University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
1984

Some Cryptographic Techniques For
Secure Data Communication

Varadharajan, Vijayaraghavan

http://hdl.handle.net/10026.1/2187

http://dx.doi.org/10.24382/4174
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Some Cryptographic Techniques

For Secure Data Communication

Vijayaraghavan varadharajan

This thesis is submitted to the Council
for National Academic Awards in partial
fulfilment of the requirements for the

degree of Doctor of Philosophy

- Department of Communication Engineering
Plymouth Folytechnic

August 1984

Collaboration:
British Telecom Research Labs.,

Martlesham



PLYMQL™H €7 =Ara
g -

£ mg,g,oos'gl VAQ

Cont
No

™ 55004080

< -

X705 3312




R,

DECLARATION

I hereby declare that while registered as a candidate for
the degree of Doctor of Philosophy with the Council for National
Academic Awards I have not been a registered candidate for another

award of the CNAA or other academic or professional institution.

Signed: Vgazﬁ 7,378 \fAmA‘eam aw

- 1ii -



P

Acknowledgements

I wish to express my grateful thanks to Dr C T Stockel,
Director of Studies, (Dept of Mathematics, Statistics and Computing,
Plymouth Polytechnic) and to my supervisors Mr P W Sanders,(Dept of
Communication Engineering, Plymouth Polytechnic) and Dr R W K Odoni
(Dept of Mathematics, Exefer University) for their valuable guidance
and advice at all stages of this research project. My thanks are
also due to Dr G Wade (Dept of Communication Engineering, Flymouth
Polytechnic) who was previously the Director of Studies. I would
like to mention in particular that Mr Sanders had always been a source
of encouragement. A special word of thanks should go to Dr Odoni
for readily accepting to be one of the supervisors having acted as
an advisor in the early stages of the project. 1 am greatly indebted
to him for the long hours of useful discussions we had on numerous
occasions.

My sincere thanks should also go to Prof S D Cohen (Dept
of Mathematics, Glasgow University), Prof J Massey (Institute of
Communication Engineering, ETH, Zurich) and Prof W Ledermann (Dept
of Mathematics, Sussex University) who had unhesitatingly spared
their tiﬁe and offered valuable suggestions and advice in the course
of the project.

1 take this opportunity to acknowledge with thanks the
various facilities made available to me by the Plymouth Polytechnic.
I am grateful to the members of staff and technicians, in particular
to Mr A Santillo and L Roberts, of the Dept of Commnication Engineering
for their kind co-operation and technical assistance as well as to the
Library staff members.

I should also like to express my gratitude to the Devon
County'Council and the British Telecom Research Labs, Martlesham
for the financial support and facilities provided for the project.

I have pleasure in thanking Mrs W Happer for her accurate
and neat typing of the thesis.

Finally I shall be failing in my duty if I do not mention
the encouragement and support received from my parents at every

stage of the accomplishment of my task.

- iii -



Abstract

o

CONTENTS

CHAPTER 1 - INTRODUCTION

1.1
1.2

General
Thesis Organization

CHAPTER 2 - CRYPTOGRAPHIC CONCEPTS

CHAPTER 3

2.1
2.2

2.3

Cryptographic Systems

Cryptosystem Security and Complexity
Theory

Cryptographic Techniques

2.3.1 Block Cipher
2.3.2 Stream Cipher

- DATA ENCRYPTION ALGORITHMS

3.1

3.2

General

3.1.1 Transposition Cipher

3.1.2 Substitution Cipher

3.1.3 Product Cipher

Data Encryption Standard

3.2.1 DES Algorithm - An Gverview

3.2.2 The Key Schedule Procedure

3.2.3 DES Encryption and Decryption

Software DES Implementation

3.3.1 A Possible Advantage of DES
Software

Some Characteristics of DES Algorithm

3.4.1 Avalanche Effect

3.4.2 Complementary Property

Design Criteria

3.5.1 S—-Boxes

3.5.2 Initial and Final Permutations
3.5.3 P-Permutation

Criticism and Weaknesses of DES

3.6.1 The Key Length

Unpublished Design Principles
Number of Rounds

Key Schedule Algorithm-

Weak and Semiweak Keys

«6
.6.
6

www
bW

- 1V -

10

10
12

16

16

16
16
17

18

18
22
24

27

30

30
31

38

39
40

40
41
42
42




Contents continued....

3.7 .

3.8

Cryptanalysis of DES

Discussion

CHAPTER 4 - DESIGN OF ENCRYPFTION SYSTEM: SYSTEM HARDWARE

4.1

4.2

System Requirements

4.1.1 Security Requirements
4.1.2 Operator Requirements
4.1.3 Technical Requirements
General System Description

4.2.1 Apple Microcomputer

4.2.2 Encryption Interface Unit
4.2,3 Modem

CHAPTER 5 — POINT TO POINT COMMUNICATION SYSTEM: SYSTEM
SOFTWARE (1)

5.1

5.2

5.3

5.6

General

S.1l.1 Polling Technique

S5.1.2 Interrupt Driven Technique
5.1.3 Point-to-Point Communication

Block Encryption Mode

2.1 Principle

2.2 Implementation

2.3 Results and Discussion

[V Y

Cipher Block Chaining Mode

5.3.1 Principle

5.3.2 Implementation

5.3.3 Results and Discussion
Stream Cipher Feedback

5.4.1 Principle

5.4.2 Implementation

5.4.3 Results and Discussion

Cipher Block Chaining with Plaintext
Feedback :

5.5.1 Principle
5.5.2 Implementation
5.5.3 Results and Discussion

Stream Cipher Feedback with Vector

5.6.1 Principle
5.6.2 Implementation
5.6.3 Results and Discussion

Page

43
45

47

47

a7
48
48

49

51
52
70

72

72

72
72
73

74

74
74
81

86

86
89
a0

94

94
97
o8

101

101
105
105

109

109
112
112



Contents condinued...

CHAPTER 6 - STATISTICAL TESTS ON DES OQUTPUT SEQUENCES

CHAPTER 7

CHAPTER 8

CHAPTER 9

6.1 General

6.2 Statistical Tests For Randommess
6.2.1 Test 1 : The Frequency Test
6.2.2 Test 2 ¢ The Serial Test
6.2.3 Test 3 : The Runs Test
6.2.4 Test 4 : The Autocorrelation

Test

6.3 Results and Discussion

6.4 Other Statistical Tests
6.4.1 Cross—Correlation Test
6.4.2 -Test to Detect Dependence

Between Output and Input

-

- LOCAL. FILE SECURITY: SYSTEM SOFTWARE (2)

7.1 General

7.2 Choice of DES Mode

7.3 Implementation

- SECURITY IN PRESTEL VIEWDATA SYSTEM: SYSTEM

SOFTWARE (3)

8.1 General .

8.2 Brief Review of Prestel Viewdata System

8.3 Encryption/Decryption in Prestel System

- KEY DISTRIBUTION AND PUBLIC KEY CRYPTOGRAPHY

9.1 General

9.2 Key Management Using Key Centre

9.3 Communication Security

9.4 File Security

9.5 Key Distribution for Groups of Users
9.5.1 Method 1

9.6 Public Key Systems
9,6,1 Merkle-Hellman Trapdoor

Knapsack Public Key Cryptosystem

9.6.2 Rivest-Shamir-Adleman (RSA)

Public Key Cryptosystem

- V] -

Page
116

116
116

117
118
118
120

124
126

126
127

130

130
130
131

134

134
134
134

144

144
146
147
150
151
152
153
158




Contents continued...

Page

9.6.3 Diffie-Hellman Public Key 161
Distribution System
9.7 Key Distribution Using Public Key for 162
Groups of Users
9.7.1 Method 2 163
9.7.2 Method 3 163
9,.7.3 Method 4 164
9.8 Key Distribution for Prestel Encryption 165
System
CHAPTER 10 - EXTENSIONS OF THE RSA CRYPTOSYSTEM 167
10.1 General 167
10.2 Some Design Aspects of RSA Cryptosystem 167
10.2.1 Primality Tests 169
10.2.2 Choice of Coding Exponents 170
10.3 Cryptanalysis of RSA System 171
10.3.1 Factorization of m 171
10.3.2 Computation of @#(m) Without 172
Factorization of m
10.3.3. Determining d Without Factoring 172
m or Computing @(m)
10.4 Extension of RSA System to Matrix Rings 172
10.4.1 Trapdoor .Rings ' 172
10.4.2 Non-singular Matrices over 174
z2/m2
10.4.3 Orthogonal Matrices over 183
Z/nZ
10.4.4 Upper Triangular Matrices over Z/mZ185
10.4.5 Linear Fractional Group 189
10.4.6 - Proportion of Non-singular iol
Matrices over Z/mz
10.4.7 System Design and Operation 192
10.4.8 System Implementation 195
10.4.9 Discussion 198
10.5 Extension of RSA System to Polynomial © 200
Rings
10.5.1 Concept of Galois Field 200
10.5.2 A Polynomial Based RSA 201
System
10.5.3 An Improved Polynomial Based 209
RSA Systen )
10,5.4 Discussion A 216
10.6 Extension of RSA System to Matrix Rings 217

with Polynomial Elements

- vii -



Contents continued...

10.7

10.6.1 Non-singular Matrices
over R = 2[x]/(m,f(x))

10.6.2 Upper Triangular Matrices
over R = Z[x]/(m,£f(x))

Discussion

CHAPTER 11 - FACTORIZATION TRAPDOOR FROM IDEAL FOINT OF VIEW

11.1
11.2

11.3
11.4
11.5

General
Basic Concepts

11.2.1 Ideal

11.2.2 Congruence

11.2.3 Principal Ideal

11.2.4 Prime Ideal

11.2.5 Product of Ideals

11.2.6 Unique Factorization of Ideals
11.2.7 Factorization Trapdoor

Ring of Integers
Polynomial Rings
Matrix Rings

11.5.1 Approach {(a)
11.5.2 Approach (b)

CHAPTER 12 - FACTORIZATION TRAPDOOR IN ALGEBRAIC NUMBER FIELDS

12'1
12.2

12.3

General

Factorization Trapdoor System in Gaussian
Integers

12,.2.1 Ring of Gaussian Integers
12.2,2 Design of Trapdoor Coding
System in Z[i]

12.2.3 Security of the System in
2[i] :
12.2.4 Representation of Messages

and System Operation

Factorization Trapdoor System in other
Quadratic Fields

12.3.1 (uadratic Fields R (VD)

12.3.2 Design of Trapdoor Coding
System: Complex Euclidean
Quadratic Fields

12.3.3 Security of the System in
R (VYD)

12.3.4 Representation of Messages
and System Operation

12.3.5 Real Quadratic Fields

- viii -

230

230
230

230
230
230
231
231
231
231

233
234
235

236
242

244
244

244

244
246

254

254
264

264
266
269
269

270



Contents continued...

12.4

Discussion

CHAPTER 13 - CONVENTIONAL CRYPTOSYSTEM WITH PUBRLIC KEY

DISTRIBUTION

13.1 General

13.2 Logarithms over Finite Fields

13.3 Public Key Distribution in GF(2")

13.4 Short Cycling Attack

13.5 DES/PKD Hybrid System
13,5.1 Central Public Key File
13.5.2 Local Public Key File
13.5.3 No Public Key File

13.6 Exponentiation in GF(2")
13.6.1 Method 1
13.6.2  Method 2

13.7 Hardyare Design of an Exponentiator in
GF(2') ’

13.8 Normal Basis Generators in GF(2127)

13.9 Extension of Diffie-Hellman System to

Matrix Rings
13.9.1 Design of Base Matrix
13.9.2 Example

13.9.3 Use of Upper Triangular Matrices
over Z/pZ

CHAPTER 14 - PERMUTATION POLYNOMIALS IN THE DESIGN OF PUBLIC

KEY SYSTEMS

4.1 General

14.2 Polynomial y = %' (mod m)

14.3 Polynomial y = ax+b (mod m)

14,4 Linear Fractional Substitution

14.5 Rédei Rational Functions

14.6 'Dickson Polynomial based Public Key
System

14,7 Discussion

CHAPTER 15 - CHAINING TECHNIQUES AND BROADCASTING WITH PUEBLIC
KEY SYSTEMS

15.1

General

- 1X =

271

274

274
274
277
280
284

288
289
289

290

200
293

300

303

306

308
309

310

310

310
312
313
314
316

318

321

321




Contents continued...

15,2

15.3

Chaining Techniques

15.2.1 Method 1
15.2.2 Method 2

Broadcasting of Messages

CHAPTER 16 = CONCLUSIONS

REFERENCES

9'
10.
11.
12,
13.
l4.
15.
16.
17.
i8.

19.

Data Encryption Standard : A Software
Design _

Point—~to~-Point Commmnication : Block
Encryption Program (ECB)

Extended Character Set

Graphics Display Program (RESTRY.F77)
Point-to-Point Commnication: Cipher
Block Chaining Program (CBC)
Point-to-Point Communication : Stream
Cipher Feedback Program (CFB)

Results of some Statistical Tests on
DES Output Sequences

File Security : Cipher Block Chaining
Program (CBC)

PRESTEL. Editing Keyboard

Chinese Remainder Theorem

Euclid's Algorithm

Determinant of a Matrix over GF(2)
Program (DETMOD.F77)

Matrix Exponentiation Program
(MATEXP.FIN)

Polynomial Exponentiation Program

( FOLYEXT.F77) .

Cycle Length Calculation Program

in GF(2%+7)(CYQLE.F77)

Short Cycling Attack in PXD System
over GF(2%*7)( RANDCYCLE.F77)
Results of Cycling in PKD System
over GF(2%+7)

Public Key Distribution Program
Listing

Determination of A Normal Basis
Generator in GF(2%#127)

Normal Basis Exponentiator - Circuit
Diagram '

Multiplier Matrix Program (M-MATRIX.F77)
Multiplier Implementation Using T-Matrix
Approach (T-Matrix.F77)

321

324
325

326

328

332

A=-1

A-24
A=25
A28
A-41
A-52
A-69
A-83

A-84
A-BS5

A-88

A-90

A-92

A-94

A.98

A-102

A-114

A-123

A-125

A-129
A-134



¢ r-’

Contents continued...

23.

24.

25.

26.

Exclusive-or Gate Count Program
(EXCR NO. F77)

Inverse Matrix over GF(2) Program
(INVMOD. F77)

Matrix based Public Key Distribution
Program (PKDEXT. F77)

Dickson Polynomials Based PK System
Program (DPOLY. F77)

Papers Published/Submitted

Page
A=137
A-139
A-142

A=-143



PR

Some Cryptographic Techniques For Secure Data Commnication

V Varadharajan
Abstract

This thesis investigates conventional and public key
cryptographic techniques for secure data commnication.

Block and stream cipher methods to provide secure
commmication over an insecure channel are discussed with particular
reference to the Data Encryption Standard (DES) algorithm. A
microprocessor based data encryption interface unit has been designed
and constructed using the DES to provide both communication and file
security. Several chaining techniques using the system have also
been investigated enabling a study of their error characteristics,
speed of operation, level of security and their ability to overcome
difficulties due to data redundancy and structure. A statistical
analysis of the randomness of the output sequences in each of these
techniques has been made. Furthermmore , the developed system can be
used on the Prestel public network allowing storage and retrieval of
completely and partly encrypted frames of information on the Prestel
database.

The use of such a DES based encryption system in a
commmnication network poses problems with regard to key distribution
since the keys used need to be distributed to the users over a secure,
separate channel. Several methods of key distribution including the
use of public key systems are discussed.

Extensions of the Rivest-Shamir-Adleman (RSA) public key
scheme to matrix rings, polynomial rings and algebraic number fields
have been proposed. These extensions indicate that rings other than
the ring of rational integers can be used to construct public key
systems with the factorization trapdoor property. The security of
such systems again relies on the difficulty of factorizing a large
integer.

An extension of the Diffie-Hellman public key distribution
system to matrix rings is proposeg. Short c¢ycling attacks against
the exponentiation system in GF(2 ) have been analysed and are shown
to be equivalent to a randomnsearch procedure, A hybrid system
using exponentiation in GF(2 ') for key distribution and the DES for
data security has been implemented and the advantage of normal Rasis
representation in the computation of the exponentiation in GF(2') is
examined.

The role of permutation polynomials in the design of public
key systems has also been investigated. In particular, it is shown
that secure public key systems can be designed using Pickson
permtation polynomials and Rédei rational functicens. Further the
complexity of public key systems can be increased by combining the
permutation polynomials under the law of composition.
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CHAPTER 1
INTRODUCTION
1.1 General

‘ The concept of data security is becoming increasingly
significant owing to the expanding role of distributed computation,
distributed data bases and telecommunications applications such as
electronic mail and electronic funds transfer. The computer and
commnications technologies have resulted in a dramatic increase
in the volume and speed of information -collection, distribution and
storage. Greater information transfer and storage in turn imply
greater risk of exposure of sensitive or confidential information to
unauthorised users due to the ready availability of inexpensive
miniature intercepting devices. These have resulted in an increased
interest in computer data security not anly in the military and
political areas but also in the field of commerce, where a. single
transaction may involve millions of pounds. This has motivated
research particularly in the art of cryptography, which forms the
central technique of comminication security.

Cryptography is the science and study of secret writing (11,
.Cryptography can be defined as the transformation of a message of a
data stream by means of an algarithm so that anyone observing the
transformed data cannot deduce the hidden information. Such
transformations provide solutions to two major problems of data
security namely the privacy problem and the authentication problem (21.
In some environments the message can be transmitted in clear text as
long as its integrity is safeguarded. A common example where the
problem of authentication predominates is in telephone communication
where the called party cannot determine who is calling. Other
environments may require that the contents of the message be concealed
during transmission from unauthorised observation and this is a privacy
problem. The problems of privacy and authentication are closely
related and techniques for solving one can frequently be applied to
the other. Data encryption is recognised [3] as the most reliable
method for not only protecting vital information from eavesdroppers
but also a technique of message authentication preventing injection of

false information into a communication system by illegitimate users.

-1 -



This thesis is mainly concerned with the data privacy problem.

On one hand, the easy availability of enormous computer
power enables the cryptographer to design complicated algorithms.

But on.the other hand, the computer technology also helps the code
breakers to be more effective in cracking the system. So it is a
never ending struggle between code makers and code breakers.

Recent developments in encryption techniques for computer
communication network security including the Data Encryption Standard
(DES) [11] and the evolution of public key cryptosystems provided
the major thrust of the present research work. Essentially the thesis
can be divided into two parts. In the first part (Chapters 2 to 9),
the use of encryption and decryption techniques in communication
systems is investigated. The design and opération of an encryption
interface unit incorporating the DES to provide communication and file
security and different key distribution schemes are discussed. The
second part (Chapters 10 to 15) is mainly concerned with the design of
public key cryptosystems with a particular emphasis on the extensions
of the Rivest~Shamir-Adleman (RSA) [12] type factorization trapdoor

systems.

1.2 Thesis Organization

In Chapter 2, basic concepts of symmetric and asymmetric
cryptosystems and major cryptographic techniques are briefly reviewed.

An analysis of the DES is presented in Chapter 3 which
includes a software implementation of the Standard, its possible
weaknesses, some of its underlying design criteria and its crypto-
graphic strength.

The design of a microprocessor based data encryption
interface unit using the DES is described in Chapter 4.

The operation of the interface unit to provide a two-way
secure data transfer in a two-node Apple microcomputer network is the
subject of Chapter 5. Rur different stream and block chaining
techniques of the DES have been investigated using the developed
interface unit.

In Chapter 6, a statistical analysis of the randomness
characteristic of the output sequences produced by the DES under
different modes has been carried out.

The use of the developed encryption interface unit has been

- 2 -



extended in Chapter 7 to allow file security in Apple disk systems.

Chapter 8 is concerned with the incorporation of DES based
encryption system in Prestel Viewdata network. This enables transfer
and storage of encrypted as well as plain data between an Apple
microcomputer and the Prestel database.

Different methods of key distribution for communication and
file security are investigated in Chapter 9. It includes a brief
review of the RSA and the Knapsack public key cryptosystems.

In Chapter 10, the prototype RSA system over rational
integers has been extended to matrix and polynomial rings.

Chapter 11 discusses the notion of ideal theory and considers
the RSA type factorization trapdoor systems from an ideal point of
view,

The factorization trapdoor concept in some quadratic
algebraic number fields and the design of public key systems in such
fields are investigated in Chapter 12.

The implementation of a hybrid system using the DES and the
Diffie-=Hellman public key distribution {35] system is investigated in
Chapter 13. An extension of the Diffie-Hellman system to matrix
rings is. proposed.

The role of permutation pelynomials in the design of public
key systems forms the subject of Chapter 14. In particular, the use
of Dickson permutation polynomials and certain Rédei functions in the
construction of public key systems is discussed.

In Chapter 15, the use of chaining techniques in the matrix
public key system and some precautions which must be taken when the
RSA system or its extensiors are used in a broadcasting type situation
are described.

Chapter 16 contains the main conclusions.



CHAPTER 2

CRYPTOGRAPHIC CONCEPTS

2.1 Cryptographic Systems

Detailed treatment of cryptographic principles can be found
in [2, 3, al, A basic cryptographic privacy system is shown in figure
2.1. The transmitter or the sender generates a plaintext message M
which is to be commmnicated to a legitimate receiver over an insecure
channel monitored by an eavesdropper. To prevent the eavesdropper from
learning the contents of M, the sender encrypts M, with an invertible

transformation to produce the cryptogram or ciphertext, C = T(M).

When the legitimate receiver obtains C, it is deciphered with the
inverse transformation to obtain the plaintext message, M = T'I(C).

The transformation T applied at the sending and receiving
ends is a key dependent mapping from a set of messages in the plaintext
to a set of ciphertext messages and vice versa. The particular
transformation used is chosen from a family of transformations. The
parameter that selects the individual transformation to be employed is
called the key. Note that there may be more than one key involved.
Assuming that the same key is used in both encryption and decryption,
then C = T_ (M) and M = 'r;l(C)-

Thus a general cryptosystem consists of the following

components:

1. A plaintext message space M ;

2. A ciphertext message space C ;

3. A key space K;

4. A family of encryption transformaticns Ek ¢ M+ C where
ke K,

5. A family of decryption transformations Dk : C+ M where
ke K.

The encryption and decryption transformations Ek and q( are defined by
the encrypting and decrypting algorithms E and D which may be a set of
instructions, a piece of hardware or a computer program and is common
to every transformation in the family. Different values of the key (s)
result in totally different transformations of plaintexts and cipher-
texts. This implies that the family of transformations, that is, the

general cryptographic system, can be made public information without -

-4 -
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compromising the security of the system. Only the key(s) needs to be
kept secret. This satisfies one of the general requirements of a
cryptosystem that the security must not depend on the secrecy of
something like a cryptographic algorithmwhich cannot be easily changed
if it is compromised. In addition, a publicly known system is necessary
for standardization among commercial users. Even though the oﬁponent
knows the set of all possible keys, that is, the key space, he may

still be unable to discover the correct set of keys required if the

key space is large.

Simmons [5] classifies cryptosystems as symmetric (one- key)
and asymmetric (two keﬁ). In symmetric cryptosystems, the enciphering
and deciphering keys are the same or easily determined from each other.
Because the general method of encryption and decryption is known, this
means that the transformations Ek and Dk are also easily derived from
each other. Thus if both Ek and E& are protected both secrecy and
authenticity are achieved. However secrecy cannot be separated from
aathenticity because making either Ek or-E& available, exposes the
other. Thus for secure communication, such a system requires the key
to be transmitted to the receiver via some secure channel. Figure 2.2
illustrates how such a cryptographic system can be used to solve the
authentication problem. 1In this case, the opponent not only sees all
ciphertexts flowing on the channel but can alter them at will. The
-legitimate receiver protects himself from being deceived by an altered
or injected message, by decrypting all the messages he receives and
accepting only those encrypted with the correct key.

In asymmetric cryptosystems, the enciphering and deciphering
keys differ in such a way that at least one key is computationally
infeasible to determine from the other . Thus one of the transformations
Ek . or Dk can be revealed without endangering the other. Secrecy and
authenticity are provided by protecting the separate transformations
namely Eilfor secrecy and Ek for authenticity. Such asymmetric systems
are often referred to as public key systems as in addition to E and D,
the encryption key is made public. Only the decrypting key is kept
secret by the receiver. The use of such systems thus avoid the
necessity to transmit the key used in the algorithm over a secure
channel among the commnicators. Moreover such systems can be used to
transmit the secret key required for conventional symmetric systems.

Such asymmetric systems are also able to deal with the
problem of dispute that may arise between the sender and the receiver

over the actual message sent in an authentication system. The
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inability of the symmetric system to deal with this type of problem
limits its application. This can be seen as follows.

The validity of contracts and agreements is usually
guaranteed by signatures. The essence of a signature is that only one
persan can produce it but anybody can recognize it. For this, each
user mist be able to produce messages whose authenticity can be checked
by anyone, but which could not have been produced by anyone else
especially the intended recipient. In a symmetric system, the receiver
authenticates any message that he receives from the sender by
deciphering it with the key which the two hold in common. Because this
key is held in common, however, the receiver has the ability to produce
any ciphertext that could have been produced by the sender and hence
the receiver cannot prove that it is the sender who actually sent him
the disputed message. The asymmetric system provides a direct elegant
solution to this signature problem. If user A wishes to send a
signed message M to user B, he signs the message by producing
S = PA (M). When user B receives S, he can recover M by operating on
S with EA’ that is, M = EA (S). B keeps S as the proof that user A
has sent him the particular message M as only the user A could have
generated S because he is the only one who knows QA. To obtain
secrecy of communication as well as authentication, user A sends
EB (S) instead of S to user B. As only B knows D_;, he is the only

B
one who can recover S and hence M.

2.2 Cryptosystem Security and Complexity Theory

Any attempt by the eavesdropper either to decrypt a
cryptogram C to get the plaintext M or to encrypt an inauthentic plain-
text M” to get an acceptable cryptogram C° without prior knowledge of the
key is’'called cryptanalysis [2]. If cryptanalysis is impossible so

that a cryptanaiyst cannot deduce M from C or C° from™M without prior
knowledge'of the key, the cryptographic system can be said to be secure.

In order to measure the security of a cryptosystem, Diffie and

Hellman [2] have defined at least three types of attack which the
system should withstand when being subjected.

(a) Afciphertext only' attack is the weakest form of attack
which the cryptographic system must withstand. In this
attack, the cryptanalyst attempts to decipher the
cryptogram using only the statistical properties of the

-7 -




message source. As an example, consider a letter

written in English. Not all characters or words occur
equally often; for instance, the letter 'E' occurs
approximately 13% of the time [6] . Such non-
uniformities in the frequency distribution of the
alphabet are used to give clues about the message. There
is also probably a heading which contains a date and
address and a closing such as 'sincerely'. With the aid
of statistical tables, the cryptanalyst uses each of
these facts to determine which message was most likely

sent.

(b) Under a 'known plaintext' attack, the cryptanalyst . is
assumed to have a substantial amount of corresponding
message = cryptogram pairs and tries to determine the
key used in the algorithm. This form of attack is a
significant threat as frequently messages are enciphered
under the same key. Hence if a system cannot withstand
such an attack, all messages which have been encrypted
under a common key needs to be kept secret as long as
any of the messages is to be kept éecret. Such an
attack is quite common in practice. For instance, a
typical example is when information may be transmitted
in secrecy which is intended for public release at a
later date.

(c) A 'chosen text' attack generally occurs less frequently
than a known plaintext attack. In this case, the
cryptanalyst 1is assumed to choose messages to be
enciphered or ciphertexts to be deciphered in an attenpt
to determine the key.

For the purpose of certifying systems as secure, it is
necessary to consider more formidable cryptanalytical threats. These not
only give more realistic models of the working invironment of a
cryptographic system but also make the assessment of the system's
strength easier.

There are two fundamentally different ways in which crypto-—
graphic systems may be considered secure.

A cryptosystem is said to be unconditionally secure under a
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given form of attack if the amount of information available to the
cryptanalyst is actually insufficient'to determine the solution, which
may be the key or the plaintext, whatever be the computing power the
cryptanalyst has at his disposal [7] . As an example, consider a -
cryptosystem where a message-cryptogram pair uniquely determines the
key. This system is not unconditionally secure under a chosen text
attack or a known plaintext attack. However if the information content
of the message plus the information content of the key is greater than
the maximum possible amount of information in the cryptogram, then this
system is unconditionally secure under a ciphertext only attack. The
cryptanalyst cannot determine the complete message and key from the
cryptogram alone, since he would obtain more information than that
provided by the cryptogram.

Unfortunately, unconditionally secure systems require either
perfect source coding or a key whose length grows linearly with respect
to the sum of the lengths of all messages enciphered [7] . This
requirement is not practical in most applications. Thus computationally
secure systems are usually used in cryptography. A system is said to
be computationally secure under a given form of attack if the amount
of computation required to compute the solution exceeds the cryptanalyst's
abilities or the economic value of the message to him. A measure
called the work factor is often associated with a cryptosystem which
gives an expression of the minimum amount of work necessary for a
successful attack. In practice, there is no universally accepted
fixed set of parameters used to express the work factor. Frequently,
however, it is measured in one or more of the following ways}
cryptanalyst hours, number of mathematical or logical operations,
computing resources such as data storage and processing requirements,
special hardware and calender time or more generally the cost in some
money units such as dollars. This idea of computationally secure
system is also related to the concept of one-way functions and
complexity theory.

Algorithmic complexity theory is concerned with the comp-
utational requirements (both time and space) as a function of the size
of the problem solved by a particular algorithm. Complexity theory is
essentially a collection of results in computer science that attempts
to quantify the statement 'Problem A is 'harder' than problem B' [ 6] .
There is a class of problems called NP problems [ 8] and in particular
a distinguished subclass of NP called the class of NP—complete problems
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which are regarded to be the 'hardest' problems. The class NP-
complete is thought to be a source of problems that can be adapted to
cryptographic applications and will by virtue of their computational
complexity produce strong cryptographic systems. The cryptanalyst

is then required to solve an NP-complete problem to break the
cryptosystem which theoretically should require an exponential time
algorithm.

However it is generally argued that [9] the complexdty theory
deals often with the worst case behaviour whereas in cryptography, the
cryptanalytical task must be hard for almost all the instances. It
will be a poor cryptosystem if the system allows easy decryption of
all but a few cryptograms by the opponent. In addition computationally
hard problems are not necessarily cryptographically hard problems since -
the cryptanalyst generally possesses additional side information and
often’ tries to solve several instances of the same problem [3] .
Recently a conventional and a public key cryptosystem based on NP-
complete problems have been solved using polynomial time algorithms
(6, 10] . This goes to show that merely starting with a computatiocnally
hard problem may not be enough to provide secure cryptosystems. _

2.3 Cxyptographic Techniques

There are two fundamental cryptographic techniques that can
be used to design strong encryption-based protection schemes, namely,
the biock cipher technique and the stream cipher technique [3] . The
suitability of either of these two techniques for use in cryptosystems
depends on the nature of the application.

2.3.1 Block Cipher_ ‘

Let the message be divided into blocks of fixed length. A
block cipher then transforms these input blocks into cutput blocks using
the same key. For instance, considering a finary system a string of
input bits of fixed length is transformed into a string of output bits
of fixed length using a block cipher as shown in Figure 2.3. The
encryption and decryption functions are such that every bit in the
output block depends on every bit in the input block as well as on
‘every bit of the key. In the binary system, if the blocksize is n, then
the size of the plaintext space and the size of the ciphertext space is
2", In order that the deciphering of a ciphertext block yields an
unambiguous plaintext block, the mapping must be invertible and hence
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injective and in this case surjective as the size of the input and
output spaces are equal. Thus one can view a block cipher as defining
one of the 2" ! transformations on the set of n-bit blocks. In
practice, it is not feasible to implement a block cipher that realizes
all the possible combinations because of the size of the key required
and the logical complexity of the cipher. Usually a key of n-bits is
employed to select one out of a subset of 2" functions.

PLAINTEXT CIPHERTEXT
KEy —— 3 ENCIPHER KEY _K__ﬁ DECIPHER

CIPHERTEXT PLAINTEXT

BLOCK . BLOX

A fundamental property of this type of cipher is that the
blocksize plays an important part in determining the cryptanalytical
strength of the cipher. The blocksize must be chosen large enough to
foil simple message exhaustion attacks. This attack consists of
encrypting all 2" possible plaintexts with a given key thus building
a dictionary of ciphertexts and corresponding plaintexts. A message
can then be recovered by searching the dictionary and relating each
intercepted ciphertext block to its corresponding plaintext block.
However if the blocksize is made large enough, the dictionary can be
made too large to construct or store. Other attacks must also be
considered before arriving at an acceptable blocksize. An attack
called block frequency analysis based on frequency of occurrence of
blocks is quite common. It is similar to the analysis performed on a
simple substitution cipher by taking into accoﬁnt letter frequencies.
Analytical or deterministic attack - which consists of expressing
cipher operations in mathematical form as a set of equations and
solving for the unknown variables directly using analytical methods —
can be thwarted by making every bit of the ocutput block a complex
mathematical function of every bit of input block and key thus giving
a strong intersymbol dependence property. The block ciphers also
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exhibit error propagation properties which are suitable for error
detection and authentication purposes.

The Data Encryption Standard [11] is an example of a symmetric
block cipher of length 64 bits which well withstands the above mentioned
and more sophisticated attacks. The algorithm will be discussed in
Chapter 3 and is used in the design of a encryption interface unit in
Chapters 4 and 5. Examples of public key block ciphers include the
RSA system [12] and the trapdoor knapsack system [13]. They are
discussed in Chapter 9.

2.3.2 Stream Cipher

A stream cipher divides the message M into successive
characters or bits. It then uses a character or bit stream generator
to produce a cryptographic key stream which is then combined with the
plaintext message characters or bits to produce the ciphertext
characters or bits. A similar procedure is carried ocut to recover the
plaintext characters or bits by combining the key stream with the
ciphertext characters or bits. The stream cipher concept is illustrated
in Figures 2.4 and 2.5 where the ciphertext Y is produced from
plaintext X by Exclusive-oring it with a secret binary stream R.

Let us now assume that the key to the bit stream generator
is fixed and that the cryptographic key stream R produced at each
iteration depends only on this key. This then implies that R does
not change from one iteration to the other. Now if an opponent knows
a plaintext-ciphertext pair, then he can recover the key stream R by
forming R = X & Y. Having obtained R, the opponent can decipher any
intercepted ciphertext without even knowing the key to the generator
which is unacceptable. Further, repetitions on the plaintext would
be refleéted in the ciphertext even if he did not know a ciphertext-
plaintext pair. Hence to overcome this problem, the key stream must be
made to change for every iteration of the ciphering algorithm. A
stream cipher is said to be periodic if the key stream changes such
that it reheats itself after d characters or bits for some fixed d;
otherwise it is said to be non-periodic. Ideally, one would want the
key stream to have a long period and to vary in a random manner. If
the key stream were truly random and its length is equal to the length
of the message, then this would produce an .unbreakable cipher. Because
the key stream is random, then it must be provided to the users in
advance via some independent and secure channel which causes

insurmountable logistical problems when the intended data traffic is
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very large. Hence for practical reasons, the key stream mist be
implemented as an algorithmic procedure so that the key stream can be
produced by users at both ends. Ciphers generated by rotor and
Hagelin machines [1] are periodic whereas the Vernam cipher (one time
pad) [16] and running key ciphers are non-periodic ciphers.

A system in which the key stream is genérated independently
of the message stream is said to be a synchranous stream cipher. In
such a modulo é addition based system, each bit in the output cipher-
text is dependent upon the corresponding bit in the input plaintext
but not upon any other bits in the input plaintext. This is in con-
trast to the block cipher which exhibits a much more complex
relationship between the bits in the plaintext and the bits in the
ciphertext. Hence the stream ciphers can be made to have non-error
propagating property. Both approaches however have comparable
strength.

Various techniques may be used to generate the key stream
in stream ciphers. Not only the key stream generated must have good
pseudo-random properties but also the generation process must be
non-linear. This limits the direct use of linear feedback.shift
registers for the generation of these key streams because with such
generators, the cryptanalyst can derive the entire key stream given
a relatively small amount of plaintext-ciphertext pair [ 4, 14]. It
is also important that the complexdity of the linear equivalent of any
non-linear generating process be estimated { 14]. It has been
suggested in [ 15] that non-linear substitution-permutation functiocns
when combined with a shift register produces cfyptographically strong
key streams. Since the key streams can be generated in blocks, it is
also possible for a block cipher to be used to obtain a stream cipher.
Because both the sender and the receiver must generate key streams
that are equal and secret, it is necessary that the keys used in the
algorithm must also be equal and secret. This implies that a public
key block cipher algorithm can be used to obtain a stream cipher if
and only if it is used as a conventional algorithm, that is, both the
sender and the receiver use the same algorithm (encryption E or
decryption D) and the same secret key.

But as noted earlier, a fixed key even.though it is kept
secret does not ensure an unpredictable cryptographic key stream. To
avoid producing the same key stream at each iteration of the

algorithm, another parameter called the initialization vector (IV) is
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introduced in the ciphering process. Different initialization vectors
are generated in a pseudo-random non-repeating manner which in turn
produce different cryptographic key streams. That is, R is generated
using R = fk (Z) where Z is the initialization vector, fk defines the
block cipher algorithm under key k. Encryption and decryption
operations are then given by Y = X & fk (Z) and X =Y ® fk (2). This is
shown in Figure 2.5. For the stream cipher to be cryptographically
strong, the initialization vector needs to be varied in a pseudo-
random manner. One way to do this is to generate indepehdently a new
initialization vector for each iteration of the ciphering algorithm.
This has the disadvantage of increasing the amount of transmitted data
since the initialization vectors are now added to each block of cipher-
text. A more efficient approach is as follows: at the first iteration
of the cipher algorithm, the initialization vector is used as before
to produce a block of key stream bits which can be used to encipher
the first block of plaintext (assuming the blocksize of the cipher
algorithm is same as the size of the plaintext block). At all
subsequent iterations of ciphering algorithm, the initialization
vector is altered or determined using one of many feedback chaining
techniques. Thus chaining eliminates the problem of transmitting or
storing a separate initialization vector value for each ciphertext.

A feedback can be obtained from several places namely the key stream
itself, the plaintext, the ciphertext or some combination thereof.
Each of these approaches gives rise to cryptographic systems with
different characteristics with respect to recovery from errors.

Note that the initialization vector in addition to providing
cryptographic strength also establishes synchoranization between
commnicating cryptographic devices. It assures that the same
cryptographic key streams are generated at the both ends of the link.
Once the initial state of the system has been set, only the current
state of the system ngeds to be remembered to maintain synchronization.

In general feedback chaining techniques increase the overall
strength of a cryptographic system. The chaining techniques when used
during ciphering process make an output dependent not only on the
current input and key but also on earlier input(s) and/or output(s).

In effect it introduces noise into the ciphering process. This helps
to eliminate the undesirable effects of redundancy and structure
present within the plaintext data. Several chaining techniques will

be discussed in Chapter S with special reference to the Data Encryption

Standard.
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CHAPTER 3

DATA ENCRYPTION ALGORITHMS

3.1 General

In cryptography, two main operations have been used for
centuries and they still form the main elements of modern encryption
algorithms. They are transpositions and substitutions and may be
applied to words, symbols, letters and binary bits or groups of bits.
There is also another technique, that of concealment where the symbols
of the message are mixed up with many other symbols which carry no
important information at all although they may appear to. This method
can be used to give considerable security but it expands the message
by a great amount. These operations lead to three different classes
of ciphers namely the.transposition ciphers, .the substitution ciphers
and a combination of both called the product ciphers.

3.1.1 Transposition Cipher_

A transposition cipher consists of rearrangement of the
characters (bits) in a block of plaintext; the characters retain their
identity but lose their position. If the transposition is one-to-one
then the process is reversible. On the other hand, if the trans-
position is not one-to-one then the operation becomes irreversible.
Consider, for instance, the transposition which maps an 8-bit block
to a 6-bit one, say by discarding bits 3 and 6 and rearranging the
others. Here the total number of zeroes and ones are no longer
preserved. Transposition by itself is not a very secure type of
encipherment because unless every message has a unique form of
transposition, the acquisition of several plaintext-ciphertext pairs

allows the cryptanalyst to discover the permutation statistically.

A substitution cipher consists of the replacement of
characters of the plaintext with characters from another alphabet.
.In the case of binary operations, a lock-up table characterises the
substitution operation. The bits are divided into small groups
which are then replaced by the contents of the look-up table addressed
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by each group. For example,if the message is divided into 4 bit
groups, there will be 16 possible combinations for each group, so

that the table will require 16 entries numbered O to 15, In general,
the number of ones and zerces is not preserved and a change in one bit
of the input may affect several bits of the output. The Data Encryption
Standard (Section 3.2) uses eight such look-up tables commonly referred
to as S-boxes, each converting a six-bit input into a four bit output.
An important advantage of the substitution cipher is that the contents
of the lock-up table can be changed frequently and implementation of
such an operation can be readily done with read only memories (ROMs).
A substitution méy or may not be reversible depending on the form of
the loock-up tables. One of the oldest substitution cipher is the
Caeser cipher which is a monoalphabetical substitution cipher. This
cipher can be broken in ciphertext-only attack with approximately 30
alphabet characters using letter frequency analysis [14]. An
important substitution cipher is the one-time pad in which the key is
random, non-repeating and used only once. One-time pads are
unbreakable as there is not enough information in the ciphertext to
determine the key or message uniquely. The first implementation of
the one-time pad cipher was the Vernam cipher [16] in which the key
bits were added mocdulo 2 to the plaintext bits. One major problem
with this cipher is that the key length grows linearly with the length
of the message.

A product cipher involves both the steps of substitution and
transposition. Shannon [7 ] suggested the use of product ciphers to
build a strong system out of individually weak components. He
suggested that the product cipher be formed using substitution and
permitation ciphers in an alternating manner. The permutation shuffles
the digits providing'diffusion' and non-linear substitutions provide
'confusion'. Confusion makes the relationship between the ciphertext
and the pléintext as complicated as possible, that is, it hides the
key and diffusion spreads the statistics of the plaintext into the
ciphertext. This formed the basis of the Lucifer system designed by
the IBM [17]. The Data Encryption Standard which is considered next

is based on the Lucifer system.
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3.2 Data Encryption Standard

The cryptographic algofithm used in the design of the
encryption unit is the Data Encryption Standard (DES) [11]. This
algorithm is now regarded as the US Federal Standard recommended for
use by non-military Government Agencies. It has also been adopted by
the American National Standards Institute (ANSI) and is recommended for
use by the American Bankers Association, (ABA). The adoption of DES
as a Standard for encrypting data contributed to the surge in interest
in this algorithm. Before considering the development of an encryption
system to provide communication security using a hardware implement-
ation of the Standard in the next chapter, in this chapter the DES
algorithm is analysed to provide a deeper insight into the design of
practical encrypticn algorithms. The algorithm has been implemented
by software to study some of its characteristics. In particular, the
software approach enables the study of intermediate outputs during each
round, whereas the hardware (LSI) implementation only gives the final
ciphertext output. The software implementation is also found to.be
useful when performing statistical tests on the randommess of the
output obtained from the algorithm. This forms the subject of
Chapter 6.

First an overview of the algorithm is given. Then the
software implementation is described together with some performance
figures. Some of the characteristics of the algorithm together with
some of the design criteria underlying the choice of parameters in
the algorithm are presented. The controversy surrounding the DES
and possiblé weaknesses of the algorithm are then considered. Finally
the complexity of the algorithm and its security are investigated.

3.2.1 DES Algorithm - An Overview

The Data Encryption Standard algorithm is a block product
cipher system. Block because it transforms more than one character
‘at a time. Product because it is composed of a series of trans—
positions, substitutions and additive encodings combined by a sequence
of feedback cycles.

It is a complex non-linear algorithm which enciphers a
64-bit block of plaintext into a 64-bit block of ciphertext under the
control of a 56-bit cryptographic key. DES can be regarded as a huge
key—controlled substitution box (S-box) with a 64-bit input and

output. With such an S-box a total of (264)! different transformations
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or functions from plaintext to ciphertext are possible. The 56-bit
key thus selects only a small subset (256) of the total set's
possible functions. As a single huge S-box is difficult to construct,
DES is implemented by using several smaller S-boxes and permiting
their concatenated outputs. Repetition of the substitution and
permutation processes several times increases the cryptographic
strength.

The complete DES algorithm is given in {[11]. The three major
steps in the algorithm are summarized in Fiqure 3.1.

1. A transposition operation, referred to as the initial
permutation (IP). This fixed transposition does not utilize
the 64-bit key and operates solely on the 64 data bits.

2. A complex key dependent product transformation that uses
block ciphering to increase the number of substitutional
and reordering patterns.

3. A final transposition operation referred to as the inverse
initial permutation (IP-I) which is actually the reversal of
the transformation performed in the first step.

The second step is the most important step ocut of the three
.and it consists of 16 separate rounds of encipherment; each round
using a product cipher appreoach or cipher function. The steps
performed in each round shown in Figure 3.2 are summarized below:

(i) The 64-bit input block is divided into two parts, a left half
(L) and a right half (R),each 32-bits long.

(ii) The right half of the input block becomes the left half of
the output block. This is denoted in Figure 3.2 by an arrow
going from Ri—l to Li.

The steps (iii) to (vii) which follow can be regarded as a complex
cipher function, f, operating on both key and right half of the input
block.

(iii) The 32-bits long right half (R) undergoes an expansion
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process (E), yielding a 48-bit data block. This is a fixed
expansion permutation and not key-dependent.

(iv) Fhe 64-bit key is used to generate a 48-bit subkey through
a key scheduling procedure described in the next section.

(v) This 48-bit subkey Ki is exclusive-ored with the expanded
right half E(Ri) vielding a 48-bit result.

{(vi) This 48-bit data is divided into eight 6-bit groups each of
which is subjected to a 6-to-4-bit non-reversible
substitution function (Si). Six groups of 4-bits are then

concatenated to form a 32-bit output.

(vii) The 32-bit output is permuted to produce a 32-bit block by
the fixed permutation P.

(viii) The 32-bit output of step (vii) is combined via the exclusive-
or operation with the left half of the input block to form
the right half of the 64-bit output block.

Details of the permutations IP, IP’I, P and substitution boxes Si can
be found in [11].

The key schedule procedure is used to enlarge the keyspace by
expanding the externally supplied key into intermal subkeys. The LES
key schedule operation derives its sixteen 48-bit subkeys required for
16 rounds from the 56-bit key entered externally, by simple repetition.
For reasons of security, all of these keys must be different. This
is achieved by selecting a different subset of 48-bits from the 56-bit
key. (Note that 8-bits out of 64-bits key are used as parity bits).
The procedure is based on a shifting and bit selection algorithm.

Figure 3.3 illustrates the key schedule calculation used
for encipherment. It begins with an initial permutation defined by
Permuted Choice 1, (PC-1). PC-1 is the same for encipherment and
decipherment and it selects 56 of the 64 external key bits (stripping
off the 8 parity bits) and loads them into two 28-bit shift registers
C and D. The parity checking of the external key is performed prior
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to PC-1. During encryption, the contents of the registers Ci 1 and

Di_l are shifted one or two positions to the left according to the
schedule of circular shift operations shown in Table 3.1, Figure 3.4.
The key K(i) is then derived from (ci. D, ) through a second
permutation defined by Permuted Choice, PC-2. Moreover the shift
schedule is such that C16 = Co and Dl6 = Do' It is to be noted here
that PC-2 does not mix the contents of Ci and Di registers. This
property together with the circular shift operations allows certain
values of keys K to generate identical internal subkeys. This is an
inherent weakness of the algorithm and is discussed further in Section
3.6.4.

During the deciphering operation the key K(16) is used in
round one and K(15) in round two and so on. But the contents of Co
and D° are the same for enciphering-and deciphering, since the external
key is loaded in both cases via the Permuted Choice PC-1. This means
that the key K(16) can be created at the first round merely by
omitting the first shift operation and K(15) can be created st the
second round by shifting Co and Do one bit to the right. The
remainder of the internal keys are obtained in the same manner using
the shift schedule in Table 3.1, Figure 3.4, in reverse order except

that left shifts are changed to right shifts.

It is seen that the same algorithm can be used to perform
encryption and decryption with minor changes. An outline of the proof
of this property is as follows:

Let the contents of L and R registers on the :ith round be
L(i) and R(i). Let the output of the permutation P be P(i) and the
output of FC-2 be K(i). Let the operation of the expansion permu-
tation, S-boxes, permutation P be represented by f. Then during

encrypticn,
L(i) = R (i-1)
R(i) = L (i-1) @& P(i)
P(i) = £ [R(i-1), K(1)]

where @& denotes Exclusive-or operation.
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Rewriting these as

L(i)
R(1i)

R (i-1) (3.1)
L (i-1) @ £ [R(i-1), K(i)] (3.2)

Hence the ith round is completely determined in terms of the (:i.-l)th

round provided the appropriate bits of key K are available, Similarly

(:i.-l)th round can be completely expressed in terms of the ith round.

This can be done because of the reversible property of exclusive-or

operation: if A= B ®C then B = A ® C. Therefore rewriting (3.1) as

R(i=1)

L(i)

and rewriting (3.2) as

L(i-1)
ie, L{i-1)

1]

R(i) @ £ [R(i-1), K(i)]
R(i) @ £ [L(i), K(i)] (3.3)

it is seen that the same algorithm can be used for decryption. The

involute structure of the DES can be seen by regarding the DES as a
product of 33 mappings [6] as shown below

where

-]
IP x II 16 X eoe X O x I 1 x IP

IP is the initial permutation and 1P is its inverse

| (1 £i < 16) are involutions given by

I i’ (%, x’}——————>(x G f (xl), k’) where x is the left
half and x’ is the right half

8 is the interchange' involution given by

0t (% X y)——— (x , x)

The inverse of the DES is then given by

(oes)~! = (1py? xl x0 X «oo x0 x T x IP
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That is, decryption is essentially achieved by operating the DES
backwards.

3.3 Software DES Implementation

The DES algorithm has been implemented using a 6502 based
Apple microcomputer system. This was done to gain a deeper insight
into the working of the algorithm and to allow a comparison between
hardware and software implementation with regard to performance
characteristics and the results produced. The two implementations may
not be compatible and the results may not agree with each other as
the FIPS publication [11]gives only the recommended values for the
permitations and S-boxes.

The description of the program together with a partial
listing is given in Appendix 1. The two important factors to be
considered in the software design are the storage and the speed of
the implementation. 'In this design, a mixed approach has been adopted
as there was no real constraint on: memory or speed. In some places
storage space increases are traded to obtain speed. A typical example
of such an instance would be the use of in-line code to replace loops.
On the other hand, most of ;he transpositions and substitutions are
implemented as functions instead of using tables. Consider for
instance, the 48-bit key sélect function involving the 56-bit initial
permutation and then one or two left shifts of the 56=-bit string and a
48-bit permutation to produce each of the 16 operaticnal keys required
during a cycle through the algorithm. Here these subkeys are
generated at the -time required. But this whole process could have
been implemented using sixteen 48 byte tables, listing equivalent
permutations of the current keys bit positions. In the beginning of
the program, all the 16 operational keys can be calculated and stored
in a table. Then each round through the algorithm can obtain the
operational keys directly from the storage table.

The storage space used by this program is approxdmately 2
kilo=-bytes. The encryption times are of the order of 100 milli-
seconds. This would allow a maximum throughput of about 640 bits
per second. Therefore the algorithm can be implemented with reasonable
performance. But it is found that 6502 instruction set is not suitable
for high speed implementation of the algorithm. If bit test instruct-

ions are available similar to those of Z80, encryption time can be
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much reduced.

A numerical example showing the output from intermediate
stages within an encryption round together with different key and data
values after every round is shown in Figure 3.5. It is also found
that the results produced by this program and the hardware implement-
ation (Chapter 4) agreed with each other.

Although the algorithm can be implemented in software, it
suffers from two major disadvantages. Firstly as seen from above the
operation is slow compared to LSI implementaticn of the algorithm which
allows of the order of 1 M bits per second or above. Secondly, in
the software .approach, the key is stored within the computer system
memory which is accessible when the system is in.use. With the LSI
hardware implementation the key becomes unavailable after it has been
entered into the device and hence the security of the overall system
has been greatly enhanced. In the next section a possible advantage
of the software approach is discussed.

3.3.1 A Possible Advantage of DES Software_

If the intermal functions of the DES algorithm are generated
using tables, then it seems that there exists a mechanism to increase
the difficulty of cryptanalyzing a series of encrypted messages given
an encrypted message and a copy of the corresponding plaintext.
Assuming that there is no fatal flaw which is dependent on these
internal tables, then it is shown that these tables (ie. permutations
and substitutions) can be altered in software implementations (in
contrast to the hardware approach) to produce a significantly larger
effective key space. One may argue that changing the values of these
tables may strengthen the algorithm, but does not reduce the through-
put from the rate achieved with the specified standard. Therefore each
of these tables can be used ds variables, like the key, agreed between
senders and receivers. (Note that this idea may not be valid from
subsequent sections where it is argued that carefully chosen permut-
ations and substitutions strengthen the DES algorithm and that randomly
chosen parameters may introduce weaknesses into the algorithm),

The Initial Permmtation (IP) and its inverse(IP’l) operate on
64-bit data blocks and hence there are 64! different settings possible
for this permutation. Note that given IP, IP‘l is fixed. Here any
bit ordering including an identity transform is assumed to be accept—
able but éach bit must be used. The tables are defined by a series
of 64 unique ocne byte addresses of bits in the Initial Permutation.
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All data and key values are represented in hexadecimal form.

Plaintext, X: FEDC3A9876543210
Key, E: FEDC3A3876543210
"Round 1

Plaintext : L(0) = PEDCBA9S

B(0) = 76543210

Plaintext after Initial Permutation: 33FP33000F550F55
Eey after Permutation cholce 1 OE98D4BES498C2FE
Eey after 1 left shift : 1E32AA7CAA3286FC
Key after Permutation choice 2 : TALEGC3032163234
Output from S-boxes, S51-S8 :  QC216D50

Output after Peroutation P 921C209¢C
Ciphertext after round 1 :

OFS50F5541E5139C

i1.8. L(1) = OP550F55
R(1) = A1E3139¢ _
Round 1 - Data: OPFSS5COPSSALE3139C
Eey : 7A1ESC3032163234
Round 2 - Data: AlE3139CTD1EC3BS
Key : 4A4A4C4C6C522E32
Round 3 = Data: 7D1EC3B6B66ABDOS
Eoy : 5c445A6A24_7A385A
Round 4 - Data: B66ABDO6F2298504
Koy : 462E30542C4E6CS0
Round 5 - Data: F229BS04BFPCYFBCA
Key : 60623E7874044874
Round 6 - Data: BFCIFPBCAOEBBF43D
Rey : 6ELAS642606E5474
Round 7 - Data: OEBSF43DC6B370BA
Eey : 4B7ESA547A225872
Round 8 - Data: C6B37OBACB7238B9
Xey : S40E3E0E4862527¢
Round ¢ - Data: CB7238B90CSEFF39
Key : 1E66302¢5C2B3EOC
Round 10- Data: OCBEPF39C3DDS5634
Koy : 364266704E1C141A
Round 11~ Data: C3DD5634P5C83096
Key : G6ESCOR7878453604
Round 12~ Data: F5C83C96438DACO4
Key : 465878345C541¢56
Round 13- Data: A38DA0C4OBBRTS29
Key : 3646585ESA4ET806
Round 14- Data: O0B8B75293%393CEPFL
Key : 547662123E441464
Round 15- Data: 3393CBF145770966
Key : 242C7674TA3C4A14
Round 16- Data: 45770965604DE0463
Key : 1A38167822707ElA

Ciphertext - A933F61830238310

Plgure 3.5 - Data and Rey values after each DES round
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To change IP or 1} requires an input of 64 bytes. There are 32!
different P permutations possible and a 32 byte input vector is
required to specify the ordering of 32-bits. Also there are(;g) =
2,25 x 1012 different possible expansion (E) permutations for mapping
32-bits into 48-bits. The 16 intermediate keys K(1) to K(16) can be
obtained using a 16 x 48 table. Assuming that the 16 key, ,select vectors must
be unique, the number of unique combinations is equal tof%[(zg)-i
which is approximately 2.77 x 10146. Changing the key selection tables
requires an input of 768 bytes. Further, there are (;g = 2,25 x 1012
possible combinations for S-boxes which reduce the 48-bit exclusive-
ored product to 32-bits.

Thus the number of possible control variables using this
table structure is equal to (number of IP/IP-I combinations) x
(number of 48-bit expansion combinations) x (number of P permutation
combinations) x (number of 6 bits to 4 bits reduction combination) x
(number of key select combinations). This is of the order 102:9'5; For
each of these parameter settings, there are 256 possible values of
key which must be tested if the DES is to be broken by exhaustive
attack. For this extended algorithm, an input of 1232 bytes is
required. Changing the key merely requires changing any of these
1232 bytes.

The above argument shows how the permutations and substitutions.
in the DES algorithm can themselves be regarded as 'keps'. But one -
should be careful in determining the security of such a system. In
the above analysis, it has been assumed for simplicity that any one
set of permutations and substitutions can be used in the algorithm.

But the security of the algorithm may be heavily dependent on the
particular values of the S-boxes and the permutations [3]. Thus although
the above process shows how the keysize to the DES algorithm can be
extended, it must be realized that not all these 'keys' may provide

the same security.

3.4 Some Characteristics of DES Algorithm

3.4.1 Avalanche Effect_

iIf a small change in the key or plaintext were to produce a
corresponding small change in the ciphertext, then this might
effectively reduce the size of the plaintext or key space to be

searched. Hence one of the fundamental requirements of a good
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cryptographic algorithm is to produce a 'large' change in the cipher-
text for a 'small’'change in the plaintext or key. The DES exhibits
this property referred to as the 'avalanche' effect by Horst Feistel
(el. Actually Meyer has shown in [18] that after five rounds, each
ciphertext bit depends on all plaintext bits and key bits. This inter-
symbol dependence property can be used for error detection and
authentication purposes.

Table 3.2 in Figure 3.6 shows the effect of change of a
single input bit change in the plaintext. The plaintexts X and X~

X = (11111111 11111111 11111111 11111111 11111111 11111111
11111111 11111111)

X“= (01111111 11111111 11111111 113111111 11111111 11111111
11111111 11111111)

are enciphered with a randomly chosen key and the effect of changing
a single bit as a function of the number of rounds is seen. In
Table 3.3 in Figuée 3.7, the procedure is repeated, now fixing the
plaintext and changing a single bit in the key.

A similar effect is seen to occur for changes of single bit

in ciphertext and key on decryption.

3.4.2 Complementary Property

The DES is invariant under complementation of plaintext,
key and ciphertext. The relationship called the complementary property
of DES can be expressed as:

E (X) =E_ (X
« (x) = (X)
where E | stands for encryption under key K

X 1is the piaintext

and the bars represent complementation, that is, bit-inversion.

This property arises because of the way in which the
internal subkeys are used in each round. This can be shown as

follows:

Section 3.2.1 shows that the expanded version of right half
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Plaintext 1
Plaintext 2

Key
Round
0 1
0
1
1l
2
2 1
3 3
3 3
4
4 L]
5 ¢
5 H
6
6 1
T
T @
8 H

10000101

11111111
01111111

11111111
11111111

01000100
01000000

00101010
01100010

00110101
11010101

1001011
01110110

00111001
11011011

11001101
01101111

10000011
00111111

11001101

11111111
01111111

11111111
11111111

01111101
01110100

11011000
10100111

01010000
01001000

10110000
00001100

00011110
10000111

00001111
01111111

01010000
10110100

11001011

11111111
01111111

11111111
11111111

11111111
111131110

10101000
11010001

01000110
01100111

01100010
10100001

00001001
01010010

11101001
10101110

00110110
11110111

00011100

11111111
01111111

11111111
11111111

00010000
000600000

01010111
10110111

11001000
10001100

01010001
10011000

01011001
11111011

00010010
11001001

00110011
01000110

10011011

11111111
01111111

01000100
01000000

00101010
01100010

00110101
11010101

10011011
01110110

00111001
11011011

11001101
01101111

10000011
00111111

10111010
01000100

11010000

11111111
01111111

01111101
01110100

11011000
10100111

01010000
01001000

10110000
00001100

00011110
10000111

00001111
01111111

01010000
10110100

10011110
11111110

(continued

01000110

11111111

01111111

11111111
11111110

10101000
11010001

01000110
01100111

01100010
10100001

00001000
01010010

11101001
101011190

00110110
11110111

11000100
10001001

00011010

11111111
01111111

00010000
00000000

01010111
10110111

11001000
10001100

01010001
10011000

01011001
11111011

00010010
11001001

00110011
01000110

00010110
00110000
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Ciphertext 1
Ciphertext 2

10
10

11
11

12
12

13
13

14
14

15
15

16
16

10111010
01000100

01000111
10100101

00101110
00010110

11000010
10111110

11011100
01000110

01001111
00101101

01101110
11000010

01001010
01110011

00101100
11111011

10011110
11111110

10011000
11010100

10110011
10100001

00100101
01111010

00000101
10110010

10100110
11011011

10010001
10100111

11100001
01000011

11001011
10111010

11000100
10001001

11001001
11001111

11000111
11101011

11110111
00000010

01101100
11000111

00100010
10010000

01100010
00100001

00101111
11000111

01001011
00001101

00010110
00110000

00011001
01100110

01010100
01000100

01001101
01010111

11011001
01110111

10111001
00100100

10101100
00011111

10110110.

00101011

10011001
01010111

01000111
10100101

00101110
00010110

11000010
10111110

11011100
01000110

01001111
00101101

01101110
11000010

01001010
01110011

00100110
01101001

00010100
10010001

10011000
11010100

10110011
10100001

00100101
01111010

00000101
10110010

10100110
11011011

10010001
10100111

11100001
01000011

00011000
10011011

01101101
11000010

11001001
11001111

11000111
11101011

11110111
00000010

01101100
11000111

00000010
10010000

01100010
00100001

00101111

11000111

11110001
01001100

10100101
11101101

Figure 3.6 - Table 3.2 ¢ Avalanche Effect in DES; change in plaintext

00011001
01100110

01010100
01000100

01001101
01010111

11011001
01110111

10111001
00100100

10101100
00011111

10000110
00101011

01101110
01011101

00100110
00011000



Plaintext
Plaintext

Key 1
Key 2

Round

0]

0‘

v O

0 -3 =

10000101
00000101

11111111
11111111

11111111
11111111

01000100
01000100

00101010
00101110

00110101
11111011

10011011
01001010

00111001
00100001

11001101
10001110

10000011
10100001

11001101
11001101

11111111
11111111

11111111
11111111

01111101
00111101

11011000
11011001

01010000
11101110

10110000
11100010

00011110
11110000

00001111
00110101

01010000
00001100

11001011
11001011

11111111
11111111

11111111
11111111

11111111
11111111

10101000
11101100

01000110
01111001

01100010
01111101

00001001
00010011

11101001
01000111

00110110
00110001

00011100
00011100

11111111
11111111

11111111
11111111

00010000
01010000

01010111
01000110

11001000
00101001

01010001
11001000

01011001
00101011

00010010
01111010

00110011
011i0110

10011011
10011011

11111111
11111111

01000100
01000100

00101010
00101110

00110101
11111011

10011011
01001010

00111001
00100001

11001101
10001110

10000011
10100001

10111010
00111011

11010000
11010000

11111111
11111111

01111101
00111101

11011000
11011001

01010000
11101110

10110000
11100010

00011110
11100000

00001111
00110101

01010000
00001100

10011110
01011111

01000110
01000110

11111111
11111111

11111111
11111111

10101000
11101100

01000110
01111001

01100010
01111101

00001001
00010011

11101001
01000111

00110110
00110001

11000100
10111001

00011010
00011010

11111111
11111111

00010000
02010000

01010111
01000110

11001000
00101001

01010001
11001000

01011001
00101011

00010010
01111010

00110011
01110110

00010110
00110010

(Continued on next page)



Ciphertext 1
Ciphertext 2

10
10

11
11

12
12

13
13

14
14

15
15

16
16

10111010
00111011

01000111
10100011

00101110
00000010

11000010
01011110

11011100
01000111

01001111
10111011

01101110
11110010

01001010
11011010

00101100
00110010

10011110
01011111

10011000
00001110

11010011
00010100

00100101
11001011

00000101
01010001

10100110
01010101

10010001
01101010

11100001
01000011

11001011
11100111

Pigure 3.7 - Table 3.3

11000100
10111001

11001001
11000010

11000111
10000011

11110111
01001100

01101100
01111100

00000010
11010010

01100010
10101101

00101111
11111000

01001011
01010000

Avalanche

00010110
00110010

00011001
01011110

01010100
11011111

01001101
01000111

11011001
00011011

10111001
01110001

10101100
10001111

10110110
01010011

10011001
11001101

Effect in

01000111
10100011

00101110
000C0010

11000010
01011110

11011100
01000111

01001111
10111011

01101110
11110010

01001010
11011010

00100110
00111110

00010100
11011011

10011000
00001110

10110011
00010100

00100101
11001011

00000101
01010001

10100110
01010101

10010001
01101010

11100001
01000011

00011000
01010101

01101101
01001001

DES; Change in Key

11001001
11000010

11000111
10000011

11110111
01001100

01101100
01111100

00000010
11010010

01100010
10101101

00101111

11111000

11110001

01001010.

