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ABSTRACT 

P J Burgess. Cryptocaryon irritans Brown, 1951 (Ciliophora): transmission and immune 
response in the mullet Chelon labrosus (Risso, 1826). 

A standardised procedure was established for the laboratory maintenance of C.irritans 
in thick-lipped mullet. Nine isolates of C.irritans were obtained of which eight were 
successfully established for up to 48 weeks. Studies on individual life cycle stages with 
regards to longevity, viability, and susceptibility to a chemotherapeutic agent, revealed 
the difficulties in eradicating the cysts. Transmission of the parasite both to and from 
the host correlated with darkness. High infection levels resulted in the death of host 
fish within five days following exposure to theronts. An acquired protective immune 
response developed in host mullet within 14 days after exposure to sub-lethal 
infection. The degree of immunity appeared to relate to infection dose, and was not 
fully protective in all fish. Protection persisted for six months after infection and 
appeared specific to C.irritans. Specific antibodies to trophont antigen were identified 
in mullet serum but not epithelial mucus following either natural exposure to theronts 
or intraperitoneal immunisation with trophont antigens. Serum from intraperitoneally 
immunised fish caused theront immobilisation and agglutination in vitro; however no 
evidence was found for a protective role for specific antibody. Major polypeptides 
were identified and characterised by molecular weight for both trophont and theront 
stages using SDS-PAGE. Significant homology in major polypeptide profiles was 
found between C.irritans and J.multifiliis, in respect to trophonts and particularly 
theronts. Murine monoclonal antibodies raised to trophonts identified two 
polypeptide components of molecular weights 20-21kDa and 68-69kDa, the latter 
being homologous with host immunoglobulin heavy chain. These results are discussed 
in relation to future management and control strategies for cryptocaryosis in 
warmwater mariculture systems and aquaria. 
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CHAPTER ONE 

INTRODUCTION 

Cryptocaryosis is a major disease ofwarmwater marine teleosts, accounting for 

epizootics and acute mortalities in captive fish populations (Nigrelli and Ruggieri, 

1966; Blasiola, 1976). Until recently, the causative agent, Cryptocaryon irritans Brown 

1951, was chiefly associated with ornamental coral reef fishes (De Graaf, 1973). 

Within the last decade, however, this pathogen has been increasingly reported as a 

serious problem in the foodfish industry, causing high mortalities in commercially 

important species as red snapper, sea bream, sea bass, grouper and flounder (Huff 

and Burns, 1981; Colorni, 1985; Kaige and Miyazaki, 1985; Rasheed, 1989; Tookwinas, 

1990a,b). The economic importance of cryptocaryosis seems likely to increase further, 

in view of the substantial growth in both the ornamental fish and warmwater 

mariculture industries (MINTEL, 1988; Andrews, 1990). 

C.i"itans is an obligate parasite with a direct transmission. Its life cycle, as 

described by Sikama (1937, 1938) is conveniently divided into four phases: i) trophont, 

the growth phase within the host epidermis; ii) free-living trophont; iii) reproductive 

cyst; and iv) theront, the stage infective to the fish (Fig. 1). 

Currently there is no satisfactory method for control of C.irritans, present 

procedures being largely reliant upon chemical immersion treatments which are toxic 

to both fish and the environment; these are ineffective against the parasitic trophont 

and reproductive cyst (Kingsford, 1975; Herwig, 1978; Andrews et al., 1988). New 

approaches for the prevention and control of C.i"itans will require a greater 

understanding of the parasite's biology and its interaction with host, however few 
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Figure 1 

Life cycle stages of Cryptocaryon irritans. 
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studies have been undertaken since the parasite's initial description by Sikama in 

1937. Of the limited work on C.irritans, most has focused on aspects of the life cycle 

and morphological investigations, with little information regarding its geographical 

range, habitat, and environmental factors influencing its transmission. There have 

been no investigations on the host response to infection with C.irritans; such 

information is vital for considering an immunological approach to control by 

vaccination, as has been investigated for /chthyophthirius multifiliis, a closely related 

ciliate (Dickerson et al., 1984; Clark et al., 1988). 

The major objectives of this study are to establish a standardised system for the 

laboratory maintenance of C.irritans as a basis to the investigation of parasite 

transmission, molecular composition, and interaction with host. This study will 

hopefully contribute information leading towards safe and effective control and 

management strategies. 

22 



CHAPTER TWO 

REVIEW 

No previous major review of C.irritans has been undertaken. This chapter 

attempts to cover literature concerning the parasite's biology, economic importance, 

morphology, host range, pathology, geographical distribution, and control and 

treatment. In view of the parasite's location in the host epithelium it is appropriate 

here to also review teleost skin in relation to its defense mechanisms against infection. 

1. CRYPTOCARYON IRRITANS 

Biology 

Cryptocaryon irritans Brown, 1951 is a holotrichous ciliated protozoan, belonging 

to the family lchthyophthiriidae (Corliss, 1979) (Fig. 2). The trophic stage is parasitic 

in marine teleost fishes, occurring within the skin and gill epithelium and eye cornea. 

C.irritans causes the disease known under various names such as "marine whitespot", 

"marine ich", "cryptocaryoniasis" and "cryptocaryasis", but will here be termed 

"cryptocaryosis" in accordance with recent proposals (Baker, 1989). 

C.irritans was first described in 1937 by Sikama in Japan as a marine form of 

Ichthyophthirius multifiliis (Fouquet), the causative agent of whitespot disease in 

freshwater fishes. Sikama (1961) later named the parasite lchthyophthirius marinus, 

unaware that Brown (1951) had previously described the protozoan as Cryptocaryon 

irritans. Brown (1951), in her brief description, erected the new genus Cryptocaryon 
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Figure2 

TaxonomiC- position of C.irritans; after Corliss (1979.). 
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which is currently placed together with Jchthyophthirius in the family 

Ichthyophthiriidae. As yet, no other species have been assigned to Cryptocaryon. 

Economic importance 

At present, C.irritans appears primarily of economic importance to the 

ornamental fish industry, causing high mortalities in coral reef fishes (De Graff, 1973; 

Herwig, 1978; Moe, 1982; Andrews et al., 1988). As a disease pathogen of importance 

in tropical marine aquaria it ranks only second to Amyloodinium (Moe, 1982), 

however the economic impact of C.irritans to the ornamental fish industry has not 
h:> 

been assessed. With regardsehe economic effect of C.irritans on the warmwater 

mariculture of food fish, only a few references have been made to outbreaks of 

cryptocaryosis prior to 1980, although it has been increasingly reported over the past 

ten years. Recent outbreaks have occurred in Japanese flounder, Paralichthys 

olivaceous (Kaige and Miyazaki, 1985) and gilt-head bream, Sparus aurata (Colorni, 

1985). In the Southern United States, epizootics of C.irritans have impaired the 

culture of red snapper, Lutjanus campechanus, causing acute, total mortalities (Huff 

and Burns, 1981). The parasite is apparently a major problem in the development of 

red snapper farming in Australia and New Zealand (Hine, 1982, and pers. comm.). 

In Kuwait, the parasite has infected sparids and sea-adapted Tilapia aurea (Tareet\ , 

1980) and caused mass mortalities of tank-reared grouper, Epinephelus tauvina, which 

succumbed within one month of diagnosis (Rasheed, 1989). In the French West 

Indies, C.irritans has been considered the most dangerous of parasites encountered 

in the tank rearing of lutjanids, carangids, and seabass (Gallet de Saint Aurin et al., 

1990). C.irritans is also known to infect salmonids (Roberts and Shepherd, 1986). 
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Morphology 

Morphological studies of C.irritans have been undertaken using light 

microscopy (Sikama, 1937, 1938; Brown, 1951, 1963; Nigrelli and Ruggieri, 1966; 

Colorni, 1988) and scanning electron microscopy (Cheung et al., 1981). Structural 

features of each life cycle stage are considered below. 

Trophont 

Brown (1951) described the trophont as an opaque white ciliate, oval in its 

early stages, becoming spherical later. Its length ranged from around 70J.Lm to 450J.Lm 

(Brown, 1951; Sikama, 1961). The ciliature were studied by Brown (1951) who 

reported their uniform covering, arranged in rows which terminate at the edge of an 

oral pit. Lengths of individual cilia were recorded as 7J.Lm to 9J.Lm (Brown, 1951), 

however according to Cheung et al. (1981) these were slightly shorter, measuring only 

3J.Lm to 4J.Lm. Studies of the nucleus by Brown (1951) revealed a well defined 

membrane enclosing granular chromatin with non-chromatin inclusions. She observed 

several micronuclei, and a meganucleus of four or more parts which fuse in older 

trophonts. Nigrelli and Ruggieri (1966) noted that the meganucleus became obscured 

by densely packed granules, and observed numerous densely staining basophilic 

spherical-shaped bodies in vacuole-like areas. The trophont did not possess an 

organella of Lieberkuhn (Brown, 1951, 1963) nor contractile vacuoles (Nigrelli and 

Ruggieri, 1966). The oral pit has been studied by several workers, including Brown 

(1951) who described two regions, a broad depression (peristome or cytostome) and 

a narrower region (pharynx or vestibule). Brown (1951) observed a well defined 

protrusile membrane on one wall of the oral pit, with a smaller membrane situated 

opposite. Nigrelli and Ruggieri (1966) suggested the protrusile apparatus might 
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function to draw in host material, however, Cheung et al. (1981) concluded that it 

serves to adhere the trophont to the substratum prior to encystment. The buccal 

apparatus was studied in detail by Cheung et al. (1981) which they described as a 

simple ring comprising 65 to 75 cirri-like structures surrounding the oral opening. The 

simplicity of this structure and the absence of accessory oral membranes or 

membranelles which are characteristic of the Hymenostomatida Delage and 

Herouard, 1896, prompted Cheung et al. (1981) to question the placing of 

Cryptocaryon within this taxonomic order. 

Brown (1951) described the encysted parasite, noting the coiled ribbon-like 

macronucleus, numerous micronuclei and at division, the production of theronts by 

budding. Studies made by Sikama (1961) suggested the presence of a laminated outer 

region of the cyst with ten layers, at least six of which formed the outer cyst wall. 

Later investigations by Nigrelli and Ruggieri (1966) differentiated at least four 

membranes within the outer cyst region. These workers also recorded cyst size, 

giving ranges of 94.5~-Lm X 170~-Lm to 225~-Lm X 441J.Lm. Recent research on the cyst 

by Cheung et al. (1981) has revealed the gradual loss of body ciliature (by absorption 

?) following encystment and subsequent division. 

Theront 

Following theront differentiation, it has been shown by Nigrelli and Ruggieri 

(1966) that these active free swimming stages escape from small openings on one side 

of the cyst wall. Brown (1951) described the theronts as pear-shaped, varying in 

length from 40~-Lm to 56J.Lm, with a uniform covering of cilia, each 81-1m to 9J.Lm in 
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length and arranged in about 40 rows. Brown (1951, 1963) recorded 4 to 7 

micronuclei and an oval meganucleus in four parts, often arranged in a crescent; non­

chromatin inclusions were not observed. No organella of Lieberkuhn was observed 

(Brown, 1951). Brown (1951) described a dorsal perforatorium which projects beyond 

the mouth region, which, according to Colorni (1988), may play an important role in 

the theront's ability to attach to its host. 

Host specificity 

C.irritans appears to be parasitic only to teleost fishes, but within this group the 

parasite has a broad host range. For example, amongst aquarium fishes, Nigrelli and 

Ruggieri (1966) recorded 27 species infected with C.irritans, and a further 92 species 

(spanning 33 families within 7 orders) were listed by Wilkie and Gordin (1969). 

C.irritans has been observed to infect both adult and juvenile fish, the latter as young 

as 3 weeks for Sparus aurata (Colorni, 1985). Aquarium observations by Wilkie and 

Gordin (1969) suggest that some species are refractory to infection, these belonged 

to the elasmobranch order Squaliformes (9 species) and the teleost orders 

Anguilliformes (3 spp ), Pleuronectiformes (5 spp ), and two species of gobiids 

(Lythrypnus spp.) of the order Perciformes. These authors noted that these "resistant" 

species comprised primarily those which lived in contact with the substrate, prompting 

speculation that the mechanisms which protect the fish from abrasion injuries may 

also provide resistance to C.irritans. 

Ccyotocacyosis: clinical signs and pathology 

C.irritans manifests as opaque to greyish papules in the skin, gills and eyes of 

its host, which in moderate to severe infections may form clusters (Blasiola, 1976). 
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Infected fish may show loss of appetite, nervous or uncoordinated activity and exhibit 

scraping or "flashing" of the flanks against hard objects (Violetta, 1980). Heavy 

infections invariably result in host death (Nigrelli and Ruggieri, 1966). Disease 

manifestations, when based on visual examination alone, have often been confused by 

aquarists with the dinoflagellateAmyloodinium ocellatum which initiates a similar type 

of disease and is also characterised by white spots, however these are smaller 

(Violetta, 1980). Subdermal haemorrhaging has been associated with C.irritans 

infection, particularly on the fins (Wilkie and Gordin, 1969). Invasion of the epithelial 

gill lamellae results in tissue erosion and excessive effusion (Nigrelli and Ruggieri, 

1966). Hyperplasia of gill epithelial cells and mucus cells has also been observed 

(Kaige and Miyazaki, 1985). Normal respiratory function is disrupted leading to 

respiratory stress and increased respiratory activity (Wilkie and Gordin, 1969; Violetta, 

1980). Parasites invading the corneal epithelium may cause opacity and sometimes 

blindness (Wilkie and Gordin, 1969; Blasiola, 1976; Sindermann, 1977). The 

possibility that tissue invasion by C.irritans may give rise to bacterial infection has 

been suggested (Nigrelli and Ruggieri, 1966; Violetta, 1980); inconclusive evidence for 

this has come from the presumptive diagnosis of Cryptocaryon in cultured turbot 

(Scophthalmus maximus) presenting with skin ulcerations. The parasite was 

considered a possible primary agent in the ulcerative disease by enabling invasion of 

secondary opportunistic pathogens (Devesa et al., 1989). 

Geographical distribution 

The majority of reports of C.irritans infections in fish relate to occurrences m 

marine aquaria and enclosed mariculture systems. Outbreaks of cryptocaryosis in 

aquaria have been reported in several countries, including England (Brown, 1951), 
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Germany (Or Hofte, Tetra Ltd., pers. comm.), the Netherlands (De Graaf, 1962), 

United States (Nigrelli and Ruggieri, 1966; Wilkie and Gordin, 1969), Canada 

(Shapiro, Marine Aquarium Society of Toronto, pers. comm.), Israel (Colorni, 1985) 

and Japan (Sikama, 1938). Nigrelli and Ruggieri (1966) consider that the parasite 

has become established in North American aquaria through marine fishes imported 

from Hawaii and the Indo-Pacific region; a similar explanation may account for the 

observed aquarium outbreaks in other countries, particularly in those situated outside 

the parasite's known temperature range. With regards mariculture systems, C.irritans 

has been recorded in sea bass (Lates calcarifer) in Thailand (Tookwinas, 1990a,b, and 

pers. comm.) and other parts of South East Asia (Cheong, 1990), in sea bream (Sparus 

aurata) in Israel (Colorni, 1985), in grouper (Epinephelus tauvina) in Kuwait 

(Rasbeed, 1989), and in red snapper (Lutjanus campechanus) in Florida, U.S.A. (Huff 

and Burns, 1981). However, these reports did not address the possibility of an 

extraneous source of infection. 

Observations on C.irritans in wild fishes are very few, however such studies are 

necessary to determine the parasite's possible origin and natural distribution. In Fiji, 

examination of 36 fish species collected from a coral reef revealed only one species, 

Epinephelus merra, harbouring C.irritans, infection in this host being very light (Laird, 

1956). Sikama (1961) reported the parasite in fishes collected from the coastal waters 

of Japan. A presumptive identification of C.irritans in wild adult and larval 

butterflyfisbes (Cbaetodontidae) on a coral reef was made by Burgess (1978), but the 

locality or species infected were not given. Wilkie and Gordin (1969) recorded 

C.irritans on a single specimen of opaleye (Girella nigricans), collected from a tide pool 

near the Scripp's Institute, California, which they considered may have originated via 

effluent water from the Institute's aquaria which had a history of C.irritans outbreaks. 
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The distribution of C.irritans in the wild appears to be limited by temperature. 

Under aquarium conditions, C.irritans has not been shown to develop or transmit 

below l9°C to 20°C (Wilkie and Gordin, 1969; Cheung et al., 1979) or above 30°C 

(Cheung et al., 1979). Based on this information, it is considered that C.irritans is 

restricted to warmwater marine environments, although recent observations by 

Diamant et al. (1991) suggest that C.irritans may have a counterpart existing in the 

cooler waters of the eastern Mediterranean. This assumption was based on reports 

of disease outbreaks caused by a Cryptocaryon- like ciliate which was believed to have 

originated from cultured fish stocks from Cyprus and northern Israel. 

Control and treatment 

Several methods for the control and treatment of cryptocaryosis have been 

described. Of these, chemical treatments and salinity manipulations appear to have 

been most widely used. 

A wide range of chemical compounds and mixtures, virtually all applied to the 

water, have been reported for use against C.irritans. The efficacy of chemical 

treatments, when used at levels which are non- or low-toxic to fish, are thought to be 

restricted to destroying the free-living stages (Andrews et al., 1988), the cysts and 

parasitic trophonts being resistant (Herwig, 1978). Direct comparisons of different 

chemical treatments under conditions of similar water chemistry, host species and 

infection levels appear not to have been undertaken. The following review can 

provide, therefore, only a rough guide to the relative efficacies and contra-indications 

of the chemical treatments. 

One group of chemical compounds, originally developed as dyes and biological 

stains, have been widely used over many years to control parasitic protozoal diseases 
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of fishes, including l.multifiliis (Van Duijn, 1973; Herwig, 1979). Amongst this group, 

acriflavine, malachite green and methylene blue have been employed either alone or 

in conjunction with other chemicals (e.g. formalin) to control C.irri.tans (Herwig, 1978; 

Tookwinas, 1990b ). These compounds, which are generally administered as a 

prolonged bath, are reported to be toxic to fish, causing damage to the epithelium 

with resultant susceptibility to bacterial invasion and, in the case of malachite green, 

may cause sterility (Kingsford, 1975; Herwig, 1978). Copper treatments have been 

widely used. Herwig (1978) reported that copper sulphate, when used at 0.15 to 0.25 

ppm as a long-term bath, is inhibitory to C.irri.tans. Wilkie and Gordin (1969) found 

that continual exposure to copper sulphate alone (at levels up to 0.4 ppm Cu) had no 

deleterious effect on the parasitic trophonts but was effective when used in 

conjunction with formalin as a short-term bath. Copper sulphate, however, is highly 

toxic to most fish species and its efficacy is impaired by carbonate compounds present 

in seawater (Wilkie and Gordin, 1969; Blasiola, 1976; Keith, 1981; Colorni, 1987). 

Furthermore, copper compounds in general are highly toxic to certain marine 

invertebrates (De Graaf, 1973; Andrews et al., 1988), which largely precludes their use 

in aquaria housing mixed fish and invertebrate species. Formalin has been used by 

several workers to control C.irri.tans, with varying degrees of success (Herwig, 1978; 

Moe, 1982; Rasheed, 1989). Herwig (1978) reported that formalin at a level of 0.2 

ml/gallon destroyed theronts, whereas Rasheed (1989) observed that twice weekly 

treatments of 30 to 50mg/litre formalin failed to prevent reinfections in cultured 

grouper, Epinephelus tauvina. Formalin has been used in conjunction with copper 

compounds to control C.i"itans. For example, Nigrelli and Ruggieri (1966) used a 

mixture of formalin, cupric acetate and tris buffer as an effective single dose 

treatment, but warned of its potential high toxicity to fish. Moe (1982) reported the 
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successful treatment of C.irritans in aquaria using a series of one hourly formalin baths 

for the infected fish, in combination with a systemic copper treatment for the 

aquarium. 

Amongst the chemicals found to be effective in controlling C.irritans are the 

group of quinine derivatives, which have proven efficacy in destroying certain 

medically important protozoa, by inhibiting nucleic acid synthesis (Gutteridge and 

Coombs, 1977). Those employed against C.irritans include chloroquine phosphate, 

primaquine phosphate, quinine hydrochloride and quinine sulphate; these compounds 

are reported to vary in their toxicity to fish (De Graaf, 1973; Kingsford, 1975; Herwig, 

1978; Huff and Burns, 1981). Quinacrine ( = atebrine) hydrochloride has been 

considered by some workers as the treatment of choice for controlling C.irritans in 

marine aquaria (Kingsford, 1975; Herwig, 1978). Other groups of anti-protozoal 

compounds, developed for medical and veterinary use, have also been applied to 

control C.irritans. These include metronidazole, which is reported to be non-toxic to 

fish at a therapeutic level of 25mg/ gallon (Herwig, 1978) and pyrimethamine which, 

although effective in controlling C.irritans when used at 4 to 8mg/ gallon, is toxic to 

fish, sometimes causing death (Kingsford, 1975). 

A variety of other chemicals have been applied against C.irritans although their 

efficacy and toxicity are less well documented. These include potassium 

permanganate (reported to damage fish gills), sodium chlorite, suphathiazole, 

nitrofurazone, and penicillin (Wilkie and Gordin, 1969; Herwig, 1978, 1979). In the 

aquarium literature there has been reference to different strains of C.irritans (Herwig, 

1978), some of which are considered to be "drug-resistant" (aquatic traders, pers. 

comms.) although there appears to be no scientific evidence to support these 

statements. 
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Manipulation of salinity (normally around 32 %o), to create hypo- or hyper-saline 

conditions, has been employed by several workers for controlling C.irritans (Cheung 

et al., 1979; Huff and Burns, 1981; Colorni, 1985). Freshwater dips in conjunction 

with chemical treatments have been reported by Herwig (1978) to destroy, by osmotic 

pressure, the parasitic trophont. However, Colorni (1985) found that freshwater 

immersions alone for periods up to 18 hours did not prevent development of 

trophonts within the fish epidermis. Effects of hyposalinity on the cyst stage was 

investigated by Cheung et al. (1979) who found that cyst development was prevented 

when exposed to a salinity of 16 %o ( = 50% seawater: 50% freshwater) and lower. 

Colorni (1985), in a detailed study of salinity effects on the free-living stages of 

C.irritans, found that viability was retained over the following salinity ranges: 

trophonts, 15 to 60 %o; cysts, 15 to 70 %o; theronts, 25 to 50 %o. Survival at higher 

salinities was not investigated. On the basis of this work, Colorni (1985) devised a 

successful strategy to control C.irritans in sea bream, by hyposaline destruction of the 

cyst before excystment. The regime involved four treatments at three day intervals, 

each comprising three hours immersion in 10 %o salinity. However, because of osmotic 

effects on host fish, the use of hyposaline treatment may need to be restricted to 

euryhaline species (Huff and Burns, 1981; Colorni, 1985). Hypersaline conditions 

have also been applied for the control of C.irritans. Huff and Burns (1981) found that 

immersion of infected red snapper in 60 %o salinity for five minutes caused the fish to 

shed mucus containing embedded trophonts which underwent cellular disruption. This 

treatment proved to be unsatisfactory, causing severe stress to the fish which died 

within seven days post-immersion. By using less extreme hypersaline conditions ( 45%o) 

in conjunction with quinine- based treatments, these authors succeeded in eradicating 

C.irritans without causing high fish mortalities. Two other methods for the control of 
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C.irritans have been reported in the literature: ultraviolet (U.V.) irradiation and ozone 

(03). Both U.V. irradiation units and ozone generators are commonly installed in 

marine aquaria, partly to kill microbial pathogens (Andrews et al., 1988; Thid, 1989). 

Neither method has been carefully evaluated in terms of its efficacy in destroying 

C.irritans. U.V. irradiation, around 2537 A0
, has been recognised as effective in 

destroying certain fish pathogens, including bacteria (Bullock and Stuckey, 1977) and 

protozoa (Hoffman, 1974; Gratzek et al., 1983). Spotte (1979) estimatedfrom the size 

of the theront stage that the minimal lethal dose of U. V. needed to destroy C.irritans 

would be 800,000 J..LW sec-2
• As stated for l.multifiliis by Gratzek et al. (1983), U.V. 

can prevent the spread of infection between multi-aquaria closed systems but is not 

effective in controlling infection within an individual aquarium; the same probably 

applies to C.irritans. Regarding the use of ozone, Wilkie and Gordin (1969) reported 

that administration of 8 mg 0 3/hour /15 gallons prevented infection in the opaleye 

fish, Girella nigricans which were held for 21 days in an infection aquarium. No other 

studies on ozone for controlling C.irritans appear to have been undertaken. One 

control method which does not require chemical intervention was described by 

Colorni (1987) in which the cyst stage was eliminated by repeated removal and 

replacement of the substrate at three day intervals. 

In summary, chemical immersion treatments remain the control method of 

choice for C.irritans, being relatively cheap and simple to administer. Despite their 

toxicity to fish, copper compounds and formalin have been widely used in mariculture 

systems, whereas less harmful chemicals, such as quinines, have been favoured for the 

treatment of ornamental coral reef fishes. At present, there is no simple, effective 

and safe method for controlling C.irritans. 
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2. IMMUNE DEFENSE MECHANISMS IN SKIN AND GILL EPITHELIA OF 

TELEOST FISHES 

The parasitic stage of C.irritans appears confined to the epithelium of the skin 

and gills of its teleost host (Colorni, 1985), with no reports of invasion via the basal 

lamina to subdermal tissues. 

Both the skin and gills of teleosts have been exploited by many other protozoa 

including /chthyoplrthirius, Amyloodinium, /clrthyobodo, Clzilodonella and Triclwdina 

(Joyon and Lom, 1969; Hines and Spira, 1973a; Lom and Lawler, 1973; Roberts and 

Shepherd, 1986). The general structure of teleost skin has been well documented 

(Whitear, 1970; Roberts and Bullock, 1980) and contrasts with that of higher 

vertebrates by containing an epidermis which is comprised of non-keratinised living 

cells (Bullock et al., 1978). Several defense mechanisms exist to prevent epidermal 

invasion by pathogens, and these have received attention in recent years, both from 

a comparative immunological viewpoint and in relation to studies on vaccination 

delivery by external routes. 

The non-specific ("innate") and acquired immune mechanisms in fish have been 

the subject of several reviews (Corbel, 1975; Ellis, 1982, 1989; MacArthur and 

Fletcher, 1985). The underlying mechanisms, comprising non-specific and specific 

elements, will be discussed separately here, with respect to skin and gill epithelia. 

Non-specific defense mechanisms 

The defense role of epidermal mucus secretions in entrapping microorganisms 

and inhibiting microbial colonisation has been reported (Pickering, 1974; Ourth, 1980; 

Ellis, 1989), with evidence of increased mucus production in response to certain 
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infections (Ellis, 1989). Rapid healing and tissue hyperplasia responses have also 

been reported to limit epithelial disruption by pathogens (Bullock et al., 1978), and 

gill hyperplasia has been frequently observed in parasitic diseases, such as costiasis 

(EIIis, 1989) and myxosporidiosis (caused by Henneguya spp.) (Dykova and Lom, 

1978). Whether these responses are effective against protozoal invasions is not clear. 

A range of non-specific defense substances have been found in teleost 

epidermal mucus, including microbial growth inhibitors such as transferrin which has 

bacteriostatic and fungistatic action (Winter et al., 1980), bacteriolytic enzymes, 

including protease (Hjelmeland et al., 1983) and trypsin (Braun et al., 1990) and 

bacterial enzyme inhibitors (EIIis and Grisley, 1985). Lysozyme, which causes lysis of 

bacterial cell walls, has also been detected in the mucus of several teleost species 

(Fletcher and White, 1973; Ourth, 1980; Hjelmeland et al., 1983). Acute phase 

substances have been found, including the antiviral agent, interferon (De Kinkelin et 

al., 1982) and C-reactive protein, the latter recorded in low levels in the skin mucus 

of tilapia (Ramos and Smith, 1978). Natural haemagglutinins have been found in the 

skin mucus of rainbow trout (Hjelmeland et al., 1983) and catfish, Tachysaurus 

australis (Di Conza, 1970), and may possess functional anti-bacterial activity. Whether 

such haemagglutinins are truly non-specific or immunoglobulins directed to 

uncharacterised antigens, is not clear. Complement components, homologous to those 

found in mammals, are recorded from fish serum (Nonaka et al., 1981) and may also 

be present in mucus (Harrell et al., 1976), although there appears to be no evidence 

for complement-mediated cytotoxicity occurring in fish mucus. Certain fish species 

possess skin toxins which may have anti-pathogen as well as anti-predator functions 

(Randall et al., 1971; Hori et al., 1979). However, there appear to be few reports of 

non-specific non-cellular defense mechanisms in fish epithelial mucus directed against 
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protozoa. Non-specific cellular immunity in fishes is associated with either phagocytes 

or cytotoxic cells. In mammals, the cellular components important in non-specific 

immunity are the phagocytes (Roitt et al., 1985) of which several types, including 

macrophages, have been identified in teleosts in the skin (Roberts et al., 1971; 

Phromsuthirak, 1977; Peleteiro and Richards, 1990) and in gills (Chilmonczyk and 

Monge, 1980). Non-specific cytotoxic cells (NCC) have been recognised in the 

immune response of teleosts (Etlinger et al., 1977); these cells show certain properties 

which are similar to mammalian natural killer (NK) cells, a heterogeneous group 

comprising mainly large granular lymphocytes (Roitt et al., 1985). Anti-protozoal 

action of these cells has been reported by Graves et al. (1985) who showed that 

channel catfish NCC were able to kill Tetrahymena pyrifonnis trophozoites following 

immobilisation with specific antibodies. However, these authors believed that the 

parasite killing was not attributable to antibody-dependent cellular cytotoxicity 

(ADCC)-like mechanisms. Graves et al. (1985) suggested that immobilisation followed 

by NCC activity may operate in fish mucus to kill invading J.multifiliis theronts, 

although the possible defense role in vivo of NCC is still to be proven. 

Specific defense mechanisms 

Specific defense mechanisms in fish and higher vertebrates comprise both 

cellular and humoral factors, the latter characterised by antigen-specific 

immunoglobulins: antibodies. In teleost fish, the predominant immunoglobulin (Ig) 

type is tetrameric, termed IgM, indicating its similarity to the pentameric IgM of 

mammals (Litman, 1976). The presence of immunoglobulins and specific antibodies 

in fish serum has been well documented. Immunoglobulins have also been shown to 

exist in the skin mucus from a wide taxonomic range of teleosts (Fletcher and Grant, 
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1969; Di Conza and Halliday, 1971; Fletcher and White, 1973; Lobb and Clem, 1981a; 

Rombout et al., 1989b) and in the holostean Lepisosteus platyrhinchus (Bradshaw et 

al., 1971). Specific antibodies in skin mucus have been induced by immunisation with 

erythrocytes or bacterial antigens, the latter delivered by either intra-peritoneal (i.p.) 

or bath immersion routes (Fletcher and Grant, 1969; Fletcher and White, 1973; 

Harrell et al., 1976; Ourth, 1980; St. Louis-Cormier et al., 1984; Lobb, 1987). The 

origin of mucosal immunoglobulin has been addressed by several workers. For 

example, Ourth (1980) detected antibodies in skin mucus directed to Salmonella 

paratyphi in channel catfish immunised with these bacteria by the i.p. route and 

suggested it probable that they may originate from the serum by transudation, 

although did not rule out the possibility of their local synthesis. Lobb (1987), also 

working with channel catfish, demonstrated that skin mucus antibodies can be elicited 

to antigens applied externally (bath immersion) and in the absence of a serum 

antibody response. Lobb's results suggests that mucus antibodies may have originated 

from local synthesis within the skin epithelium or from a common mucosal immune 

system similar to that described for mammals (Mestecky, 1987). Conversely, Tatner 

and Horne (1986) were unable to detect a mucosal antibody response in rainbow trout 

to a Vibrio bath vaccine despite significant serum antibody titres. Comparative studies 

on the molecular structures of immunoglobulins from skin mucus and serum have 

revealed differences which might suggest distinct origins and/or functions. Lobb and 

Clem (1981b), studying immunoglobulins in the sheepshead Archosargus 

probatocephalus, found both tetrameric and dimeric Ig in the skin mucus, but only 

tetrameric lg in the serum. The dimeric lg from the mucus was resolved by Lobb and 

Clem (1981a) into two different molecular weight populations, the higher of which 

contained a 90kDa component similar in size to the secretory piece of mammalian 
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secretory IgA which is also dimeric (Roitt et al., 1985). These structural differences 

between serum and mucosal lg molecules possibly reflect functional heterogeneity, as 

found amongst different Ig classes in mammals (Roitt et al., 1985). Further evidence 

for local immunoglobulin synthesis comes from kinetic experiments using radiolabelled 

Ig (Lobb and Clem, 1981b). 

Studies on the cells present in teleost skin mucus have also indicated the 

possibility of local Ig synthesis. Lymphocytes were detected in the skin epidermis and 

mucus of channel catfish (Lobb, 1987; Ourth, 1980) and diffuse collections of 

lymphoid cells were observed in the skin mucus of catfish, T.australis (Di Conza and 

Halliday, 1971). An increase in epidermallymphocytes was recorded in brown trout, 

Salmo trutta, infected with the fungus Saprolegnia sp. (Pickering and Richards, 1980). 

Further evidence for localised lg synthesis has come from immunolabelling techniques 

which have enabled the identification of immunoglobulin- containing cells in the 

epidermis of rainbow trout (St. Loius-Cormier et al., 1984; Peleteiro and Richards, 

1988). However, the specific location of lg associated with these cells was not 

determined. Specific antibodies were detected in rainbow trout epithelial cells by 

Peleteiro and Richards (1985) which were directed to a Vibrio anguillarum vaccine 

delivered by direct immersion. 

A possible gut origin for cutaneous mucus antibodies has been proposed in the 

case of carp by Rombout et al. ( 1989b) who detected antigen- specific antibodies in 

the skin mucus following oral or anal administration of V.anguillarum. Evidence for 

antibody production in the gut of carp comes from immunocytochemical studies 

revealing an internal epithelium rich in lymphoid cells with surface bound 

immunoglobulin, macrophages and granulocytes (Rombout et al., 1989a). Local 

production of specific antibodies in the gut has also been shown for rainbow trout 
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(Davidson, 1991). 

Whether the presence of antibodies in fish epidermis has any direct action on 

parasites inhabiting this organ is not clear. 

