — Stage 2 alarm classifier using DARPA dataset.

page and email message, which is used to monitor users’
behaviours. This is often invisible and hidden to conceal the
fact that the surveillance is taking place (Smith, 1599). Since
none of these web-bug alerts related to any attack instances,
the study revealed that no true alarms associated with this
signature had been generated.

As for the private data, the classification reveals that about
78.8% of false alarms have been identified in the first map,
whereas 96% of them have been detected in the second
mappings. It is notable that our system has shown promising
result in filtering all hectic and unnecessary alerts triggered by
the IDS. For example, the alerts from WEB-IIS view source via
translate header and WEB-MISC robots.txt access signatures,

2 tlusters

wy

TES

E_J
-
ww

wu

7
n
r

which had caused 82% of false alarms from the entire private
data (Tjhai et al., 2008b).

WEB-MISC robots.txt access is a signature raised when
an attempt has been made to access robots.txt file directly.
Robots.txt file provides a specific instruction and deter-
mines which part of a website a spider robot may visit.
Although this signature is triggered as the indicator of
vulnerable information attack, there exits high possibility
that all these alerts were raised owing to the legitimate
activities from web robots or spiders. As the spider's web
indexing is regularly and structurally repetitive, this
activity tends to cause the IDS to trigger a superfluous
amount of false alerts. On the other hand, WEB-IIS view

-5 NP TR U St Paets S ]
“w e = 3
- &
o b 2chusters O
ol ki -
L -l ; T
‘_ aw - e (1L
o i e "
o
"y
|
wr
bord 1w
1 -
LB
I
- w
Vo x ¥z |
= " Wy i
- uy
1 ot ) 1y
., el
T W . 10 ::“;‘
- T T =
- w by
51 Tnnr
_;:" ¥ s
= £
(" el At - -
X -q:fI= ‘an_m .
- P =
o AR S -
eopd : "ar e
1 ™
19 "
- Ly - 1]

Fig. 6 — Stage 2 alarm classifier using private data.




722 coumpu

-
r
]
'

)
Il
s
"
[
"

source via translate header targets the Microsoft TIS 5.0
source disclosure vulnerability by using a specialised
header "Translate f” on an HTTP GET request (Snort, 2007).
Although this event is deemed to be an attack that targets
the Microsoft IIS source disclosure vulnerability, this could
possibly be a false positive. Some applications, for example
Web-based Distributed Authoring and Versioning (Web-
DAV) that make use of “Translate f" as a legitimate header,
might cause this rule to generate an excessive amount of
false alarms (WebDAV Overview, 2001).

Our suggested alarm filtering system is believed to signifi-
cantly outperform other existing methods. Unlike many
proposed systems that need to be trained with a considerable
volume (gigabytes) of attack-free data, our system applies
unsupervised training to train the classifier; hence no attack-
free data are necessary. In terms of its configuration, our
approach is considered efficient enough as it is easy to set up
and no knowledge of the attacks is required to filter the
alarms. Moreover, the system’s filtering processes are inde-
pendent from the intrusion detection process. Therefore, we
believe that our model can be applied to other signature-based
IDSs without changing the existing filtering configuration. As
to its performance, the system does not only provide a better
alarm management, but also shows the relationship between
the generated alerts, thus enabling administrator to discover
the potential attack scenarios.

6. Conclusion and future work

In this paper, we have proposed a technique to detect and to
subsequently reduce the number of IDS false alarms. We
developed a two-stage classification system using the
combination of two data mining techniques, namely SOM and
K-means clustering. The first stage classification was devel-
oped to properly correlate alerts related to a particular
activity. All alerts, regardless the signature type, triggered by
a single event are mapped and grouped into one cluster. In
addition, the main objective of the second stage is to subse-
quently label all clusters produced in the first classification
into groups of true and false alarms.

To verify the idea, we carried out preliminary experiments
with two different data sets; the 1999 DARPA IDS evaluation
data set and our own set based upon private network data.
The result shows that more than 90% of false alarms from
DARPA data set were filtered without ignoring the true alarms
whilst approximately 87% of false alarms from private data set
can be correctly identified. Despite the lower false alarm
detection rate than the DARPA data set, our system has
demonstrated its effectiveness in filtering all noisy and
unnecessary IDS alerts, which have usually contributed to
more than 50% of false alarms from the common IDSs.

As our classifier is in a preliminary stage and was only
evaluated using a small chunk of DARPA and private data,
we plan to further assess the system using the complete
DARPA and Plymouth data sets. We also focus on improving
the approach by applying it to live data in aorder to prove that
our model is applicable under a real life operational
environment.

REFERENCES

Alharby A, Imai H. IDS false alarm reduction using continuous
and discontinuous patterns. In: Third international
conference on applied cryptography and nerwork security,
ACNS, New York, United State. Lecture notes in computer
science, vol. 3531; 2005,

Basic Analysis and Security Engine (BASE) Project, http//base
secureideas.net/; 2007

Caswell B, Roesch M. Snort: the open source network intrusion
detection system, - http://www.snort.org/ >, 2004.

Chyssler T, Nadjm-Tehrani S, Burschka S, Burbeck K. Alarm
reduction and correlation in defence of IP networks. In:
Proceedings of the 13th IEEE international Workshops on
enabling technologies: infrastructure for collaborative
enterprises; 2004a, p. 229-34.

Chyssler T, Burschka S, Semling M, Lingvall T, Burbeck K. Alarm
reduction and correlation in intrusion detection systems. The
Department of Computer and Information Science Linkopings
Universitet, < httpy//www.ida liu.se/rtslab/publications/2004/
Chyssler04 DIMVA pdf>; 2004b. Available via:,

CIS. SOM toolbox 2.0, <httpy//www cis.hut fi/projects/
somtoolbox/>; 2005,

Cuppens F, Miege A. Alert correlation in a cooperative intrusion
detection framework. In: Proceedings of the 2002 I[EEE
symposium on security and prvacy; 2002, p. 202.