10100101
10111111

00011001
01011110

01010100
11011111

01001101
01000111

11011001
00011011

10111001
01110001

10101100
10001111

10000110
01010011

01101110
011110190

00100110
10001000



of the plaintext undergoes a complicated process together with the
key vectors K(i) at each round i. Let this process be denoted by
function f. Then,

f [R(i), K(i+1)] = f [E(R{i)) ® K(i+1)]
where E(R(1)) denotes the expanded right half of plaintext at round i

® denotes Exxlusive-or operation

Complementing both R(i) and K(i+l) therefore does not chahge the value
of f and

f [RrR(i), K(i+1)] = f [R(i), K(i+1)]

Because

L(1)
R(1)

R(o) .
L(o) @ £ [R(o), K(1)]

complementing plaintext X means complementing L{o) and R{o).
Complementing key K means complementing K(1), ...y K(16). Therefore
this results in complementation of L(1) and R(1). By induction, this
can be extended to L(2) R(é), eesy L(16)R(16) and hence to ciphertext
C.

Because of the complementary  property of DES, if a

cryptanalyst could obtain Y, = Ek(x) and Y. = Ek(i) for an arbitrary

X, he could reduce the sizelof the key spaie he must search from
256 to 255. The cryptanalyst enciphers X with all keys K that start
with a’'o. The resultant ciphertext is compared with Y, and Y,. If

C # Y, the key in us? fs not K, if C # Y, the key in use is not K
(which starts with a 1), That is, effectively this symmetry reduces the
search effort by 50 percent under a partially chosen plaintext attack.
An example illustrating this complementary principle of the DES
obtained using the DES software is shown in Figure 3.8. This
complementary behaviour can be avoided by selecting the S-boxes

using one or more key bits directly,instead of employing the modulo

2 operation. On the other hand, this complementary property can

be used advantageously for testing purposes.
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Key: 1000100010001000100010001000100010001000100010001000100010001000
Plaintext: 0011011110110100111010100110110000100011110010111010000111111110

Ciphertext 1: 1011000101110000011011011001100100010010101101111111110011110011

Complementation of key: 011101110111011101110111011101110111011101110111011101110110111
Complementation of Plaintext: 1100100001001011000101011001001111011100001101000101111000000001

Cciphertext 2: 0100111010001111100100100110011011101101010010000000001100001100
Ciphertext 2: Complement of Ciphertext 1.

Figure 3.8 ¢ Complementation in DES



3.5 Design Criteria

Although the DES algorithm has been made public, the design
criteria behind the specific choice of some permutations and
substitutions remain still classified. For example,one design
criterion for the DES was that the permutation schedule mist ensure
that each output (ciphertext) bit is a function of all input bits (plain-
text and key) after a minimm number of rounds. It is reported that
[3] the initial approach of random selection of the parameters such as
the permutations and substitutions had to be abandoned because they
introduced weaknesses into the algorithm. Instead the parameters were
randomly generated and tested against the design criteria. It is
believed that a significant portion of the random designs were rejected
in this process. One of the most important parameters in the
algorithm is the S-boxes and they are considered in the next section.

3.5.1 S-Boxes

All the operations involved in the DES algorithm except the
S-box mappings are linear in binary arithmetic. Therefore the S-boxes
play an important role in the security of the DES. It is therefore
crucial that the S-boxes not be affine or the whole algorithm would
be affine. A study by Hellman et al [19] found that none of the
S=boxes are affine. But they point oui that there are a number of
questionable quasi-linear structures which may tend to weaken the
algorithm. But currently no methods are found which could exploit
these quasi-linearities in reducing the search effort. The designers
of DES argue that it should not be surprising that certain parameters
contain some structural properties different from those expected to
result from the use of purely random selection. Further they claim
that [ 3] their design effort showed that carefully selected S-box
functions produce a much stronger algorithm than one based on random
designs.

The DES S-boxes are non-invertible 6 to 4 non-linear
mappings. Each S-box is found to have the property that changing
any single bit of the input while keeping the others constant always
changes at least two bits in the output. This property results in
the error propagation property and is essential to avoid the key
clustering attack [2]. This property plays an important role in

causing the avalanche effect mentioned earlier. On average it is
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found that the number of output bits that change in the DES for a
single input is above 2 (2.5 - 2.6) [19].

Another principle underlying the design of the S-boxes is
that the difference between the number of zeroes and the number of
ones in the output when any one of the input bits is held constant
is a minimum. This design criteria is believed [20] to strengthen
the algorithm.

3.5.2 Initial and Final Pernutations_

The plaintext input to the DES is first permuted using IP
before transformed by the sixteen rounds. The output of the final
round undergoes an inverse permutation 17! where 1P}, 1P = I,the
identity permutation. It is important to note that in a single
encryption process, IP and 1P} do not cancel each other as IP
operates on the plaintext and IP-1 operates on the ciphertext produced
by the 16th round. On the other hand, the permutation 1} petformed
during the encryption process is cancelled by the permutation IP
performed at the beginning of the decryption process.

It seems that the permutations IP and 1P’ do not have any
cryptographic significance. Possible reasons for their inclusion in
the algorithm are that they facilitate the implementation of the
algorithm for a particular IC layout or they result from the way the
data is loaded into the DES chip. These permutations IP and ]:F'-1 can
be absorbed by proper layout into the main algorithm and they do not

- slow down the algorithm. The algorithm designers claim that the

permutations do have cryptographic value and they contribute to the
security of the DES. This could be possible as follows: In many
applications, ASCII characters are used for the plaintext. Because
of the particular ASCII coding and the frequency distribution of the
English alphabets, the distribution of '1's and 'o's will not be
uniform. The IP permutaticon groups every ith bit of each input byte

into jth byte of the permuted output. This preprocessing of the
plaintext may redistribute the 'l's and 'o's in a uniform way before

inputting to the 16 rounds and thus may enhance the security.

3.5.3 P-Permutation
The function of the P-permutation in the DES as.in all
substitution-permutation ciphers is to provide the element of

diffusion [7]. This concept was first introduced by Shannon to

- 39 -




spread the depéndencies of output bits on input bits through

successive rounds to achieve total mixing.

3.6 Criticism and Weaknesses of DES

The controversy surrounding the DES essentially comes from

two main objections given below:

(i) the small size of the key space and

(ii) the algorithm's unpublished design principles.

Other criticisms of the algorithm include the small number of rounds,,
the two 'redundant' permutations IP and IF ! and a relatively simple
key schedule operation.

To investigate these criticisms, two workshops were
organized by the National Bureau of Standards (NBS). The first
workshop analysed the complexity of the algorithm and restated that
no short cut methods. were found [20]. The second workshop concluded
that a key searching machine cannot be built before 1990 and will
cost several tens of millions of dollars with a probability factor
of being available even then of about O.1 to 0.2 [21]. Let us now
consider the major criticisms of DES m turn.

3.6.1 The Key Length_

By far the greatest source of controversy has been the choice
of 56-bits as the key length. The length of the key determines the
feasibility of key trial. Critics argued that the length of the key
is too small and that the key space is amenable to exhaustive search.
Diffie and Hellman [22] disputed the NBS claim that trying all
possible keys is not economically feasible and estimated that a DES
key can be recovered by exhaustive search for approximately $§S000
worth of computation time on a special purpose machine. The special
purpose machine would consist of a million LSI chips and could try all
the 256 keys in one day. The cost of such a machine using the semi-
conductor technology of the mid-seventies was estimated to be in
20 million dollar range. More recently [84], the cost of a 2-day
average search time machine is estimated to be around SO million
dollars. This meant that it is out of reach of most groups with the
possible exception of government security agencies. It was predicted

that in 10 years, the machine will cost approximately 200,000 dollars

- 40 -



and recovery of one key will be around 50 dollars. Such attacks
assume that the DES is being used in the standard code bocock mode.

Alternative brute force attack on the DES algorithm is to
use a table lock-up approach. In this approach all the ciphertexts
resulting from enciphering a chosen plaintext are stored and sorted
using all the 256 keys. The amount of memory required for this attack
is of the order of 56 (256) =4 x 1018 bits which is enormous. This
would require 4 billion magnetic tapes (about IOP bits per tape),
costing about 80 billion dollars (320 per tape) [4]. In [23],
Hellman proposed a trade off between time and memory. Like table lock
up approach, this technique requires precomputation and storage of a
table. However, with this technique, the table size is only of the
order O(n2/3) instead of the previously O(n) where n = 56(256) bits.
This technique also requires searching and the search time is of the
order 0(n2/3) instead of O(n) where n = 256. Hellman predicts that
with proper combination of precomputation and searching, a machine
may be constructed that would recover the key with high probability
in one day. This in tum led to the suggestion that a bigger key
length of 128 bits is required.

Further the key space is reduced if the key is not chosen
as a 56 randomly selected bits. For instance, if the key is selected
as eight characters, each character being one of say 64 possibilities
then the number of distinct keys which need to be tested is (64)8 =
2.8 x ].Or14 which may be quite feasible,

The key space is also reduced by the invariant property of
DES under complementation. As seen in Section 3.4.2, this symmetry can
be used to reduce search effort by S0% under a partially chosen
plaintext attack.

The second major criticism of the DES algorithm is that the
design criteria behind the choice of some of the parameters are not
disclosed publicly. Those parameters are the S-boxes, fixed
permutation P and the key schedule operation.

The classified design principles led some critics to argue
that deliberate trapdoors might have been incorporated in the
algorithm by the designer to his advantage. This argument is based
on the fact that it is possible to design 'innocent-looking' S-boxes
which contained trapdoors [19]. Further, regular structures were
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discovered in certain parts of the DES algorithm which were surpris-
ingly similar to a type that can be used to build a trapdoor into the
system [19, 24]. Like the complementation property, it may be possible
to save another factor of two with carefully chosen S-boxes thus

saving a total of 75% over exhaustive search. Lexar Corporation [24]
examined the properties of the substitutions and permutations and
reported some 'peculiar' properties of the S-boxes but to date no
feasible cryptanalytic technique for DES has been found.

3.6.3 Number of Rounds_

DES is also criticized for having a small number of rounds
and it is suggested that the number of rounds should at least be
increased to 32 [19]. The number of rounds controls the mixing of
input bit values, that is, the amount of diffusion introduced by the
co-ordinate permutaticn. An increase in the number of rounds will
produce a greater avalanche effect. A two round DES was successfully
cryptanalyzed [19] by exploiting the correlation between L,R, and the
input. Such correlation is believed to disappear after eight
rounds [6]. |

Some statistical analysis to test the randomness of the
DES ocutput sequences and any correlation between plaintext input and

ciphertext output is considered in Chapter 6.

The cryptographic strength of the DES will be reduced if
some of .the internal subkeys derived from the external key are the
same. In the extreme case, if all the internal keys are the same
then the key space is reduced to 248. Referring to the key schedule
algorithm given in Figure 3.3, this situation occurs whenever all bits
in the register C are all ones or zeroes and the bits in register D
are all ones or zeroes. There are four such weak keys altogether [3].
These weak keys also have the property that there is no difference
between the operations of encipherment and decipherment, that is,
Ek%‘(x) =X-= Dka(X) for weak keys. There is another set of keys
defined as semiweak which have the property that only two different
internal keys are produced each occurring 8 times. There are six
such semiweak keys and they have the property EkEk/(x) =X =
BB (X), where k and k’ are distinct semiweak keys. Further there
are 48 other external keys which produce only 4 different internal
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keys.

These special keys do not pose any threat to the security
of the algorithm because the number of such keys is small compared to
the total set. Provided that the keys are randomly selected the
probability of choosing such a key is very small. Further these keys
can easily be avoided during key generation.

The key schedule algorithm can be improved by incorporating
non-linearity in the intermal key generation process [39}. A
suitably shifted external key can be inputted to a substitution-
permutation procesé in each round to produce the internal key as
shown in Fiqure 3.9. The scheme allows, in addition to the enlarge-
ment of the key space, other cryptographically desirable properties
such as error propagation. As the substitution permutation function
is already available in the algorithm, this requires minimmm additional
hardware.

3.7 Cryptanalysis of DES

Cryptanalytical methods can be divided into two subcategories
hamely deterministic or analytical and statistical methods.

In a deterministic approach, the cryptanalyst attempts to
express the desired unknown quantity (such as the key or the message)
in terms of some other known quantity or quantities (such as given
ciphertext or given plaintext and corresponding ciphertext). One
method of attack is therefore to represent the 64 ciphertext output
bits as functions of the 56 key bits in a known plaintext attack
and try to solve the 64 non-linear equations over GF(2) for 56
unknowns. This problem is an NP-complete problem [8] and hence is
difficult to solve in general. Such an analytical attack of the DES
was proposed in [25]. The attack proved to be manageable with affine
S=-boxes but infeasible when the real DES was cénsidered. IBM and
NSA also reported to have conducted similar attacks as part of their
validation process with no short cut solutions being found.

In the statistical approach, the cryptanalyst attempts to
exploit statistical relationships between plaintext, ciphertext and
key. To thwart statistical attacks, the algorithm's output should be
pseudo-random even for highly structured inputs. In other words, for
a large set of plaintext and key inputs cne must not be able, on the
basis of statistical analysis, to reject the hypothesis that the
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output bit stream is random. Some fundamental statistical tests have
been performed on the DES output streams and they are discussed in
Chapter 6.

Finally one should mention the brute force attack to find
the unknown quantity such as the message or key by using a direct
search method, trial and error or exhaustion. As mentioned earlier
the key length is an important factor on this type of attack and
greater the key length bigger the work factor to perform the key

exhaustion.
3.8 Discussion

If an algorithm is defined to be cryptographically strong
when the algorithm complexity is such that,
(i) using all known shortcut solutions, it is not practically

possible to solve for the key or for the message

(ii) it is too costly to employ simple methods such as key
exhaustion because too much time and/or hardware are
required

then,despite a lot of controversy surrounding the DES, DES can be
considered to be a cryptographically strong algorithm. As far as the
author is aware not a single successful 'break' has been developed
that can produce or determine the unknown key. Further, the life of
the DES can be extended (until a shortcut solution is found) by
enciphering the data two or more times with different keys. Double
encryption will significantly increase the difficulty of intrusion
requiring of the order of 236 words of memory and 22 operations [3].
However it is preferred that such a mltiple encryption process is
specified as part of the algorithm itself. The security can also be
improved by employing DES under various chaining modes. They are
considered in subsequent chapters. In account of this, the DES
algorithm has been chosen to be employed in the design of an
encryption interface unit to be used in a communication network. This
forms the subject of the next chapter. This chapter is concluded by
noting that the DES can be used as a building block for designing more
sophisticated algorithms. For instance,the DES itself can be used as
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the cipher function f in Figure 3.2. This gives rise to the scheme
shown in Figqure 3.10 where 2a block of 128 bits forms the

plaintext.
L (0) l R (0)
‘———-Kl
E|D
o oEs |
L (1) R (1)

Pigure 3.10 - Extended DES Algorithm
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CHAPTER 4

DESIGN OF ENCRYPTION SYSTEM: SYSTEM HARDWARE

4.1 System Requirements

The requirements for the encryption system may be class-

ified into three groups namely

(1) security requirements
(ii) Operator requirements and
(iii) technical requirements.

4.1.1 Security Requirements

Briefly, the security requirements are as follows:

(a) The encryption algorithm used in the system should be
cryptographically strong. That is, it should withstand at
least all the major cryptanalytic attacks described in
Section 2.2.

(b) There should be a large number of user selectable keys to
prevent the opponent employing exhaustion techniques to

determine the key selected.

The DES algorithm outlined in Chapter 3 meets these conditions very

well.

(c) The use of the algorithm within the system should be carried
out in such a way that the system as a whole is at least as -
strong as the initial strength of the algorithm itself.

(d) At no time, keys used by the algorithm mist be stored in
plain form within the system as otherwise it would enable
any unauthorized user to its recovery.

(e) Key changes should be made easy to implement.

{f) A high degree of physical security measures must be provided

to protect the system against intentional or accidental
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threats.

4.1.2 Operator_Requirements
The system should be made 'user friendly' thus allowing any

user to operate it efficiently with little training. This aspect is

very important in the case of large networks. The unit should also

be easy to install.

The technical requirements for the encryption system depend
to a great extent upon the use to which the system will be put. This
particular encryption system is designed to be used in the following

applications:

(a) transmission/reception of encrypted/plain data in a point-
to-point communication security system not containing a

host computer;

{b) a local encrypted/blain data storage/ret:ieval system using
floppy disks;

(c) transmission/reception of encrypted/plain data over the
communication link to a host computer and storage/retrieval
of encrypted/plain data using a host computer,in particular
with the Prestel Viewda{a computer.

The requirements for a storage/retrieval encryption system
are quite different from those necessary in a point-to-point

commnication system. Some of the aspects to be considered are:

1. Real time processing and transmission delays: These are
particularly important in point-to-point commanication
where information flow is irregular and messages may not be
of fixed format.

2. Transmission data rates: This aspect is important in
determining whether asynchronous or synchronous transmission
is needed. We are concerned here with only asynchronous
transmission of data rates up to 1200 bauds. Further the
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commmication with Prestel computer is asymmetric full
duplex in the sense that it requires 1200 bauds for

transmission and 75 bauds for reception.

3. Where a mixture of plain and encrypted texts is required to
be sent, switching between encrypted text mode and plain-
text mode should be easy. This should be carried out within
the message so that the receiving unit can follow identical
mode changes.

4. ‘ In the case of storage/retrieval system with a host computer,
sipce the encrypted information is likely to pass through
the host computer control unit where certain control
characters are generated and detected, there is a need to
prevent the occurrence of these special characters in the
encrypted information. This implies that the encryption
system should be made transparent to the host computer
protocols. This is particularly relevant when the system is

used in Prestel network.

S. Standard editing facilities such as character delete, line

delete etc. must be available to the system users.

4.2 General System Description

A symmetric encryption-decryption system in an end-to-end
commmication configuration is shown schematically in Figure 4.1.
The operation of the system can be summarised as follows. Referring
to Figure 4.1, the plaintext from an Apple terminal forms the input to
the encryption system. The plaintext is a combination of any of the
alphanumerical characters from the keyboard. The key required for the
encryption process is entered from the terminal keyboard under the
user control prior to the commencement of the session and is stored
in an inaccessible area within the encryption device. The encryption
system operates on the input sequence using the key to produce a
ciphertext sequence. This cipher is transmitted through input-output
commnication controller to the modem. The modem converts the binary
data pulses to analog frequencies using Frequency Shift Keying (FSK)

scheme for transmission over the public switched telephone network.
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At the receiving end, another modem converts the FSK signals back to
digital form which is then deciphered to regenerate the original plain-
text. This deciphered information can then be displayed on a Visual
Display Unit or printed on a line printer.

The communication link between Apple microcomputers is a
half-duplex one thus allowing transfer of data in either direction but
not at the same time,

From Figure 4.1 it is seen that in this implementation, the
encryption system is incorporated as an in-built feature of the
terminal, rather than as a separate unit. The built-in implementation
is superior to stand-alone implementation in the area of access
prevention as the former terhnique greatly reduces the chances of
detection between the terminal and the encryption unit where the text
is in plain form. However this technique may be difficult to
implement in exdsting systems and can require major redesigns. This
is where the stand-alone unit has the advantage in that it can simply
be inserted into existing networks with little or no impact to
exsting equipment.

The different sections which constitute the system are:

1. Apple microcomputers - comprising 6502 microprocessor,

memory, diskette interface and Language card.

2. The encryption interface unit.

3. The modulator«demodulator equipment.

In this project, Apple microcomputers have been used to form
a two rode network. The Apple microcomputer is a 6502 microprocessor
based system with diskette interfaces, disk driving units, Integer
card and a standard keyboard. The processor can directly reference
up to 64 kilobytes of memory. Along the back of the Apple's main
board, is a row of eight 'slots' or peripheral connectors. In seven
of these slots, peripheral interface boards designed for Apple system
can be installed. In slot O, Integer firmware card is installed.
Each slot has a 2K-byte of common shared memory associated with it,
with a view to holding programs or driving subroutines of the

peripheral interface card. The designed encryption interface card is
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installed in slot number 2 providing a memory range of CB0OO to CFFF.

The unit is designed utilizing the 6502 microprocessor of
the Apple microcomputer system. A block diagram showing the various

sections of the unit is illustrated in Figure 4.2. The sections are:

1. Data Security Device.

2. Serial Input-Output Controller.

3. RS=232C 'Interface Circuits.

4. Timing Circuits.

S. Decoding Circuits. .
6. Memory.

4.2.2.1 Circuit Description and Operation

A complete circuit diagram is shown in Figure 4.3. Some
important aspects of the circuit are now briefly considered.

4.2.2.2 Data_Security Device_
As mentioned earlier, it has been decided to use the DES
algorithm in hardware in the design of the interface unit. The choice
of the data security device incorporating the standard was restricted
due to limitations of not only their availability but also their
access. A Western Digital device has been used for this purpose
because of its ready availability. The device is made in n-channel
silicon gate MOS technology and is TIL compatible on all inputs and
outputs. The device can be interfaced to a wide variety of processors
though it is tailored to the Intel BOBOA class microprocessor. The
device performs 64-bit block encryption and decryption using S6-bit
key. The block diagram, shown in Figure 4.4, illustrates the internal
structure of the device. It contains 64-bit data register, S56-bit
key register, an 8-bit command/status register plus the necessary logic
to check key parity and implement the DES algorithm. The device has
a single 8-bit data bus buffer with tri-state operation through which
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data may be entered into the key register or the data register.
Output data from the status register or the data register is also
switched through the data bus buffer. The device can be programmed
either via the input lines . or via the data bus. In this design, the
second approach has been adopted. The programming of the device will
be briefly discussed in system software (Chapter q).

4.2.2.3  Serial Input—Output Controller_

There are a number of such devices which would be suitable
for transmission and reception of plain and enciphered data. Again a
Western Digital device, dual enhanced communications element (DEUCE)
has been used. It is primarily designed to operate in an 8-bit
microprocessor environment.

The controller contains two independent full-duplex
asynchronous receiver/transmitter channels and two internal baud rate
generators associated with the two channels. A block diagram of the
internal architecture of the device is shown in Figure 4.5.
Communications between the controlling CPU and the two receiver/
transmitter channels or the two baud rate generators occurs via the
8-bit data bus through a common set of bus transceivers. The use of
this complex device has enabled the development of a compact encryption
system.

Each channel has associated with it a number of registers
such as the Transmit Holding Register, Receive Holding Register,
Command Register, Mode Register, Status Register etc,which can be
programmed to transmit and receive asynchronous serial data. It
performs serial to parallel conversion on data characters received
from the modem and parallel to serial conversion on data characters
received from the CPU. The CPU can read the status of either channel
at any time. Status information includes the type and condition of
transfer operations being performed by the device as well as any
transmission error conditions. Internal control of each channel is
achieved by means of two internal microcontrollers one for transmit
and one for receive. A blcck diagram of one of two commmication
controllers is shown in Figure 4.6. The control registers,various
counters and external signals provide inputs to the microcontrellers,
which generate the necessary control signals to send and receive
serial data according to the programmed protocol.

The device also contains Baud Rate Registers which can be
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programmed to desired data rates by loading them with the appropriate
number of bauds. The contents of these registers are then decoded and
then addressed to a frequency select ROM for the generation of proper
frequency by the divider circuitry and the control logic during
operation. A diagram of one of the two Baud Rate generators is shown
in Figure 4.7. The baud clock source is selected using select clock
pin (SELCK) in conjuncticon with the clock select bit (CR1) in the
Command Register (see Figure 4.8). When the bit CR1 is high, the
external clock mode is selected. This means that the Transmit and
Receive clocks are internally tied together and SELCQK input determines
whether those clocks are driven from the internal baud rate generator
(SELAK high) or from the external clock input XCI/BCO (SELCK low).
If the intermal baud rate generator is selected, then the external
clock input becomes a baud rate generator clock ocutput. Wwhen the

bit CR1 is a logic '0O' then the internal clock select mode is chosen.
The transmit clock is driven by the intermal baud rate generator clock
and the receive clock is driven by the SELAK input. The XCI/BCO pin
then becomes the baud clock output, the transmit clock. The inputs

to the SELAK and XCI/BOO pins are derived using the simple logic
circuit shown in Figure 4.8(a).

When the signal present on the line marked X is low and the
signal at Y is high, this enables the tristate Z1 and sets the SELAOK
to be high. With the bit CR1 at logic 'l', this would result in both
the transmit and receive clocks tied together and driven by internal
baud rate generator. This mode shown in Figure 4.8(b) is adopted for
point-to-point communication between two Apple microcomputers.

When the signal present on the line marked X is high and
the bit CR1 is at logic '0*' then the tristate Z2 is enabled. The
XCI/BOO output is then connected to the SELAK input which drives
the receive clock. The transmit clock is driven by the intermal baud
rate generator. This configuration thus allows to transmit and
receive at different frequencies using only one channel without using
an external baud rate generator. This is one of the main reasons for
using this 1/0 controller. This mode of operation, shown in Figure
4.8{(c), is adopted when the interface is used in the Prestel network
where the transmission data rate is 75 bauds and receive data rate
is 1200 bauds.,

The signals Clear To Send (CTIS) and Request To Send (RTS)

to and from the device are used in controlling the modem. These
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signals are discussed in the next section.

4.2.2.4 RS-232C Interface Circuits

These circuits are used to interface between Data Terminal
Equipment (eg Apple computer terminal) and Data Communications
Equipment (eg Modem) in conformity with the specification of EIA stand-
ard number RS-=-232C. The RS=232C standard defines all the control and
data signals {(including signal levels) used to enable the modem and
the terminal to operate together and transfer data. For this purpose,
a quad line driver (MC 1488) and its companion circuit (MC 1489) quad
line receiver are used to provide a complete interface system between
TTL level signals from the system to RS-232C levels.

The interface control lines can be divided into two groups,
one concerned with:the control sequences for connecting the modem to
the line and the other concerned with the sequences controlling the
application (and detection) of signal to the line.

The signals Data Terminal Ready (DIR) and Data Set Ready
(DSR) belong to the first group. The DIR signal from the terminal is
used to tell the modem to answer the telephone (ON) and to hang it up
(OFF). In this design, this signal is used to indicate whether the
terminal power is ON or OFF. The DSR signal is used to indicate to
the terminal that the modem is in a state in which it is capable of
transmitting data.

The group of RS-232C control signals that relate to the
application and detection of time signal are: Request To Send (RTS),
Clear To Send (CTS) and Data Carrier Detect (DCD). The logical
interaction of these signals is simple when they operate in a two-wire
half-duplex mode and complex when terminals operate a four-wire full-
duplex mode. In this design, the point—to-point communication between
two Apple microcomputers is half-duplex whereas the communication with
the Prestel computer is asymmetric full-duplex.

The Request To Send signal from the terminal is used to
indicate to the modem that the terminal wishes to transmit data. The
modem then responds by initiating its transmit mode. When the modem
has reached a steady state carrier condition, and is ready to transmit,
it sends a Clear To Send signal to the terminal. However, CTIS does
not imply a positive verification that commmication with the other end
has been established. Therefore the Data Carrier Detect signal is
used to indicate that the receiving modem has detected a line signal
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(carrier) from the other end..

In point-to-point communication, initially when both ends
are waiting for transmission to begin, the RTS signals of the serial
input—cutput controller are at logic '1' and the modem will be holding
the CTS inputs to the serial I/O device high. The terminal which
wishes to transmit activates the RTS by making it low and does not
start transmitting until CTS is turned ON. The RIS/CTS time delay is
determined by specific hardware settings in the modem and is vitally
important in determining the overall efficiency of data link use.
Actually, the designed encryption system has been tested with two
different modems - Modular Technology and the standard Bffones. It
is found that the former produced large amount of noise spikes when
the modem switched from one mode to the other. This necessitated
some complex delay routines to be introduced to reject the noise
spikes. A typical interface timing diagram is shown in Figure 4.9.
When connected to asymmetric full-duplex Prestel system, the RIS is
kept ON continuously and the CIS ON is used to indicate that the
transmission can start. This is an easy approach to ensure that the
modem will operate properly in the full-duplex mode.

4.2.2.5 Timing Circuits

This block in Figure 4.2 consists of logic circuitry fo
provide the correct timing signals such as CHIP SELECT, READ, WRITE
etc for the operation of the interface unit. The inputs to this
block include amongst others, the clock signals from the Apple
microcomputer system for proper synchronization.

The 6502 microprocessor has two clock signals Qo and @1 of
1.023 MHz which are complementary to each other. In addition, a
general purpose timing signal, twice the frequency of the system clocks
but asymmetrical and an intermediate timing signal of 7.159 MHz are
also available. The microprocessor uses its address and data buses
only during the timing period when ¢, is active. wWhen &  is low, the
microprocessor is carrying out internal operations and does not need the
address buses. These timing signals are shown in Figure 4.10.

Let us now very briefly consider the main timing signals
required fpr the data security device and the serial input-outpﬁt
controller.

The timing diagram of a typical READ cycle of the encryptian
device is shown in Figure 4.11. The Data Output Request (DOR) bit
in the Status Register of the device is used to indicate whether the
- 62 =
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DATA WORD present on the data bus is valid or not. When it is valid,
the device is selected by making the CHIP SELECT (CS) active low.
This signal remains active low for at least 410 nano-seconds (ns).
Then the READ signal is made active low to read the data from the bus.
From the timing diagram, it is seen that the READ signal needs to be
active low for 330 ns and the data must remain stable at least 30 ns
after the rising edge of the READ pulse. The READ timing is not
critical and it only needs to be greater than 330 ns. The READ
signal is therefore derived using a standard decoder which produces
an active low pulse of about 450 ns wide. This signal is also
suitable for CHIP SELECT signals of both the security device and the
serial I/O controller.

The WRITE timing diagram of the encryption device is shown
in Figure 4.12. The device is selected by enabling the CHIP SELECT
active low and then the DATA WORD or KEY WORD to be written is
transferred to the data bus and a WRITE signal is produced. From the
timing diagram, the data is to remain stable on the bus at least 200
ns before the rising edge of the WRITE pulse and 90 ns after the same
edge. As the CHIP SELECT signal obtained from the decoder is 450 ns
wide, the required pulse can be obtained by chopping off up to 200 ns
from the rising edge of the CHIP SELECT signal. Actually, only a
90 ns pulse is subtracted as a 90 ns pulse is needed anyway in
deriving the WRITE signal for the serial input—cutput controller.
This pulse is then ored with the CHIP SELECT to give the WRITE signal
of the security device. In Figure 4.13, this signal is denoted by
Q2 + CS. The pulse is produced using a simple bistable circuit as
shown in Figure 4.13 together with the timing diagram. The clock
signals 7 MHz and Q3 are obtained from the Apple system. Note that
the CHIP SELECT signal from the decoder has been used to control the
rising edge of the WRITE signal by using it as the CLEAR input signal
to the second bistable. The signal Q3 c¢ould not be used because it
changes to the high state slightly before the CHIP SELECT thus
pro&ucing a spike.

Now let us consider the READ, WRITE and CHIP SELECT signals
required for the serial input-output controller.

The READ timing diagram of the serial input-output controller
is shown in Figure 4.14. This signal is derived using a simple logic
circuit which combines the pulse produced by the bistable circuit with
another output line from the decoder circuit to produce the READ
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signal. This produces a READ pulse of about 360 ns wide, with a

rising edge some 90 ns from the valid data edge. These agree wgll
with the required READ pulse in the timing diagram.

The WRITE timing diagram of the serial input-output
controller is shown in Figure 4.15. In comparing this WRITE signal
with that of the one required by the security device, it is seen
that the controller requires the data to be stable on the bus for a
longer time of at least 350 ns before the rising edge. Also the
data is required to remain stable for a minimum time of 100 ns aftef
the edge, which is 10 ns greater than that required for the encryption
device. This signal is produced again by oring the 90 ns pulse with
an output line from the decoder. Although this produces a WRITE
pulse of width 360 ns with 90 ns of stable data after the rising
edge, it is found that these timings do satisfy the requirements
and does not cause any problem.

The two CHIP SELECT signals required for channel A and
baud rate genefator of the I/O controller are directly derived from

the ocutput of the decoder.

This block in Figure 4.2 provides signals which together
with the output signals from the timing block are used in selecting
different devices when appropriate addresses are present on the
address bus. In a system where there are many devices to run, it is
necessary to decode the address bus down into individual addresses.
This allows only one device and in particular only one mode of
operation of the device to be selected. For instance, say when a
control word has to be written into the serial input-output controller,

three operations are required to be carried cut namely

(1) only the input-output device mist be selected,
(ii) only WRITE signal must be activated and
{iii) a distinction has to be made between a control word and

a data word.

The inputs to the decoder include the Device Select line
from the Apple microcomputer system which indicates which one of the
peripheral connectors is active. Whenever the interface is selected
this line will be active low. The Table 4.1 in Figure 4.16 shows
the decoded address and the corresponding operations carried out by
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the system.

Address Cperation Performed

O0AP WRITE Data Word to data security device.

agal WRITE Control Word to data security device.
oAz READ Data Word from data security device.

ofa3 READ Status of data security device.

.V} ACTIVATE latch,

aga6 ACTIVATE Tristate to test modem control signals.
OpAs RESET 1/0 Controller

ogaa RECEIVE (READ) Data from I/0O Controller.

OAAB READ Status of I/0 Controller.

OPAC TRANSMIT (WRITE). Data to I/O Controller.

agAD WRITE Control Word to I/0 Controller.

CPAE WRITE to Baud Rate Register of I/O Controller.

Figure 4,16 = Table 4.1: Decoding Arrangement

4.2.2.7 Memory_

The operation of the encryption unit is coﬁpletely controlled
by software. Hence the proposed interface unit must have some non-
volatile memory to hold the program. For this reason, a 2K-byte
PROM is incorporated on the interface. The reasons for the choice are
two fold. Firstly, a 2K-byte is the maximum amount of memory that
can be associated with a peripheral slot in the Apple microcomputer
system. Secondly, it is estimated that a 2K-byte memory should be
sufficient for each of the required system tasks.

4.2.3 Modem

To transmit digital signals over Public Switched Telephone
network, which passes frequencies in the range 300-3000 Hz,it is
necessary for a data transmitter to modulate the digital stream by
superimposing the 'l's and '0's onto a carrier signal. The data
receiver at the other end democdulates this signal. In addition to
its basic function of translating between the binary digital signals
of the data terminal equipment and the modulated voice frequency
signals of the commmication channel, as seen in section 4.2.2.4,
the modem also performs a number of control functions which co-

ordinate the flow of data between terminal equipments.
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The digital information can be encoded by systematically
changing either the amplitude, the frequency, the phase or some
combination of these characteristics of the carrier signal. The type
of modulation used depends on the specific application. Over the
public telephone network, the maximum data rate is limited to 1200 bits
per second. For speeds up to 1800 bits per second, Frequency Shift
Keying (FSK) is the common choice and hence this is used. With FSK,

a pair of tones f1 and f2 are alternatively sent over the line for
the binary 'l's and '0O's of the asynchronous data stream. The
receiving section essentially consists of two filters that sense the

frequency f1 or f_. Whenever f1 is sensed, a binary '1' is produced

2
and whenever f2 is sensed a binary 'O' is output to the data terminal
equipment.

Modular Technology (12 CV) mini modems and standard BT

modems employing FSK scheme have been used with this system.
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CHAPTER 5
FOINT TO POINT COMMUNICATION SYSTEM : SYSTEM SOFTWARE {1) |
5.1 General

The software has been written for the encryption interface
unit to perform the following tasks

(a) Point-to-point communication between Apple microcomputers.

{(b) Storage/retrieval of encrypted information with floppy
disk system.

(c) Storage/retrieval of encrypted information with Prestel

Viewdata system.

All the programs are written in 6502 Assembly language to minimize
the execution time and memory space required. Before considering
these programs, two basic 1/0 techniques for handling transfer of

asynchronous data are briefly examined.

5.1.1 Polling Technigue

The polling method is one of the simplest ways to handle
asynchronous events. In this type of I1/0, all operations are controlled
by the CPU program. The processor interrogates flags associated with
each possible event to determine whether any service is required.
That is, it polls the peripheral device periodically to determine its
readiness and hence the name polling technique. The CPU resources
are tied up during the time of transfer and the time of pelling and
hence cannot be used for other tasks. This technique is mainly used
with low speed devices.

5.1.2 Interrupt Driven Technique_
In non-polling systems, the asynchronous event generates

an interrupt request which is passed on to the processor. The

processor in turn suspends the execution of the current process and

starts execution of the interrupt service routine which say performs

the data transfer. When the interrupt service routine is completed,

the processor resumes execution of the suspended process. The response
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time is faster with such a system because no time is spent on
interrogating the other non-active interrupts which in turn increases
the system throughput.

The decision to adopt one technique or other depends on the

nature of the application. In this project, the polling technique has

been chosen for two reasons. Firstly in this encryption System, there

are only two low speed devices which result in enough spare time for
the processor to examine the status flags in a repeated fashion.
Secondly the Apple 6502 system is not particularly suitable for an
interrupt driven technique.

In this chapter, only the point-to-point commnication
program will be discussed. The other two tasks will be considered in
Chapters 7 and 8 respectively.

5.1.3 Point-to-Point Communication

The encryption interface allows data transfer between Apple
terminals (via a public switched telephone network) in either plain
or encrypted or a mixture of plain and encrypted formats. Five
different modes of the Data Encryption Standard have been investi-

gated [ 3, 26]. They are:

1. Block Encryption (ECB)

2. Chained Block Cipher (CBC)

3. Stream Cipher Feedback (CFB)

4. Chained Block Cipher with Plaintext Feedback (CBCP)

5. Stream Cipher with Ciphertext and Vector Feedback {CFBV)

Each of these modes has been implemented using the encryption inter-
face. They are described briefly in succeeding sections.
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5.2 Rlock Encryption Mode

5.2.1 Principle

This is the most basic mode of operation of the Data
Encryption Standard which transforms 64-bits of input to 64-bits of
output as mentioned in Section 3.2. The analogy to Electronic Code
Book (ECB) arises because the same plaintext'bldck always produces
the same ciphertext for a given cryptographic key. Thus it should be
theoretically possible to construct a codebook of plaintext blocks
and corresponding ciphertext blocks for any given key.

The ECB encryption-decryption scheme is shown in Figure 5.1.
In encryption, the plaintext block (D1, D2, ..., D64) is used directly
as the DES input block (I1l, I2, ..., I64). The input block is
processed through the DES device in the encrypt state which has been
preloaded with the appropriate cryptographic key. The resultant
ocutput block (01, 02, ..., 064) is used directly as the ciphertext
(Cly, 2, ...y CH4). The decryption process is same as the encryption
process except that the decrypt state of the DES device is used
rather than the encrypt state. That is, the key schedule selection
is reversed.

Mathematically, the operations of encipherment and deciph-

erment can be described as follows:

Let the cryptographic function f define the relationship between the
plaintext X and the ciphertext Y. Then,

Y = £ (X)
and
x=f£"t (Y)

where the subscript k designates the particular key (and hence the
particular function fk) which is selected out of the set of all
possible keys.

Only a brief summary of the program is given here. The
structure of the program can be divided mainly into five parts,
namely, the initialisation routine, key input routine, data input

routine, transmission routine, which includes encryption, and receive
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PLAINTEXT

CIPHERTEXT
(€1, €2, ....... Cé4)

(DL, 02, ....... D64)
INPUT BLOCK
(I1, I2, ...vuun. 164)

INPUT BLOCK
(11,-12, ....... 164)

DES ENCRYPTION

DES DECRYPTION

GUTPUT BLOCK
(o1, 02, RRREREE 064)

CIPHERTEXT
(C1, €2, ........ C64)

OUTPUT  BLOCK
(01, 02, ......... 064)
z
PLAINTEXT
(DL, D2, ......... D64)

Fig. 5.1 = Block Encryption Codebook Mode (ECB)



routine, which includes decryption and display routines. The basic
flowchart of the program and the complete listing can be found in
Appendix 2.

5.2.2.1 Initialisation Routine

The initialisation routine itself can be divided into two
subsections. The first subsection contains instructions which are
executed without any user interaction whereas in the second subsection
the user chooses the parameters for setting a particular mode of
operation of the interface.

The first subsection consists of instructions to initialise
the CPU, to set the ports of the serial I/O controller, to ensure the
correct state of control signals from the modem, to set the state of
the latch in the interface and to initialize some memory locations
which would be later used as counters and flags in the program. The
Data Set Ready (DSR) signal from the modem is tested to check whether
the modem is ON and is not in the test mode. If it is not set, an
error message 'NO LINK ERROR' is displayed. The format of the
character to be transferred is defined to consist of 1 stop bit, 8
data bits and an even parity bit. A baud rate factor of 16 is used.
The external clock mode is selected in the I/O controller. As
explained in Section 4.2.2.3, this mode has been selected in point-
to-point communication to drive the transmit and receive clocks with
the same source. The error flags have been reset to allow error
detection in subsequent transfer of data. These error flags include
parity error, overflow error and framing error. The serial I/0 is
set to a null mode, that is, neither a transmission mode nor a
receive mode.

In the second subsection, to begin with the user selects the
desired data transmission rate. A choice of baud rates ranging from
50 to 1200 bits per second are available. Then the user is asked to
select one of the three formats in which the interface may operate
namely plain or encrypted or a mixture of plain and encrypted. If
plain format is selected, no further initialization is required. If
either of the other two formats is chosen, then the data security

device is activated to encryption state.

5.2.2.2 Key Input Routine

If one of the two encryption formats is selected, then the
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secret DES key is entered from the keyboard by the user. It is

assumed that both the parties concerned have the preknowledge of the
key which is a prerequisite for proper commnication of encrypted data.
In this program, 8 characters are used to form the 64-bit key required
by the DES algorithm. Any of the 88 alphanumerical characters of the
keyboard can be used to form the 8 character key. As mentioned in
Section 3.6.1, the total number of distinct keys possible is then

equal to (88)8 3.6 x 1015 which is less than the madmum

256 ¢ 7.2 % 101 . The program can be very easily changed to accept

o s

sixteen 4-bit characters as the key thus giving the total possible key
space. Here the 8 character key is chosen to enable the user to
remember the key without actually recording it somewhere. It is
essential that the key should be chosen randomly so that it may not be
easily guessed by the opponent. Before loading every key byte into
the KEY REGISTER of the device, the key parity is tested. If a parity
error is detected, then an appropriate error message is displayed on
the screen. The interface unit displays the entered key on the screen
to enable the user to verify the correctness of the key. However the
display is immediately erased to avoid detection by others during
subsequent commmication. The majority of users would probably use

- some easy to remember phrase or number combination for developing the
key. In such cases, the long phrases can be converted to a form suit-
able for DES using a good hashing function. It should be sufficiently
complicated to produce essentially unbiassed and statistically
independent bits in the DES key. The program can also be modified to
provide for multiple DES key encryption-with different keys to

achieve higher levels of security.

In point-to-point commnication mode, the data to-be
enciphered is assumed to be input from the keyboard of the terminal.
File transfer is considered in Chapter 7 where file security is
discussed. This routine determines whether the data to be processed
is coming from the telephone line or from the keyboard of the terminal.
This operation is carried out using the polling technique. The
processor is allowed to poll the Data Carrier Detect (DCD) flag from
the modem and the Keyboard Data input Flag (KDF). The KDF is
provided by the Apple system and if set indicates that a key has been
pressed. This implies that the data from the keyboard needs to be
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transmitted over the line in plain or encrypted or mixture format
depending on the selection made earlier and hence the control is
transferred to Transmission routine. On the other hand, if the DCD
flag is set indicating the presence of data on the line, Receive

routine is invoked to decrypt and display the received data.

5.2.2.4 Transmission_Routine_

At a given ti@e, up to a maxdmm of 256 bytes of message can
be input to the interface from the keyboard. A Return character is
used to mark the end of the message. At any time, the key CNTRL-X
can be used to cancel the entire message. All editing facilities of
the Apple system such as cursor movements can be used. The program
operates on the whole messageGq:to 256 characters) at a time. After
a whole message is processed and transmitted, the program returns to
fetch the next message from the keyboard. An important point to note
is that with block encryption mode (ECB), the message needs to be
divided into blocks of 64 bits (8 bytes) before encryption can be done.

Initially, the I/O controller is set to transmit mode. Each
64 bit block of plaintext is then input to the data security device in
successive 8 bytes after testing for the correct status of the Data
Input Request (DIR) flag of the device. Then the ciphertext block is
sent. from the device byte by byte after testing the control signals,
Clear To Send (CTS) and Transmit Ready (TXRDY). Appropriate error
messages are displayed if the flags are not set properly and the
system is resynchronized. Special routines are developed to deal
with control characters CNTRL-G (Bell), CNTRL-J (line feed) and
repeated Return characters in the plaintext block. When the encrypted
version of these characters are transmitted, a certain amount of delay
(approximately 80 milliseconds) is included to allow time for the
generation of these characters at the receiving end after decryption.

 However the message need not necessarily contain an exact
number of 64 bit blocks. Hence it is likely that the message will
end before the last block of 64 bits is complete. Therefore some
padding is required at the end of the message to fill the last block
to exactly 64 bits long. This has been done by padding the last block
with some random characters after the Return character . These random
characters are generated as part of the key input routine. The
padding results in the cryptogram expansion of up to a maxdimum of 7
bytes compared to the orignal plaintext message if the last block is
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not of full size.

5.2.2.5 Receive Routine

The Receive routine is mch simpler than its counterpart
Transmit routine. It is known that the incoming data is encrypted by
dividing it up into blocks of 64-bits at the transmitting end. Hence
this routine should simply fetch the 64-bits of ciphertext at a time
from the link after testing the Receive Ready flag (RXRDY) of the
I1/0 controller. The ciphertext is then input to the data security
device which is now set to decryption mode. Then the deciphered block
of data is read from the device and is displayed on the screen using
Display routine. The Display routine is same as the one used by the
Apple systenm. It displays uppercase and lowercase alphanumeric
characters in either normal or inverse or flashing modes. The control
characters in the decrypted block are not displayed. The block of
decrypted characters is tested for the presence of the Return
character. If it is not present, then it is known that another block
of encrypted data must be following the current block. Hence the
program loops back to test the RXRDY flag to cobtain more data from the
link. On the other hand if a Return character is detected within
the block of deciphered data, it indicates that the current block is
the last block of the message. The random characters after the
Return character are treated as dummy characters and hence they are
ignored. The decrypted information will be the same as the original
message provided the same key has been used at both ends of the link.

The routine also performs three types of error tests ;n
the received characters. They are parity error, framing error and
overrun error. In each case, appropriate error messages are displayed.
A framing error is detected when the receiver finds a logic '0O!
occurring at the time when stop bit, logic 'l', should occur. A
overrun error is detected when a new character is loaded into the
Receive Holding Register of the serial I1/0O controller before the
processor has had time to read the previous one. In all these three
cases the program loops back to the start of the data input routine
thus abandoning the current ciphertext block and autcmatically

synchronises.

5.2.2.6 Plain Data Communication

The routines which allow plain data transmission and
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reception are very much similar to the ones described earlier except

in this case there is no need to perform encryption and decryption.

Hence the message is processed byte by byte rather than in blocks.

This facility of commnicating in plain format is provided

to allow the transfer of non-sensitive information over the link. For

instance, one could envisage a situation where the users initially
communicate in plain format to set various parameters needed for
establishing a secure link. This immediately led to the idea of: developing
a program which could handle a mixture of plain and encrypted data

and this is considered in the next section.

With this format, only parts of the message are in encrypted
form while the rest of the message is transmitted in plain form.

This mode is useful in many applications where it is not necessary to
encrypt the whole message.

The receiver must be able to identify which parts of the
received data are in encrypted form. The data transmitted is always
in plain form until the change to encryption mode is initiated. This
is done by typing a special character (CNTRL-A) on the keyboard that
has been designated for this purpose. Characters following this
character are encrypted by the sending terminal. The interface unit
is automatically returned to the plain format after 8 characters.
Alternatively, another special character (ONTRL-B) can be used to
return to the plain format. The receiving end then checks for a
CNTRL-A character and starts to decrypt when it is found. When a
CNTRL-B is received, it switches back to plain mode reception.

However it is necessary to ensure that the ONTRL-B character does not
occur within the enciphered data to ensure unambiguous decryption

at the receiving end. This can be achieved by using multiple

QNTR.-B characters to indicate the end of encrypted text. The greater
the number of such characters, the smaller the probability that they
occur in the enciphered data and hence the smaller the ambiguity

in decryption, but this increases the number of redundant characters
in the transmitted data. The key required for the encryption
algorithm is entered as before at the beginning of the commmnifation.

Again with the block encryption mode, if the encrypted parts
of the message are not integral multiples of 64 bits, they require
padding and this results in cryptogram expansion. The difference
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with the mixture format is that this expansion does not occur only
at the end of the message (last block), as in the complete encryption
format discussed earlier, but it may occur anywhere within the
message.

When implementing this mixture format in the Apple system,
additional problems are encountered compared to the complete
encryption format. One such problem arises from the requirement
that in the multi-user network the plain information transmitted may
need to be received correctly by all users whereas the encrypted
information must only be deciphered correctly by the user with the
right key. There may be cases where the encryption algorithm
transforms a non—control character to a control character and vice
versa. As a control character is not displayed by the Apple system
and the screen cursor does not move, this results in a line of text,
with parts of it encrypted at the. transmitting end, not producing a
line of text at the receiving end with the wrong key. As a certain
amount of delay is required for some special characters such as
CNTRL-G (Bell), CNTRL-J (Line feed), this can cause overrun error
at the receiving end with the wrong key. This results in errors in
the subsequent reception of data even in plain format at the receiving
end. This is further complicated in this block encryption mode due
to the padding with random nuﬁbers to fill the block.

A modified version of the earlier complete encryption
format program is developed for this mixture format which overcomes
the problems mentioned above.

5.2.3 Results and Discussion

An example of plaintext containing some data structure and
patterns has been chosen to study the various characteristics of
different encryption modes. Such an example is provided by the
assembly language program shown in Figure 5.2. This whole message
is enciphered using ECB encryption with the key 3131313131313131 in
hexadecimal form. Note that here a non-random key has been chosen
to allow the ciphertext produced to be used in some statistical tests
in Chapter 6. A ciphertext character produced can be any one of the
256 possible combinations (28). To display the ciphertext, it is
therefore necessary to extend the standard ASCII character set from
128 to 256. This has been done using Hershey characters [27]. The

complete character set is given in Appendix.3... Note that this extended

- 8] -




61

(4]
€C R O

T R A N S F B

A P P L BE

E N A D

P R O G R A M
E R E D

S A M ¥ L E

E T W E E

D A T A

S

€ 0O M P UTE R

M O D B R
U A R T

T

D A § 6

C 0 A D 4

A

L D A §

C O M M A R D R E
U A R T

T

C 0 A D 4

A

T

s g C R BT K
r

N P U T

E C K

P A C B

S

Y B O A R D A
C O N T

P O

N U 0 5 L ¥

3

AND g O

0
cC 0 0 o0
0

P
A
L

- 82 -

P A C E

S

M 0O D E

]

E N CR Y P T

B R E A D
E N CRY P T 1
R 0 U T

$ U P R O UT

N

R 0O U T 1

u
Cc

3 0 O

R

0

T R A N S

N
N

E L A Y

7 0 0O

S P A C E

M O D E
1

o

D E CRY P T 1

T
B

E
u

R E C E v

B

N
cC R Y P

S R O U T

2 6 0 0

R
R

I o

D

T

D E

S U B ROUT

0
0

2 A 0

I s P L A Y

N

1

D

C M P §

D A T A

4

A LT

Fig. 5.2 - Plaintext Example




character set does not in itself introduce any secure cryptegraphic
transformation. The ciphertext produced is shown in Figure 5.3.
The program used to produce this graphical display is given in
Appendix 4.

From Figure 5.3, it can be seen that a potential weakness
of this block mode is that the same plaintext always produces the
same ciphertext under a fixed key. This in turn implies that if the
plaintext contains patterns,they will be reflected in the ciphertext
as seen in Figure 5.3. Consider for instance, the asterisks in
lines 1 and 5 and sequences of blanks at the beginning of each line
*in the assembly laﬁguage program. Thus the compromise of the
plaintext block underlying any ciphertext block results in the
compromise of all repetitions of this same text for the remainder of
the cryptographic period. Thus this block encryption mode is more
susceptible to code bock analysis compared to the other modes
considered later. Further if the plaintext information is highly
redundant then block encryption may not prevent cryptanalysis using
block frequency analysis. Block frequency analysis determines the
frequency of each ciphertext block from a large sample of intercepted
ciphertext. By relating the .observed fiequencies of the ciphertext
blocks to the expected frequencies of the plaintext blocks, the
cryptanalyst may be able to draw certain inferences concerning the
nature of the plaintext corresponding to a given ciphertext. Also
if the data transmitted is highly redundant, the number of possible
meaningful plaintext blocks may be small enough to construct a
dictionary. _

This block encryption mode is also susceptible to replay.
As each block is independently enciphered with the same key, one
block can be replayed for another.

transaction shown below

For instance, consider the

CREDIT JONES £5000 CREDIT SMITH £10
jos o4 3 c4 CS cé

This can be changed to

CREDIT JONES £5000 CREDIT SMITH £5000
cl 2 o C4 cs5 C3

L -
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by replaying the block containing the ciphertext for £5000. This
type of replay is not possible with stream cipher and chained block
cipher modes which are considered later. One simple solution to this
problem is to append checksums to the end of messages.

This block encryption mode is also vulnerable to insertion
and deletion of blocks .because these changes to the message do not
affect surrounding blocks. Again use of error detecting codes before
encryption and checksums protects against this threat.

As mentioned in the implementation section, in this mode,
the information is encrypted in integral mltiples of 64 bits. This
resulted in padding of last block with random characters. This causes
cipher extension and therefore may be unacceptable in some applications.
The padding effect can be seen in Figure 5.3 at the end producing a
longer ciphertext message than the original plaintext. If the
padding is done with blanks or zeroes, instead of random numbers,
then this may make them vulnerable to crypanalysis.

Since each bit of the ECB output block is a complex
function of every bit in the input block and the key, a single bit
change in either the key or the plaintext results in a ciphertext
block in which each bit is changed with approximately equal
probability. Conversely, a change in 1 bit of either the key or
ciphertext will produce changes in-an average of fifty percent of
the bits of deciphered plaintext. Although this error propagation
within the block is extensive, it is strictly limited to -the block
in which the error occurs and the decryption of other blocks is
unaffected. This can be seen from Figure 5.4 where a number of
errors have been introduced in the ciphertext prior to decryption.
Thus the ECB mode does not provide error extension between blocks.

If block boundaries are lost between sender and receiver, then ECB
cryptographic synchronization will also be lost until correct block
boundaries are re—established. This may happen for instance .when a

bit slip occurs.

5.3 Cipher Block Chaining Mode

5.3.1 Principle
Cipher block chaining is again a block cipher in which the
plaintext is exclusive-ored with a block of pseudo-random data prior

to being processed through the DES device.
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This scheme is shown in Figure 5.5. In order to commence
the CBC encryption, the first DES input block is formed by exclusive-
oring the first data block with a 64=bit initialization vector (IV).
That is,

(11, 12, ... I64) = (IVi@D1, Iv2ere, ..., IV648D64).

This first CBC input block is processed through the DES device in
the encrypt state, producing a 64-bit DES output block which defines
the ciphertext. This first ciphertext block is then extlusive-ored
with the second plaintext block to produce the second DES input block.
This second input block is enciphered using the DES device to produce
the second ciphertext block. This encryption process continues to
chain successive ciphertext and plaintext blocks together until the
last plaintext block of the message is encrypted. In CBC decryptionm,
the first ciphertext block is processed through the DES device in

the decrypt state. The first output block is then exclusive-ored
with the CBC initialization vector producing the first plaintext
block. The second ciphertext block is then entered into the DES
device and the resultant output block is exclusive-ored with the
first ciphertext block to produce the second plaintext block. ‘The
CBC decryption process continues to exclusive-or the ciphertext

block at time t-1 (t>1) with the DES output block to obtain plaintext
at time t until the end of the message.

Mathematically, the scheme can be expressed as follows:

Let the cryptographic function fk define the relationship between

the DES input block and the DES output block under the chosen key k.
Let function h define how the input to the DES is altered through

the introduction of the initialization vector and the feedback or
intermediate initialization vectors U(l), U(2),se.y U(n=1) at time

¢t =1 to n-1l. Note that the function h may be a many-to-cne-function
since identical inputs to this function will be available during both

encipherment and decipherment. Then

Z = Initialization Vector
h[U(i-1), feedback quantity],i > 1

U(1)
u{i)

In the CBC mode, U(i) is equal to the previocus ciphertext block
Y{(i-1), the feedback quantity. That is, U(i) = Y(i-1l). Hence the

encipherment and decipherment operations can be expressed as
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Y(i) = £ [ X(1) @ ¥(i-1)] i 1
and
X(1) = £ [ ¥(i)] @ ¥(i-1) i3 1
where .
X(0) = Y(o) T 2

From the recursive nature of the above equations, there exdsts
functions Hl' Hz"" Hi such that

Y{(i) = Hi [ky X(0)y X(1)y oee X(i)], i1 (5.1)

Similarly there exists functions Gl’ G,y eeey Gi such that
X(1) = G,[ k, Y(i-1), Y(i)], i 3 1 (5.2)

From equations (5.1) and (5.2), it follows that patterns within the
input are masked since the ciphertext block Y(i) depends on plaintext
blocks X(1), X(2), sy X(i). However since the received plaintext
block X{i) does not depend on all ciphertext blocks Y(1), Y(2)y ecey
Y¥(i), the scheme does not represent a general block cipher (see
Section 5.5).

This program is a modified version of the ECB mode program
described in Section 5.2.2. The flow chart of the program together
with the listing can be found in Appendix 5. Here only the
differences between this program and the ECB mode program are briefly
discussed.

As in the ECB program, the user initially selects the data
rate, the format of data transfer (plain, encrypted or mixture) and
enters the DES secret key. Then the transmission end gemerates a
64 bit random block and sends it to the receiving end. The block is
encrypted under the ECB mode at both the transmitting and receivng
ends to form the initialization vector (IV). This vector is stored
in a set of memory locations named TEMP 1 at the transmitting end
and TEMP 2 at the receiving end. It is again necessary to divide -

the message into blocks of 64 bits. Hence padding of the last block
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with random characters is required to make the blocksize equal to 64.
The transmission routine fetches the plaintext block which is then
exclusive-ored with the memory locations TEMP 1 before inputting it
to the DES device. The ciphertext block produced by the device is
transmitted to the receiver as in the ECB mode. The ciphertext is
also stored back into the memory locations TEMP 1 for use in the next
encryption cycle. The receive routine inputs the ciphertext to the
DES device and also stores it in memory locations TEMP 3. The output
from the DES device is exclusive-ored with the memory locations TEMP 2
to produce the plaintext. The memory locations TEMP 3 are then
transferred to TEMP 2 to form the new IV for exclusive-or operation
in the decryption of the next ciphertext block.

Finally, note that in the case of mixture of plain and
encrypted data communication, only the encrypted blocks are chained
together.

5.3.3 Results and Discussion_

The plaintext example shown in Figure 5.2 is enciphered
under CBC encryption with the same key as in .the ECB mode. The
initialization vector used is 0202020202020202. The ciphertext
produced is shown in Figure 5.6.

From Figure 5.6, it is seen that the CBC mode does not
produce the same ciphertext even when the plaintext is the same and
hence the pattern exposure problems associated with the ECB mode
have been eliminated. This is because the ciphertext produced for
a plaintext block with a given key is dependent on the plaintext as
well as the feedback (intermediate) vector used in the process which
is different at different times. So the CBC mode reproduces the same
ciphertext whenever the same plaintext is encrypted under a fixed
key and initialization vector. Thus with the CBC mode, ciphertext
repetition occurs at the message level whereas with the ECB mode,
ciphertext repetition is found to occur at block .level.  Thus the
code book analysis problem has been reduced.

CBC is therefore less susceptible to replay than the ECB
mode of encryption. The type of replay mentioned in Section 5.2.3
is not possible with CBC mode as different parts of the message are
enciphered with different feedback vectors. It is also less
vulnerable to insertion and deletion of blocks as these changes to
the message affect the surrounding blocks.
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CBC also protects a block cipher against the time-memory
trade off attack [23] as follows. ) .
Let Y(i) be the ciphertext corresponding to the chosen plaintext X(i).
since £1 (Y(i)) = X(i) ® Y(i-1), to determine the key k, a
cryptanalyst would have to generate tables of starting and ending
points using X(i) @ Y(i-1) rather than X(i). But this would rule
ocut the possibility of precomputing the tables or of using the same

tables to break more than one cipher.

As noted in the implementation section, the problem of
padding still exists with the CBC mode. In the complete encryption
format, this is confined to the last block of the message. The
receiver scans the decrypted block and discards the pseudo-random
bits after the Return character code in the block. One way to
eliminate padding is to switch to stream cipher feedback (CFB) mode
(see Section S.4) to encipher the short block at the end of the
message .

In addition, the security of the CBC mode depends among
other things upon the management of the CBC initialization vectors.
It is important that the initialization vector (IV) is pseudo-
randomly selected. Further the vector must be protected from
disclosure. In the above implementation, this is carried out by
using the ECB encrypted version of the random block generated as
the IV. It is also advisable to change the vectors frequently to
avoid the cryptanélyst uéing the ciphertext search attack.

Within the ciphertext, some errors are introduced and then
deciphered with the same key and initialization vector to study the
error extension characteristics of the CBC mode. From Figure 5.7
one or more bit errors within a single ciphertext block are found
to affect the decryption of two blocks, namely, the block in which
the error occurs and the succeeding block. If the errors occur in
the ith ciphertext block, then each bit of the ith plaintext block
has an error rate of about fifty percent. The (i+l)-th plaintext
block has only those bits in error which correspond directly to the
ciphertext bits in error. Further it is seen from Figure 5.7 that
after two blocks, cryptographic synchronization is automatically
established and the subsequent deciphered blocks are unaffected.
Compared to the ECB mode, this has extended the error bropagation
to two blocks. This can also be seen from equations (5.1) and (5.2)
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where an error in the ciphertext block Y(i-l) can affect every bit
in the recovered plaintext block X(i-1) but it will affect only the
corresponding bit positions in the received plaintext block X(i).
Subsequent plaintext blocks X(i+l), X(i+2), ... are unaffected.

If bits are added or lost in a ciphertext block so that
block boundaries are lost between sender and receiver, then
synchronization is lost. However cryptographic synchronization will
automatically be re-established 64 bits after block boundaries have
been established.

This self synchronizing scheme may be useful when small

amounts of noise are present on the data commnication links.

5.4 Stream Cipher Feedback

5.4.1 Principle

The cipher feedback mode (CFB) is an additive stream
cipher technique in which the TES is used to generate a pseudo-
random binary stream. This stream is exclusive-ored with the binary
plaintext to form the ciphertext which is fed back to form the next
DES input block. The pseudo-random binary stream is sometimes
referred to as the key stream and the DES the key generator.

This mode is schematically shown in Figure 5.8. One '
through to sixty four bit CFB operation may be used unlike the ECB
mode where the message is required to be divided into blocks of a
given blocksize namely 64. A 64-bit initialization vector (IV) is
used as a starter input block to begin the CFB operation. (Note
that if the size of IV is chosen. to be less than 64 bits, then it can
be padded with 'O's to form 64 bits). This vector is processed
through the DES device in the encrypt state to produce a pseudo-
random output block. The message is divided into characters of
s-bit size where 0<s<65. The DES algorithm is operated once for
each new s=bit character. Then s=bits of the DES pseudo-randocm
output block (01, 02, ..., Os) are used in the exclusive-or operation
with the s-bits of the plaintext (Di, D2, ..., Ds)} to form the
ciphertext (1, 2, ..., Cs). That is, (CQ, &2, ..., Cs) =
(D1 & O1, D2 ® 02, ..., Ds @ Os). This operation may be defined
when the length of the plaintext character to be encrypted is less than
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s=-bits by concatenating zeroes to the left hand side or most
significant bits of the plaintext character. Similarly during
decryption, plaintext is produced by exclusive-oring a s-bit
ciphertext character with the s~bits of DES output block. That is,

(Dl. m, evey DS) = (Cl 2] 01’ Q 902. LN CS @ OS)

In both cases,the same s-bits of the DES output block are used and
the unused bits are discarded. At both ends, the next input block
is created by discarding the most significant s-bits of the previous
input block, shifting the remaining bits s positions to the left and
then inserting the s-bit ciphertext character just produced in the
encryption operation or just used in the decrypt operation into the
least significant bit positions as shown in Figure 5.8. That is,
the input block (I1l, I2, ..., I64) is given by,

This input block is then processed through the DES device in the
encrypt state to produce the next output block. An important
difference compared with the two modes considered in Sections 5.2 and
5.3 is that even in decryption, the DES is used in its encryption
state. This is because in CFB mode, the DES algorithm has been used
as a pseudo-random number generator rather than as a cryptographic
transformation.

Mathematically, this mode can be expressed as follows:
Let X(1i) be the ith plaintext input data and Y(i) be the ith
ciphertext ocutput data. Let U{i) be the intermediate initialization
vector at time i. In general, the length of the intermediate
initialization vector may not be equal to the length of the initial-
ization vector Z. Let the function h’/ define how U(1) is obtained
from Z. That is, W1) = h’(Z).

Encipherment of the first s-bit plaintext is given by:
Y(1) = X(1) & fk[U(l)]

Let the function h define the dependency of the intermediate
initialization vector at time i on the previous initialization vector

i-1) as well as the additional feedback quantity, That is,
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U(i) = h [U(i-1), feedback quantity]
where the feedback quantity = Y(i-l).
In CFB mode with s<64,
U(i) = U(i=1) ] Y(i-1) B i>1
where | denotes concatenation of U(i-1) and Y(i-1l).
With s=64,
Wi) = ¥(i-1), i>1
That is, effectively the ciphertext at time i-1 is fed back as

input to the DES algorithm. Defining Y(0) = Z, with s=64, it
follows that

£ (Ui)) = £ [Y(E-1)], i3l

Therefore equations of encipherment and decipherment can be expressed

as

Y(i) = x(i) ® £ [Ui)], ix1 (5.3)

and

X(i) = Y(i) ® £_[Wi) ]}, i31 (5.4)

respectively where Ul) = 2.~

5.4.2 Implementation_

An 8-bit cipher feedback mode has been implemented on the
encryption system. The flowchart of the program can be found in
Appendix 6. The differences between this program and the ECB and
CBC programs are now very briefly mentioned.