Antieen presentation 

Studies referred to above indicate that key components of the specific defense 

mechanisms are present in fish epithelium, together with evidence for local production 

of antibody. Mechanisms may therefore function locally to allow the immune system 

to be presented with and recognise antigens associated with an epithelial-dwelling 

pathogen. In the mammalian epidermis, antigen "trapping" and presentation is known 

to be undertaken by Langerhans cells (Shelley and Juhlin, 1976; Braathen and 

Thorsby, 1980), however similar cells have rarely been reported from fish epidermis 

(Mittal et al., 1980) and antigen uptake within teleost skin is considered to be poor 

(Hockney, 1985). Peleteiro and Richards (1990), being unable to demonstrate 

Langerhans cells in rainbow trout epidermis, considered that epidermal macrophages 

might instead play the role of antigen trapping. It is evident that further studies on 

the epidermal cell types and functions are necessary in order to understand their role 

in local acquired immunity. Consideration must also be given to a possible role by 

the gills in specific immune mechanisms, given that C.irritans is known to parasitize 

gill epithelia. The gills are considered to be an important organ of antigen uptake, 

especially particulate antigens (Smith, 1982) and are known to contain phagocytic 

cells, including macrophages (Chilomonczyk and Monge, 1980; Ellis, 1989). Both gill 

epithelial cells and mononuclear phagocytes have shown to be involved in uptake of 

bacterin antigens in salmonids (Zapata et al., 1987). 
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CHAPTER THREE 

BIOLOGY OF CRYPTOCARYON IRRITANS 

INTRODUCTION 

Previous studies concerning the biology of C.irritam, with regards to its life 

cycle and transmission, have been limited to work by Nigrelli and Ruggieri (1966) and 

Colorni (1985). The present study sets out to establish the laboratory procedures for 

the maintenance of C.irritam as a basis for biological investigations. Experimental 

conditions were maintained within the temperature range 23-27°C, chosen to lie within 

the optimum range of both the parasite (Cheung et al., 1979; Colorni, 1987) and the 

coral reef fish (De Graaf, 1973; Nybakken, 1988) which provided the sources of 

C.irritans isolates. Photoperiod was also standardised following preliminary 

investigations, for maintenance of free-living stages. This entailed a controlled 

photoperiod of 12 hours light and 12 hours dark (12L:12D) using artificial fluorescent 

lighting in order to simulate the day-length conditions in equatorial regions where the 

coral reef habitats are found (Nybakken, 1988). 

Studies here on the biology of C.irritans have necessitated selection of a 

suitable laboratory host fish for routine parasite passage and experimental infections. 

The thick-lipped mullet, Clzelon labrosus (Risso, 1826), a species shown to be 

susceptible to infection with C.irritans during preliminary experiments, was chosen on 

the following grounds. Wild mullet were locally available throughout most of the year, 

small specimens ( < 10cm TL) being caught by seine net (see methods). Mature 

mullet, suitable for immunisation, were available from the University aquarium. 
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Mullet taken from British waters are outside the known geographical range of 

C.irritans and therefore naive to the parasite. They are relatively hardy and non­

aggressive, and adapt well to laboratory conditions. Studies with this host would also 

build upon the extensive knowledge concerning the biology of grey mullet and its 

interactions with eucaryotic parasites, already undertaken at Plymouth (Pulsford and 

Matthews, 1982; Ralphs and Matthews, 1986; Mughal and Manning, 1986; Wood and 

Matthews, 1987; Wood, 1990). 

The aims of the present study are to gain a further understanding of the life 

cycle and general biology of C.irritans under different controlled conditions. In 

particular, to provide information on the behaviour of C.irritans which might indicate 

strategies for its transmjssion in the wild state, and to investigate for morphometric 

or behavioral differences between isolates, possibly indicative of strains. Fundamental 

to these studies is the need to develop optimal laboratory conditions for the 

maintenance of C.irritans for routine passage and the supply of parasite material for 

experimental applications. 
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MATERIALS AND METHODS 

1. FISH 

Fourteen species of fish were used in the present investigation, including 8 

tropical marine species which served as donors of C.irritans (listed in results). Mullet 

and other selected species were used for the laboratory maintenance of the parasite 

and for experimental procedures. 

1.1 Sources and collection 

Marine tropicals infected with C.irritans were bought from aquatic traders 

nationwide. Thick lipped grey mullet, Chelon labrosus (Risso, 1826), were seine 

netted at low tide from St. John's lake, a creek of the River Tamar estuary, Cornwall. 

Collections were mostly made between April and October when groups 0+ and 1 + 

fish were available (Table 1). Mullet, which are euryhaline, were acclimated from 

native saline conditions (S.G. 1.004) to full seawater (SW, S.G. 1.024) over a period 

of two weeks, or if intended for stock, were immediately transferred to 25% seawater. 

Large C.labrosus ( > 15cm TL), used for immunisation procedures, were selected from 

stock which had been held upwards of 12 months in the University aquarium. The 

host of choice for maintenance of C.irritans was C.labrosus of 0+ and 1 + age groups. 

Other hosts comprised: thin lipped mullet, Liza ramada (Risso ), collected in Cornwall 

at Landulph and the River Fowey at Lostwithiel; common gobies, Pomatoschistus 

microps (Kroyer), from St. John's lake; bream, Sparus aurata (L.); tilapia, Oreochromis 

mossambicus (Peters); molly fish, Poecilia latipinna (Lesuer, 1821), an ovoviviparous 

species, purchased from the aquarium retail outlets. The latter were acclimated to 

full strength seawater and a breeding population established. 
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1.2 Maintenance 

All fish used for parasite maintenance and experimentation were held in a 

small temperature controlled room maintained at 25±2°C. Reserve stocks of mullet, 

held at ambient RT, were maintained in 25% seawater as a precaution against 

accidental infection with C.irritans (Colorni, 1985). Further stocks were held at l2°C 

in full seawater within the main University aquarium. 

Both natural and synthetic seawater were used at some stage of the work, the 

latter only in the case of emergency and for parasite culture and the maintenance of 

coral reef fish. Natural seawater is supplied to the University on a regular basis, 

being transported from the Plymouth Marine Laboratory by tanker and stored in 

subterranean tanks. This water originated from the Plymouth Sound deep channel, 

and is pumped to shore only when the salinity lies within a SG of 1.023 to 1.024 (at 

25°C) and a pH of around 7.9. For some parasite handling procedures, filter sterilised 

seawater (FS-SW) was prepared by passing natural seawater through a 0.2J.£m 

membrane (Sartorius Ltd.) fitted to a 10ml syringe. Synthetic SW, prepared from 

commercially formulated dry salt mixes (Tropic Marin, Germany or Waterlife 

Research, U.K.), was maintained at S.G. 1.023 to 1.025, nitrite < 0.1mg N/litre. 

Water quality was maintained with the aid of one of the following filtration 

systems. External canister filters (Eheim Ltd., Germany) containing polymer wool 

(Interpet Ltd., U.K.) were used for 30-50 litre stock aquaria. Internal powerhead 

sponge filters (Eheim, Ltd., Germany) were employed in small aquaria where high 

water quality was required (e.g. for coral fishes). Water quality in the 4-10 litre 

experimental aquaria, was maintained with the aid of undergravel filters or with air 

powered internal sponge filters. Filtration was avoided for infection and challenge 

experiments; water being replaced every 1 or 2 days. All aquaria were aerated. 

48 



Water quality was regularly monitored. A falling pH, attributed to organic build up, 

was readjusted by stepwise buffering with 6:1 (v/v) sodium bicarbonate and sodium 

carbonate (De Graaf, 1973). Partial buffering was achieved by the use of a 

commercially prepared calcium and magnesium based substrate ("Calcium Plus", 

Underworld products, England) which usually maintained the pH above 8.0. High 

nitrite levels, occasionally exceeding 1.0 mg N/litre, were a particular problem in 

recently established synthetic SW systems and precluded the introduction of fish until 

levels bad faJlen to < 0.1mg N/litre, which usually required a delay of 2-4 weeks. 

Synthetic SW was used for the maintenance of coral reef fishes which are known to 

be intolerant of organic and inorganic pollutants, unfortunately present in natural 

seawater collected within British coastal regions. 

Wild caught mullet and gobies were given a prophylactic 14 day bath of broad 

spectrum bactericide (Technical Aquatic Products Ltd., U.K.) immediately following 

capture and fed pelleted food ("Promin", U .K.) pre-coated with oxolinic acid antibiotic 

(3mg/Kg feed; Sigma, product 0-0877). 

Feeds, usually given twice daily, comprised pelleted food ("Promin") 

occasionally supplemented with mixed flake (Aquarian, U.K.), spirulina pellets 

(Hikari, Japan) and macerated coley fillets enriched with a vitamin mix. Certain 

species of coral reef fishes required specialised diets including brine shrimp nauplii, 

and chopped mussels (Mytilus). 

1.3 Anaesthesia 

Fish were anaesthetised using either benzocaine ( ethyl-p-arnino benzoate) or 

MS222 (methane-tricaine sulphonate), both supplied by Sigma Ltd. Benzocaine was 

generally preferred to MS222, being less excitant to fish and with fewer long term 
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cardiac effects (Ross and Geddies, 1979). Benzocaine, prepared as a stock solution, 

100mg/ml in absolute methanol, and stored at l0°C, was added drop wise to the water 

to give the required level of anaesthesia. For small mullet (~ lOg weight), 25 

drops/litre was effective. Fish were recovered by transferring to clean, well-aerated 

seawater. Recovery from deep anaesthesia was sometimes assisted by passing a 

stream of seawater under the gill arches. Recovery in the molly fish (P.latipinna) was 

monitored until resumption of swimming activity, as this species had a tendency to 

relapse even after recommencement of normal opercular movement. 

2. CRYPTOCARYON IRRITANS 

2.1 Source 

Isolates of C.irritans were obtained from infected marine tropical fishes 

purchased from various aquatic traders throughout the country. Infected fish known 

to have received recent chemotherapy were avoided. One isolate, originally collected 

from the sparid, Diplodus noel (Cuvier and Yalenciennes), was received from Israel, 

viable cysts being sent air mail at ambient temperatures. Host fish species which 

provided the C.ifTitans isolates (listed in the results) were identified from reference 

sources (Carcasson, 1977; Smith, 1977; Burgess et al., 1988). 

2.2 Laboratory maintenance 

2.2.1 Isolation and establishment 

Newly purchased infected marine fishes were held in 10 litre aquaria for 5 days 

during which period trophonts would have exited from the fish epidermis to encyst. 

Donor fish were then removed and the aquarium restocked with 2 or more mullet, 
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naive to C.irritans. The number of mullet added was dependent upon the estimated 

level of infection in the source fish, being increased in cases of heavy infections. 

Mullet were held in the infection aquaria until the white spots of C.irritans were 

visible and then transferred to other aquaria for further passage. Replacement mullet 

were added every 2 to 3 days until infection levels subsided. 

2.2.2 Passa~:e 

Passage of C.irritans between mullet was performed by either co-habitation of 

infected and uninfected fish or by exposure to controlled numbers of theronts. In the 

former method, recipient mullet, naive to C.britans, were introduced into the 

aquarium at various intervals, the numbers of fish being gauged to the levels of 

theront release, with the aim of establishing sublethal infections. The controlled 

method provided a better means of quantifying standardised infection procedures 

using a known number of theronts. Infected fish were removed as required for 

trophont harvesting, as described below. 

2.3 Collection of trophonts 

As mullet were observed to feed on trophonts and cysts, it was necessary to 

design a container which would separate the free-living parasites from the host fish 

upon trophont release. The "trophont harvester", based on a 17-19cm diameter 

crystallising bowl, is shown diagrammatically in Fig. 3. The bowl is separated into 2 

chambers, one large and one small, by a removable plastic mesh which allows 

parasites but not fish to pass through. The dish is raised to a 20-25° angle, so that the 

larger chamber is uppermost. One to 2 infected mullet ( < 80mm TL) were held in 

the upper chamber until trophont release. Upon exit from the host, the trophonts 
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sediment to the base of the dish and move through or under the mesh to the lower 

chamber where they accumulate along the lower rim. Depending on their subsequent 

use, trophonts were either collected by pipette before encystment, or allowed to encyst 

before being scraped off with the edge of a glass coverslip. 

2.4 Trophont encystment in culture plates 

Trophonts collected from the trophont harvester were pipetted into solid 4ml 

watchglasses and observed under a stereomicroscope. Host epidermal tissue, scales, 

and other particulate matter were removed by pipette and the trophonts washed in 

several changes of FS-SW at 25°C. Washed trophonts were allowed to encyst in wells 

of a 24 well polystyrene tissue culture plate (Coming Ltd., U.S.A.) up to a density of 

about 400/well. Wells were filled with 2ml FS-SW. 

2.5 Enumeration of parasite stages 

Free-living trophonts were enumerated as they were collected by pipette, with 

the aid of a stereomicroscope. Enumeration of cysts was less laborious due to their 

immobility. Cysts were counted in the trophont harvesters aided by a transparent 

squared template affixed under the dish. For theronts, estimates of total numbers 

were made as follows. Theronts released from cysts held in culture dishes were 

transferred by pipette into a small glass container and the volume adjusted to a known 

value. Following gentle agitation to evenly disperse the theronts, two 50}.£1 samples 

were taken and each spotted onto a Sedgewick-Rafter counting chamber. Theronts 

were immobilised by killing with a drop of formalin. Total counts were made for each 

50}.£1 sample, and the combined counts used to estimate the number of theronts in the 

original sample. Repeat samples were estimated in cases where theront counts in the 
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two 50JJ1 samples differed by twofold or greater. 

2.6 Morphometric analyses 

Theronts and cysts were measured in a Sedgewick-Rafter chamber; theronts 

were killed-immobilised with 1-2 drops of formalin. Morphometric studies were made 

using a compound microscope equipped with an ocular micrometer. 

2.7 Incubation of reproductive cysts 

Parasites, at either the trophont or cyst stage, were transferred to culture 

plates, covered with a lid and placed in a humidification chamber at 23-27°C. FS-SW 

was generally replaced 1 to 2 times/day. Culture plates containing the adhered cysts 

were conveniently emptied by inversion; this facilitated thorough rinsing thereby 

minimising microbial contamination. Later in the study, cysts were held under a 

photoperiod of 12L:12D. 

2.8 Control of contaminating organisms during parasite incubation 

In situations where trophonts or cysts could not easily be separated from host 

material, or where the water had been fouled by dead fish, bacterial contaminants 

were controlled by a commercial preparation of penicillin (10,000 IU /rnl) and 

streptomycin (10,000JJI/ml) ( = "pen-strep", Gibco Ltd.) diluted to 1% in FS-SW. 

Free-living ciliates (mostly hypotrichs), flatworms, and less commonly, nematodes, 

were occasionally observed in the C.irritans cultures. These were removed by pipette; 

flatworms and some ciliates were selectively destroyed by brief ( < 1 min) immersion 

in tap water without harmful effects to C.irritans cyst development. 
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2.9 Quantification of theront activity 

Swimming activity of emerged theronts was quantified visually on a five point 

scale (Table 2). This subjective scoring, based on numerous observations, was used 

as a possible indicator of theront infectivity, and also as a basis for assessing the 

effects of chemotherapeutants. Somatic activity was recorded with the aid of a 

microscope using transmitted light. Cilia movement was observed on an inverted 

stereomicroscope at 200 X magnification. 

2.10 Measurement of photoresponses of theronts 

A Sedgewick-Rafter chamber, 50mm X 20mm, was positioned on the stage of 

a stereomicroscope placed within light proof conditions, allowing access to the 

eyepieces. A system of lighting was arranged using a cool fibre optic source which 

illuminated a restricted area of approximately one quarter at one end of the chamber. 

A seawater suspension of theronts were pipetted onto the centre of the chamber and 

exposed to the localised light source. After a known period of exposure, 4-5 drops of 

formalin were pipetted along the centre line of the chamber to prevent the theronts 

from crossing from one side to the other. A further 2-3 drops of formalin were gently 

added to each side of the chamber in order to kill all theronts without altering their 

spatial positions. Theront counts were made for each side of the chamber with the 

aid of normal substage illumination. 

2.11 Cloning from an isolate 

A mullet, naive to C.irritans, was exposed to progeny obtained from a single 

cyst of isolate Cl-CR. Trophonts released from this fish were harvested for further 

passages. The clone ("CI-CR clone") was maintained over 8 passages after which 
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Table 2 

A five point scale for theront activity. 

Scale Activity Criteria 

+++ Normal Based on observations of recently ( < 1 hour) excysted 
theronts. Fast speed, in mid-water. 

++ Moderate Motile in mid-water, but speed is markedly less than 

"+++". 

+ Low Motile, but mostly on the substrate, with infrequent mid-
water movement. 

0 None Remain on substrate. No significant somatic movement, 
but cilial movement observed. 

OD Dead As "0" but no cilia! movement ( = NCM). Presumed dead. 
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viability was assumed to be lost. 

2.12 Control of photoperiod 

An artificial light/dark cycle was imposed on the free living stages of C.irritans 

and during host infection with the parasite during certain maintenance procedures. 

These conditions were established by construction of a light proof chamber fitted with 

a timer controlled 30 watt fluorescent light (Thorn, "warmlight") emitting ::::1,700 lux, 

set horizontally 40cm above the parasite container. This facilitated manipulation of 

the number of hours of light and dark (L:D) per 24 hour period. 

3. PHOTOMICROSCOPY 

Motile stages of C.irritans were first immobilised by killing with formalin. 

Photographs were taken using a V ANOX-T microscope (Olympus, Japan). For colour 

work, the resolution of internal structures was enhanced using a differential 

interference contrast attachment which gave a false colour image. Films used were 

Fujichrome 100 ASA colour (reciprocity number =2) and TMAX 100 ASA black and 

white (Kodak). 
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EXPERIMENTS AND RESULTS 

1. CRYPTOCARYON IRRITANS 

1.1 Isolates 

During the course of the study, isolates from 9 different sources were acquired, 

8 of these being successfully passaged through experimental fish (Table 3). Each 

isolate was designated a 1 to 3 letter code, based on the Iatin name of the donor 

species. 

1.1.1 Host specificity of isolates 

Infections between different species of fish were recorded throughout the study 

to provide information concerning the host specificity of C.irritans. Nine isolates and 

a clone of CI-CR were exposed to a total of 6 different fish species, from 5 taxonomic 

families. Initial passages from the donor fishes were performed using thick lipped 

mullet as recipient hosts. The routes of transmission, recorded here between 

combinations of the 9 donor fishes (7 coral reef species and one sparid) and 6 

experimental fish species, are shown in Fig. 4. The results show that for all 

combinations of passage attempted between host species, all but one resulted in 

successful transmission. The exception, an isolate from the chaetodontid, Chelmon 

rostratus, (designated CI-ROS), did not passage to mullet from the donor fish. The 

CI-CR clone was successfully passaged from thick lipped mullet to thin lipped mullet, 

mollies, and gobies, thereby transcending three taxonomic families of hosts. This 

investigation provided no evidence for host specificity by C.irritans. 
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Table 3 

Marine species of fish from which C.irritans was isolated. 

Isolate Host 
code Passage 

Species Family Common name into 
mullet? 

CI-CE Ce111ropyge eibli ' Pomacanthidae Pygmy angelfish yes 

CI-FL Forcipiger Chaetodontidae Long-nosed yes 
longirostris butterflyfish 
(Broussonet) 1782 

CI-CR Clrelmo11 rostrallls Chaetodontidae Copperband yes 
(L.) 1758 butterflyfish 

CI-HT Holacantlrus Pomacanthidae Rock beauty yes 
tricolor ' 

CI-ROS Clrelmon rostra/us Chaetodontidae Copperband no 
(L.) 1758 butterflyfish 

CI-DN Diplodus noel Sparidae yes 
(Cuvier and -
Valenciennes) 

CI-AE Amplripri01r Amphiprionidae Black-faced yes 
eplrippiwn ( Bloch) clown fish 
1790 

CI-GS Grammistes Grammistidae Six striped grouper yes 
sexlinearus 
Thunberg, 1792 

CI-0 Omegoplrora sp.2 Tetrodontidae Dog·faced yes 
pufferfish 

1 Authority not known. 

2 Presumptive identification, based on genus description by Burgess et al. (1988). 

60 



Figure 4 

•Pa,Ss~gt:' of €.irritans .·isolates .between ,different .fish ,species. 

~'=' isoiate, passaged in !one, direction. 

~= ·isolate: passaged in 'both directions; 

-X-{>= :isolate not successfully'passaged. 

I' ' '· ,, 
• .., ~·I 

,, 
I 

·f. 

6f 

'"• 

·-· ..... ~ 

: J.,, I 

i 
I 
I 

I 
'' 
I 

:! 

. I 

I 
'' 



POMACANTHIDAE (CE, HT ) 

CHAETODONTIDAE (FL, CR ) 

SPARIDAE (DN) 

AMPHIPRIONIDAE (AE) 

GRAMMISTIDAE (GS ) 

TETRODONTIDAE (0) 

I CHAETODONTIDAE (ROS ) 

Chel on labr osus HT 
CE 

MUGILIDAE FL 

POECILIDAE 

Pomatoschistus microps 

GOBIIDAE 

Liza ramada 

MUGILIDAE 

Sparus aurata 

SPARIDAE 

CICHLIDAE 



1.1.2 Distribution and effect of trophonts within host mullet epithelium 

The parasitic trophonts were observed to infect the epithelium of the skin and 

gills, but rarely the eye (Fig. 5). Although no pathological studies were undertaken, 

it was noted that high levels of infection resulted in severe skin haemorrhaging, host 

death usually occurring within 4 days after exposure. 

1.1.3 Survival of laboratocy isolates 

Isolates were maintained through successive transmissions for a maximum of 

48 weeks. Due to the varied duration of the cyst stage, development being 

asynchronous even for the clone, the true number of passages for each isolate could 

not be determined. Nevertheless, an estimate was made, based according to the 

average time for each life cycle. Maintenance times and approximate number of 

passages are shown for all isolates in Table 4. The results show a wide range in 

maintenance times for the various isolates, between 0 and 48 weeks ( ~ 0 - 34 

passages). Loss of an isolate was not here associated with any particular period or 

season of the year. 

1.1.4 Senescence 

A gradual loss of viability and infectivity over a few passages of isolates CI-CE 

and CI-GS was found to precede the loss of the isolate (termed isolate "crash"). The 

sequence of developmental failures, between the stages of free-living trophont and 

theront, was recorded for CI-CE. Observations were based on a sample of 230 

trophonts, harvested from a primary infection of mullet, and subsequently monitored 

in tissue culture plates (Fig. 6). Of these, only 25.7% underwent normal encystment, 

of which 32 cysts ( = 14% of trophonts studied) were monitored for theront 
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Figure 5 

Distribution and effect of C.irritans within mullet epithelium. 

A: Heavy infection at 3 days. 
Note distribution of trophonts within skin epithelium of body and fins. 

B: Infection at 3.5 days. 
Some trophonts have exited from the fish. Note slight body surface 
haemorrhaging. 

C: Infection at 4 days. 
All trophonts have exited from the fish. Note extensive body surface 
haemorrhaging and white fletches on fins. 

Scale bar = lcm. 
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Table 4 

Duration of C.irritans isolates. 

Isolate Duration Approx. 
designation1 maintained number of 

(weeks) passages2 

CI-CE 31 21 

CI-FL 11 7 

CI-CR 25 18 

CI-HT 31 21 

CI-ROS3 <1 0 

CI-DN 5 3 

CI-AE 3 1 

CI-GS 48 34 

CI-0 12 8 

1 Details of isolates given in Table 3. 

2 
Estimate for average time of life cycle being 10 days, comprising 3 days as the parasitic trophont and 
7 days average time between encystment and 50% excystment. 

3 
Live, motile C.initans trophonts confirmed by light microscopy, but unable to passage into mullet. 
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Figure 6 

Senescence of C.irritans following primary infection of mullet. 

Based on 230 trophonts (CI-CE). 

Height of blocks proportional to numbers of parasites. 
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production. The percentage encystment is low as compared with 70% to 93% 

encystment in "healthy" isolates (data from Table 9). Failure to encyst was associated 

with an inability of trophonts to round up or to adhere to the substratum. Of those 

cysts monitored for development, only 15.6% (5/32) released active theronts, 

equivalent to 4% of the sampled 230 trophonts (after adjustment for those cysts not 

studied). In the 5 instances of excystment, the duration of the cyst stage was between 

13 and 15 days; this was longer than the peak time for excystment under normal 

conditions (5-7 days). Theront infectivity was not investigated. 

2. QUANTITATIVE STUDIES ON THE LIFE CYCLE STAGES 

2.1 Morphometric 

Morphometric analyses (summarised in Table 5), made on the following stages: 

theront; cyst; and parasitic trophont, in situ development, are considered separately 

below. 

2.1.1 Theront 

Preliminary observations on size differences between theronts from a single cyst 

prompted an investigation for distinct populations. Theronts were collected on 

emergence from a random sample of 14 cysts (isolate CI-HT) between days 7 and 16 

post-encystment. Measurements of length and width were recorded from random 

samples of 10 theronts from each cyst. Size distribution of the 140 theronts is shown 

in Fig. 7. The distribution appears unimodal, as based on frequency per 5J..tm length 

interval, with no evidence for more than one size population. Theronts varied from 

40-69J..tm in length (mean = 55.9J..tm) and 22-44J..tm in width (mean = 32.3J..tm). 
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Table 5 

Summary of morphometric and other measurement data for C.irritans, and comparison 
with data from other sources. 

Authority 

Parameters 
Present Brown Sikama Nigrelli & Colomi 

study {1951) (1961) Ruggieri {19&5) 
(1966) 

Duration of 2.9. 4.7 3-7 
trophont on (li = 3.5) - - - (peak= 4-5) 
host (days) (24-26 °C) (24-27 °C) 

Duration of 3.5 - 35 6-9 3-28 
cyst (days) (peak = 5-7) - - (peak = 8) (peak = 4-8) 

(24-26 °C) (22-25 °C) (24-27 °C) 

Number of 
theronts per 119 - 292 - up to 100 or more up to 200 or not greater than 

cyst <• = 198) more 200 

Theront 
longevity < 24 - - < 24 generally ~ 30-36; 
(hours) (24-26°C) (approx.) up to 48 

Theront 
infectivity < 18 - - - -
(hours) (24-26°C) 

Theronl size 55.9 X 32.3 25.57 
(X: length X (r: 4().{;9 X 40-56 35X65 35 X 56.5 (r: 50-70 X 
width, 11m) 2244) (length) 20-30) 

326 X 306 r: 95 X 170 to 214 X 241 
Cyst size (r: 154 X 160 to - 200-300 diam; 252 X 441 (r: 160 X 150 to 
(i: jtm) 369 X 406) (r: 90-400 diam) 310 X 370) 

1 353 X 205 (r:70-400 (r: 66 X 34 to 360 (r: 48 X 27 to 
Trophont size ( r: 129-332 X length) X 452) 450 X 350) -

(i: I'm) 203452) 

r = range 

1 size at 72 hours post-infection, 24-26°C. 
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Figure 7 

Frequency distribution of theront length, released from a population of cysts (CI-HT). 

Mean theront length = 55.91-'m (n = 140). 
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2.1.2 Trophont ~:rowth within host epidermis 

Eight mullet (3-6g) were each exposed to a primary infection of 2,000 theronts 

(CI-GS) and killed at either 2, 24, 48, or 72 h post-exposure. The ventral, anal, and 

caudal fins were excised for measurement of the live trophonts in situ (Fig. 8). 

Trophont body length and mid-region width, excluding the cilia, was recorded from 

14 to 39 randomly sampled trophonts for each of the 4 time periods post-exposure 

(Fig. 9). A total of 118 trophonts were measured. Over the observation period, which 

terminated 6 to 17 h before anticipated time of trophont release, both the mean 

length and mean width of the trophonts showed approximate doubling at each 24 hour 

period. The mean length:width (L:W) ratio remained fairly constant over the four 

sample times, ranging between l.OO(L):0.63(W) at 72 h and l.OO(L):0.70(W) at 48 h. 

2.1.3 cm 
A total of 215 cysts were measured from three isolates, CI-HT, CI-AE, and CI­

GS. Cysts were derived from trophonts following normal development in a primary 

infection of mullet. Random samples of cysts, collected for each isolate, were 

measured across the long axis ( = maximum diameter between the outer cyst walls) 

and cross axis ( = diameter across the mid-line bisecting the long axis). Cyst size 

ranges were recorded within individual isolates, between isolates, and for the same 

isolate following development in different mullet hosts. Measurements of 125 cysts 

from isolate CI-GS was recorded first as a basis for comparative studies with the other 

isolates. Results for CI-GS gave a size range of 160!-Lm to 406!-Lm (long axis) with 

mean cyst size of 3251-Lm (long axis) by 3051-Lm (cross axis), equivalent to a long: cross 

axis ratio of 1.00:0.94. 

A comparison of cyst sizes from different isolates and from different host 
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Figure 8 

Growth of C.irritans trophont within fin epithelium of host mullet at four different 
times post-infection. 

Times, post-infection: A: 2 h (arrowed); B: 24 h; C: 48 h; D: 72 h. 

Scale bar = S014m. 
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Figure 9 

Growth of C.irritans trophont within fin epithelium of host mullet. 

h = hours post-infection. 

e = mean size. 

+ = size range. 
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specimens, based on long axis only, is shown in Table 6. 

Mean cyst size was significantly different between CI-GS isolate (from fish #3) 

and CI-HT (fish #1) (p =0.001) and between CI-GS (fish #3) and CI-AE (fish #2) (p 

= 0.001). Mean cyst size, however, also differed significantly (p= 0.001) between 

sample populations of cysts derived from different fish infected with the same isolate 

(CI-GS); for example, fish #3 versus fish #5, and fish #4 versus fish #5. Cyst 

morphometric data from fish # 1,2,3,4 were compared to determine any association 

between infection intensity and cyst size, which might be suggestive of a "crowding 

effect" inhibiting trophont growth. The results show no significant correlation between 

mean cyst size and the number of cysts harvested (correlation coefficient, r = -0.26; 

n=4), or, by standardising for fish weight, with the number of cysts harvested per gram 

of donor fish (r = -0.27; n=4). Maximum cyst wall thickness, recorded from a CI-AE 

cyst, measured 32J.Lm across the widest point of the translucent zone. 

3. PHOTORESPONSES 

Photoperiod responses were recorded for both trophont release from the host 

and for excystment; observations were made following manipulations of the light cycle. 

Any effects of light and dark on encystment and on the theront stage were also 

investigated. 

3.1 Periodicity of troohont release from the host 

Preliminary observations that the release of trophonts occurred predominantly 

at night prompted further studies. The influence of photoperiod on trophont release 

from mullet was investigated as follows. Eight mullet, naive to C.irritans, were 

acclimated for ';::!7 days to 12L:12D, the light phase commencing at 9pm. Each fish 
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Table 6 

Comparison of cyst sizes from three different isolates of C.irritans determined from 
primary infection in mullet. 

Fish Cysts 

Isolate Identity Weight Total Number Mean size Size range Size 
number (g) released measured (lim) {llm) SDn-1 

CI-HT 1 3.98 276 20 263.4 209-302 24.62 

CI-AE 2 3.84 nd 1 20 282.8 228-345 31.38 

3 3.42 514 125 325.9 160-406 50.02 

CI-GS 4 3.21 684 25 238.1 201-315 28.92 

5 3.38 172 25 289.2 239-353 32.14 

1 Not done 
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was then exposed to 5,000 theronts (CI-GS) for 2 h during the dark phase after which 

the fish were transferred to separate trophont harvesters. Three of the 8 fish were 

maintained under 12L:12D; the remaining 5 fish were held under identical conditions 

except for an extended (36 hours) light period between 66-101 hours post-exposure 

to encompass the usual period for trophont release. At 12 h intervals, representing 

the end of each light or dark phase, the numbers of released parasites were recorded. 

At each inspection, the fish were transferred to a clean harvester under similar 

conditions. All fish were monitored until 137 h post-exposure. 

Patterns of trophont release for the 3 fish held under the repeating 12L:12D 

photoperiod and for the 5 fish under the extended light period are compared in Figs. 

10 and 11. In the "normal" photoperiod (Fig. 10) all trophonts were released during 

darkness, and most (98%) between 78 to 89 h post-exposure. The remaining 2% of 

trophonts were released over the following dark phase at 102 to 113 h post-exposure, 

but no releases occurred during the intervening light period. Thus, release appeared 

to be determined by both the duration of infection and by the photoperiodicity. When 

the photoperiod was adjusted to give continual light (from 66 to 101 h post-exposure) 

during the critical period of trophont release (Fig. 11) the majority of trophonts (99%) 

released at the same period post-exposure (78 to 89 h) but in this case in the light. 

No trophonts were released over the following 12 h of light (90 to 101 h post­

exposure), however 15 trophonts, all from the same fish, were released after 

resumption of darkness between 102 and 113 h post-exposure, suggesting some 

influence of photoperiodicity. Observations on trophont release following routine 

passage by co-habitation occasionally revealed a small proportion of trophonts 

( < 10%) exiting the host fish during the light phase of a normal photoperiod 

(12L:12D). 
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Figures 10 and 11 

Periodicity of C.irritans trophont release from mullet epithelium under different 
photoperiods. 

Figure 10 

Normal photoperiod (12L:12D). 

n= 3 fish. 

Figure 11 

Normal photoperiod with extended light phase between 66-101 hours post-infection. 

n= 5 fish. 

For both figures: individual fish represented by different bar shadings. 
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3.2 Effects of light or dark on encystment 

In view of the positive influence of darkness on trophont release, investigations 

were undertaken to determine whether photoperiod also influenced the timing of 

encystment. A total of 179 trophonts (CI-HT) were harvested within 2 h of release 

from 2 infected mullet and distributed between two tissue culture plates, with 10-20 

trophonts/ well. Both plates were placed in a 25°C light incubator ("Fi-Totron 600", 

Fisons Ltd.), one held within a light-proof container, the other exposed to a light 

intensity of 4400 lux. After 7 h, the number of encystments were counted. The results 

indicated 100% encystment, under conditions of both continual light (n = 101) and 

continual dark (n = 78). Cyst viability in both groups was investigated by exposing 

'(VI_"'"' ~ """9 
the cysts to 12L:12D and monitored until excystment. Theront release was observed 

from both dark and light encysted parasites, each commencing at 5 days post-

encystment and occurring in the dark. 