Dain O, Cunningham RK. Fusing a heterogeneous alert stream into
scenarios. In: Proceedings of the 2001 ACM workshop on data
mining for security application, Philadelphia, PA; 2001, p. 1-13.

Debar H, Wespi A. Aggregation and correlation of intrusion-
detection alerts. In: Proceedings of the fourth international
symposium on recent advances in intrusion detection, Davis,
CA, USA; 2001, p. 85-103.

Flexer A. Limitations of self organizing map for vector
quantization and multidimensional scaling. In: Mozer MC,
et al., editors. Advances in neural information processing
systems, vol 9. MIT Press/Bradford Books; 1997. p. 445-51.

Julisch K, Dacier M. Mining intrusion detection alarms for
actionable knowledge. In: Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery and
data mining; 2002, p. 266—375.

julisch K. Mining alarm clusters to Improve alarm handling
efficiency. In: Proceedings of the 17th annual conference on
computer security applications; 2001, p. 12--21,

Kohonen T. Self-organizing maps. 1st ed. Germany: Springer,
ISBN 3540620176; 1995.

Labib K, Vemuri R. NSOM: a real-time network-based intrusion
detection system using self-organizing maps. In: Networks
and security; 2002.

Law KH, Kwok LF. IDS false alarm filtering using KNN classifier.
In: Fifth international workshop on information security
applications, WISA, Jeju Island, South Korea, Lecture notes in
computer science, vol. 3325; 2004.

MacQueen |B. Some methods for classification and analysis of
Multivariate Observations. In: Proceedings of fifth Berkeley
symposium on mathematical statistic and probability, vol. 1.
Berkeley: University of California Press; 1967. p. 281-97.

Ning P, Cui Y, Reeves DS. Constructing attack scenarios through
correlation of intrusion alerts. In: Proceedings of the ninth
ACM conference on computer and communications security
Washington, D.C.; 2002, p. 245-54.

Piatetsky-Shapiro G. Discovery, analysis, and presentation of strong
rules. In: Piatetsky-Shapiro G, Frawley W], editors. Knowledge
discovery in databases. Cambridge, MA: AAA/MIT Press; 1991

Quinlan JR. C4.5: programs for and neural networks, machine
learning, 1st ed. United State of America: Morgan Kaufman
Publishers, ISBN 1558602380; 1993,


http://base
http://www.snort.org/
http://www.ida.liu.se/nslab/pijblicauons/2004/
http://www.cis.huLfi/projects/

COMPUTERS & SECURITY

29 (2010) 712—723 723

Shin MS, Kim EH, Ryu KH. False alarm classification model for
network-based intrusion detection system, intelligence data
engineering and automated learning. In: Lecture notes in
computer science, vol. 3177/2004; 2004. 259-265.

Smith R. The web bug FAQ, <http://w2 e org/Privacy/Marketing/
webbug html ~; 1999.

Snort: WEB-IIS view source via translate header, <http://snort.
org/pub-bin/sigs.cgl?sid=1042 ~; 2007.

Symantec: symantec global internet security threat report:
trends for 2008, vol. XIV; April 2009, http://eval. symantec
com/mktginfo/enterprise/white_papers/b-whitepaper_
internet_security_threat_report_xiv_04-2009.en-us.pdf; April
2009.

Tjhai GC, Papadaki M, Furnell SM, Clarke NL. The problem of
false alarms: evaluation with Snort and DARPA 1999
dataset. In: Trust, privacy and security in digital business.
Lecture notes in computer science, vol. 5185/2008; 2008a.
p. 139-50.

Tihai GC, Papadaki M, Furnell SM, Clarke NL. Investigating the
problem of IDS false alarms: an experimental study using
Snort. In: Jajodia Sushil, Samarati Pierangela, Cimato Stelvio,
editors. Proceedings of the IFIP TC 11 23rd international
information security conference. IFIP international federation
for information processing, vol. 278. Boston: Springer; 2008b.
p. 253—67.

Valdes A, Skinner K. Probahilistic alert correlation. In:
Proceedings of the fourth international symposium on
recent advances in intrusion detection, Davis, CA, USA; 2001,
p. 54—68.

Van der Heijden F, Duin R, Ridder D, Tax DM]. Classification,
parameter estimation and state estimation. 1st ed. United
State of America: Wiley, ISBN 978-0-470-09013-8; 2004.

WebDAV overview, <http://www.sambar.com/syshelp/webdav
htm>; 2001.

Weijters T, Van Den Herik H], Van den Bosch A, Postma E.
Avoiding overfitting with BP-SOM. In: Proceedings of the
fifteenth international joint conference on artificial
intelligence; 19597.

Zanero S. Analyzing TCP traffic patterns using self organizing
maps, In: Proceedings 13th international conference on image
analysis and processing. Lecture notes in computer science,
vol. 3617/2005; 2005. p. 83-90.

Zhu B, Ghorbani A. Alert correlation for extracting attack
strategies. International Journal of Network Securnity 2006;3(2):
24458,

Gina Tjhai received a Bachelor Degree in Computer Science from
the University of Wollongong, Australia, in 2005, and the MSc in
Information System Security from the University of Plymouth, UK,
in 2006. She is currently a PhD candidate in Centre for Security,
Communications and Network Research at University of

Plymouth, UK. Her current research interests include network
intrusion detection and prevention, pattern classification, neural
network and data mining.