As in the case of the CBC program, a 64-bit initialization
vector is generated at the transmitting end and sent to the receiver

for proper synchronization. The major difference compared to ECB
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and CBC programs is that in this mode, the message is encrypted byte
by byte and not in blocks. This implies that there is no need for
padding at the end of the message and consequently no cryptogram
extension. One additional routine SHIFT is required which shifts
the intermediate initialization vector (memory locations TEMP 1 and
TEMP 2) to the left and appends the 8 bits of the ciphertext to the
right side of the shifted input to produce the next DES input.
Finally at both the transmitting and the receiving ends, the data

security device is programmed to encryption state.

The plaintext example shown in Figure 5.2 is enciphered
under the CFB mode using the same key and the initialization vector
as in the CBC mode. The ciphertext produced is shown in Figure 5.9.

From Figure 5.9, it’is seen that as in the case of the
CBC mode, the CFB mode does not produce the same ciphertext even
when the input plaintext is the same. This is because the inter-
mediate initialization vectors are different in each case. Thus
chaining has again eliminated patterns occurring in the ciphertext
For this mode to produce the same ciphertext when the same plaintext
is encrypted, both the key and the initialization vector must be
identical in the two cases. This mode is similar to CBC in its
resistance to forms of attack such as ciphertext searching, replay,
insertion and deletion.

While both the CBC and ECB modes discussed earlier required
padding of the last block of the message (if its length is not equal
to an integral multiple of 64 bits), such problems do not arise in
this stream cipher mode. That is, the key stream length can be
matched exactly to the length of the plaintext to be enciphered. So
this mode allows easy encryption of 'non-block type' messages §uch
as character by charécter or even bit By bit encryption. Hence the
CFB mode can be used for instance to encipher the short last block
occurring at the end of the message in CBC mode (Section 5.3.3).
However, CFB is less efficient than CBC in that it requires for each
plaintext character one execution of the encryption algorithm. For
example, the throughput of the DES operating on 8-bit (FB is rediced
by a factor of 8 or more compared to the CBC mode. This can be
overcome by enciphering n plaintext characters using the pseudo-

random key stream produced by one DES cycle where n is the largest
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[block size of DES ]
plaintext character size . In the case

integer which is less than
of 8-bit CFB for instance, one can encipher 8 plaintext characters
(bytes) using the pseudo-random sequence produced by one DES cycle.
This will produce a throughput comparable to that of the CBC without
the need for padding.

Errors have been introduced within the ciphertext to study
the error extension characteristics of the CFB mode. From Figure 5.10
it is seen that bit errors within one CFB ciphertext character
affects not only the decryption of the garbled ciphertext character
but also the decryption of the succeeding characters until the bit
errors are shifted out of the CFB input block. The first affected
plaintext character is garbled in exactly those places where the
ciphertext character is in error. Successive plaintext characters
experience an average error rate of 50% until all errors have been
shifted out of the DES input block. In this 8-bit CFB casejerrors
in one ciphertext character is seen to affect decryption of nine
characters. Further it is seen from Figure 5.10 that the CFB
decryption automatically regains cryptographic synchronization.
This self-synchronization property is also reflected in equations
(5.3)and (5.4), Section 5.4.1. From equation (5.4), an error in
ciphertext Y(i-1) can potentially affect every bit in the computed
quantity £, [(U(i)] and hence can cause every bit in the recovered
plaintext X(i) to be in error. From equation (5.4), an error in
ciphertext Y(i-l1) causes only the corresponding bit position in the
recovered plaintext X(i-1) to be in error. The system synchronizes
when U(i) becomes equal at both .ends. Thus like the CBC mode,
CFB mode provides limited error extension. ’

The recommendations given in Section 5.3.3 regarding the
management of the CBC initialization vectors and its influence on

the security are also applicable to CFB.

5.5 Cipher Block Chaining with Plaintext Feedback

5.5.1 Principle

Cipher block chaining with plaintext feedback (CBCP) is a
block cipher in which the plaintext is exxlusive—ored not only with
the previous ciphertext block but also with the previous plaintext
block prior to being processed by the DES.

"This scheme is illustrated in Figure S.11. The first DES
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input block is formed by exclusive-oring the first plaintext block
with a 64-bit initialization vector (IV). This input block is
processed through the DES device producing a 64-bit DES output block
which defines the first ciphertext block. Hence processing of the
first plaintext block is same as in the CBC mode. This first
ciphertext block is exclusive-ored with the second plaintext block
as well as the first plaintext block to construct the second DES
input block. The next DES operation produces the second ciphertext
block. This chaining process is. continued until the end of the
message when the last block of ciphertext is obtained by encrypting
the last input block formed by exclusive-oring last plaintext block
with the (last-l) ciphertext and plaintext blocks.

In CBCP decryption, the first ciphertext block received is
processed through the DES device to produce the DES ocutput block.
This first output block is exclusive-ored with the same initialization
vector (IV) to produce the first plaintext block. Again the
deciphering process of the first ciphertext block is same as in the
CBC mode. The second ciphertext block is processed through the DES
to yield the second output block which is then exclusive-ored with
the first ciphertext and plaintext blocks to produce the second
plaintext block. This process is continued until the end when the
last block of plaintext is obtained by exclusive-oring the last DES
output block with the (last-l) plaintext and ciphertext blocks.

Mathematically, the scheme can be expressed as follows:

Encipherment and decipherment procedures are given by:

Y(i) = £ [x(i)y @ U(i)] izt (5.5)
and
x(i) = £ [v(i)le ui). i21  (5.6)
where
X(i) is the ith plaintext block
Y(i) is the corresponding ith ciphertext block
and -
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Z, the initialization vector i =1
u(i) =
h[ X(i-1), Y(i-1)] is1
Here h represents a simple exclusive-or function.
Therefore,
U(i) = X(i=-1) ® Y(i=-1), i>1 (5.7)
Substituting (5.7) for U(i) into (5.5) gives

Y(i) = £ [X(i) ® X(i-1) ® ¥(i-1)] , i>1

From the recursive nature of the equations (5.5) and (5.7) it
follows that there exist functions Hl’ Hz, coey Hi such that

Y(i) = H [k, X(0), X(1), .oy X(i)],i21 (5.8)
where X(0) = Z.

Similarly from (5.6) and (5.7) it follows that,

]
o}

fk'1 (v(i)]e z - i
X(i) =

\"
-t

fk‘1 (Y(i)]® Y(i-1) @ X(i-1) i

Thus there exist functions Gl' Gz. ceey Gi such that

X(1i) = Gi [ky Y(O)y Y(1)y eoey Y(i)] . i1l (5.9)
where Y(0) = Z.

From equation (5.8), one can see that the enciphering
process is entirely deterministic and the output ciphertext block
at time i, Y(i),is dependent only on the inputs to the.ciphering
process from time 1 th"i'ough time i, namely, the key (k), the
initialization vector (Z) and all the plaintext blocks X(1) through
to X(i). Furthermore, since ciphertext block Y(i) is dependent -on
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the initial conditions established at the beginning of the ciphering
process, at time 1, it is said to be origin dependent[ 3].

Froﬁ equation (5.9), it can be seen that the recovered
plaintext block at time i, X(i), depends only on the key (k), the
initialization vector (Z) and all ciphertext blocks Y(1l) through
to Y(i). Thus X(i) is also origin dependent.

This scheme is defined to be a general block cipher| 3j.

5.5.2 Implementation_

The program implementing this mode of coperation is very much
similar to the one used for the CBC mode. The only difference is
that in this case, a plaintext block is not only exclusive-ored with
the previous ciphertext block (TEMP 1) but also with the previous
plaintext block prior to DES encryption. A similar difference

occurs after DES decryption.

5.5.3 Results and Discussion_

The plaintext example shown in Figure 5.2 is enciphered
under this mode using the same key and initialization vector as
before. The ciphertext produced is shown in Figqure 5.12.

Again from Figure 5.12 it is seen that there is no repetition
of ciphertext even when the plaintext is repetitive. This méde is
similar to CBC and CFB in its resistance to forms of attack such as
ciphertext searching, replay, insertion and deletion. The most
interesting property of this mode however is that of error extension.
The deciphered version of the example with some errors introduced
in the ciphertext prior to decryption is shown in Figure 5.13. Two
points are worth to be noted. The first one is that an error in the
ciphertext affects the decryption of all subsequent blocks until the
end of the message. That is, the scheme exhibits the property of
error propagation. This agrees with equation (5.9) where every bit
of the recovered plaintext block X(i) is a function of every bit in
the ciphertext blocks Y(1) through to Y(i). The only case in which
the error is not propagated occurs when the corrupted ciphertext block
Y(i)® and the deciphered value of Y(i)* under key k obey the
equality
1

Y{i)* & £~

vy = v(d) @ £ (v(d))
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Fig. 5.12 - CBCP Ciphertext Example
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That is, the feedback value at point A(Figure 5.11Linput to the next cycle,
is unchanged. Assuming that the probability that an error in y(i) causing
each bit in f;l(Y(i)*) to differ from the corresponding bit in f;l(Y(i))
is approximately equal to 0.5, the probability that an error
cancellation occurs is approximately equal to 2_64.

Secondly, when deciphering the ciphertext containing errors
with the right key and the right initialization vector, it is seen
that patterns or repetitions in the garbled deciphered text are
revealed which correspond to the patterns in the plaintext. The
reason for this occurrence is given as follows:

First consider the case where there are no errors in the
ciphertext prior to decryption. Referring to the diagram shown
below, assume that the plaintext blocks 2 and 3 are the same (but
their corresponding ciphertexts < and Cz will be different due to
chaining}. Then, for the deciphered block 3 to be equal to block 2,
P2. one must have

2

1
O2 @ C2 @ Fé- F§

ie ’
02 ® c; = (O ... O) = Zero block
(1) (ii) (iii)
| 1
alal
1 2
il Iz ‘iz
IV—————— ::::;::::a ‘::::::>==:e
P | Pa

Now if the block C1 has an error, CT, then this decryption results
in plaintext block, F;. The second block PE is. then equal to

C{ @ PT & Q; . The third block is given by 02 & C; @ P; and this
is equal to P; because O§ ) C; is still equal to the zero block as
it is unaffected by error in CI - Thus this repetition in the
deciphered version will occur as long as the two successive blocks

are the same in the plaintext. when P, and‘P3 are different, then
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Pé & C; ® Og = P3 and C; ® Og is not equal to the zero block.
Therefore when an error occurs in C; ’ P; @ C; @ 02 = P; #£ P;.

This pattern occurrence is not of great concern as far as
the security of this scheme is concerned because here we are talking
about the legitimate receiver with the right key and the right
initialization vector detecting patterns in the decrypted version of
the garbled ciphertext. This scheme is not at all suitable for
commuinication links prone to noise. On the other hand, this error
propagation property can be used to prevent 'spoofing' attack. This
scheme is very much suitable for message authentication purposes
where one needs to determine with a high level of confidence whether
the message has been altered.

As CBCP is a block cipher padding is again required at the
.end of the message like the ECB and the CBC modes.

5.6 Stream Cipher Feedback with Vector _ Feedback

5.6.1 Principle

This is an additive stream cipher technique similar to
CFB in which the DES is used to generate a pseudo-random binary
stream. This stream is exclusived-ored with the plaintext to form
the ciphertext. The ciphertext together with the initialization
vector is then fed back to form the next DES input block. The
feedback from the initialization vector is the feature which
differentiates it from the CFB mode. It is referred to as CFBV.

This scheme is illustrated in Figure 5.14. The initializ-
ation vector forms the first DES input block. This is encrypted by
the DES device producing a 64-bit pseudo-random ocutput block. The
rightmost or the least significant s-bits (1l ¢ s ¢ 64) of the DES
output block are exclusive—ored with the s-bits of the plaintext to
form s-bits of ciphertext. These s=bits of the ciphertext are
expanded to form a 64-bit block by repetition. This block is then
exclusive—ored with the previous initialization vector and the
result is shifted by s-bits to form the next DES input block, the
new initialization vector. This is then used in the encryption of
the next s-bit plaintext character. This process is repeated until
the end of the message.

In CFEV decryption, the first output block, produced by

encrypting the same initidlization vector,is extlusive-ored with the
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first s-bit ciphertext character to produce the first s-bit plaintext
character. The first s-bit ciphertext character is then expanded to
form a 64-bit block which is exclusive-ored with the previous
initialization vector. The result is shifted by s-bits to form the next
DES input block. This process is repeated until the end of the message.
Note that the first cycle of this scheme is exactly the
same as in CFB. Furthermore as in CFB, the DES device is used in its
encryption state at both ends.
Mathematically, this scheme can be described as follows:

The encipherment and decipherment can be expressed as

Y(i) = X(i) & fk [U(i)] i1 (5.10)
and

X(i) = Y(1) @ £_ [U(i)] iz (5.11)
respectively
where

X(i) is the ith plaintext character
Y{(i) is the corresponding ith ciphertext character

Z, initialization vector, i =1
u(i) = (5.12)
h [U(i-1), Y(i-1)] , i> 1

Here the function h is given by
h [U(i=1), Y(i-l)] = E (¥Y(i-1)) ®@ U(i-1), i> 1
where

E (Y(i-1)) represents expansion of s-bit ciphertext
characters Y(i-1) repetitively to form a 64-bit block.

From the recursive nature of the equations (5.10), (5.11) and (5.12),

it follows that there exist functions H

1’ H2' ..o,'Hi andGl. G2’ ceey
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Gi’ such that

Y(1) = X(1) +H; [k X(0)y X(1)y we0y X(i-1)] iz 1 (5.13)
and

X(i) = Y(i) + G, [k, Y(0), ¥(1), +.op ¥(i-1)] 121 (5.14)
where

X(0) = Y(0) = 2

The equations (5.13) and (5.14) are counterparts of the equations
(5.5) and (5.9) givén in Section 5.5.1. Hence this scheme represents
a general stream cipher [3].

From equation (5.13), it follows that the jth bit in the
ciphertext character Y(i) is directly affected by only the jth bit
in the plaintext character X(i) whereas it is potentially affected
by every bit in plaintext characters X(1) through to X{i-1). In
like manner, from equation (5.14), it follows that the jth bit in
the received plaintext character X(i) is directly affected by only
the jth bit in the ciphertext character Y(i) whereas it is potentially
affected by every bit in ciphertext characters Y(1) through to Y(i-l).

The program implementing this mode of operation with s=8
is very much similar to the one used for the CFB mode. The only
difference compared to the CFB mode is that in this case, the new
initialization vector is formed by exclusive-oring the previous
initialization vector with the expanded previous 8-bit ciphertext
character.

The plaintext example shown in Figure 5.2 is enciphered under
this mode using the same key and initialization vector as before. The
ciphertext produced is shown in Figure 5.15.

Like all the other modes except the ECB discussed earlier
this mode masks the patterns in the plaintext thus reducing the

code book analysis, replay, insertion and deletion attacks. It is
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similar to CFB in that the messages can be processed character by
character thus avoiding the padding required in ECB, CBC and CBCP
modes.

The most interesting property of this stream cipher mode
is that of error extension. The deciphered version of the example
with some errors introduced in the ciphertext prior to decryption is
shown in Figure 5.16. Two points are worth mentioning. The first
one is that an error in a ciphertext character is found to affect the
decryption of all subsequent ciphertext characters until the end of
the message. That is, like CBCP, this stream cipher exhibits the
property of error propagation. This can also be seen from equation
(5.14). Since the recovered plaintext X(i) is potentially affected
by every bit in the ciphertexts Y(l1) through to Y(i-l1), error
propagation is achieved. However because the jth bit in the plain-
text X(i) depends only on the jth bit in the ciphertext Y(i), the
intersymbol dependence can be achieved for all but the final
plaintext. On the other hand with the CBCP, there is intersymbol
dependence throughout all blocks.

Secondly, when deciphering this ciphertext containing errors
with correct key and initialization vector, it is seen from Figure
5.16 that there is no pattern or repetition in the garbled decrypted
text. This is in contrast to the CBCP scheme considered in Section
5.5.3. 50 even the legitimate user with right key and right
initialization vector gets a completely garbled text when the errors
are introduced in the ciphertext. This means that this scheme is
not suitable for links prone to noise but is very useful for message

authentication purposes.
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CHAPTER 6
STATISTICAL TESTS ON DES OUTRUT SEQUENCES
6.1 General

Some statistical tests are applied to the output sequences
obtained using the DES algorithm under different modes (see Chapter 5)
to test for their randomess properties. Some simple statistical tests
are also considered with a view to detecting the dependence or
correlation between the output and inputs to the DES and to determining
whether plaintext—ciphertext pairs could pe used to predict the bits of
the key.

6.2 Statistical Tests for Randommess

Strictly speaking, no finite sequence is ever truly random.
The best that can be done is to single out certain properties as
being associated with randomness and to accept any sequence which has
these properties as a random sequence. In particular, it is assumed
that the opponent intercepts sections of ciphertext sequence and attempts
to exploit the statistical properties of the sequence in his crypt-
analytical attack. Therefore it is necessary to apply the statistical
tests to sections of ciphertext sequence to check their randommess
characteristics. This type of randomess is often referred to as local
randomness [14].

There are several statistical tests which can be applied to
a sequence, Here four fundamental tests have been considered which
can be used to provide a quantitative measure of randomness [ 14]. They
are the frequency test, the serial test, the runs test and the auto-
correlation test. All these tests measure the relative frequencies of
certain patterns of 'O's and'l's in the sequence conside}ed, in one way
or another. The sequence under consideration is 'then regarded to be
random if the sequence passes the test. Levels of confidence are set so
as to decide if the sequence is random enough for our purpose.

Initially, it is necessary to choose the length of the
section or sample to be tested. The sample size must not be too large

to swamp local variations but at the same time it must not be toco

small preventing ény reasonable conclusions. Accordingly, for
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the test in question, a sample size of n = 1024 is chosen. As the
next step, the properties of the input to the DES algorithm are
defined. The procedure adopted is as follows: In each case, 'non-
random' inputs are applied to the DES and the output is tested for
its randomness. For this reason, the inputs are chosen to be
periodic sequences with different period lengths, thus allowing a
variable number of cycles to be present within the selected sample
size.

Six different cycle lengths are selected namely S5, 8, 10,
20, 40 and 64 digits. Within eaéh category, five input samples are
chosen. Each of these inputs is encrypted using DES under the five
different modes namely, the ECB, the CBC, the (FB, the CBCP and the
CFBV. This procedure is carried out using five different DES keys.
Among the chosen keys are included a weak key (see Section 4.6.4) and
a semi-weak key (see Section 4.6.4), a 'non-random' key and two
atbitrarily selected 'random' keys. The input samples and the keys
used are given in Appendix 7, Section A7.1l.

The tests are performed in two parts. In the first part,
the tests are applied to output samples produced by encryption under
the different DES modes for a fixed key. This is done to investigate
the effect of different modes of encryption on randomness of the
output. In the second part, the key to the DES is varied to find
the effect of key on the randomness of the output.

The four tests and the confidence levels which indicate
whether a sequence is random or non-random are now briefly outlined
[14].

6.2.1 Test_l: The Frequency Test_

The frequency test checks whether there is approximately
the same number of 'O's and 'l's in the sequence.

Let the length of the sequence be n and let it contain ns

zeroes and n, ones, Defining,

Iz = (ng - “1’2

n

12 =0Owhenn,. = n Larger the value of I,z, greater the

o 1°
discrepancy between the observed and expected frequencies. This is

a 1-2- test with one degree of freedom. Thus if the value of ](2 is
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not greater than 3.84, then from the table of 3(2 distribution given
in [28], the sequence is passed at 5% significance level. (Note

that if‘}? = 0, the sequence might also be rejected on the grounds of
it being too goodi).

6.2.2 Test 2: The Serial Test

The serial test checks whether the transition probabilities
are reasonable, that is, the probability of consecutive entries being
equal or different is about the same. This then gives some level of
confidence that each bit is independent of its predecessor.

Supposing that the sequences 00 occurs n__ times, Ol occurs

00
Ny times, 10 occurs "10 times and 11 occurs n, times, then
n01 + nOo = no or no-l
nlo + n11 = n1 or n1-1

and

o * P01 * Mo * My 51

(Note that n-1 occurs because in a sequence length of n bits, there

are only n=l1 transitions).

Ideally, we want n_. . =n.. =n,..=n Eil-'Good {29] has shown

o0 0Ol 10 11
that

1 1
;gf ) } (“ij)z - %’ ¥ (ni)2 +1 (6.1)
i=0 j=0 i=0 :

is approximately distributed as ]:2 with two degrees of freedom.
The value of 1:2 corresponding to a 5% significance level with two
degrees of freedom is 5.99. Hence the sequence is rejected if the
value of (6.1) is greafer than 5.99.

6.2.3 Test_3: The Runs_Test

The runs test is based on the theory of runs where a run
is a succession of identical letters (zeroes or ones) which is
followed and preceded by different letters. The total number of runs
is often a good indication of a possible lack of randomness.

To find the probability that n, zeroes-andvn1 ones-will
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+n

n
form u runs when each of( 0 n, ) possible arrangement of these

letters is equally likely, first consider the case where u is even,

namely, u = 2t, for some positive integer t. There are (:0;1) ways

(o]
n1 ones can form ¢ runs. It follows then that there are altogether
n, -1 n.-1 . .
2 tll (t91'> ways in which those n, + no letters can form 2t

runs. The factor 2 is accounted for by the fact that when the two

in which the n_ zeroes can form t runs and (:1;1) ways in which the

kinds of runs are combined so that they alternate, we can begin with
a run of zero or with a run of cne. Thus when u = 2t, the probability

of getting u runs is
n-1\) (n -
2 (t91 ) ( 5 )
(“o * "1)
™

when u = 2t + 1, similar arguments lead to -

(27 (3 )., : g:e;) (2-)
(on)

When ng and n, are both greater than 10 or more, the sampling

distribution of u can be approximated with a normal distribution.
Making use of this distribution, Gibbons [ 30] shows that, the

f{u)

f(u)

expected value E(u) and variance Var (u) are as follows:

) _ 2 nsn, +1
E{(u) = Y
0 1
and
var(u) = 2 nyny (2non1 - ng - nl)
(no-!-n1 (no+n1—1)

Thus for sufficiently large value of n_. and n, the normal test

o
variable Z is given by

Z = . u_-_E_(&)_
\/Var(u}

The null hypothesis that the sequence is random is rejected if
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|2 > 1.96 at 5% significance level.

6.2.4 Test 4: The Autocorrelation Test

— ————— — ———— —— —— e S -t w—— —

The autocorrelation function of the sequence is an

important element when testing for randommess. Random sequences

possess a special kind of autocorrelation function namely peaked in

the middle and tapering off rapidly at the ends. Autocorrelation

also reflects the periodicity within the sequence.

If{ Xyr X2 ecer xn}' is a binary sequence, then its

autocorrelation function can be defined as

n-r
A(x) = 1§ x- % for r = 0, 1,e..,
n-r 1=}l ‘

Here a slightly modified version of A(r) has been used.

m

The operation

between x and X or is defined as one of matching (comparison)

instead of direct multiplication. That is,

n-r
A(r) = 1 Z.
n-r i=1 T
where 1 if x, = x,
i i+r
Z, = .
ir ~ (0 if x, # x,
i i+r

That is, A(r) is some sort of a measure of number of times the

shifted and original sequences match; both x5 and X0y

are equal to one or

zero. This operation is more sensitive than direct multiplication

which just tests for matching ones.

6.2.4.1 Expected Value of A(r), E (A(r))

The probability that X and X, 4

r
Prob[Zir= 1]. .
For r # O
PrOb[zir = 1] = Prob (xi = 1 and xi+r = 1) + Prob (xi
- 120 -

match is given by

= 0 and x, = 0)
i+r



Let the probability that xi = 1 be p and the probability that X, = 0
be q. Then,

- _ 2 2
Prob [Zir =1)] = p +q
Theref (Z2._=0] =1 ( S 2) =
erefore p (2. = ] =1=(p q ) = 2pq

2 2

(p"+q)s1 +(2pq)e0
2 2

P +q

Hence E (Z..)
ir

n-r
But E (A(r)) = — © ( z Zir)

n-r i=1
=_1_ (nr) E(Z,)
M=
E (A(xr)) = p2 + q2

For a random sequence, assuming that the probabilities p and q is
a % this ytields '

E (A(T)) — %

This is to be expected as in a random sequence, the probability of
observing a match of zeroes or ones is equal to that of not observing
such a match. The mean value itself is an indication of non-
randomess. From this, if the sequence is random, its autocorrelation
function should vary around the 0+5 mark.

6.2.4.2 Variance of A(r), Var_ A(r)
var(A(r)) = E (A%(r)) - [E (A(r)]) 2

Considering first E (Az(r)), we have

=X nN=T
E (Az(r)=(L o E ( > z (’.‘ixi+r"jxj+r ))

n-r) i=1 j=l
*(rr2E (E: o zj’)>
=(-r—&-;)2 Er ‘;E‘ E (2, 25) (6.2)
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Dividing the expression (6.2) into three cases namely (i) i=j, (ii)

i#j and i=j+r or j=i+r and (iii) i¥j and i#j+rar j#i+r, we have

2 Ne=X 2 nN-X
R A ir) ¥ Taor)? iirﬂs(zir Z; o)
v 22 $ 5Bz, 2Z..)
(n-r)" 3 ir “jr
2. 2
E(Zir Zir) = E (Zir) =p +q
Now consider the second term E (2., 2Z. )
ir Ti-r,r

1 ifZ, =2,
Zir Zi r.r = ir i=r,r
e o] otherwise

Note that here 2ir and Z are not independent because

i-r’r

Where ® refers to matching.

Therefore,
Prob (Zir' Zi—r,r =1) = Prob(:xi [ X er © X = 1) +
F'rob(xi ® X; or ® X = 0)

- 3 3

= p *q
Therefore,

n-r
2(n=2r 3 3
2_, I B(% 2 . ) G -%;:;72 (P +q7) (6.3)

(n-r) i=r#l i '

n-2r is equal to the number of terms for which i # j and i = j+r.
By symmetry, the number of terms for which, i # j and j = i+r is ‘
n-2r. Hence the factor 2 in the expression (6.3).
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X . 1
Now consider the third term (net )2 f -%: E(Zir er) where
i # 3, i # j+r and 3 # i+r.
1 2. =2. =1
z. 2. = ir jr
ir or ¢ otherwise
Prob (Zir er =1) = prob (Zir = 1) and prob (er = 1)
2 2 2 2
= (p +q) (p+qg)
2 2, 2
= (p +4q)
The number of terms in the double sum I I 1is given by
i)
= total number of terms - [(n-r) + 2 (n-2r)]
2
= (n-r) = (n-r) - 2(n-2r)
Therefore
1 - 2(n=2r) 1 2 2.2
(n-r)2 f § B (24, er) - (. - (n—r)2 - n-r) (p” +q)
Hence,
E (Az(r)) = p2 + q2 + 2(“—2!') (p3 + q3) + [1-2(n-2r)2" 1 ] (p2 + q
(n-r) (n-x )~ (n=-r)" n-r

For a random sequence,it is assumed that p = q = %, Substituting

this in the above expression for E(Az(r)) gives,

2 1 n-2r A n-2r 1
B (A%(r)) = i et g

2.
a(n-r)" %

var A(r) E (Az(r)) - [E (A(r))] 2,

2 1

"ot 3 - B T oo
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Thus the variance is inversely proportional to (n-r). That is,
greater the sample size n, smaller the variation from the mean and
as the lag r increases,the variance increases. Having calculated
the expected value and the variance of A(r), one can approximate
the distribution with a normal distribution for sufficiently large

value of n. Thus the normal test variable N{(r) is given by

A(r) - E(A(r))
N(r) = S
V.

ar A(r)

Thus at 5% significance level if |N(r)] <1+96, the sequence is said
to be random. In this test, the autocorrelation of the ciphertext
sequences are computed and the number of |N(r)| values which exceed

1¢96 is used as a measure of non-randomness of the sequence.

6.3 Results and Discussion

Section A7.] in Appendix 7 gives the results of the frequency,
serial and runs tests on the ciphertext sequences produced using the
ECB, CFB, CBC, CECP and CFBV modes of DES under a fixed key namely
3131313131313131l. Five input samples for each cycle length have been
encrypted under the five chosen modes of DES. The notation used in
Section A7.2 is : (Encryption Mode r.s), where r indicates the cycle
length of the input sample and s indicates the number of the input
sample within the cycle length category, r. (see Section A7.l1). For
instance CFB 1.2 refers to the mode CFB, input sample number 2,
having a cycle length of 5 digits. The figures marked with (*) indicate
that the values are in proximity to the 5% significance level and
the figures marked with (*#) indicate the values beyond the 5%
significance level, thus showing a possible lack of randomness of the
sequence under consideration.

It is seen from the results in Section A 7.2 that in general
the DES under the ECB mode shows the most non-randomness characteristics
out of the selected five modes. Section A7.2.1 shows, under each
mode, the number of sequences which are classified as non-random by
each of the three tests. In Section A7.2.2 are listed the sequences
which are classified as non-random by more than one test. Again
from Sections A7.2.1 and A7.2.2, it is seen that the ECB mode seems

to produce the most non-random sequences out of the five modes -
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considered.

Section A7.3 in Appendix 7 gives the results of the
frequency,serial and runs tests on the ciphertext sequeﬁces produced
using the five different chosen keys (see Section A7.1) under the
five DES modes. In this case, one input sample from each cycle length
category has been chosen for testing purposes. The input samples
selected are themselves classified as non-random by more than one of
the three tests. The chosen input sequences are : 1.5, 2.1, 3.3,

4.1, 5.2 and 6.5 (see Section A7.1). These six inputs are renumbered
as (i) to (vi) respectively. The five keys used are labelled I to V
(éee Section A7.1). It is seen from the results in Section A7.3

that the variation of the key does not seem to produce any appreciable
difference in the randomness characteristic of the output sequences.

Section A7.3.1 shows, under each key, the number of sequences which

are classified as non-random by each of the three tests. In Sectjon
A7.3.2 are listed the sequences which are classified as non-random
by more than one test. Again from Sections A7.3.1 and A7.3.2, there
seems to be no great-significant effect on randomness due to change
in the DES keys. This seems to suggest that the sequences produced
are more or less random like for any key being used. If so, this
may be regarded as an important positive aspect of the DES crypto-
araphic algorithm. If there were some keys which produced significant
non-random sequences, then this might be used in cryptanalytical
attacks and hence may be considered as a weakness.

Two input samples having cycle lengths of 5 and 10 digits
(input samples 1.5 and 3.3), encrypted using the keys I and V, have
been used in the autocorrelation test. Only the autocorrelation
function curves of the input sample 1.5 (denoted as sample (i))and
its five ciphertext output sequences produced using the five DES
modes with key V, are shown in Section A7.4. The autocorrelation
function of the input reflects the periodic nature of the input
sample (repetition of 5 digits). Further the minimum value of the
input autocorrelation curve depends on the relative proportion of
zeroes and ones present in the input sequence. Greater the proportion
of '1', higher the mean value and hence higher the minimum value of
the autocorrelation curve. From the ciphertext autocorrelation curves,
it is seen that their mean value is around 0.5 which agrees with the
expected value E(A(r)) derived earlier for a random sequence. It is

also seen that the variation of the curve around. the mean value seems
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to be the greatest in the case of BECB mode. Section A7.4.1 gives
the number of points M which lie beyond the 5% significance level,
calculated using normal distribution approximation given in Section
6,2.4. The value of M can be used as a measure of randomess;
greater the value of M, less is the randommess of the sequence. It
is seen that for the input sample (i), with ECB mode,about 19% of
the points lie outside the 5% significant level thus indicating some
degree of non-randomness.

To sum up, it can be said that, from the four tests -
frequency, serial, runs and autocorrelation, the DES algorithm seems
to be a very good pseudo-random number generator. Out of the five
modes considered - ECB, CFB, (BC, CBCP and (FBV - the ECB mode seems
to produce the most non-randomness characteristics. There does not
seem to be any great difference between the other modes from the
point of view of randommess of output sequences produced.

Having examined the randommess characteristics of the final
ciphertext output from the DES algorithm, the next step is to apply
these tests to the intermediate outputs namely the outputs of the 16
rounds of the DES operated in the standard ECB mode. The degree of
randomness is expected to increase as the number of rounds increases.
It is found that the first round shows a high degree of non-randomness
and as the number of rounds increases the outputs become more and
more random. Some of the results obtained are given in Section
A7,5.

6.4 Other Statistical Tests

In this section, some other statistical tests which are
carried out to detect dependence or correlation between the inputs
and the output of DES are briefly mentioned.

6.4.1 Cross-Correlation Test

) The aim of this test is to find out whether there is any
significant correlation between the ciphertext sequences produced
using some special inputs and whether it can be of any use in a
cryptanalytical attack on DES.

A key consisting of a '1' in the most significant position
and sixty three '0O's is chosen to encrypt a plaintext block of all

'0's. Then the bits are shifted one position to right and the key
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is used to encrypt the same plaintext. This procedure is repeated
64 times, by shifting each time the key bits one position to the
right. Out of the 64 ciphertexts produced, only S6 ciphertext
sequences are distinct, since 8 bits of the key are used as parity
bits. In order to determine whether there is any correlation between
these 56 sequences, it is necessary to examine the cross correlation
of each sequence with the other 55 sequences. As this seemed to be
impracticable, two sequences are chosen and they are cross correlated

with the rest. The chosen sequences are:

(1) the first ciphertext sequence corresponding to the key
100+s¢ O )
. . . . ?ch
(ii) the 29th ciphertext sequence corresponding to key O...l...0

The results obtained showed cases with high degree of correlation;

three such cases are given below:

{a) first output cross-correlated with the third output with
lagr =1

{b) first output cross-correlated with the fourth output with
lagr = 1

{c) first output cross-correlated with the eleventh -output: with
lag r = ©

To investigate these cases further, four other plaintext blocks are
encrypted under the same key using the above procedure. The results
are then examined for correlation for the three cases stated above.
Further these four plaintexts are encrypted using four different keys
following the above procedure and the results examined for correlation
for the three cases (a), (b) and {c) above. However, these
investigations showed that no conclusive evidence can be found of

the exdstence of any systematic correlation between these 56 cipher-

text sequences.

IA]f%-test [6] has been used to detect whether there is any
dependence of an output sub-block on aninput sub-block for a fixed
key.

Let the plaintext block X = (xo...x63) be. enciphered by
DES with key K = (ko...., kss) into ciphertext Y = (yo,...,y63).
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In DES, each output bit co-ordinate Vs is a function of the 64 input

bit co-ordinates xg and the 56 key co-ordinates k;. The I-?' test enables
to check whether some set of the output bit co-ordinates coout are
dependent on some set of the input bit co-ordinates Coin for a fixed
key. Note that the test can also be used [6] to test for the dependency
of some set of output bit co—ordinates on some set of key co-ordinates
for a fixed input. Dependence might be used to estimate the key or
plaintext; for example, if ki is dependent on some set of output or
input bit positions, one could make this the basis of the recovery of

k from correspondmg plaintext and ciphertext.

The x Z test used is explained below {b]:

(1) " Small subsets of co,  and O of sizes Nin and Nout are
chosen where coin = (10,..., J‘Nin-l)’ coout = (Jo. P
Inout-1)

(ii) A key K = (ko. ces kss) is chosen

(iii) A set of plaintexts is encrypted under the key K and the
2N1n by ZNO“t contingency table is formed where the (s,t)

entry is the number of times

)

. (x. . 9 osee X. ) = (s peeeyg S...

i 0 1'1Nin (o) Nin-=1
» . e e - - = t . e e t

( yl ’JO’ ’y ’JNout ) ( o. ’ mut-l )

where (so,..., s } are the base 2

nin-1* (%gr-°s Tyoue
representations of s and t.

(iv) Then the Iz- statistic with 2 inthout-1 degrees of freedom
is computed where ‘ 2
@ . 2'(Mauf+N6\9
xz E é s,t( ) - samples
= ; - {No NG
0<s <P gy <QNout 27 Ceuk+Nim) N gampies
In our case, Nsamples= 250 and the key is 3131313131313131., The
subsets are chosen to be (D, = D = (3,4). The contingency table

in out
for a two-tailed f— test at 1% and 99% confidence levels is given

as follows:
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o0 20 a1 11 9
o) | 19 10 18 _ 16
10 25 1? 13 12
11 22 10 16 11

The computed IZ ~value is 23.408.Using the two-tailed xz-test.the 1%

and 99% confidence levels are given by Izlower = 5.81 and
2

x upper
hypothesis that the cutput bit positions in a)ou

= 32 respectively. This leads us to accept the null

¢ 2Fe independent of
the input bit positionsin Coin with the chosen key. In practice,

the acceptance or rejection of the null hypothesis must be based upon
the results of several independent f-tests. The evaluation of
multiple Iz-tests is often made using KOlmogorov-Smirnov test [6].
Even with maltiple f-tests for the correlation to be of any value
in cryptanalyzing the DES, either the correlation is present for
only a limited pumber of pairs (which can be predetermined)} or
correlation is present in a relatively large number of pairs which
can be determined by random sampling. Thus it is necessary to carry
out)' The application of ]_2-
test is reported [6] to have been carried out by IBM and NSA as

out these tests on all pairs (Cbin.

part of internal validation of DES.
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CHAPTER 7
LOCAL FILE SECURITY: SYSTEM SOFTWARE (2)
7.1 General
The second application of the developed encryption interface
unit is the encryption and decryption of files stored locally in the
Apple disk system. This application offers the system off-line
encryption facility whereas the point-to-point configuration considered

in Chapter S5 provides on-line encryption facility.

7.2 Choice of DES Mode

Theoretically any of the DES modes previously discussed
can be used for this application. However when a file is encrypted,
recovery from an error must be effected with ciphertext alane. If
a ciphering procedure with error propagation is used for file security,
subsequent inability to read a portion of the ciphertext because of
damage either to the physical medium or to the recorded bits, may
prevent all the following ciphertext from being deciphered. Therefore,
a self-synchronizing approach is desirable for file encryption. This
constraint therefore eliminates the use of the last two of the five
modes discussed in Chapter 5, leaving CBC, CFB and ECB modes. The
ECB mode is to be avoided as it is the least secure of the three
because of its vulnerability to the code bock analysis problem. The
remaining two chaining modes are the CBC, a block cipher and the (FB,
a stream cipher. Any one of these two can be used. If stream
cipher feedback on eight bit character is used, then the ma>dmum
speed will be one—eighth of the speed that can be achieved using
the block mode. That is, if the 8-bit CFB is used,the throughput
is very much reduced. Hence it is decided to adopt the CBC mode
for this file security program. The limited error extension property
of the CBC mode may be useful in such an application even though
complete error propagation property is not suitable. Consider for
instance, encryption of a database containing personnel records.
Suppose a figure in the salary field of the ciphertext file is
changed accidentally or deliberately, then the limited error extension
property will cause two blocks of characters to be in error when

decrypted. This would enable easy error detection.
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On the other hand, with the CBC, the problem of padding
the end of the file with pseudo-random numbers exists as it is a
block cipher. Also when padding is used, an additional character
called the pad count needs to be included as part of the padding
characters. The pad count specifies the number of pad characters
including itself which have been appended to the end of the file.
This information needs to be preserved for future decipherment.

Due to padding, the ciphertext will be longer than the original
plaintext. This may be undesirable if the ciphertext is to replace
the plaintext in some previously allocated file space. One way to
avoid ciphertext expansion would be to use a stream cipher mode of
operation to handle the special situation of short blocks. In this
mixed mode of operation, the block cipher mode is used for ciphering
standard blocks and the stream cipher mode is used for ciphering the
short blocks at the end of file. Alternatively, the short blocks
can be enciphered without increasing their length using the following
method. To encipher the last short block of Lbytes (L<8) the
preceding full block of ciphertext is reenciphered and the first 2
bytes of the result are then exclusive—ored with the plaintext short
block. The preceding full block of ciphertext depends on all the

- preceding blocks of the file and thus is sufficiently variable. But
as it is visible to the opponent, reencipherment of it provides the
necéssary secrecy. Thus this method provides the last short block
the full strength of a standard DES encryption.

For this Apple system, as there is no stringent constraint
preventing the ciphertext expansion, the padding technique has been
adopted. It will be seen in the next chapter that such an approach
is not possible when considering the Prestel Viewdata System and
a stream cipher technique needs to be used.

7.3 implementation

As far as the implementation is concerned, there is to be
no change in the hardware of the encryption system. On the other
hand, a different program has been developed for this purpose; The
program can be divided into two sections. The first section performs
encryption and decryption of files stored locally in the Apple disk
system. The files can be APALESOFT or INTEGER BRASIC files. The

second section invockes some- of -the routines developed. in. the point-to-.
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point commnication system to transfer the encrypted files to a
remote Apple terminal where they can be automatically stored onto
floppy disks. The flowchart of the first sectiqn of the program’
together with the listing is given in Appendix 8. The two sections
of the program are now very briefly described.

The program initially asks the user to enter the name of
the file to be encrypted or decrypted. It then fetches the file
from the local Apple disk system automatically and stores the file
in a prespecified part of the memory in the Apple microcomputer system.
The APPLESOFT files are stored starting from memory locations
0800 (hex) upwards whereas the INTEGER files are stored from 9600
(hex) downwards. These addresses are referred to as 'start-of-file’
addresses. Each Basic instruction stored in machine code consists
of a two-byte next instruction pointer, a two-byte instruction number,
a sequence of bytes representing the original source line of
instructions and a byte containing the 'end-of-file' marker. The
Apple system also provides an 'end-of-file' pointer. Briefly, the
encryption and decryption program is described as follows. In
encryption, the plain file from the start-of-file address to end-of-
file address forms the input to the program. Then the file is
divided into blocks of 64-bits and encrypted under cipher block
chaining mode. Padding of the last block of the file is done with
random characters in the usual way. The encrypted file is then
stored back into the same memory locations writing on top of the
plain file in the Apple system memory. Then an automatic transfer
of the encrypted file from the system memory to a floppy disk is
performed under the filename provided by the user. The encrypted
file can be loaded back from the disk at a later time and decrypted
to give the original file provided the same key and initialization
vectors are used. The decryption program requires the 'end-of-file"
address to be able to stop the decipherment process. This in turn
implies that the 'end-of-file' address mist be stored.along with the
cipher file during encryption. One can store this end-of-file
address either at the end of the cipher file or at the head of the
cipher file. If the address is stored at the end of the cipher file,
the decryption program will be unable to find it as the end of file
depends on the length of the cipher file which varies. The decryption
program cannot distinguish between the actual ciphertext and the

information containing the 'end-of-file! address; so it is stored
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at the head of the cipher file in plain format. In addition, the
count of the number of random characters padded to the end of file,
pad count, is also stored in a similar fashion. Having obtained
the 'end-of-file' address and the pad count, the decryption program
can find the initialization vector stored at the end of the file.
Alternatively, the user may be asked to enter the initialization
vector along with the key at the beginning of the program. The
decryption program then deciphers the cipher file using CBC in the
normal way discarding the dummy random characters at the end.

The second section uses modified versions of the Transmission
routine and Receive routine (Section 5.2.2) to transfer files between
two users in a point-to-point system. The user who wishes to
transmit a file initially sends some plaintext to the receiving end
using the terminal keyboard which contains information about his
identity, the identity of the intended receiver, the type of file
(APFLESOFT or INTEGER}), the time at which it is sent etc. The
cipher file is then sent over the commmunication link using the
Transmission routine. The receiving end fetches the file and stores
it onto a floppy disk automatically under the file name provided
by the sender. The intended receiver can then decrypt the file at

a later time in an off-line manner.
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CHAPTER 8
SECURITY IN PRESTEL VIEWDATA SYSTEM: SYSTEM SOFTWARE (3)
8.1 General

As the need and the common use of large data bases to
store sensitive information increases, the requirement to maintain
secrecy becomes more and more important. The Apple microcomputer
system together with the designed encryption unit is interfaced to
the Prestel network, the British Telecom Viewdata System, thus
allowing the Apple to act as an intelligent viewdata terminal. This
enables transfer and storage of encrypted as well as plain data

between Apple and Prestel computer.

8.2 Brief Review  of Prestel Viewdata System

The Prestel system consists of a network of GEC 4082
computers linked together by high speed data links. There are two
types of computer centres namely the Information Retrieval Centres
(IRCs) and Update Centres (UDCs). Currently the network consists of
one UDC linked to a number of IRCs. .

The basic unit of information on Prestel is a frame which
consists up to a maxdmum of 960 characters. One or more frames are
linked together to form a page. These pages of information form the
Prestel database. Each page is uniquely identified by a number of
up to 9 digits. Frames are further identified by letters of the |
alphabet a to z. Frames and pages are linked together by means of
pointers and they form a tree structure. Detailed informaticn on

Prestel system can be found in [31 ].

8.3 Encryption/Decryption in Prestel System

As. the basic unit of information is a frame, a natural
choice would therefore be to encipher a complete frame at a time.
However, there may be instances where encipherment of sections of a
frame may be required. So in our system, we should be able to encrypt
parts of a frame. At the start of each frame, it is to be indicated
whether encipherment has been. used.
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As discussed in Chapter 7,the two modes of DES which are
suitable for this data base application are the cipher block
chaining (CBC) and the stream cipher feedback (CFB). Since it is
required to encrypt parts of a page which may be small pieces of data
such as individual characters, the stream cipher feedback appears to
be more suitable. Further if the CBC mode is used, when parts of a
frame are encrypted, this is likely to require padding for the
encryption portion. This in turn will result in cryptogram extension
and pose a problem when storing the enciphered frame on the Prestel
data base as each frame is limited to a maximum of 960 characters.
This constraint leads us to consider the use of the CFB mode in this
application. As the backward channel, that is, from the user to
the Prestel computer, has a speed of only 75 bits per second the
reduction in speed resulting from the use of the CFB mode does not
affect the throughput of the system.

The data format of each character transferred to the Prestel
computer consists of 7 data bits. For transmission down the line,
these 7 data bits are sent in an asynchronous start-stop format
comprising 1 start bit, 1 stop bit, 1 even parity bit and 7 data bits.
If a block cipher mode such as the CBC mode is used then it is
required to transmit 64-bits of ciphertext in the above 10-bit format.
One way to do this is to break the block into nine seven-bit groups
and a single bit group. The nine 7-bit groups can be transmitted in
the normal fashion. The last bit can be grouped with the next block.
This needs to be done each time a block is enciphered and this process
continues until the end of the frame or page. Alternatively,the last
bit can be padded with 6 other bits to form an extra character. But
this results in an extra character for every block encrypted and
causes problems in storage of enciphered frame as mentioned earlier.
Further since all the 64-bits of a ciphertext block are required to
decipher correctly, the last bit must be received before decryption
- can begin. In account of this, the simple approach of stream cipher
feedback mode has been adopted.

The encrypted information passes through the Prestel
computer control unit which rejects any of the control -characters
present in the ciphertext. Referring to the coding table given in
Figure 8.1, the codes belonging to the columns 1 and © are not accepted
by Prestel computer as data. Therefore there is a need to prevent
the occurrence of -these control characters in the ciphertext. That

is, the encryption system is to be made transparent to Prestel control
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unit. A simple way of achieving this is to use a 6-bit cipher feed-
back technique. With this technique it is always possible to ensure
that the ciphertext belongs to the set of accepted codes. But this
allows only 64 different possible characters that can be enciphered.
In this design, these 64 input codes are 0-9, A-Z, a-z, space and
period. All other codes are transparent and bypass encryption. Thus
the output codes are reformed into the same range as the inputs thus
preserving the one to one relationship between transmission and
reception. As we are mainly interested in enciphering alphanumerical
characters present in the text, the above set of input codes is found
to be adequate for our purpose. )

This can be extended to 96 codes (32 cut of the possible
128 codes being control codes) using the 'breaking-up' technique
mentioned above. First consider the case where the plaintext
(ciphertext) characters are 8-bits long. In this case, the encryption
process can either be in block cipher mode or in stream cipher mode.
The cipher is first broken into 6-bit groups and then each 6-bit
group is expanded to form a 7-bit character by adding a 'l' in the
most significant position, on transmission. This process removes any
unwanted control codes from the transmitted ciphertext character. This
is shown below

< - denotes the 6-bit ciphertext character which is expanded to

7-bits by adding a '1' in the most significant position on transmission
[J - denotes the original 8-bit c¢iphertext character

Thus it is seen that to transmit 3 bytes of information, one needs to
send 4 encrypted 7-bit characters. If the length of the plaintext

to be enciphered is n-bytes long then this method will result in

z_n-' + 1or 2—" 7-bit characters depending 8n '}{o {mod 6) or
gn o (mod 6) where[%E] indicates the largest integer less than

n

6 -

Now consider the case where the plaintext characters are
7-bits long. In this case,as mentioned earlier,stream cipher feed-
back mode seems to be more suitable than block cipher mode. To allow
encryption of all 96 codes, again the breaking up technique can be
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used. In this case,cipher is first broken into groups of é-bits and
then each 6-bit group is expanded back to 7 bits by adding a '1' in

the most significant po;ition, on transmission. This process ensures
that the transmitted character is in the normal ASCII code range and

is acceptable to any host computer.

© i ceclI» G¢I3» a2 D @&..

Thus if the plaintext to be enciphered consists of n 7-bit characters
then this method will result in F%E] + 1 or -%ﬂ characters on
transmission depending on 7n £ o (mod 6) or 7n = o (mod 6).

Let us now briefly consider the connection protocol involved
when using the Apple encryption system with the Prestel computer. In
the usual way, the system is connected to the public switched
telephone network via the modem. A call to the Prestel computer is
initiated using the telephone connected to the modem. The Prestel
computer responds by sending a continuous tone of high frequency.

At this point, the DATA switch on the telephone is pressed thus
allowing the modem to get control of the line. That is, the modem
aknowledges by sending a low frequency tone to the Prestel computer.
Now the terminal is ready for data transfer.

The system software essentially carries out two distinctive
tasks. Firstly, it emilates the Prestel terminal keyboard using
Apple keyboard. That is, for the system to make use of some extra
facilities provided by Prestel, the Apple keyboard is effectively
extended to include some special characters. Secondly it incorporates
encryption-decryption facility into the Prestel system. The software
is lengthy and complicated. Hence only some important aspects are
briefly considered here.

. Prestel system can be used in two modes, namely, the user
mode and the information provider (IP) mode.

In the user mode, two main facilities provided by the

system are:

(a) Reception of plain and encrypted frames from the Prestel
database.
(b) Transmission of commands such as choosing a frame etc from

the Apple keyboard to the Prestel computer. Note that in
this case, the only keys used are 0-9, # -and *.
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In the editing mode, in addition to {(a) and (b), facilities
are provided for entering, amending, copying and deleting plain or
encrypted frames of Prestel. The Prestel editing terminal keyboard
is given in Appendix 9. It is seen that this keyboard has additional
facilities compared to the Apple keyboard which are required to
provide necessary control signals. Two important ones among these
are: Start Edit and End Edit. In addition,special functions for
encryption and decryption are required.

Having entered the secret DES key in the normal fashion, at
the beginning of the communication, in the user mode, the user must
have the choice as to when to set the interface into the decryption
mode. This enables him to decipher only those pages which are in
enciphered form and to read the other Prestel pages in plain form.
This is carried cut by pressing the key (NTRL-(}. Now if any of the
enciphered pages is read from the Prestel database, it is displayed
on the terminal in plain form. Only the user with the right key and
the correct initialization vector will be able to obtain the complete
original plain frame. The interface unit is set back to normal plain
mode by pressing the key C(NTRL-R. This software implementation allows
changes in initialization vector during commwmication whereas to
change the DES key, the system needs to be reset and restarted again.
This has been done because every user is expected to have a single
secret key although he may use any number of different initialization
vectors. This is particularly important when a user needs to encrypt
same portions of text in different frames. Changing the initialization
vector allows different ciphertext representations of the same
plaintext under a fixed key. As it stands, the user needs to keep
a record of the frame number. together with the initialization vector
he used to encrypt that frame and his single secret DES key. An
improved scheme would be to generate a pseudo-random key, called the
frame key, dynamically and encrypt the frame using this key. The
frame key can then be enciphered under the user's secret key using
ECBE mode and stored at the head of the frame. The initialization
vector is again generated using a pseudo-random process and can be
enciphered under the frame key using ECB mode and is also stored at
the top of the frame. Using this method one has effectively chained
the frame key and the initialization vector used in the encryption of
a frame. The decryption process can automatically recover the
enciphered frame key from the top of the frame and then decipher it
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using the user's secret key under ECB mode to produce the frame key.
The frame key is now used to decipher the next 8 bytes at the head
of the frame under ECB mode to produce the initialization vector.

The initialization vector and the frame key can now be used to decipher
the frame under the CFB mode. This method would allow different
frames and different pages to be enciphered under different keys
without having to reset the system. Further, the user does not need
to keep a record of each frame key and the corresponding initial-
ization vector used in the encipherment of that frame. This is being
done automatically. More on such key management aspects will be
considered in Chapter 9.

In the editing mode, the user is able to enter and amend
the encrypted as well as plain frames in Prestel. From the user
point of view, it is essential that the operations that need to be
done for encryption and decryption must be as simple as possible.
Start (?) and stop (/) markers are used to indicate the beginning
and end of enciphered data in the frame. The key CNTRL-A is pressed -
to set the interface unit to encryption state. All subsequent
characters typed are automatically encrypted under the 6-bit CFB
mode. The key CNTRL-B is used to return the interface unit to the
plain mode. This allows encryption of even single bytes of data.

The system initially produces upper case letters. Lower case letters
are obtained by pressing the key CNTRL-V. All characters typed

are now in lower case until the upper case shift, CNTRL-W is typed.
Start Edit and End Edit needed to work the Prestel Editor System

are obtained using the keys CNTRL-T and CNTRL-E respectively. Most
of the cursor control movements such as backspace, forward, downward,
upward are included in the editor facilities. The Return key behaves
slightly differently compared to the nbrmal Apple mode in that the
cursor returns to the beginning of the same line. So to move to the
beginning of the following line, one needs to press the Return
followed by Line feed (CNTRL-J). Note that the graphic and colour
keys are not included in this Prestel encryption system.

This software implementation provides on-line editing/user
facilities on the Prestel Viewdata system. It is possible to merge
this program and the one discussed in Chapter 7 to perform local
off-line editing and encryption of a Prestel frame and then transfer

the created Prestel frame to the Prestel computer.
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An example of a completely encrypted frame and a partly
encrypted frame together with the corresponding plain frame is shown
in Figures 8.2, 8.3 and 8.4.

« + HERE IS A GAME THAT CAN BE PROGRAMMED
FOR PLAY ON A DIGITAL COMPUTER . . .

A polyomino is a figure formed by joini
ng unit squares along their edges. Pentom
inoces are 5 square polyominoces and it is
possible to consgtruct 12 different pentominoces.
A pentomino game is played by ar
ranging the 12 pentominoces into various
size rectangular boxes . . . 3 by 20 0or 4 b
¥ 15 or 5 by 12 or 6 by 10. Computers hav
e been used to generate many solutions. A
computer program produced two solutions
for 3 by 20 configuration and 2339 for
the most popular size 6 by 10 rectangula
r configuration.

Fig. 8.2 - Plain PRESTEL Page
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Seratchpad 651314b Op

~onLihleEwebzE jxea JgWWBCLS BVz bbvDW Ev
o! ¥y w PPFZQaNNaBEK txvOp hV TBB@xUmJ' K
D YnvBISJ YwWQKFtrTmoBCLMv OkHXebhN GXqq
1KZdvI erePmTQax@ kyKmC Rcfi'!'P 'JiNaXt
@nQbwYg xKTRLSODN IuCvSzLZvXNZb WNpPYPB
X HAIEzgOnPtmjDGt0aUVIG OdMF OgiYmdqRYA
sdTdriHcue jTd QQs CnxkbuVgziKiokxbKtpdj
juwOC 'G nH yMIg@MvI dhae RHX'DbQHo 'yF
xx@y Kz S UZg amqmVB'EfozyPjUIPQFeQF TR
JkzPtFA AVsoGpeilplWewo wkBPJ JyiDHEz Z
uLrwEu ORPgWzOLDIWMr U Rkqs £ YRAXZXSIV
PR CSZCIVOet DtPCFc MATEYQBY jLALbp rql
G Ip psplyee BAIt!l Yxo abb TxftGQpWgjLZ
yyaLmfEJvrOLzfSBWXsf ByiX wFvg h DbE Art
vbuoraZdf 'xfvG!1xS HRztdsplgRuaDQ BsIyuk/

2 4indicates start of encryption.
/ indicates end of emcryption.

EEY 3131313131313131
IV 0000000000000000

MODE: 6-bit CFB

Fig. 8.3 - Completely Encrypted PRESTEL page
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Seratchpad 651314 e Op

. . HERE IS A ?@PJI/ TEAT CAN BE PROGRAMMED
FOR ? KWt/ ON A DIGITAL COMPUTER . » =«

A 7gVDy NEG/ is a figure formed by joini
ng unit squares along their edges. ?1 Yhsab
@aZ / are 5 square ?DtNxLC ki{F / and it is
possible to construct 12 different ?jXgl Pa pUzA/
A 7KS MhiD/ geme is played by ar
ranging the 12 ? Smw@YzLZc/ into various
size rectangular boxes . . . 3 by 20 4 ®
v 15 or 5 by 12 or 6 by 10. Computershav
e been used to generate many soluticns. A
computer program produced ? jF/ solutions
for 7C Kolgq/ configuration and 7hu¥Yv/ for
the most popular size ?bScLSto/ rectangula
r configuraticn.

7 4indicates start of encryption.
/ ipdicates end of encryption.
KEY : 3131313131313131

IV : 0000000000000000

MODE: 6-bit CFB

FPig. 8.4 - Partly Encrypted PRESTEL page
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CHAPTER 9
KEY DISTRIBUTION AND PUBLIC KEY CRYPTOGRAPHY
9.1 General

Until now, the use of-DES cryptographic aigorithm in
protecting the data during transfer between users has been considered.
However the security of the DES depends on the secrecy of its keys.
Thus protecting the data depends on protecting the keys because they
are the means by which the data can be decrypted. Any key controlled
cryptographic algorithm thus requires a protocol for safely handling
and controlling its cryptographic keys. Keys must be produced and
distributed not once but constantly. In some systems they must be
changed with the passage of time, or with the amount of traffic and
in all systems, they pmst be changed when they are feared compromised.
Frequent key changes limit the amount of data compromised if an
opponent does learn a key. Keys must be provided to new users-of
the system and old keys must be retired as users withdraw. The
consideration of all these aspects forms the subject of key management.

Theré are essentially three ways to incorporate cryptography
into a commnication system namely link-by-link, node-by-node and
end-to-end encryption (31].

In link-by-link encryption, data is encrypted across the
medium connecting two directly commmnicating nodes. Link-by-link
encryption is independent of the system and does not necessarily
imply that the cryptographic capability is integrated into the
communicating nodes. It may be regarded as being implemented by a
pair of cryptographic devices bracketing the line between two
commnicating nodes and situated between the nodes and their modems
as shown in Figure 9.1.

Node=by-node encryption is similar to link-by-link encryption
in that each link is protected by a unique key. However data passing
through an intermediate node are not in the clear as would be the
case with link encryption. Rather at an intermediate node, the
enciphered data are transformed from encipherment under one key to
encipherment under another key (that is,deciphered and reenciphered)
within a secufity module which may be a peripheral device attached

to the node. That is, the plaintext occurs only within the security
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module and not within the node (Figure 9.2).

In end-to-end encryption, data encrypted at the originating
node is not decrypted until it arrives at its final destination.

Thus this method continuously protects data during transmission
between users. Unlike link and node encryption, end-to-end encryption
allows each user to have several keys, one key‘for each user who uses
encryption (Figure 9.3)

It appears that in terms of security, cost and flexdbility,
end-to-end encryption seems to be the most attractive for systems
requiring many protected links [3] .

The Apple encryption system discussed earlier is a simple
end-to-end encryption system. More exactly, it can be referred to as
‘a private end-to-end cryptographic system as the user needs to
request for cryptography and its use is not transparent.

. Some key management schemes which allow the DES interface
unit to be integrated into data processing systems to provide
protection for communications between individual users in an end-to-

end encryption network are discussed.

9.2 Key Management Using Key Centre

This approach uses a Key Centre (KC) which acts as a source
of session keys for encrypted calls using the DES algorithm. A
detailed description of the functioning of such a centre is given in
(3, 32].

_ Key centre can be operated manually in which the keys are
sent by mail or couriers. If such an arrangement is trusted, that
is, whether the risk of untoward disclosure either accidently or as
a result of deliberate attempts is acceptable, it could work out very
well. At least, this may be possible when the network is small and
traffic volume is low. On the other hand, if the network handles
large traffic volumes,the need to change the keys often demands that
large amounts of keys to be distributed. In large networks, the
number of possible interconnections grows as n(n-1)/2 where n is the
number of users. This may become an expensive venture because the
manual systems have to be guarded against security leaks by
conventional methods and the persons involved have to be trustworthy.

In an automatic KC, data network is used to distribute and

generate the keys automatically. Consider the connection protocols
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involved when two users wish to communicate in a secure fashion in a
single Key Centre environment.

Essentially two types of keys namely data encrypting keys
and key encrypting keys can be identified. The data encrypting key
is active only for a duration of a single commnication session and
therefore is referred to as a session key (KS). The session key is
protected by enciphering it under key encrypting key which varies
from user to user. Therefore the Key Centre is required to store one
key encrypting key for each user. These keys are themselves stored
within the centre in enciphered form using the Centre's master key
(KCM). Hence the problem of providing secrecy for cipher keys is
reduced to providing secrecy for only one key namely the master key.
This type of approach is referred to as the master key concept i{3].
It is assumed that the master key is stored in some non volatile
- storage in an inaccessible area in the Centre referred to as the
cryptographic facility so that it need be loaded into the crypto-
-graphic facility only once. Furthermore, each user is required to

store only his user key (KU).

9.3 Communication Security

Let KSl, KSZ’

dynamically changing data encrypting keys used for enciphering and

soay Ksn represent the time variant,

deciphering data. It is assumed that KS is operational for the
duration of a commmications session. Let KCM represent the master
key of the Centre and KU represent the user (or terminal)} key.

To begin with, the user i requests the Centre KC for a
session key (KS) to commnicate with user j. The request is
accompanied with a verifiable identification of the user i. The

whole message is enciphered under the user i’s key KUi' That is,
i * KC : i, (i, j,ro)KUi

where T is a random number chosen by user i. It is used to prevent
an intruder impersonating the KC by replaying some previcusly
recorded reply containing an earlier session key which the intruder
would like the user i to use again. Upon receiving the request the
Centre fetches the user i's key KUi which is stored in its memory
under the master key K(M. Then it deciphers the request and checks
against its stored information to see if the request is legitimate
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and if it is, it issues the session key (KS) to the user i. The
session key KS is generated within the Centre using a pseudo-random

procedure. The reply from the Centre to the user i is given by

KC > 1 : (KsS, ro,(KS, i)KU. )
) xu,
i

The random number T, is returned by the KC for the user i to verify
that the reply is coming from the KC and not from an intruder. Further
as the session key KS is encrypted under KUi’ it allows only the user

i to decrypt and obtain KS and not any intruder. The session key
together with the identification of user i encrypted under KUj is

also sent to user i. The user i cannot decrypt this portion of the
reply as he does not possess KUj. The user i then sends this cipher

portion to user j, that is,

The user j responds by sending a random number r, to user i, encrypted

1
under the session key KS

J o= 1 2 (xrs 3y

The user j does this to ensure that it is indeed user i who is
requesting the call and not any intruder using parameters of a
previous call. The user i then checks j's identity and modifies the
random number r_ in some pearranged fashion to result in rz,which he

1
returns to user j under KS

Now the users i and j can be almost certain that they are talking to
each other and can commmnicate with each other in a secure manner
uéing KS as the DES secret key. Most of the above steps can be made
transparént to the users in the network.

A variation of the above method consists of the Key Centre

KC sending the session key directly to the user j instead of sending
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it via user i. That is, the distinction lies in the path taken by
the session key from the Centre to user j. With this approach, two
possibilities may occur - either the session key has already arrived
at user j when the latter receives the call request or it has not yet
arrived. In the latter case, one must ensure that an old key is not
used mistakenly. Further the case where user j needs to wait for the
session key increases the complexity of the connection protocols.

Thus the above outlined method where the session key arrives to user j
via user i seems to have some advantage over the other method.

To further improve the integrity of the conversation and
reduce the problem of impersonation, timestamps, T, [33] can be added
to the key distribution protocol. The first three steps of the above
procedure are then modified to become:

i > KC oz i, (i, ds £ T
i
KC -+ i H (KS’ to,(KS, i, T)KIJ_ ’ T)KU.
3 i

J

The users i and j can then verify that their messages are not replays
by checking |clock - T| < At where clock gives the local time, At
gives some time error which includes the network delay time and the
time discrepancy between the sender's clock and the local clock.
This requires some form of time synchronization among the users of
the network.

with the above schemes, it is seen that if the session key
is somehow lost within the user's system, then a fresh call is to be
made by the user i to the KC to establish a new session key. It is
preferable that the KC generates a new session key even when the
user i did not actually use the old KS for any conversation. If on
the other hand, the KC does keep a record of session keys issued to
different users over a small period of time (say one day) then these
keys need to be stored in enciphered form within the Centre. Rather
than using the same master key for this purpose, it is advisable to
use another master key KCML to encrypt these temporarily stored

session keys.
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9.4 File Security

Let us now consider a key management scheme for file
security where one wishes to protect the stored data in the same way
as the commnicated data [3]. It is assumed that the encrypted files
are to be stored in a database in the host processor (HP) in the
network. (This could be for instance the Key Centre mentioned earlier).
It is also assumed that the users in the network have distinct secret
keys KU which are aléo stored in the host processor in enciphered
form under the master key KOM. Consider the case where the user i
wishes to store a file in encrypted form in the database under the
name CIPHERFILE. Let the corresponding file in clear form be FLAINFILE.
To begin with the procedure followed is very similar to the one
outlined for communication security given earlier. A call is made to

the host processor

i+ HP : i, (i, ro)KUi

where r, is a random number chosen by user i.