3.3 Periodicity of theront emergence 

Emergence times of theronts were difficult to determine accurately in view of 

their nocturnal release. Approximately 160 CI-GS cysts, which had encysted the 

previous day, were distributed amongst wells of a cell culture plate, ~ 20 cysts/ well, 

and held for 9 days under a 12L:12D photoperiod. The seawater was changed 

regularly during monitoring. Water temperature was monitored in control wells 

containing seawater only. Cysts, day 10 post-encystment, were monitored at various 

intervals over a 66 h period, and emerged theronts at each interval were removed, 

pooled, and their numbers estimated. The pattern of theront emergence over 66 h 

(Fig. 12) indicates a strong association with periods of darkness. Emergence was 

observed as early as 3 h after onset of darkness, continuing on to the end of the dark 
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period. In total, over 14,000 theronts emerged during periods of darkness whereas 

none emerged during periods of light. Water temperature ranged between 24°C to 

26°C over the experimental period, with no fluctuations in response to light or dark. 

Emergence appeared to be unaffected by seawater changes or water temperature. 

3.4 Photoresponses of theronts 

Evidence for the responses of theronts to light was investigated. Seawater 

suspensions of between 112-343 theronts (CI-GS), < 1.5 h post-emergence, were 

added to a Sedgewick-Rafter chamber and exposed to a localised light source for a 

given time (see methods, section 2.10) after which any spatial congregations were 

noted. Initially, observations were made after 2 to 30 min, with the aid of brief 

periods of substage lighting. Subsequent investigations were standardised to a single 

15 min uninterrupted exposure to the localised light. 

Initial trial runs provided some evidence of a positive response to light. This 

result was further supported in the 4 standardised trials (Table 7) in which the light 

source was alternated between left and right. On all four occasions, the majority of 

theronts were recorded on the illuminated side of the chamber; overall, the positive 

phototactic response to light was statistically significant (Chi2
: p<O.OOl). Although a 

response to light was not observed in all theronts, the percentage responders was 

similar for each run, ranging between 57.1% to 68.9% on the light side (mean 

=65.2%). 

3.5 Effects of photoperiod on duration of theront activity 

Activity of theronts with time was investigated using two different photoperiod 

regimes. Theronts (CI-GS), < 1 h post-excystment, were pooled and distributed 
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Table 7 

Photoresponses of C.irritans theronts provided with light and dark options. 

Theronts 

Trial 
Numbers 

Percentage in 
Total Light Dark light Chi2

" 

1 343 236 107 68.9 48.50" 

2 114 78 36 68.4 15.47b 

3 112 64 48 57.1 2.29c 

4 213 132 81 62.0 12.21b 

I: 782 510 272 65.2 72.43b 

8 At 1 degree freedom. 

b Significant at P < 0.001. 

c Not significant. 
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amongst wells of two tissue culture plates, 8-17 theronts/ well in 2 ml FS-SW, and 

held at 25±1°C. One culture plate, containing 107 theronts, was held under a normal 

12L:12D regime, the other containing 119 theronts was held under continual light. 

Theront activity in both groups was monitored at various intervals up to 18 h. 

Fig. 13 compares activity in both groups. Under normal photoperiod 

(encompassing 10 h dark followed by 8 h light), the percentage of active theronts is 

initially 100%, falling only slightly to 90% at 6 h post-excystment. A significant 

reduction in activity is observed by 10 h with only 56% active, and by 18 h the 

majority of theronts were inactive. Immobility was observed as early as 3 h with some 

deaths at 10 h. Comparison of the two activity profiles suggests that loss of activity is 

more rapid under continuous light than under a normal photoperiod, these differences 

being particularly notable at 6 h and 10 h post-excystment. 

4. LONGEVITY AND VIABILITY OF FREE-LIVING STAGES 

The duration of the free-living trophont and cyst stages, and the effect of 

temperature on stage longevity were recorded. For the theront stage, viability with 

time, and the effect of antibiotics on activity with time, were investigated. 

4.1 Trophont 

The duration of the trophont stage was recorded as the time between host exit 

and encystment. Forty-eight trophonts (CI-CE), from a primary infection of mullet, 

were collected immediately after release and transferred to individual wells of a tissue 

culture plate. The numbers of trophonts encysting were recorded at timed intervals 

with the aid of an inverted microscope. The percentage encystment with time is 

shown in Fig. 14. Extrapolation from the graph indicates that the time for 50% of 
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Figure 13 

Effect of light and dark on theront activity. 

e-t)-Q= theronts exposed to darkness (0-10 h), then light (10-18 h) (n=107). 

(}0-0 = theronts exposed to continuous light (n = 119). 
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trophonts to encyst was 3.1 h after release from host. Forty six of the 48 trophonts 

( =96%) eventually encysted, the process being completed within 8 h post-release. 

The two remaining trophonts failed to encyst although both had rounded up by 23 h 

post-release. 

4.1.1 Effects of low temperature on trophont release and development 

The experiment was designed to determine whether trophont exit from host 

and subsequent development could occur at temperatures below the parasite's lower 

tolerance range of 19-20°C. Four mullet (3- 4.5g), naive to C.irritans, were each 

exposed 72 h previously to 2,000 theronts (CI-HT) at 25°C. After 72 h the infected 

fish were isolated in trophont harvesters, 2 being held at 25°C, the other 2 acclimated 

over 3-4 h to ambient laboratory temperatures (12-15°C). Trophonts were released 

from all four fish at between 76 and 88 h after exposure. Random samples of ea. 75 

motile trophonts collected from each of the two fish held at 25°C were divided into 

three groups of ea. 50: A,B, and C, comprising ea. 25 trophonts from each fish. 

Trophonts from the 2 fish held at 12-15°C were similarly separated into groups D,E, 

and F. The effects of temperature on further trophont development was investigated 

as follows. Each of the six groups of tropbonts (A to F) were distributed amongst 

wells of a tissue culture plate (10-20 trophonts/well) and held at either 4°C, 12-17°C, 

or 25°C (Table 8). The seawater was replaced every 1-2 days and the parasites 

observed at various intervals up to 12 days post-release. Any trophonts which had 

encysted were monitored for theront release up to day 21. The results (Table 8) show 

that all trophonts exhibited normal rounding up and loss of motility within 6 h of 

harvesting. Under optimal temperature conditions (group A) all trophonts encysted, 

of which 94% eventually produced theronts. Trophonts released at low temperature 
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Table 8 

Development of C.irritans trophonts at different temperatures. 

Temp. for Parasites 
parasite exit 

rrom mullet No. Number(%) 

Group 
Maintenance trophonts 

temp. sampled Rounded Attached Encysted Excysted 
up 

A 25°C 50 so (100%) so (100%) so (100%) 47 (94%) 

25°C B 12-l7°C 50 so (100%) 11 (22%) 11 (22%) 0 (0%) 

c 4°C 47 47 (100%) 0 (0%) 0 (0%) 0 (0%) 

D 25°C 50 so (100%) so (100%) so (100%) 31 (62%) 

12-l5°C E 12-l7°C 49 49 (100%) 4 (8%) 6 (12%) 0 (0%) 

F 4°C 50 50 (100%) 0 (0%) 0 (0%) 0 (0%) 
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(12-15°C) and subsequently maintained optimally at 25°C (group D) also achieved 

100% encystment, however, the percentage excystment was lower than that for group 

A. These results indicate that the temperature at which the trophonts were released 

had no effect on the ability to encyst, but release at low temperature may have 

adversely affected subsequent cyst development. Overall, cyst formation did appear 

to be influenced by the temperature at which the parasites were maintained following 

exit from host; percentage encystment falling with temperature. Tropbonts maintained 

at the lowest temperature, 4°C (groups C,F) did not encyst, with some degenerating 

by days 6 to 7, and all by day 12. Encystment was usually associated with adherence 

to the plastic well, although some trophonts (all from group E) encysted without 

adherence. Comparison of groups D,E, and F, show that trophonts released from the 

host at low temperature were able to complete normal development and excystment 

only if subsequently returned to an optimal 25°C (group D) and not when maintained 

at sub-optimal temperatures (groups E and F). Cyst formation occurred in only a few 

parasites held at low temperature (12-17°C = groups B and E) but no excystations 

were observed up to day 12. Further incubation of these cysts at 25°C until day 21 

did not lead to theront production. Infectivity of the excysted tberonts, from groups 

A and D, was not investigated. 

4.2 .cm 
4.2.1 Duration of cyst stage and theront release 

The time between trophont encystment and theront release was investigated 

as well as the peak time for theront production in a cyst population following 

synchronised encystment. Trophonts which had recently exited fo llowing a primary 

infection of mullet were pipetted into separate wells of 96 well polystyrene flat 
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bottomed plates and allowed to encyst. Trophonts which had not encysted by 8 h 

post-emergence were excluded from the study. Cysts, held under a 12L:12D 

photoperiod, were observed every 24 h during the initial 1-2 h of the light phase and 

------the number of excystments recorded. The duration of the cyst stage was investigated 

for each of 4 isolates: CI-GS, CI-HT, CI-CR, and CI-CR clone. A fifth group of cysts 

(CI-HT} were obtained from a partially immune mullet following a second exposure 

to 5,000 theronts. Each group of cysts was monitored for at least 15 days and 

thereafter until a minimum of 4 consecutive days had passed without theront release. 

Results are presented in Figs. 15 to 19 and Table 9. The pattern of excystment does 

not closely follow a normal distribution with time, for all 5 groups. A peak time for 

excystment (i.e. maximum number of excystments in 24 h) at days 5 to 7 was recorded 

for all groups except B (CI-HT) which was days 9 to 10 (Table 9). The time taken 

for 50% of cysts to release was 6 to 7 days for all groups, again except B which was 

9 to 10 days. No apparent difference was found in the pattern of excystment of Cl-

HT between those cysts derived from a primary infection (group B, Fig. 16} and those 

from a fish with partial protective immunity to C.irritans (group C, Fig. 17), suggesting 

no influence of host immunity on cyst development time. The clone of CI-CR (group 

E, Fig. 19) showed a similar distribution of excystment as that of the parent isolate 

(group D, Fig. 18}. When combining the results from all groups, it was observed that 

the minimum time for excystment was 4 days and the maximum 24 days. However, 

observations here on other cyst populations, have shown a minimum period between 

encystment and excystment of 3.5 days(:;,: 84 h) recorded for isolates CI-HT and Cl-

GS, and a maximum of 35 days recorded for CI-GS. 

It was noted from two observations of excystment that theront exit was 

synchronous, taking between 1 to 2 minutes for all to leave the cyst. 
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Figures 18 and 19 

Duration of C.irritans cysts in different populations. 

Figure 18 

Isolate CI-CR parent line. 

n= 132. 

Figure 19 

Isolate CI-CR clone. 

n= 127. 
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Table 9 

Summary of C.irritans excystment times for cysts from four different isolates. 

Time (days) Time (days) Percentage 

Cyst Isolate No. for peak for 50% (proportion) 

group cysts excystment excystment excysted1 

A CI-GS 50 6 7 86 
(43/50) 

B CI-HT 95 9-10 9-10 93 
(naive2

) (88/95) 

c CI-HT 20 7 7 90 
(immune3

) (18/20) 

D CI-CR 132 5 7 70 
(parent) (92/132) 

E Cl-CR 127 5 6 84 
(clone) (107/127) 

1 Recorded for duration of experiment; true % excysted values may be slightly higher. 

2 Cysts harvested from a primary infection of mullet. 

3 Harvested from mullet with partial protective immunity. 
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4.2.2 Theront productivity with a~:e of cyst 

Possible associations between the duration of cyst stage and the numbers and 

sizes of theronts produced were investigated following a synchronised primary 

infection· of mullet. Twenty cysts (CI-HT) were individually maintained in wells of 

a rnicrotitre plate. Subsequent investigations were undertaken on 16 of these which 

excysted between days 7 and 23. For each excystment, the numbers of theronts were 

counted and a random sample of ten measured by length. The results (Fig. 20) show 

no significant correlation between the number of theronts released per cyst and age 

of cyst (r = 0.25; n = 16). There was no significant correlation between theront length 

and the number of theronts produced per cyst (r = 0.19; n = 14 ). It was noted that the 

minimum number of theronts from any one cyst was 117, and the maximum, 377 

(mean = 198; median = 183). 

4.3 Theront 

4.3.1 Theront activity and behaviour at excystment 

Theronts (CI-HT), harvested within 1 h of excystment, were distributed 

amongst wells of a culture plate, each well containing lcm depth of static seawater at 

25°C. Theronts were observed using a low power stereoscope with substage 

illumination and their activity confirmed as normal (activity score +++,Table 2) 

under these conditions. Theront speed was measured in a Sedgewick-Rafter chamber. 

The theronts, which are denser than seawater, displayed negative geotaxis, tending to 

accumulate near the surface. Swimming behaviour, which involved helical gyration, 

included repeated migrations between the water surface and the base of the well. 

Upon contact with the base the theronts would pause for a fraction of a second before 

beginning their upward journey. Occasional bursts of relatively high speed swimming, 
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Figure 20 

Relationship between duration of cyst stage and number of theronts produced per 
cyst. 

Correlation coefficient, r = 0.25 {n= 16). 
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lasting for a few seconds, were observed. Velocities up to 1,500 t.'ffi /second (::::5.4 

metres /h) were recorded in a horizontal plane, being three times faster than 

Tetrahymena trophozoites of similar body length (70t.'m) and cilia length (7t.'m) 

(Roberts, 1981). Motile theronts were observed within cysts up to 12 h before 

emergence. 

4.3.2 Effects of penicillin-streptomycin on theront activity with time 

The effect on theront activity of antibiotics was investigated. A total of 193 

theronts were collected within 1 h emergence from cysts (CI-GS) held under a 

12L:12D photoperiod. Theronts were divided into 2 groups, each distributed amongst 

2ml wells of a culture plate and held in the dark. One group was maintained in FS­

SW (n = 107), the other in FS-SW containing 1% penicillin /streptomycin ("pen-strep", 

Gibco Ltd.) ( n = 86). Theront activity was scored according to the five point scale 

(Table 2) at various intervals over 18 h, with the aid of a stereomicroscope with 

substage lighting. The results (Figs. 21 and 22) show normal ( + + +) activity in all 

theronts at the beginning of the experiment. At 6 h, 72% of theronts held in seawater 

showed normal to low activity (Fig. 21), as compared with only 20% of those exposed 

to antibiotics (Fig. 22). At 10 h, 44% of theronts held in seawater had become 

inactive with 10% dead, as compared with values of 88% and 66%, respectively, for 

theronts in pen-strep. At 18 h, only low activity was observed, occurring in a small 

proportion of theronts held in seawater alone. Exposure for 18 h to pen-strep did not 

harm free-living hypotrich ciliates which were used as controls. 

4.3.3 Theront viability with time 

The ability of theronts of different ages post-excystment to establish infection 
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Figures 21 and 22 

Activity of C.irritans theronts with time. 

Figure 21 

Activity in seawater. 

n = 107 theronts. 

Figure 22 

Activity in seawater containing pen-strep. 

n = 86 theronts. 

For both figures: activity scores = 

-+++ -++ CJ+ ~0 c::=J OD 
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through to normal trophont release was assessed. Theronts (CI-GS), < 1 h post­

excystment, were pooled, enumerated, and divided into 5 approximately equal groups, 

A-E. These were held for different periods of time in 20ml FS-SW as follows:- A, 0-1 

h; B, 3-4 h; C, 6-7 h; D, 10-12 h; E, 18 h. Each group was tested for viability at the 

appropriate time by exposure to mullet (4-6g) naive to C.irritans, at levels of 5,000 

theronts /fish. 10 mullet were used for group A, 5 for groups B-E. Exposed fish were 

held in aquaria and moved to trophont harvesters, the numbers of trophonts being 

counted as an indicator of theront viability. The relationship between theront age and 

viability is shown in Fig. 23. Analysis by T test suggests that viability remained 

relatively high during the first 4 h post-excystment, however there was a significant 

reduction by 6-7 h. No theronts were viable by 18 h. An assumption was made that 

all theronts establishing infection survive to trophont release and that no divisional 

stages occur on the fish. Small white fletches observed on the fins of 2 fish exposed 

to theronts at 10-12 h and 1 fish exposed to theronts at 18 h were thought to indicate 

transitory invasion without establishment. 

5. SUBSTRATE SUITABILI1Y FOR ENCYSTMENT 

A variety of materials used for furnishing or constructing marine aquaria or sea 

cages were investigated as substrates for attachment and encystment of trophonts. 

These included synthetic materials (e.g. glass, plastic, steel) and natural materials 

either dead (e.g. wood, shells, coral) or living (e.g. fish epithelial scrapings, 

invertebrates). 

Motile trophonts (CI-CR), collected within 2 h of leaving the fish host, were 

washed rapidly by repeated resuspension in FS-SW and pi petted onto the appropriate 

test substrates immersed in FS-SW. Those materials which were not themselves 
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Figure 23 

Ttheront viability with time. 

Bars and vertical lines show mean and range, respectively. 

Letters above bars represent T test statistics for viability, where: 
a versus b = not significant (0.5>P>O.l) 
a versus c = significant (P<O.OOl); both at 13 degrees of freedom. 
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receptacles were held in plastic culture plates or glass dishes. A minimum of 25 

trophonts were allowed to sediment onto each test material and these examined at 

various times for evidence of encystment. Trophont adherence was designated as 

"normal" if the trophonts or cysts could not be dislodged by a direct stream of water 

expelled from a pasteur pipette, or "moderate" or "weak" if a low or high proportion, 

respectively, of parasites were dislodged by this action. Those trophonts which 

encysted were monitored for several days for evidence of theront emergence. The 

range of substrates to which trophonts can adhere is shown in Table 10. These 

included most hard, non-living surfaces although only a proportion of trophonts 

adhered to polished glass, steel, wood, and hemp. The hemp sample appeared toxic 

to the parasite, causing trophont degeneration within 2 days. Comparison of 

adherence on the comparatively inert glass and plastic surfaces suggested that the 

strength of adherence might be positively related to the degree of roughness of the 

material. In support of this, it was observed that trophonts released into glass dishes 

containing fish scales would accumulate at a higher density per unit area on the scales 

than on the surrounding glass. Trophonts appeared unable to attach to the living 

surfaces of the echinoderms,Asteria sp. (starfish) and Echinus sp. (sea urchin). With 

those cysts monitored until excystment, swimming activity of the theronts appeared 

normal. However, theront infectivity was not investigated, except from parasites 

routinely allowed to encyst on polystyrene and glass receptacles. 

6. EVALUATION OF A CHEMICAL TREATMENT 

The need for an effective chemotherapeutic against C.irritans prompted an 

assessment of "Oomed™" (Tetra Ltd., Germany), a recently introduced treatment for 

protozoal infections of coral reef fishes, which claimed to be effective against the cyst 
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Table 10 

C.irritans trophont attachment and cyst development on a variety of natural and 
synthetic substrates. 

Material Trophont Encystment Theront Observations 
attachment release 

Type Details 

Glass aquaria, dishes Yes (most) Yes Yes Attachment less 
than 100% on 
polished glass 
surface. Otherwise 
normal adherence 

polystyrene Yes Yes Yes Normal adherence 
Plastic 

polyvinyl chloride Yes Yes Yes Normal adherence 

Gravel aquarium gravel Yes Yes Yes Normal adherence 
(0.7mm diameter) 

Metal steel plate Yes (some) Yes (some) n.t. 15% (4/27) 
trophonts adhered 

Fibre hemp Yes (some) No No 28% (7/25) 
trophonts adhered. 
All degenerated 
within 48 hours 

Wood - Yes (some) Yes (some) n.t. 42% (11/26) 
trophonts adhered 

shell gravel, Yes Yes Yes Normal adherence 
commercial 

Shell prepn. 
materials 

cleaned Mytilus Yes Yes n.t. Normal adherence 
edulis shell to inner and outer 

surfaces of shell 

exoskeleton, Yes Yes n.t. Moderate 
caridean shrimp adherence 

staghorn coral' Yes Yes Yes Normal adherence 

mullet epidermal Yes Yes n.t. Weak adherence -
Fish tissues mucus mucus degenerated 

mullet scales Yes Yes Yes Normal adherence 

Live Asteria starfish No - - Trophonts 
organisms delivered to the 

dorsal surfaces of 
EciJilws sea- No - - these organisms, 
urchin but none attached 

1 Staghorn coral (Acropora) - dead, bleached and washed. 

n.t. = not tested. 

lU 



stage of C.irritans. Oomed has the following composition: 

Hexamethyl para-rosaniline 
Quinine hydrochloride dihydrate 
9-aminoacridine hydrochloride monohydrate 
Benzyl dodecyl-bis-(2-hydroxyethyl) 

ammonium chloride 
Aqueous solvent 

75.7mg 
1261.7mg 
252.3mg 

504.7mg 
100 ml. 

Oomed, diluted in seawater, was used at one or more of the three 

manufacturer's recommended doses: 

1:25,000 = low dose (aquaria containing living corals); 

1:12,500 = medium dose (aquaria containing any species of invertebrate); 

1:6,250 = high dose (aquaria containing fishes only). 

The efficacy of Oomed in destroying trophont, cyst, and theront stages of 

C.irritans (CI-HT) was assessed in addition to its effect on theront infectivity. All tests 

were carried out on parasite stages transmitted through mullet naive to C.irritans, and 

held under a 12L: 120 photoperiod. 

6.1 Trophont 

Recently emerged trophonts were collected into 4 wells of a tissue culture 

plate, 10 trophonts/ well, containing Oomed at either "low", "medium" or "high" doses 

in seawater, plus controls containing no reagent. The trophonts were exposed to the 

reagent for 24 h after which they were washed free of Oomed in FS-SW. Parasite 

development was monitored for 6 days, with FS-SW being replaced daily. The results 

(Fig. 24), based on two sets of experiments, showed that Oomed had no effect on 

reducing trophont mobility over the first hour of exposure, at any of the three dose 

levels. Cyst formation and development with subsequent release of active theronts 
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Figure 24 

Effect of OomedTM on development of free-living trophonts of C.irritans . 

• = trophont 

(j} = cyst 
•••• 
• = theront release 0 ... 

e = non-encysted trophont } 

© = disintegrated cyst 
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occurred in all trophonts exposed to medium and low doses of Oomed as well as the 

unexposed controls. With those trophonts exposed to high dose Oomed, only 10 to 

20% encysted and all had degenerated by day 5 following exposure, with no release 

of theronts. 

6.2 ~ 

Fifty cysts, collected 24 h post-encystment, were dispensed into wells of a tissue 

culture plate, 10 cysts/ well, and exposed to Oomed at high dose for 48 h. Cysts were 

then washed free of Oomed in FS-SW, transferred to new wells containing FS-SW 

which was replaced daily, and monitored for theront release. It was found that 48/50 

cysts (96%) produced theronts, with peak excystments at 6 -8 days, these values being 

comparable to that of unexposed control cysts (results not shown). The reagent 

appeared to be ineffective in destroying the cyst stage of C.irritans. 

6.3 Theront 

Theronts, <2 h post-excystment, were divided into 3 approximately equal 

groups of ea. 25, and each group exposed to one of the three doses of Oomed within 

a 2ml culture plate well. A further group of 25 theronts, held in FS-SW only, served 

as controls. Theront activity was assessed using the five score system described earlier 

(Table 2). The results (Table 11), based on two separate trials, show that the reagent, 

at all three dose levels, significantly reduced theront activity within 2 h exposure, the 

extent of reduction being dose- dependent. At high dose, the reagent effected a rapid 

reduction in theront activity, with theront death as early as 10 min, and with no 

theronts surviving longer than 30-60 min. Medium and low doses of Oomed failed to 

destroy all theronts during the 2 h exposure period. 
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Table 11 

Effect of OomedTM on activity of C.irritans theronts. 

Exposure Oomed dose 
time 
(min) High Medium Low 

<1 +++I+++ +++I+++ +++I+++ 

5 ++I++ +++I+++ +++I+++ 

10 +I o +++I++ +++I+++ 
(75%) 

30 olo ++I+ +++I++ 
(88%)(92%) 

60 olo ++I o ++I++ 
(100%)(100%) (100%) 

120 olo +I o ++I o 
(100%)(100%) (100%) (25%) 

Results based on 2 sets of observations. 

Theront activity scored: o; + ; + +; + + + . 

Values in parentheses are percentage theronts with no cilia! activity 
( = presumed dead). 

None 

+++I+++ 

+++I+++ 

+++I+++ 

+++I+++ 

+++I+++ 

+++I+++ 
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6.3.1 Theront viability 

Three groups of 4 mullet (6-8g), naive to C.irritans, were used. Each fish was 

transferred to a 1 litre aquarium containing either low or high dose Oomed or no 

Oomed (=controls) to which was then added 5,000 theronts, <2h post-excystment. 

Following 4 h exposure the fish were separately transferred to 5 litre aquaria 

containing seawater alone until the time for trophont release when they were finally 

moved to individual trophont harvesters. The number of cysts released per fish was 

recorded as an indication of theront viability. The results (Fig. 25) show that Oomed 

was only partially effective at both dilutions tested in reducing theront viability, the 

extent of which was dose-dependent. It was noted that, even when exposed to high 

dose Oomed, total prevention against infection was not achieved. 

6.4 Oomed efficacy- summary 

Overall, the results show that Oomed, when used at high dose, was partially 

effective in destroying free-living trophonts and theronts, but not the cysts of C.irritans. 

When used at medium or low dose, Oomed was effective only against the theront 

stage. 

7. SUMMARY CHARACTERISTICS OF C.IRRITANS 

A summary of the life cycle stages of C.irritans maintained by passage through 

mullet, together with morphometric data and other information gained in this chapter 

is shown in Fig. 26. Individual stages are illustrated in Fig. 27. 
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Figure 25 

Effect of boomed ·1M on Viability of C.irritans theroots. 

Bars and vertical lines show mean and range, respectlveiy :<n= 4 ·fish/ dose level). 
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Figure 26 

Summary characteristics of C.irritans life cycle using mullet as hosts. 

Numbers in outer circle represent duration in hours (h) or days (d) for each stage, 
expressed as mean (and range). 

Scale bars show long axis measurements. 
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DISCUSSION 

The establishment of C.irritans within a controlled laboratory system has 

enabled detailed investigations concerning host parasite interactions and transmission. 

Studies of C.irritans using mullet, Clzelon labrosus, as an experimental host 

confirm the general features of the life history as described by others. The parasite's 

growth and development within the fish epidermis, entering the marine environment 

to encyst, multiply, and produce new infective stages are events well documented by 

previous workers (Sikama, 1937, 1938; Nigrelli and Ruggieri, 1966; Colorni, 1987). 

In addition, however, this study has contributed new information concerning 

transmission, including theront viability, timing of development, influence of 

environmental factors, and isolate "senescence", and these aspects are discussed below. 

Although a total of eight isolates of C.irritans were established and successfully 

passaged in mullet none survived more than 34 cycles under laboratory conditions. 

Similar problems in the maintenance of this parasite were encountered by Colorni 

(pers. comm.) whereas Houghton and Matthews (1986) and Burkart et al. (1990) 

record loss of the related ciliate /.multijiliis following up to 10 months of serial 

transmission. Loss of C.imtans recorded here was associated with a decline in 

viability, suggestive of senescence. Ageing within cell lines is well recognised in 

Ciliophora in the absence of gene~ic exchange, however, sexual reproduction has not 

been recorded in either C.irritans or l.multijiliis. Nevertheless, a lack of complimentary 

partners ("mating types") within the populations of these parasites could account for 

isolate loss under conditior;s of laboratory maintenance. The effect of mixing 

complimentary mating types or-. iti :iat.:ng conjugation has been demonstrated for other 

holotrich ciliates, namely, Tetra.';ymena and Balantidium coli (Svennson, 1955; Adair 
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et al., 1978) as well as other ciliate species (reviewed by Miyake, 1981). That 

senescence is recorded here in C.irritans following extended in vivo maintenance gives 

some support to the view that genetic exchange is a requirement within the life cycle 

of this parasite. Matthews (pers. comm.) has recorded four micronuclei in theronts 

of J.multifiliis, suggestive of autogamy. It is possible, therefore, that sexual 

reproduction occurs in these parasitic ciliates but that the process is sufficiently brief 

as to go unnoticed. During conjugation of B.coli, for example, the two partners are 

only temporarily attached to each other by their anterior ends (Zaman, 1978). Possible 

opportunities for sexual reproduction in C.irritans were noted here when parasites 

closely associate within the host and at encystment. Trophonts have been observed in 

physical contact within a gallery of host epithelium (Fig. 28); such formations have 

also been described for J.multijiliis (Ewing et al., 1988; Matthews, pers. comm.). 

Aggregations of the cysts of C.irritans have been observed comprising up to several 

hundred individuals forming a monolayer (Fig. 27, plate D); also reported by Diamant 

et al. (1991). Aggregation of trophonts on the substrate could theoretically enable 

genetic exchange to take place between adjacent cells prior to cyst wall formation. 

The theront stage, on emergence into the marine environment, provides a further 

opportunity for physical con'tact. 

The encysted reproductive stage of C. irritans was shown here to be of variable 

duration, from 3.5 to 35 days, even for individuals resulting from a synchronised 

infection. This contrasts with the short cyst stage in the life cycle of J.multifiliis, 

encystment and theront production being completed within approximately 24 hours 

at 20°C (Dickerson et al., 1985; Cross, 1990). Asynchronous release of theronts over 

an extended time period in C.irritans could provide a more effective strategy for 

transmission within the marine environment, compensating for adverse conditions 
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imposed by tide, weather and changes in fish host behaviour. The gradual 

dissemination of the theront population with time might also favour transmission by 

minimising the loss of potential hosts through the development of protective acquired 

immunity and acute disease. 

C.irritans has a low degree of host specificity to teleosts, all of fourteen species, 

from diverse taxonomic groups, being shown here to be susceptible to infection. The 

parasite's wide host range within teleosts is further supported by observations on 

aquarium fish by Nigrelli and Ruggieri (1966) and Wilkie and Gordin (1969). That 

specificity is not limited to fish within either the seawater habitat of this parasite or 

within its assumed geographical range is indicated in the present study; infections 

being established in tropical fish which normally inhabit freshwater or slightly brackish 

environments, such as Poeci/ia /atipinna (Jacobs, 1971) and Oreochromis mossambicus 

(Trewavas, 1983 ), and also representatives from temperate zones including the go by 

(P.microps) and mullet ( C.labrosus, L.ramada ). In this respect, C.irritans shows 

similarities with J.multifiliis which has been recorded from most freshwater teleosts 

world wide (reviewed by Houghton, 1987) and who 'Se. capability to infect marine 

species under experimental conditions was demonstrated here. The success of both 

species must reflect the effectiveness of direct transmission and infection of the 

epidermis, permitting unrestricted access between host and aquatic environment, 

together with the opportunity to exploit a wide range of teleost hosts. 

Although C.irritans has been isolated here from several host species originating 

from different geographical regions, it was not possible to confirm whether these 

isolates represented different strains of the parasite. In general, the course of 

infection and longevity of free living stages of all isolates fell within expected 

parameters. That four species of fish representing three taxonomic families were 
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equally susceptible to a cloned isolate of C. irritans indicated that a wide host range 

did not necessarily reflect the presence of different host-specific strains within the 

captive parasite population. Nevertheless, further investigations of virulence and 

temperature tolerance are identified here as highly relevant in assessing the 

importance of this parasite within a rapidly developing mariculture industry. Recent 

work by Diamant et al. (1991) has already revealed a presumptive strain of C.irritans 

in the Mediterranean which differs from the Red Sea isolate described by Colorni 

(1985) in its distribution pattern on the host and its ability to establish infections in 

more northerly regions than previously recorded. 

That the behaviour of C.irritans is influenced by photoperiod has been shown 

here for the first time, both trophont exit from the host and excystment strongly 

coinciding with darkness. The ability of C.irritans to respond to light and dark is not 

unique amongst the Hymenostomatida, having been shown for other parasitic as well 

as free- Jiving species, namely J.multijiliis (Lom and Cerkasovova, 1974; Nickell and 

Ewing, 1989) and Tetrahymena (Wille and Ehret, 1968), respectively. Circadian 

rhythms based on photoperiod have also been reported for other taxonomic groups 

of protozoa, as reviewed by Wille (1979). The mechanisms of response to darkness 

are not known, however it might be significant that certain ciliates, including Stentor, 

possess photoreceptor pigments (reviewed by Pill-Soon and Walker, 1981). These 

pigments could theoretically function in the parasitic trophonts and the encysted 

theronts, as both these stages are exposed to light and dark cycles, in the latter stage 

being facilitated by a translucent cyst wall. Darkness, however, is clearly not the only 

stimulus for trophont exit which occurs only after a certain critical time period on the 

host, shown here to be between 78 and 89 .hours post-infection. Observations that 

trophont eYit during this time period can also occur under an artificially extended 
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photoperiod of light, suggests an overriding force of trophont maturation m 

determining release from the host. However, exit in the light arising from an altered 

photoperiod could be mediated by an endogenous circadian rhythm. In support of 

this, it is well documented that certain protozoa and other organisms possess 

photoresponses which are controlled by a temperature-independent biological clock 

which although synchronised ("entrained") by the external photoperiod, can exhibit an 

endogenous rhythm (Lofts, 1970; Wille, 1979). It is significant that the few trophonts 

which remained in the host after 89 hours did not release until the next dark phase 

(at 102-113 hours), thereby further indicating the influence of the dark cycle in 

trophon_t exit. It is possible that the trigger for trophont exit is host-mediated, possibly 

by physiological changes which have been shown to relate ·to circadian rhythms in fish 

(Schwassmann, 1971). Studies here were undertaken using diurnally active host fishes; 

it is not known whether the diel pattern of trophont release from nocturnally active 

hosts is different. It has been observed in the present study that host death also 

effects trophont exit, irrespective of photoperiod; similar observations having also 

been recorded for J.multifiliis (Ewing and Kocan, 1987). The underlying cause for this 

is unknown but might relate to falling oxygen supplies to the parasite. 

Circadian rhythms have been recorded for several species of parasites and have 

been shown to improve the chances of survival and/or transmission (Kennedy, 1975). 