Steven Fumell heads the Centre for Security, Communications
and Network Research at the University of Plymouth in the United
Kingdom, and is an Adjunct Professor with Edith Cowan Univer-
sity in Australia. He specialises in computer security and has been
actively researching in the area for fifteen years, with current
areas of interest including security management, computer crime,
user authentication, and security usability. Prof. Furnell is
a Fellow and Branch Chair of the British Computer Society (ECS),
and a UK representative in International Federation for Informa-
tion Processing (IFIP) working groups relating to Information
Security Management (of which he is the current chair), Network
Security, and Security Education. He is the author of over 190
papers in refereed international journals and conference
proceedings, as well as the books Cybercrime: Vandalizing the
Information Society (Addison Wesley, 2001) and Computer Inse-
curity: Risking the System (Springer, 2005). Further details can be
found at www plymouth.ac uk/cscan.

Maria Papadaki is a lecturer in Network Security, at University of
Plymouth, UK. Prior to joining academia, she was working as
a Security Analyst for Symantec EMEA Managed Security Services
(MSS), UK. Her postgraduate academic studies include a PhD in
Intrusion Classification and Automated Response, and an MSc in
Integrated Services and Intelligent Networks Engineering, both
awarded from University of Plymouth, UK. Her research interests
include intrusion prevention detection and response, network
security monitoring, asset classification, threat management,
security usability, and security education. Dr Papadaki is a GIAC
Certified Intrusion Analyst, and is a member of the British
Computer Society. Further details can be found at www.
plymouth.ac.uk/cscan

Nathan Clarke graduated with a BEng (Hons) degree in Electronic
Engineering in 2001 and a PhD in 2004 from the University of
Plymouth. He has remained at the institution and is now a senior
lecturer in Information Systems Security within the Centre for
Security, Communications and Network Research. Dr Clarke is
also an adjunct scholar at Edith Cowan University, Western
Australia. His research interests reside in the area of user identity,
mobility and intrusion detection; having published 40 papers in
international journals and conferences. Dr Clarke is a charted
engineer, member of the British Computer Society (BCS), the
Institute of Engineering Technology (IET) and a UK representative
in the International Federation of Information Processing (IFIP)
working groups relating to Information Management Identity
Management and Information Security Education.



http://eval,Symantec
http://www.sanibar,com/syshelp/webdav
http://www.plymouth.acuk/cscan

References

360IS (2010). Preparing Security Event Management, available from: hrttp://www.

e/NetworkSe ty/360is—prep-sem,pdf. (Cited

CUriLy 2 0WUlo ahd

wWindowsecurlity.cam/uplartlic

on page 33.)

Al-Mamory, S. and Zhang, H. (2009). Intrusion Detection Alarm Reduction Using Root Cause Anal-
ysis and Clustering, Computer Communications 32(2): 419-430. (Cited on pages 20, 25, 60
and 73.)

Albayrak, S., Scheel, C., Milosevic, D. and Muller, A. (2005). Combining Self-Organizing Map algo-
rithms for robust and scalable intrusion detection, In Proceedings of the International Con-
ference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2005),
Washington, DC, USA, pp. 123-130. (Cited on page 58.)

Alharby, A. and Imai, H. (2005). IDS False alarm reduction using continuous and discontinuous
patterns, Lecture Notes in Computer Science — Third International Conference on Applied
Cryptography and Network Security, Vol. 3531, New York, USA, pp. 192-205. (Cited on
pages 21, 23 and 34.)

Amoroso, E. (1999). Intrusion Detection: An Introduction to Internet Surveillance, Correlation,
Traps, Trace Back and Response, 1* edn, Intrusion.Net Books, United States of America.
ISBN 0966670078. (Cited on page 13.)

Axelsson, S. (2000). The Base-Rate Fallacy and the Difficulty of Intrusion Detection, ACM Trans-
actions on Information and System Security 3(3): 186-205. available online: http://
www.scs.carleton.ca/-soma/id-2007w/readings/axelsson-base-rate.pdf, date

visited: 22 January 2008. (Cited on pages 2, 12 and 15.)

Baba, T. and Matsuda, S. (2004). A Proposal of Protocol and Policy-Based Intrusion Detection
System, Systemics, Cybernetics and Informatics 2(3): 57-62. (Cited on page 11.)

Bace, R. (2000). Intrusion Detection, 1%* edn, Sams, United States of America. ISBN 1578701856.
(Cited on page 1.)

BASE (2009). Basic Analysw and Security Engine (BASE) Project, available from: http://base.
ecureideas.net/. (Cited on pages 39, 71 and 93.)

i

Bashah, N., Shanmugam, B. and Ahmed, A. (2005). Hybrid Intelligent Intrusion Detection System,
Transactions on Engineering, Computing and Technology 6: 291-294. (Cited on page 9.)

Beale, J. and Caswell (2004). Snort 2.1 Intrusion Detection, 2" edn, Syngress, United States of
America. ISBN 1931836043. (Cited on pages 16, 44 and 52.)

257


http://Intrusion.Net
http://
http://www.scs.carleton.ca/-soraa/id~2007w/readings/axeisson-base-rate.pdf
http://base
http://secureideas.net/

REFERENCES

Bishop, C. M. (1995). Neural Networks for Paitern Recognition, 1" edn, Clarendon Press, United
States of America. ISBN 0198538642. (Cited on page 3(.)

Bishop, C. M. (2007). Pattern Recognition and Machine Learning, 1% edn, Springer, United States
of America. ISBN 0387310738. (Cited on page 29.)

Bolzoni, D. (2009). Revisiting Anomaly-based Network Intrusion Detection, Ph.D disertation, Uni-
versity of Twente, Netherlands. ISBN 978-90-365-2853-5. (Cited on page 14.)