The host processor'responds by generating a file key (KF) using a
pseudo-random process and encrypting it under the user i's key KUi.

This is then sent to user i

HP "+ 1 (KF, ro)KUi

The user i decrypts the message to obtain KF and verifies the random
number r, to ensure that the reply is coming from HP and not from an
intruder. Then the user can encrypt his PLAINFILE using KF as the

DES secret key to produce CIPHERFILE, This is then transmitted to the
host processor to be stored under the same name. To be able to

recover the FLAINFILE, it is necessary for the host processor or the
user i to record the information that the file has been encrypted under
KF. 1In a large system with a number of users and with each user having
a number of files, it may . not be a good idea for the Centre to keep a
separate file containing the name of the data file and the corresponding
file key. (If this is done, then this separate file needs to be
enciphered under some master key). A better arrangement would be to
store the information at the header of the file itself. The file key
KF can be stored in the header in encrypted form under a master key
KQM2. (KO rather than KCM is chosen to achieve separation from

communication security). With this method if a user r wishes to
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decipher the CIPHERFILE, he requests the host processor for the file
key KF.

r - HP :_r,(CIPHERFILE)

The host processor reads the header of CIPHERFILE, decrypts
it using KO2 to recover KF. This is then reenciphered under KUr and
transmitted to user r. This procedure does not allow the host
processor to differentiate between users. For instance, the user i
may wish that PLAINFILE not be available to user r. This can be
achieved if in addition to KF, the identification of the ouwner of
the CIPHERFILE is recorded on the file header, that is, the header
contains the information [i’(KF)KngJ' Further,the host processor
is required to maintain a record of which users are allowed by user i
to obtain the ALAINFILE. Then if user r requests the host processor
for the file key of CIPHERFILE, the host processor first reads the header
to find the owner of the CIPHERFILE. Having found the owner, i, it
checks whether the requesting user belongs to the group of users who
are allowed to read PLAINFILE, 1f user r belongs to this group, it
recovers the file key KF from the header, encrypts it under KUr and sends
it to user r. 1If user r does not belong to this group, the above step
will not be carried out by the host processor ‘and access to the file key

is prohibited.

9.5 Key Distribution for Groups of Users

Consider a more general case where a user in the network
wishes to broadcast a message to several users [34). Assume that a
group G is a non-empty subset of n users and members of G wish to
broadcast and receive messages from other members of 'G and to access
and update files private to G. A given user may be a member of as many
as 2"'1 groups and there are at most 2" non-empty groups in the
system. Again it is assumed that all aspects of key distribution for any
giveq group is managed by a single Key Centre. One method of key
distribution among the group of users is considered in this section and
three other methods employing public key concept are described in

Section 9.7.
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9.5.1 Method 1_

In this method, the Key Centre is assumed to keep a list of
personal keys of all users. In addition, the Key Centre also keeps a
record of all grdup keys for the groups it manages.

To establish a group G, a member i of G registers the group
with the Key Centre. The Centre returns a group identifier IG to the
user i1 who then distributes to the members of the group G using the
method described earlier. The KC also generates a group key KG and
creates a record identified by IG that contains KG and the users who
belong to G. This record itself is stored in enciphered form under a
master key.

Whenever a user j belonging to G wishes to communicate with
other users or store a file to be read by other users, he obtains the
group key KG from the Centre. The key distribution protocol can be

described as follows:
j+KC : j, IG

The user j sends to KC his identification and his group identification
and requests for the group key KG from KC. KC fetches the group
record identified by IG, checks whether j is a member of the group and

returns KG to user j enciphered under j's personal key.

KC +3 : (IG, KG, T)KUJ.

where T is a timestamp used to protect against replay of previous keys.
Because the group key KG is enciphered under user j's personal key it
is not possible for an intruder either to intercept KG or to impersonate
Jj and acquire a group key for a group to which he does not belong. User
J can now use the group key KG to encrypt a file to be read by other
users of the group or to decrypt an encrypted file created by any other
user of the group.

An user i of the group can obtain the group key KG from the
Centre in a similar fashion and hence the users i and j can commnicate

with each other in a secure manner.
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The primary disadvantage of this approach is the storage
requirements for the group keys.' KC may need to store up to 2"1 group
keys. Secondly there is no identification between group members and

hence no discrimination between group members.

The idea of one Key Centre in the above schemes can be
extended to many such Centres and a group of m users 'belonging' to
each Centre. 1In such a situation, each Key Centre is required to
possess a shared secret key with each of the other Key Centres. {1t
could be tuo such keys,for instance,one for communication securxty and
the other for file security). If there are n such Centres, each Centre
therefore has n-=1 (or 2n-2) such keys. Then for instance, if a user i
belonging to Centre I wishes to commnicate with a user j belonging to
Centre J, then the Centre I génerates the session key and sends it to
user i in the usual fashion. As the Centre 1 does not know the user
j's secret key, it sends the session key to Centre J enciphered under
the shared commnication secret key between Centres I and J. The
Centre J recovers the session key and reenciphers it under the user
j's key KU:j and sends it to user j. A similar procedure can be
envisaged when a user i belonging to Centre I wishes to read a file

of user j belonging to Centre J.

The problem of key distribution can also be overcome using
public key cryptography concept proposed by Diffie and Hellman [35].
In the next section, the underlying principles of public key
cryptography are considered to see how such systems Ean be used to

solve the key distribution problem in an elegaﬂt way.

9.6 Fublic Key Systems

Public key systems allow two users to cormmunicate securely
over an insecure channel without any prearrangement. Cryptosystems
which allow this type of communication are asymmetric (see Section

2.2) in the sense that the sender and receiver have different keys
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at least one of which is computationally infeasible to derive from
the other. These systems separate enciphering and deciphering
capabilities and privacy is achieved without keeping the enciphering
key secret because it is no loﬁger used for deciphering. Hence the
enciphering key is published in addition to the enciphering and
éeciphering algorithms without compromising the security of the
system. The concept of a public key cryptosystem is shown in

Figure 9.4. User i encrypts the message M using the public
enciphering key of user j and sends the cipher to user j over an
insecure channel. Only the user j will be able to decrypt the cipher
to recover M as he is the only one who knows his secret deciphering
key. The encryption (E) and decryption (D) algorithms in such a
system have the following properties:

(a) Deciphering the enciphered form of a message M yields’M,
that is, D(E(M)) = M.

{b) Both E and D are easy to compute.

{c) By publicly revealing E, the user does not reveal an easy
way to compute D. This means that only the receiver
(designer) can decrypt messages encrypted with E or compute
D efficiently.

(d) If a message M is first deciphered and then enciphered,
then M is the result, that is E(D(M)) = M.

The property (d) is not necessary for a public key cryptosystem but
if it is obeyed then it is possible to obtain the digital signature
feature (see Section 2.2) [34].

The public key concept gives rise to a new class of
cryptographic algorithms. ~One application of such algorithms is to
solve the problem of key distribution in systems employing symmetric
cryptosystems. The public key cryptosystems would in many instances
be the ultimate solution to the key distribution problem. This can
be done as follows: User i can encrypt the session key KS using the
public key of user j and then send it to user j over an insecure
channel. Because the deciphering key is only known to user js he
is the only one who can decrypt the Cipher and obtain the session key.
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The users i and j can then commmicate with each other using a
symnetric cryptosystem such as the DES under KS. The protocols as

" described above pose other problems associated with the integrity of
the public keys and false imperscnations by an opponent. Again a
trustworthy third party such as the Key Centre, KC, may be required
for the maintenance of the public keys. The above set up can now be
modified using a Public Key Centre (PKC) which supplies and maintains
public keys of all users in the network. One can further assume that
the Centre PXC has a public key (Pﬁ) and a secret key‘(sk) pair and
that the key Pk is known to every user in the network.

l. i - PKC : i, (i, J. ro)P

where ro is a random number chosen by user i. As in Section 9.3,
this is used to prevent an opponent impersonating the PKC by replaying
some previously recorded reply.

The PKC upon receiving the request from user i for user j's
public key, encrypts the user j's public key Pj using the public key
of user i, Pi' and sends it to user i along with the random number

r, (or some modified T, using a publicly arranged function).

2. KC »>1i : (41, Pj’ ro)Pi

Note that the cipher in step 1 can only be decrypted by the Centre and
no one else and the cipher in step 2 can only be decrypted by user i
and no one else. A similar procedure can be followed by user j if he
wishes to obtain the public key of user i. From now on, user i can
communicate with user j in a secure manner, either by generating a
session key KS and transmitting it to user j enciphered under Pj as
mentioned above or using public key approach, that is, by encrypting
the messages under the public key of the receiver j.

Note that in the set up procedure, the Centre PKC is not
used for generating the session keys and it does not know the secret
keys of users but is used as a distributor of public keys. Thus for
the integrity to be maintained, it is crucial that the public key
file be protected from unauthorized modification. '

The public key concept can also be employed in a different
Qay to the one described above to prévide“é solution to the key
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distribution problem [34]. With this method, there is no need for
decryption as Quch at the receiving end. It is not a public key
cryptosystem but it is a public key distribution system. Two users
wishing to exchange a key, commmicate back and forth until they
arrive at a key which is common. Then this common key can be used

as a session key in a symmetric cryptosystem. The opponent
eavesdropping on this exchange finds it computationally infeasible to
compute the key from the information overheard.

Both the public key cryptosystems and the public key
distribution systems are based on one-way functions of one form or
another. For instance, it is said that in public key systems, it is
infeasible to determine the secret key from the knowledge of public

key. (Property (c)). A one-way function has the propertiés that

(1) It is an easily computed function from x to y, that is,
y = f(x).

(ii) It has an inverse functiocn.

(iii) It is computationally infeasible to discover the inverse
function.

A precise definition of a one-way function therefore depends
on a specific measure of complexity as it varies with time and
technology. As mentioned in Section 2.3, the complexity measures are
often defined in terms of time or storage required or as a time-—
memory product. If the number of operations to be done in computing
the inverse is taken as a measure, then thermodynamics places a
limit of approximately 1070 on the number of operations that can be
performed even if the entire energy of the Sun could be harvested
[ 36, 37]. As the legal receiver has to decrypt the cipher, the
public key systems are based on ‘trapdoor' one-way functions rather
than one-way functions. A trapdoor one-way function is a one-way

function which has the additional property that:

- it is computationally infeasible to discover what the inverse
function is, -unless certain specific information (trapdeor inform-
ation) that is employed in the design of the function is known. A

trapdoor one-way function becomes a trapdoor onew-way permutation if
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it satisfies the property that:

- decryption algorithm followed by encryption algorithm produces the
original plaintext (property (d)).

In this case, the mapping between ciphertext and plaintext becomes both
injective and surjective. This is essential for implementing digital
signatures.

A brief review of two well known public key cryptosystens

and a public key distribution system is now presented.

The knapsack problem is a combinatorial problem in which
given a vector a of n elements, it is required to select a subset of
these which add up to a given sum S. The problem is to determine
which ay for i = 1 to n are to be included in forming S, that is,
determining whether X; S oorx = 1 for i =1 to n in the following
equation:

S=a.x {9.1)

n
|
neg
[T}
H
X

It is seen that there are 2" possible ways of selecting the quantities
X, and this exponential function increases very rapidly as n increases
whereas it is easy to test whether a particular combination is a
_solution. But there are some instances in which the equation (9.1)
is easy to solve. One such instance is when the elements {a}} form
a superincreasing sequence. That is,

- i-l -

ai >j§;_l; aJ. for all i>1 (9.2)
When this occurs, then "x =1 and only if S d; and similarly for

i =2nel, n=2, eeey 1 xi =1 if and only if

J=i+l

Hence the legal receiver designs the system in such a way that only
he can transform the hard knapsack (9.1) into an easy knapsack using
the above_procedure whereas the opponents are forced to solving (9.1).
He does this by choosing fﬁérﬁﬁmbers:w éﬁd.m which are relatively
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prime to each other and a superincreasing sequence a{ for i =1 to n.
This vector is then transformed to form the sequence {ai} using w and
m as follows:

a, = a].'_. w{mod m)
The vector a is published and it forms the encrypting key of the
public key system. The vector g’and integers w and m are kept
secret and form the deciphering key. The encryption procedure consists
of taking a plaintext ¥ in the form of a vector x = (xl, cwsy xn)
where x, ¢ {0, 1} and forming S = a.x. The ciphertext S is then sent
over the insecure channel to the receiver. The decryption process
uses w and m and 5‘ as follows:

s=wl . s (mod m)

1 n

=w . ) X. o a, (mod m)
. i i
i=1

1 n
= w . >~'.i-w.a’i (mod m)
i=1
n
S’=‘- .z xi - ai. (md m)
i=1
n
If m is chosen such that m > Z a’i then
i=l

n
s = ]_Z_J_ X.a;

This knapsack is easily solved for x which is also the solution to
the apparently difficult trapdoor knapsack S = a.x . It is also
possible to iterate the basic transformation by generating several
pairs of (w, m). For instance, rather than requiring a to satisfy
(9.2), a° can be transformed to a new problem a’” using

- - 1-1 -

a’ = w - 3] (mod m”)

where 5“ satisfies (9.2) and is éasy to solve., With each such

successive transformation, the structure in the publicly known vector
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a is made more amd more obscure.

The trapdoor in this asymmetric scheme is based on the
difference in computational difficulty in finding large primes as
opposed to factoring large numbers.

Briefly, the RSA system can be described as follows:

The receiver chooses two large primes p and q so large that factoring
m = p.q is beyond all projected computational capabilities. The
plaintext message M can be chosen from the range 1 M<m. The

ciphertext C corresponding to M is derived from the permutation

C=EM (mod m)

The plaintext M is retrieved from C by applying the inverse

transformation

MEZ O (mod m)

The receiver chooses e and d such that

{a) gcJ-(e, g (m)) = 1 where ¢ (m) is the Euler-totient
‘ function and in this case, it is equal
to (p-1) (g-1)

(b) ed=1 (mod @ (m)) (9.3)

In other words, e and d are multiplcative inverses in the group
formed by residue classes mod § (m).

The reason why this encryption-decryption scheme works is based on
the Euler-Fermat theorem [ 38] which states that for any integer M

which is relatively prime to m,
W™ = 1 (mod m) (9.4)
Using (9.3) gives,

yﬁ§ = M g (m) +1 (mod m) .for some_integer K.
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From (9.4), for all M such that p does not divide M

Mp—l

1 (mod p)
and since p-1 divides @ (m)
Mm@+l =y edp) (9.5)

When M = O (mod p), the equation (9.5) is obeyed trivially. Similarly
for q

KB (m) 1

M (mod q) (9.6)

Using Chinese Remainder Theorem (Appendix 10), equations (9.5) and
(9.6) imply that for all M,

Med

i

In this system, the numbers e and m are made public and they form the
encrypting key. The numbers d, p and q are kept secret and form the
decrypting key. If m can be easily factorized to p and q then the
cryptanalyst can find @ (m) and d and hence can crack the system.
This cryptosystem and its possible extensions form a major
part of this thesis and hence this system is considered in detail in

subsequent chapters.

9.6.,3 Diffie-Hellman Public Key Distribution System [ 35]

This public key distribution system makes use of the
apparent difficulty of computing logarithms over a finite (Galois)
fiel@d GF(q) where q is a prime.

Let ‘a' be a primitive element of GF(q) and let
X
y=a (modq) for 1 x £q-1

X is referred to as the logarithm of y to the base 'a over GF(q)

x = 1oga y over GF(q)
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Calculation of y from x is easy whereas computation of x from y is
mich more difficult, that is, it is an one-way function. This problem
is called the logarithm problem whereas the RSA system is based on the
root problem.

The key distribution occurs as follows. User i generates
a random number x5 chosen uniformly from the set of integers 1, 2,
e+ g=1. He then computes
y; = a*i (mod q)
and publishes y; and keeps xg secret. Similarly user j publishes
yj and keeps xj secret where

y; = aj (mod q)

The private session key, Kij’ is established by forming

- _X.X,
Kij = a'i’j (mod q)

User i computes Kij by obtaining yj from the public file and forming

X,
i vy i (mod q)

=
t

a*i¥5 = a%"i (mod q)

User j similarly computes Kij using yixj (mod q). For the opponent

to form Kij’ he must compute

ij ~ 71 3 (mod q)

Therefore if logarithms over GF(q) - are easily computed, the system
can be broken. A possible extension of this system together with

a practical implementation are described in Chapter 13.

9.7 Key Distribution Using Public Key For Groups of Users

Let us now return to the situation where members of a
group G wish to broadcast and receive messages from other members of
G and to access and update files private to G and consider three
other methods of key distribution for stich an arrangement. Method 1 is
given in Section 9.5.1l.
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9.7.1 Method 2_
This approach uses a public key distribution method such as
the Diffie-Hellman exponentiation method to distribute the group key.

Here each user i registers with the Key Centre KC a public

key vs a%i (mod p) where xg is only known to user i. The primitive
root 'a' and the prime p are known to all users in the network. The

user i transmits to KC a list of members of the group G.

i+ KC: i, G= { By Uyy sees un}

If the user i belongs to the group, then the Key Centre generates a

number x5 and sends it to user i enciphered under his public key.

X
O

+
v
=
1t

;"G (mod p)

The user i upon receiving the above message computes

-1
X,

(K6l

(mod p)

-1
a¥i’6*i  (mod p)

a’c {mod p)

That is, the group key KG is given by a’c (mod p). With th%s method,
storage of up to 2™_1 secret values of % is necessary either by the
Key Centre or by the users,where n is the total number of users and
the KC does not need to know the personal keys of the users X,

(1 £ ign).

9.7.2 Method 3

If the KC is however given access to users' personal keys,
a modification to the above public key distribution method is as
follows:
The group key KG is now made equal to

KG = ad* X2****** *h (mod p) (9.7)

when the ith member of G requests KG from the Centre, KC returns KG
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enciphered under the personal key X, . The master key is represented
by the list of personal keys. Another member of G may be able to
determine a*i (mod p) but he cannot compute x; without computing a
discrete logarithm. If p is chosen to be a large prime number, this

is not feasible.

Here the key centre KC needs to store only n personal keys. Although
the method uses a one-way function, it is not a public key distribution
method because the KC must have access to secret personal keys of the

Uusers.

Note that in both the schemes 2 and 3, for suitably chosen primes p
of the form p = 4q + 1 where q is also a prime, a = 2 is a primitive

TO0t.

9.7.3 Method 4

This method considers the establishment of the group key
KG given by (9.7) without the use of the Key Centre. It assumes a
special situation where the n users (O to n-1) are linked together in
a circular fashion, thus forming a ring. That is, user i always sends
messages to user i + 1 and user n-1 sends message to user O. The table
9.1 given in Figure 9.5 shows the messages received and transmitted by

user i at various time instants.

Time Instant Transmitted Message Received Message
1 a*i (mod p) a*i-1 (mod p)
2 a*i-1%i (mod p) a%i-2"i-1 (mod p)
: x. ,° aeeX. X, eseX.
r a’i-(r-1) i(mod p) a'i~r, "i-1 (mod p)
nel a¥i-(n-2)"""%i(mod p) a“i-(n-1)""""i-1(mod p)

Figure 9.5 - Table 9.1 Messages received and transmitted by user i.

At time instant t = r,the user i raises the message received from

user i - 1 at time instant t = r-1 to the power xg and transmits it to
user i + 1. The user i forms the group key KG by raising the

received message at time instant t = n - 1 to the power % . That is,

ceeX, x.

KG = a i-(n-1) i-1 “i (mod p)
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Every user in the network can arrive at this common group key by
raising the message received at the (n-1)th time instant to the

power of his secret key. Any intruder who does not belong to this
ring network cannot determine the group key by monitoring the
transmitted messages at all links in the network. A more generalized

version of this method has recently been published in [41].

9.8 Key Distribution Schemes for Prestel Encryption System

This chapter is concluded by considering possible key
management schemes for Prestel Viewdata system with encryption
facility.

Initially consider the case where a user i (information
provider) wishes .to store a frame (or frames) on Prestel database
which should only be read by user j. This is referred to as the
'Postbox system'. In this case, it is assumed that there is no direct
network link between the two users other than via the database. If
the user systems only allow DES type symmetric cryptography then the
frame key (the key with which a Prestel frame has been enciphered)
mist be exchanged via some secure courier. This is the only method
possible if it is assumed that Prestel is only used as a database and
does not play an interactive role in the distribution of keys.
However, if the user systems support public key cryptography, then cne
of the following two approaches can be adopted. )

The first approach uses a public key cryptosystem such as
the RSA system. Here the user i can encrypt the frame using the
public key of user j (this is assuming that the public file containing
enciphering keys of users is available, say, in the form of a telephone
directory). User j will then be the only person who would be able
to read the frame and not even user i can read the frame he had
entered. Alternatively, user i can generate a random frame key which
he can use to encrypt the frame using a symmetric algorithm such as
the DES. User i then encrypts this frame key using the public key of
user j and stores the result at the top of the frame. User j can
recover the frame key using his secret RSA key and then read the
Prestel frame. User i will also be able to read the frame as he can
keep a copy of the frame key which he has generated (say enciphered
under his own public key).
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The second approach uses a public key distribution system
such as the Diffie-Hellman exponentiation system. Here the user i
obtains the public key information v5 of user j from the public file

and performs xi,where xi is the secret key of user i,to form the

y
common key Ki;{ Then he generates a random frame key and uses it to
encrypt the Prestel frame. The difference between this approach and
the one above is that in this case, the frame key is enciphered under
the common key and is stored at the top of the frame. User j will be
able to read the frame as he can obtain the common key and hence the
frame key. Here again only users i and j will be able to xread the
Prestel frame.

Consider now the case where a group of n users who wish to
commmicate with each other via the Prestel database. That is, each
one of the n users should be able to read the frames entered by any
one of the others in the group. Amongst the members of the group,
existence of a privileged member referred to as the Manager is
envisaged. [The group could represent typically a small company or
an organization]. Further it is assumed that every member of the group
is linked to the Manager. In such a situation, the Manager assumes
the role of the Key Centre described earlier. Any user i who wishes
to enter an encrypted frame on Prestel initially establishes a frame
key with the Manager following the procedure outlined in Section 9.3.
This frame key can then be used to encipher the frame and stored at
the top of the frame enciphered under a master key of the Manager.
Apuser j belonging to the group can read the enciphered frame key
from the top of the frame and send it to the Manager who returns to
him the frame key enciphered under the user j's personal key. Thus
user j can decipher the frame entered by user i. With this approach,
in addition to the master key, the Manager is required to keep a
record of the personal keys of all n users and if there is more than
cne group, a record of members in each group. One can also use any
one of the methods 1 to 3 given in Sections 9.5 and 9.7 to establish
a group key among the n users using the Manager as the Key Centre.
Having established the group key, the user i can follow the usual
procedure of generating a random frame key and storing this at the
top.of the frame,this time enciphered under the group key. Thus any
user belonging to the group can read the frame. Method 3 (see Section
9.7.2) is seen to be the most attractive method as the Manager needs
to store a list of keys which is a polynomial function of the number

of users n.
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CHAPTER 10

EXTENSIONS OF THE RSA CRYPIOSYSTEM

10.1 General

As seen in the last chapter, the concept of public key
cryptosystems recently proposed by Merkle and Hellman [35) not only
provides a novel way of distributing the keys required for the
symmetric cryptosystems but it also gives rise to a class of
asymmetric public key cryptosystems with.digital signature capabilities.
From this stage onwards, the thesis mainly concentrates on the
analysis and the design of public key systems; in particular,the RSA
public key cryptosystem and the Diffie-Hellman public key distribution
system. Both these systems are of immense interest among the
cryptographic commumity at the present time.

Before considering some possible extensions of the RSA
system to matrix and polymomial rings, it is useful to consider some
design aspects of the RSA system over the rational integers. These
aspects are more or less applicable to the extended RSA systems

considered in subsequent sections.

10.2 Some Design Aspects of RSA System

As mentioned in Section 9.6.2, in the RSA system the
encryption is performed by raising the message x (1 ¢ x < m) to the
eth power modulo m and the decryption is performed by raising the
cipher y to the power d modulo m. That is

= x* (mod m)

<
1}

and

X
1}

= y? (nod m)

where m is equal to the product of two large distinct primes p and
q. The public encryption key is the pair of integers (e, m) and the
secret decrypticn key is (d, m). The coding exponents are chosen
such that they are multiplicative inverse of each other modulo $ (m)
and that x* is a permutation of the residue classes modulo m.

That is,-
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ed=1 (mod @ (m)) where ¢ (m) = (p-1) (g-1)

To design the RSA system, the user needs to choose two
large primes p and g to form the modulus m. The magnitude of the
moculus m is determined by the required difficulty of breaking the
designed system. The table shown in Figure 10.1,taken from [12],
gives an indication of the magnitude of m. The number of operations
computed for each value of m is based on the best known factoring

algorithm for large intergers. (see Section 10.3.1).

Number of

loglom operations Remarks

S0 1.4 x 1010

100 2.3 x 1015 At the limits of current

' technology
200 1.2 x 1023 Beyond current technology
400 2.7 x 1034 Requires significant advances
in technology
800 1.3 x 1051

Figure 10.1 Effort required to factor modulus m

Once an approximate idea of the magnitude of m is decided,
then the two primes p and q need to be selected randomly. The prime
number theorem states that the primes near m are spaced on the
average one every (ln m) integers. Thus even for large primes several
hmndred digits long, only a few hundred candidates must be tested
before finding a prime. Hence one needs to test whether a chosen
large number is a prime. There exists elegant probabilistic algorithms
[42] which decide with an atbitrarily small uncertainty if the chosen
number is a prime. The probabilistic algorithm consists of making many
independent tests and declaring the number to be composite when any
one test fails. If a test mistakes a composite for being prime with
probability f-%hen by using k such tests the probability that the
algorithm will incorrectly declare a composite to be prime is f-k.

Three tests of primality are commonly used [43) namely, the Fermat
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test, the Solovay-Strassen test and the Rabin test. In all these
cases, it is assumed that the tests are applied to the number b.

10.2.1 Primality Tests

10.2.1.1 Fermat Test

This test is based on the Euler-Fermat theorem previously
mentioned. The theorem states that if p is a prime then

1
ap-

1 (mod p) for all a, 1 ¢ a ¢ p

Thus the test consists of choosing 'a' less than the number b and
accepting b to be prime if ab_1 (mod b) is congruent to 1 (mod b).
In practice, only a few values of 'a' need to be tried and not all
‘a’' as indicated above. (Only a small number of composites pass this
test even a few times). It is recommended that approximately one
hundred tests be made to reliably conclude that the selected number -
is prime. It is generally believed that choosing a = 3 will identify
virtually all composites. The Carmichael numbers (eg.561 = 3.11.17)

are known to pass this test even though they are composite.

This test identifies the Carmichael numbers as being
composite. It picks a random number 'a' between 1 and b-1 and tests
whether

a(b-1)/2

ged (a,b) = 1 and J(a,b) = (mod b) (10.1)

where J(a,b) is the Jacobi symbol and ccd denotes the greatest

common divisor. The Jacobi symbol is defined as

1 when xg

J(a,p) = ?_1 " a (mod p) has a solution in z/p2

a (mod p) has no solution in Z/pz

iy

where Z/pZ denotes the ring of integers modulo p.

If b is prime, then (10.1) is always true and if b is composite (10.1)
is false with a probability of a ). Therefore making k tests yield
an answer that is wrong with a probability of 2-k when claiming the

input is prime. (When claiming the number is composite, it is always
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correct).

As b is necessarily an odd integer, representing b as
b=2"s +1 where s is odd, this test then chooses a number of
values of 'a' randomly in the range } to b-1 and accepts b to be
prime if either a® =1 (mod b) or a2’ Sz (mod b) for some j where

0 =3j< r. Otherwise b is rejected.

All the three tests can be carried out to check whether the chosen
number b is a prime or not. The failure probabilities of each test
are discussed in length in [43]. Note that this primality testing
procedure needs to be done only once by any system designer and all
these tests require computational effort of the order of O (logzb)
operations on large integers.

To confound certain factoring algorithms [45], it is
desirable to choose primes p and q such that p-1 and g-1 have a large
prime factor. This can be done by generating a large prime number b
and then letting p (or q) be the first prime in the sequence bi + ]
for i =2, 4, 6 ... Additional security can be provided if b-1 also
has a large prime factor. Furthermore, it is also advisable not to
choose p and q too close to each other. If p £ g, then 2/ m is a
good approximation of p + q. Knowing p + q gives immediately § (m)
since ¥ (m) = (p-1){gq-1) =m+ 1 - (p¥q). Further, the primes should
not be chosen to be any special primes such as the Fermat primes or
Mersenne primes as these are well studied and the resulting product

may be more likely to yield to attacks of factorization.

Having chosen the primes p and q, and hence m, the next
step is to choose the coding exponents e and d. To do this, the
user chooses a number d which is relatively prime to @ (m). This is
done by selecting a nﬁmber d (mod m) and computing gcd (d, # (m)).
This is done using the Euclid's algorithm given in the Appendix 11,
This not only checks whether d and @# (m) are relatively prime but
also gives the multiplicative inverse e. It is known that the gcd
function is computable in O (log,m) time [45]. It is necessary to
choose both e and d such that they are greater than logzm. If
e < logzm, then small messages will not be disguised by the modulo
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reduction process. That is, x° (mod m) = x° and the cipher is
breakable by brute force attack., If d is smaller than logzm,again
the system can be broken by a random search by the opponent to
determine its value. There is a further condition on the choice of
e. As mentioned previously, e needs to be chosen relatively prime to
# (m) or more exactly to 2cm+(p-1,q-1), for the function x° {mod m)
to permute the residue classes (mod m) (see Section 14.1). But this
perrmutation has fixed messages, that is, there are residue classes

x (mod m) which satisfy the congruence

x° 2 x (mod m) where e > 3 is odd and m = p.q (10.2)

It is known [ 46] that any solution of the congruence

X = x (mod m) (10.3)

also satisfies (10.2). Note that the congruence (10.3) has exactly
9 solutions in the range 1 ¢ x ¢ m=1, {m = pq). Thus the congruence
(10.2) will have at least 9 fixed messages. Blakely [47] has shown
that for the congruence to have only 9 fixed messages e must be

chosen such that god {e—l, fem (p~l,9=1 )} = 2.

10.3 Cryptanalysis of RSA System

The main cryptanalytical attack seems to be the determination

of the secret coding exponent d. There are basically three ways a
cryptanalyst might try to determine d from the publicly revealed
information (e, m).
10.3.1 Factorization of m_

' The factorization of m would allow the oppoﬁent to compute
¢ (m) and hence the secret coding exponent d using ed = 1 (mod @ (m)).
A large number of factoring algorithms exist [ 45] . The fastest
algorithm known at the present time can factor m in approximatel y
(1n my{108/1n In ©Ps .00 and is due to R.Schroeppel (unpublished).
The table given in Section 10.1 is based on Schroeppel's method and
it shows that a number m of 200 digits (decimal) long would provide

a margin of safety against future developments.
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Another method of cryptanalysis would be to somehow directly
determine @ (m) without factorizing m. It is shown in [12] that the
approach of computing ¢ (m) directly is no easier than factoring m
since finding § (m) enables the opponent to easily factor m. This

can be seen as follows:

p+rgq=m+1l @ (m)
(p-a)® = x° - am

Let x

and y

Knowing # (m), one can determine x and hence y. Using x and y, the
primes p and q are given by p = x + W and q = x = .
2 2

10.3.3. Determining d Without Factoring m or_Computing @ (m)
_ The third method of cryptanalysis consists of computing the

secret exponent d without factorizing m or determining $ (m). Again

it is argued in [12] that provided d is chosen large enocugh to make

a direct search attack infeasible, computing d is no easier than

factoring m, since once d is known, m could be factorized easily.

This can be seen as follows: If d is known, then it is possible to

calculate some multiple of @ (m) using
ed -1 =k ¢ (m) for some integer k

Miller [40] has demonstrated that m can be factored using any
multiple of § (m). The opponent,on the other hand,may hope to find
a d° such that it is equivalent to the secret exponent d of the
designer. If there are a lot of such d°, then one could use a brute
force search method to break the system. But all the d° differ by
the least common multiple of (p-1) - and (g-1) and if one is found
then m can be factored. Thus finding any such d” is as difficult as
factoring m.

. Now some possible extensions of the RSA system are

considered.

10.4 Extension of RSA System to Matrix Rings

10.4.1 Trapdoor_Rings_
Assume R is a finite ring [48] with 1 which is associative
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but not necessarily commutative. Suppose that members of the ring R
. . e .

are used as messages and that r € R is enciphered as r where e 1s

the published encrypting exponent. The trapdoor property can now be

n+l
=r

stated as follows:- there exists some integer n> o such that r
for all r € R. These rings are to be referred to as trapdoor rings.
For instance in Z/p2, rP=r for all r € R. More generally, if we let
R=F =GF(q), the field of q elements where q is a prime power (pk) then
r%r for all r € R. Further, if R and S are any two such trapdoor rings,
then the direct sum R @ S consists of vectors (r,s) withr € Rand s ¢ S
is another trapdoor ring say T. The number of elements in the ring T is
equal to the product of the number of elements in R and S. This above
process can be applied repeatedly taking vectors of arbitrarily many
components, each taken from some finite field. Considering finite
fields Eﬁi fo$ 1£i&j where qi's can be the same or different, the trap-
door ring R is formed by all vectors x:(xl,...,xj) where x; € Eqi for
1§i§€j. The ring R consists of Q) +Qpe-- 9 elements and the equality
rn+1=r is obeyed for all r € R where n is equal to (ql-l)(qz-l)...(qj—l)
or any multiple of it.

There are many finite rings which are not trapdoor rings;
Consider for instance, R:Z/pzz where p is a prime. Then, p?§p35...50
in the ring R but p#O in ring R. So the property that pP+1§p is not
satisfied for any n>0. More generally, for a ring R to be a trapdoor"
ring, it is necessary that R have no nilpotent elements except zero.
(An element, x, is said to be nilpotent if x?=0 and xﬂ-l#o for some
a>0). However,if we take an integer m to be a square free positive
integer say'HFpl.....pj'where all the pi's are distinct primes,then the
ring R=Z/mZ is a trapdoor ring. This ring can in fact be regarded as a
direct sum of finite fields F_Z @ F . @ ... @ F__ as described above.
If j=2, then this becomes the ;tandagd trapdoor ;ing used by the RSA
cryptosystem,

It has been suggested by Dr R Odqni that every finite
trapdoor ring is isomorphic to a direct sum of finite fields. The
argument relies on the use of Wedderburn's structure theory [49] for

semisimple rings. The main steps involved are as follows:

1. The ring R is trapdoor implies that R has no nilpotent

elements except O.

2. A finite ring without nonzero nilpotent elements must have a
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‘Fl'n.ih_
3. Alring with 1 and lacking nilpotents (#0) is a direct sum

of matrix rings with entries in a division algebra {skew

field) (Wedderburn's theorem).

4. If any of these matrices is not 1 x 1 then there will be

non-zero nilpotent elements in R.
S. Hence R is a direct sum of finite skew fields.
6. A finite skew field is necessarily commitative.

Thus a trapdoor ring R is a commutative ring with 1 which is
isomorphic to a direct sum of finite fields. (Note that two rings R
and S are isomorphic if there exists a function £ : R+ S which is
one-to-one and onto and satisfies f (rl hd r2) =f (rl) + f (r2),
f (r1 r2) =f (rl) f (r2) for all LTy R)

The original RSA scheme derived its message space from
Z/mz, the ring of integers modulo m where m is the product of two
large distinct primes p and q. Here other finite systems that might

serve as a basis for an extended RSA cryptosystem are investigated.

If the ring of all n x n matrices over the ring R = Z2/mZ
is considered, it is seen that the ring contains nilpotent elements
when n > 1. Consider for instance M = (% 3)over z/6zZ ; M2 = 0 (mod 6)
but M # 0 (mod 6). To overcome this problem, initially only the
group Mn formed by the non-singular matrices of order n, is selected
to form the message space of this extended system.

Let us first consider the finite group formed by matrices
of order n whose determinants are relatively prime to p and whose
elements are in Z/pZ (p prime). That is, the non-singular matrices
over Z/pZ are considered.

To begin with, the non-singular matrices over Z/pZ form a

finite group because (i) the product of any two members of the set

is congruent (mod p) with some member of the set, (ii) every member

has its reciprocal, that is, for any two members A and B, there
exist members C and D such that AB = C (mod p) and AD = I (mod p)
and (iii) the unit matrix is the 'identical' member of the group.

The order of the group formed by these elements can be
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shown to be equal to Np where

N, = (p"=1)- (P"=P) +-- (P - ) (10.4)

The arqument goes as follows: The elements of the first row vector

U of the matrix may consist of any of the p numbers except that

t;ey cannot all be zero since this would make the matrix singular.
There are therefore pn-l ways of selecting this vector. When Ql has
been selected, then 92 rmay be any of the pn possible vectors except
those which are congruent with k, U, (mod p) for k, = {08 1y wees
p-1}. This will be the case if and only if U, and U, are chosen to
be linearly independent. Therefore there are pp—p ways of selecting
92. Continuing this procedure, the expression (10.4) for the order
N_is obtained.

If non-singular matrices with elements over Z/pZ are used
as messages, then one can form a conventional cryptographic system
where the secret key contains the modulus p itself. The encrypting

(e) and decrypting (d) exponents can then be determined using
ed =1 (mod NP) (10.5)
The encrypting key is therefore (e, p, n) and the decrypting key is

(dy Py n). None of these keys can be made public and the encryption

and decryption procedures are as in the RSA system.

M® = C (mod p)
and (10.6)
3z m (mod p)

where M, C ¢ Mn (Z/pZ), non-singular matrices over Z/pZ

The above system can be modified to include the public key property
as follows: Suppose the modulus is a composite number m whose

factorization is
s

m = | I Pjrj (10.7)

j=1
Then the order Nm of the multiplicative group formed by non-singular

matrices of order n over Z/mZ is given by
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Nm = l I Nb-tj (10.8)

This ia a consequence of the Chinese Remainder Theorem (Appendix 10).

Let us first determine the order N_r of the group of non-
singular n x n matrices over Z/p'Z when o) ispprime and r > 1.

Let § be the homomorphism (48], mapping an n x n matrix A
over Z/pr+12 to A", a matrix over Z/prZ, via 33 (mod pr+1) —

r
aij ({mod p ).

0 : A —— A7
6 : M (2/p"z)— M (2/p"2)

This induces a surjective homomorphism between the linear groups
formed by these matrices, that is,

8°: @ (n, p°N)—» & (n, p)

Therefore using group theory [48]

r+l
G (n, p )

Kernel (g° )

ny

& (n, p°)

(where = denotes isomorphic to)

The kernel consists of the set of matrices which are mapped to the
identity matrix I (mod pr), ie,

1(mod p°) for 1§ i< n (10.9)

..
11

O(mod p°) for i # j (10.10)

a,.

1)
There are p possi?ilities for each of the equations (10.9) and (10.10)
giving rise to pn possibilities. Therefore using group theory, and
denoting order by the symbol #,

2
#a (n, pr't) PT OFEG (ny P) = ee. =

2
p # @G (n, p)
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N

But 4 G (n, p) 5

= (p™-1) (P"-p) ... (P"=p""') from (10.4)

Therefore

2
s @ (n, pr) - p(r-l)n (pn-l) .. (pn_pn-l)
= NTIr
P
2 .
. - (r.-1)n n n n n=1
N Iy - .'-'1 ., - LE N -—il . 10-11
L per P j (pJ ) (pJ %) (% P; ) ( | )

Substituting (10.11) into (10.8) gives the order N - Now as in the
RSA cryptosystem if m is made to be the product of two distinct
primes p and q this simplifies to

N = N N
m P’ g

(P"-1) (37-p) oo (B"-F"T) (@™-1) (d=q)ess (da7T)

Therefore for a message M

N
M® = I (modm)

and the coding exponents e and d are determined using

ed 1 (mod Nm) (10.12)

The expression of the order Nm depends on the structure of m, that is,

on its prime factors. This therefore can be used to form a public

key cryptosystem by choosing m to be a large integer (say 200

decimal digits) whose security is the same as that of the RSA system.
Although the order Nm cAn be used in finding e and d as in

(10.12), it is usually a large number. For instance, even for small

primes such as p = 13 and q = 23, the order is approximately

1.6 x 1022 for 3 x 3 non-singular matrices. Therefore it is

desirable to find the exponent, EXP, of the group, that is, the least

integer greater than zero such that

M 2 I (mod m) for all M.
EXP is a divisor of the order Nm of the group.
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Let us first consider the exponent of the group formed by the non-
singular matrices over Z/pZ, N%(Z/pz).
Let the exponent be 2 such that

a' = 1 for all A e M (2/pZ)

L= 1 (mod p) implies that x'—1 is divisible by the

Assume that p>n. A
minimum polynomial of A. As A ranges over the non-singular matrices of
order n over Z/pZ, x¥_1 mst be divisible by every monic irreducible
polynomial P(x) (#x) of degree ¢ n in Z/pZ.u Every irreducible
polynomial P(x) (#x) of degree u divides L1, Thus x*~1 must be
divisible by »® ~:1.
But

X1 = 0 (mod x°=1)
implies that a|b
Hence, -

0 (mod p'-1) for lsugn

©
1}

Therefore,

2= 0 (mod gem {p-1, ..., p -1}) certainly (10.14)
Furthermore, the matrix A given by

aad —

satisfies.AP = I # A (p>n)
That is, A has order p and hence p| {
Hence the exponent of GL(n,p), p>1, is given by

2
L= p em {p-1, p=1, eeep, p=1} (10.15)

Now for any A € hk (z/pZ), using Jordan's Canonical form, there exists

a non=singular matrix E such that
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r— —y
A
i Lo
.. 1
O A,
i
L -
ie,B:.L = Ai Ii + Ni for some upper triangular nilpotent matrix Ni

where Xi's are non-zero in Fpri for some riSn.

If the order of D is k, that is, AR (mod p), then as D = E—lAE,

this gives

(E_lAE)k - (E-lAE) (E_lAE) ...k times
= e lafE
S
Thus A = I (mod p)

Order of A = order of D = k = %m of orders of Bi' If Ni = 0, then
order of Bi is a divisor of pri-l. Hence the order of A divides

fem {Fhl. cecy pn-l} . Otherwise, BE ='k§ Ii will have such an order
and hence the order of A divides p fcm {p-1, ..., pn-l} .

A multiple of p in the expression (10.15) for the exponent & is
expected as the order given by (10.4) contains multiples of p.

Similarly,
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>
1))
]

I (mod q) for all A in M (2/qZ)
where

2
q fcm {q—l, q =1y eccey qn—l}

n
f

Therefore exponent EXP of the group Gl.(n,m) where m = pq is given by

2
Q,Cm (p .Q,Cm. {P-l’ p2—1, see pn-l} » q Rac’n {q—l.q —l’
n
see —1} )

Let us now extend this argument to non-square free modulus
m. First consider a matrix A in Mn(Z/ﬁZ). Let 6 be the natural
homomorphism from Z/p22 onto Z/pZ (p prime). From the above
argument

8(m)®F = 1 in M (2/p2)
= 9 (I)
Therefore,
O(At-I) = 0 (mod p) where t = EXP

This means that every entry in A'_I is some multiple of prime p and

hence

At.l = p B for some matrix B.
That is,

A' = 1+p8

AP = (1 + p B)P

Using the binomial theorem,

AtP 2

1+(®) pB+ () p B ...
I (mod p)

Therefore considering in general a matrix in Mn(z/ka)

k
Mn(Z/P Z) + Mn(Z/PZ)
K A+ 0(A)

k-
If § (A) has order t then A has order t or pt or pzt... oTr p lt.
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If

s
mn = l I b T,
i=1 *

then |

EXP = ficm {vl. v2. P VS} ‘
where

_ ) P §

v. T P; i (wi) (10.16)

and
2 n
Wi = pi fcm (pi-l. pi -1’ se e pi —1)

( assuming P; is greater than n for all i)

Again from (10.16), it is clearly seen that the exponent EXP depends
upon the prime factor decomposition of m.

The message space has so far been restricted to only non-
singular elements , Nh(Z/mZ). Theoretically, the message space
can also include some singular non-nilpotent elements. Consider for
instance, M2(Z/3Z). There are 48 non-singular matrices using (10.4)}.
But there are in addition, some non-nilpotent singular matrices

which could also be used as messages. Consider such a matrix X

a b

X = where A, a, b are in 2/32Z

Aa Ab
From the Cayley-Hamilton theorem [51], this matrix satisfies a

quadratic characteristic equation of the form
X2 - (trace X) X + (det X) I =0

.In the singular caSe, det X = 0., If trace X = 0, then X? = 0 and
, . . X? _ 4 _ .2 X? - X?

so X is nilpotent. If trace X # O, then = AX, X =2 =

as A2 = 1 for O #X e z2/32; thus 3 = A% = A% = X. Therefore

x1*2k= X for k > 0. Therefore for such non-nilpotent matrices X in

2/3z , x¥ = x.

Note that when n > 2, there may be singular non-nilpotent matrices
which do not satisfy an equation of the form xk = X. This happens

for instance when the minimal equation iS'X4 -'X? = 0. Or even —
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consider a non-nilpotent matrix X which contains a nilpotent block
as shown below

nilpotent () N o)

(o] non-singular 0 B

)

oo [
e |

As N is nilpotent for some k, Nk = 0 and hence

Thus in such cases, this would imply that it is not possible to
recover the message. These cases need to be avoided if one decides
to include such singular non-nilpotent matrices.

From cryptography point of view, the use of such singular
non-nilpotent matrices as messages may seem impractical as the sender
cannot easily recognize such matrices. In practice, one would like
to determine easily whether a message is within the acceptable set
or not. Even the restriction of messages to arbitrary non—singular
matrices may pose problems as the sender has no control over the matrix
elements but must accept what the plaintext dictates. That is, the
sender cannot ensure that his messages will always form non—
singular matrices (over any modulus). The sender is faced with the
problem of determining whether a plaintext message matrix is non-
singular or not. This involves finding the determinant of the nxn
matrix and then checking whether the determinant is relatively prime
to the modulus using the Euclid's algorithm. (Appendix 11). However
it will be seen in Section 10.4.6 that for large m, the probability
that an arbitrarily selected matrix is. non-singular is very much
close to 1.

One common approach to obtain an arbitrary non-singular
matrix over the reals is to have the diagonal entries of the matrix
message much bigger than the corresponding entries in the row and
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column but this 'diagonal dominance' does not always ensure that the
matrix will be non-singular when working over finite rings. For

instance, consider the matrix A below which is tdiagonally dominant'
p-1 1
1 p-1

Det A = p2 - 2p = O over Z/pZ, Hence it is seen that 'diagonal
dominance' is not applicable over finite rings.

A simple method to obtain arbitrary non-singular matrices
is described in Section 10.4.8 where system implementation is

considered.

10.4.3 Orthogonal Matrices Over z/mZ

Now let us consider the use of a special set of non-singular
matrices, namely the set of orthogonal matrices, as the message space
of the matrix based RSA system.

The set of orthogonal matrices over a finite field of p

elements forms a group as shown below.

Let Mi be a member of the set. Then Mit Mi = I.
t t. .t
MM, = M, M, ha
As iMJ) 5 My we have

MMH)E MM, = mEPmME MM, =T
b . | 1] J 1 i)
Hence the closure property is obeyed. Further (Mi ) = (M} ) =
Mty = M oana Nt M = MM = 1. Let J= M7 uwhere
i i i i ii i

JtJ = I and J is orthogonal. Hence the set of orthogonal matrices
over Z/pZ forms a group.

The order of the group formed by the nxn orthogonal matrices
has been worked out by J:MacWilliams [51].

For oid n, ie,n = 2a + 1 for some integer a, the order is given by
a=1
a 2a 2i
2* [} * -
i=0

For even n, ie n = 2a, the order is given by
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2 | i (p%2 = p°*) = 2(p>-1) 'ﬂ' (p22 - p1)

a
p+1 i=0 i=1

if -1 is a square in GF (p)
and the order is equal to

a=1
2(pa . (=1 )ai—:l) T" (Pza _ p21)

i=1
if -1 is a non-square in GF (p).

Using the Chinese Remainder Theorem, the order of the group of the
orthogonal matrices over Z/mZ, where m = plpz’ a square free integer,
is equal to

(order of orthogonal matrices over Z/PIZ) x {order of orthogonal
matrices over Z/pZZ). As the factorization of the modulus m is
required to calculate the order, one can use the group of orthogonal
matrices in the matrix based public key system.

Now the question how easy it is to construct an orthogonal
matrix message needs to be locked at. Cayley's theorem [S52] gives
an easy way of constructing an orthogonal matrix using a skew-
symmetric matrix over the reals. If S is a real skew-symmetric matrix
then I + S is non-singular because the characteristic roots of S are
purely imaginary and the matrix A = :;"2 is an orthogonal matrix.
But this is not applicable to finite fields as the determinant of
I + S can be equal to O (mod plpz). Thus one can use the Cayley's
technique to construct orthogonal matrix messages provided ‘one
ensures that the determinant of (I +S ) is rela.tively prime to
P,P,- 'l\.lote that if I +S is non-singular over Z/mZ (m = PP, )5
then I — S is also non-sinqular. This can be seen as follows:

Let W be the inverse of I + S (mod m). That is, (I + S)W = I
(mod m).

Then ((I +S)W)* = WH(I + S)° = w® (I=5) S I. Hence W' is the
inverse of (I - S) (mod m).

Hence to construct an orthogonal matrix message over 2/m2, an

arbitrary skew-symmetric matrix S over Z/mZ is chosen and I + S is
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formed. If I + s is non-singular over Z2/mz, then (I - S)/(I +S) is
constructed to form the message. But again the sender is faced with
the problem of determining whether the matrix I + S is non-—singular

or not.

Alternatively, let us now consider the set of upper
triangular matrices as a possible choice for the message space. 1f
the diagonal entries of an upper triangular matrix are made unity,
this ensures that the matrix is invertible over any mocdulus m as
the determinant is equal to 1.

Let M represent such an n x n upper triangular message
matrix. One can partition M into I + N where N is a nilpotent
matrix and I is the identity matrix. If M is in lﬁi(Z/pZ) then
(1+NYP =1 as. NP = O assuming p 3 n-1. The order of the group
formed by these upper triangular matrices U~ over Z/pZ is Pp(n-l)/z.

The order becomes mn(n-l)/z

when considering matrices Un over Z/mZ.
To determine the exponent EXP of the group formed by such upper

triangular matrices over Z/mZ,

let
1 a b
M= o 1 ¢ where a, by, ¢ ¢ Z/mZ
0 o] 1
and let
13 &
NF = O 1 ck
o] 0 1
Then

s
o
O

M*tl= [ o
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= 1 a+ak b+cak+bk

0 1 <:k+c
o 0 1
Therefore a ., = a*a implies that a = ka
= ke

O+l = e implies that %

and
Bey = DYRCAHY
N=1
.. by = k; BB
o
=S (b+kca)
b = Nb+ca (N-1) N
N —
2
Therefore
1 ka kb + k(k-l1) ac
2
!VF = 0 1 ke

0 0 1

For M° = 1 (mod m) to be obeyed, the following conditions must be

satisfied:

(i) ka = O (mod m)

(ii) kc = 0 (mod m)

(iii)y kb+k(k-1)ac = O (mod m)
2

To satisfy (i) and (ii) k = O (mod m)

To satisfy (iii) k(k-l1) = O (mod m)
2
ie 4, k(k-1) = O (mod 2m)

Therefore if m is even, the exponent, EXP, is 2m and if m is odd
then EXP is m. Therefore it is seen that both the order and the
exponent do not depend on the prime factors of m. Hence this cannot

be used in a public key cryptosystem but again one can use it in a
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conventional cryptosystem with the secret key (e, d, m, n) where
ed =1 mod (2m or m).

On the other hand, if the message space is altered to
contain upper triangular matrices with diagonal entries prime to m,
then such messages are invertible modulo m. This is not a serious
problem as in practice m is a product of large primes and the
diagonal elements can be chosen to be relatively small integers.

Now the order of the group formed by such matrices is determined as
follows.

Considering a nxn matrix, it is required that all the n
diagonal entries must be coprime to m. The number of integers less
than m and coprime to m is given by the Euler totient function @{(m).
The remaining % n(n-1) superdiagonal entries of the matrix may take
any value modulo m. Therefore the order is equal to mn(n—l)/2¢(m)n.
The vital difference between this order and the one calculated above
is that now the order of the group is dependent on the prime factors
of m. Hence the modulus m needs to be factorized before the
decryption exponent d can be calculated using ed = 1(mod(order)).

As for the set of non-singular matrices, one can determine the
exponent of the group formed by these upper triangular matrices with
diagonal entries prime to m. The exponent can be used instead of
the order in finding e and d.

Initially, consider a square free modulus. Let
s
m= l l _p.
j=1

Consider first a message M in z/plz whose diagonal elements are

relatively prime to P,

11 '
M= - where (aii'pl) =1, Vi

1£ign
Partitioning the matrix M into a diagonal matrix D1 and an upper
triangular nilpotent matrix Uy, that is, M = D1 + Ul’ then it is

seen that Dl'Ul’ Ul'D and U12 are also upper triangular nilpotent.

1
Then inductively,
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if M = Dir + Ur’ we have

Mr+1

r
(D, + ) (D" +U)

r+l r
= Dl + ulD1 + DIUr + UlUr

|8 - )

nilpotent upper triangular

r+l
1 r+l

Hence

WP(Py)

I+ U¢ {mod pl)

[}
-
+

(1 + U¢)pl U¢p1 (mod p, )

2 p 2
U¢ 1 (mod pl)

]
-t
+

.

(I +=U¢)Pl

. :
Thus Mpl ¢(p1)

I (mod pl) for some t.

If P, > n-1 then t = 1. Therefore the exponent of upper triangular
matrices with coprime elements along the diagonal is ¢(pl).pl
s
If m= ]_T.pj then the exponent divides
j=1
gem {B(p, )ePy s BlP,)ePyseees B(Pg)-P; |

If m is made to be a non-square free modulus given by
S
m-l Iprj
3
i=1

then a bound for the exponent can be calculated as follows:

First consider an nxn upper triangular non-singular matrix M over
Z/prz s (P > n)s Again let M = D1 + Ul where Di is a diagonal
matrix and U, is an upper triangular nilpotent matrix over Z/p‘z

Following the argument given above, it is seen that

M)

1+ u¢ (mod "pT)
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where U¢ is some upper triangular nilpotent matrix.

Hence

(1 + U¢)P 2 1+p. U¢1 (mod p¥)

P = 2, r
(I + p: U¢£ I+ ? U¢z (mod p~)
. ! r
(I1+p.u, P = (1+u)P S1+p°.U, (mdp")
8.1 @ &, :
=1 (modp’)

Therefore

BETH PT 2 I (modpF)

Hence the exponent of the group formed by upper triangular non-
singular matrices over Z/mZ, where m is a non-square free modulus

given above, divides
r b 4 r r r r
chm {¢(p1 1 )pl 1’ ¢(p2 2)p2 2 p woey ¢(ps S) ps S }

Finally, let us consider the group of linear fractional
substitutions over Z/mZ, where m is equal to the product of r
distinct primes to see if such a group is suitable for a trapdoor
system. The linear fractional group LF(n,m) is very much similar
to the linear homogenous group GL(n,m) considered earlier. Here
only the case n = 2 is examined. First consider the group LF(2,p)
where p is a prime. These substitutions are of the form
u:x > -f;—:——g' over Z/p*Z ={ 0y 1, ceey P-l, = }

The symbol « is adjoined to represent any formal quotient y/O where
y is a non-zero element of the field. The linear fractional
substitutions LF(2,p) can be obtained from the linear homogenous
substitution GL(2,p) on variables x, and x, by setting x = xi/xb.

The number of transformations of the form u is finite and they form
a group as the product of any two substituticons is also a
substitution of the same form. The order of the group LF(2,m) can be
determined as follows,where m = 'qu'pi .
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For u to represent a substitution, it is required that the
matrix (: 2).be invertible, that is, the determinant ad-bc Prime to m.

Now let us consider the two matrices

ab Aa Mb
(c d) and Qc .Xd) where \¢ 2Z2/m2Z

The corresponding two substitutions represented by

ax + b and A_(ax + b) over z/mz
cx + d . A (cx + d)

are identical if (A, m) =1

Consider the matrix Mp given by

- P P '
M = where a d - b c 0O (mod
odo = e, O (md p)

If the condition that det M I}é_o (mod p) can be satisfied by choosing
ap, bp, cP and dp appropriately, then the Chinese Remainder Theorem

(Appendix 10) allows us to find a, b, ¢ and d over Z/mZ such that:

a= ap (mod pl), a = ap (mod p,)e.. a = ap (mod pr)
1 2 r
and similarly for b, ¢ and d.
Thus the order of LF(2,m) can be found by finding the
orders of LF(2,pi) for 1 ¢ ig r+ The number of possible values of
A which result in identical substitutions is given by the Euler

totient function ¢(pi) for each p;. Thus the order is given by

r.
T1 #uFe2,p))

# LF(2,m) =
by
1r Blp;)
But
# LF (2,p) = # GQ(2,p)

(p2-1) (pz-p) from Section 1Q.4.2 with n=2
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r

8 LF2m) = T (p%-1) - (py° - p;)
(p;=1)
r
#LF(2,m) =TT (p, +1) p; (py-1)

Thus as the order depends on the factorization of the modulus m, this
is suitable for a trapdoor system. The messages are of the form

(: 2) with a, b, c, d€ Z/m2 and ad-be # 0 (mod m). The encrypting
and decrypting exponents e and d can be determined using ed = 1

(mod # LF(2,m)).

10.4.6 Proportion of Non-Singular Matrices Qver Z/mZ

The extended RSA system described above requires the
message space to consist of either aitrary non-singular matrices or
orthogonal matrices or invertible upper triangular matrices including
the diagonal elements over Z/mZ. In the first two cases it is required
to choose arbitrary message matrices which are non-singular. In the
case of orthogonal matrices, recall that one method of forming a
message requires the matrix (I+S) to be non-singular. Hence some
bound on the fraction of nxn matrices which are invertible modulo m
will be useful. If the elements of the nxn matrix are chosen
uniformly from the integers modulo m, then these bounds can be taken
as the bounds on the probability that the matrix is non-singular.

An nxn matrix M has an inverse modulo m if and only if the
rows (colums) of the matrix form a linearly independent set of
vectors modulo m. Using the argument given in Section 10.4.2, if
m = p, a prime, then the number of invertible matrices (mod p) is
given by

n-1

(P"-1) (p"-p)e--(p"-p") = E (0"-p")

The tgtal number of nxn matrices with elements over Z2/pZ is equal

to pn . Thus the proportion of invertible matrices (mod p) is equal

to
n-l n i
T (p-p)
i=1
2
n
P
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(1-1/_n) (1=p/_n) ... (1—p“‘1/pn)
n

1T a™

i=1

Thus as the size of the prime increases, the probability that a chosen
matrix is non-singular approaches 1. If the proporticn of non-
singular matrices over Z/mZ is considered,where m = TETp., then it is

equal to )=l

X n .
I l n 1

j= i=1
2
— n
( 3 pj)
J=1
r n i
= TT ]—r (2-p. )
j=1 i=1 J

Similar expressions can be found for the proportion of non-singular
matrices over Z/mZ,where m is a non-square free integer,using the
expression for the order Nm derivsd in Section 10.4.2. The
proportion is then given by Nm/mn . From the cryptography point of
view where m is a large integer composed of a few large prime factors,
this proportion is very much close to 1. Even for small primes
p1=13 and p2=23, the proportion is approximately 0.87, for n=2.
10.4.7 System Design and Operation

The designer randomly chooses large primes P, t° P, for
some r > 2 following the guidelines suggested in Section 10.2 and
these are kept secret. But the primes need not be necessarily
distinct. Then he specifies what his message space is going to be,
whether it consists of arbitrary non-singular matrices or orthogonal
matrices or upper triangular matrices with invertible elements along
the diagonal. This information along with the dimension n of the
matrix message is made public. Then he determines the coding
exponents e and d using the equation ed = 1 mod (Order or Exponent).
The order and the exponent expressions for the different message
spaces are given in the earlier sections. The public encryption key

is therefore given by (e, m, n) and the secret decryption key is - -
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(d, my n). The system is also suitable for authentication purposes
like the RSA system.

A general procedure to construct a matrix message is as
follows. The plaintext message is divided into blocks of integers
less than the modulus m and a sequence of nxn message matrices Mi
is constructed by arranging the integers in order as they occur,
left to right and top to bottom. The encryption procedure consists
of raising each of these plaintext matrices to the power e modulo m.
The ciphertext matrices, Ci' produced are then transmitted to the
receiver by sending the ciphertext matrix elements in order as they
occur in the matrix, left to right, top to bottom, with a space
separating the elements. The receiver recovers the original message
by first reconstructing the sequence of nxn ciphertext matrices and
then raising each matrix Ci in the sequence to the power d modulo
m. Thus the main operation in both the encryption and decryption
procedures consists of raising an nxn matrix to some power modulo m.
This can be performed using the Square and Multiply Technique [45]
which is now briefly described. .

10.4.7.1 & a£e_a£d_M.|_.1_13:_iglz Technique

Consider the binary representation of the encryption
exponent €. Each 'l' in the representation is now replaced by a
pair of letters SX and each '0' is replaced by the letter S. The
symbol SX which appears at the left is now crossed off. The result
is a rule for computing M€ if S is interpreted as the squaring
operation and X is interpreted as the multiplying operation by M.
Each of these operations is performed modulo m. The flowchart of
the algorithm is given in Figure 10.2. If the encryption exponent
is chosen to have only a few 'l!' digits in its binary representation,
this will make this algorithm run faster than if the exponent has a
random binary representation. A similar procedure can be carried
out for decryption using the exponent d.

Further, the intermediate computations need not be reduced
over Z/mZ but rather over Z/kmZ for any positive integer k. The
final answer is computed by reducing the answer over Z/kmZ into
Z/nz. This gives the correct answer because(al.a2 {mod km))=

al.az'(mod m).
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Let e = (ekr «--y €p/ ey) e; € G F (2)

- ((START D)

v

INITIALIZATION
je—1
Ce—1

‘NO e(i):l?

All operations are modulo m

Fig. 10,2 - Algorithm for computing M° (mod m)
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10.4.8 System Implementation

This extended RSA system using matrix messages has been
similated on the Prime mputer. The encryption and the decryption
of message matrices have been performed using the Square and

Multiply Technique given above.

10.4.8.1 Non-Singular Matrix Messages_

In the case of non-singular matrix messége space, the
message matrix M is constructed according to the general procedure
given in Section 10.4.7 and its determinant is calculated using the
program DETMOD.F77 given in Appendix 12. Then Euclid's algorithm
is used to test whether the determinant is relatively prime to the
modulus m. If so, the message is raised to the power e over Z/mz
using the program MATEXP.FIN given in Appendix 13. The same program
is used to decrypt the ciphertext matrices with exponent d. Recall
from Section 10.4.6 that the probability of an arbitrarily -chosen
matrix message M over Z/mZ,where m = pq and p and q are large primes,
is non-singular, is very much close to 1.

One can also construct an arbitrary non-singular matrix M
over Z/mZ by multiplying together an upper triangular matrix U with
unit diagonal and a lower triangular matrix L with unit diagonal over
Z/m2. The elements other than the diagonal ones in U and L can be
arbitrarily'chosen mocdulo m. As both U and L are non-singular over
Z/mz, M = LU is non-singular over Z/mZ. Further the non-commtativity
property of matrices (UL # LU in general) ensures that the opponent
still needs to factorize m to be able to calculate the decrypting
exponent d, in contrast to the case of upper triangular matrices
with unit diagonal considered in Section 10.4.4. That is, M =
(L) # USL%. Thus although US%1 S U (mod m), L% S L (mod m)
where ed, =1 (mod m or 2m) (see Section 10.4.4), M9 Z M (mod m).

M (mod m) where ed £ 1 mod (#G& (n,m) or EXP G.{n,m))

1

However M

(see  Section 10.4.2). The receiver can obtain the matrices L and U

uniquely given the matrix M.

— o — — e sk — —

In the case of upper triangular matrix messages with
invertible diagonal elements, the message matrix is again constructed
according to the general procedure given in Section 10.4.7. The

lower triangular section of the message (excluding the diagonal) is
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set to zero. The diagonal elements are almostarbitrarily chosen to
be relatively prime to the modulus m. This can be done provided they
are relatively small, as the prime factors of m are normally very
large. Again these messages are encrypted/decrypted using the
program MATEXP.FIN given in Appendix 13. Note that in this case,
only the upper triangular entries of the ciphertext matrices (ie,
ﬂigil) elements of each ciphertext matrix) need to be transmitted

to the receiver.

An example in each of these two message spaces showing the

various parameters involved is given below.