The possible benefits to transmission of photoperiod responses by C.imtans are 

considered below within the context of a reef environment. There are several reasons 

to consider the coral reef as the major habitat of C.imtans. First, the few recordings 

of C.imtans in wild fish have involved reef fishes (Laird, 1956; Burgess, 1978; Colorni, 

1985). Furthermore, all but one of the C.imtans isolates acquired for this study were 

obtained from infected wild-caught reeffishes which had been imported into the U.K. 
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for the ornamental aquarium hobby. Further evidence in support of an association 

between C.irritans and the reef habitat is that a lower temperature threshold of 18°C-

20°C is common to both parasite (Wilkie and Gordin, 1969; Cheung et al., 1979) and 

the hermatypic (reef-building) antozoan corals (Guilcher, 1988; Nybakken, 1988). The 

coral reef, characterised by its wide diversity of fish species (Nybakken, 1988) would 

favour a parasite with a broad host range. Assuming, therefore, that C.irritans is 

naturally associated with the coral reef, the observed nocturnal transmission of 

parasite between host and environment might be geared to diel behaviour patterns of 

the reef fishes. It is well recorded that the majority of fish species which are closely 

associated with the reef are diurnally active, hiding at night in crevices and caves 

(Stark and Davis, 1966; Thresher, 1980; Lowe-McConnell, 1987), with some, such as 

chaetodontids, resting in a state of torpor (Randall, 1968). The nocturnal inactivity 

of these fishes and their close physical contact with the substrate might therefore offer 

transmission benefits to C.irritans by minimising the distance travelled between exit 

from the host and encystment on the substrate, and subsequently, offer a nearby 

stationary target for the excysted theronts. In contrast, diurnal transmission of the 

parasite, at a period when many fish species are actively feeding, would require the 

theronts being capable of contacting a moving fish under relatively turbulent waters 

which occur around the reef (Nybakken, 1988); the effects of strong water currents on 

reducing the chances of theront transmission has been considered in the case of 

Ichthyophthirius (MacLennan, 1935). Photoperiod responses by C.irritans might also 

serve to reduce the chances of predation. In the present study it was observed that 

trophonts of C.irritans sediment towards the substrate immediately following host exit, 

as compared with those of J.multifiliis which are capable of some swimming activity 

(Nickell and Ewing, 1989; pers. obs.). The rate of trophont sedimentation by 
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C.initans, measured here to be 14 metres per hour, together with the close proximity 

of the reef fish to the substrate (Lowe-McConnell, 1987), suggests that trophont 

settlement also occurs in the dark. Such a behaviour pattern could serve to avoid 

predation by planktonivorous fishes which are mostly diurnal, C.initans being within 

the micro- to meso-plankton size ranges (Nybakken, 1988; Dr N. Polunin, Newcastle 

University, pers. comm.). Furthermore, the rapid formation of a hard cyst, shown 

here to occur within an average of 3 hours of host exit, may further deter predation. 

Excystment of C.initans was also shown to be strongly associated with darkness, 

with theront release commencing within three hours after onset of the dark phase. 

In view of the limited time for theronts to successfully infect a fish, viability being 

significantly reduced within 6 -7 hours after emergence, it is evident that a large 

proportion of theronts must locate and invade a host in the absence of light, if they 

are to survive. The ability of theronts to infect in the dark could arise if host contact 

occurs by chance. Alternatively, host location may involve a chemotaxic response to 

substances released from fish, although Lom and Cerkasovova (1974) were unable to 

demonstrate this for /.multifiliis, or possibly by a positive rheotactic response by the 

theront to fish movement; protozoan cilia are known to be receptors for such 

responses (Grell, 1973). 

The important role of photoperiod responses in the behaviour of C.initans in 

the aquatic environment has been discussed above. Work here has provided some 

evidence that theronts, upon emergence, respond to light, with positive phototactic 

responses being observed in a slight majority of theronts. Positive photoresponses by 

theronts have also been reported for C.initans by Nigrelli and Ruggieri (1966) and for 

/.mu/tifiliis by Lom and Cerkasovova (1974) and Wahli et al. (1991). It is difficult to 

perceive the significance of positive phototactism in a parasite which appears to be 
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nocturnally released, however this phenomenon is not unique, being also reported for 

the aquatic cercariae of the rodent helminth parasite, Sclzistosomatium doutlzitti 

(Oiivier, 1951). 

Although the coral reef is considered here to be the natural habitat of 

C.irritans, it is possible that the parasite occurs in other marine environments, such as 

coastal regions and open sea. Findings from this study provide some evidence that 

C.irritans has the potential to exploit these habitats, as indicated by its wide host range 

and ability to settle and encyst on a variety of substrates. That cryptocaryosis is 

recorded within intensive fish rearing systems (Huff and Burns, 1981; Rasheed, 1989) 

suggests some degree of tolerance to water conditions which are less favourable than 

those found around coral reefs. The recent discovery of a Cryptocaryon- like organism 

infecting fish cultured in the Eastern Mediterranean (Diamant et al., 1991) may 

suggest a strain not associated with coral reefs, however conclusive evidence for this 

will depend upon the demonstration of infected wild fish in these waters. Further 

searches for the presence of C.irritans in wild fish populations are required in order 

to reveal the parasite's true environmental distribution. 

A detailed evaluation of a proprietary chemotherapeutant against individual 

stages of C.irritans has provided conclusive evidence that the cysts are resistant to its 

chemical action, supporting aquarium observations following other drug therapies 

(Herwig, 1978). It is probable that the cyst wall, formed of several layers (Sikama, 

1961; Nigrelli and Ruggieri, 1966), provides an impervious barrier to chemical entry. 

These findings underline the urgent need for a safe, effective chemical treatment for 

the control of C.irritans, the future prospects for which are discussed in Chapter 8. 

The laboratory maintenance of C.irritai1s has entailed standardised procedures 

for infection which provides the first opportunity for detailed investigations of the 
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CHAPTER FOUR 

INFECTION AND IMMUNITY 

INTRODUCTION 

The occurrence of acquired protective immunity in fish has been demonstrated 

for only a few protozoal parasites, including J.multifiliis (Hines and Spira, 1974b), 

haemoflagellates (Woo, 1979; Woo et al., 1987), lchthyobodo necator (Robertson, 

1979), and the PKX agent of proliferative kidney diseases (Klontz et al., 1986). No 

infection and challenge experiments have been undertaken to investigate for acquired 

host immunity to C.irritans. 

With regards J.multifiliis, Hines and Spira ( 1974b ), using carp, were the first to 

demonstrate that fish experimentally infected with this parasite were refractory to 

potentially lethal challenge. Acquired immunity to J.multifiliis has subsequently been 

demonstrated in other teleosts, including trout (Wahli and Meier, 1985), mollies 

(Poeciliidae) (McCallum, 1986), and channel catfish (Clark et al., 1988). Experimental 

methods for infection of fish. with J.multifiliis have included exposure to infected fish 

(Goven et al., 1980) or by exposure to a controlled number of trophonts (Hines and 

Spira, 1974b) or cysts (Wahli and Meier, 1985). However, these procedures are prone 

to inaccuracy with regards the exposure dose as they do not control for the significant 

variations observed between the numbers of theronts derived from each cyst (Ewing 

et al., 1986) and assume that all trophonts or cysts will successfully complete 

development and produce viable progeny. The requirement for an accurate 

quantification of the infection dose in mdl!r to understand the infection dynamics and 
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to assess for any correlation with the degree of subsequent host protection, has been 

shown for J.multifiliis by McCallum (1982). Improved experimental infection 

procedures were established by Dickerson et al. (1981) who exposed fish to known 

numbers of theronts under standardised conditions. 

For studies with C.initans, infection and challenge procedures are complicated 

by the extended cyst stage and the asynchrony of theront production within a 

population of cysts, which present a major problem in procuring sufficient numbers 

of theronts at any one time for immunisation or challenge experiments. Furthermore, 

studies on C.initans (Chapter 3) revealed a significant decline in theront viability 

within 6 hours post-encystment, with 4 hours being considered the upper time limit 

for infection procedures. 

Fundamental to the current study will be the establishment of standardised 

procedures for immunising fish by controlled infections. Following optimisation of 

these procedures, the aims will be to investigate the capability of mullet to develop 

protective immunity to C.initans and to correlate protection with exposure level. 

Further, in the event of acquired immunity being established, to investigate evidence 

for a memory component and specificity to C.initans. 
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MATERIALS AND METHODS 

1. FISH 

Mullet, Chelon /abrosus (Table 1, collection batch 8), selected for similar size, 

were used for experimental infections. Where necessary, mullet were individually 

identified by subcutaneous marking with Alcian blue (10mg/rnl in ethanol) 

administered by a Panjet needleless injector (Wright Health Group Ltd., U.K.). When 

marking small mullet ( < 10cm length} the Panjet force was reduced by placing paper 

sheets over the target area on the fish's body. 

Fish hosts for J.mu/tifiliis included cyprinids (Cyprinus carpio L., Carassius 

auratus L. and Carassius carassius L.), stickleback (Gasterosteus acu/eatus L.) and 

tropical freshwater species. These were purchased from commercial fish farms or 

aquarium retail outlets, the stickleback being caught locally in the River Erme. 

2. C. IRRITANS 

Isolate CI-GS was used for all infection and challenge studies presented in this 

chapter. 

2.1 Infection procedure 

Infection procedures were standardised as follows. Theronts were harvested 

within 4 h post-excystment and enumerated. Mullet were individually exposed to 

known numbers of theronts in 500rnl seawater at 25°C, in the dark, for 3-4h. Gentle 

aeration(::::: 50-100 cm3 air/ min) was maintained throughout. Following exposure, the 

fish were held in small aquaria m1der a 12L:12D photoperiod until ea. 70 h post­

exposure when they were transferred to trophont harvesters for trophont release. 
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2.2 Control for theront viability 

In order to control for any day to day variations in theront viability, studies on 

re-exposure and challenge of mullet were undertaken using pairs of fish, matched by 

weight, comprising one previously exposed test fish and a control not exposed to 

C.irritanr. Each pair were separately exposed to theronts obtained from a common 

pool. Exposure methods were as described above (section 2.1). 

The percentage of theronts successfully establishing infection (%PEJ) in 

individual mullet was based on the following calculation: 

number of trophonts released from fish 
number of theronts used for exposure X 100% . 

2.3 Assessment of immune protection to C.irritans in mullet 

Mullet were considered to have significant immune protection to a controlled 

exposure if the %PEJ was :5 1% and the number of trophonts released was < 5% that 

from a paired control mullet, matched for weight and with no previous exposure to 

C.irritanr. 

2.4 Prevention of accidentlrl infection 

For certain long-term experiments, accidental infection of mullet with C.irritanr 

was prevented by adapting the fish to hyposaline conditions of::::: 8o/oo salinity (prepared 

from 1 part seawater to 3 parts freshwater), which has been shown by Colorni (1985) 

to prevent transmission of the parasite. 

3. I. MULTIFILIIS 

J.multifiliis was selected to evaluate the specificity of the mullet immune 
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response to C.irritans. 

3.1 Sources of isolates 

Isolates were acquired either from ornamental aquarium fishes, mostly 

cyprinids, or from wild caught sticklebacks. 

3.2 Routine maintenance 

J.multifiliis was passaged through captive reared cyprinids ( C.carpio, C.carassius, 

and C. auratus). An infected population of these fish was maintained in 20 litre 

aquaria at ambient laboratory temperature. Water quality was maintained by external 

power filters (Eheim Ltd., Germany) and aeration. 

3.3 Controlled infections 

Carp ( < 30 g), naive to J.multifiliis, were each exposed to 1,000 theronts for 3 

h in a darkened 2 litre aquarium containing dechlorinated tap water at RT. Aeration 

was reduced throughout exposure so as not to interfere with theront behaviour. 

Exposed fish were transferred to 10 - 20 litre aquaria until day 5 when they were 

returned to 2 litre aquaria· for trophont release. Free-swimming trophonts were 

pipetted into 2 ml wells of a tissue culture dish and held overnight at RT in the dark. 

The following morning, emergent theronts were collected, enumerated in a Sedgewick­

Rafter (see Chapter 3, methods section 2.5), and the numbers adjusted for challenge 

or exposure to further fish hosts. 

3.4 Infection of mullet 

Mullet, temporarily acclirnated to freshwater, were each exposed to 5,000 
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theronts of J.niultifiliis using the procedure outlined above (section 3.3). Infections 

were not allowed to proceed to trophont release as mullet are intolerant to long 

periods ( > 2 days) in freshwater, manifested by inappetence, sluggish activity and 

susceptibility to Saprolegnia infections~ At 48h post-exposure, infected mullet were 

killed by anaesthetic overdose and the number of trophonts counted within a known 

area of caudal fin. Infection levels were expressed as the number of trophonts/ mm2 

fin. 
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EXPERIMENTS AND RESULTS 

1. THERONT VIABILI1Y 

Percentage PEI values were determined for a large group (n=67) of mullet 

of average weight 4g (range= 1.8- 8.0g) following primary exposures to 5,000 theronts 

per fish under standardised conditions (described earlier). The frequency distribution 

for %PEI is given in Fig. 30, using 2% infection intervals. The histogram, which 

exhibits a slight positive skewness, shows a wide range of %PEI values from 2.0% to 

18.1% (mean = 6.97%; median = 6%). 

To control for differences in fish size, %PEI was expressed as a frequency 

distribution giving the number of trophonts released per gram of host fish. The 

results (Fig. 31) show a wide range of infection levels, from 19.0 to 266.8 trophonts 

per gram of fish. There was no significant correlation between the number of 

trophonts released and total weight of the fish host (r = -0.13; n = 67). These results 

suggest that, at the 5,000 exposure level, the %PEI is not influenced by host weight 

(and therefore host surface area), under the conditions tested here. 

1.1 Relationship between exposure level and percenta~e PEI 

Percentage PEI results from the 67 mullet exposed to 5,000 theronts, described 

above, were used as a reference for comparison with smaller groups of fish exposed 

to one of the following numbers of theronts: 500 (10 fish); 1,000 (4 fish); 2,000 (13 

fish); 10,000 (11 fish). The results (Fig. 32), expressed as median, mean and range 

of %PEI values, show no relationship between %PEI and theront exposure level. The 

slight rising trend of upper %PEI limits observed over the 1,000 to 10,000 theront 

exposure levels represents high parasite levels which occurred in a small proportion 
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of fish. This could be indicative of a possible attraction to entry sites on the host, 

however the trend was not substantiated by the mean and median %PEI values and 

so may be insignificant. Fig. 33 shows a strong linear relationship (r = 0.99) between 

the number of parasites established in a host and the number of theronts to which it 

was exposed, with no evidence of a threshold effect. 

2. LETHAL THRESHOLD 

Lethal levels of theronts were evaluated by retrospective analysis of data on 

105 mullet following primary exposure to between 500 and 10,000 per fish. Mortality 

was attributed to C.irritans if death occurred within 10 days after exposure. The 

relationship between mortality and the level of primary exposure is presented in Table 

12. No mortalities occurred in mullet exposed to 2,000 or less theronts, whereas 

13.4% and 81.8% mortalities occurred at theront exposure levels of 5,000 and 10,000, 

respectively. There was a strong temporal association between trophont release and 

mortality. Of the combined mortalities, 72% (13/18) coincided with trophont exit 

from the fish; the remaining deaths occurring either within 24 h following trophont 

release (2/18 fish) or between 24 h and 7 days after release (3/18 fish). This may 

reflect mortality caused by bost epidermal disruption during trophont exit, as shown 

in Fig. 5. The number of trophonts released per gram of host fish, expressed as a 

frequency distribution, along with cumulative percentage mortalities, is shown in Fig. 

34. With the exception of two fish, a threshold effect was observed, with mortalities 

occurring when parasite levels exceeded 100 trophonts per gram of host fish. No clear 

threshold effect was evident when the mortality data were not controlled for fish 

weight (results not shown). The results indicated a 90% probability of death following 

parasite levels of > 200 trophonts/g host weight. Deaths in the two fish supporting 
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relatively low levels of parasites, of 19 and 44 trophonts/g, were discordant with the 

remaining mortality data; however, as with all mortalities, the possibility of death 

arising from causes other than cryptocaryosis could not be ruled out. Analysis of 

trophont counts from individual fish showed that the highest parasite intensity was 

243.5/g, recorded from a 3.15g fish which released 767 trophonts. 

3. INFECTION AND CHALLENGE 

The ability of mullet to develop protection against C.initans following exposure 

to a known number of theronts was assessed. The asynchronous development of cysts 

and release of theronts over an extended time scale necessitated staggering the 

infections over 14 weeks. 

The infection procedure, shown in Fig. 35, was as follows: 87 mullet, naive to 

C.initans, were divided into three experimental groups, A-C (n = 36), plus two control 

groups, # 1 (n = 15) and #2 (n =36). Groups A, B, and C were exposed to 500, 2,000, 

or 5,000 theronts per fish, respectively, followed by a second exposure of the same 

level given 14 days later. After a further 14 days, all fish were individually challenged 

with 5,000 theronts, and a mullet from control group #2 was also exposed to 5,000 

theronts, to confirm theront viability (methods, section 2.2). The degree of protection 

following each exposure was assessed in 15 mullet from experimental groups A,B, and 

C. For each of these fish, at the second exposure, a weight matched control fish from 

group # 1 was separately given an equivalent exposure of theronts from the same 

source, to confirm theront viability. The results (Table 13) show that the 

numbers of trophonts sustained by groups A-C fish following a challenge exposure are 

significantly lower than those of control group #2. Further, the results suggest that 

the degree of host immunity is dependent upon the numbers of theronts used for 1° 
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Table 13 

Post-challenge levels of C.imtans in mullet in relation to different primary and 
secondary exposure levels. 

Number of Number of Number 

Fish theronts/exposure tropbonts released Median (%)of fiSh 
per fish following %PE I with no 

Group n 10 & 20 challenge challenge: parasites 
median (mean) 

range 

A 13 500 5,000 3.0 (13.2) 0.06 4 (31) 
0-81 

B 12 2,000 5,000 2.5 (7.4) 0.05 5 (42) 
Exposed 0-42 

c 11 5,000 5,000 0.0 (0.5) 0.00 9 (82) 
0-3 

Control #2 36 0 5,000 307.5 (330.3) 6.14 0 (0) 
102-767 
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and 2° exposures, being particularly notable when the relationship is assessed from the 

mean and range numbers of trophonts released. Fish which sustained no parasites 

following challenge are considered to have acquired full protection, the proportion of 

which shows a positive relationship with the numbers of theronts used for 1° and 2° 

exposures, increasing from 31% for 500 theronts/fish to 82% for 5,000 theronts/fish. 

However, none of the three 1° and 2° exposure levels used here resulted in full 

protection to challenge in all fish. 

Results for the 15 experimental fish monitored for parasite levels following 

each exposure are shown in Fig. 36. Of the 10 fish subjected to a primary exposure 

of 2,000 or 5,000 theronts all but one sustained no or few(~ 4) parasites following 2° 

and challenge exposures (median %PEI = 0). In contrast, the group of 5 fish subjected 

to a 1° exposure of 500 theronts sustained relatively higher numbers of parasites upon 

2° and challenge exposures, with median %PEI values of 0.4 and 0.3, respectively; two 

of these fish sustained a higher %PEI upon challenge as compared with 2° exposure. 

4. EFFECTS OF PARTIAL HOST IMMUNITY ON PARASITE GROWI'H 

Possible effects of host immune response on parasite growth was assessed on 

the basis of cyst size, taking.a single measurement across the long axis. Four mullet, 

naive to C.irritans, were selected to provide 2 pairs of matched weight. One fish from 

each pair was subjected to a single exposure of 500 theronts and maintained without 

re-exposure for 14 days; the remaining 2 fish being kept as unexposed controls. All 

4 fish were then individually exposed to 5,000 theronts from a common pool. Fish 

were held individually in trophont harvesters until parasite exit and encystment. A 

random sample of 25 cysts were collected from each mullet for measurement. 

Comparisons of mean cyst sizes from the two pairs (Table 14) showed no significant 
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Figure 36 

Percentage of parasites establishing infection (%PEI) in mullet following primary, 
secondary and challenge exposures to theronts of C.irritans. 

Number of fish (per 1°, 2° exposure levels): 5 (500); 4 (2,000); 6 (5,000). 

Arrows show primary (1), secondary (2), and challenge (Ch) exposures. 

Numbers of theronts /exposure shown in parentheses. 
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Table 14 

Long axis measurements of cysts of C.irritans from primary and secondary infections 
of mullet. 

FISH CYSTS 

Pr. Idenl Wt. 
Number of lheronls 

No. Number Mean Size Size 
(g) lrophonts sampled Size range so •. 1 

previous challenge released (#) (#) 
exposure exposure 

1 3.20 500 5,000 35 25 233.0 181-287 24.21 
A 

2 3.21 None 5,000 684 25 238.1 201-315 28.92 

3 3.21 500 5,000 31 25 283.8 229-344 34.16 
8 

4 3.38 None 5,000 172 25 289.2 239-353 32.14 
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difference between cysts from primary and secondary infections (p = 0.05) and hence 

no evidence of any association between host immune status and parasite growth. 

Partial immunity of the previously exposed fish of each group was confirmed by low 

%PEI values following challenge as compared with those from the unexposed fish 

(0.7% vs. 13.6% - pair A; 0;6% vs. 3.4% - pair B). It was noted that the duration of 

trophont development within the fish appeared unaffected by host immune status, with 

trophont exit occurring between 76-88 h for all 4 fish. 

5. DURATION OF IMMUNE PROTECTION 

Twelve mullet were immunised against C.irritans following three exposures 

each to 5,000 theronts, administered 14 days apart. At the third exposure, for each 

experimental fish, a weight matched control mullet, naive to C.irritans, was separately 

exposed to an equivalent number of theronts obtained from the same source in order 

to control for theront viability (methods, section 2.2); significant immune protection 

was confirmed in all experimental fish, according to criteria given earlier (methods 

2.3). The 12 fish were divided into three groups and held under non-stressful 

hyposaline conditions without further exposure to C.irritans for either 1.5 months (5 

fish), 3 months (5 fish), or. 6 months (2 fish). At the appropriate time, fish were 

individually challenged with 5,000 theronts, along with weight matched control mullet 

previously unexposed to C.irritans. Numbers of trophonts released were recorded for 

each fish (Table 15), the degree of immune protection being indicated by the numbers 

sustained following challenge as compared with that from the paired control. All 12 

experimental fish exhibited significant immune protection to challenge. Very low 

parasite levels (%PEI S 0.'2%), indicating a high. degree of sustained immune 

protection, were observed in fish held for up to 3 months, with full protection being 
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Table 15 

Duration of immune protection in mullet against C.irritans. 

Number of trophonts %PEI 

Duration Fish group Number per released per fish: median median 

(months)' group (mean) range (range) 

Exposed2 5 0 0 
(2.6) 0-9 (0.0-0.2) 

1.5 Control3 5 217 4.3 
(262.0) 146-402 (2.9-8.0) 

Exposed 5 0 0 
(0) 0 (0) 

3.0 Control 5 214 4.3 
(206.0) 141-283 (2.8-5.7) 

Exposed 2 11 0.2 
(10.5) 4-17 (0.1-0.3) 

6.0 Control 2 272 5.4 
(271.5) 216-327 (4.3-6.5) 

1 Time between third exposure to C.irrita11s and challenge. 

2 Mullet which had received three exposures to C.irritans prior to challenge. 

3 Weight matched control mullet not exposed to C.irrit01rs prior to challenge. 
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recorded in 60% at 1.5 months and 100% at 3 months. For the 2 fish held for 6 

months, a relatively lower level of immune protection was apparent, with higher 

numbers of parasites being sustained following challenge as compared with fish held 

up to 3 months, and with neither fish showing full protection. 

6. SPECIFICI1Y OF ACQUIRED IMMUNE PROTECfiON 

The specificity of the immune response of mullet to C.irritans was assessed by 

cross-challenge with the closely related ciliate, J.multifiliis which also occupies the 

same preferred site within its fish host. The infection and cross-challenge procedure 

devised here is shown in Fig. 37. Five mullet were each immunised against C.irritans 

by two exposures to 5,000 theronts, administered 14 days apart. At the second 

exposure, the 5 fish were considered to have acquired significant immune protection 

as based on comparison with paired naive controls (methods, section 2.3). The 5 

mullet were rested for 7 days after which they were acclimated to freshwater, via 2-7 

days in 25% SW, for challenge with J.multifiliis. Each of the 5 fish was challenged 

with 5,000 theronts of J.multifiliis, as previously described, along with a weight 

matched control mullet naive to both C.irritans and J.multifiliis. Levels of infection 

with J.multifiliis sustained by the 5 test fish and their paired controls, at 48h post­

exposure, are shown in Table 16. The mean numbers of trophonts of J.multifiliis per 

mm2 caudal fin were 0.54 for the 5 mullet immune to C.irritans and 0.49 for the 5 

previously unexposed control fish; this difference being insignificant according to T 

test analysis by the paired comparisons method (P >0.5; n = 5 pairs) (Swinscow, 

1980). These results provide no evidence for cross-protection against J.multifiliis in 

mullet possessing immunity to C.irritans. 
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Figure 37 

Procedure for challenge of mullet with J.multifiliis following primary and secondary 
exposures to C.irritans. 

Cl = C.irritans. 

IM = l.multifiliis. 

5,000 = number of theronts per exposure. 
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Table 16 

Effect of immune status of mullet to C.irritans on protection against infection with 
J.multifiliis. 

Parasite levels in caudal fin following 
challenge with J.multifiliis 

Fish Fish Immunity to 
No. trophonts Area of fm No.trophonts 

pau # C.irritans in fm examined /mm2 fm 
(mm2

) 

1 yes 18 36 0.50 
A 

2 28 0.39 no 11 

I I 
3 

I 
yes 28 32 0.88 

I 
B 

"4 6 27 0.22 no 

I 
5 

I 
yes 9 34 0.26 

I 
c 

6 16 32 0.50 no 

I 
7 

I 
yes 15 35 0.43 

I D 
8 33 34 0.97 no 

I 
9 

I 
yes 

I 
19 

I 
30 

I 
0.63 

I 
E 

10 15 41 0.37 no 
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DISCUSSION 

Mullet are shown to be susceptible to C.irritans, sustaining infection levels of 

up to 267 parasites per gram of fish. The linear relationship between the numbers of 

parasites establishing infection in naive mullet and the numbers of theronts to which 

the fish was exposed, provide no evidence for a density-dependent or intra-specific 

competition in parasite establishment, even at infection levels resulting in significant 

host mortalities. A similar finding was made from studies on the infection dynamics 

of /.multiftliis in mollies, Poecilia latipinna, by McCallum {1982). Although mullet 

were clearly susceptible to C.im'tans, only a small percentage of theronts, not more 

than 18%, were able to establish infection in naive hosts. Houghton (1987) noted that 

only 25% of theronts of l.multifiliis established infection in carp under experimental 

conditions. McCallum {1982) similarly recorded unexpectedly low infection levels of 

/.multifiliis in mollies and suggested that this might be attributed to loss of viabili ty, 

resulting from reduced nutritional or energy status in the majority of theronts. 

Theront viability would be affected by failure to fully differentiate within the 

reproductive cyst and with age following excystment, as there appears to be no 

evidence of energy resources· being replenished from the external environment. In the 

present study, however, mullet were exposed to theronts of C.irritans within four hours 

of excystment, within the period of maximum viability, as predetermined earlier. It 

is probable that host factors also account for the low percentage of theronts 

establishing infection. McCallum (1982), in considering differences in host 

susceptibility of mollies to J.multifiliis, speculated that a previous unknown exposure 

to the parasite, resulting in partial hnmunity, might have accounted for such variation. 

This was not the case, however, in the present study, as mullet for experimental 
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infections were collected from British coastal waters outside the geographical range 

of C.irritans. Clayton and Price (1992) have shown that variability in guppies 

associated with genetically inherited traits influences their susceptibility to J.multifiliis. 

Such factors could explain results here in which mullet exposed to the same number 

of theronts of C.irritans under identical conditions developed significantly different 

levels of primary infection, varying from 2-18% of the initial exposure. Little is known 

of the role of innate immunity in controlling the invasion of fish by protozoa although 

epithelial mucus can inhibit the attachment of certain other microbial pathogens 

(Ourth, 1980; Ellis, 1989). Contact, recognition and infection of fish hosts might be 

expecte~ to pose many difficulties for an infective agent such as the theront of 

C.irritans, particularly as there is no evidence in support of a host finding mechanism. 

The degree of activity of mullet during exposure may be significant in this respect in 

effecting the chances of random host location and attachment by the theronts of 

C.im·rans. Host recognition factors associated with ectoparasites and endoparasites 

invading the skin of fish have been detected within the mucus layer (Kearn, 1988; 

Lom and Cerkasovova, 1974). The possibility cannot be ruled out, therefore, that 

many theronts become entrapped in excess mucus shed from mullet under conditions 

of stress within experimentaJ infection aquaria. The low percentage of theronts of 

C.irritans which established primary infections in mullet here may, therefore, reflect 

their probability to contact the host surface rather than be an expression of viability. 

Cryptocaryosis is a potentially acute disease, mullet deaths occurring within five 

days in primary infections following exposure to high numbers of theronts. It is not 

surprising, therefore, that sudden deaths and mass mortalities of fish in mariculture 

have been attributed to this pathogen (Huff and Burns, 1981; Rasheed, 1989). The 

cause of death from cryptocaryosis was not investigated here, although it is probable 
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that gross epidermal disruption associated with trophont release would result in 

osmotic imbalance and respiratory stress. Hines and Spira (1974a) considered these 

factors to be the major cause of death in carp infected with J.multifiliis. It was 

important in the present study, therefore, to establish a sub-lethal exposure level for 

immunisation and challenge infections of mullet with C.irritans. Five thousand 

theronts per 4g mullet, provided a level sufficient to immunise with a single exposure, 

with minimal host deaths. 

Infection and challenge experiments· using mullet have provided the first 

conclusive evidence that fish have a capability to acquire protective immunity with 

memory to C.irritans. This is as might be expected as many species of freshwater 

teleosts develop protection against the closely related ciliate J.multifiliis which has a 

similar course of infection invading the epithelium (Lahav and Sarig, 1973; Hines and 

Spira, 1974b; Valtonen and Keranen, 1981; McCallum, 1986; Houghton, 1987). The 

demonstration of protection in mullet against reinfection with C.irritans within 14 days 

following a single exposure also compares favourably with that recorded in carp to 

J.multifiliis (Houghton, 1987). Although temperature has a positive influence on the 

kinetics of fish immune mechanisms (Hildermann, 1957; Rijkers, 1982) it was not 

possible to determine whether tropical species respond more rapidly to C.irritans. The 

immune response of mullet collected here from temperate waters and maintained at 

temperatures in excess of 23°C could not be considered representative of normal host 

species from parasite endemic regions. 

The degree of acquired immunity to C.irritans was positively related here to the 

number and size of exposures. Establishment of partial protection in mullet following 

a single exposure level of only 500 theronts suggests the existence of a critical lower 

threshold to elicit a protective response for this pathogen. The possible implications 
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.¥. 

of an immune threshold in the development of vaccination programmes is considered 

in the final discussion. 

That immunological memory is established in mullet against C.irritans has 

clearly been demonstrated here with sustained protection of at least six months in the 

absence of re-exposure to the parasite. Memory is well recognised in fish for both 

humoral and cell mediated immunity (Rijkers et al., 1980, Rijkers, 1982), including 

mullet, C.labrosus (Mughal, 1984), the duration being influenced by temperature and 

the dose and nature of antigen administered at immunisation (Ellis, 1988). To what 

extent the duration and amplitude of the anamnestic response to C.irritans can be 

enhanced in marine species of fish maintained under tropical conditions warrants 

further investigation. Such studies will be vital in assessing the feasibility of affording 

protection to this parasite by vaccination. 

Immunisation of mullet against C.irritans provided no cross- protection against 

the related ciliate J.multifiliis. Nevertheless, some evidence exists for cross-protection 

between J.multijiliis and T.pyrifonnis in freshwater fish hosts (Wolf and Markiw, 1982; 

Dickerson et al., 1984) although more recent studies have questioned the involvement 

of a specific immune response (Graves et al., 1985). That T.pyrifonnis and other 

adjuvants could provide some protection against J.multijiliis by enhancing non-specific 

mechanisms is suggested from in vitro studies of killer cells by Graves et al. (1985). 

The application of such an approach to the control of cryptocaryosis may well provide 

some alleviation from acute disease whilst acquired immunity becomes established. 

The establishment of low numbers of C.irritans on some fish following two or 

more exposures to the parasite indicates a significant, but incomplete immune 

protection. Hines & Spira (1974a), McCallum (1986) and Houghton (1987) have 

made similar observations in fish immunised against J.multifiliis, small numbers of 
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parasites establishing on challenge completing normal development. In these 

instances (Hines & Spira, 1974a; Houghton, 1987), the trophonts were confined to the 

periphery of the fins, possibly indicative of poor immune response in sites of reduced 

blood flow. No such distribution of C.irritans on immune mullet was observed here. 

It is possible that host protective mechanisms operate during or shortly following 

parasite invasion of the epidermis, subsequent immune responses directed at the 

parasite becoming ameliorated by normal feeding activity with lysis and break down 

of host tissue. Occasional observations of white fletches on the fins of immune mullet 

following exposure to theronts but in the absence of established trophonts, suggests 

some brief interaction between host and parasite. It is possible that a proportion of 

theronts which invade immune fish are subsequently destroyed in situ or prematurely 

exit from the host. Evidence for a brief invasion of immune fish by J.multifiliis 

theronts comes from studies by Ewing et al. (1986) and Cross (1990). Further 

evidence that immune protection against C.im'tans functions early in the infection 

process comes from observations on immune mullet, which although sustaining few 

parasites, as compared with controls, showed no inhibitory effects on those trophonts 

which established infection, both in terms of trophont growth rate and duration on 

host. The underlying effector mechanisms for immune protection could not be 

ascertained from these studies; examination for specific antibody production to 

C.irritans will be investigated in Chapter 6. 
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CHAPTER FIVE 

CHARACTERISATION OF MAJOR 

POLYPEPTIDES 

INTRODUCTION 

There has been no previous research into the molecular biology of C.irritans, 

however, the characterisation of proteins and polypeptides for other aquatic ciliates, 

including parasites of fish, is briefly reviewed. 

