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Review 

Early-phase neuroplasticity induced by offline 
transcranial ultrasound stimulation in primates☆ 

Nadège Bault1,2,*, Siti N Yaakub1,2,* and Elsa Fouragnan1,2,*   

The use of ‘offline’ transcranial ultrasound stimulation (TUS) 
protocols is of particular interest in the rapidly growing field of 
low-intensity TUS. Offline TUS can modulate neural activity up 
to several hours after stimulation, suggesting the induction of 
early-phase neuroplasticity. Studies in both humans and 
nonhuman primates have shown spatially specific changes in 
both the neuromodulation target and in a distributed network of 
regions associated with it. These changes suggest that 
excitatory or inhibitory effects are a result of a complex 
interaction between the protocol used and the underlying brain 
region and state. Understanding how early-phase 
neuroplasticity is induced by offline TUS could open avenues 
for influencing late-phase neuroplasticity and therapeutic 
applications in a wide range of brain disorders. 
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Introduction 
Adaptive neuroplasticity is integral both in correcting or 
improving aberrant function in a large range of neurological 

and psychiatric disorders and in ensuring normal functioning 
in healthy ageing. Measuring and inducing neuroplasticity 
can thus be beneficial therapeutically and can also improve 
our understanding of the brain in general health [1]. Brain 
stimulation, or more generally, neuromodulation methods, 
can elicit functional brain changes and thereby promote 
neuroplasticity [2]. Recently, transcranial ultrasound stimu-
lation (TUS) applied at low intensity has been found to 
safely induce neuronal changes with high spatial specificity 
in both superficial cortex and deep brain regions [3,4] when 
careful considerations are taken to limit the transmission loss 
caused by the skull [5]. TUS uses acoustic energy to mainly 
leverage the mechanosensitivity of neural tissue to bring 
about changes in neuroplasticity [6,7]. 

TUS protocols can be categorised into online or offline 
according to the duration of their effects. The term 
‘online’ refers to TUS protocols aimed at triggering 
acute effects, which occur only during or immediately 
after the neuromodulation period. These online inter-
ventions, particularly in humans, usually involve pulse 
trains that do not last more than half a second (see  
Figure 1a and legend for TUS parameter definition). 
These are hypothesised to change the underlying brain 
activity of the region targeted, with some evidence for 
network changes but produce no lasting effects beyond 
the stimulation period itself. ‘Offline’ TUS protocols on 
the other hand aim to induce effects that significantly 
outlast the stimulation period, for example, by minutes 
or hours, even days, after the intervention. These pro-
tocols are usually characterised by long duration pulses 
or trains of pulses that typically last 20 s or longer. These 
are thought to induce both local and distributed changes 
across the whole brain. There is an ongoing debate in 
the TUS community about the presence of sensory 
costimulation (e.g. the sound that accompanies TUS 
protocols) and how this may influence the effects of 
TUS [8]. While the delayed readout in offline studies 
reduces the risk of such issues, placebo/nocebo effects 
could still be based on both participants’ and re-
searchers’ expectations. These issues can be mitigated 
by introducing good study control and double-blinding 
procedures (see Table 1).    

☆ Given the role as Guest Editor, Elsa Fouragnan had no involvement in the peer review of the article and has no access to information regarding 
its peer review. Full responsibility for the editorial process of this article was delegated to Alex Sel. 
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In this review, we will explore the ability of offline TUS, 
in primates, to induce changes in behaviour and neural 
activity that outlast the sonication period by minutes, 
hours, or even days, covering papers up to August 2023. 
We will then discuss whether the observed effects can 
be related to changes in synaptic strength (i.e. synaptic 
plasticity) and induction of long-term effects. This is 
crucial to lay the groundwork for translating offline TUS 
protocols into clinical interventions in which TUS will 
produce long-lasting therapeutic changes. 