Bolzoni, D., Crispo, B. and Etalle, S. (2007). ATLANTIDES: An Architecture for Alert Verification
in Network Intrusion Detection Systems, Proceedings of the 21st Large Insiallation System
Administration Conference (LISA '07), Dallas, Texas, USA, pp. 141-152. (Cited on page 2.)

Bolzoni, D. and Etalle, S. (2006). APHRODITE: an Anomaly-based Architecture for False Positive

Reduction, available from: http://arxiv.org/PScache/cs/pdf/0604/0604026.pd<.
ISSN 1381-3625. (Cited on page 22.)

Bon, K. (2005). Signature-based Approach for Intrusion Detection, Machine Learning and Data
Mining in Pattern Recognition, Lecture Notes in Computer Science 3587: 526-536. (Cited on
page 9.)

Brugger, S. and Chow, J. (2007). An Assessment of the DARPA IDS Evaluation Dataset Using Snort.
(Cited on pages 45 and 54.)

Bugtraq (2010a). Microsoft IIS 5.0 "Translate: {” Source Disclosure Vulnerability, available from:
http://www.securityfocus.com/bid/1578. (Cited on pages 48 and 52.)

Bugtraq (2010b). Microsoft IIS WebDAV HTTP Request Source Code Disclosure Vulnerability, avail-
able from: http://www.securityfocus.com/bid/14764. (Cited on page 48.)

Cannady, J. (1998). Artificial Neural Networks for Misuse Detection, Proceedings of the 1998
National Information Systems Security Conference (NISSC’98), Arlington, Virginia, USA,
pp. 443-456. (Cited on page 32.)

Carlo, C. (2003). Intrusion detection evasion: How Attackers get past the burglar alarm,
available from: http://www, / i

m/whitepapers/detection/

intrusicn-detecticn-evasion—attackers-burglar—-alarm_ 1284. (Cited on

page 10.)

th

i

0
=]
S

Carter, E. (2002). Intrusion Detection Systems, available from: http://www.ciscopress.
articles/. (Cited on page 8.)

Caswell, B. and Roesch, M. (1998). Snort: The open source network intrusion detection system,

-

available from: http: //www.snort .org. (Cited on pages 4, 37, 38 and 71.)

Chapple, M. (2003). Evaluating and Tuning an Intrusion Detection System, available

urity.techtarget.com/tip/1, 289483, sidl4gci918619,

from: http://searchsec
00.ntml. (Cited on page 15.)

258



http://arxiv.org/PScache/cs/pdf/06O4/O6O4026.pdf
http://www.securityf
http://www.sans
http://ciscopress.com/
http://www.snort.org
http://searchsecurity.techtarget.com/tip/1

REFERENCES

Chyssler, T., Nadjm-Tehrani, S., Burschka, S. and Burbeck, K. (2004). Alarm reduction and cor-
relation in defence of IP networks, Proceedings of the 13th IEEE International Workshops
on enabling technologies: infrastructure for collaborative enterprises (WETICE(04), Modena,
Italy, pp. 229-234. (Cited on page 63.)

CIS (2005). SOM Toolbox 2.0, available from: http://www.cis . hut . fi/scmtoclbox. (Cited on
pages 63, 64, 65, 71 and 92.)

CISCO (2010). CISCO Security Monitoring Analysis and Response System (MARS), available from:
http://www.cisco.com/en/US/products/ps6241/. (Cited on page 9.)

Cox, K. and Gerg, C. (2004). Managing Security with Snort and IDS Tools, 1% edn, O'Reilly, United
States of Ameriea. ISBN 0-596-00661-6. (Cited on page 13.)

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods, 1% edn, Cambridge University Press, United King-
dom. ISBN 0521780195. (Cited on page 32.)

i
j
3
[
H
Je
rt
bt
H
(0]
(}
e
i
l
)
3
I
"
]
(0]
9]
[
]
—
I
cr:
i~
e
-
=
=}
E
14
N.
—

Cuppens, F. and Miege, A. (2002). Alert Correlation in a Cooperative Intrusion Detection Frame-
work, Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 202-215. (Cited
on pages 20, 27, 34 and 57.)

Dain, O. and Cunningham, R. (2001). Fusing a heterogeneous alert stream into scenarios, In Pro-
ceedings of the 2001 ACM Workshop on Data Mining for Security Application, Philadelphia,
PA, USA, pp. 1-13. (Cited on page 20.)

Debar, H. (2000). An Introduction to Intrusion Detection Systems, Proceedings of Connect’2000,
Doha, Qatar. (Cited on page 12.)

Debar, H. and Wespi, A. (2001). Aggregation and Correlation of Intrusion-Detection Alerts, In
Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection,
Davis, CA, USA, pp. 85-103. (Cited on pages 14, 20, 28, 34 and 57.)

Dineleyy, D. and Mobley, H. (2009). The greatest open source software of
all time, available  from: http://www.infoworld.com/d/open-source/
1l-time-T776%source=£ssr. (Cited on page 126.)

greatest-open—source—-software-a

w0

Dondo, M., Japkowicz, N. and Smith, R. (2006). AutoCorrel: a neural network event correlation
approach, Proceedings of SPIE, Data Mining, Intrusion Detection, Information Assurance,
and Data Network Security, Vol. 6241. (Cited on page 27.)

El-Hajj, W., Hajj, H., Trabelsi, Z. and Aloul, F. (2010). Updating snort with a customised controller
to thwart port scanning, Security and Communication Networks, Wiley InterScience. (Cited
on page 2.)

259



http://www.cls.hut.fi/sonitoolbox
http://www.cisco.com/en/US/products/ps6241/
http://www
http://securityfocu3.com/infocus/n2S
http://www,infoworld.coin/d/open-source/

REFERENCES

Enterasys (2010). Intrusion Prevention System (IPS) - Distributed Intrusion Prevention & Re-
sponses for Edge-to-Core and Data Centre, available from: http://www.enterasys.com/
company/literature/ips—ds.pdf. (Cited on page 11.)