Studies of the major proteins of ciliates which are closely related to C.irritans 

have been investigated by several workers. Pyle and Dawe (1985), working on 

I.multijiliis, used polyacrylamide gel electrophoresis (PAGE) to reveal quantitative and 

possibly qualitative differences in the protein patterns of different life-cycle stages of 

the parasite. Unfortunately, these authors did not characterise the proteins by 

molecular weight, thereby preventing comparison with other species. Further 

compositional analysis of /.multifiliis has identified ciliary antigens (Clark et al., 1988) 

and possible membrane-associated immobilisation antigens (Dickerson et al., 1989) 

which may be important in eliciting the host response. Protein analyses on 

Tetrahymena, a ciliate which can be easily propagated in vitro, have been extensively 

undertaken (Buhse and Williams, 1982; Williams et al., 1984; Doerder and Berkowitz, 

1986); these studies may provide data for comparison with C.irritans. Little is known 

of the molecular composition of other ciliate parasites of fish, the majority of which 

have not been successfully maintained in vivo or in vitro, or have not attracted 
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attention as economically important pathogens. With regards to ciliates which are 

obligate parasites, a major limiting factor has been the difficulty in obtaining sufficient 

parasite material, in the absence of in vitro propagation methods. 

The objectives of the present study were first to identify the major polypeptides 

of C.irritans by PAGE analysis. Secondly, to compare polypeptide profiles between 

different isolates with a view to strain detection, and between the theront and 

trophont stages in order to detect any stage-specific molecules. Further, polypeptide 

analysis of the theronts and trophonts of J.multifiliis and trophozoites of T.pyrifomzis 

would be undertaken to allow comparative studies between these closely related 

ciliates. Elucidation of the polypeptide composition of C.irritans should provide a 

basis for the future characterisation, identification, and isolation of parasite molecules 

which may be relevant in eliciting host protection, and therefore offer potential as 

candidate vaccines. 
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MATERIALS AND METHODS 

1. CILIATES 

In addition to C.irritans, the related ciliates J.mu/tifiliis and Tetrahymena 

pyrifonnis were also used for antigen analysis. Trophonts and theronts of C.irritans 

and J.multifiliis were available through in vivo maintenance, as described earlier 

(Chapters 3 and 4, methods). 

1.1 Maintenance of T.pyrlformis 

T.pyrifonnis strain 1630/W, obtained from the Freshwater Biological 

Association, Windermere, U.K., was cultured axenically at RT in 1% proteose peptone 

(Lab M) containing 0.25% yeast extract (Oxoid), and sub-cultured weekly. Cells were 

harvested during their growth phase. Medium-free cells were obtained by repeated 

centrifugation at 2,000g and resuspension in distilled water or PBS. 

1.2 Ultrasonic disruption of ciliate cells 

Ciliate cells for sonication were maintained alive or stockpiled by 

cryopreservation until required. Material was sonicated at 141Jm amplitude in an 

MSE ultrasonic disruptor fitted with a 3mm diameter microprobe. In order to prevent 

overheating, the cells were kept on ice and pulse sonicated at 15 sec intervals for a 

total sonication period of 2 to 5 min. Sample solubilisation was monitored 

microscopically at 30 to 60 sec intervals, samples being centrifuged at 8,000g until a 

constant size pellet was obtained. 
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1.3 Protein and lipid assays for C.irritans 

1.3.1 Protein 

The protein estimation method of Lowry et al. ( 1951) was modified to a micro­

assay in view of the small sample sizes available. Trophonts of isolate CI-HT, obtained 

from a primary infection, were enumerated, the numbers adjusted to samples of 100 

or 200, and washed in FS-SW. Trophonts were resuspended in PBS and sonicated for 

2 min according to the method given above. Sonicated trophonts were solubilised in 

2% Na2C03 in 0.1M NaOH, prior to reaction. Protein standards comprised bovine 

albumin (Sigma, product A-7906) diluted over the range 25!-'g/ml to 1mg/ml in PBS. 

Colour reactions were read against PBS at 625nrn and protein concentrations of test 

samples extrapolated from the standard curve. 

1.3.2 Total lipids 

The sulphophosphovanilin colorimetric method of Zollner and Kirsch (1962) 

was followed, using a proprietary kit (Boehringer, Germany). Trophonts numbering 

1,400 of CI-HT isolate, were washed and sonicated using the methods given above for 

protein estimation. The manufacturer's total lipids standards were used. Colour 

reactions were read at 530nin. 

2. MULLET IMMUNOGLOBULIN 

Immunoglobulin from mullet, obtained from Ultrogel fractionation of whole 

serum (Chapter 6), was analysed by SDS-PAGE on a 11% gel. 

3. POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE) 

One-dimensional PAGE was performed either under reducing conditions, using 
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2-mercaptoethanol to disrupt disulphide bonds, or under non-reducing conditions, as 

follows. Vertical slab polyacrylamide gels, 75 X lOOmm, 0.75mm thick, were cast on 

a stand (Mini-protean 11, Biorad, USA). Between 4J.d and lOJ..Ll samples were loaded 

per track (10 well combs) and electrophoresed in a water cooled apparatus (LKB, 

"Midget 2050") at a constant lOOV through the stacking gel, increased to 200V through 

the separating gel. Protein migration was monitored using a bromo-phenol blue dye 

marker incorporated with the sample buffer. Buffers were prepared according to the 

Sigma technical bulletin (MWS-877L). 

3.1 Sodium dodecyl sulphate (SDS)-PAGE 

Seven or 11 % separating gels were overlaid with a 3% stacking gel, using the 

discontinuous buffer system of Laemmli (1970). Gels were run for 30 to 60 min. 

Molecular weight standards comprised, for 11 % gels: bovine milk alpha-lactalbumin 

{14.2kDa), soybean trypsin inhibitor (20.1kDa), bovine pancreas trypsinogen (24kDa), 

bovine erythrocytes carbonic anhydrase (29kDa), rabbit muscle glyceraldehyde-3-

phosphate dehydrogenase subunit (36kDa), egg albumin (45kDa), bovine albumin 

(66kDa) (Sigrna, MW marker kit, MW-SDS-70L), and for 7% gels: carbonic anhydrase 

(29kDa), egg albumin (45kDa), bovine albumin (66kDa), rabbit muscle phosphorylase 

B subunit (97.4kDa), Escherichia coli beta-galactosidase subunit (116kDa), rabbit 

muscle myosin subunit (205kDa) (Sigma, MW marker kit, MW-SDS-200). 

3.2 Gel stainina= for protein and carbohydrate 

3.2.1 Protein 

Gels were stained with 0.175% Coornassie brilliant blue in 40% (v/v) 

methanol, 7% (v /v) glacial acetic acid fixative (Johnstone and Thorpe, 1982). 
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Enhanced sensitivity was achieved by monochromatic silver staining (Wray et al., 

1981). Polypeptide sizes were estimated from molecular weight standard curves 

constructed for each gel. 

3.2.2 Carbohydrate 

Gels were stained for the presence of carbohydrate by the periodic acid -

Schiffs method, red-staining bands indicating glycoproteins (Johnstone and Thorpe, 

1982). 
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EXPERIMENTS AND RESULTS 

The polypeptide composition of C.irritans and related ciliates was investigated 

using biochemical and electrophoretic techniques. 

1. BIOCHEMICAL ANALYSIS OF C.IRRITANS TROPHONTS 

Biochemical analysis of trophonts indicates a protein value of 1.9 to 2.2J.Lg per 

trophont and total lipids 0.35J.Lg per trophont. 

2. SDS-PAGE ANALYSIS 

2.1 C.irritans trophonts 

Slight quantitative and qualitative differences in polypeptides were found 

between cell preparations obtained from the same C.irritans isolate which were 

possibly attributable to the varying extent of solubilisation between samples. 

Sonication prior to solubilisation and electrophoresis reduced variation, but was 

necessarily limited to larger samples. Comparative studies were therefore based on 

routinely observed polypeptide profiles, gained from repeated runs. 

2.1.1 Comparison between trophont isolates 

Eleven percent SDS-PAGE analysis of trophont sonicate preparations from 

three isolates of C.irritans, namely, CI-FL, CI-HT, and CI-GS, is shown in Fig. 38. At 

least 25 bands were resolved for each isolate, most occurring between 20kDa and 

lOOkDa. A broad diffusely stained region was detected over the low MW range ( < 

20kDa). Seven percent SDS-PAGE analysis of C.irritans trophonts resolved a further 

7 bands above lOOkDa, of which 2 were predominant, occurring at 107 and 148kDa 
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Figure 38 

Comparison of polypeptide profiles of trophonts from three isolates of C.irritans, by 
SDS-PAGE. 

Electrophoresis performed in 11% gel under reducing conditions, and stained with 
Coomassie blue. 

FL, HT, and GS = isolates of C.irritans. 

MW = molecular weight marker set. 

Arrows show 67-68 kDa positions. 

183 



kDa 

66 

45 

36 

29 

20.1 

14.2 

MW FL HT GS 

184 



positions (not shown). No significant qualitative polypeptide differences between the 

three isolates were observed. A major quantitative difference was found with the 67-

68kDa component of trophonts which stained heavily in the CI-GS preparation, 

moderately in CI-HT and weakly in CI-FL. 

2.2 Comparison between C.irritans trophonts and other ciliates 

Comparative polypeptide profiles, following 11% SDS-PAGE, were made for 

the trophont and theront stages of both C.irritans (CI-GS) and J.multifiliis (isolate IM­

CC) and the trophozoites of T.pyriformis strain 1630/W. Coomassie blue staining of 

trophont and trophozoite preparations of all ciliate species tested revealed at least 30 

bands each, but only 8 to 10 bands in theront preparations. Silver staining of theronts 

increased resolution to > 20 bands, however when applied to trophonts and 

T.pyrifonnis, this caused overstaining, restricting interpretation. Major polypeptide 

bands are shown diagrammatically in Fig. 39, compiled from consistent results 

obtained using Coomassie and silver staining. Comparison between C.im'tans 

trophont and theront stages of the same isolate suggests both common and possibly 

stage-specific polypeptides; a similar pattern is observed for J.multifiliis. A degree of 

homology with regards to fi\le major trophont polypeptides is seen between C.irritans 

and J.multifiliis. Less homology is observed between the trophont of either species 

and T.pyriformis. 

A major band was detected in all five preparations at the 55- 56kDa position, 

being least strongly staining in C.irritans trophonts. A major 44- 45kDa band was 

present in the tlJeronts of C.im'tans and in both theronts and trophonts of J.multifiliis 

but appeared as very faint in the trophonts of C.irritans and absent in T.pyriformis. 

A 68kDa polypeptide, which varied quantitatively between C.irritans trophont isolates, 
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Figure 39 

Comparison of major polypeptides of trophonts and theronts of C.irritans, trophonts 
and theronts of I.multifiliis, and trophozoites of T.pyrifonnis, by SDS-PAGE. 

Electrophoresis performed in 11% gel under reducing conditions. 

Cl = C.initans 

IM = J.multi.filiis 

TP = T.pyrifonnis 

MW = molecular weight marker set 

Arrows show molecular weight (kDa) 

Intensity of staining: 

weak (included for comparative purposes) 

-
! increasing intensity 

f2?2Zf diffusely stained region 
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was also present in J.multifiliis trophonts, but absent in the theront stage of both 

species, as well as in T.pyrifonnis. Staining of all ciliate preparations for carbohydrate 

resulted in reactivity only with C.irritans trophonts, with a diffuse stained area 

extending across the low molecular weight region, between ea. 2- 17kDa. 

Greater polypeptide homology is observed between the theront stages of 

C.irritans and l.multifiliis than compared with trophont polypeptides, as revealed by 

silver staining, (Fig. 40). Twenty-one distinct bands were resolved for the C.irritans 

theronts and 35 for the same stage of I.multifiliis; additional diffusely stained bands 

of low molecular weight were recorded for both species. The three major polypeptide 

bands at 41, 44, and 55kDa appeared common to both species; a further 11 minor 

bands also showed molecular weight homology. 

2.3 Mullet immuno~:Jobulin 

SDS-PAGE separation of mullet immunoglobulin (Mig) revealed two major 

bands (Fig. 41 ). These comprised a discrete, intensely-staining polypeptide at 67-

68kDa and a moderately stained diffuse region between 27.5- 29kDa, roughly 

corresponding in molecular weight to immunoglobulin heavy (H) and light (L) chains, 

respectively. The 67- 68kDa H chain of mullet serum corresponds with an equivalent 

sized dominant polypeptide in trophonts of both C.irritans and J.multifiliis, but absent 

in theronts of both these species and also absent in trophozoites of T.pyrifonnis. The 

27.5- 29kDa L chain of mullet immunoglobulin, which contains 2 minor bands, showed 

no molecular weight counterpart in any of the ciliate preparations examined. 

Estimated molecular weight of the intact mullet lg molecule is 766kDa, based on the 

formula: [2H + 2L] X4; this assumes mullet serum Ig is tetrameric. 
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Figure 40 

Comparison of polypeptides of theronts between C.irritans and l.multifiliis, by SDS­
PAGE. 

Electrophoresis performed in 11% gel under reducing conditions, followed by 
monochromatic silver staining. 

Cl = C. irritans 

IM = J.multifiliis 

MW = molecular weight marker set. 

Arrows show molecular weights (kDa) of major bands common to both species. 

189 



190 



Figure 41 

SDS-PAGE analysis of mullet serum immunoglobulin (Mlg), Ultrogel fraction. 

Electrophoresis performed in 11% gel under reducing conditions, followed by 
monochromatic silver staining. 

H = heavy chain region, 67-68 kDa. 

L = light chain region, 27.5-29 kDa. 

Mlg = mullet immunoglobulin. 

MW = molecular weight marker set. 

Arrows show molecular weight sub-populations of L chain. 
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DISCUSSION 

SOS-PAGE analysis of C.irritans routinely resolved at least 20 polypeptide 

components in both the trophont and theront stages. Five predominant polypeptides, 

occurring between 38kDa and 75kDa, were recorded for trophonts and three, between 

41kDa and 55k0a, for theronts, using 11% gels. 

The absence of qualitative differences between polypeptide profiles of 

trophonts obtained from three isolates of C.irritans provided no evidence for the 

existence of strains. The 67-68k0a polypeptide, which differed quantitatively between 

the three isolates, is discussed later. Given the impossibility of tracing the history of 

the C.irritans isolates studied here, it is not possible to exclude a common origin 

accounting for their similar polypeptide profiles. Strain differences have been well 

documented for Tetrahymena and protein analysis has formed the basis for describing 

new species within this genus (Williams et al., 1984). Further investigation for 

possible strains of C.irritans would therefore seem worth pursuing, particularly as an 

isolate has recently been described from the cooler waters of the Eastern 

Mediterranean by Oiamant et al. (1991). 

Qualitative differences in the polypeptide profiles between theronts and 

trophonts of C.irritans suggested the presence of stage-specific proteins. The 

occurrence of such proteins has been well documented for medically important 

parasitic protozoa (Arujo et al., 1982; McMahon-Pratt and Oavid, 1982; Martinez, 

1987). In contrast, few such studies appear to have been reported for fish protozoan 

parasites, with the exception of I.multifiliis where stage-specific components were 

demonstrated by SOS-PAGE analysis following studies of the parasite from its free­

living trophont stage through to the theront (Pyle and Oawe, 1985). The existence of 
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stage-specific proteins of C.irritans seems probable, given the differing functional 

requirements of the life cycle stages. It is likely that some stage-specific proteins are 

enzymes. For example, hyaluronidase, which causes breakdown of host intercellular 

material, has been detected in the theronts but not the trophonts of C.irritans 

(Colorni, 1988). 

Major polypeptides, showing quantitative, rather than qualitative, differences 

between theronts and trophonts probably include structural molecules. The 55-56kDa 

polypeptide, found in all ciliate preparations, appeared more predominant in the 

theronts of C.irritans as compared with trophonts, and may be the 55kDa tubulin 

polypeptide identified from the cilia of J.multifiliis by Clark et al. (1988). Similarly, 

the 44-45kDa band was quantitatively greater in theronts as compared with trophonts 

of C.irritans. The greater degree of ciliation in theronts as compared to trophonts, 

observed here, could be significant in accounting for quantitative differences in both 

the 44-45kDa and 55-56kDa bands. The 44-45kDa polypeptide, which was also found 

in theronts and trophonts of J.multifiliis, closely correlates with a major I.multifiliis 

component reported by Pyle and Dawe (1985), and may represent the 43kDa cilial 

membrane polypeptide which has been identified in the theronts of J.multijiliis by 

Clark et al. (1988) and Dickerson et al. (1989). The 43kDa polypeptide has been 

identified as a predominant surface antigen (Dickerson et al., 1989), possibly 

analogous to the 44-52kDa immobilisation ("i")-antigens of Tetrahymena (Williams et 

al., 1985; Doerder and Berkowitz, 1986) and the low molecular weight population i­

antigens of the ciliate Paramecium (Eisenbach et al., 1983; Capdeville et al., 1985). 

Given the molecular weight heterogeneity of i-antigens amongst the ciliates, the 

absence of a predominant :::::43kDa component in the trophonts of C.irritans does not 

preclude the possibility of other molecular weight components functioning as i-

194 



antigens. Studies here have shown a high degree of apparent homology in major 

polypeptides between C.irritans and l.multijiliis with respect to trophonts, and in 

particular, theronts. Such inter-species homology appears greater than that between 

the two life-cycle stages for either parasite. However, the major polypeptides of 

C.irritans and I.multijiliis showed less homology with T.pyrifonnis trophozoites. These 

polypeptide patterns lend some support to the current classification of C.irritans and 

I.multifiliis within the same family (Fig. 2), as based on morphological characteristics 

(Corliss, 1979). 

The demonstration of polypeptides shared between C.irritans and non­

parasitic ciliate species could be beneficial to vaccination studies, by identifying 

possible antigens of easily cultured free-living species which may elicit cross­

protection. This approach has been attempted using T.pyrifonnis as a vaccine against 

ichthyophthiriasis (Goven et al., 1980; Wolf and Markiw, 1982; Dickerson et al., 1984). 

However, structural polypeptides may be of less importance in terms of antigenicity. 

For example, the presumptive 55kDa tubulin molecule, shown here to be present in 

all three ciliate species tested, is a highly conserved polypeptide and therefore unlikely 

to be highly antigenic (Benjamin et al., 1984). In view of observed differences in 

cross-protective efficacy betWeen strains of Tetrahymena (Dickerson et al., 1984), with 

some strains giving no cross-protection (Houghton, 1987), it would seem valuable to 

use polypeptide analysis to identify strains of T.pyrifonnis possessing possible shared 

antigens, for selection of candidate vaccines. 

Care must be taken in the interpretation of polypeptide profiles, for the 

following reasons. Limitations in the level of resolution achieved here together with 

slight compositional variations in the ciliate preparations has restricted comparative 

studies to major polypeptides; such major components appear to include structural 
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polypeptides which may not be important antigenicaiJy, as discussed above. It is 

likely that numerous non-structural minor polypeptides, some possibly important 

antigens, were present in the ciliate preparations but were either undetected or 

insufficiently resolved to be included in the comparative analyses. Furthermore, the 

protein composition of ciliates may be altered in response to changing environmental 

conditions, as shown for Tetrahymena vorax trophozoites by Buhse and Williams 

(1982). The influence of culture conditions may therefore confuse comparative 

polypeptide profile analyses between different laboratories. Finaiiy, the possibility 

that certain polypeptide components identified in the C.irritans and l.multifiliis stages 

are derived from either bacteria- "xenosomes" (Corliss, 1985) or the host fish, cannot 

be excluded. Gram negative bacteria, existing as endocytobionts, have been found in 

aii stages of l.multifiliis (Roque et al., 1967; Lobo-da-Cunha and Azevedo, 1988) and 

in the marine ciliate, Parauronema acutum (Soldo et al., 1974). With regards to host 

polypeptides, of particular interest is the 68kDa component, present in the trophonts 

but not theronts of both C.irritans and I.multifiliis. This polypeptide shows molecular 

weight homology with the presumptive H chain of muiiet serum immunoglobulin. The 

presence of host immunoglobulin within the trophonts of C.irritans could be a result 

of the parasite's feeding iQ the epidermis, given that immunoglobulin has been 

identified in the skin epidermal tissue of teleosts (reviewed in Chapter 2). Further 

evidence for host immunoglobulin within C.irritans trophonts is presented in Chapters 

6 and 7. 

It is worth mentioning that studies here have permitted molecular weight 

characterisation of mullet immunoglobulin H and L chains, calculated to be 67-68 kDa 

and 27.5-29 kDa, respectively. Thes.e values are similar to those reported for other 

teleosts, including salmonids: H :::::72-75kDa; L :::::23-26kDa (Cisar and Fryer, 1974; 
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Kobayashi et al., 1982), carp: H :::71-76kDa; L :::24-26kDa (Marchalonis et al., 1971; 

Vilain et al., 1984), cod: H :::81kDa; L :::27.5kDa (Pilstrom and Petersson, 1991}, 

channel catfish: H :::70kDa; L :::22-26kDa (Lobb and Olson, 1988), and flounder: H 

:::72 kDa; L :::22-28 kDa (Giynn and Pulsford, 1990}. The presence in mullet 

immunoglobulin of a diffuse L chain region containing two bands suggests distinct 

molecular weight L chain populations, as identified in channel catfish L chain by Lobb 

and Olson (1988). The observed molecular weight heterogeneity may reflect differing 

functional roles of the immunoglobulin molecules. 
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INTRODUCTION 

CHAPTER SIX 

SEROLOGY 

No studies have been reported on the immune responses in fish to C.irritans. 

Immunological investigations are necessary in order to understand the underlying 

mechanisms responsible for acquired protection, observed here for mullet, following 

infection with C.irritans. Methods to investigate specific immunity in fish have mostly 

comprised antibody detection assays which have provided useful information on host 

immune recognition and response to pathogens (Trump and Hildemann, 1970; 

Desvaux and Charlemagne, 1981; Wood and Matthews, 1987), including protozoa 

(Rijkers et al., 1980; Sypek and Burreson, 1983; Burreson and Frizzle, 1986; Laudan 

et al., 1986; Clark et al., 1988; Gravil, 1991). Serological tests are now well established 

for medical and veterinary use (Voller et al., 1976; Rose and Bigazzi, 1980; Stites, 

1980; Wilson and Simpson, 1980), however, their application to fish has been 

restricted by the lack of commercially available immunological reagents, particularly 

antisera for the detection of fish antibody. Such reagents are a necessary pre­

requisite for the development of the enzyme-linked immunosorbent assay (ELISA) 

(Thuvander et al., 1987), a highly sensitive test which has gained increasing use 

(Edwards, 1985). The ELISA is ideally suited for studies on rnicroparasites which 

cannot be grown in vitro (Burgess, 1990), as the test requires little antigen. ELISA has 

been applied to measure antibody responses in fish to a variety of pathogens including 

viruses and bacteria (Dixon and Hill, 1983; Cossarini-Dunier, 1985; K.lesius et al., 
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1991; Lorenzen and Dixon, 1991), as well as eucaryotic parasites (McAnhur and 

Sengupta, 1982; Bortz et al., 1984; Whyte et al., 1987; Grayson et al., 1991) including 

ciliated protozoa (Cross, 1990; Gravil, 1991). 

In the absence of any previous studies on the immune response to C.irritans, 

it was considered appropriate to investigate for a specific antibody response to the 

parasite. This requires the production of specific antiserum reagents and parasite 

antigens for the development of serological assays to measure antibody. The 

serological tests would be applied to determine whether mullet produce an antibody 

response following exposure to C.irritans by natural infection or immunisation. Specific 

antibodies, if detected, would be investigated for any correlation between their levels 

and the degree of protection to C.irritans infection, and the duration of the antibody 

response investigated in the absence of further exposure to parasite. The specific 

mammalian antisera would also be applied in serological assays as probes for 

antigenic cross-reactivity between C.irritans and related ciliates. 
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MATERIALS AND METHODS 

1. PROTEIN ASSAYS 

Total protein was estimated by either the Folin phenol colorimetric method 

(Lowry et al., 1951) or by Ultra-violet (U.V.) absorption at 280nm, the latter method 

being less sensitive but non-destructive to the test material. Bovine serum albumin 

(BSA, fraction V, Sigma), was used to prepare standards for each method. 

2. FISH SERUM COLLECTION AND STORAGE 

I}lood samples were collected from anaesthetised (benzocaine) mullet by 

caudal venepuncture, using either a 21G or 23G needle, depending on the size of fish. 

Volumes of blood less than 50~-£1 were successfully taken from small mullet. In these 

instances, blood was recovered from the 23G needle barrel by folding the latter into 

a polypropylene tube and centrifuging at 3,000 g, 5-10 sec. All blood samples were 

transferred to glass tubes or LP3 tubes (Luckham Ltd.), allowed to stand for 1 h at 

RT, and refrigerated overnight at 10"C for clot retraction. Samples were then 

centrifuged at 3,000g, 10 min, and the serum aliquoted amongst LP2 tubes (Luckham 

Ltd.) and stored at -20°C or in liquid nitrogen. 

Plasma fractions from whole blood, using an anticoagulant (e.g. heparin), were 

rarely taken due to problems with samples clotting following cryostorage. 

3. FISH MUCUS COLLECTION AND STORAGE 

Epithelial body mucus was collected from live mullet by one of the following 

methods, depending on fish size. Fish over 30cm length were briefly held in a dry 

polythene bag and the body gently massaged against the polythene. Following 
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removal of the fish, detached mucus within the bag was collected with a plastic 

spatula. For smaller fish (::::10-30cm) body mucus was removed using a cotton wool 

swabstick (Boots the Chemist Ltd., England) which was repeatedly applied in a head 

to tail direction whilst rotating the swabstick on its axis, until saturated. Swabstick 

absorbing capacity was determined as :::: 0.2ml fluid (mean capacity = 220 ± 50J.Ll, 

based on 20 swabsticks). Swabsticks were eluted in LP3 tubes containing PBS by 

repeatedly squeezing the cotton bud against the tube walJ. Mucus samples, collected 

by either method, were diluted fivefold (v /v) with PBS and stored at -20°C. For 

ELISA testing, mucus samples were further diluted to a final 1 in 10 in ELISA 

incubation buffer containing double strength Tween 20 (buffers given in appendix). 

It is noted here that mullet yield relatively small quantities of epithelial mucus 

as compared with carp or trout of a similar size. 

4. MAMMALIAN SERUM COLLECTION AND STORAGE 

Blood samples were taken from rabbits by marginal ear venepuncture. Rats 

were test bled from the caudal vein, larger quantities being collected by cardiac 

puncture immediately following death. All serum fractions were prepared and stored 

as for fish serum, described· earlier. 

5. PURIFICATION OF MULLET IMMUNOGLOBULIN 

5.1 Gel fractionation 

A highly enriched immunoglobulin (lg) fraction of mullet serum was prepared, 

based on the method described by Glynn and Pulsford (1990) for flounder. Gel 

filtration was performed using Ultrogel AcA22 polyacrylamidefagarose gel (LKB, 

Sweden), selected for its high resolution over the fractionation range 10S to 1.2 X 106 
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kDa (manufacturer's specifications). Three millilitres of serum was pooled from 

samples collected the previous day from three healthy mullet, each =:: 20cm length, and 

naive to C.imtans. Pooled serum was loaded onto a 1.6 X 90cm gel bed which had 

been equilibrated for 48 h with carrier buffer (PBS pH 7.6). Fractionation was 

performed at RT with a flow rate of 4ml/h. The eluent was directed through a 

280nm U.V. absorbance detector and into a fraction collector, set at 30 min/fraction 

( = 2ml/ fraction). Fractions were stored at 10°C until analysis. 

5.2 Protein estimation of fractions 

Fractions containing lg, previously identified by SDS-PAGE analysis, were 

measured for absorbance at 280nm. Protein estimations were obtained from the 

extinction coefficient (E~0) value for human IgM (E~ = 11.8) (Johnstone and 

Thorpe, 1982). 

5.3 Concentration of immuno~:lobulin fractions 

Fractions containing Ig were concentrated by polysulphone membrane 

centrifugation using Milipore "ultrafree" membranes of 10,000 MW limit (Milipore, 

USA). Fractions were spun at 1,000 to 2,500 g for various times, depending on the 

degree of concentration required. 

5.4 Electrophoretic analysis 

Concentrated Ig fractions were analysed under reducing conditions for the 

presence of lg heavy and light chains, using the Phast-gel apparatus (Pharmacia Ltd.). 

Spot samples of pr;!viously boiled fractions (diluted 1:1 in sample buffer) were loaded 

onto a commercially prepared 12.5% homogeneous gel ("Phastgel", Pharmacia.). 
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Reference samples comprised a molecular weight marker set (MW SDS-6H, Sigma, 

USA) and purified fractions of bovine Ig and flounder Ig, applied separately (the 

latter prepared by Or P. Glynn, University of Plymouth). The gel was stained for 

protein with Coomassie blue, followed by the monochromatic silver staining method 

of Wray et al. (1981). 

6. PREPARATION OF CILIATE ANTIGENS 

The following antigens were prepared and stored at -20°C and m liquid 

nitrogen. 

6.1 T.pyriformis trophozoite 

T.pyrifonnis strain 1630/W was used for raising antiserum in rats and sonicated 

trophozoites used as antigen for ELISA and for electrophoretic analysis. T.pyriformis 

cells, washed free of medium and resuspended in distilled water, were enumerated 

using a Sedgewick-Rafter counting chamber, and adjusted to 200,000 cells/m! with 

distilled water. Aliquots, O.Sml, of cells were frozen at -20°C for subsequent 

immunisations of rats. Antigen for ELl SA and immunoelectrophoresis was prepared 

from 3 ml cell suspension which was sonicated on ice in an ultrasonic disruptor (MSE 

Ltd.) using a 3mm tip microprobe. Sonication was performed at 18!-'m amplitude for 

a total of 2 min on a 50% cycle (30 sec on; 30 sec off). The sonicate was spun at 

ll,OOOg, 4 min, to sediment any particulate debris and the supernate retained, leaving 

a small pellet ( < 10!-'1) which was discarded. Total protein of the soluble sonicate was 

estimated using the Folin phenol method. The sonicate was aliquote,d in 50!-'1 and 

100!-'1 volumes and stored frozen (-20°C or liquid N2) until required. 

203 



6.2 C.irritans trophonl 

C.imtans trophonts were prepared for rabbit immunisation, ELISA antigen, and 

electrophoretic analysis. Trophonts which had recently exited from host mullet were 

washed by suspension in several changes of either filter sterilised synthetic seawater 

or saline (0.85g NaCl/litre). Information regarding isolate type, trophont density, and 

preparation number, were recorded for each antigen batch. 

6.2.1 C.irritans soluble anti~:en 

Soluble trophont antigen was prepared from two separate isolates, CI-CR 

(preparation 13) and CI-GS (pooled preparations 44/46), both of which had previously 

been shown to possess similar protein profiles by SDS-PAGE analysis. Antigen CI­

GS(44/46) was prepared from 1,400 trophonts diluted in 2 ml ELISA carbonate 

coating buffer (buffer details in appendix). Trophonts were then sonicated on ice at 

18~m amplitude for a total of 6 min, using the MSE ultrasonic disruptor set at a 50% 

cycle time, as described earlier for T.pyrifonnis. The sonicate was centrifuged at 

ll,OOOg, 5 min, and the supernate retained, adjusted to 3 ml with ELISA coating 

buffer, and distributed in 50~1 and 100~1 aliquots at -20°C and in liquid N2• Antigen 

CI-CR(13) was similarly prepared from 2,000 trophonts. 

7. PRODUCTION OF MAMMALIAN ANTISERA 

The following antisera were raised for use in ELl SA and other serological tests: 

- Rabbit antiserum to mullet immunoglobulins; 

- Rabbit antiserum to C.imtans trophonts; 

- Rat antiserum to Tetrahymena pyrifomzis. 
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Laboratory mammals were immunised according to established procedures 

(Johnstone and Thorpe, 1982; Dresser, 1986), small quantities of antigen being used 

in accordance with current recommendations (Goding, 1983). 

7.1 Rabbit antiserum to mullet lmmunoelobulins <RABantiMI&l 

The mullet Ig "Ultrogel" fraction, adjusted to 500 ~g/ml protein in PBS pH 7.6, 

. was emulsified with an equal volume of Freund's complete adjuvant (FCA)(Sigma, 

USA) and l.Oml ( = 250~g Ig) of the mixture administered subcutaneously at two sites 

on the hindquarters of a male Dutch rabbit. Booster immunisations, using equivalent 

quantities of Ig in Freund's incomplete adjuvant (FIA), were similarly administered 

at 10 days, 25 days, and 30 weeks later. Blood samples were collected pre- and post­

immunisation by marginal ear venepuncture, and the serum fraction collected in order 

to monitor specific antibody levels to mullet Ig by ELISA and immunoelectrophoresis. 

7.2 Rabbit antiserum to C.irritans <RABantiCJ) 

Trophonts of C.irritans (CI-CR), released from a primary infection of mullet, 

were repeatedly washed in sterile saline to remove host material. Five hundred 

trophonts (:::: 1mg protein) in 0.5 ml sterile saline, were emulsified with an equal 

volume of FCA and administered to a male Dutch rabbit, according to the method 

for production of RABantiMig production, given above. Booster immunisations, each 

with 500 trophonts in FIA, were similarly administered 14 days, 30 days, and 29 weeks 

later. Pre- and post-immunisation blood samples were collected for specific antibody 

monitoring by ELISA. 
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7.3 Rat antiserum to T.pyriformis <RATanliTPl 

Antiserum to T.pyrifonnis was raised in two 300g male CBRI WIST AR rats. 

Each rat was immunised on day 1 with 25,000 T.pyrifonnis (strain 1630/W) diluted to 

lml with either 1:1 (v/v) FCA (rat I) or 1:1 (vfv) distilled water (rat 2), administered 

subcutaneously in ·,w both axillary and inguinal sites. The number of T.pyrifonnis 

cells was selected to give 50~g protein per immunisation, as recommended for rats by 

Dresser (1986). A booster immunisation of equivalent numbers of cells in FIA (rat 

1) or distilled water (rat 2) was administered by the same route at day 11. Test 

samples of blood were taken from the tail of pre- and post-immunised rats. Both rats 

were bled out by cardiac puncture at day 20, immediately following death. 

8. PEROXIDASE CONJUGATION OF RABanliMig 

Two millilitres of rabbit antiserum to mullet Ig (RABantiMig) was linked to 

horseradish peroxidase using the two step procedure of Avrameas and Ternynck 

(1971), modified by Dr. A. Voller (Nuffield Laboratories, London, pers. comm.) 