Measuring TUS-induced neuroplasticity 
The effects mediated by offline TUS include both local 
and remote neuronal changes (Figure 1a and b) as well 
as changes in behaviour related to specific cognitive 
engagement and in their associated neural correlates. 
These changes occur in the minutes, hours, or days 
following TUS (Figure 1c). These changes could be 
induced when subjects are at rest or under anaesthesia or 
could be evoked by using another brain stimulation 
method or by engaging in a behavioural task. The same 

Figure 1  

Current Opinion in Behavioral Sciences

Schematic of an ultrasound pressure waveform and illustrations of some of the offline TUS effects presented in this review. (a) A rectangular ramp 
shape is used to present the pressure amplitude. Typically, the positive and negative amplitudes are the same when operating at low pressures, to be 
within the linear regime. A single continuous sonication is a pulse and has a duration of PD. Pulses are often repeated in a pulse train. The duration 
between two pulses in a pulse train is the pulse repetition interval and is equal to 1 divided by the PRF. The pulse train will have a duration, which is the 
pulse train duration. The pulse train can be repeated and, if so, has a structure similar to the pulse. (b) Local and remote effects in humans, including 
changes in neurochemistry. (c) Local and remote effects in nonhuman primates. (d) Summary of the timescale of effects following offline TUS.   
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effects have also been investigated with online TUS (for 
a review on online TUS effects, please see Refs. [7,9]). 

Taking advantage of their high spatial specificity, a 
range of noninvasive neuroimaging methods have been 
used to assess local and remote neuronal effects of off-
line TUS in primates (Figure 1a and b). These effects 
include, but are not limited to, local and global changes 
in blood flow–related brain activity and connectivity 
(task-based and resting-state functional magnetic re-
sonance imaging [fMRI]), metabolite concentrations 
(magnetic resonance spectroscopy [MRS]), and perfu-
sion (arterial spin labelling [ASL]). With higher temporal 
resolution, magnetoencephalography (MEG) and elec-
troencephalography (EEG) allow the investigation of 
time–frequency–dependent brain activity, and the tem-
poral dynamics of changes in brain oscillations induced 
by TUS. Offline TUS can also be coupled with other 
forms of brain stimulation, such as transcranial magnetic 
stimulation (TMS) to modulate another form of evoked 
response, for example, motor evoked potentials (MEP) 
induced by TMS. 

In the absence of neuroimaging or additional neuro-
stimulation methods to quantify measures of neuro-
plasticity, TUS can simply be used to impact 
behavioural or cognitive functioning, arguably the ulti-
mate output of network activity. However, unlike other 
brain stimulation methods, there is currently no evi-
dence that TUS can elicit readily observable behavioural 
readouts that can confirm target engagement (e.g. a 
finger twitch, as elicited by TMS of the hand area of the 
motor cortex). With higher order cognition, behavioural 
readout becomes less informative regarding TUS target 
engagement. In these cases, some other method for in-
ferring target engagement can be useful, for example, 
through acoustic simulations. 

Evidence supporting local changes 
Techniques for investigating the local impact of offline 
TUS include assessing changes within the anatomically 
defined brain region at the location of the peak intensity 
of TUS or within specified boundaries of the acoustic 
pressure field of the TUS. Two human studies used 
MRS to measure the concentration of γ-aminobutyric 
acid (GABA), the main inhibitory neurotransmitter, in a 
voxel broadly overlapping with the TUS focal pressure 
field [10,11]. Using a low pulse repetition frequency 
(PRF) TUS protocol (5 Hz) targeted on the posterior 
cingulate cortex (PCC; see Table 1 for details on all 
protocols), Yaakub et al. observed a decrease in the 
concentration of GABA in the PCC but not in the dorsal 
anterior cingulate cortex (ACC), indicating a spatially 
specific increase in excitability in the hour following 
TUS [10]. Revealing longer lasting effects, Zhang et al.  
[11] found that both excitatory and inhibitory effects of 
TUS on GABA levels in the motor cortex depend on the 

type of TUS protocol applied. With repeated sonication 
over 7 days, the effects can persist for up to 24 hours. 
Using ASL, one study [12] found a decrease in perfu-
sion, indicating inhibition, after stimulating the basal 
ganglia, while another [13] reported an increase in per-
fusion following amygdala and entorhinal cortex stimu-
lation. These seemingly contradictory inhibitory and 
excitatory effects may indicate complex relationships 
between TUS protocols, tissue composition, and 
states [14,15]. 