Flanagan, D. (2005). Java in a Nutshell, 5** edn, O'Reilly Media, United States of America. ISBN
0-596-00773-6. (Cited on page 92.)

Flexer, A. (1997). Limitations of self organizing map for vector quantization and multidimensional
scaling, Advances in Neural Information Processing Systems, Proceedings of the 1996 Confer-
ence, MIT Press, Vol. 9, pp. 445-451. (Cited on page 61.)

Garcia-Teodoro, P., Diaz-Verdejo, J., Marcia-Fernandez, G. and Vazquez, E. (2009). Anomaly-based
network intrusion detection: Techniques, Systems and Challenges, Computers & Security
28(1-2): 18-28. (Cited on page 9.)

ids-tod:

Grandison, T. and Terzi, E. (2007). Intrusion Detection Technology available from: http://www.

= ma £

\.ibm.com/cs/projects/iis/hdb/Publicatiens/papers/ID.pdf. (C;ted on
page
Greenwood, B. (2007). Tumng an IDS/IPS From The Ground UP, available from: nttp://www

/ - v Fxah s F v armarea f At ol 4 mm s e & 3 -
alr ig_room/whitepapers/detection/tuning-14ds—1ps

rea

sans.orqg;

(Cited on page 49. )

Grunwald, P. (2005). A tutorial introduction to the Minimum Description Length principle, In
Advances in Minimum Description Length: Theory and Applications, pp. 3—81. (Cited on
page 127.)

Heady, R., Luger. G., Maccabe, A. and Servilla, M. (1990). The architecture of a network level
intrusion detection system, available from: http://www.cs.unm.edu/-treport/tr/90/
tr.pd£f. (Cited on page 1.)

Herberlain, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J. and Wolber, D. (1990). A Network
Security Monitor, IEEE Symposium and Security Privacy pp. 296-303. (Cited on pages 8
and 10.)

Jan, N., Lin, S, Tseng, S. and Lin, N. (2009). A decision support system for constructing an
alert classification model, Expert Systems with Applications 36(8): 11145-11155. (Cited on
pages 23, 34 and 60.)

Julisch, K. (2001). Mining Alarm Clusters to Improve Alarm Handling Efficiency, Proceedings of the
17th Annual Conference on Computer Security Applications, pp. 12-21. (Cited on pages 12,
20, 22, 25, 28, 29, 60 and 73.)

Julisch, K. and Dacier, M. (2002). Mining Intrusion Detection Alarms for Actionable Knowledge,
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 366-375. (Cited on pages 25, 28, 34 and 60.)



http://www.sans
http://www
http://www.cs.unm.edu/-treport/tr/90/

REFERENCES

Kanellopoulos, 1., Wilkinson, G., Roli, F. and Austin, J. (1997). Neuro-computation in Remote
Sensing Data Analysis, illustrated edn edn, Springer, United States of America. ISBN
3540633162. (Cited on page 32.)

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R. and Wu, A. (2002). An efficient k-
means clustering algorithm: Analysis and implementation, IEEE Transaction Pattern Anal-
ysis and Machine Intelligence 24: 881-892. (Cited on page 59.)

Kark, K. (2010). The changing threat landscape available : http://www.csoconline.com
I ndscape. (Clted on page 1.)

art

1 e/602313/the—-chan

Kayacik, H., Zincir-Heywood, A. and Heywoood, M. (2007). A hierarchical SOM-based intrusion
detection system, Engineering Applications of Artificial Intelligence 20(4): 439—-451. (Cited
on pages 31, 34 and 58.)

Khan, L., Awad, M. and Thuraisingham, B. (2007). A new intrusion detection system using support
vector machine and hierarchical clustering, The VLDB Journal - The International Journal
on Very Large Data Bases 16(4): 507-521. (Cited on page 32.)

Khanchi, S. and Adibnia, F. (2009). False Alert Reduction on Network-based Intrusion Detection
Systems by Means of Feature Frequencies, International Conference on Advances in Compui-
ing, Control, and Telecommunication Technologies, pp. 513-516. (Cited on page 73.)

Khosravifar, B., Gomrokchi, M. and Bentahar, J. (2009). A Multi-agent-based Approach to Improve
Intrusion Detection Systems False Alarm Ratio by Using Honeypot, International Conference
on Advanced Information Networking and Applications Workshops, pp. 97-102. (Cited on
page 2.)

Kohonen, T. (1990). The Self-Organizing Map, Proceedings of the IEEE T8(9): 1464-1480. (Cited on
page 61.)

Kohonen, T. (1995). Self-Organizing Maps, 1** edn, Springer, Germany. ISBN 3540620176. (Cited
on pages 30, 57, 58 and 92.)

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V. and Saarela, A. (2000).
Self organization of a massive document collection, IEEE Transactions on Neural Networks
11: 574-585. (Cited on page 58.)

Koikkalainen, P. (1994). Progress with the tree-structured self-organizing map, Proceedings of
ECAI'94, 11th European Conference on Artificial Intelligence, New York, USA, pp. 211-215.
(Cited on page 58.)

Koziol, J. (2003). Intrusion Detection with Snort, 1* edn, Sams Publishing, United State of America.
ISBN 1-57870-281-X. (Cited on page 13.)

Kruegel, C. and Robertson, W. (2004). Alert Verification: Determining the Success of Intrusion
Attempts, In Proceedings of the Detection of Intrusion and Malware and Vulnerability As-
sessment (DIMVA'04), Dortmund, Germany. (Cited on pages 21 and 45.)

261



http://csoonline.com/

REFERENCES

Kumar, S. and Spafford, E. (1994). A Pattern Matching Model for Misuse Intrusion Detection, In
Proceedings of the 17th National Computer Security Conference. (Cited on page 10.)