Briefly, RABantiMlg, purified by ammonium sulphate precipitation and dialysed 

against sodium chloride, was assayed for protein at 280nm and conjugated with twice 

-
its protein weight of horseradish peroxidase (E.C. 1.11.1.7, type V, Sigma Co., product 

P-8375) in the presence of glutaraldehyde. The immunoglobulin-peroxidase 

conjugate, diluted in ELISA carbonate buffer (see appendix), was dialysed against PBS 

and purified by ammonium sulphate precipitation. Dialysed conjugate was mixed with 

an equal volume of glycerol to facilitate storage at -20°C without freezing. The 

working dilution for ELISA was determined by titration using the method described 

in the results, section 3.1.4. 
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9. SEROLOGICAL ASSAYS 

Serological investigations were undertaken using immunoelectrophoresis, 

ELISA. and immunofluorescence. 

9.1 Immunoelectrophoresis of rabbit antisera 

Sera from rabbits immunised with mullet Ig or trophonts of C.irritans (CI-C.R) 

were immunoelectrophoresed against these antigens, according to standard procedures 

(Hudson and Hay, 1980). A 1% agarose gel was enriched with 3% PEG 6000 to 

improve precipitation ("The Binding Site" information leaflet, Birmingham, U.K.). 

Mullet ~g (~1 mg/ml protein) and trophont antigen, were spotted onto separate agar 

wells in 80 x 80 mm glass plates, and electrophoresed at 30mA under constant voltage. 

Electrophoresis was monitored by the inclusion of a 0.0005% bromophenol blue 

tracker dye. Central troughs were filled with 1801-Ll of the relevant rabbit antiserum, 

diluted 1 in 10, and the samples allowed to diffuse overnight. Gels were then cleared 

in saline, blot dried, and stained with Coomassie blue (Hudson and Hay, 1980; 

Johnstone and Thorpe, 1982). 

9.2 Enzyme-linked immunosorbent assay <ELISA) 

The generalised indirect ELISA of V oiler et al. ( 1979) was employed for the 

measurement of antibodies to antigens adsorbed to a solid phase. Fig. 42 shows the 

five- stage ELISA procedure for the measurement of fish antibodies, giving the 

optimised conditions developed here. A four- stage ELISA. which omits the second 

antibody step (Fig 42, step 3), was used for development of the mammalian (rabbit, 

rat, mouse) antibody assay5. All ELISAs were performed at RT in 96-well flat bottom 

polystyrene plates (Linbro, U.K.), selected on the basis of their low non-specific 
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Figure 42 

Procedure for the indirect ELISA for the measurement of antibodies in mullet serum 
and epithelial mucus to trophont antigen of C.irritans. 

The assay was performed at RT in polystyrene 96 well plates (Linbro, Flow Labs). 

Buffer formulations are given in the appendix. 
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Any s pecific antibody attaches to 
antigen . 

~ mullet antibody 

t 3 washes 

' 3 washes 

Addition of RABantiMig at 1: 2000 
in incubation buffer . 

RABantiMig attaches to mullet antibody . 

~ RABantiMig 

Addi tion of peroxi dase conjugated 
swine anti-rabbit at 1:1000 in 
incubation buffer . 
Conjugat e attaches to RABantiMig . 

e 
eQ-e conjugate 

' 6 washes 

Addition of substrate comprising 
OPD + H

2
o

2 
in s ubstrate buffer . 

Amount of substrate hydro lysed= 
amount of specific anti body in sample . 

66.6 substrate unreacted 
...,. ...,. ..... subs tra te hydrolysed 
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binding properties (Burgess, 1988) and high antigen adsorption (Denmark and 

Chessum, 1978). Horseradish peroxidase and ortho-phenylenediamine (OPD) were 

selected as enzyme and chromogen, respectively (Voller et al., 1979). ELISA buffers, 

advocated by Voller et al. (1979), are detailed in the appendix. ELISA results were 

read through-the-well in a photometric plate scanner (Titertek, Flow Labs), linked to 

a microcomputer loaded with ELISA analysis software. 

9.3 Indirect fluorescent antibody test <IFAD 

The IF AT was used for the detection of specific antibodies in mullet and rabbit 

to theronts of C.initans. Initial difficulties experienced with poor adhesion of theronts 

to glass microscope slides were overcome by pre-coating with 0.2~m membrane 

filtered 10% poly-L-lysine (p-L-lys, Sigma Diagnostics) in water (Mazia et al., 1975). 

Satisfactory yields (10-40 theronts/5mm spot) were achieved using formalin (10%) 

fixed theronts delivered onto p-L-lys coated slides by Cytospin (Shandon Ltd.), 

optimised at 300-400 rpm, 10 min. Theront coated slides were washed free of salt in 

distilled water and dried overnight at RT. Prior to use, the slides were briefly rinsed 

with PBS followed by 30 min immersion in fresh buffer. 

' The IFAT procedure was performed at RT as follows. Test sera from rabbit 

and mullet, each optimally diluted in PBS pH 7.6, were dispensed onto the theront 

coated slides and incubated for 1-2 h. For fish antibody assays, the secondary 

antibody comprised a rabbit anti-mullet Ig (RABantiMig) serum at 1:50 dilution. For 

both fish and rabbit assays, a commercial fluorescein isothiocyanate (FITC) 

conjugated goat anti-rabbit lg (Sigma) was used at 1:80 (according to the 

manufacturer's recommendations). The conjugate was diluted in PBS containing 

either 0.1% or 0.04% (w/v) Evans blue (Gurr, England) as counterstain to reduce 

210 



non-specific fluorescence. Following each incubation, slides were rinsed in PBS and 

immersed in fresh buffer for 30 min, in order to remove unbound reagent. Control 

slides included theronts incubated with PBS only during the serum stage. Preparations 

were mounted with glycerol mountant ("Citifluor") and observed using epifluorescence 

from a mercury vapour lamp. Fluorescence in test preparations was visually compared 

with controls and scored on the increasing fluorescence intensity scale: -; + / -; + ; + +; 

+++. 

10. IMMUNOBLOTIING 

~olypeptide bands, resolved by SDS-PAGE under reducing conditions, were 

electroeluted onto nitrocellulose membranes (NC, 0.2!-'m, Sigma) using a water cooled 

Midget multiblot apparatus (Pharmacia/LBK Ltd.). The procedure was carried out 

at a constant 30mA, 18h, in a transfer buffer containing 25mM Tris, 192mM glycine, 

pH 7.8, and 25% methanol (Johnstone and Thorpe, 1982). Electroeluted gels were 

stained with Coomassie blue to confirm polypeptide elution. Membranes were 

prepared for antibody testing using PBS pH 7.6 as diluent. Membranes were first 

rinsed and blocked in 3% skimmed milk (Tesco Stores Ltd.), 30 min, and divided into 

tracks. Replicate tracks and'molecular weight marker tracks were stained with Amido 

black (Towbin et al., 1979) to confirm the presence and relative mobilities of the 

eluted polypeptides. The membranes were washed, 30 min, and immersed into LP2 

tubes containing the appropriate antibody stage. Each stage was incubated for 2 h, 

RT, followed by a 30 min wash. A three stage system was used for antigen probing 

with mullet antibodies: primary incubation with mullet serum at 1:10 to 1:50, followed 

by a RABantiMig at 1:250, and then a swine anti-rabbit peroxidase conjugate (Dako 

Ltd.) at 1:500. For probing with rabbit antibodies, a two-stage system involved 
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primary incubation with rabbit serum at 1:250, followed by a swine anti-rabbit 

peroxidase conjugate, as previously described. For both systems, the final substrate 

colour reaction comprised incubation of the NC membranes with 0.005% (w/v) 

diaminobenzidine, 0.003% (v /v) hydrogen peroxide in ELISA citrate phosphate buffer. 

Colour formation was monitored visually and terminated by washing the membranes 

under tap water. The presence and molecular weights of stained bands were 

recorded, with the aid of Amido black controls. Immunoblots were stored dry in the 

dark. 
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EXPERIMENTS AND RESULTS 

1. ISOLATION AND CHARACTERISATION OF MULLET IMMUNOGWBULIN 

The Ultrogel elution profile of mullet whole serum is shown in Fig. 43. 

Electrophoretic analysis under reducing conditions of selected Ultrogel fractions 

indicated Ig within the second major protein peak eluted ( = fractions 37 to 40, 

inclusive). Major polypeptide bands were obtained at =::67-68kDa and =::27.5-29kDa 

positions, indicating heavy and light chain components, respectively. Ig fractions 37 

to 40 were pooled ( = 8 ml total) and concentrated to 2.2 ml by polysulphone 

membrane centrifugation. Protein estimation of the pooled lg concentrate was 

0.99mg/ml, as measured by 280nm absorption; a value of 1.0 mg/ml was assumed. 

Aliquots of the lg were stored at -20°C or in liquid N2• 

2. CHARACTERISATION OF RABBIT ANTISERA 

2.1 Immunoelectrophoresis 

The RABantiMig and RABantiCI antisera were each reacted by 

immunoelectrophoresis with the soluble sonicate trophont antigen of C.irritans (CI­

CR(13)) and the mullet Ig Ultrogel preparation. The results (Fig. 44) reveal a single 

precipitin arc between RABantiMig and the immunising mullet Ig antigen, the low 

mobility of the arc closely resembled that for human lgM (Roitt, 1980). No 

precipitation was observed between the RABantiMig and the trophont antigen. No 

reaction was observed between RABantiCI and either the immunising trophont 

antigen or mullet Ig. 
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'Figure·43 

Eiutiori profile of:ml,illet whole serum. oitl!Jltrogeil AcA22. 

Pooled; serum (3Ill)) was, el11ted! in PBS,, pH 7.6, 'Fractions of2mll wer:e collectedi at 
a flow rate of4ml/h, ll.t Rlf. 

Stippled I area shows ithe lni111unoglobtilihi fraction :~fractiQn' numbers 37~40} . 
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2.2 lmmunob!ottin&: 

Immunoblotting of mullet lg followed by incubation with RABantiMig showed 

recognition of the H chain (around 67-68kDa) and weak recognition of the L chain 

(28-29kDa). Immunoblots revealed recognition by RABantiMig of a faint 67-68kDa 

band in the CI-CR(13) trophont antigen. 

3. ELISA 

Indirect ELISAs were developed for the detection and quantification of the 

following: 

i) Mullet and mammalian antibodies to C.irritans; 

ii) Mullet and mammalian antibodies to T.pyrifonnis; 

iii) Mammalian antibodies to mullet immunoglobulins. 

3.1 Optimisation of assays 

3.1.1 C.irritans antigen density 

Soluble sonicate preparations of two trophont isolates, CI-CR( 13) and CI­

GS(44/46), were used separately in succession as antigens in ELISA. Optimal antigen 

density for each trophont preparation was determined by two-fold titration against 

rabbit sera at 1:100 dilutions, comprising a negative ("N") serum from a pre­

immunised rabbit and a presumptive specific antibody positive ("P" = RABantiCI) 

serum from the same animal at 5 days following a third immunisation with C.irritans 

trophonts. The conjugate stage comprised a peroxidase labelled swine anti-rabbit 

immunoglobulin (Dakopatts, Denmark, product P217), diluted to 1:1000. The 

enzyme-substrate (E-S) reaction was allowed to proceed until moderate colour had 

developed in the positive serum wells (ea. 12 rnin). The results (Fig. 45) confirm the 
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Figure 45 

ELISA titration of trophont antigens of C.irritans, CI-CR(13) and CI-GS(44/46). 

o-o CI-CR(13) 

._. CI-GS(44/46) 

• no serum blank 

P = seropositive rabbit serum 

N = seronegative rabbit serum 

P-N = absorbanceposilive minus absorbancenegative } 

(P-N = specific antibody activity) 

Vertical bars show absorbance range. 
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seropositivity of the RABantiCI serum ("P") which gave absorbance values 

considerably higher than those of the negative serum ("N") collected before 

immunisation. At dilutions of 1:320 and greater, the CI-CR(13) antigen appeared to 

be limiting, causing a reduction in the specific antibody activity of the RABantiCI 

serum. The slight fall in absorbance values at 1:20 and 1:40 dilutions of CI-CR(13) 

antigen may indicate a prozone ("hook") effect (Edwards, 1985) reflecting antigen 

over-coating causing subsequent detachment along with bound antibody (McLaren et 

al, 1981). An intermediate CI-CR(13) dilution of 1:80 was selected. Antigen CI­

GS(44/46) was more reactive than CI-CR(13) in ELISA, with antigen limiting at 

above ~:640 dilution; an optimal dilution of 1:500 was therefore chosen. Positive 

minus negative (P-N) values, used as an indicator of test performance, were very 

similar for both C.irritans preparations over their non-limiting dilution ranges. A 

control blank, in which the serum stage was substituted for buffer only, showed no 

non-specific binding by the conjugate to either antigen. The optimised antigen 

densities were used for all subsequent ELISAs measuring specific antibody to 

C.irritans in mullet and mammals, including MABs. 

3.1.2 RABantiCI dilution 

The RABantiCI serum (P) and negative control rabbit serum (N) were 

optimised at 1:500, being the dilution giving maximal P-N values using the CI-CR(13) 

antigen. These two rabbit sera were used as reference controls in ELISAs for 

measurement of mullet antibodies to C.irritans. 

3.1.3 Mullet immunoelobulin antieen density 

Optimisation of antigen coating density was assessed by two-fold titration 
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against the RABantiMig and pre-immunised rabbit sera, both diluted to 1:100, 

following the above method for trophont antigens. The results indicated limiting Ig 

density at 1:1280 (:::: 0.751-'g protein/ml); therefore an optimum of 1:640 (:::: 1.51-'g 

protein/ml) was chosen for all subsequent ELISAs. At optimal antigen dilution, a P­

N value of >0.8 absorbance units was obtained using the rabbit sera, with negligible 

( <0.02 units) non-specific binding to antigen by the negative rabbit serum. 

3.1.4 RABantiMie dilution 

The RABantiMlg was optimised at 1:2000 dilution for use as an antiserum 

reagent for the detection of mullet antibodies to C.irritan.s (Fig. 42, step 3). This gave 

moderate colour formation (ELISA absorbance >0.3 units) in trophont coated wells 

containing a seropositive mullet serum after an appropriate E-S time of ea. 15 min. 

3.1.5 Rat anti-T.pyriformis ELISA 

The T.pyrifomzis sonicate antigen, TP(9), was optimised at 101-'g protein/m! and 

the rat sera at 1:200 dilution, based on optimisation methods described earlier for the 

C.irritan.s ELISA. A commercially prepared peroxidase labelled goat anti-rat 

immunoglobulin antiserum (Dakopatts, Denmark, product P162) was used at 1:1000, 

according to manufacturer's specifications. Higher levels of antibody activity were 

present in the serum from the rat immunised with TP(9) plus adjuvant, as compared 

with that from the rat immunised with TP(9) alone, the former serum being used for 

further serological studies. Non-specific antibody binding to TP(9) antigen was 

negligible ( <0.1 absorbance units), as measured using sera from two non-immunised 

rats. 
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4. SEROLOGICAL CROSS-REACTIVITY BE1WEEN CILIATES 

Evidence for the presence of shared or structurally similar antigens between 

the three ciliates, C.irritans, l.multifiliis, and T.pyrifonnis, was investigated by cross­

reactivity tests using RABantiCI and RATantiTP antisera. 

The following soluble sonicate antigens were used: C.irritans trophont CI­

CR(13), T.pyrifonnis trophozoite TP(9), and J.multifi/iis trophont (optimised at 10~-Lg 

protein/m!). ELISAs were performed under their respective optimised conditions, 

described earlier. Table 17 gives the serological results of the antigen-antiserum 

combinations tested. Specific antibody activity values were obtained by subtracting 

the mean absorbance value of the negative serum from that of the positive (P-N). 

The results show high specific antibody activity between the RABantiCI, RATantiTP 

and their respective immunising antigens. No serological cross-reactivity was found 

between T.pyrifonnis and either C.irritans or l.multifiliis. However, slight activity was 

observed between RABantiCI and the l.multifi/iis trophont antigen, indicating 

antigens(s) common to C.im'tans and l.multifiliis. Homologous reactivity to the 

J.multifi/iis antigen was not evaluated, due to lack of antiserum. 

5. INVESTIGATION INTO THE CROSS-REACTIVITY BE1WEEN RABantiCI AND 

MULLET IMMUNOGLOBULIN 

Preliminary ELISA studies revealed cross-reactivity between the RABantiCI 

and mullet Ig. The extent and underlying causes of such cross-reaction were 

investigated by ELISA. Antibody activity was measured in the RABantiCI and a 

negative control rabbit serum, each titrated against the following optimally coated 

antigen preparations: CI-CR(13}, mullet Ig, and whole serum from a healthy mullet, 

the latter optimised at 1:500 dilution. The results (Fig. 46) show specific (P-N) 
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Table 17 

Serological reactivity by EUSA between antigens prepared from trophonts of C.imtans 
and I.multifiliis and trophozoites of T.pyriformis, using rabbit and rat antisera. 

Antigen 

Serum C.imtans I.multifiliis T.pyriformis 
CI-CR(13) TP9 
(trophont) (trophont) (trophozoite) 

RABBIT P-N 0.61 0.16 0.03 
anti Cl p 0.63 (0.59.{).66) 0.19 (0.18.{).20) 0.10 (0.08.{).12) 

N 0.02 (0.01.{).04) 0.03 (0.02.{).03) 0.07 (0.06-0.08) 

RAT P-N 0.00 0.02 0.77 
antiTP p 0.05 (0.114.{).07) 0.05 (0.03.{).06) 0.85 (0.8M.91) 

N 0.06 (0.05.{).09) 0.03 (0.01.{).04) 0.08 (0.08.{).11) 

Values are ELISA absorbance al 492nm 

P= positive antiserum. 
N = negative control serum from unimmunised animal. 
P-N = positive minus negative absorbance ( = specific antibody activity). 

P and N values represent mean and (range), n=3. 

Bold cells show homologous activity between antiserum and respective antigen. 
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Figure 46 

ELISA titration of RABantiCI against trophont antigen of C.irritans, mullet Ig, and 
mullet whole serum. 

Results show specific (P-N) antibody activity 

0 C.irritans trophont antigen (Cl). 

A mullet Ig (AcA22 preparation) (Mig). 

• mullet whole serum (Mser). 

Vertical bars show absorbance range (n=2). 
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antibody activity in the RABantiCI to the immunising C.irritans CI-CR(13). 

Significant cross-reactivity was observed between the RABantiCI and both mullet Ig 

and whole serum. There was no significant reactivity between the negative rabbit 

serum and any of the three antigens (absorbance values ~ 0.03 units; not shown). 

5.1 Selective absorption of RABantiCI 

Further investigations of the cross-reactivity between RABantiCI and mullet 

Ig were undertaken using selective absorption (quenching) procedures. Three lOOJLl 

aliquots of RABantiCI were each diluted 1:1 (v /v) with either: 50JL1 normal mullet 

whole serum + 50JL1 saline; 50JLI mullet Ig Ultrogel fraction (1 mg protein/m!) + 50JLl 

saline; or 100J,Ll saline ( = unabsorbed control). Serum from the pre-immunised 

rabbit, diluted 1:1 (v /v) with saline, was also tested as a negative control. The serum 

preparations were incubated with gentle agitation for 1 h at RT before testing by 

ELISA. Titration profiles of the four preparations reacted with CI-CR(13) antigen 

and mullet Ig are given in Figs. 47 and 48, respectively. Comparison of the titration 

profiles between absorbed and saline control antisera showed no significant 

differences in antibody activity to C.irritans (Fig. 47), indicating that a significant 

proportion of antibody activity was directed to the parasite. However, absorption had 

a marked effect in reducing antiserum activity to mullet Ig (Fig. 48) with antibody 

levels ranked as: non-absorbed (highest) > mullet Ig absorbed > mullet serum 

absorbed. Greater absorption using mullet whole serum as compared with the Ig 

fraction may have reflected quantitative differences with higher levels of Ig in the 

serum as compared with the purified fraction. A qualitative difference may be partly 

the cause, with antigenic components present in serum, but not the Ig fraction, to 

which a proportion of the antibody repertoire is directed. Absorption with mullet 
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Figures 47 and 48 

Effects of absorption of RABantiCI with mullet serum or mullet lg on antibody 
activity against trophont antigen of C.irritans or mullet Ig, by ELISA. 

Figure 47 (upper) 
C.irritans antigen. 

Figure 48 (lower) 
Mullet Ig antigen. 

Both figures: 

0 RABantiCI, non-absorbed . 
.& 11 

, absorbed with mullet Ig. 
• 

11 
, absorbed with mullet serum. 

6. negative control rabbit serum, non-absorbed. 

Vertical bars show mean and range (n=2). 
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serum reduced antibody activity to the Ig antigen byO·t S toOlS absorbance units over 

the titration range; complete absorption of rabbit antibody activity to mullet Ig was 

not achieved. The use of higher proportions of absorbent in subsequent studies did 

not further reduce anti-Ig activity (results not shown). 

Based on these results, absorption of the RABantiCI with mullet Ig was 

routinely performed in subsequent serological studies in order to reduce cross­

reactivity with host contaminants. 

6. ANTIBODY RESPONSES IN THE MULLET TO C.IRRITANS 

Serological responses to C.irritans in naturally infected or immunised mullet 

were investigated with the aid of ELISA, IFAT, and theront agglutination assays. 

6.1 ELISA 

The optimised assay for the measurement of specific antibodies to C.irritans in 

serum and epithelial mucus, was used (Fig. 42). 

6.1.1. Antibody response in serum followin2 immunisations with C.irritans trophonts 

plus adjuvant 

A single adult mullet (::::30cm length), maintained at RT, was immunised 

against C.irritans by intraperitoneal injection with trophonts, administered on 5 

separate occasions over a period of 141 days. The fish received 130-250 trophonts for 

the first 3 immunisations, this being increased to 3,000 trophonts for the final two 

immunisations. Freund's complete adjuvant was used for the first immunisation, and 

Freund's incomplete adjuvant for the remainder. Serum samples, collected before and 

during the immunisation programme, were each tested in duplicate by ELISA against 
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the CI-GS(44/46) trophont antigen. A panel of negative control sera, collected from 

5 mullet not exposed to C.irritans, were simultaneously tested to determine the ELISA 

absorbance value for seropositivity, based on mean plus 3 standard deviations (Balfour 

and Harford, 1990). Longitudinal serological response in the mullet to i.p. 

administered trophonts is shown in Fig. 49, together with the times for immunisations 

(numbered arrows); with the 0 1 immunisation at day 1. Seropositivity was set at 

~0.105 absorbance units, based on the negative control results (mean absorbance= 

0.048; 3SD = 0.057; n = 5). The experimental fish remained seronegative for at least 

20 days following primary immunisation. Conversion to seropositive occurred 

sometime between days 20 and 56, an interval encompassing the secondary 

immunisation. Antibody levels elevated to around 0.4 absorbance units. Increased 

doses of parasite antigen, administered at the 0 4 and 0 5 immunisations, failed to 

further elevate specific antibody levels. The serum collected on day 400 was negative 

(:::::260 days after the final immunisation). 

6.1.2 Antibody response in serum and epithelial mucus followint: exposure to 

C.irritans theronts 

Five mullet (47-77g), 'A-E, were immunised against C.irritans (CI-GS), each fish 

being exposed to 15,000 theronts on two separate occasions, 21-22 days apart. At the 

second exposure, 3 smaller mullet ( 4.2-5.1g), naive to C.im'tans, were simultaneously 

exposed to 5,000 theronts from the same pool, to check for parasite viability. The 

percentage number of parasites establishing infection (%PEI) was determined for 

each of the 5 fish fo llowing primary and secondary exposures, although fish B died 

during the second infection. Sera and epithelial mucus samples were collected from 

fish A-E before and after exposure to theronts, and tested by ELISA at 1:40 (sera) 
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Figure 49 

Serum antibody response of mullet to trophonts of C.irritans administered by i.p. 
immunisations, measured by ELISA. 

Vertical bars show mean and range ( n = 2). 

Arrowed numbers show immunisations. 

Seropositive set at ~ 0.105 absorbance units, based on mean plus 3SD of negative 
controls (n=5). 
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and 1:10 (mucus) dilutions against trophont antigen CI-GS(44/46). Samples were also 

collected from control mullet, # 1 and #2 (59g and 73g), naive to C.irritans. A panel 

of 8 normal mullet sera were also tested by ELISA in order to establish a level for 

seropositivity, according to the method given earlier. 

The results (Fig. 50) indicate that fish A,C,D, and E sustained a reduced 

parasite burden following the second exposure, with a lower percentage of parasites 

establishing infection as compared with naive controls. No fish, however, was fully 

protected against a second exposure. Viability of the theronts used for the second 

exposures was confirmed by infecting 3 naive control mullet, which sustained a median 

%PEI of 7.24 (range= 5.94 to 9.70). Fig. 51 gives the serum antibody response to 

C.irritans antigen in the five exposed (A to E) and 2 control (1 and 2) mullet. 

Seropositivity was set at ~0.095 absorbance units (mean absorbance of controls= 

0.050; 3SD = 0.045; n = 8). The time scale (X axis) is approximately the same for 

both figures, allowing temporal comparison between %PEI values and antibody levels. 

Rising antibody levels were observed in 2 mullet (C,E). Mullet C seroconverted to 

positive by day 14 following the primary exposure to theronts and before the second 

exposure. Mullet E seroconverted to positive by day 27, which was 5 days after the 

second exposure. Mullet A imd D remained seronegative throughout the experiment, 

despite these fish sustaining reduced parasite burdens following secondary exposure. 

No specific antibodies to C.irritans were detected in the epithelial mucus samples of 

fish following either primary or secondary exposures at days 5 and 27-28, respectively 

(absorbance values s 0.01). 
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Figure 50 

Percentage parasites establishing infection (%PEI) in mullet following primary and 
secondary exposures to theronts of C.irritans. 

e Controls: median %PEI value for 3 mullet naive to C.irritans following primary 
exposure. 

Figure 51 

Serum antibody response to trophont antigen of C.irritans in mullet following primary 
and secondary exposures to theronts, measured by ELISA. 

Both figures: 

Arrows show times of exposures to theronts. 

mullet 

e A 
AB 
'Y C exposed to theronts 
.& D 
• E 

~ Bnot exposed to theronts ( =controls) 
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6.1.3 Jnvesti2ation for possible inhibitory effects of epithelial mucus on specific 

antibodies to C.irritans 

The absence of specific antibodies in the epithelial mucus of mullet immunised 

against C.irritans prompted further investigations to eliminate possible inhibitory 

factors such as antibody degradation during storage or masking in ELISA. 

Epithelial mucus was obtained from a mullet, 5 days following a secondary 

exposure to C.irritans and from a control mullet naive to the parasite. Each mucus 

sample was divided into two aliquots and each diluted to 1:10 in ELISA incubation 

buffer. Aliquots were then seeded with one of the following test antibodies to 

C.irritans: a murine MAB ("MABantiCI", see Chapter 7) diluted 1:10, and a 

seropositive serum from a mullet i.p. immunised with C.irritans, diluted 1:40. Negative 

antibody controls comprised monoclonal antibody medium and serum from a mullet 

naive to C.irritans, each appropriately di luted in incubation buffer. Reference 

antibody samples not seeded in mucus comprised the MABantiCI and mullet immune 

serum diluted in incubation buffer only. All samples were stored for 7 days at -20°C 

before testing by ELISA. The results (Fig. 52) shows no inhibitory effects of epithelial 

mucus on specific antibody activity to C.irritans in either the MAB or mullet serum 

samples, thereby providing 'no evidence of an inhibitory effect of mucus on specific 

antibodies to C.irritans. 

6.2 IFAT 

The IF AT was used to determine specific antibody activity to whole theronts 

of C.irritans (CI-HT) in mullet following natural infection and in mullet and a rabbit 

following i.p. injections with whole trophonts. 
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Figure 52 

Effect of antibody activity to C.irritans in mullet serum and murine monoclonal 
antibody following cryostorage and ELISA testing in the presence of mullet epithelial 
mucus. 

Vertical bars show absorbance range (n=2). 

MABantiCI = murine monoclonal antibody to C.irritans trophont antigen. 

Mucus #1 from mullet naive to C.irritans. 

Mucus #2 from mullet exhibiting partial protection following secondary exposure to 
C.irritans. 

Negative controls comprised monoclonal culture medium and serum from a non­
exposed mullet, each diluted in incubation buffer. 
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6.2.1 Measurement of specific antibodies to C.irritans in the rabbit 

Preliminary evaluation of the IF AT was made using RABantiCI and the pre­

immunised rabbit sera as control, tested against formalin fixed theronts. Theronts 

fluoresced strongly with the RABantiCI antiserum at all dilutions from 1:10 to 1:40 

(Table 18). The results indicated common antigens between the test theronts used 

as antigen and the trophonts to which the antiserum had been raised. Fluorescence 

appeared restricted to the surface of the theront including the buccal region. For any 

given test and serum dilution, the intensity of fluorescence was similar amongst all 

theronts. Non-specific fluorescence levels were acceptable, being absent or weak in 

the pre~immune rabbit serum and PBS controls. 

6.2.2 Investi2ation for specific antibodies to C.irritans in mullet 

Serum samples from mullet immunised against C.irritans by natural infection 

and by i.p. injection of trophonts were tested against formalin fixed theronts, sera 

being optimised at 1:20 for IF AT; lower dilutions giving high levels of non-specific 

fluorescence. Sera from mullet naive to C.irritans were used as controls. Serum 

samples from all but one exposed mullet were seropositive to C.im'tans by ELISA. 

The results (Table 19) show no clear resolution in intensity of theront fluorescence 

between sera from exposed and non-exposed fish. Furthermore, there was no overall 

agreement between ELISA results and fluorescence intensity. Results of controls 

indicated that the high levels of non-specific fluorescence obtained with the negative 

sera was not caused by antigen binding with either the second antibody (RABantiMig) 

or the FITC conjugate. The IFAT was unable to demonstrate a specific antibody 

response to the theront stage of C.irritans in any mullet serum tested. 
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Table 18 

Serum antibody activity to C.irritans theronts in immunised and control rabbits, by 
IF AT. 

Rabbit Serum dilution 
serum 

1:10 1:20 1:40 

RABantiCI +++;+++ +++ ; ++ +++;++ 

Control1 +/-; +/- + 1- ; - + 1-;-
None2 - I -

Results based on 2 replicate tests. 

1 From a rabbit not exposed to C.irritaiiS. 

2 PBS only. 
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Table 19 

Serum antibody activity to theronts of C.irritans in mullet. 

Fish Exposure ELISA result Fluorescence 
identity # status to (absorbance value) (replicate tests) 

C.irritans 

non-exposed - (0.07) + ;+ 

1 immunised3 + (0.32) +;+ 

immunised4 + (0.42) ++ ;++ 

21 infected5 - (0.07) + ;+ 

32 infected5 + (0.28) + ; + 1-
infected6 + (0.26) + ;+ 

4 non-exposed - (0.04) +; + + 

5 non-exposed - (0.07) +/-;+/-

6 non-exposed not done +;+ 

7 non-exposed not done +;+ 

Controls 
11 

No serum - ' -

No - ' -RABantiMig 

No conjugate -
' -

Fish "A" in Figs. 50 and 51. 

2 Fish "C" in Figs. 50 and 51. 

3 14 days following 2° i.p. immunisation with trophonts. 

4 9 days following 4° i.p. immunisation with trophonts. 

5 5 days following 2° exposure to theronts. 

6 22 days following 2° exposure to theronts. 
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6.3 lmmunoblottin& 

Immonoblotting of SDS-PAGE separated trophonts of C.irritans (CI­

GS(44/46)) with serum from mullet exposed to C.irritans by natural infection with the 

same isolate or by i.p. immunisation with trophonts failed to show parasite antigens. 

Immunoblotting of CI-GS(44/46) with RABantiCI serum, however, resulted in 

recognition of at least 15 antigen components (molecular weights not calculated). 

7. AGGLUTINATION AND IMMOBILISATION TESTS 

The in vitro effect on C.irritans theronts and other ciliates of sera from mullet 

or rabbit immunised with C.irritans was investigated. 

7.1. Effects of RABantiCI on theronts of C.irritans and l.multifiliis and trophozoites 

of T.pyriformis 

Theronts of C.im'tans (CI-AE) and l.multifiliis, both harvested within 4h post­

emergence, were transferred to FS-SW or mineral water ("Volvic"), respectively. 

T.pyrifonnis trophozoites were washed free of culture medium and resuspended in 

mineral water. Ciliate suspensions were adjusted to ea. 500 cells/ml and 100J,Ll 

volumes of each were added to separate "U" well polystyrene microtitre plates 

(Sterilin), giving ea. 50 cells/well. Equal volumes of either RABantiCI or pre-immune 

rabbit control serum were titrated over the two-fold range 1 in 10 to 1:160 in the 

appropriate medium (final volume = 200J.Ll/well). Additional controls for each ciliate 

species were incubated in FS-SW or mineral water only. Plates were held at 25°C for 

theronts and at RT (~20°C) for I.multifiliis and T.pyrijom1is. Cells were observed at 

various intervals with the aid of a stereomicroscope. Ciliate activity was scored 

according to the five point scale used for C.irritans (Chapter 3, Table 2), + + + 
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representing normal activity. 

The results (Table 20) are presented separately below for each ciliate species. 

7.1.1 C.irritans theronts 

An overall reduced theront activity from + + + (=normal) to + + / + occurred 

within 5 min exposure to 1:10 and 1:20 dilutions of the RABantiCI serum, however 

a small proportion (::::: 25%) of theronts remained unaffected and continued normal 

behaviour. Theronts in higher dilutions of RABantiCI and those in pre-immune 

control serum retained + + + activity. At 10 min exposure, theront agglutination was 

observed in wells containing RABantiCI at dilutions up to 1:40. Theronts exposed for 

30 min to RABantiCI serum up to 1:80 dilution agglutinated in clumps of up to 14 

and showed reduced activity. No dead theronts were observed at 30 min exposure. 

Incubation with the pre-immune rabbit serum had no significant effect on the 

theronts. 

7.1.2 I.multifiliis theronts 

No agglutination was observed in any wells at 30 min exposure to rabbit sera. 

A slight reduction in theront activity was observed in the presence of 1:10 dilutions 

of both RABantiCI and normal rabbit serum, suggesting a non-specific effect. 

7.1.3 T.pyriformis trophozoites 

No agglutination of trophozoites was observed in any wells at 30 rnin exposure 

to rabbit sera. Rounding up of some cells ( < 10%) was observed in the presence of 

low dilutions (1: 10- 1:20) of both RABantiCI and pre-immune control rabbit sera, 

possibly indicating an osmotic effect. 
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Table 20 

In vitro immobilisation and agglutination test using rabbit antiserum to trophonts of 
C.irritans incubated with theronts of C.irritans and J.multifiliis and trophozoites of 
T. pyrijom1is. 