Evidence supporting spatial specificity of distributed 
network changes 
The effects of offline TUS can be observed not just 
locally, at the site of stimulation, but in a network of 
regions associated with the stimulation site. Using a low 
PRF protocol (5 Hz), TUS applied to the human motor 
cortex has been found to not only change MEG alpha 
power in the motor cortex and increase local MEG 
connectivity within the motor areas but also affect beta 
power in functionally connected regions up to 25 min 
post-TUS [16]. Confirming the intricate offline TUS 
impact on brain networks, multiple nonhuman primate 
studies found significant changes in coupling between 
the sonicated region and its functionally relevant neural 
network or ‘connectivity fingerprint’ [17,18]. These 
studies showed that TUS of specific deep cortical and 
subcortical regions, while the animals were under an-
aesthesia, perturbed the connectivity profile of the so-
nicated region up to 2 hours after TUS. These effects 
were regionally specific: sonication of distinct regions of 
the medial frontal cortex caused changes in each area’s 
connectivity fingerprint only when TUS was applied to 
the area itself, and not to a control region [19], even 
when the two brain areas are only a few millimetres apart  
[20]. This was confirmed in another nonhuman primate 
study targeting the caudate nucleus with a lower PRF 
protocol [21] (2 Hz PRF instead of 10 Hz PRF in the 
previous two studies [19,20]). In humans, the same was 
observed after TUS of the dorsal ACC and PCC were 
performed [10], with these changes showing a time de-
pendence where functional connectivity of the target 
region was initially limited to a small network of regions 
during the early fMRI acquisition (at approximately 
13 min post-TUS), with later changes (at approximately 
46 min post-TUS) involving a larger network of regions. 

Modulation of evoked response 
Neuroplasticity induced by TUS may also include ex-
citability or inhibitory effects that can be measured with 
TMS (e.g. TMS-induced MEP). In a series of work 
combining offline TUS and TMS in humans, MEP 
amplitudes were amplified by repetitive low PRF offline 
TUS (PRF range 5–100 Hz; see Table 1 for details of the 
protocols) [22–24]. Facilitatory effects were still present 
30 min postsonication in one study [24], confirming the 
duration of offline TUS effects on neural transmission. 
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Contrasting with these results, Zhang et al. [11] found 
excitatory effects in the form of decreased intracortical 
inhibition produced by a high PRF protocol (2000 Hz) 
and inhibitory effects — reduced MEP amplitudes, in-
creased intracortical inhibition and decreased in-
tracortical facilitation — with a lower PRF protocol 
(50 Hz). Drawing a conclusion about the impact of PRF 
on excitation and inhibition from these studies is diffi-
cult as other TUS parameters also differed between the 
studies. Furthermore, the latter study [11] was the only 
one (of the four reported here) to use stereotaxic neu-
ronavigation and acoustic simulation to ensure more ac-
curate and efficient targeting of M1. As the effect of 
specific protocol parameters on the type and duration of 
offline effects is still poorly understood, the field would 
benefit from further systematic exploration of the para-
meter space. 