10.4.8.3 Example 1 : 2 x 2 Non-Singular Matrix Messages

Let the modulus be m = pizp2 = 325 = 45
Exponent of the group formed by 2 x 2 non-singular matrices over

z/45Z divides gem{ v

1Y

5}
where
3> fem {3,3-1,9-1}

fem {5, 5-1,25-1}

3 %cm {3, 2, 8}
tem {5, 4, 24}

Vo

Thus EXP is a divisor of 1080. Hence the coding exponents e and d
are given by
ed = 1 (mod 1080)

One pair (e, d) which satisfies the above congruence is e = 23, 4d = 47.

Let us assume that the plaintext message to be encrypted is 81334.
Dividing the message as (8 13 3 4), the plaintext message
matrix can be constructed as
8 13
P= 3 a

The determinant of P is equal to -7 = 38 (mod 45) and (det P, 45) = 1.

Hence P is non-singular (mod m).

The ciphertext matrix is then given by
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0
ne
o
1}

23
8 13 (mod 45)°
3 4

38 34

(mod 45)
39 31

This ciphertext matrix is transmitted to the receiver as(38 34 39 31).

. . d
The receiver reconstructs the matrix C and computes C (mod m) to

obtain P. That is,

3 (38 34 47

C (mod 45) = 39 2 (mod 45)
_ 8 13)
= (3 a (mod 45)
= P

Let the modulus m = p.q = 41.29 = 1189
Exponent of the group formed by 3 x 3 upper triangular non-singular
matrices over Z/1189Z divides

gcm {40.41, 28.29} = 332920
Choosing the encrypting exponent, e = 1317, the decrypting exponent
d can be calculated using Euclid's Algorithm (Appendix 11} and is
equal to 117293. That is,

1317. 117293 = 1 (mod 332920)
Let us assume that the plaintext message to be encrypted is
232677205141. In this example, the message is divided into 2-digit
blocks of integers less than m starting from right to left as

(23 26 77 20 51 41)

The upper triangular plaintext message matrices then become

90 23 26 31 20 51
P, = 0 50 77| ,P, = 0 215 41
O O 48 0O O 289
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where the diagonal elements are arbitrarily chosen to be relatively
prime to m (=1189).

The ciphertext message matrices are then given by

1317
90 23 26 1105 458 1070
<:1 = o 50 77 = 0 50 251 (mod 1189)
0O 0 48 o] (o] 831
1317
31 20 51 843 774 660
c2§ 0215 4 = 0 592 41 (mod 1189)
0O O 289 0 0 405

These ciphertext matrices are transmitted to the receiver as
(1105 458 1070 SO 251 831 843 774 660 592 41 405).

The receiver reconstructs the matrices C1 and C2 and computes
CId (mod m) and C2d (mod m) to obtain P, and Pé and hence the

1
plaintext message. That is,

117293
1105 458 1070 90 23 26
cl"'l = O 50 251 = 0O 50 77 |(mod 1189)
o) 0O 831 0O O 48
; 117293 .
843 774 660 31 20 si
c2d = 0 592 41 = 0 215 41 |J(mod 1189)
o} 0 405 O O 289

10.4.9 Discussion_

Thus one can see that the RSA system can be generalized to
matrix rings provided the message space is restricted to avoid
nilpotent elements. The group of non-singular matrices over Z/mz,
the group of orthogonal matrices over Z/mZ and the group of upper
triangular matrices over Z/mZ with diagonal elements coprime to m
have been investigated. From a practical implementation point of
view, the upper triangular (non-singular) matrix message space seems
to be the better candidate as the messages can be constructed in an
almost aghitrary manner. In the case of nonesingular and orthogonal
matrices, an additional procedure to find the determinant of the
message matrix is required. From Section 10.4.6, it is seen that

for a large enough modulus, the probability that an arbitrarily chosen
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message matrix is non-singular is very much close to l. Further if
the non-singular matrix is constructed as a product of upper and
lower triangular matrices, then it seems that arbitrary non-singular
message matrices can be easily constructed.

For a cryptanalyst to break the system by computing the
secret decoding exponent d, he needs to find the order (or the
exponent) of the group. In all the three cases, it is seen that the
factorization of the modulus is required to compute the order (or
the exponent) of the group. Provided m is chosen to be a large
integer (say 200 decimal digits long, see Figure 10.1), this provides
a secure system. Other attacks such as the computation of the order
without finding the prime factors of m and determining the secret
coding exponent d without factoring m or calculating the order can
be shown to be as difficult as factoring m using similar arguments
10 those given in Section 10.3. Thus this extended matrix RSA
system provides a similar level of security as the RSA system over
integers.

Further two points are worth mentioning regarding this
extended system. Firstly it is seen that a non-square free modulus
can be used with this system which is not possible with the RSA
system over integers. That is, powers of primes can be used to form
the modulus m. Secondly, the use of a matrix as a message allows
large amounts of data to be processed within one encryption/decryption
cycle. Whether this is an advantage depends upon the ease with
which ratrix manipulation can be carried out in real time.

Also the use of a matrix as a message may provide scme
extra features to the system. Consider,for instance, a non-singular

message matrix divided into blocks as shown below

where M& and M2 represent genuine message blocks whereas x1 and x2 are
redundant random blocks. Encryption of such a message M would truly
'internally' mix the message elements and the random elements in the
matrix. In the case of RSA system over integers, a similar effect

can be achieved by sending a sequence of ciphers which contains some
random elements. For instance, the sequence may be CI’ xl,cz, Xpyoer
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where <4 represents genuine cipher and x; represents random cipher.
In the former case,the internal structure of the matrix and in the
latter case, the pattern of the sequence need to be prearranged
between the sender and the receiver. In the case of the matrix
system, the knowledge of the internal structure of the matrix does
not give any help to the opponent as the message is enciphered
*internally' and hence this information can be made public. In the
latter case, however,the knowledge of the pattern sequence helps the
opponent to discard the random ciphers and hence this information
cannot be made public. The use of chaining techniques in such matrix

systems is considered in Chapter 1l5.

10.5 Extension of RSA System to Polynomial Rings

Another ring of special interest is the polynomial ring
R [x] which consists of polynomials whose coefficients are elements
of an atbitrary ring R. A possible extension of the factorization
trapdoor system in the ring of polynomials R [ x] is considered. In
particular, to begin with,the ring F [x] where F is a finite field

is looked at.

10.5.1 Concept of Galois Field

Let P(x) be a given polynomial in x of degree n with
integral coefficients not all divisible by a given prime p. Let
F(x) be any polynomial in x with integral coefficients. On dividing
F(x) by P(x), a quotient Q(x) and.a remainder of degree n-=1 at most
is obtained, where the remainder may be written in the form f(x) +

P q(x),and

f(x) S a +ax+a X+ +a _x
-~ ‘o 1 2 *** " “pel

Each of the coefficients a, belong to the set {0, 1, 2,...,p-1} and

q(x) is a polynomial with integral coefficients. That is,
F(x) .= f(x) + p q(x) + P(x).0Q(x)
The totality of functions F(x) which can be obtained by holding f(x)

fixed and varying q(x) and Q(x) in all possible ways, subject to

maintaining the named properties of q(x) and Q(x), constitute a’ --
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class of residues which is completely determined by f(x), the given
prime p and P(x). Two polynomials in x with integral coefficients
are congruent moduli p and P(x) if and only if they belong to the
same class of residues moduli p and P(x). The number of distinct
residue classes moduli p and P(x) is equal to the number of functions
of the form f(x). Since each of the n independent coefficients a;
can take any one of the p values, there are pn possible residue
classes. These residues constitute a finite field called the Galois
field [54]. If P(x) is not irreducible modulo p or if p is not a
prime, then the residues do not form a field since at least two non-

zero residues can be found whose product is O moduli p and P(x).

Using this concept, one can design a conventional crypto-
graphic system as follows. Since the number of residue classes is

finite, it must be possible to find two numbers r and s such that
r - .5
(£(x))" = (£(x))” modd (p,P(x))

The non-zero elements f(x) of the extension field GF(pn) form a
miltiplicative group. The order of this group is equal to pp-l,
that is,

1+ kip=1) =

(£(x)) = f(x) modd (p,P(x))}

where k is an ambitrary non-negative integer.

The system designer chooses randomly a large prime number
p (see Section 10.2) and a high degree irreducible polynomial P(x)
over GF(p) of degree n. (See Sectioﬁ 10.5.2.1) The message space
of this cryptographic system consists of polynomials {m(x)} belonging
to F [x Jwhere F is the finite field GF(p). The messages are
represented as blocks of sequences of p-ary digits each of size n
associated with a polynomial m(x) over GF(p) of degree less than n.

The encryption and decryption coding exponents are determined using

n
-

ed

ie 1] ed

mod (order)

1 mod (p-1) (10.17)
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The encryption procedure then consists of raising the message

polynomial to the power e to form the cipher polynomial, c(x)
= e
c{x) = (m(x)) modd (p,P(x))

The decryption procedure consists of raising the cipher polymomial

to the power d to obtain the message polynomial using
- d
m(x) = (c(x)) modd (p,P(x))

The encryption key is (e, p, P(x)) and the decryption key is

(d, p» P(x)). Both these keys need to be kept secret since the
knowledge of the encryption key would allow the opponent to
calculate d using (10.17) and vice versa. Hence this does not give

-

rise to a public key system as such.

Note further that the probability that c(x) = m(x) modd
(py P(x)) is equal to gcd (e-1, p'-1)/p" and this proportion can be
made small by the system designer through appropriate choice of e,

p and n.

This actually is the generalization of the Pohlig-Hellman
secret key scheme over GF(p) to abitrary finite fields GF(pP) where
p is a prime and n is a positive integer. Note that the field
GF(p") is isomorphic to Zz/pZ [x] /P(x) where P(x) is an irreducible
polynomial of degree n over Z/pZ.

This can be further extended to the case where the system
designer chooses high degree irreducible polynomials Pi(x) and large
distinct primes P; for 1<5iss. Let the degree of irreducible
polynomials be n, for 1%i$s. The coding exponents e and di can

then be determined using

e.d.

9 1 mod(pi-l) for 1<iss

The message is divided into groups of s blocks where the ith block
is of size n, and consists of a sequence of p;-ary digits. The ith
plain block is associated with a polynomial mi(x) of degree less

than .. The ith cipher block ci(x) is produced using

c (x) = (mi(x))e modd  (p;, Py(x)) for 1giss
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form a polynomial of degree n

Now let n = maximum of (n,s...n_}. Each c.(x) is now extended to
max 1 s i

max-l by randomly generating the extra
coefficients required over Z/piZ for 1€i¢{s. Thus there are s
polynomials each of degree nmax-l with coefficients over Z/piZ for
1§i¢s. These polynomials are combined to form a single polynomial
c(x) over Z/mZ where m = g:q P; using the Chinese Remainder Theorem
(Appendix 10), ¢(x) is the cipher polynomial which is transmitted to
the receiver. The receiver reduces the polynomial c{x) modd (pi,xpi)

to obtain ci(x) for 1<$igs. Then he uses the coding exponents di’ to

obtain mi(x) using mi(x) (ci(x))di mod(pi,Pi(x)) for lgigs. Hence
the encryption key consists of (ei. P Pi(x)) and the decryption
key consists of(di. p;» P;(x)) for 1<igs. Note that this is still

a conventional (symmetric) cryptosystem.

The above method can be modified to give a public key
system. This has been first proposed by Kravitz [s5]. This is
based on the difficulty of obtaining the degrees of the irreducible
factors of a polynomial of large degree over a finite field, F =
Z/pZ, p prime.

. Let f(x) be a polyncmial of degree s which is equal to
the product of r distinct irreducible polynomials over Z/pZz. That is,

£(x) = I (x)s Ty(x) eee M (x) (mod p)

where Hi(x),lsiSS.are distinct irreducible polynomials of degree s, -
Then s = Sy ¥ Sy, ¥ een +s = iél S;

Let the message space consists of {m(x)} where m(x) is a polynomial
over 2/pZ of degree less than s. Then the set of polynomials of
degree less than s and relatively prime to f(x) form a multi-
plicative group modulo f(x). [Two polynomials are said to be
relatively prime if their greatest common divisor has degree O
(ie, a constant -polynomial ). That is, two polyﬁomials h1 and h2
are relatively prime if ah1 + bh2= 1 for some polynomials a, b in
z2/pz [x]].

Hence
order

(m(x))

1 modd (p, f(x))

The order of the group is determined as follows.

First let us consider a slightly different case where
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f(x) = ngl(x), a non square free polynomial (although it is said
earlier that f(x) consists of distinct irreducible factors mod p).
Here the degree of the message polynomial m(x)} is less than the degree
of ngl(x). that is, less than 95, ° In addition, if the greatest
common divisor of the degrees of m(x) and Hl(x) is greater than O,

then
m(x) = [, (x).h(x)

where the degree of h(x) is less than 9,5,-8; = s (91-1)

Total number of polynomials{m(x)}of degree less than 95, is equal to
1F1915%1 = p%1°1. within this set, the number of polynomials m(x)
which are not relatively prime to H (x) (that is, which are multiples
of [l (x) and for which h(x) exists) is equal to the number of such

lFlS (91 -1)

polynom;als h(x) possible, There are such polynomials

h(x) and hence there are ]Flsl(gl-l) polynomials m(x) which are

multiples of Hl(x). Therefore, the order of the group is given by

[F] %1% - |F|51(5"1)
Thus if r
f(x) = E"igi (x) (mod p)

then, the order of the group becomes
r
l l (]F,gisi - ,Flsi(gi-l) (10.18)
=1

In this case IF‘= p. Substituting this into the above expression

gives

T_r p i%i - psi(gi-l):> (10.19)

i=1

In particular, if 9; = 1 for all 1lgigr, (that is, f(x) consists of
distinct irreducible factors) then the expression (10.19) becomes

r

TT (p°t -

i=1

As will be seen later in Section 10.5.3 the polynomial f(x) needs
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to be square free for cryptographic application.

10.5.2.1 System Design and Operation

The system designer randomly chooses a large prime p and
r distinct high-degree irreducible polynomials over Z/pZ, [I 1(x) to
Hr(x), with degrees S, to s .

The chosen number can be tested to check if it is a prime
using the primality tests given in Section 10.2. A chosen polynomial
can be tested to see if it is irreducible over Z/pZ as follows:

From [56], a polynomia% P(x) of degree n is gfreduc?ble in 2/pZ if

and only if P(x) | (> -x) and ged (P(x), »* ‘-x) = 1 for 1gigk

where n = u, ... u and u.'s are primes and n, = n/ui. Thus to

test whether a chosen polynomial P(x) with degg?e n is irreducible

over 2/pZ, the designer computes gcd (P(x), <& 1-x) and tests whether
it is equal to 1 for all i, 1<ig¢k, Berlekamp [56] shows that a
randomly chosen polynomial of degree s is irreducible with probability
l/si. Thus an average of Sy tries is required to find an sith degree
irreducible polynomial.

Having selected the irreducible polynomials Hl(x) to
Hr(x)’ the designer forms their product f(x) which is of degree s
where s = igi S;* The polynomial f(x) and the prime p are then made
public information. The r distinct irreducible factors of f(x) are

kept secret. The coding exponents e and d are calculated using

ed 1 mod (order) (10.20)

r

where order

(p°i-1) : (10.21)
i=1

The public encryption key is (e, p, f(x)) and the secret decryption

key is (d, p, f(x)). The message is divided into blocks of size s

consisting of sequences of p-ary digits. Each such plaintext block

is associated with a polynomial m(x) of degree less than s. The

encryption procedure then consists of raising the polynomial m(x)

to the power e using

(m(x))® wodd (p, £(x))
and the decryption procedure is given by
m(x) = (c(x))? modd (p, £(x))

c(x)
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The above scheme can be used as a public key system as the order is
found to depend upon the degrees of the irreducible polynomial factors
of the composite modulus polynomial thus providing the trapdoor

property.

10.5.2.2 Security of The System

The above scheme is not as secure as the RSA system over
integers or the matrix based RSA system considered earlier due to
the following reasons.

Following Section 10.3, the main cryptanalytical attacks
consist of finding the order (expression (10.21)). Once the order
is found, the cryptanalyst can determine the secret decoding exponent
d using (10.20). The order expression contains the degrees of the
irreducible factors of f(x) and the prime p. As the prime p is
made public, the security of the system relies on the difficulty of
factorizing the polynomial f(x) into its irreducible factors. Further-
more, the same decoding exponent d works for all sets of]Ti(x) for
i =1 to r with same degrees S;e 1<£igr.

It is generally true that factorization of a polynomial
over a finite field is not a hard problem in sharp contrast with the
factorization problem of a large integer. BRerlekamp [57] proposed an
efficient algorithm for factoring polynomials in Z/pZ where p is prime.
For large prime p, Knuth [45] suggests some modifications to the ’
Berlekamp's procedure. Here the Berlekamp's procedure is briefly
described. The basic strategy of Berlekamp's method of factoring a
polynomial in Z/pZ is to translate the problem into that of solving
a system of linear equations with coefficients in Z/pZ and finding
greatest common divisors. Both of these steps can be done using
known methods in a finite number of steps. The idea behind the
algorithm is now briefly outlined.

Suppose that f(x) has degree s and suppose that a
polynomial h(x) can be found in Z/pZ of degree greater than or equal
to 1 but less than s such that

£(x) | (h(x))P = h(x)

If degree (h(x))= k2>1, then (h(x))p - h(x) # O for the coefficient
of xpk is non-zero. By Fermat's theorem, the polynomial uP-u has P

roots in Z/pZ namely u = 0, 1, 2,.0e4 P=-l. Thus uP-u factors (mod p)
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into

uPou = u({u=1} (u=2) ... (u={p=1))

Setting u = h(x) gives
(h(x))P = h(x) = h(x) (h(x)-}) (h(x)-2) ... (h(x)=(p-1))in Z/pZz (10.22)

Since f(x) divides (h(x))P - h(x), f(x) is the greatest common

divisor of f(x) and (h(x))P - h(x). Since h(x)=v, and h(x)-v_ are

1 2

relatively prime if vy # Ve from (10.22) it is seen that

£(x) = ged  (£(x), (h(x))P = h(x))
p-1.
= l | ‘ged  (£(x), h(x) - j) (10.23)
j=o

Each factor on the right hand side has degree at most that of h(x)
‘which is in turn less than s, the degree of f(x). Thus there must
be at least two non-trivial factors of‘f(x) on the right hand side
of (10.23),that is, at least two factors of f which have degree 1
and hence (10.23) is a non-trivial factorization of f(x).

To factor f(x}, thus one needs to find a polynomial h(x)
such that f(x) divides (h(x))p = h(x). This is done by solving a
set of linear equations for the coefficients of h(x) as follows.

S=1

Suppose h(x) = bO + blx + se. ¥+ bs—lx where bO""’

bs—l are the coefficients to be determined. To see whether f({x)
divides (h(x))p - h(x), consider first (h(x))p.
Using the equality

(a + b)P

aP + bP over Z/pZ

we have

(h(x))? =bP +b PP+ ..o+ P x{s-1)p

. R P _ :
Applying Fermat's theorem to each of bb’ bi""’ bs-l' bi bi in
2/pZ for all i, and hence

(h(x))P = by * by Y L. be x{s-1)p (10.24)

Now using the division algorithm and dividing f(x) into xlp for

i=0,1,...y5-1, gives

- 207 -



Pos £(x) qg(x) + 1 (x) (10.25)

b9
where
_ S—1
ri(x) = ri,O + 1:'1.“1 X + 400 + ri,s—lx (10.26)
Substituting (10.25) into (10.24) yields
P _
(h(x))" = boro(x) + blrl(x) + ... * bs_lrs_l(x)

+ ({multiple of f(x))

Thus f(x) divides (h(x))p — h(x) if and only if f{x) divides the
polynomial

BoTo(X) + by
b x>y
S=1

rl(x) + .o + b (x) - (bo + blx ese +

s—1%s-1

But this polynomial has degree § s-1 hence is divisible by f(x) (of
degree s) if and only if it is equal to O.
Thus £(x) divides (h{x))P - h(x) if and only if the coefficients

b cee bs of h{x) satisfy

o' b1’

boro(x) + b

1r1(x) + ... + b

(x)

Tr
s—sTI S=1
- (b0+b1x+... +bs—1 x )=0 (10.27)
. . . 2 S=1 .
Collecting coefficients of 1, Xy, X jeeey X in (10.27), s

similtaneous linear equations in the s unknowns bO’ bl""’ bs-l

are obtained. These equations can be solved for bO' csey bs—l and
coefficients of a polynomial h{x) such that f(x) divides (h(x))F> -
h(x) can be obtained.

To calculate the decoding exponent d in (10.20), one does not
need to obtain the irreducible factors but only need to obtain their
degrees. In particular, in a system where the modulus f(x) consists
of two distinct irreducible factorsll l(x) and Hz(x) (analogous to
the RSA system over integers), one can follow a simple technique to
obtain the degrees of the irreducible factors. Without loss of
generality, it can be assumed that polynomials are all monic. From
fil&ite fields theory [56], it is known that in a field of order p,
¥ — x factors into the product of all monic irreducible polynomials
whose degrees ﬂdivide £ . Thus the cryptanalyst cc;mputes h g,(x) =
gcd (£f(x), ¥ = x) for & = 1, 24..., s/2, successively until he finds a

HR. (x) # 1. In such an instance, hz(x) = l;I].(i) orll 5(x) or f(x).
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The first two cases give the degrees £ = s, or s, and in the third

case 1 = Si = 52. Thus in all the three cases, the opponent has
obtained the degrees of irreducible factors even though in the third
case, he has not actually factorized f(x}. Thus he can calculate the
order (10.21) and can determine the deiPding exponent using (10.20).

To compute the ged (f(x), ¥ - x) for £=1, 2,..., s/2
requires approximately

g
(i) s/2 operations of gcd (f(x), X =x)

/2

(ii) each such operation requires approximately logzps
miltiplications mod f(x), giving a total of O(s2 logzp)

multiplications mod f(x) in Z/p2.

The encryption (or decryption) procedure requires a maximum of 1092 w
multiplications mod f({(x) where w = (psl-l) (ps2—1) - 1 because the
maximum value of e (or d) is (psl-l) (psl-l) -1, As w< ps, the
computational effort is O (s logzp) multiplicétions mod f(x). Thus
the work factor is approxdmately O(s). Thus if the cryptanalyst is
required to make about 260 trials before finding the decoding
exponent d, then the degree of f(x) = S, + §2 =5 = 260.601n such a _
case, the length of the cipher polynomial also becomes 2 introducing
a long delay in both encrypting and decrypting devices.

Further Gait [59 ] points out a short cycling attack based
on superenciphering any non-trivial polynomial t(x) with encrypting
exponent e equal tc any non-trivial power of . He shows that the
period of the sequence of powers of t(x)e mod f(x) is equal to S,S,e
It seems then the work required to recover the decoding exponent

depends on the difficulty of factorizing s Hence for the system

s -
172
to be secure S5, needs to be very large. Short cycling attacks

against public key systems are considered in Chapter 13.

— o w— S N S S e A

Now let us extend this polynomial scheme further to the case
where f(x) is a composite polynomial over Z/mZ, where m is a composite
number, in an attempt to increase the security of the above mentioned

public key system.
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Let

2
m = I l p;ui where p; are primes (10.28)
i=1

and the degree of the polynomial f(x) be s.

Then the message space consists of polynomials {m(x)} whose
degrees are less than s and whose coefficients are elements of the
ring Z/mz. The first step is to find the order of the group formed
by the polynomials of degree less than s and relatively prime to f(x)
over Z/mZ. Let us denote this order using the Euler totient function
symbol ¢h (f(x)). From the expression derived for the finite field
F = Z/pZ in Section 10.5.2, the order of the group formed by the
polynomials which are relatively prime to f(x) in Z/pZ is given by

2, (f(x))=.TzT (p5iPi - p%i{Pi71)) (10.29)

i=l
r

where f(x) = J_' g.bi(x) (mod p) and g.(x) are-irreducible
i=l “i 1

polynomials of dgrees s. in z/pz.
- Note that the commutative ring R=2/pZ[x]/f(x) under consideration is
isomorphic to 2[x]/{psf(x)). Now let us consider the order of the
. . . t t
group formed by the units in the ring Z/p Z[x]/£(x)2Z2[ x]/(p s£{x)).

Let O be a surjective ring homomorphism between the rings given below

0 - Z[ x] ) > Zfx]
) > t
(po*L,E(x)) (%, £(x))
If restricted to units, then there is a surjective homomorphism 0~ such
that ) 2 %] . «
° 0] Tl 5> U __;EL_l___
(p~ “Hf(x)) (py £(x))

The kernel of the mapping 0~ consists of those sets of units of the

t .
left hand side which are congruent to 1 mod (p ,f(x)), that is,

kernel 6° = {h(x)} such that h(x) = 1 md (p', £(x))

or,
h(x) =1 + p° v(x) + £(x) k(x)
and h(x) is a unit in_. 2[x] . . Let us now calculate the number of
t+1
(P~ ",f(x))

1
such classes mod (pt+ » f(x)). The standard form for representatives-of

classes mod (pt, f(x)) is given by
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S=1 t
+ + nee F b4 Odu.<p .
uo ulx u where Og i P

S=1

The standard form for representatives of classes mod (pt+1, f(x)) is

given by
S=1

T+
u, + U X+ ... + 1 x where Ogu.
(o] 1 s-1 A 1 <P

1

As f(x) is same in both cases, h(x) = 1 + pt v(x) (mod f(x)).
The number of such v(x) possible in mod (pt+1, f(x)) is ps because:
V(X)) S Vv, 4+ VU X+ .00 +V xs-l and each coefficient v, can take
0 1 s=1 i
values in the range O to p-1. If v, is greater than p-1 then it will

get reduced mod pt+1 as pt.p = pt+l. Thus the total number of such
v(x) possible is equal to pdeg £(x) - ps. '
Therefore
# kernal Q° = ps
Using group theory,
Z[x] - Z[x]
”((p‘”.f{xn RN {C3)
Kernel 6~
and
#U Z[x] = # (kernel ¢°) #uU z{x]
(=", £(x)) ((p‘.f(x)))

where # denotes the order.

Therefore,

Bl (£(x)) = p° BT (£(x) 31

S -1 (£(x))

PP g (30 ) (10.30)
A
=1

and 7, FpHE(x))

p.ai and to

The next stage is to consider the case where m = | i

1
evaluate the required expression ¢, (f(x)).

Using the Chinese Remainder Theorem it is seen that

—2Z[x] g ___z[x] e 2[x] B ees @ 2[x]
(m, £(x)) (P2 ,£(x)) (Py? »£(x)) (pg% , £(x))

- 211 -



where @ denotes the direct sum.
Thus

2
PE(x)) = | l ¢p;5. (£;(x)) (10.31)
i=1

where fi(x) = f(x) (mod pi) for i=1, 2...,%.
Considering the factorization of fi(x) rather than f(x)

over Z, let the factorization of fi(x) be

i b. .
1
£,(x) = [ ] 9, J (x) (mod p;) (10.32)
=1 M
where the degree of irreducible polynomial gijbij(x) is sij bij'

Note that the upper limit of the product term in the expression (10.32)
goes up to r., that is, it is a function of to which prime P; the
polynomial f(x) is being factored. This is because in general f(x)
(mod pi) will factorize into some r, distinct irreducible polynomials
as i varies.

Subsituting (10.30) into (10.31) yields

2
gcon=T1 gleit)® g
i= i

(£, (x)) (10.33)

" From (10.29), ¢P (fi(x)) is given by
i

r.
B, (£5(x)) = Lll (p,"13°15 - p %13 (P1571)) (10.34)
i 3=

Substituting (10.34) into (10.33) gives-

') r.
i
= l (a;-1)s s..b. . s, (b, 1)
¢h(f(x)) = | P 1 lJ (p; ii7ij - py 13 715 )
i=1 3=1
£ o
Substituting m = I] pi i, the above expression becomes
i=1
s & Ti
m s..b.. S..(b,.-1)
= Lij i) - p) - .
B (£(x)) rp , l l l (p{13°ij - p i3 137 ") (10.35)
ISt A
i=l 1=1 5=1

Although the general expression (10.35) for the order of the
group formed by polyncmials {m(x)}which are relatively prime to f(x)
over Z/mZ has been derived, from cryptography point of view, only.
square free modulus m and square free f(x) are allowed. If for
instance, m is chosen to be a non-square free integer then there will
be nilpotent residue classes mod f(x) for any f(x) and proper
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decryption will not be possible in such cases. Similar arguments
also apply to the case where f(x) is non-square free. Consider the
two examples given below which illustrate the two cases m and f(x)

non-square free.

Example 1 : non-square free m -

Let m = plz.p2 = 32.5 = 45 and let f(x) =

f(x) (mod 3} = £,(x) = x
f(x) (mod 5) = £ H(x) =
B (£(x)) = (32)- 24 = 24

choosing e = d = 5 so that ed = 1 (mod 24)

Let the message m(x) = 6. Then (m(x))ed = 6ed = 36 ;’6 (mod (45,%x)).
The message m(x) =36 gives 36ed = 36 (mod(45,%)):

Thus there is ambiguous decryption as both messages 6 and 35 produce
identical output after decryption.

Example 2 : non-square free f(x)

Let m = pl.p2 = 3.5 = 15 and let f(x) = 4x2 + 3

£(x) (mod 3) = £(x) & 3 (I, (x))°

£(x) (mod 5) T £,(x) = 4x"+3 = I, (x)

B (£(x)) =

choosing e = d = 5 so that ed = 1 (mod 24)

Let the message m(x) = x. Then (m(x))ed = 6x #-x (mod (15, ax> + 3)).
The message m(x) = 6x gives (6x) = 6x (mod(15,4x2 + 3)).

Thus there is ambiguous-decryption as both messages x and 6x produce
identical output after decryption.

Thus if m and f(x) are made square free, then the expression (10.35)

becomes
L r.
g cxn =] T T (i35 -1) (10.36)
i=1 jJ=1

Thus the order ¢m (f{x)) not only depends on the degrees of the
irreducible factors (s..) of f(x) but also on the prime factors of
the lnteger m. So 1f the or191na1 polynom1al scheme is Operated over

Z/mz, then thls seems to give rise to a secure publlc key cryptosystem like
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the RSA system over integers.

10.5.3.1 System Design and Operation

The designer randomly chooses large primes Py to 123 fér some
£,% 22 following the guidelines suggested in Section 10.2. He then
needs to choose a modulus polynomial f(x) with the property that
fi(x) = f(x) (mod pi), 15igl, are square free polynomials of degree s.
Two methods for designing such a polynomial f(x) are now outlined.

In method 1, the designer chooses randomly irreducible
polynomials hij(x) of degrees s;4 over Z/piZ for i =1 tol . As
noted in Section 10.5.2.1, an average of Sij tries is required to find
an irreducible polynomial of degree sij,in Z/piz. The polynomials are chosen
in such a way that the degrees of the factors modulo P; for a given
i add up to form s, That is, the distinct factors hij(x). 1Seri-
are combined to form fi(x) (mod pi) of degree s. Thus the designer’
now has the values sij and P; for all 1gig? and 1Sj$ri-

In method 2, the designer randomly chooses polynomials
fi(x) of degree s and accepts them if they are square free over
Z/piZ respectively. This is done by choosing a polynomial fi(x)
and computing the ged (fi(x), f; (x)). If the gcd (fi(x),f; (x))=1,
then fi(x) is square free. Knuth [45] estimates that a randomly
chosen polynomial fi(x) will be square free over Z/piz with a
probability of l-l/bi. Hence the expected number of trials for
finding a square free polynomial fi(x) is less than 2 for each i.
An alternative way of finding square free polynomials is to start
off with irreducible polynomials f(x) over Z. The discriminant of
£(x) can be calculated using standard formula [85, p 451) and the
prime p is then chosen so that p does not divide the discriminant.
Then f(x) is square free over Z/pZ. This procedure can be repeated
for pi,lsisz . Having obtained the square free polynomials fi(x)
over Z/piZ, 1¢ig £, through one way or other, the designer can use
the Chinese Remainder Theorem to formla unique sth degree composite
polynomial f(x)} over Z/mZ where m = ;Q; p; and £(x) = £ (x)(mod p,)
for lgig 2. The degrees of the irreducible factors of fi(x) over
Z/piZ can be determined using the polynomial factorization algorithm
of Berlekamp (Section 10.5.2.2) or one of the modified techniques given
by Knuth [45]. Thus the designer now has the values s]._:j and P; for
all lsi§ L anthgjsri.

These sij and P; values can be substituted into the
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expression of ¢m(f(x)) given by (10.36). Recall that for the
encryption and decryption to work properly,

(m(x)) M alED = nix) modd (m£(x))

for any m(x) with coefficients in Z/mZ and whose degree is less than s.

The coding exponents e and d can therefore be determined using
ed 31 mod @ (£(x))

where e and d are multiplicative inverse of each other mod ¢h (f(x)).
The public encryption key is given by (e, m, f(x)) and the secret
decryption key is equal to (d, m, f(x)).

The message is divided into blocks of size s (degree of
f(x)), each block consisting of integers over Z/m2. Each such block
is associated with a polynomial m(x) of degree less than s. The
encryption procedure then consists of raising m(x) to the power e to

form the cipher polynomial c¢(x) using
c(x) = (m(x))® modd (m, £(x))
The decryption procedure uses
m(x) = (c(x))° modd (m, £(x))
to obtain the message polynomial back.

10.5.3.2 System Implementation

This extended polynomial based RSA system has been
simulated on the Prime Computer. The encrypiion/decryption of message/
cipher polynomials are performed using the Square and Multiply
technique given in Section 10.4.7.1. The listing of the program is
given in Appendix 14. The cipher polynomial is transmitted to the
receiver by the sender in the form of a vector. The coefficients of
the cipher polynomial are sent to receiver, separated by a space
starting from the lowest power coefficient. The receiver reconstructs
the cipher polyncmial and decrypts it to recover the message. An

example showing the various parameters involved is given below:
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Example

Let m=p,p, = 5.7 = 35, Hence L =2
172, 5

Let f(x) = x + x +1

f(x) (mod 5) fl(x)

f{x) (mod 7) f2(x)

Therefore, ¢m(f(x)) =

(x> + ax + 1) (x + x +1)
(2 + 5) (X + 3)
52 - 1)% (7% - 1)% = 1327104

The coding exponents e and d are chosen to be e = 6005 and d = 221
where ed = 1 (mod 1327104)

Let the 35-ary representation of the message to be encrypted be
(18 9 30 23), (4 21 13 7) where the message is broken into blocks of

size 4. That is,

4x3 + 21x2 + 13x + 7 and

R 3 2

m2(x) = 18x" + 9x + 30x + 23

Encryption:

cipher polynomial cl(x) f (;xs_ -|'221x2 + 13x + 7)221 _mdd(35,x4+x25i-1)
= x +1..4x +12x+21

cipher polynomial c(x) = (18324932 +30x+23) 221 modd( 35, %" +x2+1)

8x3+6x2+20x‘+1 4

Decryption:

Message polynomial m, (x) = (x§+l4x312x+21)6005 modd (35, x +x=+1)
= 4x 4+21x +13x+7

Message polynomial m2(x) = (8x3+6x2+20x+14)6005.mdd(35,x4+x2+1)

18 x3+9 x2+30x+23

10.5.4 Discussion_

Thus it is seen that the RSA cryptosystem can be extended
to polynomial rings. The difficulty of factorization of a polynomial
into its irreducible factors over a finite field does not in itself
provide the necessary security required for a public key crypto-
system. It is necessary to incorporate the factorization of an
integer into its primes by considering the modulus polynomial f(x)

over Z/mZ (m-square free composite integer) to énhance thé security
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of the system. This gives a system which is comparable in strength
to that of the RSA system over integers. Furthermore, from crypto-
graphy point of view, it is required that both the modulus polynomial
f(x) and the modulus integer m be square free. This is very much
like the RSA system over integers in contrast to the matrix RSA

system discussed in Section 10.4.

10.6 Extension of RSA System to Matrix Rings with Polymomial

Elements

In this section, the aim is to combine the two systens
discussed in Sections 10.4 and 10.5, thus extending the factorization
trapdoor concept to matrix messages containing polynomials over a
ring as their elements. The approach adopted in this section
parallels with that used in Section 10.4.2. If the ring of all nxn
matrices over R is considered, then it is seen that the ring contains
nilpotent elements when n>L «As mentioned in Section 10.4.2, from
cryptography point of view, it is necessary to avoid such nilpotent
elements to satisfy the condition Mr+1 = M for some r»o«As in
Section 10.4.2, to begin with the set of non-singular matrices is

investigated; then the set of upper triangular matrices is considered.

— — — o — . - — o — e — — o —

The matrix messages are represented as M(x) instead of
M, to indicate that their elements are polynomials in a single

indeterminate x. Hence M(x) is written as

—
mll(x) s e mln(x)
mlz(x) esse ] m2n(x)

M{x) = . . (10.37)
mnl(x) “ees mhn(x)

The complete public key system using such messages is developed in

four separate stages.

10.6.1.1 Stage 1

In this stage, the elements mij(x) in (10.37) for all i, j
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. Z
lgign and I }Xn, are to belong to the ring R1 = T (x?)
Hl(x) is an irreducible polynomial in Z/pZ of degrée Sy (more

is a field). That is, the group Mn formed by

where

precisely, here Rl
non-singular message matrices of order n with elements in R1 is
considered. In this instance, non-singularity implies that the
determinant of M{x) is relatively prime to p andlIl(x). The order
of the group formed by such nxn non-singular matrices can be obtained
in a similar fashion as in the case of non-singular matrices over
Z/pZ discussed in Section 10.4.2.

The order of the group formed by these matrices is given

‘by the expression below, where # denotes the order.

Z X _ :
# &(n, (Hl(x)) ) = #G (nm, Fpsl)
because )
Z/pZ[x] 1is a finite field of psl elements
(T, (x))
And

#G (n, Fs)) = Ep-sl > - 1] [(psl - (p%1 )]
[(psl ' - (po1 )“‘1] (10.38)

using (10.4) in Section 10.4.2.

If such non-singular matrices are used as messages then
one can form a conventional cryptographic system where the secret
key contains the modulus p itself. The encrypting (e) and decrypting
(d) exponents can then be determined using

ed =1 mod (# G_(n,Fpsl))
The encrypting key is therefore (e.p,nl(x),n) and the decrypting key

is (d,p,nl(x),n). None of these keys can be made public and the

encryption and the decryption procedures are given by

C(x) = (M(x))® modd (p, T, (%))

and

M(x) = (C(x))° modd (p, T} (x))
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respectively where M(x), C(x) € Mn(RI)

10.6.1.2 Stage 2

The above system can be modified to include the public key
property as follows:
To begin with, the modulus polynomial is allowed to be equal to the
product of distinct irreducible polynomials. This will result in a
public key system analogous to the original polynomial scheme
considered in Section 10.5.2 whose security depends upon the difficulty

of factorizing a composite polynomial to irreducible factors. Let

r
f(x) = | [ gi(X) {mod p)

i=1

where the polynomials gi(x) for lgigr are irreducible in Z/pZ. The

polynomials gi(x) are of degrees S5 for 1gigr respectively.

The order of the group formed by the non-singular message matrices

M(x) with elements in the ring R2 = é{%%&?} can be obtained by the

application of the Chinese Remainder Theorem as follows:

Z/pz[x] - Z/pZ[x] 2/pZ{x]
# A Tehyy ) = A Gy e ® (g0 )

#G-(n’Fpsl e oo @ FPSI,)

r
-[_T— #Gl(n, F

S.)
i=1 p1

(10.39)

Substituting (10.38) into (10.39) gives
r " ! - -

sam R - [ [(psi)“-x] Epsi)"-msi)]--. [(psi)"-(psnn‘l]
i=1

Thus

(M(x))°T%F = 1 modd (p,£(x))

and hence the coding exponents e and d can be calculated using

= : Z/pZ{x]

and

(M(x))%% = M(x) modd(p,£f(x))
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It is seen that in this system, the order depends on the degrees of
the irreducible factors gi(x). {cf. Section 10.5.2). Thus this
system can be used as a public key system with the public encryption
key (e,p,f(x%x),n) and the secret decryption key (d,p,f(x},n).

The encryption and decryption procedures are given by

C(x) = (M(x))€ modd (p,£(x))

M(x) = (C(x))® modd (p,f(x))

respectively, where M{x), C(x)e:Mn (R2).

The security of this system is dependent on the difficulty of
factorizing the modulus polynomial f(x) in Z/pZ. This is so because
if the degrees of the irreducible factors of f(x) can be found then
the order of the group can be evaluated and hence the secret decoding
exponent d can be determined. For the reasons mentioned in Section

10.5.2.2, this does not give rise to a secure public key system,

10.6.1.3 Stage 3

The next logical step is to consider the case where the
modulus polynomial f(x) consists of powers of irreducible polynomials
as its factors, that is, f(x) is a non-square free polynomial. Note
that in contrast to the system considered in Section 10.5, here it is
allowed to have a non-square free f{x) because the nilpotent elements
are being eliminated by considering only the non-singular matrices
over the ring R3 = %é%é%?l . Considering the factors of f(x) in
z/pZ(x]Jrather than in Z(x],

let

f(x) T £f(x) (mod p)

. r
- b.
f(x) [ l 95 i(x) (mod p)
i=1
where g, (x), K igr, are irreducible polynomials in Z/pZ with degrees

s; respectively.

The order of the group formed by non-singular matrices M(x) over the

ring R3 is evaluated as follows:
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Using the Chinese Remainder Theorem,

g%g[x x] ® ... & z/pz[x]
(£ L 1x) (0,°r(x))

Letting T= 2/pZ[x] and p; = (g;(x))
then,

& (n, T/ = & (n,l‘/pib;) X eoe X GL (nm, T/'px.‘b-p_)

#(x))

where x denotes direct product.

To determine the order, # GL(n, T/ pibi),consider the sequence of

surjective homomorphisms, 0 i

8;,: @ (n,TYﬁi) —» GL (n,Typi-l) iz2

Under such a mapping an nxn matrix M(x) (modpl) becomes M”(x)

(mod p i- 1) as shown below:

i - i-1
M(x) (mod p" )—— M (x) (modp )
Using group theory, for such an onto- mapping ei'

#GL (n,r/pi) = & (n,r/Pi-1). # (Kernel ;)

The kernel B consists of the set of matrices which are mapped to the

identity matrix I in (mdp ). that is,
- i-1 .
m!j(x) = 0 (modp ) 243 (10.40)
- i-l
m(x) = 1 (modp ") 1¢2¢n (10.41)
There are pdeg gi(x) = psi possibilities 50: each of the equations

{10.40) and (10.41) giving rise to (psi )n total possibilities. Hence,

2
#GL (nT/ 1) = (1) # & (n,T/ i-1)



Therefore,

2 =1
#GL(n,T/gb; ) = (p°i)" (b;=1)

# G (n,T/p) (10.42)

But T/p = Z._(/;&(I%l_) is a finite field of psi elements.
i

Therefore using §10.33)
#Q(n,T/p) = [(P°1)™1] [(P°1)"=(p%1) ] -.. [(p 1) =(p%i)" 1]

Substituting this into (10.42) yields

_ S, nz(b.-l) S..n S.\n s..n=1
#GLfn, 2/pz0x] ) = (2°1)" P57V [(p%0)"-1]... [ 0) - p®) ]
( gibi(X)) (10.43)
Thus T
) #»fGL(n.Z'-Z-PZ-BJ ) = #cz.(n,Z/ Z [x ] ) (10.44)
(£x)) © - (9;°%i(x))
i= 1 1

It is necessary to consider one further stage to complete the design
of a secure public key system using such non-singular matrices as

messages.

10.6.1.4 Stage 4

The final stage is to consider the elements mi.(x) in

the message matrix M(x) in (10.37) to belong to the ring Ry = %’("‘7’_;.5.1-’)‘_3
where T
m = I I Pi and P:i.' Ik i¢t, are distinct primes
i=1

and the factorization of f{x) is given by

r.,

. 1
£(x) (mod p,) £, (x) = TT gijbij(x) for 1gict
j=1

The degrees of irreducible polynomials gij(x) over Z/piZ are Si3
respectively.

The order of the group formed by the nxn nén—singular
matrices M(x) over the ring R4, denoted by # Q.(n, %z(-’%)]- )s is
evaluated as follows:
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. ZZEQ xl .. . . Zix] . .
The ring (£(x)) is isomorphic to the rlng(m'f(x)) Using the

Chinese Remainder Theorem,

2[x] = _Z[x] @ 2[x] @ ... D 2 x]

(m,£(x))  (Pys£(x}) (Poe£(X)) (P £(X))

Thereiore,

Z[X] ~ Z[ x] QX]
Gme Tmeeg)) T e g Ee? X oo X S T
But
z[x] . = 1
o in = &in
P —— ] f
b0l = af 2

i
where Fp is a finite field of Py elements.
i
Fp &ﬂ
The order # G (n, ———
{£(x))
given by (10.44) as

) has already been evaluated and is

Fpi[x] o S.. nz(b..—l) S...n
# GL(n, _(:f(x_))) = l l (Pi ij) i) I:(F{.-L ij) —1] cae
J=1 _
[(pfij " - (p;%135) 1]

Hence

N 2[x] I l l r i3 (b 571
[(pisij ) - (pisij -1 ] (10.45) .

The order given by the expression (10.45) above shows that it is
dependent on the degrees of the irreducible factors of f(x), namely,
Sij bij’ as well as on the prime factors of the modulus m, namely
Py» for all i and j. Thus when used as a public key system, this
provides considerably more security than the system considered in
Stage 2, provided that the modulus m is chosen large enough. The
encryption and the decryption of messages are carried out in the

normal fashion using

c(x) = (M{x))° modd (m,£(x))

and
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M(x) 3 (C(x))° modd (m,£(x))

where M(x), C(x) € Nh (R4)

and ed = 1 (mod order)
and the order is given by (10.45).

Note that this system is a combined version of the systems developed
in Section 10.4 and 10.5.

: . . _ 20 x]
10.?.2 Upper Triangular Matrices Over R = (m, £(x))

For the systems developed in the previous section, the
message space is restricted to contain only non-singular matrices.
But as mentioned in Section 10.4.2, the sender is faced with the
problem of determining whether his message matrix is non-singular or
not, to find whether it belongs to the message space. This poses
problems as the sender has no control over the matrix elements but
must accept what the plaintext dictates. Alternatively,as in Section
10.4.4,0ne can consider the set of upper triangular matrices with
invertible elements along the diagonal as the message space. This
makes the construction of non-singular message matrices easier
especially when m is a product of a few large primes and f(x) is a
product of a few high degree irreducible polynomials. In such a
situation one can almostarbitrérily choose the diagonal elements
of the upper triangular message matrix to satisfy the condition that
they are relatively prime to f(x) modulo m. In particular, the
diagonal elements can be chosen to be elements in the ring Z/mZ which
are relatively prime to m. If necessary, one can also use the
Euclid's algorithm to evaluate the ged to test the relative primeness.

In this section, the set of upper triangular matrices whose
elements are polynomials over a chosen ring R forms the message space
of the developed cryptosystem. The four stages involved in developing
the complete public key system, similar to those discussed in the
previous section, are now considered in turn. Note that in all these
stages, it is assumed that the diagonal elements are invertible
elements over the chosen ring R. This ensures that the message matrix

is invertible. A typical message matrix MA(x) is written as
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. T
mo(x) . . - m ()
M (X) = 0 » .
A . .
L 0 . . . 0 mnn(x)

where A indicates that the matrix is triangular.

10.6.2.1 Stage 1

In this stage, the message space oonsists of upper triangular
matrices whose non-zero elements m. (x) belong to the ring R1 =
2/pzlx] where II (x) is an 1rreduc1ble polynomial in Z/pZ of degree

(1, (¢))

Sy (That is, R, is actually a field).

1
The order of the group formed by such upper triangular

matrices over R1 can be found as follows:

Each diagonal entry may be any one of the polynomials which is

relatively prime to]Il(x) over Z/pZ. The number of such polynomials

has already been evaluated in Section 10.5.2 and is given by the

Euler totient function ¢p (Hl(x)) where

B, (1,0)) = (p1-1)

The remaining % n(n-1) superdiagonal entries of the upper triangular

matrix may take any value in the field ?ée%&?% Thus each of these

entries has p °1 possibilities as
—ZE%LEl is a finite field of p %1 elements.
(T, (x))

Thus the order of this group U (n, TéE%&T% } is given by

# U (m %IZIE(%])' y = (pS1-1)" (pt)ninti/2
1

This can be used to form a conventional cryptographic systeﬁ where
the secret coding exponents e and d can be found using

Z X y )

= 2/pd X}
ed l (md g U (n, (“1(x))
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and the encryption and the decryption procedures are given by

C(x)E (M (x))° modd (plly(x))
A A
and
. (x) = (cA(x))d modd (p, Il (x))

respectively, where MA(x), C (x) € Un(Rl)
A

10.6.2.2 Stage 2

The above system can be modified to include the public key
property as follows:

Inftially, it is assumed that the modulus polynomial
consists of a product of distinct irreducible polynomials modulo p.
That is,

4
£x) = [] oy0x) (mod )
i=1
where gi(x), 1gigr are irreducible in Z/pZ.
The polynomials gi(x) are of degrees Siv l¢igr, respectively.

The order of the group formed by upper triangular matrices over the
ring R2 = %é%%%?l with invertible diagonal elements is evaluated as

follows:

Using the Chinese Remainder Theorem,

Z/pZ[x] Z/pZ[x] Z/pZ{x]
#U ey ) AV oy @ @ (e 00 )

4
T U (n’ Fpsl D ... B Fpsr)

Each of the diagonal entries can be any one of the polynomials
relatively prime to f(x) over Z/pZ and is given by ¢p (f(x)) where

r
¢p(f(x)) = T_].(psi-l) (See Secticn 10.5.2)

n(n-1) 1=1 s .
The remaining > superdiagonal entries have p possibilities each
where - r
s= L Sj
i=1l

Therefore the order is given by
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tu o, S5 - [9, (zn] ™ [0%)] a(n-1)/2

It is seen that in this system, the order depends on the degrees of
the irreducible factors of the modulus polynomial f(x) (cf Sections
10.5.2 and 10.6.1.2). Thus this system can be used as a public key
system with the public encryption key (e,p,f(x),n) and the secret
decryption key (d,p,f(x),n). The coding exponents e and d are
calculated using

= Z/pZ [x]
ed=1 (md#U (n, (£(x)) ))

M (x))° S M (x) modd (p,f(x))
A A

where M (%) ¢ Un (R

)
A 2

For the reasons mentioned in Section 10.5.2.2, this does not offer a

secure public key system.

10.6.2.3 Stage 3
The next step is to consider the case where the modulus
polynomial f(x} consists of powers of irreducible polynomials as its

factors, that is, f(x)} is a non-square free polynomial in Z/pZ.

Let . r

£(x) = W 9, ’i(x) (mod p)

i=1
where gi(x), 1£isr, are irreducible polynomials in Z/pZ with degrees
s respectively.

The order of the group formed by upper triangular matrices over the

. _ ZZEEEX] .
ring R3 = (=) is now evaluated.

Using the Chinese Remainder Theorem,

z2/pzlx] = 2/pZ(x] & ... ® Z/pzZ[x]

6 g P1x)) (0 r(x))

and hence
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#U(n,gé%ﬂ) #U(n'éﬁu)@"_@ JEL].)
(£ LC100)) (g r(x))

Using arguments similar to the ones given in Section 10.6.2.2,

4U (n, —fﬁ%}) = [¢p (f(x))]" (pS)R(n-11/2

where r
s = iglsibl
and r _
B (£(x)) = [ ] [psibi - psi(bi‘l)] (see Section 10.5.2)
i=1 -

10.6.2.4 Stage 4

Finally the group formed by the upper triangular matrices
_ z/mzlx]

_ u a = T(F(x))

considered. The modulus m=J=H P; i, where P 1£igt, are

with invertible diagonal ele?ents over the ring R is

distinct primes and the factorization of f(x) is given by
£(x) (mod p;) = £.(x) = [ | 9% 5 J(x) for 1<igt

where the degreesof the irreducible polynomials 9; (x) are slj
respectively. Using arguments similar to the ones given in Section

10.6.2.2, the order of the group is given by

Z/mz[x], _ S n(n—l)/2
#U (n, ZEEXD) < [¢ (f(x))]

where ¢m (f(x)) is obtained from Section 10.5.3 as

S
m
AU I oy '] | ‘]_ (p;*13%13 - p; %15 Pi571Y)
i=1 i=1 =1

Note also that by substituting n=1 in the expreséion (10.45) gives

#a (1.(fn[§(]x))) = @ (£(x)) (a3 =1,VY1)
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Thus the order is seen to be dependent on the degrees of the
irreducible factors of f(x) as well as on the prime factors of m.

Thus this system can be used to provide a secure public key system
provided the modulus m is chosen large enocugh (say 200 decimal digits,
see Section 10.2). The encryption and the decryption procedures are

given by .

C(x) = (M (x))® modd (m,f(x))
A A

and
M(x) = (C(x))? modd (m,f(x))
A A

where MA(x), CA(x) £ Un(Rd)

and ed = 1 (mod order).
The public encryption key is given by (e,m,f(x),n) and the secret
decryption key is equal to {(d,m,f{x),n).

10.7 Discussion

In this chapter, the factorization trapdoor concept has
been extended to some matrix and polynomial rings which are isomorphic
to a direct sum of finite fields. This has resulted in a general-
ization of the RSA cryptostructure to matrix and peolynomial ring
message space. It is seen that some of these extended systems can
be made at least as secure as the original RSA system over integers
modulo m. Other features such as the use of non-square free moduli
seem to be possible with some of these extended systems in contrast
to the original RSA system over Z/mZ. Investigation of such systems
indicate that factorization trapdoor structures required for the
deéign of public key system can be found in rings other than the
ring of integers modulo m. From a practical peint of view, it seems
that the high complexity of such systems may favour the implementation

of the factorization trapdoor in the ring of integers.
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CHAPTER 11
FACTORIZATION TRAPDOCR FROM IDEAL POINT OF VIEW
11.1 General

In addition to considering the factorization trapdoor
system from an 'element' point of view, the trapdoor concept c<an
also be treated from the more general 'ideal' point of view. In
particular the integer, polynomial and matrix based RSA factorization
trapdoor schemes considered in the. previous chapter are briefly
re—examined from the ideal point of view. Some of the principles
of the ideal theory are used in the next chapter in further extending
the trapdoor concept to such algebraic number fields as the ring
of Gaussian integers and some other quadratic fields.

To begin with, some basic definitions-and principles of
the ideal theory are stated (without proofs) which will be required
in subsequent sections. A detailed treatment of ideal theory can be

found in a number of mathematical textbooks in particular in [ 60, 61].

1l1.2 Basic Concepts

11.2.1 Ideal
A set J of one or more elements of a ring R is called an

ideal in R if and only if it has the following properties:

(i) If i and j are elements of J, then i + j is an element of
g
(ii) If i is an element of J, then for every element r of R,

ir and ri are elements of J.

Let J be an ideal. Two elements a and b are defined to be
congruent modulo the ideal J if a-b is in J, denoted by a = b (mod J).

11.2.3 Principal Ideal
Let R be a commutative ring with 1 and 'a' be a non-zero

element of R. If A is any ideal which contains the element ra', then
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A must also contain all the elements of the form ra where re R. An
ideal generated by a single element 'a' of R is called a principal
ideal and is denoted by <a> . An integral domain in which all ideals
are principal is called a principal ideal domain (PID).

11.2.4 Prime Ideal

If R is a commtative ring with 1, an ideal p in R is said
to be a prime ideal if and only if ab = O (modp ) implies that
a0 (mdp)or b =0 (mdp ). An alternative definition of prime
ideal is that it is an ideal p other than the unit ideal with the
property that for any two ideals A and B if plAB then plA.or p|B.
Note that an ideal p is said to 'divide' an ideal A if there exists

an ideal C such that A = pC.

1l1.2.5 E;gﬁgpz_gf_}gpg;g

The product AB of two ideals A and B is defined as the
ideal C 'generated by all products' ab where a € A and b e B.

— . e - - - — —- — —

Every ideal in a Dedekind domain [60] can be factored into
the product of a finite number of prime ideals and this representation
is unique.

11.2.7 Factorization Trapdoor_
Using the ideal factorization theorem (Section 11.2.6),

let the decomposition of a non-square free ideal A be

S

A= pl

1 ... prsr

The number of residues modulo the ideal A is given by the norm of the
ideal, N(A). The number of invertible residue classes modulo the
ideal A is denoted by @#(A) in a similar manner to the Euler totient

function #.

Theorem 1

If A and B are relatively prime ideals then
Bias) = F(n) . B(8)
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The congruences a S c (md A) and a = d (mod B) establish a one to
one correspondence a & (c,d) between the residues 'a’ prime to AB and
the pairs (¢,d) whose two members c,d range over the residues prime

to A and B respectively. Hence the theorem 1 follows.

Theorem 2

If p is a prime ideal then,

B ®)

(vp)® {1 = AN ]

(Np-1) (Np)>™

A complete proof is given in [61]. But it can be proved using a
method similar to that which is employed to calculate the Euler
totient function ¢(ps) where p is a prime in Z. The complete system
of residues with respect to p is represented using No integers
O,1,...p=1. Of these only O is not prime to p. Hence_iﬂp) =

Np-1 = No(1-1/Np). As N{AB) = N(A) N(B) for any two ideals A and B,
it is seen that N(p2) = (Np)z. wWith respect to pz there are p2-p
incongruent classes that are relatively prime to p and hence_jr(pz)

(Np)2 [l—ﬁ% ]+ Use of induction, gives Theorem 2.
Using theorems 1 and 2, if

_. S s
A -pl 1 cee Dr r
then

r .
Fmy=n@) T T a-g=) (11.1)
i=1 i

The expression (11.1) can be used to give the generalized version of

Fermat's theorem for ideals, namely,
if 'a is prime to an ideal A then ang) =1 (mod A)
If A is a prime ideal, ie, A =p, then

JNo-1 =

= 1 (mod p)

Thus the relatively prime residues modulo A form a group of order

B(n).
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Some of these concepts are now applied to the specific cases
already looked at such as the ring integers, the ring of polynomials

and matrix rings.

11.3 Ring of Integers

Let Z be the ring of integers. If m is a fixed integer in
the ring Z then the ideal <m> contains just the integers which are

divisible by m,

Theorem 3

In the ring Z, every ideal is a principal ideal.

" Let A be an ideal in Z. If A is the zero ideal then A is
the principal ideal <0> . If A # <O> let m be the smallest integer

in A. If n is an integer then using Euclid's algorithm, we have
n=qgm+r
where q and r are integers and O<r<m.

Now if n is an element of A, then n-gm is also in A. That is, r is
in A. If r is greater than zero, then it contradicts the assumption
that m is the least positive integer. Therefore r = 0, that is,
n = gm. So all elements of A are of this form and hence A = <m>.

The prime ideals in Z are therefore precisely the ideals <p~
where p is a prime (together with the ideal <O> and the ideal 2Z).

If the unique factorization of m into primes ever 2 is

given by
=Py oees P for some r3 2 (m assumed to be square free)

then one can view the ideal decomposition of <m> into prime ideals
<p.>
p;> as
< =<P,. Deee <P O
m> Py Pr
The order of the group formed by relatively prime residues modulo <m >

is given by the Euler totient function for the ideal <m>,£km>, where

- 233 -




§<m> = ﬂ.(p].) o'oj-(pr)
and -
jr<pi> = N <pi> -1

N<pi> is the norm of the ideal <pP;> and is equal to the number of

residue classes modulo <pi> given by P; - Hence

F <m>

(p,-1) -+ (p,-1)

and

aﬁ-(ll'D

1 (mod <m>)

This gives the familiar RSA system over the integers looked at from the

ideal point of view.

11.4 Polynomial Rings

If F is a field and x is an indeterminate, then again
every ideal in F[x] is a principal ideal. The proof is very much
similar to the one given for the ring of integers Z (cf.Theorem 3}.
In this case, m(x) is chosen to be a polynomial of least degree in a
given ideal and the Euclidean division algorithm for polynomials is
used. Hence a non-trivial ideal A of F[x] is of the form A = <f(x)>
where f(x) is a non-zero monic polynomial of minimal degree in A.

The prime ideals in this ring are those which are generated
by irreducible polynomials f{x) over F. If f(x) is composite, then
let the unique factorization of f(x) into irreducible polynomials
9;(x) be

_ b b
f(x) = 9, 1(x) cee 9, r(x)
where the degree of polynomial gi(x) is Sye

Then one can view the decomposition of the ideal generated by f(x)

into ideals generated by gibi(x) as
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b b b
< f(x)> = <g 1(x)>- < 9, 2(X)dees < 9, r(x)>

From Theorem 2, we have

b b-1
F(p) = (Np) (Ng-1)
Here
N<gi(x)> = number of elements in the residue class ring F[x]/<gi(x)>
= number of polynomials in F[x] of degree less than Sy
= |F[%
Hmci s{(b;-1) ®i }
o, i(x)= | ¥ el -2
s;b; s;(b;-1)
ol G I

This expression is same as the one obtained earlier in Section 10.5.2

by considering elements in the field.

The order of the group formed by residue classes modulo <f(x)> is

obtained using Theorem 1,
ﬁ<f(x)> = §<glb1(x)> e _§-<grbr(x)>
r
_ s.b, s.(b.<1)
- {1p| i e(% ) |

11.5 Matrix Rings

Let us now reconsider the matrix system discussed in
Section 10.4 to see whether it is possible to improve it using some
ideal theory principles.

The ring of nxn matrices over a field F, M;(F), has no
non-trivial ideals. The only ideals are the zero ideal and the whole
ring itself. Hence one cannot consider the ring M;(F) for our
purpose. One can consider two possible alternatives.

(a) The first approach is to consider a subring, say

the ring of nxn upper triangular matrices (including the diagonal

Mp - See note on p.243 - 235 -



elements) over F, Un(F). This ring has many ideals. For instance,

o 2
J = o 0 is an ideal 1in Un(F)

? = denotes any arbitrary elements in F,

(b} The second approach is to consider matrices over
a commtative ring R rather than a field. Then there is one to one
correspondence between the two-sided ideals in R and the two-sided
ideals in M;(R). This may give rise to a trapdoor coding system in
M:(R). As will be seen later, the system obtained using this approach

is same as that already discussed in Section 10.4.2.

11.5.1 .Approach (a)

Consider the ring of 2x2 upper triangular matrices with
aitrary diagonal elements over a finite field, R = U2(Fp) where p
is a prime. Let J be an ideal generated by an element M. Then J

is the smallest ideal containing the element and by definition is

equal to

J = z r.M r{ all finite combinations
1 as Iy ri‘ vary over R

The element M must be chosen to be non-invertible otherwise it is

possible to choose r, <= M-'1 and ri’ = I (identity). This results in

the ideal J containing (M-l M I) = I. Hence the ideal must contain
riI for all r.e R. That is, J = R. This contradicts the assumption
that J is a proper subset of R. Hence no element of the ideal must
possess multiplicative inverse. Let us consider X to be a generator

matrix in U2(Fp) where X is equal to

< (5 2)

The ideal J is
J = { a b 1l (;> u v
0O ¢ 0O 0 O w

where a, b, ¢, u, v, w ¢ Z/pZ, p prime.
That is,
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au av
J = ):(
O O

Let x = au and y = av, %, y&Z/pZ, then

(&
n
[~

(11.2)

It is seen that if re R and je J, then

a b X y

rj= e J
0O c O O
X vy u v

jr = e J
o 0 O w

The number of elements in the ring R = U2(2/pZ) is equal to p3 as
each of a, b and c has p possible choices. The order of the ideal J
is p2. Hence the order of the quotient ring R/J is equal to p. Thus
the ring R/J is isomorphic to Z/pZ. From group theory, in general,
the order of the ideal J is‘a factor of the order of the ring R. If
the ring R = U2(Z/m2) where m is equal to product of primes is now
considered, then R/J is isomorphic to the ring z/mZz. If m is square
free,R/J forms a trapdoor systen.

Let X be a generator matrix of the form given below

g O
o 0

If gcd (g,m) = 1, then the ideal J becomes {(; g)} which is same
as the one given in (11.2). Hence assume that gcd (g,m) =g # 1.

For instance, m could be equal to the product of two large primes p
and q and some £, that is, m = R.p.q. Then g could be equal to

L.s where ged (s,p) =1 and god (s,q) = 1. The ideal J then consists

of elements of the form given below

ax gy
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where %, v ¢ T = Z/m2
The residue classes of the quotient ring R/J are of the form

a b [ a (mod g) b {mod g)

0 ¢ 0 c (mod m)

Proposition 1

The number of elements in the quotient ring R/J is given

by 2
#R/3 = mR

Proof

If two members of the ring R are congruent to each other
modulo J, that is,

a b a b

{mod J)

-

0O c¢ O c

where a, b, ¢, a°, b', c" € T = Z/mz

. then this implies that

a” (mod g)

-

a

(mod g)

-

The number of possible choices for the element c is equal to m.

Let k be equal to the number of possible choices for elements a or b.
Then k is equal to the number of residue classes mod gT which are
distinet in T. In other words, k is equal to #I/gT. Consider the

mappings

z —2—»T1 —FF> T/oT
and

0

2 —————> T/qT
Then

T/qT = Z/Kermel ©

Z/Kernel 8 = 2z/ {x ¢ 2; a(x) € oT }

= 2/ {xe2; x
_ v € 2z}
= z/ {xe 2; x

gy (mod m) is soluble for

0 mod (ged (g,m))}
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That 1is,
T/gT = 2/92 where L = gcd (g,m)
#T/9T = &

. . 2
Hence the number of residue classes of the ring R/J is my" .

As the order does not depend on the factorization of the mocdulus m,
there is no trapdoor as such yet. But let us now consider the invertible
residue classes modulo the ideal J, that is, the diagonal elements a and

e are chosen to be invertible in the ring T/gT and T respectively.