Serum dilution 
Cells Rabbit 

serum 1:10 1:20 1:40 1:80 1:160 None 

POS1 +a +a +a/++ ++a/+++ + ++ 

Cl 
+++ 

NEG2 ++/+++ ++/+ ++ ++/+++ +++ + ++ 

POS ++ +++ +++ +++ +++ 

IM 
+++ 

NEG + + +++ +++ +++ +++ 

POS + +r +++/+++ r +++ +++ +++ 

TP 
+++ 

NEG ++ r/+++r +++ +++ +++ +++ 

Results, based on 2 or 3 replicate tests, show activity of the majority of protozoal cells in each Lest well 
after 30 min exposure to serum. 

Cl = C irri tans. 

IM = l .multifiliis. 

TP = T.pyrifomzis. 

1 Serum from rabbit immunised i.p. with C irri tans Lrophonts ( = RABantiCI). 

2 Serum from unimmunised control rabbit. 

a = agglutination between 3 or more cells. 

r = rounding up of cells. 
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7.2 Effect of mullet sera on C.irritans lheronls 

Serum samples were collected from 4 mullet immunised against C.irritans, 2 by 

natural exposure to theronts, and 2 by i.p. administration of trophonts. In addition, 

samples·were collected from 4 control mullet not exposed to C.irritans. Each serum 

was titrated two-fold in seawater and 100~1 aliquots added to separate wells, each 

containing 50 theronts (CI-AE) per well. The results (Table 21), based on 

observations at 30 min, show agglutinating titres of 1:40 and 1:80 in the sera from i.p. 

immunised mullet but no agglutination with sera from either naturally infected mullet 

or naive controls. Theront inactivity was observed in the lowest serum dilution tested 

(1: 10) from some fish, irrespective of immune status, suggesting a non-specific effect. 

Fig. 53 shows agglutination between 23 theronts, following 60 min incubation 

in 1:20 serum from a mullet previously immunised with C.irritans trophonts by i.p. 

injection. 
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Table 21 

In vitro immobilisation and agglutination of theronts of C.irritans in sera from naive 
and exposed mullet. 

Mullet Mullet serum dilution 

Exposure status 
to C.irritans # 1:10 1:20 1:40 1:80 1:160 

1 0 +/+ + +++ +++ +++ 

non-exposed 
2 0/+ +++ +++ +++ +++ 

3 + + /+ + + +++ +++ +++ +++ 

4 0/+ + ++/+++ +++ +++ nd 

!.p. 5' 0/0a Oa/Oa Oa/+ + Oa/+ + + +++ 

immunised 62 
(trophonts) Oa Oa Oa/+ + +++ +++ 

naturally 73 0 +/+ + +++ +++ +++ 

infected s• 0/+ (theronts) +++ +++ +++ +++ 

No serum 
controls +++ 

Results, based on two replicate tests, show activity of the majority of tberonts in each test well, after 30 
min exposure to serum. 

a = agglutination between 3 or more theronts. 

nd = not done. 

1 9 days after 4° immunisation; ELISA positive. 

2 22 days after 5° immunisation; ELISA positive. 

3 7 days after 3rd exposure to theronts; %PEI <0.1. 

4 26 days after 3rd exposure to theronts; %PEI <0.1. 
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Figure 53 

Agglutination of theronts of C.irritans in the presence of mullet immune serum. 

Scale bar = 50~o£m. 
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DISCUSSION 

The detection of specific antibodies to C.irritans in fish following natural 

infection has been reported here for the first time, using mullet as an experimental 

host. Nevertheless, the application of ELISA as the major investigative technique for 

monitoring antibody responses does introduce limitations in the interpretation of 

results. The sensitivity of ELISA. although greater than most other antibody assays 

(Edwards, 1985), may have been insufficient to detect low levels of specific antibody 

occurring, for example, during the early stages of an immune response and in 

epithelial mucus (St. Louis-Cormier et al., 1984; Ellis, 1989). Previous studies (Cross, 

1990) have attempted to amplify the detection of mucus antibodies by concentration. 

Unfortunately, mullet could not be induced to release copious amounts of epithelial 

mucus, in contrast to certain other species of teleosts, and therefore this was not a 

practical approach to pursue. In terms of qualitative limitations, it must be recognised 

that certain antigens, notably carbohydrates and glycolipids, do not bind to the solid 

phase under normal ELISA conditions (Kelsoe and Weller, 1978; Reggiardo et al., 

1980; Kurstak, 1985; Burgess, 1989; Wood and Wreghitt, 1990) and therefore 

antibodies directed to these molecules will not be detected. The importance of these 

compounds as antigens is, however, apparent from studies on human protozoan 

diseases (Crane et al., 1982; Zenian and Kierszenbaum, 1982; Handman et al., 1987); 

their role in fish immune responses to protozoa therefore also seems likely. With 

regards the kinetics of the antibody response, production of specific antibodies in 

mullet within 14 days following a primary exposure to C.irritans is in close agreement 

with the period of onset of primary antibody response in this host to the digenean, 
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Cryptocoryle lingua, as recorded by Wood and Matthews (1987). The timing also 

agrees with that recorded to a variety of antigens in other teleosts, including trout, 

Oncorhynchus mykiss (Chiller et al., 1969) and sunfish, Lepomis macrodzims (Smith et 

al., 1967). The kinetics of the antibody response to C.irritans is likely to be influenced 

by temperature, within the physiological limits of the host, as is well recognised for 

teleosts antibody responses in general (Rijkers et al., 1981; Rijkers, 1982; Bly and 

Clem, 1992). The timing may also vary according to the host species, and there is 

some evidence to support this (Rijkers, 1982). Sailendri and Muthukkaruppan (1975), 

using Tilapia mossambica, have shown that under tropical conditions (30°C) a primary 

antibody response can be elicited within as short a period as five days after exposure 

to antigen. Although the species of mullet used here has a southerly distribution, 

extending to the Mediterranean (Lythgoe and Lythgoe, 1971), the speed of its immune 

response might not be representative of tropical marine fish species normally 

encountered by C.irritans. The delay in antibody response, recorded here, following 

intraperitoneal injection could also be attributed to temperature, as mullet immunised 

by this route were maintained at 5-10°C lower than those exposed to C.irritans by 

natural infection. Alternatively, this might reflect a faster recognition and response 

to antigens presented within the skin epithelium as opposed to the peritoneal 

cavity. The latter explanation is supported by evidence for a secretory immune system 

functioning within teleost skin epithelium (Lobb and Clem, 1981b; Peleteiro and 

Richards, 1988), although it is not clear whether locally synthesised antibodies enter 

the circulatory system. Despite the slow antibody response in mullet to C.irritans 

administered intraperitoneally, this immunisation route resulted in higher levels of 

specific antibodies in the serum, as compared with immunisation by natural infection. 

This might be attributable to quantitative and/or qualitative differences in the parasite 
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antigen to which the fish was exposed, the site of antigen presentation, or the 

immunopotentiating effects of the Freund's adjuvant used in conjunction with i.p. 

immunisations, all of these factors being known to affect the immune response of fish 

(Ellis, 1988). The occurrence of elevated antibody levels to C.irritans in some mullet 

following secondary as compared with primary exposure to theronts might be 

indicative of an anamnestic response although this was not observed with the 

intraperitoneally immunised fish. This observation may therefore have simply 

reflected an increasing response to the primary infection. Evidence that a memory 

response in teleosts does occur comes from studies on other species immunised to 

various antigens and pathogens (Sailendri and Muthukkaruppan, 1975; Anderson and 

Dixon, 1980; Rijkers et al., 1980), although the height of the secondary response in fish 

appears far less pronounced than that in mammals (Roitt et al., 1985). With the 

present study, firm evidence for an anamnestic response to C.irritans in mullet will 

necessitate longitudinal serological monitoring of these fish. Further studies are 

warranted, as the ability of fish to develop a heightened secondary response to 

C.irritans is an important feature when considering vaccination against this parasite. 

Studies here suggest that antibody screening, for example by ELISA, could prove a 

useful indicator of an anam'nestic response, however further evaluation of the assay 

is required. 

Although mullet exhibited protective immunity to C.irritans this was not always 

associated with the presence of specific antibody. A similar lack of correlation 

between serum antibody levels in fish and immune protection has also been shown for 

certain bacterial diseases (Michel and Faivre, 1982; Cipriano, 1983). It should be 

mentioned, however, that the trophont stage only was utilised as antigen for the 

ELISA developed for measuring humoral responses. It is possible, therefore, that 
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host protection is afforded by antibodies directed to antigens specific to the invasive 

theront, as supportive evidence for stage-specific proteins was provided from 

polypeptide analyses, described in Chapter 5. Although antibody may play no direct 

role in protection against C.irritans, it was of interest that mullet antisera induced 

theront immobilisation and agglutination under in vitro conditions in the present study. 

Similar studies have been undertaken using J.multifiliis in which fish immune sera 

were shown to immobilise the parasite at the theront stage (Houghton, 1987; Clark 

et al, 1987; Cross, 1990) and at the trophont stage (Hines and Spira, 1984b; Wahli and 

Meier, 1985), the latter workers also demonstrating immobilisation with epithelial 

mucus from immune fish. To what extent these observations reflect in vivo responses 

by the host remains unresolved. Nevertheless, Hines and Spira (1984b) and Clark et 

al. (1988) have suggested that protection against J.multifiliis might be provided by the 

immobilising activity of antibody, which according to Clark et al. (1987) is possibly 

directed to cilial antigens. The lack of correlation between specific antibody 

production and protective immunity would clearly present an important limitation to 

the assessment of vaccine efficacy by serological methods. Evidence for a protective 

role for antibody in response to parasite infections is largely conjectural, whereas the 

ability of specific antibody to protect fish against bacterial pathogens has come from 

studies by Home and Baxendale (1983). The absence of specific antibodies in the 

serum of immune protected mullet here, does not preclude the possibility of antibody 

functioning locally at the infection site, as shown by Lobb (1987) using channel catfish 

administered with externally applied antigen. In the present study, however, the 

inability to detect specific antibodies to C.irritan.s in the epithelial mucus of mullet 

following natural infection, even in fish with specific antibodies in the serum, provides 

no evidence for acquired humoral immune responses operating within host skin 
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epithelium. 

The demonstration of an antibody response by mullet to C.irritans raises the 

important question as to which parasite components are targeted by host antibodies, 

such knowledge being vital for the selection and development of sub-unit vaccines 

against cryptocaryosis. Unfortunately, the present study failed to demonstrate 

recognition of individual trophont antigens of C.irritans by immune mullet serum, with 

the aid of immunoblotting techniques. This failure might be associated with the level 

of specific antibodies, as a positive immunostaining was obtained with immune rabbit 

serum of high antibody titre. Low avidity of the mullet antibodies directed to target 

components of C.irritans could also account for negative immunostaining, as low 

avidity antibodies are thought to dissociate from antigen during the immunoblotting 

process (Ramlau, 1988). Whether teleosts produce low avidity antibodies, however, 

is not clear, although this appears to be the case for elasmobranchs (Shankey and 

Clem, 1980). Results obtained here do provide some insight into the species- and 

stage- specificity of these target antigens. Evidence for antigens common to the 

theront and trophont stages of C.irritans is provided from in vitro agglutination and 

immunoflvorescence studies, theronts reacting in vitro with sera from rabbit and 

mullet immunised with trophonts. Given the distinct profiles of predominant 

polypeptides between theronts and trophonts, demonstrated here, it seems likely that 

the common antigens are quantitatively relatively minor components. Interestingly, 

these studies have also demonstrated inter- specific antigens common to C.irritans and 

/.multifiliis although there was no evidence of any cross-protection between these two 

ciliates. That these inter- specific antigens were detected using mammalian antisera 

probes raised to disrupted parasite preparations might not be indicative that teleosts 

could cross-recognise these antigens following natural infection. The absence of 
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serological cross-reactivity between T.pyrijom1is and C.irritans (as well as J.multifiliis) 

provides no evidence for the suitability of T.pyrifomzis as a candidate vaccine against 

cryptocaryosis. These results are in contrast to those of Goven et al. (1981b) who 

demonstrated cross-reactions between T.pyrifomzis and I.multifiliis, also using rabbit 

antisera. The use of different strains of T.pyrifomtis between the study by Goven et al. 

(1981b) and that here may account for the observed disparity in cross-reactivity, given 

that strains of T.pyn]omzis have been shown to differ serologically (Loefer et al., 1958). 

Similarly, strain differences amongst J.multifiliis may also occur, as considered by 

Nigrelli et al. (1976); strain differences having also been shown for other ciliates, 

including Balantidium coli (Zaman, 1964 ). Studies here were based on results using 

antisera raised to C.irritans trophonts; the possibility of antigens shared between the 

theront stage of C.im"tans and T.pyrifonnis was not investigated. The present study 

clearly underlines the possible pitfalls in selecting antigens from heterologous species 

as candidate vaccines based on serological cross-reactivity alone. Although these 

results show little promise for development of novel vaccines, the serological findings 

concur with polypeptide analyses (Chapter 5) in supporting the taxonomic positioning 

of C.irritans closer to J.multifiliis than to T.pyrifonnis, as according to the scheme by 

Corliss (1979). 

These studies have demonstrated a humoral immune response to C.irritans, 

however, to what extent humoral factors are involved in protective immunity requires 

further investigation. That protection can be provided by specific antibody alone now 

appears a too simplistic explanation. Future investigations for a role of cellular 

components and their interaction with specific antibody in conferring host protection 

to C.irritans seem warranted. This view is supported by evidence for the involvement 

of leucocytes, macrophages and non-cytotoxic cells in immune response and protection 
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in fish to ciliates (Hines and Spira, 1973b; Graves et al., 1985; Cross, 1990) as well as 

evidence of antibody-dependent cellular cytotoxic mechanisms, as reported for 

rainbow trout infected with the digenean Diplostomum spatlzaceum (Whyte et al., 

1990). 
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CHAPTER SEVEN 

MONOCLONAL ANTIBODY STUDIES 

INTRODUCTION 

The application of monoclonal antibody technology to the investigation of fish 

diseases has been chiefly directed towards viral and bacterial pathogens (Plumb and 

Klesius, 1988; Lorenzen et al., 1988; Hui-Min et al., 1991; Ristow et al., 1991; Rockey 

et al., 1991). Few studies have involved eucaryotes, however, it is of some relevance 

that Dickerson et al. (1986) have produced MABs to the theront stage of the ciliate, 

I.multifiliis. These workers obtained three different MABs recognising either protein, 

glycoprotein, and carbohydrate antigens. Only one was characterised, a protein of 

200kDa. 

Hybridoma technology has also facilitated production of MABs to 

immunoglobulins of teleost fish, including channel catfish (Lobb and Cl em, 1982), carp 

(Secombes et al., 1983), rainbow trout (DeLuca et al., 1983; Thuvander et al., 1990), 

and cod (Pi1strom and P.etersson, 1991). Such MABs have demonstrated 

immunoglobulin heterogeneity within individual fish species (Lobb et al., 1984; 

Elcombe et al., 1985), as well as lymphocyte heterogeneity with regards surface Ig 

expression (Lobb and Clem, 1982; DeLuca et al., 1983; Secombes et al., 1983; 

Thuvander et al., 1990), the latter suggesting a possible division of T- and B- type 

cells, analogous to that of higher vertebrates. 

The present study aimed to produce MABs to C.irritans using the "shotgun" 

fusion technique as is frequently performed for mammalian parasite studies (Pearson 
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and Clarke, 1986). Any MABs produced would be used to probe for antigenic 

differences between isolates of C.irritans (parasite typing), between trophonts and 

theronts (stage-specific antigens), and between C.irritans and closely related ciliates 

(species-specific antigens). 

A summary of the procedure for MAB production used in this study is given 

in Fig. 54. 
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Figure 54 

Procedure for the production of murine monoclonal antibodies to C.irritans trophonts. 
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MATERIALS AND METHODS 

Three separate immunisation-fusion programmes were undertaken over a 

period of two years. 

1. IMMUNISATION PROCEDURES 

Female BALB/c mice were selected as spleen cell donors (Newell et al., 1988). 

Each mouse received 3 or 4 i.p. immunisations of trophonts of C.irritans (CI-PE; Cl-

CR; CI-HT; CI-GS) presented alive or following cryostorage in liquid N2, ea. 14 days 

apart. Trophonts were delivered in 0.5ml saline only (immunisation programme #1) 

or in saline containing either 50% FCA {1° immunisation), 50% FIA (2°), or saline 

onJy (3°, 4°)(programmes #2, #3), in accordance with recommended procedures 

(Dresser, 1986). Antigen-adjuvant emulsions were stored unfrozen for up to 1 month 

at 10°C. Immunisation regimes, together with numbers of trophonts administered, are 

given in Table 22. 

2. COLLECTION OF MOUSE BLOOD 

: 

The caudal vein was exposed by tail snip and blood drops collected into a 

microcentrifuge tube. Samples of 100~-£1 were taken at 1 to 2 days prior to planned 

fusion and specific antibody production to C.irritans detected by ELISA (see below). 

Serum fractions were prepared as described previously (Chapter 6, section 2). 

3. MYELOMA CELL LINE (NSO) 

NSO, a non-lg producer (Galfre and Milstein, 1981) derived from the P3-X63-

Ag8 parent cell line (Newell et al., 1988) was selected as the myeloma fusion partner 

261 



Table 22 

Immunisation regimes for eight BALB/c mice administered C.irritans trophonts. 

Immunisations 

Immunisation Mouse Number of trophonts per 

programme# # immunisation Adjuvant 

10 20 30 40 

A 150a 300a sooa 200c 

1 B sooc 200a 200a 200a 
no 

c 200a 200a 200a -

D 

2 E 650a 6503 ssoa yes1 -
F 

G 
3 sooc sooc 125a - yes1 

H 

1Adjuvanl: 
FCA administered with 1° immunisation. 
FlA " 2° 
None 

a = trophonts administered alive. 

c = trophonts administered following cryopreservation. 
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for BALB/c spleen cells (NSO supplied courtesy of ECAAC, Porton Down, U .K.). 

NSO stocks were cryopreserved in liquid N2 at a density of 1-5X106 cells/ml in 1:9 v/v 

dimethylsulphoxide (DMSO): foetal calf serum (FCS) (Gibco Ltd.). Cell cultures 

were set up 10 to 14 days before planned fusion. Cryopreserved cells were rapidly 

thawed in a 37°C water bath, and immediately diluted in monoclonal culture medium 

(MCM) comprising RPMI-1640 (Gibco Ltd.) contairung 10% FCS (see appendix) to 

minimise the known toxic effects of DMSO at > 4°C. Cells were distributed in MCM 

in 25rnl culture flasks (Flow laboratories, U.K.) and incubated at 37°C in a humidified 

5% C02 atmosphere (LEEC C02 incubator). Cultures were split every 2 to 3 days, 

to maintain a cell density of 2-5X10S cells/ml. 

3.1 HAT sensitivity testin~: 

The absence of hypoxanthine phosphoribosyl transferase (HPRT) in the 

myeloma cell line was confirmed prior to fusion by inability to grow in a mixture of 

hypoxanthine, aminopterin and thymidine (HAT) according to the method of Newell 

et al. (1988). Cell death was confirmed by the trypan blue exclusion test (Newell et 

al. , 1988). 

4. HYBRIDOMA PRODUCTION AND SCREENING 

4.1 Myeloma - spleen cell fusion 

The general procedure recommended by the Royal Postgraduate Medical 

School (RPMS, Hammersmith, London, monoclonal course guidebook, undated) was 

employed. Briefly, fusions were performed 3 to 4 days following the final mouse 

immunisation. Spleen cells of the immunised mouse were teased from the aseptically 
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removed organ into PBS-J (see appendix) and counted in a Neubauer 

haemocytometer. NSO cells, harvested from cultures during the exponential growth 

phase, were enumerated as above and the numbers adjusted to give a 

spleen:plasmacytoma cell ratio of about 7:1 to 8:1. Fusion was facilitated by the 

addition of polyethylene glycol (PEG 1500, BDH Ltd.) to the pelleted cell mixture. 

4.2 Macropha~:e feeder cells 

Low density hybridoma cultures were supplemented with macrophage feeder 

cells to provide growth factors (Newell et al., 1988). These were obtained from a 

freshly killed unimmunised BALB/c mouse by i.p. injection of 5ml cold RPMI 

medium containing 10% FCS followed by gentle palpation of the abdomen. The 

medium plus peritoneal cells was aspirated and a sample enumerated m a 

haemocytometer and viability checked using trypan blue. 

4.3 Hybridoma culture 

Unfused myeloma cells were selectively destroyed by the HAT medium as 

follows. Fused hybrids were resuspended in MCM containing HAT to ea. 2 - 5X10S 

cells/m! and peritoneal ~acrophages added to ea. 2 - 5X10" cells/ml. The 

hybridoma/ macrophage cell mixture was plated out to ea. 5.2X106 cells/ml in a 24 

well tissue culture plate (Coming, U.S.A) and incubated at 37°C in a humid 5% C02 

atmosphere. The MCM/HAT was replaced after 7 days. Following HAT selection, 

hybridoma cultures were split every 2 to 3 days in MCM containing hypoxanthine and 

thymidine (HT). 
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4.4 Screenin~: hybridomas for specific antibody 

Tissue culture wells with high cell growth, usually between 10 - 14 days post-

fusion, were initially screened by ELISA for specific antibodies to trophont antigen 

of C.irritans (CI-GS(44/46)). Selected antibody positive cultures were further tested 

by ELISA against T.pyrifonnis and mullet lg (Uitrogel fraction) antigens. Antigens 

were coated at previously optimised dilutions (Chapter 6). Mouse sera were tested 

over the range 1:50 to 1:1600. Hybridoma cell supernates were tested at 1 in 2, 

diluted in ELISA incubation buffer containing double strength Tween 20. Mouse 

ascites were tested at 1:40 to 1:1000. Appropriate serum or hybridoma controls were 

included with each test. A commercially prepared rabbit anti-mouse Ig peroxidase 

conjugate (Dako, Denmark, product P260) was used at 1:1000. 

4.5 Hybridoma clonin1: 

Hybridomas with specific antibody activity to an appropriate antigen were 

selected for cloning on the basis of those with highest ELl SA values. Usually 2 - 10% 

of the highest antibody reactors were selected, the actual percentage being determined 

by the handling capacity and the availability of antigen. Selected hybridomas were 

. 
cloned by limiting dilution in 96 well tissue culture plates (Sterilin, U.K.), initially to 

6 cells/well; antibody positives from this were plated out to a theoretical density of 

0.3 cells/well (i.e. average of 1 cell per 3 wells). 

4.6 Cryopreservation of hybridomas and NSO cells 

Reserve stocks of NSO cells and selected antibody- secreting hybridoma clones 

were cryopreserved in liquid N2• Antibody secreting hybridoma cultures awaiting 

cloning were also cryopreserved. Cultures for cryostorage were centrifuged at 500g, 
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10 min, and the cells resuspended to 1-9X106/ml in 90% FCS, 10% DMSO. Cell 

suspensions were transferred to cryotubes (NUNC Ltd.), held in ice for 2 hand then 

placed in an insulated polystyrene box to facilitate slow cooling to -70°C in a freezer, 

after which they were stored in liquid N2• 

5. MONOCLONAL ANTIBODIES (MABS) 

5.1 Bulk production 

Antibody positive clones were scaled up for bulk MAB production by either 

expansion in 25ml and 75ml flasks or by ascites production, the latter providing 25 to 

1000 times the concentration of MABs yielded by cell culture (Newell et al., 1988). 

The method for ascites production, as described by the RPMS monoclonal course 

guidebook, was followed. Briefly, BALB/c mice were administered by i.p. O.Sml 

pristane (2,6,10, 14-tetramethyl-pentadecane, Aid rich Ltd.) followed 10 to 14 days later 

by i.p. injection with 1-4Xl06 cloned hybridoma cells in ea. O.Sml PBS. Mice showing 

ascites were killed and the fluid aspirated using a fine pasteur pipette inserted into 

the peritoneal cavity. Ascitic fluid was centrifuged at 500g, 10 min, and the supernate 

aliquoted for storage at -20°C or in liquid N2• 

5.2 Isotype analysis 

Culture supernates from specific antibody producing clones were tested by 

ELISA in replicate at 1:2 dilution, against their target antigen. MAB isotype was 

identified by the use of a panel of peroxidase conjugated sheep antisera to mouse Ig 

H and L chains (Mouse immunoglobulin set, Serotec Ltd.). 
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6. CHARACTERISATION OF TARGET ANTIGENS 

The target antigens, against which the MABs were directed, were further 

characterised by immunoblot analysis of gel fractionated ciliate and fish 

immunoglobulin preparations. 

The SDS-PAGE procedure was as described in Chapter 5, methods section 3. 

6.1 Natlye PAGE 

The PAGE procedure, described in Chapter 5, was modified for native gels as 

follows. A 7% separating gel was overlaid with a 3% stacking gel. Gels were run for 

approximately 2 h. Molecular weight markers comprised: bovine milk alpha­

lactalbumin (14.2kDa), bovine erythrocytes carbonic anhydrase (29kDa), chicken egg 

albumin (45kDa), bovine albumin (monomer, 66kDa; dimer 132kDa), jack bean 

urease (trimer, 272kDa; hexamer, 545kDa) (Sigma MW marker kit MW-ND-500). 

Buffers and reagents were as described in the Sigma technical bulletin, MKR-137. 

6.2 lmmunoblotting 

lmmunoblots of selected MABs against PAGE separated ciliate and 

immunoglobulin preparations were performed using the basic methods described 

earlier (Chapter 6, methods section 10). Antigen preparations for MAB screening 

were loaded onto a wide comb for PAGE. They were then electroeluted onto 0.2~m 

nitrocellulose (NC) paper which was subsequently cut into 0.5cm strips in order to 

reduce the quantities of MAB required. NC strips were blocked in 3% skimmed milk 

powder (Tesco Stores Ltd.) in PBS, pH 7.6. for 40 min at RT. NC strips were 

incubated for 1 h in individual disposable plastic tubes containing 6 ml undiluted 

MAB cell culture supernate, previously pH stabilised with 20mM HEPES buffer 
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(Gibco Ltd.) as recommended by Newell et al. (1988). Ascitic fluids were tested at 

1:50 in PBS. After washing, the NC strips were similarly incubated with a rabbit anti­

mouse peroxidase conjugate (DAKO, Denmark, product P260) at 1:500, followed by 

further washing prior to addition of diaminobenzidine (DAB) substrate. Stained 

bands were characterised by MW by comparison with non-blotted Coomassie blue and 

amido black stained controls and with MW markers which had been run 

simultaneously. 

7. THERONT IMMOBILISATION 

The theront immobilisation/ agglutination test, described in Chapter 6, was 

performed using CI-GS theronts, 50/well, incubated in hybridoma cell culture 

supernates or ascites, both titrated over the range 1:10 to 1:160 in filter sterilised 

seawater (FS-SW). A rabbit antiserum to C.irritans (RABantiCI) and a negative 

rabbit serum, each tested at 1:20 dilution, were included as controls. ObservationS 

were made at 30 min. 
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EXPERIMENTS AND RESULTS 

1. SELECTION OF MICE FOR HYBRIDOMA PRODUCTION 

Serological results and spleen cell harvests of 8 mice, A-H, prepared for fusion 

are shown in Table 23. Mice were bled on the day prior to harvest and their sera 

tested at 1:200 for antibody activity to C.irritans by EUSA. Of the 5 mice tested all 

were seropositive. Spleen cell harvests from 7 mice were sufficient for fusion, ranging 

between 7.4X107 to 1.1X10S cells/mouse. A total of 7 mice, including)"riot screened k 

by ELISA, were used for fusions. 

2. SELECTION OF HYBRIDOMAS 

The selection of hybridomas for cloning was based on ranking them according 

to the level of specific antibody activity to C.irritans by EUSA, those with highest 

antibody levels being chosen. An example of the frequency distribution of antibody 

activity to C.irritans is shown in Fig. 55 for 311 hybridomas derived from mouse D. 

The distribution shows a bimodal effect, broadly distinguishing two major populations: 

high antibody reactors(:::: >0.4 absorbance units) and low/non-reactors(:::: <0.1 units). 

From these results, the highest 5% of antibody reactors were selected for further 

cloning by limiting dilution methods. 

Hybridomas derived from spleen cell donor mice D and G were screened by 

EUSA. From ea. 2100 ELISA tests, a total of 20 hybridomas were identified with 

antibody reactivity against one or more of the three EUSA antigens. 

Mouse D yielded 4 hybridoma cultures (termed 1A1, 102, 2B5, and 2C4), 

each producing a unique reactivity pattern with the EUSA antigens (Fig. 56). Cross-

reactivity with T.pyrifonnis trophozoites and mullet Ig was observed, with one 
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Table 23 

Antibody production and cell fusion data for eight BALB/c mice immunised with 
C.irritans trophonts. 

Mouse Fusion Hybridoma 

Immunisation Serum Spleen cell S:P ratio2 Antibody 
programme # antibody1 harvest X 107 production 

(ELISA) 

A nd 9.6 8.0:1 no Fe 

1 B nd 8.8 8.0:1 no 

c nd 7.6 8.0:1 no 

D 0.73 7.4 8.0:1 yes 

2 E 0.72 8.0 8.0:1 no Fe 

F 0.49 11.0 6.9:1 no Fe 

G 1.04 8.8 8.1:1 yes 
3 

H 0.74 nd - -

1 
Mean ELISA result (n = 2) of tail bleed sample, collected 1 day prior to fusion, and tested at 1:200 

against CI-GS(44/46). Sera from non-immunised mice: ,; 0.07 absorbance units (n=2). 

2 S:P = spleen cell : plasmacytoma cell ratio. 

nd = not done. 

FC = fungal contamination, hybridoma culture destroyed. Identified as Aspergillus sp. for mouse F 
hybridomas. 
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Figure 56 

Monoclonal antibody activity to trophonts of C.irritans, trophozoites of T.pyrifonnis, and 
mullet immunoglobulin, in hybridomas from two mice, measured by ELISA. 

Mouse D: 
Hybridomas = lAl, 1D2, 2B5, and 2C4 (n= 4). 

Mouse G: 
Set #1 hybridomas comprise clones 5,6,7,11,19,20,29,31, and 32 (n= 9). 
Set #2 hybridomas comprise clones 34,35,36,37,38,39, and 40 (n= 7). 

Antigens: 

·• C.irritans 

~ T.pyrifonnis 

IQ Mullet Ig 
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hybridoma culture giving high antibody levels to mullet Ig but weak levels to C.irritans 

antigen. However, cloning of these cultures resulted in diminishing antibody levels 

eventually becoming negative by ELISA, at which point all clones were discarded. 

Mouse G yielded 16 hybridoma cultures all of which were successfully cloned. 

Of these, 9 clones (=set .#1) showed similar ELISA reactivities with C.irritans only; 

the oiher 7 clones (=set #2) reacted weakly with C.irritans but strongly with mullet 

Ig (Fig. 56), indicating the presence of two distinct types of MABs. None of the 16 

hybridomas reacted with T.pyrifomiis. 

3. MON0CLONAL ANTIBODIES (MABS) 

3.1 Production 

MABs were routinely ha~ested from hybridoma cell culture supernates. 

However, higher concentrations of MABs were obtained from ascites. Table 24 shows 

antibody activity in ascitic fluids .obtained from pristane treated mice, administered 

with various numbers of antibody- secreting hybridoma cells. Of 16 mice 

administered hybridoma cells, 12 produced ascites, with yields up to 20ml per mouse. 

Serum antibody levels were·much higher in ascites fluids than in culture supernates, 

permitting the former to be screened in ELISA at 1:1000 dilution, compared with 1:2 

for supernates, 

3;2 lsotype analysis 

lsotype analysis by ELISA revealed IgG1 and lgM class MABs. The 9 

hybridomas r.eacting specifically with C.irritans trophonts were all IgGI; the. 7 reacting 

strongly with mullet Ig were all lgM. 
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Table 24 

Murine ascites production and antibody activity to trophonts of C.irritans and mullet 
immunoglobulin, measured by ELISA. 

Target Hybridoma, No. Asciles anlibody aclivily 

antigen, 
dcsigna1ory Mouse # hybridoma Asciles (ELISA absorbance)1 

number cells x1o" produclion 

MW per mouse Cl Mlg 

5-1 0.19 0.01 
5 

5-2 
2.3 

0.16 0.01 

6-1 2.3 0.18 0.01 
6 

6-2 0.18 0.02 

7-1 yes nt nt 
7 

7-2 
0.4 

20-21kDa nt nt 

11 11-1 1.3 0.18 0.01 

29 29-1 1.7 nt nt 

31 31-1 1.5 - -

32 32-1 1.1 
no 

- -
34-1 0.09 0.51 

34 34-2 3.9 nt nt 

34-3 yes nt nt 

68-69kDa 37-1 0.08 0.50 

37 37-2 5.0 - -
37-3 

no - -

1 Mean antibody activity (n = 2) in ascites at 1:1000 dilution. Control hybridoma supernate (non-antibody 
secretor) = 0.03 absorbance units for C.irritans antigen, and 0.02 for mullet Ig antigen. 

Cl = C.irrilans trophont antigen. 

Mlg = mullet immunoglobulin. 

nt = not tested. 
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3.3 Tareet antieen characterisation by immunoblottine 

MABs from cloned hybridoma supernates were characterised for antigen 

recognition by immunoblotting against electroeluted reduced SDS-PAGE preparations 

of the ciliates, namely, C.im'tans, J.multifiliis, and T.pyriformis, and against 

immunoglobulin preparations from muJlet, rainbow trout and flounder. MABs 

recognised proteins in trophonts of both C.irritans and J.multifiliis and in muJJet lg. 

These results are detailed below. 

3.3.1 Reactivity with C.irritans trophonls 

The 9 MABs which were specific to C.irritans by ELISA gave similar 

immunoblot reactions, identifying a single protein component of approximately 20-

21kDa, corresponding with a moderately intensive amido stained band on the 

electrophoresed C.irritans preparation. The 20-21kDa component was recognised in 

trophonts of aJI isolates tested, namely, CI-CE, CI-FL, CI-CR, CI-HT and CI-GS (Fig. 