Nonhuman primates: task-related changes and 
associated brain networks 
The ability of TUS to induce neuronal changes in the 
targeted region and its associated network that outlast 
the stimulation itself can open vast avenues to elucidate 
brain–behaviour relationships. As such, offline TUS can 
be used to modulate performance during a cognitive task 
following TUS intervention [25]. In nonhuman pri-
mates, a low PRF protocol (10 Hz) has been found to 
perturb activity in specific parts of the frontal cortex  
[26–28] and basal forebrain [29], but not adjacent brain 
regions. This manipulation had direct effects on beha-
viour, revealing the causal role of the perigenual ACC in 
translating cue information into choices [28], of the area 
47/12o in credit assignment [27], of the basal forebrain in 
altering the timing of decisions [29] and of the medial 
frontal cortex in estimating novel choice values [26]. 
Another low PRF offline protocol (2 Hz) also modified 
motivational and cognitive aspects of behavioural per-
formance in a motivated decision-making task [30]. 

In addition to perturbing high-level decision-making 
processes, offline TUS can interfere with perceptual 
processes. Using a saccade task, TUS directed to ocu-
lomotor regions perturbed saccade latencies up to 20 min 
postsonication [31]. During a visual discrimination task, 
offline TUS applied to the lateral geniculate nucleus 
(LGN) produced a choice bias towards the contralateral 
hemifield peaking 15 min after TUS with an increase in 
gamma activity measured with intracranial EEG. Sur-
prisingly, and questioning the possibility for longer-term 
changes in neuroplasticity, the TUS-induced bias re-
duced over the course of 5 months of daily sessions due 
to adaptation, although the effect did reappear after the 
first TUS session following a 1-month break [32]. 

Task-related changes in humans 
The large majority of human studies targeting task-de-
pendent cognitive processes make use of online TUS 

protocols to find acute TUS-evoked effects [8,33–36]. 
Nevertheless, the efficacy of offline stimulation in 
changing behaviour over time and beyond the stimula-
tion period itself is beginning to be established. Offline 
TUS of the anterior putamen, subthalamic nucleus 
(STN), and inferior frontal cortex caused a sustained 
disruption of motor response inhibition during a stop- 
signal task, effective for several minutes after sonication  
[37]. It is noteworthy that the behavioural changes that 
resulted from disruption of STN activity mirrored those 
observed in deep brain stimulation [38] and lesion stu-
dies [39]. Badran et al. [40] reported an attenuation of 
thermal pain sensitivity in the 10 min following an off-
line TUS protocol targeting the thalamus. Additional 
studies have linked changes in the activity of specific 
brain regions induced by offline TUS to variations in 
affect and mood [41] (and Chou et al., abstract 38 in 
Biological Psychiatry 2023, 93:S84–S85). It should be 
noted that offline TUS research in humans is still in its 
early stages and thus a large variability exists across 
studies. Factors such as stimulation parameters, control 
and blinding procedures, safety and transcranial acoustic 
simulations should be taken into consideration when 
interpreting study findings. 

Clinical applications 
The therapeutic potential of TUS lies in its ability to 
generate long-lasting changes both at the neural and 
behavioural levels, possibly after repeated interventions. 
Following the initial finding of a positive effect on mood 
after dorsolateral prefrontal cortex (PFC) sonication [41], 
the same group conducted a preclinical study with de-
pressed participants [42]. Replicating their previous 
findings, they found that global affect increased over the 
course of the 5-day TUS intervention. However, this 
effect did not persist when assessed at a 1-month 
follow-up. 

Long-term results were obtained with patients who 
partially recovered from a minimally conscious state after 
receiving thalamic ultrasound stimulation [43,44]. One 
patient who received ten 30-second sonications 19 days 
postinjury showed gradual signs of recovery starting from 
the day after the intervention [43]. Two of three patients 
in a long-lasting minimally conscious state improved 
after receiving two thalamic stimulation sessions of 
10 min each [44]. Along with the reported anti-
nociceptive effects of thalamic ultrasound stimulation 
described earlier [40], these results are encouraging for 
the pursuit of long-term, stable, plastic neuronal re-
configuration. 