Proposition 2

The number of invertible residue classes modulo J is given by

(L) « L . P(m)
Proof

The invertible residue classes of the ring R/J are of the

(a (mod g) b (mod 9))
o) c

where a, b, c € T =2Z/mz

form

and such that a is invertible (mod g) and ¢ is invertible (mod m).

The number of invertible residue classes mod m is given by the Euler
totient function @(m). Hence the number of possible choices for the
element ¢ is equal to @(m). The element b can be arbitrarily chosen
(mod g) and the number of possible choices is equal to 2 from
Proposition 1 above. Let k be equal to the number of possible choices
for the element a. From above, it is known that T/gT = Z/22.
Therefore, k is equal to the number of invertible elements in z/22,

that is, @(2) . Hence the number of invertible residue classes in

R/J = @F(L). & . B(m).
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Thus in practice if m is equél to the produtt of a few large primes
and { which is itself equal to the product of a few reasonable size
prime integers, then the elements a and c (#0) can be chosen arbitrarily

provided they are relatively small compared tom and 1 .

The above arguments can be extended to the case where the
ideal J is of the form

( .
gxl' g"zi ces gxn
1= <| o 0 «.. O - (11.4)
! o) 0 ... O |

The order of the quotient ring R/J,that is, the number of residue
classes modulo J is now given by

PR (n-1)/2

The number of invertible residue classes modulo J is given by

n-1 m(n-2)(n-1)/2

ord. = #(&) (#m)} ™t 4 (11.5)

11.5.1.1 Choice of Generator Matrix
when deciding on a generator matrix X, the following points

mist be taken into account.

(1) The smaller the generated ideal J, the larger the quotient
ring R/J. That is, the smaller the order of the ideal J
is, the greater the number of residue classes in R/J thus
giving rise to a larger number of possible messages that.

can be used in the system.
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(ii) For the encryption and decryption procedures to be relatively
easy, the generator matrix must have a simple form; hence
the choice of the matrix X in (11.3). For instance, another

simple generator matrix X is given by
0 1
X =\o o -
The ideal J is then given by

0 x
T=1o o
where x € Z2/mZ

Hence the residue classes of R modulo J are of the form

a b _ a O
= . (mod J)

That is,
R/J = Z/m2 & Z/mZ
This is equivalent to 2 scalar RSA prototype systems.

(1ii) More generally, one can use more than one generator matrix
to generate the ideal J but this makes the whole system

more complicated without increasing the security.

arbitra arbitra
J - z elerﬂent ( X 'R ) elemnt
- - in R
Generator matrices

11.5.1.2 System Design

A factorization trapdoor system can therefore be constructed
as follows:

The message space consists of nxn invertible upper triangular
matr1ces (including the diagonal elements) modd (m,J) , where
= 11- piai and the ideal J is given by (11.4). The encryption

procedure raises the message matrix to the power. e giving the cipher
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matrix C as

.M (modd(m,J))

Cc

The decryption procedure is given by

M = & (modd (m,J))

The coding exponents e and d can be determined using
ed = 1 (mod ord.)
where ord. is given by (11.5).

The public encryption key is given by (e,m,n,J) and the secret
decryption key is (d,m,n,J).

‘As the order depends on the structure of m, the security of
the system again lies in the difficulty of factorization of the
modulus m. But note that if the size of % is is made large then
although the opponent needs to factorize { to be able to calculate
@ (L) in (11.5), the factorization of m and hence the computation of
#(m) is made that much easier. This is because as J is made public,

the opponent knows %, the gcd’(m,g) and hence he achieves partial

factorization of % = pq. Larger the size of 2 smaller the value of
m
2 *

Thus it seems that the process of performing modulo an ideal
as indicated above does not appear to increase the security of the
trapdoor system but instead disguises further the basic trapdoor
systen.

11.5.2 Approach (b)

Let us first state an important result about two-sided
ideals in complete matrix rings. For proof refer to [62].

If Mis a two-sided ideal in the ring R, then the ring M;
of all matrices of order n over M is a two=sided ideal in the ring
Mﬁ,Of all matrices of order n over R,

In our case, R = Z and assume m = pq where p and q are
distinct primes in Z. Then <m> , <p> and <q >are idesls in Z and
Ml:(mZ‘), M;(pZ) and M;(qZ) are all ideals of M;(Z)'using the above
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result. Further the ideal factorization of <m> in R is given by
<m> =<p>.<q>

Using the one-to—one correspondence between the two-sided ideals in

R and in M:(R), gives

where Jp, Jq and Jm denote the ideals formed by N:(pZ), M;(qz) and
M;(mZ) in the ring M;(Z).

Although a trapdoor system is possible in Z/mZ when m is
square free,there is no corresponding system in the case of Ng(R).

This is due to the fact that the quotient ring given by M *(Z/mZ),

-

MA(2) Me(z/mZz) £ M (2/pZ) ® M * (Z/qZ)

M (mZ)

nt

is not isomorphic to a direct sum of finite fields whereas the
quotient ring Z/<m> is isomorphic to Z/<p> and z/<q>. As seen earlier
in Section 10.4.2,M;(2/pz) is not a finite field as it contains
nilpotent elements. Thus a corresponding trapdoor system is possible
if and only if the nilpotent elements are eliminated. This has
already been considered and it gave rise to the trapdoor system in

matrix rings discussed in Section 10.4.2.

Note: Mn*(R) - Ring of all nxn matrices over R

Mn(R) - Ring of non-singular nxn matrices over R
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CHAPTER 12

FACTORIZATION TRAPDOCR IN ALGEBRAIC NUMBER FIELDS
12,1 General
The ring of Gaussian integers is initially considered with
a view to extending the factorization trapdoor concept to algebraic
number fields other than rational integers Z. Then the more general

quadratic fields are briefly investigated.

12.2 Factorization Trapdoor System in Gaussian Integers

12.2.1 Ring_of Gaussian_Integers

Before considering the design of the factorization trapdoor
system in this ring, it is useful to describe very briefly some of
the properties of Gaussian integers. A detailed treatment of
Gaussian integers can be found in [ 63, 64, 65].

Let i = J:_l- and consider the set of complex numbers Z{i ]
defined by {a+bi I a,bez } . This set is closed under addition and
subtraction. Moreover if a+bi, c+di € Z[i], then (a+bi) (c+di) =
ac+ad i+bc i+bd ©© = (ac=bd) + (éd-ﬁbc)ie z[i]l. Thus 2[ilis closed under
multiplication and is a ri.ng.'

The norm of an element, @ = a+bi, in 2[i Jis defined to be
equal to q.g where a is the complex conjugate of a . That is,

Na= (a+bi)(a-bi) and hence Na = a2+b2. Further it is seen that
N(eB ) =(Na).(NB)as N(aB) = (aB) . (WB) = (aa) (BB).
An integer in Z[i],a, is called a unit if 1 is divisible by

a . Hence if ¢ is a unit both a and 1/(1 are integers in z([i].

Lemma 1

The norm of a unit is 1 and any integer whose norm is 1 is
a unit.

If g is a unit thena Il, that is, 1 =¢8 and so 1 =
NaNB. This means that Na[l and hence Na = 1. Ifg = a+bi, then
1 = aZ+b% = (a+bi) (a-bi), that is, (a+bi)[l. So (a+bi) is a unit.
The units in Z([i Jare + 1, + i as the only solutions of a2+b2=1 are
a=+1, b=0; a=0, b=+1.

A prime [l is an integer, not O or a unit, divisible only
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by the numbers associated with itself or with 1. In 2[i], a prime
has no divisors except the eight trivial ones, namely, 1,]] » =ls=[T »

i, ifi, -i and -iJl.

Lemma 2

An integer whose norm is a rational prime is also a prime.
For suppose that N¢ = p and thata = Bleb wherea , Bl' BZ cZ(ilk
Then p = N& = NBl NBZ' Hence either N81 =1ornNg, =1 and either
Bl or B

> is a unit; and therefore ¢ is a prime.
Lemma 3
If I is a prime in 2[i], then it divides exactly one

positive rational prime p.

NI = Hﬁ' and so HINH. Let the prime decomposition of NJI
in Z be NIl = P, ++ P, where pi's (1¢igr) are distinct positive
primes. Then H‘pl e Pe That is, Il divides one of the primes P;*
It cannot divide two primes pJ. and B- If so, then one can find two
rational integers Q.J. and SLk using Euclid's algorithm such that
Q.J,pj +%,p =1. If H|pj and I[|pk then ]'[ll. So Il is a unit not a
prime contrary to the hypothesis.

Lemma 4
Any integer, not zero or unit, is divisible by a prime and
can be expressed as a product of primes.

If @ is an integer, not a prime, then

a =B.8B

s 9 NBl >, N%)l, Na NBJ.NB2 and l<NBl<Na

1

if B1 is not a prime, then

B, =838, NB>1, NB,>1, NB, = NB; N8, and 1<NB,<NB

This process can be continued so long as Br is not a prime. Since
Na, NBl, N82 ees form a decreaéing sequence of positive rational
integers, this must come to a prime Br' Theng = 3231 = ByB3By T ---
=% B‘; "'Br and so Br'l a. Therefore now it is assumed that o is

divisible by a prime I[l anda =1, and the above process can be

1

repeated for a 1°
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In 2[i], the representation of @ as a product of primes is
unique as in Z (except from trivial variations).

The unique factorization of integers in Z[i]is equivalent
to the principality of all ideals in it [63]. That is, Z([i] is a
principal ideal domain. The argument to show this is very much
similar to the one used to prove all ideals are principal in the ring
of integers Z. Here instead of choosing the least positive number,
the element of least positive norm is used. The prime ideals in

Z[i] are therefore the ideals generated by primes in Z[i].

'12.2.2 pesign_of Irapdoor Ceding System in Z[i]_

As before, ¢ =B mod <y >wherea ,B, vy € 2[i], is defined
to imply that a - 8 is in the principal ideal<y> , that is,a - 8
is divisible by v.

Fermat's theorem in Z[ilcan be stated as follows:

it l'Ll and 1'[2 are relatively prime then

§<]'[2>
M, = 1 mod <, > (12.1)

where the Euler totient function ﬁ(l’[z >= N"[[-z—l

Now if an ideal <m >generated by a Gaussian integer m is considered

whose decomposition is

m =n1 ...Hr

where I[:.L for 1gigr are distinct primes in Z[i], then the number of

invertible residue classes modulo <m >is given by g<m>

_ﬁ'qr» = ‘g(]'[l) _@'<n2> « o . _@’(H r> (12.2)

In order to calculate the order 13- <m> , one needs to compute NI
for all i.

Using Lemma 3, let the Gaussian prime ]I divide a rational
prime p, ie, ]T_|'p. Then NHINp. But Np = p2. Therefore NTi‘= p or
Nﬂ=p2. That is, if I = a + bi, then a2+b2=por p2.

Case 1 : p = 3. (mod 4)
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Since p is odd, one of a or b must be even, the other odd.
Otherwise, the sum of their squares would be even. Let a = 2x and
b=2y + 1. If a2 + b2 = p then

p 4x2+(2y+1)2
4(x2+y2+y)+1
1 (mod 4)

3 (md 4). So in this
Np = p2. That is, the

whereas to begin with,the assumption was p

case, only a2 + b2 = p2 is possible and NII

rational prime p stays prime in Z[i].

Case 2 : p = 2 (mod 4)

p = 2 is the only prime which falls into this class and
from cryptography point of view, this case is not interesting.
(NIl = 2).

Case 3 : p=1 (mod 4)

Here p is of the form 4k + 1 where k is any rational integer.
Then pln2 + 1 for some rational integer n. But (n2 +1)= (n+1i)
(n - i) and as H‘p, I divides (n + i) (n - i). But p does not divide
(n + i) or (n - i) for otherwise one of n/p + 1/p i would be a
Gaussian integer; this cannot be possible as 1/p is not a rational
integer. Hence ][ and p are not associated and NIl # Np. So a’ + b2
# p2 and hence only a2 + b2 = p is possible, ie NIl = p.

The system designer first chooses primes pl, p2,...,pr
randomly for some r32 such that P; =1 (mod 4) or P; = 3 (mod 4),
for 1¢jgr. Then he computes the norm of each of the Gaussian primes

nj using Nnj = pj or pjz. The orderjakm> can then be calculated

using
) o
Fm = TT (NI -1) | (12.3)
j=1 3 _

The coding exponents e and d required for encryption and decryption

procedures can be determined using
ed =1 (mod F <m> ) (12.4)

The public encryption key consists of (e, m) and the secret decrypticn

key-is (d, m) wherem ¢ Z[i]. As the designer is required to make
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m public, to obtain m, he needs to solve equations of the form
2 .
a, + b, = p. Or p__j for 1§j$r
andll, = a. + b_i.
J J J
. . . . 2 2
Consider the problem of finding a and b in a + b =

p or p2 given p (system designer knows p). The subscript j has
been dropped for convenience.

Case 1 : .32+b2=p2 where p = 3 (mod 4)
This implies that
a2 + b2 2 0 (mod p) (12.5)

Suppose a ; O (mod p},- then

1+(3° = o (map)
Letting X = b/a, then

1 +x2 = 0 (mod p)
ie _x2 = -1 (mod p) . (12.6)

For the congruence (12.6) to have a solution, -1 must be a quadratic
residue modulo p (Section 12.3.2). That is, the Legendre Symbol
('—J‘;) mist be equal to 1.

=1, _y{p1)/2 _
(=) (-1) 1

As p =3 (mod 4), p = 4k + 3 for some rational integer k
ie, p-1 = 4k + 2

Therefore , .
(P2 o2kl o

Thus when p = 3 (mod 4), the congruence (12.5) cannot be solved for
aand b if a # 0 (mod p). Thus'a must be equal to O (mod p). This

implies that the only solutions of (12.5) that are possible are:




Case 2 : a2 + b2 =p where p =1 (mod 4) (12.7)

Method 1
Again assuming a 7 O (mod p) and letting X = b/a,

1 +x°Z0 {(mod p) (12.8)

For the above congruence to have a solution, -1 must be a quadratic

residue modulo p , ie,

(_1)(P"1)/2 =1

Asp=1 (md 4), p- 1 = 4 for some rational integer k.
Therefore, (_1)(p-1 )/2 = 1.

Hence there are solutions of (12.7) for which a, b ?‘ O (mod p). The

solutions to the congruence (12.8) are given by

[(&)““
X=+ 2 (mod p)

This can be seen as follows:
2

e

(1.2 ... Ezl ) (1.2 ... %1 )  (mod p)

(1.2 .o By ((p1) oon <(BFF))  (mod p)

1}

(1.2 ... 52y (B2 Ll b (-1){P=1)/2

2
{[%1] l} = (p-1)! = -1 (mod p) using Wilson's theorem [38].
Hence {[Ezl-] I}  is a solution of (12.8).

As b = a X (mod p),‘a'is allowed to vary in the range O to V¥p and the
least positive residue aX (mod p) is tested to see whether it is less
than J—f;. If so, then this value can be used for b because then

0w’ +b°<p and a° + b2 = 0 (mod p) imply that a2 + b> = p.

Example
Using the above method to find a and b such that
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a +b =p=29 (12.9)
Then
_ 29-1. |
X =+ (—5——) :
X =12 (mod 29)

Considering 0<a<Vv29, ie, 0O<agS, gives

b, £ 1.12 =12 (mod 29)
b, = 2.12 = 24 (mod 29)
by = 3.12= 7 (mod 29)
b, = 4.12 = 19 (mod 29)
b, = 5.12 2 2 (mod 29)

Hence b = b
a=5,b=

5 2 is the only one which is less than 5 and therefore
2 would satisfy (12.9).
For large prime p, this method does not appear to be feasible as one
needs to evaluate (EEL)! and test values of ‘a’ upto VE: This
requires of the order of (p+vp) multiplications (mod p) in the worst
case. 2
Method 2

This method involves the use of Jacobsthal sum, S(c),[66]

in determining a and b in (12.7).S(c) is given by

P n n2;-c
nél 5 )

s(c)

where p = 1 (mod 4) and ¢ 7 O (mod p). (Note that s(c) = O if
p= 3 (mod 4)).

Considering

p P P 2
) ()(———)Z (3 (55

c=1 c=l m=l
P
m=1

P P me—c . no—c
;1 () () Lzﬂ = D)

I~
(1))

N
9]
]

Consider the inner sum { }.
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P 2 2

if m° = n° (mod p), then it is equal to CLI (m—;-i’-) = pl
. 25 2 .
if m“ # n® (mod p), then it is equal to -l.
P p P P P
. 2 m n m n
oo s (c) = (p-1)} (<) (D)= (=} ()
cél mzl n;l PP m;1 ng'-l p P
2 = 2 o2 3 n2
That is,
£,
2 s%(e) = 2(p-1)(p-1) - i’ @) (02 - D))
c=1
2
b = 2(p-1) + 2(p-1)
Y s%(c) = 2p (p-1)
c=1
But

{;}5 (e) = (E:') s (1) + (E:l) Sz(k)
c=
where k is any quadratlc non-re51due [66]

That is, 2p(p-1)=PE—l s(1)+13§— s2(k)

P

(sé1!)2 . (sék!)Z

Thus to calculate a and b in a2 + b2 = p, one finds s(l) where
P 2

_ n n -1
s(l)-ng1 @ 2=h

and then computes p - (éél)-)2 giving
2
2 s{1l 2 1).2
= (32)  anav® =p - (&Y,

Considering the same example as before to find a and b in a2 + b2 =

P = 29, using this method
29
_ n n2—1 -
s(1) =] (3 (GF) = 10
n=1
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0
[\

2
(5(—1-)-) = 25 hencea=5andb=\[>—(%l)')

Again this method may not seem to be attractive when p is large.

Method 3

Legendre's method [86] is based on the continued fraction
expansion of Yp. He showed that if p is of the form 4k + 1, then
the expansion of \E)_is of the form

q, *

1
2% + L

It is seen that there is a symmetrical part Qs Qs cc0s Ay G
followed by 2qo and there is no central term. Now let ¢ be the
particular complete quotient which begins at the middle of the period,
that is, . '

c=c =q *+ 1
U

2q0+ 1

ql * eee

This is a purely periodic continued fraction whose period consists of

q_m, coey ql’ 2qo, ql’ eees Qe Since this period is symmetrical,
= - = , where c denotes the conjugate of c. cC is now expressible

c
in the form ¢ = 1—3—;—{9: where a and b are integers. The equation
cc = =1 gives (ba—@) . (b—;-\{-_é) = <1 or a2 + b2 = p.

Again consider the example p = 29. The process for developing V29

in a continued fraction is

j~

J29

=5 +
©1

1 1
c, == (5+V¥29) =2+ =
1 4 c
2
1 1
c,==(3+V29) =1+ =
2 5" €3
c.=(2+Vm) =1 +2
3 5 c
1 5= 1
c,. =< (3+vY29) =2 +=
4 4 Cg
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cs =5 +J29

The continued fraction is 5, 2, 1, 1, 2, 10, The appropriate complete

quotient to take is ¢ = C, giving a = 5 and b = 2.

Method 4 .

The cryptographer can also design the system starting with
primes l'[J. in Z[i] rather than primes P, in Z. That is, he selects
Gaussian integers IIJ., 1¢j<r,arbitrarily by choosing say aj to be an
even integer and bj to be an odd integer in IIJ. =a_.+ b_‘i i so that
auJ.2 + bJ.:2 is always odd. Then he can test the norms N]Ij for 1<j<r,
to find whether they are primes or squares of primes in Z. The
primality testing can be done using the probabilistic algorithm
mentioned in Section 10.2. If Nl'[J. is a prime or a square Of a prime
in 2, then Hj must be a prime in 2[i]. If NHJ. is not a prime or
a prime square in Z, then he chooses another pair of a__j and b_'j' As
this procedure needs to be done only once by each user at the
beginning, this could be a feasible approach especially when r = 2
as in the prototype RSA system.

Choice of primes

Although the designer can choose any primes of the form
p=3(mod 4) or p =1 (mod 4) (except.the special ones such as the
Mersenne primes), now it is shown that certain combinations will
result in the easy factorization of the composite Gaussian integer m.
If m is considered to be a product of two Gaussian primes Ill and Il2

where]i 1| P and ]'Izlpz, then there are four possible combinations.

They are:
(i) P, =1 (mod 4), p, 51 (mod 4)
(ii) P, = 3 (mod 4), P, 2 3 (mod 4)
(iii) P, =1 (mod 4), Py = 3 (mod 4)
(iv) p, =3 (mod 4), p, =1 (mod 4)
Case (i) results in ]'[1 =a, + bli and H2 =a,+ b2 i where

ajs 85 by, b, #0in Z and m = nl M,e Z[i]. The order of the group
formed by the invertible residue classes modulo<m> is therefore

equal to F«m> = (NI,-1) (NIL-1) = (p,-1) (py=1).

Case (ii) yields ]Il = a\1 or bl i and ]I2 a, or b2 i1 as one of each

pair (a,b) is equal to -zero, Letting m = aja, it is seen that m
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. 2 2
is a rational integer and the order @< m> = (p1 -1) (p, -1)-

Case (iii) and (iv) will yield an m of the form cd+cfi. As m is made
public, the opponent can easily spot the factor ¢ and hence factorize
Me

Hence it is seen from cryptographic considerations that,
only the schemes where both P, and p, are chosen to be of same type
{(either 1(mod 4) or 3(mod 4))will provide secure systems. This idea
extends to all primes pj. 1)<, when m is a product of r Gaussian

primes.

— — — — —

As in the case of the prototype RSA system over Z, the
publicly available information for the opponent consists of the
encrypting exponent e and the composite modulus m. If the raticnal
primes are chosen such that P = 3(mod 4) for all j, then ;he modulus
m can be made to be a rational integer and the norm Nm = m . If the
primes are chosen such that pj = 1(mod 4)'for all j, then m is of the
formc+di € Z[i } In this case, the opponent can easily calculate the
norm Nm = c2+d2. Hence in either case, the security of the system
essentially lies in the difficulty of factoring a large rational
integer, the norm Nm. The problem of factoring Nm is similar to that
of factoring the modulus m (¢Z) in the prototype RSA system. Thus the
security of this system is same as that of its predecessor. Once the
norm Nm is fa%torized into r primes qj, then the orderj§?:n>'can be
found using ;';‘1_ (N I'[J.-l.) where NII). = qj or qj2' Then the opponent can
compute the secret decoding exponent d using (12.4). Note that the
cryptanalyst does not need to know the Gaussian primesHl....,Hr but
only needs to know their respective norms. In other words, the opponent
will be working over Z not over Z[i] and does not need to solve the

equation a’+b® = p for a and b.

The messages are to be represented using the residue classes
modulo the ideal generated by the modulus m., The number of distinct
messages possible is equal to the number of incongruent residues mod
<m> and is given by the norm of the ideal <m>. In the case of a,
principal ideal domain N<n> = Nm, the norm of the element m.

In pérfbrming encryption or decryption using this system in
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Z[i]), there is a problem with regard to the message representation.
First consider the process of reduction mod<m> which is required in
both encryption and decryption procedures. This can be carried out
using the Euclidean algorithm as Z[i] is a PID. Let y = x° where e
is the encrypting exponent and consider the operation y mod <n> where
xo yvand m € Z[i].
Using Euclid's algorithm, there exists two integers u and v in z (il
such that

y = um + v where NV < Nm
Consider

y/m = A + Bi where A and B are rational numbers.

Choose rational integers s and t such that
|a-s| <%, |B-t| ¢ %

This can be done by choosing s and t as rational integers nearest to
A and B respectively (see Figure 12.1). Now let u = s+ti and v = y-

um, then it is seen that Nv< Nwm as

vl

y-um] = |y—(s+ti) m|

= |m| I % —s-til
IV [= |m | I (A-s) + (B—t)il

|m | | (A-s)® + (B-t)2} %

alel s el (L eyt
v |m| { 22 22_} < Iml

Since Nv = |v|2 < |m|2 = Nm, the inequality is established .
q?\
t+l -
A+Bi
/.
’
’
t i U4
3 b
7
5 s+l
Fig 12.1
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But the u and v are not uniquely determined. Thus if a message

M = x+iy is encrypted to form g+hi = (x-l-i.y)e mogd <m>, the decrypted

message, M~ is given by

(g+hi )d mod <m>

= k+0i mod <am>

M‘

The decrypfed message, k+2i = x+iy mod an> but it is of 'different

representation'. For instance, consider the example given below.

Let the modulus m
The normn, Nm

8+i ¢ Z[i]
65
N]'[,l Nﬂ2 = 5,13

Asplzl(md4)andp251(md4),j')'<m>isgivenby

§<m>= 4,12
= 48

Choosing ¢ = d = 7 where ed =1 (mod 48), consider the message
M = 5+3i. Using the Euclidean algorithm,

(5+¢3i)’ S -2-i mod <@> = g+hi

Thus

M® = (-z-i)7 mod <m>
ie » M = (-2-1) = —2-6i mod an> = k+gi
But

(-2-6i) = 5+3i = 2i-3 mod am>

The receiver would not be able to differentiate say between -2-6i or
5+3i or 2i-3 although they are congruent to each other mod <m>. Thus
there is not a unique representation of messages unlike in the case
of the RSA system over Z where a message is uniquely represented by
taking the least positive residue modulo m. In 2[i], one approach
could be to use the norm of the modulus, Nm, to construct a standard
set of representatives. But this would not work as two elements a
and B can be congruent to each other and their norms Na and Nf be less

than Nm. Thus some form of standard set of representatives is essential.

Case 1 .
First consider the case where the primes ]'[J. which form m
divide rational primes P; of the form P; =1 (mod 4). Then the norm

is a square free rational integer given by
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r _[.EI_
Nm = where m = i

T 3= P I 2 M

The residue class ring Z[i]/<m> is isomorphic to a direct sum of finite

fields Z[i]/<ﬂj> , ie,

z[{il /<> ¥ Z[i3/<"1> @ oo © z[i]/<Irr>

The field Z[i]/<]'lj_> eontains Nnj = pJ. elements. Therefore one
standard method of representing the messages mod <m> would be to use
the integers in the ring Z/NmZ, that is, O to Nm-1. And every element
of Z[i]lqvis congruent to an element in Z/NmZ. This is same as the
message space of the RSA system over the rationals.
For example if p; = 13 and p, = 5, p; = P, =1 (mod 4) then
Nm = 65 and ﬁ <m> = 48. The message space is therefore equal to
' {O, 1y soe 64}. The encryption and decryption processes are carried
out using C & M° (mod Nm) and M = o (mod Nm) where ed = 1 (mod
F<m>). The coding exponent e and Nm are made public.

Now consider the case where the message space still consists
of the integers in Z/NmZ but now the encryption and decryption
procedures are calculated modulo m where m = a+bi € Z{1]). 1In this
case, e, m and Nm are made public. Let the message be M eZ/NmZ,

then the encryption procedure results in

M® mod (a+bi) = g+hi = cipher
Decryption produces

(g+hi)? mod (a+bi) = k+2i
That is, the recovered message M is equal to k+%i

M = k+@i (mod a+bi’) (12.10)
Conjugating both sides of (12.10)

M = k-2i (mod a-bi) (12.11)
Using Chinese Remainder Theorem, the original M can be formed where

M =y y (k=21) + v, (k+2i) (mod (a+bi)(a-bi))
where y+ Yy, =1 and M ¢ Z/NmzZ, Y,,Y, € Z[1)

A standard set of representatives of the ring Z[i] &m> can also
be obtained using elementary divisor theory [65].

The ideal <m> in Z[i]is generated by the element m = a+bi
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and it consists of the set of Gaussian integers
<m> = {(a+bi)r } where ) £ 2[i]

The ideal <m> can be regarded as a Z-module generated by [a+bi,
ai-b] and the Z-basis of the ideal <m> is therefore given by (a+bi,
ai-b). The integral basis of Z{il]is (1,i) [65].

Hence one can associate a matrix A with the pair of bases as follows

Z-basis of ideal <m> = A (Z-basis of Z[i] )

) - )

where A= a b
=b a

ie,

Therefore

t = A s {(12.12)

s and t can be replaced by w and v where w and v are equal to s and t
miltiplied by some unimodular matrices respectively.
Let

D = VAU where U and V are suitably chosen unimodular

transformations such that D = diag(dl, d2) and dll d2. That is,

[ ol
]

VAU

Multiplying s by U-l, gives

1}
c
0

w
and hence
t = AU w (12.13)

Multiplying (12.13) by V gives
= VAU

ie = D

re 1S

tg 1€
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The new basis of Z[{]is (w& ) and the new basis of «m is (d1 w

3¥2 1’
d2w2).

Therefore, the residue classes mod <{m)> are represented as xlw1 +

X W, where x; goes from O to difl for i=1,2.

Hence the system designer is required to reduce the matrix A to its
diagonal form. The steps involved in this reduction algorithm of an

nxn matrix A are now considered {67].

First Stage of Reduction

The aim is to reduce the nxn matrix A to an equivalent nxn

matrix C of the special form

rﬁ 0 O-
1' LI
_|o
0]

where d1 divides each entry of C*.
A finite sequence of elementary row and column operations is considered
which when performed on A either yields a matrix of the form (12.14) or
else leads to an nxn matrix B = (bij) satisfying the condition

b, < 2, (12.15)
In the latter case, one goes back to the beginning and applies the
sequence of operations again. Either the form (12.14) is achieved in
which case, this stage ends or (12.15) is reached in which case the
leading entry is reduced still further and the process continues.
After a finite number of steps, the form (l12.14) will be reached.

The sequence of operations is as follows:
If A is the zero matrix, then it is already of the form (12.14);
otherwise, A has a non-zero entry and by suitable interchanges of rows
and columns this can be moved to the leading position. Therefore
assume a and consider the following three possibilities:
Case (i)

There is an entry aij in the first row such that a114/a1j.

By the properties of Euclidean domain,

345581 9T
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where either r = O or r«< a11

Since allAIaij’ one must have r # O and so r< a Subtracting q

11°
times the first columm from the jth colurm and then interchanging the
first and the jth columns, the leading entry a

(12.15) is achieved.

11 is replaced by r and

Case (ii)

There is an entry a in the first column suchthat a11/+/ai1.

11
In this case, proceeding as in Case(i) but operating with rows instead

of colums, (12.15) is reached.

Case (iii)
a11 divides every entry in the first row and first column.
In this case, by subtracting suitable miltiples of the first column
from the other colums, one can replace all the entries in the first
row other than ar, itself by zeroes. Similarly, subtracting multiples
of the first row from the others, a matrix is obtained which is of the

form,
— -
a, O ..o O
D = D*
o
L - 4
If a5, divides every entry of D*, (12.14) has been reached; if not

there is an entry, say, dij such that a11’+’dij' In that case, by

adding the ith row to the top row leads to case (i).
Repeated application of these procedures will result in the form (12.14)
after a finite number of steps, thereby completing the first stage of

reduction.

End of Reduction

By applying the above process to the submatrix C*% one can
reduce its size still further, leaving a trail of diagonal elements.
Any elementary operation on C¥ corresponds to an elementary operation
on C which does not affect the first row and column. Also any
elementary operation on C* gives a new matrix whose entries are
linear combinations of the o0ld ones and hence the new entries will
therefore still be divisible by d . Thus d1[d2|...ldn.
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in particular in the case of a 2x2 matrix A, the unimodular

transformations can be found as follows

a b

Let A = c d and b> a a /l’ gcd (b,c,d)

It is first shown that the matrix A is equivalent to a matrix of the

a b where a”
c” a°

Using induction on a: the case a = 1 is trivial; when a>1 and a*b,

form

ged (b7,¢c7,d7)

choosing q so that O<aq + b<a

and consider
a b q 1 = agtb *
c d 1 0 - -

where the leading element is a positive integer less than a. If a b
and a,}’c. then choosing q” such that O<agq”+c <a and consider

q 1 a b)_ [ag'+c *

1 0 c d - -~

where the leading element is once again a positive integer less than
a. Finally if a | gecd (b,c) but a/rd,'let c = cla .50 that
1 1 1 0 a b a (1—4:1 Yo+d

o1 -cll c d b -

and a/r {(1-(:1) b+d } which reduces back to the case when a*b. The
inductive argument is now complete. Now a“gcd(b‘,c‘,d’) » Letting

b =ab”,c =ac and d = a"d” and considering

1 O a’ a'b” 1 b a o0
1

- aer ad”f \o 1 0 a (d--b"c - )|(12.16)

the desired result is obtained.

With A =( a +b) , (12.16) reduces to
=b a :

a o
0 a (146~ 2)
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I

= =T_r
Further as d1 d2 and Nm d1d2 where Nm j=1 pj, the only allowed

values for d1 and d2 are 1 and Nm respectively. So the messages can

be represented as X, W, where x, goes from O to Nm=1. In this case,
the elementary divisor d2, the encrypting exponent e and the matrix
U (see 12.13) are made public. The decrypting exponent d is kept
secret. The security lies in the difficulty of factoring d2 = Nm.
The encryption procedure is carried out as follows:

Let M = x%wz
C=M mod <m>

(x2w2)e mod <m>

e e
x W, mod <m>

2 2
Using
w ] s 1
1= ¢! sl where Sl =13
2 2 2 .
and
12 +1=0
c’ = y2’w2 is obtained. Now reducing yé (mod d2) the cipher C is
obtained
C = y¥, mod <m>

A similar procedure can be carried out for decryption to recover the
original message using the decrypting exponent d. An example using
this method is now given below.

Let Hl = 2+31 and H2 = 1421 where Hl and H2 are primes in Z[i]. The
modulus m = 7i-4 and Nm = 65. 13'<m>= 48. Let e = d = 7 where

ed = 1 (mod 48).

-4 7
A=
=7 =4

Using the method given above to reduce A to diagonal matrix D,

1 0 4 7\ [2 -7 -1 0

D=1l_18 1 -7 -4a) \1 -4 = 0 65
4 —=7i a -7 1

‘E - =

1 —2i 1 -2 i

where 4 Ve
vl o= B
1 =2
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1 2 7 w

= (12.17)
i 1 -4 w,
Let the message be M = 4w2
The cipher is given by
cC = M mod <7i-4>
= 4 w27 mod< 7i-4>
Using (12.17), w, = 1-21
and wg = 29-278i1

Using (12.17),

29-278i = -220w1 + 909w2 (12.18)

Now reducing (12.18) (mod dl) and (mod d2), the cipher is given by
C =S 6lw, mod <7i-4>

A similar process for decryption with decoding exponent d = 7 gives

back the original message M.

Case 2
Now consider the case where the primes ﬂj which form the
modulus m divide the rational primes P; of the form P; = 3 (mod 4).

Then the norm Nm is a non-square free rational integer given by

T .2

== P
In this case a1though2[{V<¥f is a finite field of pJ.2 elements, one
cannot represent the residue classes modulo <Hj> using the integers
Z/pjzz as the latter does not form a field. On the other hand, one
can represent the messages in the form x+iy where x, v € Z. As
mentioned in 12.2.1, the Nm can be made to equal'm2 by appropriately
choosing m to be a rational integer. Therefore, one can represent
the distinct residue classes mod <m> as x+iy where 0gx,y s.|J§B|.1,
thus giving rise to Nm residue classes. Using the elementary divisor

theory described a?ove. this corresponds to the case where d1 =

j=i pj and d2 =TI pj. Again these are the only allowed values for

J=1
d1 and d2 as the following conditions must hold:
(i) d |d2
(ii) dl.d2 = Nm
(iii) z/d;z is isomorphic to a direct sum of finite fields, for

i = 1,2-
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The divisors dl and d2 and the exponent e are made public.
The encryption and decryption procedures are very much simplified in
this case. If a message M is raised to the power € then "to perform
mod <m> , it is only necessary to reduce the coefficients by the
corresponding elementary divisors. Let M=x+iy be the message then,

the cipher C is obtained by

¢ = M mod a>

(x+iy )e mod <m>

g(mod d1) + h (mod dy) i

where dl = d2 =|\/Nm|

A similar procedure can be used for decryption.

12.3 Factorization Trapdoor System in Other Quadratic Fields

Note that when D=1, R(\{B),where R is the set of rational tum-
bers,includes the ring of Gaussian integers considered in the previous
section. Initially some of the properties of the integers in R(\fﬁ_)
which are required in the design of a trapdoor system are briefly
oxamined. A detailed treatment of quadratic fields can be found in
[6L, 63, 65] .

A quadratic field is a field of degree 2 over the rationals.
Such a field is of the form R(8) where 8 is a root of a quadratic
polynomial which is irreducible over the rationals. Let 8 satisfy an
equation

x2+2ax+b=0 where a3, b €2
Then 6 = —-a + Ja_z-;. Removing from a2-b all square factors so that
az-b = szD where D has no factor hicher than the first power, then
R(6) is equivalent to R (¥D). That is, every quadratic field is of
the form R(JVD) where D is a rational integer free. of square factors.

The ring of integers of R(\/E) for square free D depends on
the arithmetic properties of D. It is shown in [61 ] that the integers
in R(VD) fall into two categories, namely,

(i) if DF 1 (mod 4), then the integers are of the form x+yVD
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where x, vy € 2, ie, 2 (VD]

(ii) if D= 1 (mod 4), then the integers are of the form x+y
1+vD, . 1 + VD
( > ) where %, v € Z, ie, 2 s

Note that the Gaussian integers considered in the last section falls
into the first category.

Using Lemma 1 (Section 12.2.}, it is seen that an integer in
R(VD) is a unit if its norm is + 1. When D #1 (mod 4), the norm of

a o = (a+b¥D) (a-b¥D) a®-Db>.

1]
]

o 'is Ng
When D= 1 (mod 4), the norm of g is given by

No = [a+2 WD) [a+2aNB)]= (a+ip) - 00

Note that the norms are positive in complex quadratic fields (ie,D is
negative) but not necessarily positive in real quadratic fields (ie,D

. is positive). Thus g is a unit if

a2 - Db2 =+1
or {12.19)
(a+%b)2-%b2=11

When D<O, the equations (12.19) have only a finite number of solutions
[63]. When D = -1, as seen in Section 12.2.1 the ring of Gaussian
integers z[i] bas four units namely +1, + i. When D = -3, there are
six solutions to the equation (12.19) namely + 1, + w, + w2 where w
is the cube root of unity, w = (=1 + \1—-3)/2. For all other complex
fields, the only units are + 1., In the case of real fields, there
exists an infinite number of solutions to the equation (12,19) and
hence an infinite number of units [63]. These units however may be
expressed in the form of :'en where n takes all positive and negative
rational values. The quantity € is called the fundamental unit.
Using the definition of a prime element given in Section
12.2.1 it is seen that the Lemmas 2, 3 and 4 are also applicable in
R(YD). Although every integer in R(VD) can be expressed as a product
of. Primes, it does not necessarily imply that the factorization is
unique like in Z or Z[i]. Consider for instance the factorizations of

the integer 6 in R(*fl_(-)) expressed as

6 = 2.3 = (4 +v10) (4 - V10)
or of the integer 21 in R(@5)

21 = 3.7 = (1 + 2\/:-5) (1 - 2\[.._5') = (4 +\fr5') (4_\}-5)
(12.20)
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Considering (12.20), we have the following situation: the integer 3,
o Prime,divides (1 + 2V_5) (1 - 2J5) but fails to divide either
factor in R(ngq. Such a situation does not arise for instance in Z or
Z[i]. Hence it is seen that in R(J=5), Prime integers which are not
associated can have a common factor which is not in R(V=5). It
appears then that in such algebraic number fields tfe Primes. .. are
not necessarily the atoms from which all the integers are constructed.

It is in such cases the factorization of an ideal into a
unique set of prime ideals (see Section 11.2.6)comes into use. The
rings where the unique factorization of integers fails,correspond to
non-principal ideal domains. The theory of non-principal ideal
domains is considered to be beyond the scope of this thesis and hence
the design of factorization trapdoor systems has been confined to

principal ideal domains.

12.3.2 Design of Irapdoor Coding System: Complex Euclidean
Fields_ |

'The fields which possess the unique factorization of elements
property obey Euclidean algorithm of cne form or other. There are just
five complex Euclidean fields namely when D =-1, -2, -3, -7 and -l1.
(There are 4 other complex fields which have the property of unique
factorization of elements but obey a slightly different form of
Euclidean algorithm [38]). For these nine cases the ring R(VD) is a
principal ideal domain. The prime ideals are therefore the ideals
generated by the prime imtegers in R(¥D). From the point of view of
designing a factorization trapdoor system, the primes in R(VD) and the
relationship between the primes in Z and the primes in R(VD) need to
be considered. More exactly, it is necessary to know whether a
rational prime splits in R(JE) and if so how.does it split.

From Kummer's theorem [ 68], the decomposition of an ideal
<p>, where p is a prime in Z, into prime ideals in R(VD) is determined
by the factorization of the polynomial f{x) = x2-D in z/pZ. Over
2/pZ, the factorizations of f(x) are

2 if p|[D or 4p

X =D = x2-D if D is not a square (mod p)

(x=a)(x+a)if D = a° (mod p), a € Z

The three cases therefore correspond to:
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1. If a prime p in Z divides the discriminant [68 ] of the field
R(VD) (if D = 1 (mod 4),discriminant = D and if D # 1 (mod 4),
discriminant = 4D), then the ideal< p> is factorized into
the square of a prime ideal in R(JE). That is<p> = 92
where 0 denotes a prime ideal in R(Jﬁ), and Np = p. (12.21)

2. An odd prime p which does not divide the discriminant
generates a prime ideal of degree 2 in R(VD) if x> -D =0
(mod p) does not have an integral solution. That is, p is

irreducible in R(¥D) and <p> = p and Np = p-. (12.22)

3, On the other hand, if x°-D = 0 (mod p) (or y>-4D = O (mod p))
has a solution then <p) decomposes into two distinct conjugate

prime ideals, {(p) = P1P5 where Np1 = Np2 =p {12.23)
(Note that the prime p = 2 is of no cryptographic significance)

As an example, consider the non-principal ideal domain R(J-=5) whose
discriminant is equal to 4D = -20. 2 and 5 are the only prime factors
of the discriminant and consequently are factorable into squares of

prime ideals as <2> = <2, 1 +VT5>° and <55 = <\f-_5>2

The congruence x> + 530 (mod p) has solution for p = 3, 7, 23,...
but cannot be solved for p = 11, 13, 17, ... Therefore
<3> = <3, 1 +V 5> <3, 1 -V =5
<7> = <7, 3 +\N 5> <7, 3 -J¥=5> ...
while <11>, <13> ... are prime ideals.

The designer chooses primes Pys-e-s P, in Z which give rise
to prime ideals in R(m. If the primes p; are chosen so that x2-D

= 0 (mod pi) have integral solutions then letting

P> TP 41 Pis where Pj1* Pjp, 3are prime ideals in R(¥D)

the composite idea1r<m> is equal to, say,

w =] 1 Pi1
1=

The number of incongruent residues with respect to the ideal <m> and

relatively prime to <m»>is given by

f(m) H

1]
by
—
©
e
[
Sl

1]
.‘jﬂ
4
©
H
=
|
[

(12.24)

And hence using (12.23),
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r
Feam =TT (ps-1) (12.25)

1=
If the primes P;» lgigr, are chosen such that x2_D = 0 (mod pi) do

not have an integral solution for all i, then the idealsc< p; > are
irreducible in R(VD) and

r
ﬁ'arb = T_l— (piz-l) (12.26)
i=1
using (12.22). .
The designer can decide whether ¥°-D = 0 (mod p) for a
chosen prime p has solution or not using the law of guadratic reprocity.
In general if X2 = a{mod n), where gcd(a,n) = 1, has a solution then 'a' is
said to be a quadratic residue modulo n. Here n=p and a=D. To
determine whether D is a quadratic residue or not modulo p, the designer
computes the Legendre Symbol (g). If (E) = 1 .then D is a quadratic
residue and if it is equal to -1 then D is a quadratic non-residue.
Calculating the Legendre symbol is not much different from evaluating
ged of two numbers using Euclid's algorithm and can be done by repeated
divisions in polynomial time., (Note that IDI is of small value).

The Fermat theorem in this case is given by

“gkm) ‘= 1 (mod <m> )

where ¢ is anarbitrary integer in R(JE) relatively prime to <md.
The encryption and decryption exponents e and d can be
calculated using

ed =1 (mod g <m>)
where @ <m> is given by (12.25) or (12.26)

The public encryption key is (e,m) anq the secret decryption key is
(d,m). Having generated the rational primes Py calculated_ﬁk m>, e
and d, the designer needs to obtain m to make it public. That is,
given the primes Pyrrees P, in 2, he needs to calculate m where m =
Hl eee IIr and[['s are primes in R(JB), i:ﬂg]i is of the form]'ii =a; ¢+

biﬁifn¥1(md4)andni=ai+bi( >—) if D=1 (mod 4). To

ocbtain m, he needs to find Hl""’ Hr’ that is, he needs to calculate

a; and bi for all i, lgigr by solving either

_ .2 2 _ 2 . "
NI, = a," - b,"D=p; or p;°, if D 7 t(mod 4) (12.27)
or
- . 2 D1 2 _° 2 . -
NI, = a, " + aibi -2 b =Pp;orp; yif D=1 (mod 4)
(12.28)
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Note that (12.28) can be written as

2 2 _ 2
Ai - Dbi = 4pi or 4pi (12.29)

where Ai = (2ai + bi)

For solving (12.27) or (12.29), the method 4 of Section 12.2.2,which
consists of arbit;arily choosing 35 and bi to form integers ni and
then checking whether their norms are primes or squares of primes,
séems to be the most attractive cne for the system designer.

Again it may be advisable for the designer to choose all the
primes Pi» 1gigr, to be of the same type, that is, either they all
decompose into distinct conjugate prime ideals in R(J53.or they are
irreducible in'R(JB3. If one of ai(Ai) or bi is zero and the other is
pi(2pi), then factorization of m would be made easy as seen in Section

12. 2.2.

12.3.3 Security of The System in R(
The security of the system seems to be the same as that of
the RSA system. The opponent needs to find the decrypting exponent d
to break the system. One way of finding this is to obtain @<m>. To
calculate_§2m>, he needs to factorize Nm given the modulus m. If the
desicmer had chosen the rational primes such that congruence x2-D =0

{ mod pi)havé a solution for all i, then the norm Nm is given by

r
Nm = IT-T-pi

i=1
On the other hand, if the primes have been chosen such that xz-D =0

(mod p.) have no solution for all i, then
i

T
Nm = I I p-2
i=1 '

As in the case of Gaussian integers, note that the cryptanalyst does
not require to find the primes II, in R(J¥D) to break the system. Thus
unlike the designer, he is not faced with the problem of solving
(12.27) or {12.29).

If the primes p; are chosen such that x2-D = 0 (mod pi) have
solution for all i, then-every integer of Rbfﬁ»km> is ‘congruent to an
element in the range O to N<m> -1 as in-Section 12.2.4. Thus the
messages can be represented using integers in Z in the range O to

N<m>=l. As in Section 12.2.4, the encryption and decryption procedures
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can be performed modulo Nm or m, where Nme Z and mE:R(VSB. The messages
can also be represented in the form x + y~f5 {D ?1(mod_4))‘or x¢+y (1+JD)
(D51 (mod 4)),x,y € 2, using the elementary divisor method given in
Section 12.2.4.

If D7 1 (mod 4) then the integral basis of R(YD) is (1,YD)
and the matrix A in Section 12.2.4 is equal to

a b

bD a

If DS 1 (mod 4), then the integral basis of R(VD) is
14D,

{1, > ) and the matrix A is equal to

a b

A=
bgg-l) a+b

Using the method given in Section 12.2.4, the matrix A can be reduced

to diagonal form (dl’dz) and the modified basis of the ideal<m> is

obtained as (d Wy d w, o The residue classes mod <m> are therefore

11 2 2

to i-lpi in thi; case, the only allowed values for d1 and db are given

by d_=1 and d_= Upi-_. The operation modulo < m> required in
1 2 i=l pe

encryption and decryption is performed in the same way as that given
in Section 12.2.4.

given by x w, + X W where Osxl<d1 and Osx2<d2. As Nm is equal

If the primes p; are chosen such that x2-D = 0 (mod pi)
have no solution for all i, then the norm is a non-square free rational
integer and as in Section 12.2.4, one cannot represent the residue
classes modulo<II > using the 1ntegers Z/p Z . This case corresponds
to the situation when d = d Ij; P; in the elementary divisor method.
The messages are hence 3_presented in the form x, + x, ND for DZ 1
) for D= 1 (mod 4) where Osxl,x2<Jﬂﬁ =
d1 =d.. The reductlon mod <m> is performed by simply reducing each

2

of the components Xy and xz mod ViNm.

Again, the elementary divisors d1 and d2 are made public

{(mod 4) and X + x, (

together with the encrypting exponent, €.

There are 16 real quadratic fields which obey the Euclid's
algorithm with respect to the field norm and hence possess the unique

factorization of integers property [65]. . They occur when D is equal to
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2+3,5,6,7,11,13,17,19,21,29,33,37,41,57 and 73. One major differemnce
between the complex quadratic fields and real quadratic fields is that
the latter has infinitely many units (Section 12.3.1). However this
does not cause any serious problems provided we choose the message
representation within the allowed standard set mod <m>. This is done
in any case, by either using the elementary divisor method or using
the standard set of messages mocdulo Nm. Thus it seems that in this
case, there are not any major changes to the trapdoor system described

above for the Euclidean complex quadratic fields.

12.4 Discussion

The design of factorization trapdoor systems in some
quadratic fields which are principal ideal domains has been considered.
However majority of the quadratic fields are non-principal ideal
domains and they do not possess the unique factorization of elements
property. But the unique factorization of a non-zero ideal into prime
ideals still applies in such fields. Factorization trapdoor system
seems possible if the chosen ring modulo the ideal is isomorphic to
a direct sum of finite fields. Choosing a square. free ideal A, not

necessarily a principal ideal, in R(JD) and let

Then A =0 ...p where p. are prime ideals in R(VD)
RWD)/A S R(\fo")/p1 6 ... ® R(D)/_

where !".'(\J-[.)-)/p:.L is a finite field of Np; elements

The order of the group formed by residues relatively prime to A is
given by r .
__5'(A) = | | _ér(pi) = ] I (Npi-l) using (11.1)
i=1 i=1

The coding exponents e and d can be found using ed = 1 (mod $(A)).

From Lemma 3, every prime ideal divides a rational prime p which is
unique [63). If the rational primes p; are chosen such that xZ-DEO

(mod pi) have .solution for all i, then the residue classes mod;& can be
represented using rational integers mod P;- Hence the messages modulo
A can be represented using integers O to N(A)-1. The elementary divisor
method of Section 12.2.4 can. also be employed to represent the messages.

If the primes p; are chosen such that xZ—DEO (mod pi) have no solution
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for all i, then both elementary divisors d1 and d2 are equal to Jﬁ?ﬁj:
Let us conclude this chapter by considering a small example
which shows some of the calculations involved in the désign of a
trapdoor system in R(VCEB, a non-principal ideal domain.
Choosing rational primes p1=3 and p2=7, their decomposition
in R(V=5) is given by

<3> = (3! 1+‘r-§) (31 1_\/3) = Dll plz
7> = (7, 3+\05) (7, 3V_5) = 0,y Pan
Let
A=p 0, (3, 1+Ls) (7,3V-5)
Then -
A = (21, 7+7V 5, 9-3N=5, 8+2V_5)

Any ideal can be represented using a two—element basis over the ring [ 65].
Using standard rules for transforming the ideal basis [ 65],
A= (21, av/-5)
N(A)= 21

The integral basis of R(V=5) is (1,/=5) as =5 # 1 (mod 4)
Representing the ideal A as a Z-module

(21, 218, 4 +8, =5 + 40 ] where @ = V.5
or
21 21 o 1
218 = 0 21 0
4+0 a 1
-5+4 0 -5 4/
Let |
21 0
B = 0 21
4 1
-5 4

Using the algorithm given in Section 12.2.4, this matrix is reduced to

a diagonal form (dl’dz) where d1 d2.
1 ©0
VBU = 0o 21
o o0
o o
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where

O 0o =1 -1 { .
vV = o 1 o) 8] and U =
1
1 0 =4 1
0O 1 =5 -4
L -
Now the messages can be represented as
= £ < i=
M xl Wl + x2 w2 l\xi di 1 1,2 (12030)
where
w . 1 1 -5 1
1 = U"l =
w, -\ 0 o 1 6

In this case, as d, = 1, M = x w_, 1€x2<d2. However if the rational

primes are chosen iuch that tieﬁ stay as primes in the higher field

R (JB},then d1 = d2 = JETKB and the messages can be represented

using (12.30). @G(A) = (Npj-1) (NP,-1) = 12. One set of cobding
exponents e and d is e = 5, d = 5. The messages can be encrypted

using a similar procedure to that given in Section 12.2.4 for Gaussian
integers, except in this case, the recursive equation is £(0) = 92+5 =0
instead of i2 + 1 = 0. The elementary divisors dl, d2, the‘encrypting
exponent e and the matrix U are made public and the decrypting exponent

d is kept secret.
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CHAPTER 13
COONVENTIONAL CRYPTOSYSTEM WITH PUBLIC KEY DISTRIBUTION
13.1 General

This chapter focusses on the concept of public key
distribution (PKD) mentioned in Section 9.6, whereby the 'public key
idea' is solely used to transfer a key between two users over an
insecure channel. In this case, there is no message as such which
gets encrypted at the sending end and decrypted at the receiving end.
In such a system, two users who wish to exchange a key communicate
back and forth until they arrive at a key in common. The opponent
eavesdropping on this exchange must therefore find it computationally
infeasible to derive the key from the information overheard. This
type of arrangement is used in conjunction with the conventional
cryptographic DES interface unit to form a DES/PKD hybrid system. An
implementation of such a hybrid system is discussed in Section 13.5.

Diffie and Hellman [35] proposed such a key distribution
system based on exponentiation over finite field. This technique
briefly described in Section 9.5.3 makes use of the apparent difficulty
of computing logarithms over a finite field GF(q) where q is a very
large prime number. Each user generates an independent random number
x, chosen uniformly from the set of integers [1,2,.;.q-1}, and computés
y; = a*i(mod q) where'a'is a primitive element of GF(q). The number
v, is made public and the number X is kept secret. When users i and
j wish to commmicate privately, they can use the common key Kij' given
by K; 5 a7175%(y; ) 355(y;) i(mod q).

For the system to be secure, the key Kij must be difficult
to compute for anyone who knows Vs and y:j but does not know either x,
or xj. "In order to ensure that this computation is difficult, it is
necessary that logarithms over GF(q) be difficult to compute. Other-
wise an opponent could compute X from Vi and impersonate user i.

Some currently known algorithms for calculating the logarithms over

finite fields are now briefly looked at.

13.2 l.ogarithms Qver Finite Fields

Knuth's algbrithm [45] to compute logarithm over GF(q)
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requires 2 FAET multiplications (mod q) in addition to other operations
of comparable complexity. This algorithm requires 2 r&%-]words of
memory, each flogzé1 bits long. This algorithm can be generalized to
allow a time-memory tradeoff in which time is almost proportional to
qrand meEy to:%-r for any Ogrg¢l. Knuth's. algorithm corresponds to the
case where r=ls. Allowing arbitrary values of r enables the algorithm to
be adjusted to particular time-memory requirements. The algorithm to

compute x from y=a (mod q) works as follows:

Let m = [éf}

Then there exist integers c¢ and d such that
x = cm+d with 0Ogc< [é/éq = ql—r

and Ogd<m 2 q°
Substituting for x in ax, gives
y=a (mod q)
ie,ad Sy a ™ (mod q)
In order to determ%ne ¢ and d, the values of ad(mod q) are precomputed
for d=0,1l,...m=1 in O(qr) operations and the results stored in a table
in O(qr log, qr) operations. Then y,ya , ya-zm... (mod q) are each
computed and compared with the sorted table of {ad}until a match is
found. ‘Each value of c tried requires 1 multiplication (mod q) and
log2 qr comparisons, thus giving a total of (1+log2 qr) operations.
There are O(ql—r) values of ¢ to be tried. When r=1, this algorithm
is a look up table and when r=0, the algorithm reduces to an exhaustive
search. Neglecting the logarithmic factors it is seen that tHe time-

. . r 1l-r
memory product is constant (since q .q

= q) as the algorithm ranges
between the extremes of a look up table and an exhaustive search.

Pohlig and Hellman [69] proposed an improved algorithm to
compute logarithms over GF(q) when the prime q is chosen such that g-1
has only small prime factors. On the other hand, it has long been known
that a disproporticnately large portion of numbers are entirely
composed of small prime factors and it is precisely this fact on which
Adleman based his very recent discrete logarithm algorithm (70].
Assuming a microsecond per operation machine, this new algorithm could
be expected to compromise a system based on a 200-bit prime q in 2.6
days rather than the 3x1016 years using the best previously published
method due to Shanks [45]. For a large enough prime q, however,
Adleman's algorithm is also infeasible. A sketch of this subexponential

Adleman's solution to the logarithm problem is now given following [6].
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Problem: Given a, y and q (a prime) find x that satisfies y;ax (mod q)
(where ‘a’is a primitive element in GF(q) in the PKD system).

The algorithm requires the followi:::g preliminary definition: a number

a is said to be 'smooth;_ with respect to abound ED, i;f the factorization
of d into primes, G = ﬂpi'ei is such that all pi, 1$i¢r, satisfy

p; < BD. =1

Step 1 Find by random sampling (and checking) a positive integer R
such that 8 = yR(mod q),1$Bsg-1 and B is smooth with respect to the
bound BD(q) = e(1nqlnlng)® and ged (R,q-1)=1.

Step 2 Let ST be all the primes< BD(g). Find by random

sampling (and checking) positive integers Ri. for 1 i< m such that

Ai = aRi(mod q) where lsAiSq-l and Ai is e-.x'noo‘t:l"nl with respect to BD(q)
=19 .e

J J
dimensional module over Z2/(q-1)Z, the ring of integers modulo (g-1).

- - .
and the vectors Ai = (eil,...eim),where Ai = ij, span the m-

Step 3 By Gaussian elimination express B = (fl,...,fm),where

8=TTq.f; 1i bination of the A ly B=n A A+
__>j=1qj j,as a J.Qear combination o e A namely B = n A 4n A +...
.‘mmAm (mod (g-1)) where Osnisq-Z for 1gigm.
£,
Now = a J
and J=
m
1n. B= L f. 1ln q.
n S B B
m m
In-B= B (L M%; *klat))1nq; (13.1)
j=t "1=1
as
m
fj = Z nieij (mod (gq-1))
i=1 .
Exponentiating (13.1) gives,
m m eij i
= l | I I Q; :
B=j=1 | j=1 (mod q)
That is , m
BEI I Aini (mod q)
i=1 R
Where Ai can be replaced by a i.
m -]
Step 4 Calculate R-l(mod g-l1). Then y = tr é\niRiR (mod q)
—_— R i=l m
That is, y = a® (ZniRi] (mod q)- That is, x = RY _Z. n.R (mod q)
’ i=1 * ifr 4% 9

Now briefly consider the execution time of this algorithm.

- 276 -




Let ¥ (x,v)/x = Prob(z is smooth with respect to y/2¢x). Using

Erdos's result [6], ¢ (x,v)/x = e_(lnx/lny)(lnlnx—l)_ Thus the i

expected number of tries needed to obtain a smooth number is approx-

imately e(lnx/lny) (lnlnx-l)- This search must be carried out §(v)

times where §(y) is the number of primes less than or equal to y and
S(y) = y/iny = elny—lnlny. Thus the total computational effort is
(Inx/Iy) (Inlnx-1)+1ny-lnlny which is approximately

with ¢ = lInxlnlnx and d = 1lny. But ec/d+d

's

when d = ¢

approximately e

eC/d+d (c>0) is maximized

s vielding a computational effort of order e?(lnxlnlnx)%{

A sharper analysis [6] results in an upper bound for the logarithm

problem of‘élnqlnlnq)% thus removing the factor 2 from the exponent.
System designer's avoidance of q such that g-1 has only small

prime factors cannot be accomplished by first choosing a prime q such

that e(lnqlnlnq)g is prohibitively large from the cryptanalyst point

of view and then determining the prime power factorization of g-l.

This is because the most efficient known factorization algorithm due to

Schroeppell (unpublished) also makes use of the concept of smoothness.

It has an expected running time for factoring g-1 of e(ln(qfl)lnln(q-l))%

One way to overcome this problem is. to generate a large random prime

number u and let q to be the first prime in the sequence iu+l for

i=2,4,6... as mentioned in Section 10.2.

13.3 Public Key Distribution in GF(2")

While it is possible to implement the exponentiation public
key distribution system as above, some implementation difficulties can
be overcome by considering the exponentiation system in the extension
fields GF(2").

First consider the exponentiation over GF(q) from a system
design point of view. Initially oné needs a suitable set of routines
to generate and test for large prime numbers. The tests mentioned in
Section 10.2 can be used for this purpose. Further it is required that
the routine must generate a prime q such that g-1 has no small factors.
Blakely [71 ] refers to such primes of the form g=2p+l1 where p is a
prime as 'safe' primes. Then one must choose a primitive element 'a’
in GF(q). The number of primitive elements (mod q) is given by the
Euler totient function @(g-1) and hence the probability that an
abitrarily chosen element 'a' is primitive is given by @(g-1)/g-1. If
q is of the form dp+l where p is a prime then 2n(mod q) is a primitive

element (mod q) for any n relatively prime to g-1 and hence the problem

- 277 -



of determining a primitive element is simplified. Otherwise finding a
primitive root of an arbitrary prime q may be more cumbersome requiring
the knowledge of the factors of g-1. In addition, multiple precision
arithmetic is required which is cumberéome and slows down the response
time.

To overcome some of these problems associated with the GF{q)
implementation, éerkovits [72) proposed to perform the exponentiation in
the extension field GF(2n),instead of GF(qgq). As this is an extension
field of GF(2)all operations are based on modulo 2 arithmetic which is
easily implementable using digital logic systems. Addition and sub-
traction are performed with exclusive-or operation alone, while oper-
ations in GF(q) require carry and borrow propagation. Further advan-
tages arise from the choice of n to be a prime so that 2.1 is a
Mersenne prime. Since there are no- subgroups within the multiplicative
group of such a field, the logarithmic attack reduces to an exhaustive
search. Furthermore, since the order of.the multiplicative group is a
prime, every element except one is primitive. Thus the selection of ‘'a’
becomes arbitrary. Finally,since all the resulting v's (yEax in GF(2P))
are also primitive, the number of possible keys is maxdimized.

As seen in Section 10.5, the elements of GF(pn) can be
represented using polynomials of degree less than n whose coefficients
are in GF(p). In tﬁis system ﬁ=2 and hence the coefficients are all
either O or 1. Using the earlier notation, the field Z/ZZ[xl/f(x),
where f(x) is an irreducible polynomial of degree n over Z2/2Z, is
isomorphic to GF(Zn). Multiplication of two elements in GF(2n) are
programmed as multiplication of two polynomials and the terms in the
product with exponent n or higher-are reduced modulo the generating
irreducible polynomial f{x). Let f(x) be a monic polynomial and is
equal to n-1

S . ol
f(x) = & + iLO by x where b, € {0,1}
Then n-l i -
Jz b, x (mod f(x))
i=0

Then the reduction process of a polynomial P(x) modulo f(x) is
performed as follows: (cf Section 10.5)
Let
P(x) = Q(x) + R(x) X"
where the degree of Q(x) is less than n.
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Then n-=1
P(x) Q(x) + R(x) iz=o bix

1

Qlx) + 2. R(x) x* (mod £(x})
b.=1
1

This result may still have terms with exponents equal to n or greater

and the process is repeated. The reduction process continues until the
result is of degree less than n.

As 2" is prime, any number 'a' less than 2n—1 {other than
1) can be used as the base (primitive element in GF(Zn)) of the PKD
system. The base 'a' can be represented as a vector whose value as a

binary number is equal to 'a'. That is, let

i where a; e z/2z

Let the secret keys of users A and B be XA and XB which are integers

less than 2" {(except 1}. Then,
X

n-1 i A )
valx) = (120”‘1" (mod £(x))

where yA(x) is a polynomial of degree less than n with coefficients

over GF(2). yA(x) can be represented as an integer YA in the range

0<YA<2“..1 by calculating the value of the polynomial y (x) in binary.

Similarly the user B calculates Y Thus the public key and secret

B.
key pairs of users A and B are given by (YA’XA) and (YB,XB) respectively.

The common key KAB is derived by users A and B using

- xB XA
Kpg = (7,(x)) (Vg(x)) ©  (mod £(x))

The choice of the extension field GF(2n) depends on the
required difficulty of computing logarithms over the field. The
particular choice of the Mersenne prime 2127-1, that is, n=127 is very
attractive from implementation point of view. In GF(2127), manip—
ulation of 127-bit blocks are conveniently performed in most computers
which have 8,16,32 or 64-bit architectures. A further attraction is
that there exists a particularly simple irreducible polynomial, a
trinomial, over GF(2) namely f(x) = x127 + x +1 [73] which can be used
t0 generate all the elements of GF(2127). But with the advent of the
subexponential algorithm for computing logarithm over finite fields by
Adleman, it is necessary to work in higher extension fields to offer

a similar amount of work factor as the DES to break the system. The
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. 2
next Mersenne prime occurs when n=521 and 25 1

can work in GF(2521) to overcome the attack using Adleman's subexpon-

-1 is a prime. Thus one

ential logarithm algorithm. In this field,the corresponding irreducible

xs21 + x32 +1 [73]}. Tore

trinomial over GF(2) is given by f(x) =
Herlestam [74] has proposed a hauristic method for computing logarithms
over GF(ZP) where p is a prime. When 2P_1 is a Mersenne prime less
than or equal to 231-1, the method is reported to work in very short
running times on a general purpose computer [74]. Although the
numerical results obtained so far and the complexity of the problem
does not allow to assess the security of the corresponding public key
distribution systems with p=127, 521 and larger, this may induce doubts
that such systems could be considered secure.