57). Electrophoresis of a C.irritans trophont preparation under non-reducing 

conditions on a 7% gel, foJJowed by immunoblotting, also resulted in MAB 

recognition of a single band of undetermined molecular weight. Very faint bands 

were observed at the 45-46kDa and 56kDa positions on some heavily loaded trophont 

preparations of C.irritans. 

3.3.2 C.irritans staee and species specificity 

A cocktail of 3 MABS ( #7, #29, #32) directed to the 20-21kDa protein were 

reacted with NC strips containing reduced SDS-PAGE preparations from whole 

trophonts and theronts of both C.irritans and l.multifiliis, trophozoites of T.pyriformis, 

and muJlet immunoglobulin, each separately loaded at concentrations detectable by 
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Figures 57 and 58 

Immunoblot assays using the MAB directed to the 20-21kDa polypeptide. 

Figure 57 (=A) 
Assay of SOS-PAGE preparations of trophonts from five isolates of C.irritans. 

Isolates: CE, FL, CR, HT, GS. 

MAB reactivity is observed at ea. 20-21kDa position for all five isolates. 

Figure 58 (=B) 
Assay of SOS-PAGE preparations of theronts and trophonts of C.irritans and 
I.multifiliis, trophozoites of T.pyriformis, and mullet immunoglobulin. 

Tr = trophont. 
Th = theront. 
Cl = C.irritans. 
IM = I.multifiliis. 
TP = T.pyriformis. 
Mlg = mullet immunoglobulin. 

MAB reactivity is observed with trophonts only, at ea. 20-21kDa position for C.irritans 
(arrow), and ea. 41, 46, 50, and 56k0a positions for I.multifiliis (arrows). 

For both figures: molecular weight marker positions shown in left hand lane. 
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Coomassie and amido staining. The results (Fig. 58) show MAB recognition of a 20-

21kDa protein in the C.irritans trophont preparation only. However, the MABs 

reacted with 4 components of the J.multifiliis trophont preparation at 41, 46, 50 and 

56kDa positions. 

3.3.3 MAB reactivity with mullet immunoelobulin 

Recognition of mullet immunoglobulin by MABs was investigated. Mullet Ig 

(Ultrogel fraction), electrophoresed by SDS-PAGE under reducing conditions, was 

separately probed with 3 MAB clones reactive by ELISA specifically with C.irritans 

( #7, # 11, #29) and with 7 reactive by ELl SA with both C.irritans and mullet Ig ( #34 

to #40, inclusive). A rabbit antiserum to mullet lg (RABantiMig) was also reacted, 

for comparison. The results (Fig. 59) show strong recognition of a single protein 

component at 68- 69kDa corresponding in MW to the presumptive H chain of mullet 

lg. Only those MABs which were positive to mullet lg antigen by ELISA gave 

imrnunoblot reactivity. None of the MABs recognised the L chain. The rabbit 

antiserum to mullet Ig (RABantiMig) also reacted strongly with mullet Ig H chain but 

gave a weak reaction with the L chain (results not shown). 

3.3.4 Teleost species specificlty · 

A cocktail of MABs ( # 35, 36, 39), all reactive to mullet Ig by ELl SA, were 

imrnunoblotted against electroeluted reduced SDS-PAGE preparations of purified 

mullet Ig, rainbow trout lg, purified flounder Ig, and mullet whole serum, all from fish 

in a good state of health. The results (Fig. 60) show strong MAB recognition of the 

H chain in mullet Ig and weak recognition in mullet whole serum preparations but no 

recognition of the Ig from either rainbow trout or flounder. 
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Figures 59 and 60 

Immunoblot assays using the MAB directed to the 68-69kDa polypeptide. 

Figure 59 (=A) 
Assay of SDS-PAGE preparations of mullet immunoglobulin by a panel of ten MAB 
clones. 

MAB clone numbers shown at the top of each lane. 

Mullet immunoglobulin ~Mlg) heavy (H) and light (L) chain positions are shown for 
reference, in the right hand lane. 

Reactivity is observed for seven of the ten MAB clones. 

Figure 60 (=B) 
Assay of SDS-PAGE preparations of immunoglobulin and serum from three teleost 
spectes. 

Mlg, Fig, Tlg, = immunoglobulins of mullet, flounder and trout, respectively. 
MS = mullet serum. 

MAB reactivity is observed for immunoglobulin and serum (arrow) of mullet only. 

For both figures: 
molecular weight marker positions shown in left hand lane. 
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3.3.5 Reco~:nition of mullet immuno~:lobulin in C.lrritans trophonts 

Mouse ascites ( #34-2), previously shown to recognise mullet Ig H chain, was 

immunoblotted separately against reduced SDS-PAGE preparations of trophonts and 

theronts of both C.irritans (CI-GS) and J.multifiliis, and against T.pyrifonnis 

trophozoites. The results (not shown) revealed very weak banding at =:: 68-69kDa on 

the C.irritans trophont preparation only. 

The mouse ascites #34-2 revealed the in situ localisation of mullet Ig within the 

food vacuoles of trophonts of C.irritans (CI-GS), as shown by immunogold labelling 

(Fig. 61). 

3.4 A~:~:lutination and immobilisation tests with C.irritans theronts 

Neither species of MAB caused agglutination of C.irritans theronts over the 

dilution range tested. Theront deaths, comprising between 52% and 96% of parasites, 

occurred within 30 min of incubation in all dilutions of ascitic fluids from both MAB 

species, suggesting this was a non-specific effect. No deaths occurred in the presence 

of cell culture supernates. Theront agglutination occurred in the presence of the 

positive control RABantiCI, but not in the serum from a non-immunised control 

rabbit. 

3.5 Summary characteristics 

A summary of MAB characteristics and target antigens is shown in Table 25. 
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Table 25 

Summary characteristics of two murine monoclonal antibodies raised to trophonts of 
C.irritans. 

MAB target antigen MW 
Characteristic 

20-21kDa 68-69kDa 

C.irritans mullet 
Target antigen characterisation polypeptide immunoglobulin 

heavy chain 

yes 
In situ localisation by immunogold no (within food vacuoles 

labelling of trophonts) 

I so type IgGl I gM 

Serological Cl trophont yes yes (weak) 

activity by 
Mullet Ig ELISA with: no yes 

C.irritans theronts no no 

yes (weak) · no 
I.multifiliis (at 4 high MW 

trophonts positions) 

Immunoblot l.multifiliis no no 
cross- reactivity theronts 

with: 
T.pyriformis no no 
trophozoites 

Mullet lg no yes 
(H chain only) 

Flounder Ig nt no 

Trout Ig nt no 

In vitro agglutination of C.irritans no no 
theronts 

nt = not tested. 
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DISCUSSION 

The generation of hybridomas with antibody activity to C.irritans trophonts has 

yielded two distinct monoclonal antibody (MAB) species, reacting with 20-21kDa and 

68-69kDa components, respectively. This represents the first record of MABs directed 

to C.irritans. 

The MAB directed to the 20-21kDa trophont polypeptide of C.irritans revealed 

this component to be stage specific, its absence from the theronts of both C.irritans 

and J.multifiliis suggesting a possible association with growth within the fish host. The 

MAB did not detect a similar sized trophont polypeptide from J.multifiliis, however, 

recognition of four higher molecular weight components of this parasite was 

unexpected. This might reflect complexing of the 20-21kDa polypeptide with other 

molecules, possibly resulting from inadequate reducing conditions during PAGE 

analysis. Alternatively, it might be relevant that Ghosh and Campbell (1986) reported 

incidences of MAB binding to unrelated antigens possessing partial epitope identity 

as well as spurious irrelevant MAB binding to heterologous antigens with high epitope 

density. Weak MAB reactivity with two major structural proteins of C.irritans, 

namely, 45-46kDa cilia membrane polypeptide and 56kDa tubulin, was not entirely 

unexpected as MABs frequently cause spurious immunoblot reactions with structural 

proteins or other major protein components (Ghosh and Campbell, 1986). Although 

the 20-21kDa component is associated with trophonts of C.irritans, it has not been 

possible so far to locate the molecule in situ using immunogold labelling techniques, 

despite most major parasite organellae being investigated. It is possible that the 

immunogold procedure may have caused detachment of the 20-21kDa component 

from the trophont preparation, or altered its structure so as to prevent MAB binding. 
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It is remotely possible that the MAB was directed to an endosymbiotic bacterium not 

present in those trophonts prepared for electron microscopy. Such bacteria, termed 

''xenosomes" (Corliss, 1985), have been reported in lchthyophthirius (Roque et al., 

1967; Lobo-da-Cunha and Azevedo, 1988) and in large numbers in the marine ciliate 

Parauronema acutum (Soldo et al., 1974). 

The MAB directed to a 68-69kDa component reacted weakly with the trophont 

stage of C.irritans with no recognition of the theront stage of C.irritans or either stages 

of I.multifiliis. Of considerable interest was the strong recognition of host mullet 

immunoglobulin by this MAB. That the MAB was, in fact, directed to mullet 

immunoglobulin heavy (H) chain, known to be 67-68kDa, was shown from ELISA and 

immunoblotting. Conclusive evidence comes from the successful application of the 

MAB as second antibody in ELISA for the detection of mullet antibodies to C.irritans 

and to a digenean parasite, Cryptocotyle lingua, the latter assay also developed by the 

author. The possibility that the 68-69kDa polypeptide also represents a parasite 

component serving to mimic host immunoglobulin as a protective role, was considered 

highly unlikely given the cosmopolitan host range of C.irritans and the apparent 

specificity of the MAB which did not recognise immunoglobulins from two other 

teleost species. Further, the' detection of immunoglobulin H chain polypeptide within 

the food vacuoles of trophonts, with the aid of immunogold labelling, provides an 

acceptable explanation of its identification in trophont homogenates. That host 

immunoglobulin is ingested by parasitic trophonts has also been demonstrated for 

I.multifiliis by Cross ( 1990). It is notable that all hybridoma clones secreting 

antibodies to mullet immunoglobulin were reactive only with the H chain component. 

No obvious explanation for this can be found, except that MABs directed to the L 

chain were missed during the ELISA screening procedure, discussed below. It would 
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seem likely that mullet L chain is immunogenic to m1ce given the successful 

production of murine MABs to L chains of other teleosts, including cod (Pilstrom and 

Petersson, 1991) and channel catfish (Lobb et al., 1984). 

At least thirty two polypeptide components of C.irritans were introduced into 

mice in the trophont preparations. It was surprising, therefore, that only two MAB 

species were identified and that only one of these was directed to a parasite antigen. 

Nevertheless, several factors could account for the low yield of MAB species. It is 

possible that the two MAB-directed polypeptides were the major antigen targets of 

the mouse's immune response, reflecting either predominant immunogenicity, and/ 

or greater stability within the mouse peritoneal cavity, favouring immune recognition. 

The specific properties which make for a strong immunogen are poorly understood, 

although it seems that quantity is not a crucial factor, given that minor impurities 

within an antigen preparation have evoked strong antibody responses (Goding, 1983). 

Low yield of MAB species may also be attributable to the initial selection and 

screening procedures employed in the study. The cloning procedures may also have 

selected against MAB-secreting hybridomas, particularly as cloning delays could result 

in overgrowth by more vigorous non-secreting cells (Galfre and Milstein, 1981). 

Failure to detect all hybrido'mas producing MABs to C.irritans might be attributed to 

the EUSA screening procedure, as it is known that some cell components, such as 

lipids and polysaccharides, do not remain bound throughout this assay, as discussed 

in Chapter 6. Further, different MABs have been shown to vary in their avidity to 

target antigen, and are susceptible to minor changes in pH and salt concentration 

(Goding, 1983; Craiget al., 1989). The buffer conditions used in the screening EUSA 

may, therefore, have favoured only a proportion of the total MAB repertoire to bind 

with adequate avidity to target antigens. The hybridoma selection procedure, based 
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on ELISA reactivity, may therefore have contributed to the limited MAB species as 

a result of stringent elimination of weakly reacting clones. Such weak antibody 

reactors would also comprise MABs directed to quantitatively minor antigens of 

C.irritans. Screening of further hybridoma cell populations, currently cryopreserved, 

might hopefully yield MABs reactive with other components of C.irritans. 

In the present study, it was not feasible to use the theront stage of C.irritans for 

raising MABs, due to insufficient quantities of parasite material. The production of 

MABs to the infective stage could, however, prove valuable in the light of evidence 

for acquired host protection directed against this stage, as suggested earlier (Chapter 

4). MABs directed to host-protective antigens would provide a useful immunological 

tool for the characterisation and isolation of the relevant molecules, as successfully 

applied for protozoa of medical importance (Yoshida et al., 1980; Kasper et al., 1983; 

Wright et al., 1983; Musoke et al., 1984). 

Although not a direct aim of the present study, mention should be given to the 

potential value of the MAB directed to mullet immunoglobulin as an immunological 

reagent for serological studies as well as a candidate probe for T and B cell-like 

lymphocyte sub-populations in the mullet, as already investigated in other teleosts 

using MABs (DeLuca et al.;'1983; Secombes et al., 1983). 
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CHAPTER EIGHT 

DISCUSSION 

This study has contributed new information on the biology of C.irritans and its 

interaction with host which should find application in the design of control and 

management strategies for cryptocaryosis in both food fish and ornamental fish culture. 

In mariculture, the increasing use of sea cages and other "open" systems 

presents a serious risk of disease transmission from the local wild fish populations 

(Shepherd, 1978). The broad host range for C.irritans and direct transmission are two 

factors which underline the vulnerability of cage cultured fish to cryptocaryosis. A 

first consideration for the control of C.irritans in open systems would be the 

identification of high risk localities and their avoidance at the stage of site selection. 

The wide salinity tolerance of C.irritans would theoretically enable it to exist in all 

oceans, however, this study has highlighted two environmental factors which are 

considered to restrict the parasite's global range, namely temperature and light. The 

inability of C.irritans to complete development below 20°C, as shown here and by 

other workers (Wilkie and qordin, 1969; Cheung et al., 1979) would limit the parasite 

to the area encompassed by the 20°C surface isotherm (Fig. 62). It is within this area 

that temperature would also restrict the parasite's vertical distribution to relatively 

shallow waters, within the epipelagic zone which extends to around 200 metres in 

depth; at greater depths the temperature falling below 20°C (lngmanson and Wallace, 

1973). Further evidence that the parasite inhabits only shallow waters comes from 

observations on the strong influence of photoperiod on two developmental phases 

within its life cycle: trophont exit from host and excystation. The influence of 
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photoperiod on the latter phase, and the requirement for a substrate for cyst 

settlement suggests that C.im'tans is limited to regions where water clarity is high and 

the sea floor is exposed to light. The maximum depth of the lighted region ("photic" 

zone) of the ocean is generally considered to be 100-200 metres (Nybakken, 1988), 

which again points to C.irritans inhabiting the epipelagic zone. The environment for 

C.irritans, here considered to be clear, shallow, sunlit waters above 20°C, is typical of 

that colonised by hard (hermatypic) corals (Lowe-McConnel, 1987; Nybakken, 1988), 

and further supports earlier views that C.irritans is primarily a parasite of reef dwelling 

fishes (Chapter 3). The dense population of fishes on the coral reef (Lowe­

McConnell, 1987; pers. obs.) would also favour transmission of C.irritans given the 

limited period over which the infective theronts are viable. The present study has 

confirmed the broad host range of C.irritans, which would clearly be beneficial to a 

parasite associated with a coral reef habitat, typified by a diversity of fish species 

(Lowe-McConnel, 1987; Nybakken, 1988). This finding provides little prospect for the 

discovery of food fish species which are innately resistant to C.irritans. Furthermore, 

the potential host range for C.irritans extends to fresh- or brackish-water teleosts, such 

as mollies and tilapia, which can be acclimated to marine environments, as 

experimentally shown here.' This poses a serious constraint with regards tilapia as 

there is a growing interest in the use of these salt-tolerant cichlids for cage 

mariculture, with trials off coastal Southern United States (Watanabe et al., 1990) and 

Malta (Dr Agius, Ministry of Agriculture and Fisheries, Malta, pers. comm.). It would 

therefore seem advisable to assume that all habitats which satisfy the environmental 

conditions outlined above, present a potential risk of cryptocaryosis to all species of 

farmed fish . 

Confirmatory evidence for C.irritans in natural waters can only realistically be 
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achieved by the detection of parasitic trophonts in the wild fish population, however, 

this stage represents a relatively brief period within the parasite's life cycle, being 

shown here to average 84 hours. Effective detection of C.irritans in wild fish would 

be further exacerbated as the development of protective immunity against the parasite, 

demonstrated here in mullet, would result in low or zero infections. This could 

possibly explain the low prevalence of C.irritans in the few recorded cases in wild fish 

(Laird, 1956; Wilkie and Gordin, 1969). The inability to demonstrate C.irritans in wild 

fish could therefore result in an area being erroneously designated risk -free. 

Confirmation of presumptive risk areas might be achieved with the aid of sentinel fish 

which are exposed to the local waters. Such an approach has been applied to the 

detection of other parasites, notably the use of mice for the detection of aquatic 

cercariae of schistosomes (Jordan, 1985). The brief parasitic stage of C.irritans would 

necessitate inspection of fish sentinels at least every three days; low infection levels 

being detected by transferring exposed fish to trophont harvesters and enumerating 

cysts. 

In assessing potential risk areas for C.irritans, consideration must be given to 

the introduction of the parasite into waters within the 20°C isotherm but at sites 

naturally unsuitable for its establishment. This could result from aquaculture 

practices, as shown for other fish diseases (Kabata, 1983). For example, sea cages, 

which house a high density of fish, may provide ideal conditions for the transmission 

of C.irritans in deep waters where the natural substratum occurs below the photic 

zone. Transmisd on within the sea cage would be aided by the parasite's ability to 

encyst on unnatural substrates, as shown here for wood and steel, both these materials 

being used for cage construction (C"ook, 1985; Moffatt, 1991). This situation could 

lead to infection of the wild fish ropulation which are often attracted to sea cages for 
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food and shelter (Carss, 1990; pers. obs.), with the risk of these fish establishing a 

reservoir of C.irritans. Evidence that the parasite's geographical range may already 

extend to sub-tropical marine environments comes from the recent report of a 

Cryptocaryon-like organism from the Eastern Mediterranean (Diamant et al., 1991). 

Whether this isolate represents a new species or an adaptation of C.irritans to more 

temper~te conditions is not known. Studies presented here on the behaviour, 

morphology, molecular composition and antigenicity of tropical isolates of C.irritans 

now provides a basis for assessment of the Mediterranean form. 

Prior to the present study, there has been no method available for the 

assessment of chemotherapeutic agents against cryptocaryosis, although the use of 

chemicals has provided the major approach to disease control (Herwig, 1978; 

Andrews et al., 1988). Chemical treatments have involved the application of a wide 

range of products including those intentionally used against fish parasites in general, 

such as copper, malachite green, and formalin (Nigrelli and Ruggieri, 1966; Wilkie 

and Gordin, 1969; K.ingsford, 1975; Herwig, 1978; Moe, 1982; Rasheed, 1989) and 

drugs originally developed for medical and veterinary use, including the quinines and 

antibiotics (De Graaf, 1973; K.ingsford, 1975; Herwig, 1978, 1979; Huff and Burns, 

1981). The selection and evaluation of these compounds against C.irritans has been 

based largely on empirical grounds, with efficacy assessed from aquarium or 

mariculture observations under non-standardised conditions. The establishment of a 

system for the laboratory maintenance of C.irritans now provides an effective method 

for the screening of drugs against the parasite; the controlled conditions permitting 

direct comparisons between different drugs and the determination of therapeutic 

doses. The pilot screen developed here for OomedTM represents the first detailed 

evaluation of a commercial chemical treatment against C.irritans, and has already 
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revealed the limitation of this product, a newly formulated drug which was claimed 

to destroy the cyst stage (Dr. Pool, Tetra Ltd., pers. comm.). The significant 

differences observed between the cysts and other free-living stages of C.irritans in their 

susceptibility to Oomed'Nleads to the recommendation that future candidate drugs are 

screened against all life cycle stages. It is clear from studies here that a search for 

more effective drugs against cryptocaryosis is urgently required, although in view of 

the high costs of drug development it seems inevitable that novel formulations will be 

adapted from those designed for medical and veterinary applications. Several 

promising compounds have been produced, including toltrazuril, an anti-coccidian 

(Mehlhorn et al., 1984 ), shown to destroy trophozoites of J.multlfiliis (Schmahl et al., 

1989). Other candidate drugs might include those effective against the mammalian 

ciliate pathogen, Balantidium coli, such as ampicillin and paromomycin (Manson-Bahr 

and Apted, 1982; Farthing and Rolston, 1990). Reports of success using the anti­

malarial quinines against C.irritans (Kingsford, 1975; Herwig, 1978) warrants the 

evaluation of novel quinine derivatives which inhibit protozoal nucleic acid synthesis 

(Gutteridge and Coombs, 1977) as well as heterologous compounds such as the 

phenanthrene methanols (Horton, 1988). Pilot studies undertaken here on the 

polypeptide composition of'C.irritans provides a basis for the future analysis of their 

biological functions. Identification of key molecules, for example enzymes, could 

obviate the need for empirical drug screening by enabling the selection of existing 

drugs with known target action. This approach would benefit from our increased 

understanding of the molecular action of anti-protozoal drugs in addition to advances 

in rational drug design (Hart et al., 1989). The incorporation of drugs with feeds, as 

recently assessed using malachite green against ichthyophthiriosis (Schmahl et al., 

1992) could enable the systemic application of novel chemicals for controlling 

297 



C.irritans. However, as drugs with more selective action are employed against 

C.irritans, consideration must be given to the emergence of drug-resistance, 

particularly against antibiotics and quinines, in the light of extensive problems with 

quinine -resistant forms of malaria (Kean, 1979). It is therefore anticipated that drug­

screening may usefully be applied for the surveillance for resistant forms of C.irritans. 

The demonstration of an acquired protective immunity in mullet to C.irritans 

following a single exposure, rosr'·lo'J w;~ immunological memory, provides some 

optimism for the development of a vaccine against cryptocaryosis. An effective 

vaccine could obviate many of the disadvantages of chemical control methods, 

particuhuly ichthyotoxicity (Herwig, 1979; Williams and Wootten, 1981) and 

environmental damage (Alderman, 1982). This study has contributed fundamental 

information which would assist in vaccine development programmes. The 

characterisation of several major polypeptides of C.im·tans could eventually be linked 

with identification of their antigenic properties, enabling selection of parasite 

components which stimulate a protective host response; this information being crucial 

to the rational development of sub-unit vaccines (Home and Ellis, 1988). The 

successful application of monoclonal antibody technology to C.irritans, achieved here, 

provides a means by which ·protective antigens could be isolated, for example using 

MAB- linked affinity chromatographic techniques (Sikora and Smedley, 1984), 

enabling their individual evaluation in conferring host protection. The possibility that 

host protective antigens of C.irritans are stage-specific has been suggested in the 

present study, as based on SDS-PAGE analyses, and underlines the future need to 

compare both trophont- and theront- derived antigens as candidate vaccines. In 

support of this, differences in levels of host protection have been demonstrated 

between these two stages in l.multifiliis (Burkart et al., 1990). Clearly, however, an 
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effective vaccine against the theront stage would be most beneficial by preventing the 

establishment of infection, this concept being similar to that envisaged for the 

sporozoite vaccine against human malaria (Cochrane et al., 1980; McGregor, 1985). 

The demonstration here of a humoral immune recognition of C.irritans antigens 

presented by intraperitoneal injection offers hope for vaccine delivery via this route, 

which is widely considered the most effective method of artificial immunisation (Ellis, 

1988). The ability of intraperitoneal administration of antigen to confer some 

protection against an epithelial dwelling ciliate is supported by work on l.multifiliis 

(Goven et al., 1980). Despite these encouraging findings, two major drawbacks are 

foreseen which are likely to restrict the development and efficacy of vaccines against 

cryptocaryosis. First, observations here that some fish develop incomplete protection 

to C.irritans even after repeated exposure to immunizing doses of theronts, suggests 

that C.irritans could persist in a population of vaccinated fish. Incomplete protection 

is not unusual, being also reported in fish vaccinated against bacterial diseases 

(Hastings, 1988; Smith, 1988). The potential for an asymptomatic carrier status in 

vaccinated fish could lead to renewed outbreaks of cryptocaryosis in situations where 

vaccine protection declines (=loss of immunological memory), or as a result of other 

conditions known to compromise immunocompetence, such as stress, vitamin 

deficiencies, pollutants, or antibiotic therapy (reviewed by Ellis, 1981, 1988). The 

possibility that outbreaks could recur following the addition of new stock which are 

immunologically unprotected against the parasite necessitates the need to vaccinate 

all fish before introduction to the system. The second limitation is the difficulty in 

procuring significant quantities of parasite material for vaccine production. 

Laboratory passage of C.irritans through mullet has enabled small scale immunisation 

studies, presented here, but this work is time-consuming and requires a continual 
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supply of susceptible fish. Furthermore, it was not possible to produce sufficient 

theront material for immunisation studies with this stage. With regards trophonts, 

contamination with host material, including ingested components such as 

immunoglobulin, presents difficulties in obtaining pure preparations. Furthermore, 

maintenance of an isolate was achieved over a limited number of passages, with 

eventual loss, attributable to senescence; the regular need for replacement isolates 

introduced the possibility of antigenic variations. In vivo maintenance of the parasite 

through fish hosts is evidently not a practical approach to obtaining material for 

vaccines. Some of these problems could be overcome by the ability to culture 

C.irritans in vitro as well as the capability to cryopreserve viable stocks of strains, 

however, it may be significant that neither of these technologies have been successfully 

applied to J.multifiliis , despite claims to the contrary (Beeler, 1980). The problem 

could be resolved by the use of heterologous vaccines against cryptocaryosis, similar 

to the use of T.pyrijom1is to immunise fish against ichthyophthiriosis (Goven et al., 

1980, 1981a; Wolf and Markiw, 1982; Dickerson et al., 1984). However, the absence 

of cross-protection by natural infection of mullet between C.irritans and its closest 

relative, J.multifiliis provides little optimism for this approach. The development of 

synthetic vaccines against C.irritans, with the aid of recombinant technology, is not 

considered to be realistic at present, being expensive and unreliable; it is significant 

that no commercial synthetic vaccine exists for any eucaryotic pathogen. 

New information presented here concerning the biology of C.irritans should 

provide a better understanding of the requirements of an integrated control and 

management programme for cryptocaryosis. One important finding of the present 

study is the acute nature of cryptocaryosis, with host deaths occurring within five days 

of a primary infection. The rapidity of death is more similar to that resulting from 
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bacterial infections (Munro, 1982) rather than eucaryotic diseases in general, and 

contrasts with ichthyophthiriosis in which host survival may extend beyond 20 days 

following high level infections (Hines and Spira, 1973a). Clearly, measures used to 

combat chronic parasitic infections are not appropriate for cryptocaryosis, and the 

need exists for management based on prevention rather than cure. Several 

recommendations are proposed for the routine management of fish stocks, which will 

reduce the risks of exposure to C.irritans, namely identification of sources of infection, 

movement restrictions, quarantine procedures, and surveillance. With regards sources 

of infection, this study reveals the importance of the cyst stage which is capable of 

settlement on a variety of substrates. Fish managers must therefore consider materials 

such as filter media, water pipes and tank flooring as potential sites for cyst adherence 

which will require disinfection following known or suspected exposure to C.irritans. 

Demonstration here of the long duration of the cyst stage of C.irritans, for up to 35 

days, combined with its resistance to chemical treatments, presents the major problem 

in terms of control measures in that single chemical applications will not eradicate the 

parasite. Two procedures are, however, recommended to eliminate viable cysts: either 

continual treatment using chemicals effective against the theront stage, or isolation of 

contaminated materials awa:y from fish, both these measures requiring 35 days, this 

being the minimum period to ensure cysts are no longer viable. With regards aquaria, 

the present study has shown the possibility of C.irritans being transferred between 

tanks via decorative items including non-living hard corals and shells. A serious risk 

comes from popular decorative rock fragments, purchased for their attached 

invertebrate colonies ("living rock"), which therefore cannot be sterilised prior to 

introduction into aquaria; these too requiring 35 days isolation. 

Dissemination of C.irritans via infected fish is considered a potential hazard and 
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for this reason it is recommended that regulations are imposed on the movements of 

fish which have been exposed to the parasite. Carrier status in fish stocks may be 

difficult to assess, as discussed above. However, the serological detection of specific 

antibodies to C.irritans could prove a useful indicator of recent infection in suspected 

stock. Quarantine methods have been widely applied as preventative measures against 

fish diseases (Kabata, 1985; Roberts and Shepherd, 1986; Andrews et al., 1988). 

Knowledge of the time base for the life cycle of C.irritans allows effective quarantine 

procedures. In view of the brief parasitic phase, lasting less than five days, and with 

no evidence of a reproductive stage in the fish, it is suggested that fish are 

quarantined for six days. However, observations here that theront release can occur 

within 3.5 days after encystment, reveals the risk of reinfection during quarantine. It 

is therefore essential that fish are regularly moved to clean holding facilities, at least 

every two days. This system has also proved useful for eliminating C.im"tans from 

certain host species, particularly coral reef fishes, which are sensitive to chemical 

treatments. Where serial movement is impractical, effective levels of 

chemotherapeutic agents must be maintained in an attempt to destroy any excysted 

theronts; although judging from the drug trial undertaken in the present study, 

destruction of all theronts cannot be assured. 

The existence of C.irritans within the aquatic medium, as the free-living 

trophont and theront, although shown here to be brief, not exceeding eight and 24 

hours, respectively, provides a possible route of infection via the water. This would 

be an important source of transmission in open systems as well as in intensive systems 

which rely on seawater pumped from local waters known to be endemic for the 

parasite. With the latter system, certain procedures can be undertaken to render the 

water safe. The use of mechanical (sand) filtration has been reported effective in 
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removing spores of Myxosoma cerebra/is (Herman, 1970); for C.irritans, morphometric 

analyses of theronts, the smallest life cycle stage, indicates the need for a filter pore 

diameter not exceeding 22J.Lm. It would be beneficial, where possible, to store freshly 

pumped seawater for 24 hours before exposure to fish, in order to kill the theronts. 

Given the rapidity with which lethal populations of C.irritans can build up, as 

observed here from aquarium infections, the regular surveillance for C.irritans (and 

other diseases) is recommended for any population considered at risk, and should in 

any case form part of the general husbandry programme (Brown and Gratzek, 1980). 

The onset of inappetence, abnormal swimming, or body "flashing", as observed here 

with experimentally infected mullet, should alert the fish manager to consider 

cryptocaryosis amongst the possible underlying causes. 

In summary, it is considered that the control of cryptocaryosis, for the 

immediate future, will rely heavily on preventative measures, based on 

recommendations given here, supported by chemical treatment regimes. It is 

envisaged that improvements in control will be influenced by the economic impact of 

C.irritans upon the ornamental and foodfish industries, as well as advances in chemical 

and vaccine control methods for protozoa of medical and veterinary importance. 

Despite the clear advantages of vaccination over chemotherapy, the absence of a 

commercial vaccine for eucaryotic diseases of fish (Houghton et al., 1988) and for 

human protozoal diseases (Liew, 1989) offers little optimism for the production of an 

effective vaccine against C.irritans in the foreseeable future. 
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1. BUFFERS AND REAGENTS 

PBS pH 7.6 

Na2HP04 
NaH2P04.2H20 
NaCI 
Dist. H 20 

PBS-J 

1.28g 
0.156g 
8.5g 
1 litre 

KH2P04 2g 
Na2HP04 8.56g 
NaCl 4.5g 
Dist. HiO 1 litre 

APPE~DIX 

Adjust pH to 7.4 and filter sterilise. 

ELISA coatin~ buffer pH 9.6 

Na2C03 1.59g 
NaHC03 2.93g 
Dist. H20 1 litre 

ELISA incubation buffer 

PBS, pH 7.6 
Tween 20 

1 litre 
0.5ml · 

ELISA wash solution 

NaCl 
Tween 20 
Dist. H 20 

45g 
2.5ml 
5 litres 

ELISA substrate buffer 

Na2HP04 7.19g 
Citric acid 5.19g 
Dist. H 20 1 litre 
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ELISA substrate 

OPD* 
Methanol 

100mg 
10ml 

•ortho-phenylenediamine. 
Store in the dark, stable for < 1 week. 

ELISA substrate (workin~: solution) 

OPD /methanol 
H20 2 (6%) 

1ml 
0.05ml 

Prepare within 15 min of use. 

2. CULTURE MEDIA 

Monoclonal culture medium <MCM) 

RPMI 
FCS* 
Pen/Strep, 

(10,000 i.u./ml) 
L-glutamine, 

(11mg/ml) 
Na pyruvate (200mM) 

lOOm I 
lOml 

lml 

lml 
1.25ml 

* heat inactivated, 56°C, 30 min. 
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DAB 
DMSO 
ELlS A 
E-S 
FCA 
FCS 
FIA 
FITC 
FS-SW 
HAT 
HT 
IFAT 
Ig 
I.p. 
kDa 
MAB 
MABantiMig 
MABantiCI 
MCM 
Mlg 
MW 
NC 
OPD 
PAGE 
PBS 
PEG 
%PEI 
p-L-lys 
pp m 
RABantiCI 
RABantiMig 
RATantiTP 
RT 
SDS 
SG 
SW 
TL 
uv 

ABBREVIATIONS 

diamino benzidine 
dimethyl sulphoxide 
enzyme linked immunosorbent assay 
enzyme-substrate 
Freund's complete adjuvant 
foetal calf serum 
Freund's incomplete adjuvant 
flourescein isothiocyanate 
filter sterilised seawater 
hypoxanthine, aminopterin and thymidine 
hypoxanthine and thymidine 
indirect fluorescent antibody test 
immunoglobulin 
intraperitoneal 
kilodalton 
monoclonal antibody 
monoclonal antibody to mullet immunoglobulin 
monoclonal antibody to C.irritans (trop_honts) 
monoclonal culture medium 
mullet immunoglobulin 
molecular weight 
nitrocellulose 
ortho-phenylene diamine 
polyacrylamide gel electrophoresis 
phosphate buffered saline 
polyethylene glycol 
percentage of parasites establishing infection 
poly-L-lysine 
parts per million 
rabbit antiserum to C.im'tans (trophonts) 
rabbit antiserum to mullet immunoglobulin 
rat antiserum to T.pyrifonnis 
room temperature 
sodium dodecyl sulphate 
specific gravity 
seawater 
total length 
ultraviolet 
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