Labib, K. and Vemuri, R. (2002). NSOM: A real-time network-based intrusion detection system
using self-organizing maps, Technical report, Department of Applied Science, University of
California, Davis, USA. (Cited on pages 30 and 58.)

Laskov, P. (2007). Machine Learning for Intrusion Detection, available from: http://langtech.

Jjrc.it/mmdss2007/htdocs/Presentations/Docs/MMDSS_Laskov.pdf. (Cited on

page 12.)

1]

Law, K. and Kwok, L. (2004). IDS false alarm Filtering using KNN classifer, Lecture Notes in Com-
puter Science, Fifth International Workshop on Information Security Applications (WISA'04)
, Vol. 3325, Jeju Island, South Korea, pp. 114-121. (Cited on pages 21, 23, 29 and 34.)

Li, Y., Fang, B., Guo, L. and Chen, Y. (2007). TCM-KNN Algorithm for Supervised Network In-
trusion Detection, Lecture Noies in Computer Science, Vol. 4430, pp. 141-151. (Cited on

page 29.)

Libeau, F. (2008). Automating security events management, Network Security 2008(12): 6-9. (Cited
on page 33.)

Lichodzijewski, P., Zincir-Heywood, A. and Heywood, M. (2002). Dynamic Intrusion Detection Us-
ing Self-Organizing Maps, In 14th Canadian Information Technology Security Symposium.
(Cited on pages 31 and 34.)

Lincoln Lab (2010). DARPA Intrusion Detection Evaluation, available from: nttp://www.11.

mit.edu/mission/communications/ist/CST/index.html. date visited: 2 May 2006.
(Cited on pages 37, 39 and 42.)

Lippmann, R. and Cunningham, R. (2000). Improving Intrusion Detection Performance Using Key-
word Selection and Neural Networks, Computer Networks 34(4): 597-603. (Cited on page 33.)

Lippmann, R., Haines, J., Fried, D., Korba, J. and Das, K. (2000). The 1999 DARPA off-line intrusion
detection evaluation, 34(4): 579-595. (Cited on pages 15, 37 and 54.)

Lundin, E. and Jonsson, E. (2002). Survey of research in the intrusion detection area, Techni-
cal Report 02-04, Department of Computer Engineering, Chalmers University of Technology,
Goteborg. (Cited on pages vii and 7.)

MacQueen, J. (1967). Some methods for classification and analysis of Multivariate Observations, In
Proceedings of fifth Berkeley Symposium on Mathematical Statistic and Probability, Vol. 1,
Berkeley: University of California Press, pp. 281-297. (Cited on pages 57, 59 and 67.)

Maggi, F., Matteucci, M. and Zanero, S. (2009). Reducing false positives in anomaly detectors
through fuzzy alert aggregation, Information Fusion 10(4): 300-311. (Cited on pages 20, 26,
34 and 57.)

262


http://langtech
http://www.il

REFERENCES

Mahoney, M. and Chan, P. (2003). An Analysis of the 1999 DARPA/Lincoln Laboratory Evalua-
tion Data for Network Anomaly Detection, Lecture Notes in Computer Science: In Recent
Advances in Intrusion Detection (RAID 2003), Vol. 2820, pp. 220-237. (Cited on pages 37

and 45.)
MathWorks (2010). MATLAB Builder JA for Java language, available from: nttp://www.
mathworks.com/products/javabuilder/. (Cited on page 92.)

McAfee (2010). 2010 Threat Predictions, available from: htop: //www Jus/loecal_

content/white_papers/7985rpt_labs_threat_ predict_ 1209 v2.pdf. (Cited on

page 1.)

o

McHugh, J. (2000). Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA
intrusion detection system evaluations as performed by Lincoln Laboratory, ACM Trans.
Information System Security 3(4): 262—294. (Cited on pages 37 and 38.)

McHugh, J., Christie, A. and Allen, J. (2000). Defending Yourself: The Role of Intrusion Detection
Systems, IEEE Software 17(5): 42-51. (Cited on page 2.)

McLain, C., Studer, A. and Lippmann, R. (2007). Making network intrusion detection work with
IPSec. (Cited on page 13.)

Miles, R. (2006). Learning UML 2.0, 1** edn, Pragma, United State of America. ISBN 0596009828.
(Cited on page 193.)

Miller, D., Harris, S., Harper, A., Vandyke, S. and Blask, C. (2010). Security Information and
Event Management (SIEM) Implementation, 1% edn, McGraw-Hill Osborne, United States of
America. ISBN 0071701095. (Cited on page 33.)

Necker, M., Contis, D. and Schimmel, D. (2002). TCP-Stream Reassembly and State Tracking
in Hardware, 10th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’02), pp. 286-287. (Cited on page 11.)

Nicolett, M. and Kavanagh, K. (2008). Magic Quadrant for Security Information and Event Man-
agement. (Cited on page 33.)

Nilsson, N. (1996). Introduction to Machine Learning, available from: http://ai.stanford.
edu/-nilsson/MLBOOK.pd£. (Cited on page 29.)

Ning, P, Cui, Y. and Reeves, D. (2002). Constructing Attack Scenarios through Correlation of In-
trusion Alerts, In Proceedings of the 9th ACM Conference on Computer and Communications
Security, Washington, D.C., pp. 245-254. (Cited on pages 3, 20, 28, 34 and 57.)

Ning, P, Cui, Y., Reeves, D. and Xu, D. (2004). Techniques and tools for analyzing intrusion alerts,
ACM Transactions on Information and System Security (TISSEC) 7(2): 274-318. (Cited on
page 22.)