Even so,this system, referred to as the Mitre system [75],
is probably the most practical of the public key algorithms that have
been proposed so far. However there is another attack called the
short cycling attack which can be used with any public key system
discussed so far. This attack may enable 'backdoor' penetrations, for
example, in the Mitre system, a penetrator could use his knowledge of
the system parameters namely the system base 'a' and the modulus

polynomial f(x) to superencipher intercepted cipher until a cycle

occurs. The effectiveness of such an attack on the Mitre system is now
considered. This attack is of the same type as the cone used by

Simmons and Norris [76] against the RSA system.

13.4 Short Cycling Attack

Suppose g is a function of a set S into itself. Then given
an x in S, the sequence defined by x,=x and x,=g(x; ,) is called the
path of the element x under the action of g. If S is a finite set,
then the path of each element mist eventually repeat itself. When g
is a one to one map, then repetition begins with S N for some
minimal k. . Under these circumstances, the path of x cycles around the
séme k elements. This circular path is called the orbit of x under g.
The orbit of any element not in the orbit of x is completely disjoint
from the orbit of x. Thus the set S is partitioned into disjoint orbits
and hence the sum of the numbers of elements in the distinct orbits is
the cardinality of S which is equal to the size of the largest orbit
possible.

Now consider the cycling in the PKD system based on —
exponentiation in GF(2n). Let .
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P = {x:x an integer between 1 and 2n-1}

and C = {y:y a non-zero element of GF(2n) ]

Let P denote the set of plaintexts (secret keys) and C the set of
ciphertexts {public keys) under the encrypting function E. Let us
define another function DEC from C to P as follows: If y is an
element of C, it is a polynomial of degree less than n. Writing y as
the n-tuple of its coefficients and evaluating that n-tuple as the
binary expansion of an integer, the result DEC(y) is obtained. Since
both E and DEC are one to one functions, their composition F is a one
to one map of the finite set P onto itself. The set P is partitioned
into disjoint orbits under the F-map. These orbits are the cycles.

A schematic diagram of the mappings is shown in Figure 13.1.

P C

Fig 13.1

The threat of short cycling arises as follows:

Let
Yo = a"0 (mod £(x))
Then
x, = DEC(y,)
v = a1l (mod f(x))
X, = DEC(yI)
y. = a’i (mod £(x))
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*+1 - DECly;)

Hence at some point r, as the set is. finite

a’r (mod f(x))

Yy -
xr+1 = DEC(yr)
— xo
and _ %
yr+l = a0 (mod £(x))
1 = DEC( Va1 )

When this point is reached, the opponent realizes that the penultimate
number of the sequence gives the original secret key X5

This type of short cycling analysis has been carried out in
small extension fields using irreducible polynomials of degrees 3 and
7. The primitive polynomials used are f(x) = x3+x+1 in GF(23) and
f(x) = x7+x+l in GF(27) respectively. The system base 'a' is allowed
to vary from 2 to 7 and 2 to 127 respectively. Then the cycle lengths
are determined for various values of the secret exponent x, using the
program CYCLE.FTN given in Appendix 15. The cycle lengths obtained in
GF(Z?).foryseveral values of x are given in Appendix 17 (Section Al7.l).
The complete set of results shows that in the case of GF(27) with f(x)
=x7+x+1, the base a=38 (evaluated using x=2 in x5+x2+x, an element of
GF(27)) gives the maximum cycle length of 127. ([In the case of GF(23)
with f(x)=x3+x+1, a=5 (x2+1 in GF(23)) gave the maximum cycle length
of 7). For all the other values of the base, the cycle lengths are
less than 127. This can be explained by the reasoning that the choice
of the system base 'a' partitions the set P into disjoint orbits; in
the case of a=38 with the primitive polynomial x7+x+1, this has created
a partition consisting only of the entire set P. Thus every element
of P is in the same orbit and hence every value x gives the maxdimum
cycle length with a=38. The other choices of 'a' partitioned P into‘
several disjoint orbits with different cycle lengths. Two different
exponent values of x having the same cycle length (for instance a=9,
x1=15, x.=32, cycle length =116) may be due to two or more orbits

2
having the same cardinality or it may be that x, and x, lie in the

1
same orbit.

These results may indicate that certain bases and certain
generating polynomials are superior to others thus giving rise to
maximum cycle lengths irrespective of the exponent x. If so, the
system parameters should not be chosen at random, for instance, the

system base 'a' should not be chosen randomly among all primitive
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elements. To determine whether an optimum set of parameters is
possible, further analysis is carried out in the extension field GF(27).
Considering the mappings shown in Figure 13.1, it is seen
that an opponent is not restricted to choosing the function DEC to get
back from C to P. Any one to cne map of C to P will serve his purpose
and the system designer cannot guard against all possible choices of
the opponent. Consider for instance, the function G(y) where
G(y) = DEC (b~ V)
Let b take all non-zero values in the set C. That is, b can be any one
of the 127 polynomials of degree less than 7 in GF(27). Consider the
following algorithm.

1., Choose a system base 'a'.
2. Choose a particular value for 'b' in G(y) = DEC(b.'y)
3. Vary the exponent values x (secret keys in PKD) from 2 to

127 and in each case, calculate the corresponding cycle
length.
4. Do steps 2 and 3 for 127 values of 'b'.

This algorithm has been implemented using the program RANDCYCLE.FTIN
given in Appendix 16. Several values for the system base ‘'a!' have
been tried; only the results for a=38 are given in Appendix 17,
Section Al7.2. The results show the expected cycle lengths obtained
as the secret exponent x varies from 1 to 127 for different values of
the polynomial b (evaluated as a binary vector). From the results, it
is seen that by varying b in G(y) = DEC(b.y) the expected cycle length
can be changed for a fixed base 'a'. Hence the opponent can obtain a
shorter cycle lengfh than the maximum, by appropriately choosing the
value of b in G(y) for any system base 'a'. Section Al7.2 shows that
with a=38, even though the expected cycle length is equal to the
maximum 127, when b=l, with b=2, the expected cycle length = 38.87,
with b=13, expected cycle length = 27.18, with b=125, expected cycle
length £ 32.64 and so on. Hence even if the system designer had
chosen the 'best' system base, a=38, in his PKD system in GF(27), if
the opponent chooses b=13 in his G(y) = DEC(b.y) then he only needs to
superencipher on average 28 times before obtaining the secret exponent
x. The system designer ﬁas:no control over the opponent choice of 'b'.
Thus it seems that there is no best choice for the system base 'a'.
Section Al7.3 of Appendix 17 gives the average expected cycle

lengths for several values of the system base 'a'. That is, having

- 283 -




selected a system base 'a', the expected cycle lengths are calculated

for the 127 non-zero specialized values of the polynomial b. Then the

average of these expected cycle lengths is determined. From the results

it seems that the average expected cycle length for a chosen system
base is around 63.5. Recalling that in the algorithm given above, one
has considered only 127 functions of a specialized form for the
polynomial 'b', it appears that the average expected cycle length will
approach 63.5 if one has averaged over all the]271-possible functions
from the set C to the set P. Dr R Odoni has in fact ‘explained using a

héuristic argument that the cycle length will be n/2 when all the
n! functions are taken into account.

Thus once the opponent chooses the function from C to P,

that is, the value of b in G(y), then he has actually chosen the order
in which he will try elements of P to search for the one that encrypts

into cipher y. That is, he has effectively decided on the elements

G(y,) = DEC (b.y,)
G(y,) = DEC (b.y,)
G(y_ ) = DEC (b.y)

The opponent tries each of the elements in the above sequence in turn

in the equation aG(yi) = Y to find the one which matches with the

i+
given vy, - For different vllies of b, the order of the sequence of
elements changes and hence the number of elements to be searched to
find the match with vy changes. The average number of such elements
to be tried is about 63.5. This implies that for a randomly chosen
system base, the expected cycle length of anarbitrary cycle is about
(2127_1)/2 and

) respectively). Thus although the

half the number of non-zero field elements. (That is,
(252 -1)/2 for GF(2'?7) and GF(2°%
cycling attack will eventually find a solution, the work required
appears to be equivalent to a "random" exhaustive key search and hence
confirms [77].

In the next section, the implementation of this PKD system
in conjunction with the conventional DES system. using Apple micro-

computers is considered.

13.5 DES/PKD Hybrid System

A hybrid DES/PKD demonstration system has been developed
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using the DES interface unit (Chapter 4) and the exponentiation system
over GF(2127). The system has been experimented using two Apple
microcomputers forming a link. Each Apple microcomputer is assumed to
be shared by n users (here n = 5 ). Each of these n users can compose
and send a message to any other user at the other end in a secure way.
This system is primarily intended as a testbed for investigating the
problems of developing an application system incorporating DES/PKD

techniques on a microprocessor based system.

The DES interface card is used to encrypt messages under one
of the three modes namely the ECB, CFB or CBC (Chapter 5). The PKD

function performs the basic GF(2127)' exponentiation system using

f(x) = x127 + x + 1 as the modulus irreducible polynomial. This is
essentially used to transfer the session keys securely between the

two Apple microcomputers over ‘a public telephone network. With

6502 microprocessor running at 1 MHZ, an average time of 4 seconds

with a worst case of 6 seconds is required to perform the exponentiation
in GF(2127). The PKD program size is approximately 400 bytes and the

listing of the program is given in Appendix 18 (see Section 13.6).

During system operation, the user can communicate with an
user at the other end under DES or DES/PKD modes or generate a new
secret/public key pair for the PKD system. The system base 'a' and
the modulus polynomial f(x) are input once to the program and they
are assumed to be fixed. The public key generated is stored in some
preallocated memory location depending upon the user ID, n. That is,
in this simple system, each terminal stores its own list of public
keys. This is sometimes referred to as the local Public Key File
{ PKF) mode.

A secure connection is established between users i and j
through a simple connection protocol sequence. This sequence

allows to establish a DES session key and initialization vector

AR e S e e e e v e e o e e e e e o EE O AR R e e e e em e e e e am e an

*As mentioned in Section 13.2, this can be changed to GF(2521) with

f(x) = x521 + x32 + 1 to overcome Adleman's algorithm.
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required for secure communication between the users i and j. It
also enables each user to authenticate the other's identity. A new
session key and a new initialization vector,derived using the common
key Kij,are established for gaﬁh session between i and j. This

sequence is used with the local PKF mode mentioned above.

wWhen user i wishes to establish a secure connection with
user j, i sends his user ID(I) along with the ID of user j(J} to

the other end. That is,

The user j is informed at the receiving end that a communication

has been requested by user i and the system asks the user j to input
his secret key via the kgyboard of the terminal. As soon as user j has
entered his 16 character (127-bit) secret key, the system requests
user i at the sending end to input his secret key. At this point,
users i and j fetch the other user's locally stored public key value
from their memories and compute the common key Kij using their own
secret keys independently at their respective ends. Then the sending
end generates a pseudo-random number, R,and encrypté.this nunmber under
the ECB mode of DES using the first 64 bits of Kij as the LCES key.

(Kijl)' This cipher is then transmitted to the receiving end. That 1is,

i>3 = (R)K..
131

The receiving end decrypts the cipher using Kjil as the DES key in

ECB mode to obtain the pseudo-random number R. Then he modifies the

number R by adding 1 to it and encrypts (R+l) under the ECB mode of

DES with Kji2 and transmits to user i.

That is,

j+ i : (Rel)
K..
Ji2
This operation is done by user j to prove his identity to user i which -

requires the knowledge of the common key Ki = Kji' The user 1 at the

3
sending end decrypts the information and tests to see if the message is

equal to R+l. If this is the case, then the user at the receiving end
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must have computed the key Kji = Kij and hence it must be user j as he
is the only one who knows the user j's secret key. Hence user i can
start a conversation with user j at the other end. If they do not
match, then the user at the receiving end is informed that the
conversation cannot begin. This may either be due to some error
during the commuriication or more seriously due to the false identity
of user j at the receiving end.

In this simple procedure, the dynamically generated pseudo-
random number is used as the session key to be used in the DES
algorithm for encrypting data. Note that the number R is never actually
transferred over the link between users i and j in its plain form.

If the CES algorithm is used in its ECB mode for encrypting data
messages no more initialization procedure is required. The users i

and j can commnicate with each other 'in a secure manner using the DES
system with R as the secret DES key. On the other hand, if the DES is
used in either CFB or CBC modes, then the initjalization vector needs
to be transferred from the sender to the receiver. This is done using
the normal procedure explained in Section 5.3.2, by generating another.-
pseudo-raﬁdom number, encrypting it under the ECB mode using the
session key and transmitting it to the receiver.

To authenticate the identity of user i and establish an
initialization vector for transfers from j to i, user j gemerates the
pseudo-random number which he then sends to i in encrypted from.
Establishment of authentication of user i proceeds in a similar fashion
as described above by the modification of the random number by user i.
Note that user authentication in such a public key distribution system
is based on the possession of the secret key which the user employs to
compute the common key for any other user. It is the calculation of
the common key that results in user authenfication and DES protection.

A set of 10 pairs of public/secret keys used in this demon-
stration system is given in Figure 13.2. The public keys although they
do not have to be kept secret, they still have to be authentic. Other-
wise an imposter could manufacture his own public key, claim it
belonged to another user and then employ it to impersonate him. Thus
public keys have to be public in the broadest sense - not only non-
secret, but guaranteed,'accessible to or shared by all users of the
network' [78 ). Three possible methods by which the public keys can be
distributed in this hybrid DES/PKD system are considered [75].
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System Base a = 1234567812345678
127

System Polymomial, f(x) : x +x + 1
gger Secret key Public key
. (Bytes) (Hexadecimal code)

1 ASDFGEJELMNBYCXZ FEDB15A175¢24F4E13CT15788563¢CD41
2 8765432187654321 9F6ACTC3DD227686F3974$SCFA53DTI6
3 | QWERTYUIOPLEJEGF C82C8F4781B7CC8SDED399F7#7DEDADY
4 $PL,MK098IJNEETT 9¢52E6CHE3DCAEPI26F82DEGSFCIEAFY
5 1QAZXSW23EDCVFR4 228$521679EBCE31F2922743194BA2F2
6 STGB6YENTUJMBZAL 18EDF7PF67CF4F21158ES3 7TBE2F8PT725
7 g b )Pr=@+ <) 91314365cr6352313258385@51)333119)
8 Li2v3RA$5%62778( 1287266652187B150538561 F653B834C
9 AZSXDCFVGBENIMEL 619¢5¢8319F9P5A1CHLD2PA TFF2SBCA

10 W2BDFEENAMTG I RAM ~ 487733B8FFEP3934FT38DEIBS24CPFEIS

7

Fig. 13.2 - Public & Secret Key Pairs in (;5.[‘1(212 )

In this approach, as in Section 9.6, the existence of a
Public Key Distribution Centre (PKDC) is envisaged which controls the
formation of user connections. The connection protocol sequence may
be described as follows. Each user registers his' public key with the
PKDC and each user knows the public key of thé Centre. When a user i
wishes to communicate with user j, he first enters his secret key on
the terminal. This key can then be combined with the PKDC's public
key, which is assumed to be locally stored on the terminal, to form a
common key between the user and the PKDC. Then the user can connect
with the PKDC, using the common key in his DES based system, to
transmit an encrypted request to the PKDC for user j's public key (or
the entire list of public keys). The PKIC decrypts the request and
encrypts and transmits the desired public key(s) to the user i. Hence
the connection to the PKOC is authentic and private so that an opponent
cannot modify the public keys transmitted or impersonate the PKDC
without detection. This approach insures that the PKDC controls the
access of users to the system and centralizes the dissemination of

public keys. Note that a connection to 'the AKDC is required to obtain
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a list of public keys but once the user has stored the public keys,
the PKDC is no longer needed unless the user wishes to update his

public key list.

This method has been used in the simple demonstration system
described earlier and is very attractive when only a small number of
users are involved. Each user possesses an authentic list of public
keys. The distribution of this local directory can be accomplished
manually through hardcopy or electronic storage media such as
programmable memory PROM. Precautions must be taken to protect the

public keys from modification or substitution but not from privacy.

— o o w— —

The third approach assumes a more benign environment in which
the opponent is content to passively eavesdrop. If this applies, keys
do not need to be stored. To establish a connection, each user
generates a new secret key, computes a new public key, exchanges it and
then calculates the secret session key. An active 0ppomenf however
can interpose between the two users, can mirror each half of the
scenario and establish an imposter -connection with each. This method
is mentioned here for completeness sake and it is recommended that it
should be avoided in practice.

Thus this arrangement shows that the implementation of the
PKD algorithm and its use in a hybrid system using the DES is entirely
feasible. The value of combining the protection provided by the
conventional cryptosystem with the user authentication attributes of
a public key system is most advantageous. The integration of these two
methods gives the designer of secure systems flexibility in these areas:
1. The distribution and management of keys; .while most con-

ventional cryptosystems require centralized key management

and connection establishment, integration of public keys

systems with conventional cryptosystems promises centralized
control of key management functions with distributed connection
establishment.

2, Decentralized user authentication; since a user's identity

can be confirmed using public parameters and a single secret

parameter known only to the user.

3. Document or file protection; the conventicnal cryptosystem.
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can be used to protect against information release by
encryption using document or file key while access to the

file key is restricted by the public key system.

13.6 Exponentiation in GF(g?)

In this section two different methods of performing
exponentiation in GF(2n) are considered. These indicate that fast
exponentiation in GF(2n) is possible using dedicated hardware and
make the DES/PKD hybrid system described above a practical way of
providing both security and authentication.

Both the methods, use the well known 'square and multiply!’
technique to perform exponentiation in GF(2n). This technique has
been used throughout Chapters 10, 11 and 12 and the flowchart is given
in Figure 10.2. But in this case, the operations are performed modulo
2 which makes the implementation easy and reduces the running time of
the algorithm. The two methods differ in the way they perform

multiplication and squaring in GF(2n).

13.6.1 Method 1

13.6.1.1 §9£?£i29;

Squaring-operation in Galois field can be performed very
efficiently if the irreducible generator polynomial f(x) is fixed as
shown below.

Let the irreducibie polynomial be a trinomial, f(x) = el (In the

demonstration hybrid DES/PKD system described in Section 13.5, f(x) =
x127+x+1). Let 'a' represent an element of the field GF(2n) (for
example, the system base) and representing 'a' as a binary polynomial
= n-1
. a-ao+alx+._.. +an_1x _ a; € GF(2)
As GF(2 ') is a field with characteristic 2, the property that
(a+b)2 = a2 + b2
holds true for the operations in the field. Thus the representation of
a2 is given by
_ 2 4 2(n-1)
a = ajtax +ax tee.sa X »
Now reducing the powers greater than n using the recursive function
K = xJ+1 + 2 for j20, gives
a2 =a,  +a # + (a,+a )x2 + soe + A x4+ (a + a )xp-l
0 n/2 1 “n/2 n-1 n/2 n-1
where n/2 denotes [n/2] , the least integer greater than n/2.

- 290 -




s sy 2 .
As the characteristic of the field is 2, one can represent a using

exclusive—-or operator @

2 2 n-2 . n-1
a = ao + an/2 X + (a1$ an/2)x + ...+an_1x + (an/ze an_l) x .

This expression can be rewritten as
g
2 2i-1 2i
= . + & a.
a ag + izl {al+gx (a1 al*g) X }
where g = n/2 = 1.

(13.2)

Implementation of the equation (13.2) from the hardware point of view

gives

S -
i X > €25
where

_ 2
n—l) - (aO n—l)

Thus squaring can be very efficiently accomplished using exclusive-or

(Co’cl""’ ¢ 33,0 005 A

gates alone. Such an implementation in GF(27) using 7-bit vector is

shown in Figure 13.3.

+Y

<
0,

o ™ 0
31 ——*—1 > ) c1
a3 -y \_q ’ 03

D> >
A, > C4
35 2 - CS
a > @ > ra c
6 7 6

Fig 13.3-Squaring in GF(27)

The multiplication in GF(Zn) can be performed using the
standard canonical basis representation of elements. That is, the
elements of Gf(zn) are expressed in terms of a canonical basis for
GF(2n) over GF(2) and the multiplication rule is derived as follows:

Suppose that U and V in GF(2") have the representation
'(uo’ul' coe n-l) and ng,VLALi., Vh-l) respectively in terms of the
canonical basis (1,4 ,...30 ) where @ is a root of an irreducible
polynomial of degree n over Gﬁ(2). This means that

U= [uo’ullu2’ seey U ] 1

n-1

R

n-1

R

- 291 -




y n-1 - -
vV o= [vo,ul, cees vn-l] F 1 [= 1,0y eoesa ] Yy
a A\
1
n-1 . y
v
| * |-
Hence Z = U.V
-y n_l p— ~—
= [uo,ul,..., un_lj "1 Rodyeeesa ] Y5
@ v
1
Ne1
L vn-‘ﬂ
o " n-1
Z= [uo,ul..., un_1] ; cosees @ Vo
", ) (13.3)
fi-1 " Bp-2 v
4] ssssse (O -1
Now expanding the n»n matrix in (13.3) as
1 sesssese an-l A
o - - 2 n-1
: - - MO + Nllﬂ, + Mz(]_ + 60 + Mn—la
n=1 2n=2
-a o s 8 a J

where Nk is the GF(2) matrix whose entry in row i and column j is the
i

coefficient.of ak when al -2

(ly,Qyeces an-l). Hence if (zo,..., z L) is the representation of 2

we have

is expanded in the canonical basis

-

20+Zl. A+ eee *+ 2

T t
uM v+u M v + 400 +uM v
n-1 ¢ ufpgv*2 1 Va u a

where
u = (uo, Ujseecy un—l) and v = (vo,vl..., VB_I).
It now follows from the uniqueness of the representation in terms of
a fixed basis that
2. =u M v for k = 0, 1,,..5 n-1 (13.4)
The right hand side of (13.4) is sometimes referred to as the bilinear
form in the vectors u and v.

Toavoid the need to store the matrices l\k in the calculation
of the product of two elements, the algorithm given by Berlekamp in [56]
has been used.

Let the multiplicand be U and the multiplier be V and assume
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that they are stored in two n=bit registers U and V respectively. Let
the partial product register be called Z. To perform multiplication,
the Z register is initially set to zero. Depending on the lowest bit
of the multiplicand Vo? U is either added or not added into Z (modulo
2 addition). If Vo = 1, then U is added into Z; if Vo = 0, 2 is left
unchanged. The V register is then shifted right, the U register is
multiplied by a and the process is repeated. Multiplication by ¢ is
done according to the recursive equation @™ = g+ 1. At the mth step,
U contains a™ times the original multiplicand, v, contains Vo the mth
bit of the original multiplier and Z contains igo Vi(Uui). After n
such steps, the multiplication is complete. 2 contains the product of
the original U and V registers. The V register has been cycled
completely around to its original position but the U register now
contains U Gn-l. A schematic diagram using feedback shift registers
is shown in Figure 13.4 for the field GF(27) with f(x) = ¥7+x+1 as the

generating irreducible polynomial.

{ V6 V5 \.I4 V3 V2 V1 Vo}

Fig 13.4 - Multiplication in GF(27)

This method of multiplying and squaring elements in GF(2n)
has been used in the software implementation of the PXD algorithm in
the hybrid system. With dedicated hardware, the exponentiation
algorithm would take approximately 16256 (=127 x 128) clock cycles in
the worst case. Hence using 1MHZ clbck, this gives a worst running
time of less than 20 milliseconds compared to 6 seconds when carried

out in software using 6502 machine code programming.

13.6.2 Method 2

Here exponentiation is performed in GF(2n) using a novel
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technique based on normal basis representation of elements [(79]. This
section contains some of the notes communicated by Prof J Massey, ETH,
Zurich, in private correspondence. The method has been used to design

a hardware exponentiation system in GF(27).

13.6.2.1 Multiplication

The multiplication rule given in method 1 can be used with
any basis not only with the canonical basis.

Let a;s0,s +++10y be any basis for GF(2") over GF(2) and
let u = (ul,..., un), v = (vl,vz,...,vn) and Z = (20’21""’zn) be the
representations of U, V and Z in terms of this basis. It follows that
if Z = UV, then

- 2 - 1
Z - [ul’ oo"un] al seece ala n-\ VI
azu'l . -
: * ) (13.5)
Qo 2
Ln l c.us (!n B Lvn‘

The matrix in (13.5) can be expanded as
[ 0,2 o o |
1.... ln

. . =M. ¥ My, e Mo

L un 01....‘1“

where Mk is the GF(2) matrix whose entry in row i and colum j is the
coefficient of o when aiaj is expanded in the basis Uyslyeeey Qe
It follows that

t

zi =u M vV for k = 1,2,.4., N.

In particular let us now consider a special basis called the normal
basis.

' Suppose that E is an extension of the field F and-E is a
vector space of dimension n over F. Then A 9059eeey O is said to be a
normal basis for E over F if ﬂl...., Gn are a basis for E over F and
are also roots of the same irreducible polynomial in Flx]. For F =
GF(2) and E = GF(Zn), this is equivalent to saying that for some
element @ of GF(2m), ui = az;-l for i = 1,2,...,n. are linearly
independent over GF(2). Now-letting [uo,ul,...,un; ]be the represent-

»N=1
ation of U € GF(2n) in terms of the normal basis a,0 , ... 02? » then
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-2 -1
U=u_a +u1a2+...+un_2u2n +un_1u2n

0
so that 1
_ 2 4 o=
U2 = uoa + ula + eee + un_za + un_la

where the identity u2 = u for all u £ GF(2) and the fact that cross-
term products vanish when raising to the power 2 in GF(2) have been
used. Thus it is seen that squaring an element U in GF(Zn) merely
consists of a right cyclic shift of its representation in terms of a
normal basis for GF(2n) over GF(2). In a general extension field
GF(qn) where q is a prime, raising to the qth power an element of
GF(qn) corresponds to a right cyclical shift of its representation in
terms of a normal basis for GF(qn) over GF(q)e Thus the implementation
of squaring in'multiply and square'’ technique exponentiation is made
very simple using normal basis.

Now letting u = (uo, ...,un_l), v = (v"."i""’ vn-l) and
z = (zo,zl,..., zn—l) be the normal basis representation of U, V and Z
respectively and Z = U.V, then

z-n—il.
where M is the GF(EI matrix whose entry in row i and colum j is the

t
= (uo,ul...., un_l) M (vb,vl,..., Vn-l) (13.6)

i j— i+j=-2 | .
coefficient of a2 when g2>1 @231 = 421777 i5 expanded in the normal
n-1
basis a,az,..., 02 . But 22 = U2V2 and the elements UZ.VZ and 22
have the normal basis representations (un_l, Uyre oo un_z), (Vh_l"vo’
...,vn_z) and (zn-l’ Zyreees zn_z) respectively. Thus it follows that
for the same matrix M as in (13.6)

t

zn_2 = (un-l’ uo,..., un_z) M (vn_l,vo, coe Vn-2)

and in general that, for this same GF(2) matrix M

zk = (‘L‘k"'l’ -oo’un_lp uopl-o’ l.lk) M (Vk+1,-..Vn_1'V0’o¢.Vk)
for Ogkgn-l.

Thus when a normal basis representation of GF(2n) over GF(2)
is employed, each digit in the product is given by the same bilinear
form with appropriate cyclic shifting of the representations of the
factors. This property is the key to construction of simple multipliers
for finite fields. '

In the PKD system, it is necessary to implement the equation
(13.6) to perform multiplication in GF(2n). The expression (13.6) can

be written as
- : t .
zZ LTV oVaot (Ugres=s un—l) J\ (vo,vl,...,vn_l) (13.7)

where the binary matrix./\.is symmetric -with an all zero main diagonal.
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This can be seen as follows:

Writing mij for the entries in M,

z E: 5: u.,v.m, .
n-=1 1 13 1)

Suppose u = v, = landu =v_= O for s # k. Then zZ, g = M But
~Lia1

kS
for this case U =V =P which implies that Z = UV = | . Thus
2z 17 1 if and only if k = n-2. Hence m g = 1 if and only if k = n-2,
so that the next to last entry on the main diagonal of M is the only one
which is non-zero.

Because of its symmetry and zero diagonal, the nxn matrix AW

can be written as

O O oo e 0
_/\_ = . T + 'I‘t .
o - 0@ O 0

where T is the binary upper triangular (n-l) x (n-1) matrix.

B .
t01 t02 s oo OES to’n_l
° 1t 1,n-1
° »
T= . .
_O ER N RN N NN NN N tn-z’n-l-
Thus.
. t
z 1 un_zvn_‘2 + (uo,..., un-2) T (Vl”“’ vn-l)

(13.8)
)

t
+ (T(ul’.'., un-l)] (vo’vl".vn_z

Using (13.8) one particular implementation of the multiplication function
is shown in Figure 13.5. The boxes labelled T contain Exclusive-or

gates only. Each component of the output is that sum of input bits
corresponding to the locations of the 'l's in the corresponding row

of the matrix T. The outputs of this box are then And-ed with the
appropriate components of the other factor. The outputs of these n-l

And gates are then summed by a tree of n-2 Exclusive-or gates. The
outputs of the two Exclusive-or trees are summed and added to the term

U _oVhoo* Alternatively, the two Exclusive-or trees and the Exclusive-
or gate that combines their outputs can be replaced by a single
Exclusive-or tree with 2n-2 gates having 2n-l1 inputs. The circuit shown
. If U and V are shifted as shown in the

. n-=1
diagram, .the same circuit will compute Z _5v Z, 30 ""21’20 during the

in Figure 13.5 computes z
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n-2 n-1
0 1 n-2
}L\‘/ EX-OR
§ -
O % 1| TREE
S
@—T—CP
' Z
et -
— Tl ex-or n-1
R TREE
0 1 n-2
T
1 n-2 n-1

N

QO - - AND
& =~ EX.OR

Fig. 13.5 - Multiplier Configuration using T-matrix
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next n-1 subsequent shifts.
A different implementation of the multiplication function is
based on the alternating property of JAM.

- Let B denote any nxn matrix in any field F and let u and v be
any vectors in F'. Then the bilinear form gtB! defined by B is said to
be alternating if it vanishes whenever u = v, that is, if gth = 0 for
all u in F'. Two nxn matrices over F, B and D,are said to be congruent
if there is an invertible matrix P such that

B=P DP
Then

Thus the bilinear form gt B v can be evaluated using the matrix D if
the basis is changed by the transformation, Frl. When D has only a
small number of non-zero entries, the evaluation of (RE)t D (Pv)
requires only a small number of multiplications and additions beyond
those needed to form Pu and Pv.

In [48], a binary matrix B which is symmetric and has an all
zero main diagonal is shown to be alternating. Thus the matrix./\.which.
defines the normal basis multiplier is alternating. The rank of the
matrix /N is n when n is even and is n-1 when n is odd. The matrix AW
can be reduced to a diagonal matrix D using the elementary divisor
method given in Section 12.2.4. Thus for the nxn-matrix.ﬁL, there

exists elementary matrices El’ Ez""’Em (for 'some m) such that

E...ENEY...E®=D
m 1 1 -m

where D is a diagonal matrix with n non-zero entries when n is even
or n-1 non-zero entries when n is odd. Thus
t

P = Em L El

The number of '1's present in the P-matrix is indicative of the number
of Exclusive-or gates required to implement this matrix. Hence using
this P-box, one can implement the multiplier function as

- t
2y T Yo Vpo t (P D (RY)

This configuration is shown in Figure 13.6. The connections in the
P-box are determined by the P-matrix and the connections to the And
gates are determined by the D-matrix. Subsequent shifts of u and v
vectors will produce zn-2""’ zo.

As a final method of implementing the multiplier function
z = Et M v, the 'brute-force' approach is considered. This

n-1
approach consists of first forming the vector My and then And-ing
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Fig. 13.6 - Multiplier Configuration using P matrix




each of its components with the corresponding component of u, then

finally summing the outputs of the n And gates. This approach requires

n And gates and n-1 Exclusive-or gates in addition to the Exclusive-or

gates needed to form My. Compared to the previous two methods, this

one lacks the 'modularity' - several sub—-circuits of the same kind.

13.7

Hardware Design of An Exponentiator in GF(27)

A hardware exponentiation system in GF(27) has been designed

using the second method which involves the normal basis representation.

To begin with, a program is written to search for a generator of a

normal basis in GF(27). This consists of finding seven conjugates in

GF(27) which are linearly independent over GF(2). A complete listing

of the program is given in Appendix 19.. The steps involved in this

algorithm are given as follows:

l.
2.

6.

Choose an element @ € GF(Zn)
i-1
27 for i=l,...y n in GF(2n) using the

Compute « i =q
irrecducible polynomial f(x) = <+ x o+l

Form a nxn matrix using the n-bit vectors g 172 Qg
Calculate the determinant of the matrix over GF(2).
If determinant = 0 in GF(2), Go to step 1.

If determinant # O in GF(2), thena generates a normal basis.

In this case n= 7. Initially, it is decided to look at the elements g

of the form@ = x> + 1 for 1lgagn-l. One such generator ¢ is found to be

i-1 . )
a =x3+1. Then the powers 0!i=(112 for i =1,2,...4 7 modulo
(x7+x+1) are given by:

3 6 6 5 6 5 4 3
U1=x +-1,0!2=x+1,03=x + x +1,0!4=x + X +x +x +1,
f!5=x5+x4+x3+x2+x+1,0f6=x6+x3+x+1andu7=x5+
x2+l.

The symmetric matrix of the bilinear form is then given by

6

X"+l

*

x6+x +«1

x6+x5+l

2

-

*

6.5 5 4 3 6. 4 3

XexT+x+1 XX X X +X X +X +x2+x+1 ' x3+x+1
x6 +x-5 +x4 +1 x84 -i-x4 wx3 s «B +x4 &x3 +x2 i :n(6<-xS x2 ‘.l:6 ¢x4 +X+1
:(64’)(51'):4 +x3+1 xsa-xs &xq +x3+x2+x+‘| x5+x3+x2 +x+1 x5+x4 +X x6+x5+x3
* x5+x4¢x3oxz+x+1 xs+x3+x+l x6+x31-x2+1 Bl e x
* - . x6 +x3+x+1 x6+x4+x3+x2+1 )(5+x4+ 1
. . . x5+x2+l )(5-0-}(4 +x2+x+1
. . . . S

* - indicates symmetry
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Rewriting the above matrix in terms of the normal basis, gives

0y  0yt0gi0eHa ey G50ty ot o3 ay+ay+ig 010,40, *ag 0

Ty ayrapsagragty 8370 ag o oy 3300470
£ % 0,ta4+a, 40570, 0G0y Gyt 0%y

e . o LRI e B R M 5%

.o . y ° ayrayayiaseg 81"

. . * * oy A e b’ Ry
. N - - » - ay

* - indicates symmetry

Expanding the above matrix in terms of 011,0!2,..., 0!7, yields

= 4] a 1} a [s)
M=M Q) +M, 0+ My Qe M0 MO M G+ M G

where
0100101—‘
1001000
M1= 0N0O01001
0110110
1001011
0001100
1010101
L —
and

Mz is obtained by rotating the rows of M1 downward by 1 position. and
then rotating the columns right by 1 position. Similar operations on

M, yield M3 and so on. In the implementation of the multiplier function
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M= M7 is used. The T—-matrix is therefore given by
010001 |
010010
T = 0N1100
000111
oOnNnOOND0NOO0
000001

The T-box can therefore be realized as

4

»

-

¥ ! ¥ R A

Note that cne of the six outputs is not used and is identically equal
to 0. The And gate is therefore unnecessary that is fed by this O
output. Thus the complete circuit requires 2 T-boxes with 5 Exclusive-
or gates each, 2 sets of 5 And gates operating on their outputs, 2
Exclusive—or trees with 4 Exclusive-or gates each and 2 additional
Exclusive—or gates and 1 And gate for producing the final output. The
total gate count for the multiplier function is equal to 20 Exclusive-
or gates and 11 And gates.

Using the brute force method the multiplier function can be

implemented as follows:

L
¥ -~
- )
A 4
» LA
g
(P& (Pt
e
& S Al
3/ 7o IR 4
G;z > ~N_ L
- < -
L 4 - g {_/ >
£
<+ L v ~ v < v

The number of gates required using this approach is equal to 18
Exclusive—or gates and 7 And gates. It appears to give the minimm
number of Qates of the three realizations; but the realization using
the T-matrix or the P-matrix is preferrable for large extension fields
because ‘then the circuit is composed of two identical- subcircuits, that

is, a modular design is achieved.
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The circuit diagram of the designed complete exponentiation
system in GF(27) is given in Appendix 20. Here the multiplier
function has been implemented using the 'brute-force' approach.

As the number of 'l's present in the M-matrix give an
indication of the number of Exclusive-or gates required to implement
the multiplier function, to minimise the number of gates, one needs to
reduce the number of 'l's in the M-matrix to a minimum. In an effort
to obtain such an optimum M-matrix, various normal basis generators Q.
with four different irreducible polynomials are tried in-GF(27) and the
number of 'l's in their corresponding M-matrices are calculated. The
results are given in Figure 13.7. From the results it is seen that
a) the difference between the minimum and the maximunm number of 'l's for
the tried cases is not large, that is,‘the variance does not appear
to be high.

b) The average number of '1's in the M-matrix is approximately equal to
23 which is roughly equal to n2/2 = 3%— = 24.

This may imply that for a randomly chosen normal basis generator and
an irreducible polynomial, the number of 'l's is approximately equal .
to half the entries in the M-matrix. It appears that the random choice
of normal basis generators and different irreducible polynomials does
not seem to yield any substantial reduction in the number of 'l's in
the M-matrix. The above claim should be read with caution as this is-
based on a small number of trials in a small extension field GF(27).

13.8 Normal Basis Generators in GF(2127)

From cryptography point of view, one is interested in large
extension fields namely GF(2127) or GF(2521). The next step is there-
fore to &etermine the generators of normal basis in these extension
fields which can then be used in the PKD exponentiation system.

Albert (48] proved that if F is a subfield of E and E is normal over
F, then E has a normal basis over F. Thus, GF(2n) has a normal basis
over GF(2) for all n. Although the theorem by Albert establishes the
existence of a normal basis for any field GF(2n), it does not give any
help to determine the generators of normal basis in practice. As no
systematic method for finding these generators was apparently evident,
it is decided to resort to the trial and error procedure using the
algorithm given in Section 13.7. However, let us first consider the

probability of finding a normal basis using this random search procedure.
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Irreducible pelynomial of degree 7

over GF(2)

1-

X7+X+1
X7+x+1
X7+X+1
X7+X+1
X7+X+1
X 4X+1
X7+16+X5
X7+X+l
X! +X+1

X7+X+l

6

6, .2

+X +X7+X+1

X7+X +X5+X4+X2+X+1

X7+X5+X2+X+l

Normal Basis
Generatoxr
X3+l

X5+l

X3+l

X5+X+1

X6+X+1

x®+x241
x4ixa

X6+1

X5X2+1
X3+X2+1

Ny

X™+X+1
X +X+1

[e))

Same numbers in brackets indicate same M-matrix

No.

of 'l's in

the M-nmatrix

21
27
25
27
13
25
21

21
21
21

19
27
27
27
27
19
19
27
27
27
25
27
25
19
25
21
19

(1)
(2)
(3)
(4)
(5)
(6)
(1)

(1)
(1)
(7)

(5)
(4)
(2)
(2)
(2)
(5)
(5)
(4)
(2)
(2)
(3)
(2)
(3)
(5)
(3)
(7)
(5)

Fig. 13.7 - Table showing some normal basis generators

in GF(27) and the number of 'l's in

the corresponding M-matrices




From [56, Theorem 11.39], the number of elements in GF(qm)

which have m linearly independent conjugates over GF(q) is given by

m -
& T a-q%)
k
where the dk are the degrees of the distinct irreducible factors of

x'-1 over GF(q).

For the extension field GF(2127)
x127_1 - Q(d)(x)
d|127
where Q(d)(x) denotes the cyclotomic polynomial.
That is,

127 1 127
Q(l,(x) isxan Iir:d8£i:£§)poginom;giéof degree 1. The degrees of the
irreducible factors of Q(127)(x) are determined using the following
result [56] :
Since every element of order n has the same number of conjugates with
respect to GF(2), every irreducible factor of the cyclotomic polynomial
Q(n)(x) has the same degree over GF(2). This degree is the multi-.
plicative order of 2 modulo n.
For .the case n = 127, the mltiplicative order of 2 modulo 127 is 7 as
2’21 (mod 127). Thus every irreducible factor of Q(lm)(x) has

degree 7 over GF(2). Hence the probability of finding a normal basis in

ar(21?7) = 1X)(1- 17)18 2. 0.434.

2
The program FINDNORBAS.F77 in Appendix 19 is used to determine

12

. . 7 . .
a normal basis generator in GF(2 ) using the random search algorithm.

Initially it is again decided to consider the elements of the form

a = xa+1 for 1<a£126. The operations are performed modulo the

irreducible polynomial x127+x+1. The first such generator of normal

basis found in GF(2127) is a = x1%41. 1In GF(2°2'), with irreducible

. 521 32
polynomial x +X

be a0 = x+1.

+1, the first generator of the form x>+1 is found to

The M-matrix and the T-matrix required for the implementation
of the multiplier function are also determined, using programs M-MATRIX.
F77 and T=-MATRIX.F77. The listing of these two programs are given in
Appendices 21 and 22. The number of Exclusive-or gates needed to
implement the multiplier function using the T-matrix approach is
calculated using the program EXORNO.F77 (Appendix 23). Without
employing any optimization techniques, the T-matrix required 3794

Exclusive—or gates. Thus a rough estimate of the total number of
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Exclusive—or and And gates required to implement the multiplier and
hence the basic exponentiation function in GF(2127) is about 2x3794+2
(125)+2 = 7840 Exclusive-or gates and 2(126)+1 = 233 And gates. This
can be conveniently manufactured using very large scale integration

(VLSI) techniques.

" 13.9 Extension of Diffie-Hellman System to Matrix Rings

This chapter on public key distribution system is concluded
by presenting an extension of the Diffie-Hellman system to matrix rings.

As the ring of all nxn matrices over a finite field contains
nilpotent elements when n>1 (Section 10.4), again the group formed by
only the non-singular matrices of order n, Mn.is considered. In
particular, the group of non-singular matrices over 2/pZ where p is a
prime is considered. To form a public key distribution system, it is
required to choose an element Ae!ﬂ#z]pZ) where p is a very large prime
such that

AT 2 I (mod p)
where-r is the order of A, the base matrix.
The base matrix A, the prime p and the order r are to be made public.
Each user chooses a secret random number xg less than r and generates a
public matrix Ci where

c; = A'i (modp) _
Two users can arrive at the common key in the same way as in the Diffie-
Hellman system. For iqstance,if user 1 wishes to initiate an interchange
of secret information with user 2, he extracts the public matrix C2 of
user 2 and computes szl (mod p). Similarly user 2 computes C1x2 (mod p)

and the process yields the common key K where

K=Ky, =K, = C1x2 (mod p) = szl (mod p) = AM172(mod p)

With the Diffie-Hellman system operated in Z, the maximum
number of secret keys possible is limited to p-1 whereas with this
extended system it depends on the order of the base matrix, r. The
larger the value of r, greater the number of users that the system can
support. Again the security of this system is dependent on the
difficulty of computing logarithms module p.

The system designer needs to construct a base matrix A in h%
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(Z/pZ )} and determine its order r. One method of construction of A with

a given order is outlined below. .
Consider an irreducible polynomial f(x) of degree m for which

m

p.

f(x) = a +a,x + + a xﬁpl £
T 01 °°c m-1 ] Fp

A is a root where A ¢ Fq and q

Regarding F_ as a m=dimensional vector space over Fp with basis
2 .
(LyAsA7 ceey AFbl), let T represent the following linear transformation
on F .
q

T: x> XA X
2 m 3
Under T' then 1 — A,A.“_) A p see .A ey —am_l An}-l— sss —aoc

Hence the matrix representation of the linear transformation T relative

to the basis (l,A,l% ...,lm-l) is given by the companion matrix

-

o l . o L O

0 O 1 LA 0

B = 0 0o 0 ... ©
~2m-1"%n-2"%m-3 ¢ +* —30 ]

Linear independence of 1, T, T%..., ‘Im"1 implies that I, B, B?,...,
B™! are linearly independent. Sincé f(x) = O, we have £(B) = O. But
f(x) has degree m and so the linear independence implies that f(x) is
the minimum function of B.

Hence the order of the matrix B is equal to pm-l and

1
BP ™" = I (mod p)
Thus the system designer can choose irreducible polynomials of degrees
My Mys eeeyM in Z2/pZ (see Section 10.5.2.1) and form the composite

matrix B as shown below:

where the order of B, is equal to pmi-l for lgigs . The order of the

matrix B is then given by the expression

m, : m
£ cm {(pﬂﬁ--l), (P2 =1)y.000y(pP s -1)}
The matrix A to be used in the public key distribution can then be
obtained by conjugating B with an arbitrary non-singular matrix Y

belonging to Mﬁ(Z/pZ). That is,
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A =YBY‘1

The order of A is the same as that of B and they are of dimension n

where n is given by:
S

Y™
i=1
This above method has been implemented on the Prime computer system and

n =

the program used is given in Appendix 25. A small example of such a

public key distribution system is considered below:

13.9.2 Example

Letp=>5

Let fl(x) = x2+x+1 where fl(x) is irreducible over Z/5z.

The matrix B1 is therefore given by

Bl = O 1 = 0] 1l (mod 5)

-1 =1 4 4q
and
2
o 1]°-1
= I (mod 5)

4 4

Let fz(x) = x3+3x2+x+2 which is irreducible over Z/5Z.

Hence the matrix B

0]
B, = o)

L:Z

Now it is necessary to choose Y and Y—1

B
Y |o
L.
Let Y be
2
1
y = 1
1
2

1
0
-1

4

H N O N W

2
o]
1

an arbitrary

O = W N -~

is given by

5
1 (mod 5)
2

n
w C O
& O ¥

= I (mod 5)
such that

-1

Y = A where A€ N%(Z/SZ)

$x5 non-singular matrix given below:

o
-~ W b e
1

H A N W
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The determinant of Y is calculated using program DETMOD.F77 (Appendix
12) and is equal to 4 {mod 5), hence Y is non-singular. The inverse
of Y is calculated using program ;NVMOD.F77 (Appendix 24) and is given
by

0O 2 1 3 0]

o 1 2 2 0

vl = 3 3 1 a4 3
2 2 a4 2 4

(3 0o 1 4 2

and hence l:
(0 2 0 a4 3

1 1 3 1 3

A= 4 0 O 3 2
3 3 2 4 4

L} 2 4 1 1

The order of A is equal to gem {(5°-1)(5°-1)} = 744 and A’%4

= I (mod 5),
verified using program MATEXP.FIN (Appendix 13). Hence the key space is
2¢x¢743 where A¥Z ¢ (mod 5) compared to the key space 2¢xg4 in the

Diffie-Hellman system with p = 5.

On the other hand, the ring of upper triangular matrices over
z/pZ (p prime) can also be used. If the base matrix A is chosen from
this ring, then the maximum order of such a matrix is equal to p(p-1)
which can be obtained by having non-zero elements along the main super-
diagonal. This can be shown as follows.

Partitioning A into a diagonal matrix D and an upper triangular
nilpotent matfix U, that is, A = U+D, then it is seen that D.U, U.D and
U2 are also upper triangular nilpotent matrices. In Section 10.4.4, it
is shown that
(D + U)¢(p) = (I + U¢) (mod p) where @ is the Euler totient function

and U¢ is some upper triangular nilpotent
t matrix. .
and (I + U¢)p = I. for some t
If p is assumed to be greater than n-1 (which is valid in a FKD
system as the prime p is very large), then t = 1. Tﬁus the order of
A is p@#(p) = p(p~-1). Hence in this case the key space for x is
2sxsp(p-1). _ .
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CHAPTER 14
PERMUTATION POLYNOMIALS IN THE DESIGN OF PUBLIC KEY SYSTEMS
14.1 General

The fact that permutation polynomials can be used in the
construction of cryptographic systems of a general mathematical nature
should not be surprising since they determine the permutation of
elements of the set, which is the essential basis of a cipher system.
The RSA permutation polynomials and some others which may be used in
the design of public key systems are investigated.

A polynomial f(x) with coefficients in a finite field F_ is
called a permutation polynomial if the numbers f(a) where a ¢ Fq gre a
permutation of the a's. An equivalent statement is that the equation

f(x) = a
is solvable in Fq'for every 'a' in F_ and that the equation has a unique

solution in Fq for each a € Fq (so].

14.2 Polynomial y = x (mod m)

Firét consider the 'famous' power polynomial y = %! which has
been used in the RSA public key cryptosystem and the Diffie-Hellman
public key distribution system.
Lemma 1

The polynomial

v = X' in Z/pZ where p is a prime
represents a permutation if and only if n is prime to p-l.

Let d be the greatest common divisor of n and p-1.. Thén letting
v = % (mod p) and raising y to the power (p-1)/d, gives,

(xn/d)p—l-

1 (mod p)
ie y(p_l)/d = 1 (mod p)
The above congruence has (p-1)/d roots in Z/pz and each root is a nth
power in Z/pZ. If d = 1, that is, n is relatively prime to p-1, then
there exists only one nth root of each element in Z/pZ and hence y = xp
is a permutation modulo p.

Now the above argument can be extended to the case where

n . A . .
y = x' is a permnutation in Z/mZ where m = Pi and the p;» lgigr,

i=1
are distinct primes and n is a positive integer such that gcd (n,(pl-l)
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(py~1).+-(p,-1))= 1
To prove that y = X' (mod m) is a permutation one needs to

show that x = yn (mod m) implies that x = y (mod m). Following [81],

the proof is considered in three steps.

(i) x and y are relatively prime to m.

(ii) x = ap; and y = bp, for lsa,bgm/pi

(iii) x = ap. and y = pr. for i#j, lgasm/pi. ]\<bsm/pj

(i) The proof is by induction on r. From Lemma 1, if r=1, then

v = ' is a permutation as gcd (n,p;-1) = 1. Assume it holds
for r¢k-l. Let {al,....a¢(m)} be a completenrfducgd residue
system mod m, that is, gcd (ai,m) =1, If a, -= aJ. (mod m),
then (a./a.)rl = %"= 1 (mod m) and hence X' = 1 (mod p. ),

1

i
(mod pi). But then x = 1 (mod m). Thus {al s sees a¢(m)}

e

[add

Igigr. The gced (nyp.=1) = 1 and Lemma 1 imply that x

are distinct mod m.

(ii) Now suppose a" p E b p (mod m) where l\a,bsm/p . Then
anp n=l = 0 p (mod m/p ) and so a" = b" (mod m/pi) since
p; is invertible mod m/pi. By induction hypothesis, a = b.
Consequently, {anpin } ’ Kasm/pi are distinct mod m. Moreover
for any i, the sets {anp "1, La<m/p and { a a, ne..a ¢(m)}
are distinct since a«J ¥ 0 (mod P; ),1§_)<¢(m).

(iii) If anp T2y n P, 7 (mod m) where Lasm/p ’ ngm/p y 1 # 3,
then p, lb, P. Ia. Let a = p a and b = p b, then
n n-1 - =n n=l m
.Pu. = b .P. - d
(p;P5) (p;P;) (mod ==~

and 13_

P;P; invertible mod implies that a = b (mo

PiP;
iv5
By the induction hypothesis and by La,b(m/p Py a =b and so ap; bp..

The only intersection of the sets {apk } La\m/pk, k = i,j have then,
is at the common multiples of P;P;e

Suppose now that X' = y (mod m) with x # y (mod m). From
the first case, neither x nor y can be relatively prime to m. But: then
X =ap;, y= bpj‘, for some i,j with XX i,jg¢r. Again by the above,this
implies x = y (mod m). Thus { X' } lgxgm are distinct (mod m). This
completes the induction.

Conversely, if the proposition is not true, then there is at
least one 1 such that gcd (n’Pi'l) # 1 and hence X' does not yvield a

permutation (mod pi). If x #y (mod p;) and X' = y? (mod p;)s then

- 311 -

. |



for z = m/pi xz # yz (mod m) and (xz)n 2 (yz)? (mod m).So.>® is not a
permutation (mod m).

The above paragraphs thus show why in the RSA system which
uses the polynomials x° and xd (mod m), one needs to choose the coding

exponents e and d relatively prime to (pl—l)(pz-l) where, m = P;P>-

14.3 Folynomial v = ax + b (mod m)

Consider the linear permutation polynomial f(x) given by

f(x) = ax + b (mod m) (14.1)
where a and b are elements in Z/mZ and gecd (a,m) = 1 and m is a square
free integer. Assume that the message is x, 1¢x<m and the encryption
procedure consists of evaluating f{x). The decryption procedure is

given by the inverse polynomial,f-l(x). Rewriting (14.1) as

-,

y = ax + b (mod m)
ie, ax = y - b (mod m) (14.2)
Lettingy - b = y~, gives

ax = y~ (mod m) (14.3)
The congruence (14.3) has as solution

x 2y aP®-1 g my

where @#(m) is the Euler totient function. But the opponent does not
actually need to calculate @{m) to find x given y. The congruence (14.3)
can be easily solved using Euclid's algorithm without the knowledge of
@(m) as follows.

Cne can find a1 using Euclid's algorithm where

aatl=z1 (mod m)

Hence x v a~l (mod m)

Thus as expected, the linear congruence (14.l1), does not provide a
secure public key system since the opponent can easily recover the
message X without factoring the modulus m to its prime factors. On the
other hand, this polynomial can be used to form a conventional crypto-
system where the parameters a, b and m are kept secret. Further the
parameters a and b can be varied in some prearranged manner resulting in

a variable substitution such as

a; = gl(ai-l’ ceey al)

and

bi = gZ(bi—l' cees bl)
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14.4 Linear Fractional Substitution

Now consider the linear fractional substitution function

- ax+b
£(x) = cx+d

(mod p)

From Section 10.4.5, the above function permutes the elements in Z/pZ

if ad - bc # O (mod p). In Section 10.4.5, the elements a,b,c and d
were used to form the message. Here the element x is considered to be
the message. For designing a public key system which is to be based on

the difficulty of factoring a large integer, consider
- ax+b
Y= Sxd

(mod m)

where say m = P;P> and p,*P, are distinct primes.y is the cipher. A
symbol ® is adjoined to Z/mZ where ® = 1/0, O = 1/® and for x ¢ Z/mZ,
@+ x = ®»x=wofor x#0. The legitimate receiver can decrypt the
cipher by finding the inverse operations modulo Py and modulo Py
separately and then use the Chinese Remainder Theorem to obtain the
message x(mod p1p2). Actually this system has no security at all
because the cryptanalyst can also find the message very easily with the
knowledge of the parameters a,by,c,d and m. That is, he does not need to
factorize m into its prime factors. This is because the inverse of the
matrix Ei=(: 2) (mod m) can be found even without the knowledge of the
prime factors of m. This can be done using a process similar to the
Gauss-Jordan elimination process over the real numbers except in this
case, the elementary operations are chosen to ensure that the
determinant of the resulting matrix is relatively prime to m (assuming
determinant of(z g) is relatively prime to m). This type of algorithm
would require a similar number of operations as its counterpart over
the reals, that is, something like O(n3) operations for a nxn matrix
[45]. Thus the opponent can find the A,B,C,D such that

SR
c D’ - c d )
If the greatest common divisor of cipher y (mod m) and m is greater

(mod m)

than 1, then this gives one of the prime factors of m. The probability
of this occurring must be small for large m,as the factorization of a
large m is known to be hard. Therefore neglecting this case and
considering gcd(y,m) = 1, the opponent can choose two elements w and z
mod m such that

2y T w (mod m)
Once such a pair (w,z) is found, he can easily solve for the message

X as
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=X
SS———
1
[
O W
——
N £
e’

and

x Aw + Bz (mod m) (14.4)
Thus the message x can be recovered without having to factorize m. An
example illustrating the above method is given below:

Let m = P1Ps = 3.7 = 21.

Let
3x + 5
x + 2

v (mod 21)  det (f g) 2 1 (mod 21)

Let the message to be encrypted is, x = 6. Then the cipher v is

given by

- 3.6 + 5 -
= === = =16 (mod 21
y 6 + 2 ( )

Using the modified Gauss-Jordan method, the opponent calculates the

inverse to be 1

3 5 ={ 2 16 (mod 21)
1 2 20 3

Choosing w = 2 (mod 21), gives
16z = 2 (mod 21)
Using Euclid's algorithm, z = 8 (mod 21). Now using equation (14.4),x
is calculated to be
| 2.2 + 16.8 “(mod 21)
6 (mod 21)

x

Again such a system can be used in the design of a conventional
symmetric cryptosystem. One can vary the parameters ai'bi'ci’di such
that aidi - bici 7 0 (mod m}), by some prearranged manner. For instance,
one can initially select two matrices M, and M, such that det (Ml) 7O

_fa.” b,
(mod m) and det(M,) # 0 (mod m) and M, M ,where M, ={°i i),

= M,
+2 i+l i i

for subsequent i's.

14.5 R&dei Rational Functions

Now consider a general rational function f(x) = %%ﬁ%, a
quotient of polynomials over Z where g(x) and h(x) are relatively prime
in Z[x]. Then f(x) is a permutation function modulo m if h{a) {(mod m)
is a prime residue class (mod m) for any a€ Z and the mapping 8: 2/mZ -
+~ z/mz, O (a) = h(a)clgf(a) is a permutation [80)., If m = PyP,» then
f(x} is a permutation function (mod m) if and only if it is a permutation

function (mod pl) and (mod p2). Again a symbol ®is adjoined to Z/mz
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where ®* = 1/0 and 0 = 1/» and for ag Z/mZ,© + a ==, a® = = for a
7 0. If the quantities f(a) are distinct for all ag Z/mZ U [} ,
then f(x) is a permutation function over Z/mZ U {w} .
R&dei [82] considered certain particular functions fh(x) which could be
used in the design of public key cryptosystems as shown below:

Let & be a residue modulo p (p, a prime # 2) such that (ﬁ) =
-1 (ie, q is a fixed non-square). Ré&dei then proved that the function

fn(x) given by

(x w~NE N _ fn(x) +Ja
=/ T E 0 -vT
ie )
£(x) = V& (xV@? ¢ (VD"

(x+a)" - (x=vE)"
is a permutation (mod p) if n is odd and gcd (n,p+l) = 1 and p/kn.
Further he showed that

fed(x) = fe(fd(x)) over zZ/p2

as
fed(x)*"/tl_ - fe(fd(x))+\f&'
'f-ed(x)-\fa— (£ 4(xN-va :

Thus fd is the inverse permutation of fe if d is chosen such that

ed = 1 (mod p+l)
and

T (f4(x)) = £ {f (%)) = x
The proof can be found in ([82].

One can use such a function f in the design of public key
systems as follows.

If the ring Z/mZ is considered where say m = PP, (pl,p2 are
primes # 2) then the encrypting exponent e can be chosen such that
gecd( e, p1+1>) =1, gcd(e,p2+1) = 1 and e,*' Py and e* P, then fe(x) is
a permutation function over Z/mZ. This is a consequence of the Chinese
Remainder Therorem. Now one can determine the decoding exponentd such
that

ed = 1 (mod (py+1)(p,+1)) (14.5)
The encryption procedure transforms the message x €Z/mZ  using the
function y = fe(x) and the decryption procedure recovers the message
by evaluating fd(y) in Z/mZ, The parameter ¢ in the function f is chogen

such that (% } = =1 and (% )} = =1. The public key is therefore equal
1 2

to (e,fe, mya } and the secret key is (d, f 20 )e

a "
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From (14.5), it is seen that to calculate the decrypting
exponent d, the opponent needs to factorize m into its prime factors.
Thus this function seems to be suitable for a public key cryptosystem
whose security again depends on the difficulty of factorizing a large

integer m.

14.6 Dickson Polynomial Based Public Key System

Let us now consider a special class of polynomials called the
Dickson polynomials [53]). As perscnally suggested by Prof S D Cohen of
Glasgow University, such Dickson polynomials are used in the design of
public key cryptosystems.

For a € Fp and any odd positive integer k, the Dickson
polynomial gk(x,m) is given by

(k=1)/2 a6 NE )k
gk(x,(x) - Z kl:r (k;r) (~a )r xk-2r ___(x+ >2< -A) +(x— x2-4a
B r=0 -

For a = 0O, gk(x,O) is equal to the familiar power function xF used by
the RSA system. )

From [53], it is known that if ged(k,po~l) = 1, then g (x0) is a
permutation polynomial in Fp. Further

‘ d
Qg (%5 0) = g, (g4(xs0)s &) = gylg,(xs0)sa”)
Thus the inverse permutaticn of ge(x,a), with gcd(e,pz-l) =1 can be
found using
ed S 1 (mod(p>-1))
and

ge-l(x,a) = gd(x,ae) over Z/pZ

Now consider the polynomial ge(x,a) over 2/mZ where say
L S product of distinct primes. Then ge(x,u) represents a
permutation if and only if

gcd(e, (p12-1 )(p22-1 YFE 1

Thus one can design a public key system using the Dickson polynomial
gk(x,u) as follows:

1. Choose large random primes Py and p, and let m = PPoe
2. Choose the encryption exponent e such that gcd(e,(p1 -1
2 _
3. Calculate the decrypting exponent d such that
- 2 2
ed 21 (mod (p,“~1)(p, 1)) (14.6)
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4. Choose an arbitrary element ¢ in Z/mzZ.

The encryption procedure then consists of transforming the
message x e:Z/mZ using ge(x,a) and the decryption procedure recovers
the message using gd(x,ae). The public key is therefore given by
(e,my go(*sa ya)and the secret key consists of (d,m, gd(x,ds,a). The
security of this system again lies in the difficulty of factoring the
modulus m to its prime factors to be able to calculate d using (14.6).

Thus Dickson polyncmials can be used to design secure public
key systems like the RSA system. It has been simulated on the Prime
Computer system using the program DFOLY.F77 given in Appendix 26. An
example showing the variocus parameters is given below.

Example

Let pl = 5, Py = 7 and m = plp2 = 35, Letg =1

Choosing the coding exponents e and d such that
ed 31 (mod (5°-1)(7°-1))

ed = 1 (mod 1152)

Therefore e = 11 and d = 419 are suitable.

Thus the encryption Dickson polynomial function is given by gil(x,l):
polynomial degree = 11
polynomial coefficients =

11 o)
X x

(L O 24 0 9 0 28 0 20 O 24 0O )

The decryption Dickscn polynomial function is given by gqlg(x,l):
polynomial degree = 419

polynomial coefficients =

a1

(r o 1 0o 2 O 5 0 1 O
28 O 13 O 26 O 5 0 31 O
25 0 0O 0O O 015 0O 0 O
O 0 0 0 O 0 0 14 0O
2. 022 0 7 O O O O O
O O 0 20 0 15 ©0 15 ©O
3 0 5 0O 0O O O O 30 O
20 0 20 0O 5 O 30 O O O
O 0O 0O 0O O O O O 14 o
21 021 0 7 O O O O O
22 021 0 7 O O ©0 14 o©
28 0 28 021 O O O 21 O
c 0o 0 0 0 o o0 o0 0 o
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10 {(mod 35)
gll(x’l)

Message x

25 (mod 35)

10 (mod 35)

cipher y =

Encryption

Message

Decryption

Discussion

14.7

Some permutation polynomials for which the inverse permutations

The linear polynomial

are easy to construct have been considered.

ax+b and the linear fractional substitution funé¢tion (ax+b)/(cx+d) are
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found to be insecure when used as public key systems. The Ré&dei
function and the Dickson polynomials seem to offer a similar level of
security as the prototype RSA system. In general, it is not easy to
find the inverse permutation for an arbitrary permutation polynomial.
One way of finding the inverse permutation of a polynomial g(x) in Z/pZ
consists of raising the function g(x) successively to powers 2,3,45...
and combining an appropriate set of them to give the inverse function.
Using this method, both the system designer and the cryptanalyst have
the same work factor. On the other hand, if a permutation polynomial
g(x) can be found whose inverses over Z/piZ_for iil""’ r are easy to
calculate but whose inverse over Z/mZ where m =-I;{-pi is difficult to
calculate  without knowing the prime factors Ps» then one can design a

public key system based on the factorization trapdoor as follows:

1. Choose large primes pl,...,'pr and let m = I:I. Pi-

2. The permutation polynomial g(x) is made public alcong with m.

3. The encryption procedure consists of transforming a message
* € z2/mz » g(xo) € z/mZ.

4. The decryption procedure finds g-l(xb) in Z/piZ for i=l,...r

and then uses the Chinese Remainder Theorem to recover the

message X, in z/mz.

Note that the decryption procedure should require the knowledge of prime
factors of m to be able to provide security.

Eublic key systems can also be designed using permutation
polynomials based on the law of composition. One .can combine the
permatation polynomials, for which inverses can be found if some 'extra'
information is known, under the law of composition to construct public
key systems which can be more secure than the individual polynomial
based systems. Consider for instance, the encryption procedure given
by the composite permutation function g where

g = yl 0 y2 0] y3 0O .. 0 yn
and

Vi 1§i$n, are permutation functions.