There are ongoing clinical trials testing the efficacy of 
TUS for the treatment of drug-resistant epilepsy [45] 
after its safety has been established in animal models. In 
a penicillin-induced epilepsy model in two nonhuman 
primates, offline TUS decreased the seizure frequency 
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and duration in both macaques for up to 7 hours after 
TUS [46]. A pilot study in patients with drug-resistant 
epilepsy [47] reported a decrease in seizure frequency in 
two of three patients in the 2 days following TUS of the 
seizure onset zone. Intracranial EEG recordings at the 
seizure onset zone revealed an increase in spectral power 
during sonication, followed by a decrease in power, for 
several patients. Although the authors failed to identify a 
link between the two measures and despite the variable 
response to TUS treatment, these observations also 
support the potential for TUS to induce neuronal plas-
ticity. 

Discussion on plasticity 
The range of effects that has been presented in this 
review suggests that offline TUS can elicit long-term 
potentiation (LTP)–like plasticity, modifying neural 
circuits up to several hours after intervention. Several in 
vivo studies in small animals provide evidence that TUS 
may trigger long-lasting activity-dependent synaptic 
modifications through LTP and long-term depolarisation  
[48,49]. At the neuronal level, TUS depolarises post-
synaptic neurons by activating mechanosensitive, vol-
tage-gated sodium and calcium channels, allowing 
calcium influx through N-methyl-D-aspartate (NMDA) 
receptors [6]. This increase in postsynaptic calcium level 
is thought to be a key requirement for triggering changes 
in synaptic signalling, particularly through LTP [50]. 
TUS was able to restore LTP and memory in ageing 
mice, confirming that it can modulate NMDA receptor 
function [48]. 

With repeated treatment, offline TUS has the potential 
to induce long-lasting functional changes, enabling its 
use in clinical settings. Repetitive treatment and re-
finement of the dose–response relationship to induce 
longer-term neuroplasticity has been shown to be clini-
cally effective in other neuromodulation techniques, 
such as intermittent theta-burst TMS in treatment-re-
sistant depression [51,52]. To date, the evidence sup-
porting long-lasting changes induced by offline TUS in 
primates is very limited. Of the studies we reviewed, 
only four found behavioural changes that persisted for 
several days or weeks [30,32,40,44], and in some cases, 
the clinical benefits later vanished [44], or in other cases, 
the effect of the daily stimulation decreased possibly 
due to adaptation [32]. Nonetheless, several studies in 
rodents were able to produce long-lasting behavioural 
changes, up to weeks, after repeated TUS treatment  
[48,53–55]. Combined with observations in vitro, several 
hypotheses regarding the downstream signalling 
pathway have been tested. The proposed mechanisms 
include (1) the action of TUS on astrocytes — mediating 
the synthesis and release of neurotrophic factors, such as 
brain-derived neurotrophic factor, (2) neurogenesis — 
through the action of TUS on stem cells, as well as (3) 

disruption of the extracellular matrix enabling synaptic 
reconfiguration (for a review, see Ref. [9]). Despite the 
recent findings in small animal studies, translating this 
work from rodents to primates proves to be a challenging 
task. Apart from differences in brain anatomy and 
function, the brain size, skull thickness and stimulation 
parameters typically employed make it difficult to 
compare the effectiveness of TUS between species. 

Conclusions 
There is some evidence that offline TUS can induce 
changes up to several hours after stimulation, suggesting 
mediation of early-phase neuroplasticity in primates. 
However, it remains to be understood how offline TUS 
— where the duration of sonication is relatively short (in 
the order of tens of seconds) — can lead to seemingly 
persistent neuronal changes in humans. It is also crucial 
to widen our understanding of the impact of multiple 
offline TUS sessions over the course of multiple weeks 
in terms of safety and efficacy. Therefore, understanding 
the neuronal reconfiguration generated by offline TUS 
in humans and the impact of repeated TUS interven-
tions should be the focus of future studies to characterise 
its mechanism of action. 
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