Ong, J. and Abidi, S. (1999). Data Mining Using Self-Organizing Kohonen Maps: A Technique for
Effective Data Clustering & Visualisation, In International Conference on Artificial Intelli-
gence (IC-AI'99), Las Vegas. (Cited on page 59.)

263



http://www
http://www.mcafee.com/u3/local_
http://ai.Stanford

REFERENCES

Paxson, V. (1999). Bro: A System for Detecting Network Intruders in Real Time, Computer Neiworks
31(23-24): 2435-2463. (Cited on pages 14 and 29.)

Perdisci, R., Giacinto, G. and Roli, F. (2006). Alarm clustering for intrusion detection systems in
computer networks, Engineering Applications of Artificial Intelligence 19(4): 429—438. (Cited
on pages 26 and 73.)

Pietraszek, T. (2004). Using Adaptive Alert Classification to Reduce False Positives in Intrusion De-
tection, Proceedings of 7th Symposium on Recent Advances in Intrusion Detection (RAID04),
Vol. 3224, pp. 102-124. (Cited on pages 24, 30 and 34.)

Pietraszek, T. and Tanner, A. (2005). Data Mining and Machine Learning—Towards Reducing False
Positives in Intrusion Detection, Information Security Technical Report Journal 10(3): 169—
183. (Cited on page 14.)

Porras, P. and Valdes, A. (1998). Live traffic analysis of tep/ip gateways. In Proceedings of the 1998
ISOC Internet Society Networks and Distributed Systems Security Symposium, San Diego,
CA. (Cited on page 12.)

Powers, S. and He, J. (2008). A hybrid artificial immune system and Self Organizing Map for
network intrusion detection, Information Science 178(15): 3024-3042. (Cited on pages 31, 34
and 58.)

Ptacek, T. and Newsham, T. (1998). Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection, available from: nttp://insecure.org/stf/secnet_ids/secnet

ids.html. (Cited on pages 13 and 14.)

Raikar, A. and Ramarao, G. (2007). Method for configuring a network intrusion detection system,
available from: http://www.patentstorm.us/patents/7228564-description.html.
(Cited on page 16.)

Ramadas, M., Ostermann, S. and Tjaden, B. (2003). Detecting Anomalous Network Traffic with
Self-Organizing Maps, Lecture Notes in Computer Science, Recent Advances in Intrusion De-
tection, Vol. 2820, pp. 36-54. (Cited on pages 30 and 58.)

Rhodes, B., Mahaffey, J. and Cannady, J. (2003). Multiple Self-Organizing Maps for Intrusion De-
tection, In Proceedings of the 23rd National Information Systems Security Conference, Balti-
more, MD. (Cited on page 30.)

Rissanen, J. (1978). Modelling by shortest data deseription, Automatica 14(5): 465-471. (Cited on
page 127.)

Roesch, M. (1999). Snort - Lightweight Intrusion Detection for Networks, Proceedings of LISA 99,
13th System Administration Conference, Seattle, WA. (Cited on page 15.)

Sadoddin. R. and Ghorbani, A. (2009). An incremental frequent structure mining framework for
real-time alert correlation, Compuiers & Security 28(3-4). 153-173. {Cited on pages 26, 34,
60 and 73.)



http://in5ecure.oxg/stf/secnet_id3/secnet_

 REFERENCES

Sambamoorthi, N. (2003). Hierarchical Cluster Analysis: Some Basics and Algorithms, available
r_an is.pdf. (Cited

L nalysi

from: http://www.crmpor com/hierarchical_clust

4]

on page 32.)

Scarfone, K. and Mell, P. (2007). Guide to Intrusion Detection and Prevention Systems
(IDPS), available from: http://csrc.nist.gov/publications/nistpubs/800-94/

i

§00-94 .pd£. (Cited on page 8.)

SecurityFocus (2010). SPADE (Statistical Packet Anomaly Detection Engine), available from:
http://www.securityfocus.com/tools/1767. (Cited on page 9.)

Seung, S. (2003). Multilayer Perceptron and back propagation learning, available from: http://

T e sme l G EATIIONI ST Ert iiraa
hebb.mit .edu/courses/9.641/2002/1lectures/

ectureld.pdf, (Cited on page 32.)

Shah-Hosseini, H. and Safabakhsh, R. (2000). TASOM: The Time Adaptive Self Organising Map,
Proceedings of International Conference Information Technology: Coding and Computing,
pp- 422-427. (Cited on page 116.)

Shin, M., Moon, H., Ryu, K., Kim, K. and Kim, J. (2003). Applying Data Mining Technique to An-
alyze Alert Data, Lecture Notes in Computer Science, Proceedings of the 5th Asia-Pacific web
conference on Web technologies and applications, Vol. 2642, pp. 193-200. (Cited on page 29.)

Siraj, A. and Vaughn, R. (2005). A Cognitive Model for Alert Correlation in a Distributed Envi-
ronment, Lecture Notes in Computer Science, Vol. 3495, pp. 218-230. (Cited on pages 26
and 27.)

Smith, D. (2006). A Practical Application of SIM/SEM/SIEM Automating Threat Identifica-
tion, available from: http://www.sans.crg/reading_room/whitepapers/logging/
practical-application-sim—sem-siem-automating-threat—-identification

1781. (Cited on page 11.)

Smith, R. (1999). The Web Bug FAQ, available from: http://w2.eff.org/Privacy/
Marketing/web_bug.html. (Cited on page 43.)

Smith, R., Japkowicz, N., Dondon, M. and Mason, P. (2008). Using unsupervised learning for net-
work alert correlation, Lecture Notes in Computer Science, Proceedings of the Canadian So-
ciety for Computational Studies of Intelligence, 21st Conference on Advances in Artificial In-
telligence, pp. 308-319. (Cited on pages 60 and 119.)

Snort (2010a). ICMP L3Retriever Ping. (Cited on page 49.)

Snort (2010b). INFO web bug 1x1 gif attempt, available from: http://www.snort.org/search/
id/29252r=1. (Cited on page 42.)

"IJ

Snort (2010¢c). WEB-IIS view source via translate header, available from: http://www.snort.
org/search/sid/10427r=1. (Cited on page 48.)

Snort (2010d). WEB-MISC robots.txt access, available from: http://www.snort .org/search/
sid/18522r=1. (Cited on page 49.)

265



http://www.crmportals
http://www.5ans
http://w2.eff.org/Privacy/
http://www.3nort.org/3earch/

REFERENCES

Song, D., Shaffer, G. and Undy, M. (1999). Nidsbench - A network intrusion detection test suite,
1999 Recent Advances in Intrusion Detection, Second International Workshop, RAID 1999,
West Lafayette, Indiana. (Cited on page 10.)

Sophos (2010). Security Threat Report 2010, available from: http://www.sophos.com/sophos/
docs/eng/papers/sophos—security-threat-report-jan-2010-wpna.pdf. (Cited

on page 1.)

Spathoulas, G. and Katsikas, S. (2010). Reducing False Positives in Intrusion Detection Systems,
Computers & Security 29(1): 35-44. (Cited on pages 22, 34, 57 and 73.)

o

Stergiou, C. and Siganos, D. (1996). Neural Networks, available from: nttp://www.doc.ic.
uk/~nd/surprise_96/journal/vold/csll/report.html. (Clt,ed on page 30.)

Symantec (2010). Symantec Global Internet Security Threat Report: Trends for 2009,
available from: http://eval.symantec.com/mktginfo/enterprise/white papers/
2010.en—us.pdf. (Cited

on page 1.)

Thomas, C., Sharma, V. and Balakhrisnan, N. (2008). Usefulness of DARPA dataset for intrusion
detection system evaluation, Proceedings of SPIE International Defense and Security Sym-
postum, Vol. 6973. (Cited on page 38.)

Timberline Technologies (2009). Alphabetical List of Intrusion Detection Products, available from:
html. (Cited

http://www.timberlinetechnologies.com/products/intrusiondtct

on page 9.)

Valdes, A. and Skinner, K. (2001). Probabilistic Alert Correlation, In Proceedings of the 4th Inter-
national Symposium on Recent Advances in Intrusion Detection, Davis, CA, USA, pp. 54-68.
{Cited on pages 20 and 28.)

Valeur, F., Vigna, G., Kruegel, C. and Kemmerer, R. (2004). A comprehensive approach to intru-
sion detection alert correlation, IEEE Transactions on Dependable and Secure Computing
1(3): 146-169. (Cited on pages vii, 20, 21 and 27.)

van der Heijden, F., Duin, R., Ridder, D. and Tax, D. (2004). Classification, parameter estimalion
and state estimation, 1% edn, Wiley, United States of America. ISBN 978-0-470-09013-8.
(Cited on page 59.)

Viinikka, J., Debar, H., Me, L., Lehikoinen, A. and Tarvainen, M. (2009). Processing intrusion
detection alert aggregates with time series modelling, Information Fusion 10(4): 312-324.
(Cited on pages 24 and 34.)

Vokorokos, L., Balaz, A. and Chovanec, M. (2006). Intrusion Detection System using Self Organizing
Map, Acta Electrotechnica et Informatica 6(1): 1-6. (Cited on page 31.)

WebDAV (2001). WebDAV Overview, available from: http://www.kadushisoft .com/syshelp/
webdav . htm. (Cited on page 48.)

266


http://sophos.com/sophos/
http://www.doc.icac
http://sYrr.aritec.com/rakcginfo/enLerprise/white_papets/
http://www.kadushisoft.com/sYShelp/

REFERENCES

Weijters, T., den Herik, H. V,, den Bosch, A. V. and Postma, E. (1997). Avoiding overfitting with
BP-SOM, In Proceedings of the 15th International Joint Conference on Artificial Intelligence,
Vol. 2, pp. 1140-1145. (Cited on page 64.)

Wireshark (2010). Wireshark: The world’s foremost network protocol analyzer, available from:

www.wireshark.org/. (Cited on page 39.)

Xiao, Y. and Han, C. (2006). Correlating intrusion alerts into attack scenarios based on improved
evolving self-organizing maps, International Journal of Computer Science and Network Se-
curity 6(6): 199-203. (Cited on pages 31, 35 and 58.)

Yu, Z., Tsai, J. and Weigert, T. (2008). An adaptive automatically tuning intrusion detection sys-
tem, ACM Transactions on Autonomous and Adaptive Systems (TAAS) 3(3): 1-25. (Cited on

page 25.)
Zaiane, 0. (1999). Introduction to Data Mining, available from: http://www.exinfm.com/
pdffiles/intro_dm.pdf. (Cited on page 28.)

Zhu, B. and Ghorbani, A. (2006). Alert Correlation for Extracting Attack Strategies, International
Journal of Network Security 3(2): 244-258. (Cited on pages 27, 32 and 34.)

Zoho (2007). Analyzing Logs For Security Information Event Management,
available from: http://www.man

=yoandl ne crom/forodiact s /event -1/
ayecilGllile . LU HMiODUUL LS/ EVELL

df. (Cited on page 9.)

Analyzing-Logs—-for-SIEM-Whitepape

[¢)]

Zurutuza, U. and Uribeetxeberria, R. (2004). Intrusion Detection Alarm Correlation: Survey, Pro-
ceedings of the IADAT International Conference on Telecommunications and Computer Net-
works, Donostia, Spain. (Cited on page 22.)

267



http://www
http://wireshark.org/
http://www.exinfin.CQni/