(O - denotes composition)

The decryption procedure is then obtained by the compositicn of the

inverses of the composition factors of g in the opposite order given by
-1 1 -1

h = vy, O yn:l Q... 0y,

Hence g O h = h O g = Identity, I.
The system designer can easily obtain the inverse composite permutation

function h as he knows the factors of g. But the opponent only knows g
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and its inverse is very difficult to calculate since it is very
difficult to find the decomposition of g with respect to composition.
As an illustration of this scheme, consider the following

simple example given below:

Let vy, = xF1 (mod m) where m = PP, and e,d; =1 (mod @B(m))

1 and b, ¢ z/m2

Let Yy = aly1+b1 (mod m) where gcd(al,m) 1

y;'z (mod m) where ejd, = 1 (mod B(m))

Let y, = azy3+b2 (mod"m) where gcd(az,m) =land b, € z/mz

Let y3

Then the composite permutation g is given by

_ e e
a(x) = a2(a1x 1 + bl) 2 + b2

Letting e, = 3 and e, = S5, gives
15 _
g(x) = Z c.x" (mod m) where c. € Z/mZ.
= i i

The system designer would make the function g(x) and m public and keep
the prime factors Py and P, and the factors Vir1Yyr¥3 and Ya of the
composition secret. If someone only knows g(x) and m, then it is very
difficult to find the inQerse permutation. As seen earlier, one way
is to trvy g, gz, ese UNtil the inverse permutation can be constructed
by trial and error procedure. On the other hand, the legal receiver
can find the inverse permitation very easily by calculating y4—1,
followed by v, 5 followed by y,~; followed by y, ™" to recover the
message.

The complexity of the composite system can be dramatically
increased using such an approach and there are numerous ways of
constructing such composite systems. For instance, one could combine
the RSA system and the knapsack system. The message can be encrypted
using the RSA-system or one of its extensions and the encrypted
ressage can be interpreted as a string of numbers in say the binary
syétem,which can be encrypted using knapsack system. This gives rise

to a number of possibilities to increase the security.
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CHAPTER 15
CHAINING TECHNICZIES AND BROADCASTING WITH PUBLIC KEY SYSTEMS
15.1 General

In the following section, some of the chaining techniques
are applied to the generalized RSA matrix system discussed in Section
10.4. It may be recalled that some of these techniques have been used
with the symmetric DES system (see Chapter 5)}. Such techniques can
also be applied to the RSA polynomial system described in Section 10.5.
By these techniques, the undesirable effects of redundancy and structufe
present in the plaintext data are eliminated.

Finally, a precaution which should be taken when using the
. RSA system or any one of its extensions in a broadcasting situation 1is
mentioned, where a single message is encrypted under several public keys

to be sent to several users.

15.2 Chaining Techniques

Let E and D denote the encryption and decryption of a message
M under the generalized RSA system. Initially, consider the inter-
symbol dependence in an individual block using the RSA matrix system.

First cgnsider the messages to be non-singular matrices over
z/mz, where m = };{ piai, under the normal encryption mode € = M
(mod m). If there is a single error in cipher matrix C then the
recovered plain matrix will be completely in error. An example
illustrating this is shown in Figure 15.1. This indicates that there:
is a strong intersymbol dependence within an individual ciphertext block.

On the other hand, with upper triangular matrix messages
(including the diagonal elements), this is not the case. Consider a

message M, a 3x3 matrix over Z/mZ,given by

n %12 %13
= = i<
M 0] 3,5 A, where gcd(aii,m) 1, 1£1§3
0 O a33

and the corresponding cipher matrix C

c =M (mod m)
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Letm = 5.3 = 45
Lete = d = 5
m 8 13
! 2 _ (mod 45)
M= =
m3 m4 3 4
c c 29 7
cz v = * 21\ = (mod 45)
c3 c4 12 13

An error in cl affects decryption of all elements ml,mz,m3 and m4.

Denoting this as

(20— 300 —— (3% 463019 )
Similarly,

q
(7 — 8) — (11, 5, 30, 1)

» » * - »

(12— 13) —> (11, 10, 25, 1)

(c4—’ c4') _— (rnl*’ mz" m3" m4‘)

(13 —> 14) —). (29, 2, 42, 44)

Fig 15.1 - Intersymbol Dependence in Non-singular

Matrix Message: Space.
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If there is an error in c 1° denoted by c'l , then after decryption it

1 1
is found that .
- d -+ -+ -
“11 “12 13 2117 %12 %13
0 €22 3 | D, | © 822 %23 | = me
0 o) €33 0 0 333
It is seen that only the elements aj11° 212 and al3 are affected due to

an error in c That is, there is not a strong intersymbol dependence

11°
between the elements as in the case of the non-singular matrix messages.
More generally, it is possible to work out which elements are being

affected by errors. Considering again 3x3 matrices, let the

message be

T a b
M= 0] d
0 Qo f

0

o

n+l
a b
Mn+1 = 0 d e
0 0 f
= a b c a b
n n n
.0 d e o) d
n n
0 0 f 0 0] f
n
Thus
an+1 = an+1 (15.1)
- +1
d, = ::+1 (15.2)
n+l = (15.3)
and
b, = ab +b d
eh+l = d en + e fn
N+l = a cn + b en + e fn
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Hence )
b= 2 (& -

0
1]
|o

(" - )

n d-f
_ be (an-dn) c - be a’ - "
a T a-f (a—d) *t -t ot

Now if there is an error in 'a', that is, a®, this results in errxor in
as bn and c - Denoting this as,
ar an*, bn*, cn*
then ¥ —— b *, c *
ct cn*
a2 — dn*, bn*, en*, cn*
eﬂ' ), en-l-’ Cn}
r —> fn*, en*, cn*
Thus from the point of view of intersymbol dependence within a block,
it is preferrable to use the set of non-singular matrices as messages.
Now consider some chaining techniques using this RSA matrix
system. Suppose anuser A wishes to commnicate to anuser B a total of
r messages Ml’ ceey Mr' Let the corresponding ciphers be Ci, ceey Cr.
Cne way of chaining would be to modify the first cipher C1
using some function f1 before transmitting to user B. The function fl
can be commnicated to user B under some secure means. For the
subsequent ciphers C2, ""Cr’ both users can derive the functions f2,
ceey fr using some publicly known function g,

fi = g(fi-l’ ooy fl’ h1i_1-" LA ] m' Ci_l, ee ey Cl), i> 1

One could also transmit the function f1 to begin with using a public
key distribution system such as the extended matrix version of the
Diffie-Hellman public key distribution system discussed in Chapter 13.
Now consider the case where the function fl is transmitted
to the user B via the first message Ml. Two such possible methods are

looked at.

15.2.1 Method 1

The operation of this method follows the pattern given
below:
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E . D
Ml B Cl cl —— Ml
E D —C1. .
M
My+C, ——— G, C, —— MiC, ——> M,
E D -
—s M
Mg+C, ——— G, C, > MytC, s M,

In this method, the previous cipher matrix is simply added with the
next message matrix before encryption. Here a simple modulo m addition
has been suggested. More generally, one could use a publicly known
function g to form g(Mi, Ci—l)' With this method, an error in C:i. will

cause an error in the decryption of Mi and Mi+ and then the system will !

1
synchronize. That is,

E D - ‘1=l
M, + > C. o —— s M +Cr il Mo
i ci-l Cl C1 i Cl—l TR i
E D i
Ma*% — Sa Cha— Ma+rsG T M,

This system has the same error characteristic as the stream cipher

feedback {CFB) or the cipher block chaining (CBC) modes of DES. Neote that
v, melfiod does not provids auxthenbicabion an anyone Con e.n.c-rgpt Q. message -

15.2.2 Method 2

The operation of this method follows the pattern given

below:
User A User B
E C C D
W —— G T M Ly
E D -
. —
M1+C1+M2 — C2 . C2 —m M1+C1+M2 M2

In this method, the previous cipher matrix as well as the previous
message matrix are added modulo m to the ne:;:t message matrix prior to
encryption. More generally, again a publicly known function g can be
used-instead of modulo m addition where the arguments of g are Mi,
M, and Ci-

i-1 1°
the decryption of all subsequent message matrices.

With this method, an error in Ci’ will cause error in
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User A User B

- =M
M. 4C. .+M. —25 C, cr —Dymramr. +cr —ok 1Ly .
i-1 "i-1 1 1 i i 1-1 i-1 i
—Cw* -— n* »
E D 1 Ml *
___———) :
MM — G Ciyg—>M*C+M Mi+1

L L

This system has the same error characteristic as the CBCP or the CFBV
modes of DES discussed in Chapter 5. It possesses the error
propagation property.

Note that in both these methods, the first message-cipher pair
(Ml’cl) is essentially used to set up some form of 'initialization

vector' (Section 2.3.2) and it is a direct block encryption.

15.3 Broadecasting of Messages

In many applications, it is necessary to transmit the.same
set of messages to a group of users in the network. Simmons has
shown that ([83)in such broadcasting situations,special precautions
should be taken to avoid the message being recovered by a cryptanalyst
without having to 'break' the underlying cryptosystem. His argument
given below applies to the prototype RSA system (over Z) or any of its
extensions proposed earlier. Thus the messages M and ciphers C in the
argument can be rational integers, polynomials, matrices or algebraic
integers.

Let the modulus of the system be m (=p1p2) and two public
encryption exponents be e, and e_. Let a message M be encrypted with

1 2
each of these exponents to form C1 and C2. That is,
-
C1 =M1l (mod m)
where M, C1, G, € Z/mz
c, = M2 (mod m)

Now if it is assumed that gcd(el,ez) = 1, then there exists a and b
such that

ael + be2 =1

The values of a and b can be found using the Euclid's algorithm. One

of the coefficients is positive and the other is negative. If a is

- 326 -




.« -

negative, then using Euclid's algorithm, the multiplicative inverse of
C1 (mod m) is given by
1

c.c.”

11 1(mod m)

If gcd(C,,m) = 1, then cl"1 exists and

(Mel)‘|a| (M2)°

M1 (mod m)

. =1, |a b
el )

M (mod m)

Thus the message can be recovered even without factoring m into P and
P,- The only information needed are the integer values of m, e;» ©

cafnd Cé all of which are assumed to be publicly:..available. Thus

2,

precautions must be taken to avoid such situations.
An example illustrating such a situation is given below:
Let m = 13.23 = 299
Let e =5 d1 = 53
e, T 7 d2 = 151
Let the message M = 4. Then,

Let

5

c, 5 (4)

c, = (a)

127 (mod 299)
7

238 (mod 299)
Now using Euclid's algorithm

Sa +7b=1
= a=3,b=-2

As b is negative, we form

-1 -
C2C2 =

(238)c2“

-]

(mod 299)
1

1 (mod 299)

Using Euclid's algorithm CZ'-1 = 49 (mod 299)

Hence

(49)° (127)3 4918167583
4 (mod 299)

M
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CHAPTER 16

CONCLUSIONS

Some cryptographic techniques for secure data communication
over an insecure channel have been investigated in this thesis. The
first part has been primarily concerned with conventional crypto-
systems, in particular, the Data Encryption Standard (DES) whereas
the second part focussed on public key cryptosystems.. The main

results and conclusions are summarized below [87-90].

Part 1

A software implementation of the DES algorithm has been
carried out using an Apple microcomputer which allowed a study of some
of the properties of the Dés such as the complementary property and
the avalanche effect. It has been found however that such a software
implementation is too slow for many real time applications and since
it is necessary to store the secret key within the computer systemn,
there is a possibility of its recovery by an unauthorized user. These
problems can be overcome by a hardware LSI implementation of the DES
and this has been used in the design and construction of a micro-
processor based data encryption interface unit.

The use of the interface in a point to point communication
system allowed secure data transfer between Apple microcomputers in
either plain or encrypted format. The interface has been satisfactorily
tested over the public switched telephone network with data rates up
to 1200 bits per second. If required, the security can be increased
by performing multiple encryption with independent keys or using
chaining techniques. Several chaining techniques have been investigated
using the developed system namely Cipher Block Chaining (CBC), Stream‘
Cipher Feedback (CFB), Cipher Block Chaining with Plaintext Feedback
(CBCP) and stream Cipher Feedback with Vector Feedback (CFBV). Each
of these schemes gave rise to a cryptographic system with different
error characteristics, speed of operation and level of security and
hence is suitable for different applications. The error propagation
property of CBCP and CFBV schemes made them - particularly suitable for

message authentication purposes but unsuitable for wuse in
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commnication links prone to noise. The self synchronizing property
of CFB and CBC made them more useful for links prone to small amounts
of noise. The four chaining modes are found to be less susceptible
to attacks of replay, insertion,deletion and code boock analysis in
comparison to the standard Electronic Code Book (ECB) modee«Chaining
also helped to eliminate the undesirable effects of data redundancy
and structure. A statistical analysis of the randomess of the output
sequences produced under these different chaining modes confirmed the
good pseudo-random generator property of the DES.

The use of the developed encryption interface has been
extended to provide off-line file security using the Apple disk system.
A self synchronizing mode is found to be more suitable for file
encryption as in this case, recovery from an error must be effected
with ciphertext alone. If a ciphering procedure with error prop-
agation property is used for file security, subsequent inability to read
a portion of the ciphertext because of damage to the physical medium
or the recorded bits, may prevent all the following ciphertext being
deciphered. With cormunication security, it is possible to recover
from an error by retransmitting the original message.

Further the developed system can be used on the Prestel
public network allowing storage and retrieval of completely and partly
encrypted frames of information on the Prestel database. A 6-bit
cipher feedback technique has been found to be suitable for such. an
application. This technique prevented the occurrence of control
characters in the ciphertext which are not acceptable to the Prestel
control unit.

The use of such a DES based encryption system in a
commnication network requires the keys be distributed to the users
over a separate secure channel. Several methods of key distribution

using Key Centres and public key systems have been discussed.

Part 2

A generalization of the RSA system in the ring of matrices
over Z2/m2, where m is a composite'integer, is proposed. It is shown
that a factorization of the modulus m is needed to compute the

exponent of the group formed by either non-singular matrix messages or

- 329 =




o prr-

upper triangular matrices with invertible diagonal elements over Z/mzZ,
thus offering a similar level of security as the prototype RSA systen.
This system allows the use of a non-square free modulus which is not
possible with the RSA system over the integers. This scheme is as
suitable for both privacy and authentication as its predecessor. The
use of chaining techniques in this generalized system to overcome the
difficulties of data redundancy has also been demonstrated.

An extension of the RSA system to polyncmial rings has been
considered. It is found that the difficulty of factorization of a
polynomial into its irreducible factors over a finite field does not
in itself provide a secure public key cryptosystem. However, if the
difficulty of factorizing an integer is compounded with the difficulty
of factorizing a polynomial, then a secure RSA type system in the ring
of polynomials is seen to be possible. For cryptographic application,
both the modulus polynomial and the modulus integer need to bé square
free to enable proper decryption.

The design of public key systems in some quadratic algebraic
number fields using the factorization trapdoor concept has been
presented. The security-of such systems is found to be dependent on
the difficulty of factorizing the norm of the modulus. Thus a similar
level of security as the prototype RSA system can be achieved if the
norm is made to be sufficiently large. One method of message
representation in such systems involves the use of the elementary
divisor theory to choose a standard set of representatives.

The investigation of such extensions indicate that rings
other than the ring of rational integers,can be used to construct public
key systems with the factorization trapdoor property. From a practical
point of view, it seems that the complexdity of such systems may
favour the implementation of the factorization trapdoor in the ring of

rational integers.

The Diffie-Hellman public key distribution has been
implemented in the Galois extension field GF(2n) with n = 127,where
the computations required for exponentiation can be easily performed
using digital logic. To withstand the most recently published
Adleman's subexponential algorithm to compute logarithms, it is
necessary to work in a higher extension field of GF(2521) to maintain

a work factor equivalent to that of DES key exhaustion.
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Short cycling attacks consisting of repeated encipherings
have been carried out against the exponentiation system in GF(2n) with
n=3and 7. It is found that if the primitive element is chosen at
random, then the expected cycle length of an arbitrary cycle is very
close to half the number of non-zero elements in the field. Thus this
type of attack appears to be very much analogous to a random search
procedure.

The exponentiation system in GF(2'27) has been used in
conjunction with the DES encryption to form a hybrid system which
combines the protection provided by the conventional cryptosystem with
the user authentication attributes of a public key system. Such a
hybrid arrangement is found to be feasible in practice.

A dedicated hardware exponentiation system in.GF(27) has
been designed and constructed. The use of normal basis representation
in the design allows a modular construction which is very useful in
large scale integrated circuit design.

An extension of the Diffie-Hellman public key distribution
system to matrix rings is proposed. Using rings of non-singular
matrices over Z/pZ (p prime) and upper triangular matrices with
invertible elements along the diagonal over Z/pZ, it is shown that the
number of possible secret keys is much greater for a given prime p

compared to the original system.

The role of permutation polynomials in the design of public
key systems has been investigated and it is shown that the class of
Dickson permutation polynomials and certain Rédei rational functions
can be used to construct public systems with a similar level of
security as the prototype RSA system. Further,a method of designing
public key systems using permutation polynomials under the law of
composition has been presented. The complexity of such composite

systems can be dramatically increased to provide high security.

- 331 -




3.

8.

10.

11.

12.

P

REFERENCES

Kahn, D., The Codebreakers,MacMillan, New York 1972.

Diffie, W. and Hellman, M. E., 'Privacy and Authentication:
An introduction to cryptography', Proc. IEEE, Vol.67,
No.3, 1979. '

Meyer, C. and Matyas, S., Cryptography: A new dimension
in Computer Data Security, John Wiley, 1982

Denning, D. E. R., Cryptography and Data Security,
Addison-Wesley, 1982,

Simmons, G. J., 'Symmetric and Asymmetric Encryption’,
Computing Surveys, Vol.ll, No.4, 1979.

Konheim, A. G., Cryptography: A Primer, John Wiley, 198l.

Shannon, C., 'Commnication Theory of Secrecy Systems',

Bell System Tech.Journal, Vol.28, 1949, pp 656-715.

Garey, M. R. and Johnson, D. S., Computers and Intractability,

A Guide to the Theory of NP-Completeness, W. H. Freeman
and Co., 1979.

Rrassard, G., 'A note on the complexity of cryptography',
IEEE Trans. on Information Theory, Vol.IT=25, No.2, 1979,

Shamir, A., 'A polynomial Time Algorithm for breaking the
basic Merkle-Hellman Cryptosystem', Proc. 23rd Annual
Symp. Found. Computers Sci, 1982, pp 145-152.

Data Encryption Standard (DES), FIPS publication 46,
NBS, US Dept. of Commerce, 1977.

Rivest, R. L., Shamir, A, and Adleman, L., 'A method for
obtaining Digital Signatures and Public Key Cryptosystems',
Commun. ACM, Vol.21, No.2, 1978, pp 120-126.

- 332 -




13,

14.

15,

16.

17.

18.

19.

20.

21.

Merkle, R. C. and Hellman, M. E., 'Hiding Information and
Signatures in Trapdoor Knapsacks', Vol.IT-24, No.5, 1978.

Beker, H. and Piper, F. C., Cipher Systems: The Protection
of Communications, Northwood Fub., 1982.

Rivest, R., 'The Impact of Technology on Cryptography',
Proc. I1EEE Int. Comm. Conf., Toronto, 1978.

Vernam, G., 'Cipher Printing Telegraph Systems for Secret
wire and Radio Telegraphic Communications', Journal AIEE,
Vol.45, 1926, pp 109-115.

Smith, J. L., 'The Design of Lucifer, a Cryptographic

Device for Data Communications', IBM, Watson Research

Centre, Yorktown Heights, New York, 1971,

Meyer, C. H., 'Ciphertext/Plaintext and Ciphertext/Key
Dependence vs. number of rounds for the DES' AFIPS
Conference Proc., 47, 1978, pp 1119-1126.

Hellman, M. E., Merkle, R., Schroeppel, R., Washington, L.,
Diffie, W., Pohlig, S. and Schweitzer, P., 'Results of an
initial attempt to cryptanalyée the NBS Data Encryption
Standard', Elec. Engg. Dept., Stanford University, CA,

SEL 76-042, 1976.

Branstad, D. K., Gait, J. and Katzke, S., 'Report of the
Workshop on Cryptography in support of Computer Security',
NBS, USA, IR 77-291, 1976.

NBS, 'Report of the 1976 Workshop on Estimation of
Significant Advances in Computer Technology', NBS, USA,
1976.

Diffie, W. and Hellman, M. E., 'A Critique of the proposed
Data Encryption Standard', Comm. ACM, Vol.19, No.3, 1976,
pp 164=165.

- 333 -



23. Hellman, M. E., 'A cryptanalytic Time-Memory Trade off',
IEEE Trans. on Information Theory, Vol.IT-26, No.4, 1980,
pp 401-406.

24. LEXAR Corporation, 'An Evaluation of the NBS Data Encryption
Standard', Los Angeles, USA, 1976.

25. Bichl, I., Biermeier, J., Gollmann, D. and Pichler, F.,
'Cryptanalysis of the Data Encryption Standard by Formal
Coding', Proc. IEEE International Symposium on Information
Theory, USA, 1981l.

26. DES modes of operation FIPS Pub. 81, NBS, USA, 1980.

27. Buckley, D. C., 'Hershey Characters', Plymouth Polytechnic
Computer Centre Internal Handout No.US5. 8-14, 1983.

28. Chatfield, C., Statistics for Technology, Chapman and Hall,
1978.
29, Good, I. J., 'On the Serial Test for random sequences',

Ann. Math. Statist., 1957, pp 262-264.

30. Gibboris, J. D., Non-Parametric Statistical Inference,
McGraw Hill, New York, 1971.

31. Prestel Viewdata System Manuals, British Telecom, 1979.

32. Price, W. L. and Davies, D. W., 'Issues in the design of
a Key Distribution Centre', NPL Report, INACS 43/81, 1981,

33. Denning, D. E. and Sacco, G. M., 'Timestamps in Key
Distribution Protocols', Comm. ACM, Vol.24, No.8, 1981,
pp 533-536.

34. Denning, D. E. and Schneider, F. B., 'Master keys for

group sharing', Information Processing letters, Vol.12,

No.l, 1981, pp 23-25.

- 334 =




35.

36.

39.

4.

43.

45-

Diffie, W. and Hellman, M. E., 'New Directions in
cryptography', IEEE Transactions on Information Theory,
Vol. IT-22, 1976, pp 644-654.

Keyes, R. W., 'Physical limits in digital electronics’,
Proc. 1EEE, Vol.63, 1975, pp 740-767.

Landauer, R. W., 'Irreversibility and heat generation in
the computing process', IBM Journal of Research and
Development, Vol.S5, 1961, pp 183-191,

Hardy, G. H. and Wright, E. M., An_Introduction to the
Theory of Numbers, Fifth edition, Oxford, 1983.

Ayoub, F. N., 'Some aspects of the design of secure
encryption algorithms', Council for National Academic
Awards, Hatfield Polytechnic, Thesis, March 1983.

Miller, G. L., 'Riemann's Hypothesis and Tests for
Primality', Proc. of the Seventh Annual ACM Symposium on
the Theory of Computing, pp 234-239.

Ingemarsson, I., Tang, D. T. and Wong, C. K., 'A Conference
Key Distribution System', IEEE Trans. on Information Theory,
Vol.IT-28, No.5, 1982, pp 714-720.

Rabin, M, O., 'Probabilistic algorithms', in Symposium
on New Directions and Recent Results in Algorithms and

Complexity' Academic Press, Ed. J. F. Traub, 1976.
Bond, D. J. 'Practical Primality Testing', International
Conference on Secure Commmication Systems, IEE, London,

1984.

Solovay, R. and Strassen, V., 'A Fast Monte-Carlo test for
Primality', SIAM Journal of Computing, Vol.6, 1977, pp 84-85.

Knuth, D. E., The Art of Computer Programming, Vol.Z2:

Seminumerical Algorithms, 2nd Edition, Addison-Wesley, 1981.

- 335 -




46.

47,

49'

50.

51.

52.

53.

54.

55.

56.

57.

Smith, D. E. and Palmer, J. T., 'Universal fixed messages
and the RSA Cryptosystem', Mathematika, Vol.26, 1979,
pp 44-52.

Blakely, G. R. and Borosh, I., 'RSA public key cryptosystems
do not always conceal messages', Computers and Maths with

Appls., Vol.5, pp 169-178.

Albert, A. A., Fundamental Concepts of Higher Algebra, The

University of Chicago Press, 1956.

Burton, D. M., Rings and ldeals Addison-Wesley Pub., 1968.

Van der Waerden, B. L., Modern Algebra, Vol.2, 1949.

MacWilliams, J., 'Orthogonal matrices over finite fields’,
American Mathematical Monthly, Feb 1969.

Turnbull, H. W. and Aitken, A. C., An Introduction to the

Theory of Canonical Matrices, Blackie and Son Pub., 1932.

Dickson, L. E., Linear Groups with an Exposition of The
Galois Field Theory, Dbver Pub., 1958.

FPostnikov, M. M., Foundations of Galois Theory, Translated

by A. Swinfen and P. J. Hilton, Pergamon Press, International
Series of Monographs en Pure and Applied Mathematics,
Vol.29, 1962.

Kravitz, D. W. and Reed, I. S., 'Extension of RSA
Cryptostructure: A Galois Approach', IEE Electronic
letters, Vol.l8, No.6, 1982, pp 255-256.

Berlekamp, E. R., Algebraic Coding Theory, McGraw Hill,
New York, 1968.

Berlekamp, E. R., 'Factoring polyncmials over large finite
fields', Mathematics of Computation, Vol.24, No.l1lll, 1970,
pp 713-735.

- 336 -




59.

61.

62.

63.

.64,

65.

66.

67.

69.

Rabin, M. O., 'Probabilistic Algorithms in Finite Fields',
Siam Journal of Computing, Vol.9, No.2, 1980, pp 273-280.

Gait, J., 'Short cycling in the Kravitz-Reed Public Key
Encryption System', Electronic letters, Vol.18, No.16,

1982, pp 706-707.

Northcott, D. G., Ideal Theory, Cambridge Tracts in

Mathematics and Mathematical Physics, Cambridge Univ.
Press, 1953.

Hancock, H., Foundations of the Theory of Algebraic
Numbers, Vol.l, Dover 1931.

McCoy, N. H., Theory of Rings, MacMillan Co., New York,
1964.

Follard, H., The Theory of Algebraic Numbers, The Carus
Mathematical Monographs, No.9, Pub, by Mathematical Assoc.
of America, John Wiley, 1950.

Rosen, M. and Ireland, K., A Classial Introduction to Modern

Number Theory, Springer-Verlag, 1980.

Cohn, H., A Second Course in Number Theory, John Wiley,
1962. '

Andrews, G. E., Number Theory, W. B. Saunders Co., 1971.

Hartley, B. and Hawkes, T. O., Rings, Modules and Linear
Algebra, Chapman and Hall, 1980 (Reprint).

weyl, H., Algebraic Theory of Numbers, Princeton University
Press, 1940.

Pohlig, S. C. and Hellman, M., E., 'An Improved Algorithm for
Computing Logarithms over GF(p) and its Cryptographic
Significance', IEEE Trans. On Information Theory, Vol.
IT-24, No.l, 1978, pp 106-110.

- 337 -




70.

71.

72'

73.

74.

75.

76.

78.

79.

80.

Adleman, L., 'A Subexponential Algorithm for the Discrete
Logarithm Problem with Applications to Cryptography', MIT,
Dept. of Maths. and Lab. of Computer Science Report, 1980.

Blakely, B. and Blakley, G. R., 'Security of Number
Theoretic Public Key Cryptosystems against Random Attack I',
Cryptologia, Vol.2, No.4, 1978, pp 305-321.

Berkovits, S., Kowalchuk, J., and Schanning, B.,
*Implementing Public Key Scheme', IEEE Communications
MagaZine, V01.17, NO'B', 1979, pp 2—3.

Zierler, N., 'Primitive Trinomials Whose Degree is a
Mersenne Exponent', Information and Centreol, Vel.l5, 1969,
pp 67-69.

Herlestam, T., and Johanneson, R., 'On Computing Logarithms
over GF(2P),' BIT, Vol.21, 1981, pp 326-334.

Schanning, B. P., 'Data Encryption with Public Key
Distribution, IEEE Conference EASCON, 1979,

Simmons, G. and Norris, M. J., 'Preliminary Comments on
the MIT Public Key Cryptosystem', Cryptologia, Vol.l,

1977, pp 406-414.

Berkovits, S., 'Cycling is just a Random Search', IEEE
Commnication Magazine Vol.17, Nov. 1979, pp 2-3.

Webster's New Collegiate Dictionary, G & C Merriam Co., 1975,
Massey, J. L. and Omwia, J. K., 'A new multiplication method
for GF(zm) and its application in Public Key Cryptography',

Presented at Eurocrypt '83, Udine, Italy, March 1983.

Carlitz, L., 'Some theorems on permutation polynomials',
Bulletin Amer. Math. Soc., Vol.68, 1962, pp 120-122.

- 338 -




81.

8z.

83.

84'

85.

86.

87.

28.

89.

P

. . n
Cordes, C. M., 'Permutations mod m in the form x ',

American Mathematical Monthly, Jan. 1976.

Rédei, L., ' Uber eindeutig umkehrpare Polynome in endlichen
K8rpern', Acta. Sci. Math., Vol.ll, 1946-48, pp 85-92.

Simmons, G. J., 'A Weak Privacy Protocol Using the RSA
Cryptoalgorithm,'Vol.7, No.2, 1983, pp 180-182.

Diffie, W., 'Cryptographic Technologys Fifteen Years
Forecast', BNR Inc., Mountain View, California, USA, 198l.

Rédei, L., Algebra, Volume 1, International Series of
Monographs in Pure and Applied Mathematice, Pergamon Press,

1967.

Davenport, H., The Higher Arithmetic, An Introduction to

The Theory of Numbers, Hutchinson and Co. Pub. Ltd., 1968.

Sanders, P. W. and Varadharajan, V., 'Secure Communications
between Microcomputer Systems', Computer Communications,
Vol.6, No.5, Oct. 1983,

Odoni, R. W. K., Varadharajan, V. and Sanders, P. W.,
'Public Key Distribution in Matrix Rings', I1EE Electronic
Letters, Vol.20, No.9, Apr. 1984.

Varadharajan, V. and Odoni, R. W. K., 'Extension of RSA
System to Matrix Rings', submitted to Cryptologia for

Publication.

Sanders, P. W. and Varadharajan, V. 'DES can keep your data
safe', Apple User (Windfall), Vol.2, No.l2, June 1983.

- 339 -




o,

APPENDICES




rrT .

Appendix 1

A description of the Data Encryption Standard program

together with a partial listing is given in this Appendix.

The program is written as a subroutine which can be
called at hexadecimal address 1E@@P. In order to use the
routine, three things must be supplied: mode, plaintext and
key. The user selects the encryption or decryption mode by
inputting E or D. In the case of encryption, the input
plaintext can be provided either from the keyboard or from a
file stored in memory whereas in the case of decryption, the
input ciphertext is expected to be present in the memory.
The program is almost the same for both encryption and
decryption. In the case of decryption, the left shifts are
replaced by the right shifts and the shift schedule operation
is carried out in the reverse order to that of encryption.

Hence only the encryption program is considered here.

RND CNT : Iteration count
IEZP : JSR  (INIT - 1)
JSR  (E1l)
JSR  (E2)
LDA @ 00
STA RND CNT
L3 : LDA RND CNT
CMP @ 10
BEQ Ll
CMP @ 08
BEQ L2.
CMP @ OF
BEQ L2
CMP @ 00
BEQ L2
CMP @ 01
BEQ L2

@ : Hexadecimal data




L2

Ll

JSR (LEFT SHIFT)
JSR (LEFT SHIFT)
JSR (pc - 2)

JSR - (E4)

INC RND CNT
JSR (INIT - 2)
JMP L3

JSR L5

HALT

A 1.2 Subroutinea : EBncryption

INIT.1, INIT.2 : The subroutine INIT-1 initializes
the key register, the data register and all the
temporary registers to Zero whereas the routine INIT.Z2

only clears the temporary registers.:

El : This subroutine takes 64 bits of key as input

.block and carries out the permutation PC-1l. The

output is stored in memory locations 9000 to 9007
(Key Register).

E2 : This subroutine takes 64 bits of data as input
block and carries out the Initial Permutation (IP).
The result is stored in memory locations 7000 to TO0O0T.
(Data-Regiéter). ‘

LEFT SHIFT ¢: The input to this routine is found in
locations 9000 to 9007. It performs a single circular
left shift‘on locations 9000 to 9003 and on 9004 to
9007. The valid output bits in locations 9000 to 9007

are the seven most significant bits, i.e.,

9000 to 9007 : |V AL I DY/

PC-2 : This routine performs the permutation PC-2 on
the memory locations 9000 to 9007. {Only the seven most
significant bits are used). The result is stored in 4000
to 4007 where the six middle bits are the valid bits i.e.,

4000 to 4007 : lv AL 3IDP]
€ 6 4

A~2




E4 : This routine carried out a number of tasks. First,

the right half of the original data containing 32 bits

into 48 bits using permutation E. Input to this operation

ig found in locations 7004 to 7007 and the output is stored
in 3500 to 3507. In each location, the valid bits are the

gsix least significant ones, i.e.,

3500 to 3507 : VPJdv o L I Dl

e—b6-—>
The next part of the routine combines this expanded
version with the key bits after PC-2 (in 4000 to 4007)
using exclusive-or operation. The result is stored in
locations 4500 to 4507. 1In each location, the valid bits

are the six least significant ones, i.e.,

4500 to 4507 ¢ OVdvaiIn

—6—>
Then the routine used the 6-bit blocks in 4500 to 4507 as
input to the S-boxes and yields a 4-bit blocks as outputs.

The first and sixth bits in each location are combined to
represent a number, i, in the range § to 3 in base 2.
The middle four bits are used to represent a number, j,
in the range O_to 15 in base 2. The output is the entry
(i, 3j) in the corresponding S-box. These S-box outputs
are stored in locations 4600 to 4607. Then, the
Permutation P is carried out using the wvalues in 4600 to
4607 as its input. The result is stored in 5700 to 5703
where all 8 bits in each location are valid. They are
exclusive-ored with the left half of the original data
in 7000 to 7003 to form the right half of the next
iteration. PFinally the right half of the original data
is transferred to the left half.

ES : This routine carried out the Inverse Initial
Permutation (IP-I) on 7000 to 7007. The output of this
routine is stored in 6100 to 6107 which is the final
ciphertext output. '
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* 1E4P G

* ENTER ENCRYPT (E) or DECRYPT (D)
E

* ENTER KEY PLEASE

* ENTER DATA BLOCK PLEASE

* ENCRYPTED DATA BLOCK IS FOUND IN (6100 - 6107)

* 1Eggd G
* ENTER ENCRYPT (E) or DECRYPT (D)
D

x  DECRYPTED DATA BLOCK IS FOUND IN (3800 - 3807)
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Appendix 2

START
i}
Initialize temporary
Registers e.g. CNTRL-G
Counter, CNTRL-J

Counter, etc.

:
1

Set Mode Register,

Command Register of

I/0 Controller

Request the user for the

desired Baud Rate and

set accordingly

Test DSR signal No
from Modem ///NO LINK

Yes

Plain or Encrypted or > Plain
Mixture Format 4 ?

Mix or Enc.

Activate and Initialize

Data Security Device

o
<:j Key Request ON?i::>L§2__+___. RESET
» Please
) Yes
2
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L

Display 'Enter Key

Please’

N
Fetch 1 Eey Byte

v

L

Parity Check Routine

N

Load Key Byte in
KEY Register

No £ 64 Key Bits? ::>

Yes

Display 'Enter Data

Please!'

Test for Mixture Format \§> Yes
i

Y

g

6

b
rd

Vv No

L 4

\ / Check DCD signal x Yes
,“\\7 from Modem ///

No

No <\ Check Keyboard Flag >

Yes
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4

l, Tx Mode

Data Input Routine

Only Return Charactergx\z Yes

10

Fill block with pseudo-
random characters and
provide Delay for
repeated Return

No

W

——

-
<

N
End of Message? / 'Yesi 5

N

—<

~ Yes

1

16

End of a Block? /,/’47

\V No

Fetch a Data Byte

Teat for Control characters
including CNTRL-G, CNTRL-J
and increment respective
counters if present

!

Store the output in the
Data Security Device

2

Read Encrypted Data and
Transmit it to Modem

W

Provide Delay for CNTRL-G,
CNTRL-J and Line feed characters




5
L

< Exactly 8 bytes = 1 Block? § No

A4

Ve
- Yes
\( . .
Fill the Block with a
Encrypt and Send it to Return Character and
Modem pseudo-random characters

\
Pad with 7 bytes of

pseudo-random characters

and a Return character

Y
Encrypt and Send the Block

N

Delay Routines

p

Reset Counters

\
<:j Test for Mixture format? No 6
e

<

\}(es

1

3

le mode

1

Fetch Data from Link
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7

|

Error Check Routines

N\

No e 8 bytes of Data = 1 Block?\
N /
Yes
N~
Decrypt Data Block
N
Display the plain
Data
No End of message? \\\\
«< sz 2
\/ers
No . <:::r— Test for Mixture Formatii::::>
Yes
1
1
;}A//r Check DCD signal from 4\\\'Ygs
) \k Modem
v No
No ////>

Check KXeyboard Flag j::>

4/Yes
23
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%

Data Input Routine

Y
<<r Only Return Character? <72Ybsi | Provide Delay
for Repeated Return
Increment Character
< Counter
N \__Yes >
ﬁ\ End of Message ? 4JY*
e

Reset Counters
" Pest for Mixiture Format?/ Yes T

f

~J No 1

Fetch a data Dbyte

Y
Test Roﬁtines for Control

Characters including
CNRTL-G and CNTRL-J

\\7 4

Transmit Data to_Modem

v

Delay Routines

4

A
<[Test for Mixture Format;> Yes _ 8

Yo

‘No

24
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0

1

Fetch a data Dbyte

rNo
Error Test Routines
Display Received Data

N

< End of Message? ;)> Y

<

Yo

Y No
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LDA
STA
LDX
LDY
LDA
STA
STA
STA

STA
LpA
STA

Lba
AND
BEQ

JMP NOLINK

LDA @ 6E

STA
LDA

Co51
COAS8
@ o0
@ 00
@ 00
1B
9
06

08

07

COA6

@ 01
L1

COAD
@ 12

Commenta

Set Text Mode
Reset I/0 Controller WD 2123

Counter: WNo. of CNTRL-G within a block.
Counter: No. of CNTRL-J within a block.
Initialize memory location (06) to be
used in determining end of a line of
display on the VDU.

Counter: No. of characters in a line.

Counter used in delay routine to avoid
noise spikes created during relay change-

over in the moden.
Check DSR =1 ?

Display No Link Error Message.

Set MODE Register of 1I/0 Controller
WD 2123.

Set COMMAND Register of I/0O Controller
WD 2123.
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L2

L4

L3

STA
LDA
STA
JSR
JSR

JSR

LDA
CMP
BNE
JSR
JSR
JMP

JSR

JSR
JSR

LDA
AND
NOP
BNE

Lpa
BPL

COAD
coA4
BAUD
PLAENC
FDgA
0200
L2
DATA

R7
PLAIN

DSD

DATA
RT

coAab

13

C000
L4

Set SELCLEK =1

Subroutine to set appropriate Baud Rate.
Subroutine displaying the message'Plain
or Encrypt:

Subroutine to input data into the 6502
Apple System from keyboard.

Encryption format requested.
| 4
Display Message - Enter Data Please.

Jump to plain data communication routines.

Subroutine which handles the secret key.
Fetches key from keyboard, checks for
correct parity and stores in KEY Register

in Security Device WD 2001.

Check keyboard and the communication link
for the presence of valid data in an

alternating manner.
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L5

L6

Lio

L9

L8

LDA @ 33
STA COAD
LDA @ 06
STA COAl
JSR FD6A
CPX @ 00
BEQ LS
JMP L6
LDA @ FF
JSR FCA8
JSR  END
JSR SWITCH
MP L4
TXA

LDY @ 00
sTa 1D
ILDX @ 00
LDA @ 00
CMP 1D
BEQ L7
CPX 08
BEQ L8
JSR  DIR
LDA 0200,y
JSR TEST
DEC 1D
INY

INX

MP L9
ISR

JSR

Set COMMAND Register of I/0 Controller
WD 2123 to Transmit Mode.

Set Encryption Mode in Security Device
WD 2001. .

Data Input Subroutine.

Subroutine to encrypt and send a block
consisting of a Return character and
seven random characters.

Switch the I/0 device to Receive Mode.

Check end of message.
Check completion of a block of &4 bits.
Check Data Input Request.

Test for CNTRL-G or CNTRL-J character.

READSEND Subroutine to send an encrypted block.
DELAY LINE Subroutine to provide delay for some

L10

special characters.




L7

L1l

L1z

21

118

L17

CPX
BEQ
JMP

JSR
JSR
LDX

JSR
JSR
JSR

JSR
DEC
LpA
CMP
BEQ

LDA
STA
LpA
LDA
STA
LDA
STA

1Lba

STA

LDA
JSR

BEQ
JSR
INC

@ 08
L11
112

READSEND
DELAYLINE
@ 00

END
DELAYLINE
SWITCH

L4

@ 02
FCAS8
07
07
@ 00
Al

L4

@ 10

07
COAA
@ 16
COAD
@ OE
C0Al

FC

COAB
DELAY

117
DIR
FC

Check DCD repeatedly to avoid

noise spikes.

Set Receive Mode in the I/0 Controller.

Set Security Device to Decryption Mode.

Counter: To determine whether 8 bytes

have been received.

Test TxRDY of I/0 Controller.




L2l

LDA
CMP
BNE
JSR

CMP
BNE
Lpx

CPX
BEQ
LDA
CMP
BEQ
CMP
BEQ
INx

FC

@ 08

L17
READPRINT

L18
‘@ 00

@ 08
L19
9500, x
@ 87
L20

L2e

L21

Check for parity,

framing and overrun errors.

Input the received cipher block

to the Security Device.

Decrypt the cipher and display the
message on the VDU screen.

If end of message, discard any random
bytes in the last block.
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L19 JSR END1
JMP L4

L20 ILDA @ PP

JSR FCAS8
JMP L19
A 2.3 Subroutines

Some of the important subroutines called by the main

program are now briefly described.

A 2.53.1 READSEND

This subroutine first checks the TxRDy and the CTS
status bits to see if they are in the correct state. Then it
checks the DOR status bit and reads data bytes from the Security
Device one by one until a whole block is formed. Then the block

is sent down the line.
LDX @ 00

L25 CPX @ 08
BEQ L22

L23 LDA COAB -
BPL L23
LDA COAB
JSR DELAY
AND @ 01
BEQ L23
INX
LDA COA2
STA COAC
JMP L25

L22 RTS

A 2.3.2 READPRINT

This subroutine initially checks the DOR status
bit of the Security Device and then reads the data bytes.
The decrypted data block is stored im 9500 to 9507 for later

use and is displayed on the VDU screen.
LDX @ 00

L27 CPX @ 08
BEQ L24
A=15



L26 LDA COA3

" BPL L26
INX :
LDA COA2
STA 9500,x
JSR FDFO
JMP La27
L24 RTS.

A 2.3.3 _ END

This subroutine is concerned with the last block of
the message in the Transmission Mode. First it checks whether
the number of characters present in the last block which is
not completely full is equal to seven. If so, it adds the
Return character at the end and encrypts this block and sends
the cipher over the link using READSEND. If however the
bleck contains less than seven characters, it fills the block
with a Return and random characters, encrypts the block and
transmits the cipher over the link. In both cases, the
subroutine SUBl is used to increment the appropriate CNTRL-G,
CNTRL-J character counters. The routine SUBl is part of
the TEST subroutine described in Section 4 2.3.4.

JSR DIR
LDA @ 8D
STA COAO
JSR SUBL
INX
M2 CPX @ 08
BEQ M4
LDA 02F8,x
STA COAO
JSR SUEL
INX
JMP M12
M14 JSR READSEND
RTS.
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A 2.3.4 TEST

This subroutine checks whether the input character is
a CNTRL-G or a CNTRL-J or any other control character and

increments the appropriate counters accordingly.

STA  COAO
CMP @ 8a
BEQ R11
CMP @ 87
BEQ R12
CMP @ 40
BCS R13
RTS

R11 INC F9
RTS

R12 INC 1B
RTS

R13 JSR  SUB1
RTS

SUB1 INC -08
LDA 08
CMP @ 29
BEQ R14
RTS

R14 LDA @ FF
STA 06
LDA @ 01
STA 08
RTS

A 2.3.5 DELAYLINE

This subroutine provides the necessary delay
required after sending a CNTRL-G, CNTRL-J or a linefeed

(end of line) character.

LpA 06
CMP @ FF
BEQ R16
JMP R17




R16 LDA @ FO
JSR FCAS8
LDA @ 00
STA 06

R17 LDA 1B
CMP @ 00
BEQ R18
LDA @ FF
JSR FCAS
DEC 1B
JMP R17

R18 Lpa F9
CMP @ OO
BEQ R19
LDA @ 80
JSR FCAS8

JMP R18

This subroutine takes a number between O to 8 from the
keyboard as its input and sets the Baud Rate in the I/O
controller accordingly in the range 50 to 1200 bits per
second (bauds).

LDA 0200
AND @ OF
STA COAE
ASL
CMP @ 06
BCS R20
CLC
| ADC @ 04
R20 STA 09
SEC
LDA @ 11
SBC 09
STA 09
RTS.
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A 2.3.7 _ ERR

This subroutine prints an ERROR MESSAGE and helps
the system to resynchronize after an error has occurred. This
is done by resetting DIR and DOR status flags and initializing

the character counter (08) and the memory location (06) to zero.

JSR FF2D
R21 LDA COA3
AND @ 40
BNE R23

R22 LDA COA3
BPL R22
LDA COAZ2
JMP R22

R23 STA C0AO
JMP R21

R24 LDA @ 0l
STA 08
LpA @ 00
STA 06
LDX @ 08

R25 CPX @ 00
BEQ R26
LDA COAZ2
DEX
JMP R25

R26 RTS.

A 2,3.8 PLATN

This subroutine allows plain data communication

over the link.

L29 LDA COAé
AND @ 03
BNE L28
JMP RX1
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128

L32

L30

L31

L33

L35

L34

LDA
BPL
LDA
STA
ISR
CPX
BEQ

INX

LDA
JSR

TXA
STA
LDY

CPX
BEQ

LDA
BPL
1DA
JSR

BEQ
LDA
STA
JSR
JSR
INY
DEX

JSR

LDA
JSR
DEC
LbA
CMP
BEQ

CC00

L29
33

COAD
FD6A

oc
L30

L31

¥F

FCA8

@
@

L32

ID

00 -

00
L34

COAB

L35

COAB
DELAY

@

0200,Y

01l
L35

COAC
TEST

DELAYLINE

SWITCH

@

L33

L29

02

FCAS8

@

07
07
00
23
L29
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Z3

L40

L23

L41

LDA
STA
LDA
LDA
STA
LDA
STA

LDA

BEQ
LDA

ENE
LDA
AND
BNE
LDA

BNE
JSR

LpAa
STA
JSR
LDA
CMP
BEQ
LDA
STA

LpA
STA
LDA
JSR
LDA
CMP
BEQ
CMP
BEQ

07
COAA

COAD
@ 00
6500

COAB
@ o2
L40
COAB
@ 20
123
COAB
@ 10
L23
COAB
@ 08
123
FF2D
L29

COAA
6501
FDFO
6501
@ 8D

L4l
6501
6500

L40
@ 12
COAD
@ FF
FCA8
6500
@ 87

L42

L42
L29
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L42

LDA

@ Fo
FCAB
L29

This subroutine initializes the Data Security Device,

WD 2001, and enters the DES secret key intoc the KEY Register

of the device after checking/correcting its parity. This

routine also generates a 64-bit pseudo-random number.

52

Sl

83

54

56

LDA
CMP
BEQ
LDA

. CMP

BEQ
JMP

LDA
STA
LDA

1DA
STA
LDA

STA
LDA
AND
ENE
JMP

JSR
Lpa
3TA
LpA
STA
LDA
STA

JSR
JSR

0200
@ C5

S1
0200
@ C4

52
¥FF2D

FC

S3

. FC

C0Al
COA3
@ 10

sS4
RESET

ENTER
@ 00
FA
@ rs
1D
@ 02
1E

FDOC
¥DFO

KEY PLEASE

JSR PARITYCHECK

A-22

Display 'Enter Key Please'.

Parity check subroutine called.



S5

58

ST

PARITYCHECK::

810

§9

511

LpA
STA
LDA
AND
BEQ
JMP

LDY
LDbA
STA
INC
INC

‘LDA

CMP
BNE
LDY

CPY
BEQ
LDA
JSR
DEY

JSR
RTS

STA
LDX
LDY

ROL
BCC
INY

INX
CPX
BNE
TYA

ROR
BCS
LDA

CLC

ROL
STA

RTS

CoAOQ
COA3Z

S5
FF2D

4B
(1p),Y
1D

FA

FA

s6

ST
FDFO

58

FD8B

59

S10

511

A-23
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Appendix 3

Extended Character Set
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Aggendix 4

TXX XX XX XXXTXXXXIXXXXXXXXXXXXXTIXXX
This program prints the plaintext and ciphertext examples
using Hershey character set. The file VVV contains the 96
possible ASCII characters (32 out of 128 are contrel
characters and hence not printed). The program used GINO
library subroutineg for drawing characters and it also
invokes special He}shey subroutines.

X X X X X X X X X x X X X X X X X© X X X

INTEGER TABLE (256), N, TOTAL1 (20)

Select the graphics printer as the output device.
CALL CC906
Select a new paper for a new set of axis
CALL PICCLE
Set the window size, horizontal and vertical axes scale.
CALL UNITS (2.94)
CALL WINDOW (2)
CALL CHASIZ (1.0, 1.0).

Read the character set from file VVV.
OPEN (7, FILE = 'VVV')
READ (7,*) (TABLE (I), I=1,256)
CLOSE (7).

Input the example number and mode of encryption number.
K=0
READ (1,%) IP1l, IP2
IPP1 = 1200 + IP1
IPP2 = 1200 + IP2
N=20
Yy = 61.2

¢ Draw the characters using GINO and HERSHEY subroutines.

CALL MovTo2 (1.0, Y)
CALL HERCEN (T1PP1)
CALL MOVBY2 (1.0, 0.0)
CALL HERCEN (IPP2)

Y = Y-1.6



40

101

30

.10
20

50

0O 0 n 00

CALL MOVTOZ2 (1.0,Y)

CALL CHOSE (TOTALl, L,IK)

1F (IK +EQ. 1) Go to 50

DO 101 JJ =1, L

TOTALL (JJ) = TPOTAL1I(JJ) + 1

CONTINUE
IT =1
11 =L +1

1F (II.EQ.L1) Go to 10

1F (N.EQ.40) Go to 20

NO = TOTAL1 (II)

NOO = TABLE (NO)

1F (N0O.EQ.0) NOO = 161

CALL HERCEN (NOO)

CALL MOVBY2 (2.1,0.0)

N=N+1

IT = IT + 1

Go to 30

Go to 40

Y=Y-1.6

IF (Y. EQ.0) Go to 50

CALL MovTOo2 (1.0, Y)

N=20

Go to 30

CALL DEVEND

STOP

END
The subroutine CEOSE transforms a character into its
corresponding Hershey character. Hence this allows a
possible representation of all256 codes using the
extended character set (Appendix 3). It calls another
subroutine CONVZ,

SUBROUTINE CHOSE (roTALl, L, IK)

CHARACTER * 1 A(38)

INTEGER I, NUMI, NUM2, NUM, TOTAL, TOTAL1 (20),
* LENGT, L

READ (5,1) (a(I), I =1, 38)

FORMAT (38 Al)
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Ik = 0

I =1

300 IF (A(I). EQ. ' ' ) Go To 200
I=1+1
Go to 300

200 LENGT = I
1F {LENGT.Lt.S5) Go To 211 ~
J =6

_ L=0

201 L=L+1
CALL coNv2 (A(J), NUM1)
J=J+1
CALL coNV2 (a(J), NUM2)
TOTAL = 16 * NUM1 + NUM2
TOTALl (L) = TOTAL
J=J+1
IF (J.NE. LENGT) Go to 201
RETURN

211 Ik = ]
RETURN
END
SUBRCUTINE CONV2 (CHAR, NUM)
CHARACTER * 1 CHAR
INTEGER NUM
IF (CHAR. EQ. '0O') NUM = O
IF (CHAR. EQ. 'A') NUM = 10,
1F (CHAR. EQ. 'B') NUM = 11
IF (CHAR. EQ. 'C') NUM = 12
IF (CHAR. EQ. 'D') NUM = 13
IF (CHAR. EQ. 'E') NUM = 14
IF (CHAR. EQ. 'F') NUM = 15
RETURN
END

Il
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Appendix 5

Point to Point Communication : Cipher Block Chaining Program (CBC)

START

b

Initialize Temporary
Registers e.g. CNTRL-G
Counter, CNTRL-J
Counter, etc.

!

Set Mode Register,

Command Register of
I/0 Controller

J

Request the user for the

desired Baud Rate and

set accordingly

L

Test DSR signal

from Modem

No No LINK

Yes

N

Plain or Encrypted or -\\\ Plain

’ 1
Mixture Format _J//ﬁi

Mix or Enc.
4

Activate and Initialize

Data Security Device

Y

RESET
<( Key Request ON ? No Please

Yes
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§

Display 'Enter Key

Please'
¥

Fetch 1 EKey Byte
¥

Parity Check Routine

W

Load Key Byte in
KEY Register

¥
64 Key Bits ? >

W Yes

Generate 64 bit

pseudo random number

and store in a specified

memory space - Initialization

Vector - and send it to the receiving end

v

Display 'Enter Data Please'

N

-Test for Mixture Format -~

Yes

v

| Yo
>| N

Check DCD signal from \\X Yes .
J [ d

No

Modenm
3LNO

Check keyboard flag >

Yes
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4

4/Tx mode

Data Input routine

L

AN

Only return character? Nes

No
10 5
> (: End of Message ? Yes
22 YNo
\ Yes
—> End of a Block? Da

Fill block with pseudo-
random characters and
provide Delay for
repeated Return

,

16

o

Fetch a Data Byte ]

s

Test for Control characters
including CNTRL-G, CNTRL~J
and increment respective
counters if present

Exclusive-or data byte with
Initialization Vector byte

l

Store the output in the
Data Security Device

Vv

Read Encrypted Data and Transmit
it to Modem. Store the encrypted
data as Intermediate Initialization Vector

21

4-30




22

1
Provide Delay for

CNTRL-G, CNTRL-J and
Line feed Characters

16

p
\

Exactly 8 bytes = 1 Block ?'> No

|

Yes Fill the Block with

Y a Return character
and pseudo random
BExclusive-or with the characters
Intermediate Initializaticn
Vector
%

Encrypt and Send it
to Modem. Store encrypted data
as intermediate Initialization Vector

Y

Pad with 7 bytes of pseudo-
random characters and a
Return character

> Y

Encrypt and Send and Store
Encrypted data as intermediate ‘|
Initialization Vector

¥

Delay Routines

2

Reset Counters

A4

7
\

Teat for Mixture Forma#i:z_ﬁkmg___ﬁ

v
Yes
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3

‘L Rx Mode

Fetch Initialization Vector from Link
and store it in a specified memory

) V
| Fetch Data from Link J
Brror Check Routines
- v
(o)
< <ifa Bytes of Data = 1 Block?
Y Yes
Decrypt Data Block
N
BExclusive-or with Intermediate
Initialization Vector
v
Display the resultant plain
data
‘ A4
No . <<: End of message? ;:::>
v Yes
No ¢ <<j Test for Mixture Format? :::>
l,Yes
1
1l
, Check DCD signal from \\\)Yes
—

Modem

\L No

No e
\\\\ Check Keyboard Flag 9
L J/Yes .
25
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i

Data Input Routine

Y

< Only Return Character

o ™~

s Yes |

Provide Delay

for Repeated Return

h 4

L
~

e
N\

BEnd of Message 7

\

Increment Character

Counter

\-

A

¢

Test for Mixiure Forma.t?>Yes

\Jr No

Fetch

a data Dbyte

N

Test Routines for Control

Characters including
CNRTL-G and CNTRL-J

N

Transmit Data to Modem

A4

Delay HRoutines

y

{ Test for Mixture Format;> Yes

9

N

Reset Counters

B

1

No

24
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24
|

Fetch a data byte

\r No

Error Test Routines

Y
Display Received Data

N4

< End of Message? >’Yeg

Y No
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Block Encryption Program listing in Appendix 2.

30AE

Ll

Most comments are similar to the ones given

LDA
STA
LDX
LDY
LDA
STA
STA
STA
LDA
STA
LpAa
STA
LDA
AND
BEQ
JMP

LDA
STA
Lpa
STA
LDA
STA
JSR
LDA
JSR
JSR
LDA
CMP
BNE
JSR
JSR

Cco51
COAS8

@
@
@

00
Cco
00

1B

F9
06
0l
08
10
o7

C0A6
@ 0l

NOLINK

Ll

@ 6éE

COAD

@

12

COAD

@

14

CoA4
BAUD
CoAa

PLAENC

FD6A
0200

@

Do
L2

DATA

R7

JMP PLAIN

435
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L2

P3

Pl

P6

P5

P4
L4

P7

JSR

LDA

BNE

LDa
BPL

LDA
STA
LDA
STA
JSR
LDY

CPY
BEQ

LDA
BPL
LDA
STA
STA
INY

LDA

BNE

LDA
BPL
LDA
STA

STA
JSR

CPX
BEQ

DSD

coAb

Pl
P2
C000
P35

COAD

coAl
FD6A
@ 00

@ 08
P4

COAB

P5
02F8,Y
3000,Y

COAC

P6
P7

coAb
@ 03
L3

C000

L4
8 33
COAD
@ 06
C0Al
FD6A

@ 00

L5
L6

Pseudo random numbers are
stored in 3000 to 3007 which
act as the Initialization
Vector (IV). IV is

transmitted to the other end.
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L5

L6

Llo

L9

L8

L7

L1l

Ll2

LDA
JSR
JSR
JSR
JMP
TXA
LDY
STA

LDX

LDA
CMP
BEQ
CPX
BEQ
JSR
LDA
EOR
JSR
DEC
INY
INX

JSR
JSR

CPX
BEQ

JSR
JSR
LDX

JSR
JSR
JSR

@ FF
FCA8

END
SWITCH

L4

@ 00
1D

@ 00

@ 00
1D

L7

@ 08
L8
DIR
0200,Y
3000,X
TEST
1D

L9

READSEND MOD
DELAYLINE
Llo

@ 08
L1l
Li2

READSEND MOD
DELAYLINE
@ 00

ENDMOD
DELAYLINE
SWITCH

L4
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Z1

L18

L17

L23

Bl

LDA @ 02

JSR
DEC
LDA
cMP
BEQ
JMP
Lpa
STA
LDA
LDA
STA
LDA
STA

LDY

LDA
JSR

BEQ
JSR
INY
LDA

BNE
LDA

BNE
LDA

BNE

JSR

LDA
STA
STA
CPY
BNE

FCAS
o7
07

@ 00

zZl
L4
@ 10
o7
CoAaa
€ 16
COAD
@ OFE
coal

COAB
DELAY

Ll7
DIR

COAB

L23
COAB
@ 08

123
COAB

20

L23

Bl

L4

COAA
C0AD
3010,Y
@ 08
117

2-38



JSR READPRINTMOD

CMP @ 8D
BNE Ll8
LDX @ 00

L21 CPX @ 08
BEQ L9
LDA 9500,X
CMP @ 87
BEQ L20
CMP @ 8A
BEQ L20

JMP L21

L19 JSR END 1
JMP L4

120 LDA. @ FF
JSR FCA8
JMP 119

A 5.2.2 Subroutines

Most of the subroutines used in the program are the
same as the ones used in the Block Encryption Program
given in Appendix 2. The subroutine READSENDMOD is a slightly
modified version of READSEND given in Appendix 2 (4 2.3.1).
The modified section in READSENDMOD is given below.

LDA CO0AZ2

STA COAC

STA 3000, X

JMP L25
L22 RTS
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The subrcutine READPRINTMOD is a slightly modified
version of READPRINT given in Appendix 2 (4 2.3.2). The
modified section in READPRINTMOD is given below.

LDA COA2
EOR 3000,X
STA 9500,X
JSR FDFO
LDA 3010,X
STA 3000,X
JMP L27
L24 RTS

The subroutine ENDMOD is the same as the subroutine
END of Appendix 2 (A 2.3.3) except that ENDMOD calls the
subroutine READSENDMOD instead of READSEND.
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Appendix 6

Point to Pcint Communication : Stream Cipher Feedback Progran (CFB)

STA&?

Initialize Temporary registers
e.g. CNTRL-G, CNTRL-J Counters etc.

Set Mode register, Command

register of I/0 Controller

Request the user for the desired

Baud Rate and seit accordingly

4 Ho NO LINK
< Test DSR Signal from Modem ERROR

Jjes

Only complete Encryption format

Program is given

Activate and Initialize the

[ Data Security Device

L

Key Request ON ? >No RESET
Ve >7 please
,lYes

2
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2

¢

Display 'Enter key

Please'

N
Fetch 1 Key Byte

Y

~
| Parity Check Routine |

s
Load Key Byte in KEY
Register

L
No < 64 Key Bits ? )}

!

Generate 64-bit pseudo-

random number and store
in a specified memory

space = Initialization Vector -

and send it to the receiving end

Display 'Enter Data Please'
\

ral

;\/ Check DCD signal from Modem > Yes

No
“ No—<:VCheck Keyboard Flag 4;>
' Yes
' W/ TX Mode

Data Input Routine |

L

s f ? \ -
6 ( End of message y Yes >

-~

4
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P .8

4

J

Load 8 bytes of Initialization

Vector into Data Security Device

L\

Fetch a plain data byte

N

Check whether the input

character is a control character

such as CNTRL-G or CNTRL~J

A

Fetch the 8th encrypted byte
and Bxclusive-or it with the
plain data byte

N

Transmit cipher byte to
Modem

"

Provide Delay for some

gpecial Control characters

N

Shift the input to the Data
Security Device by 8 places to

form new initiglization wvector

3
l RX Mode

Fetch 8 bytes of initialization
vector from the link and store

it in g specified memory space

l

7
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NV

Load 8 bytes of Initialization

Vector into the Data Security Device

N\

Fetch a data byte from the link

A\ 4

Fetch the 8th encrypted byte
from the Data Security Device
and Exclusive - or it with the

received cipher data byte

Display the deciphered data
byte on the VDU screen

|

Shift the input to the Data
Security Device by 8 places to form

new Initialization Vector

b

N
{ End of Message :} Yes 5

No




Most comments are similar to the ones given in the

Block Encryption Program listing in Appendix 2.

30AE

Ll

LDA
STA
LDX
LDY
LDA
STA
STA
STA
LDA
STA
LDA
STA
LDA
AND

BEQ -

JMP

LDA
STA
LDA
STA
LDA
STA
JSR
LDA
JSR
JSR
LDA
CMP
BNE
JSR
JSR
JMP

Co51
CoAS8
@ 00
@ 00
@ 00
1B
F9
06
@ 01
08
@ 10
07
COA6
@ 01
L1
NOLINK

@ 6E
COAD
@ 12
COAD
@ 14
CoA4
BAUD
COAA
PLAENC
FD6A
0200
@ DO
L2
DATA
R7
PLAIN
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L2
P3

Pl

P6

P5

P4

L4

JSR
LDa

BNE

LDA
BPL
LDA
STA
LDA
STA
JSR
LDY

CPY
BEQ

Lpa
BPL
LDA
JSR

BEQ
Lba
5TA
STA
INY

LDA

BNE

LDA
BPL
LDA
STA
LDA
STA
JSR

DsD
C0Ab
@ 03

Pl
P2
C000
P3

@ 33
COAD
@ 06
CoAl
FD6A
@ 00

@ o8
P4

COAB

P5
COAB
DELAY

@01

P5
02F8,Y
3000,Y
COAC

P6

PT

COAb
@ 03
L3

CCO0

L4
@ 33
COAD
@ 06
COoAl
FD6A
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P7

L9

L8

L7

P2

CPX
BEQ

LDA
JSR
INX
TXA
LDY
STA

LDX
LDA
CMP
BEQ
JSR
LDA
STA
JSR
JSR

LDA
EPL
LDA
JSR
AND
BEQ
LDA
STA
JSR
JSR
DEC
INY

JSR

JSR
DEC
LDA
CMP

L5
L6

FCAS

1D

1D

L7
SUB3
0200,Y

TEST
SUB4

COoAB
L8
COAB
DELAY
@ 0l
18
EC
COAC
DELAYLINE
SHIFT 1
ID

L9
SWITCH
L4

@ 02
FCAS8
o7
07
@ 00
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P11

Pl4

P13

P12

Z1

P15

BEQ

LDA
STA
LbA
LDA
STA

STA
LDY
CPY
BEQ
LDA
JSR

BEQ
LDA
STA
INY

LDA
JSR
DEC
LDA

STA
LDA
JSR
AND
BEQ
Lpa

BEQ

P11
P35

07
COAA

COAD
06
coal
@ 00
08
Pl2
COAB
DELAY
@ 02
P13
COAA
3000,Y

P14
P15

02
FCas8
o7
07

z1
L4
COAA
16
CCAD
@ 06
COAl
COAB
DELAY
@ 02
P15
COAB
@ 10
L23
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AND @ 08
BEQ L23
LDA COAB
AND @ 20
BEQ L23
JMP L24
L23 JMP ERR
L24 JSR SUB3
LDA COAA
STA EE
STA EC
JSR ©SUB4
JSR FDFO
JSR SHIFT2
Lpa EC
CMP @ 8D
BEqQ L25
JMP P15
L25 JSR END
JMP L4

A 6.2.2 Subroutines

Most of the subroutines are the same as the ones
given in the Block Encryption Program in Appendix 2.
Some additional subroutines called by this program are now

briefly described.

SUB3 : This subroutine inputs the data stored in the memory
locations 3000 to 3007 (Initialization Vector) into the Data
Security device after testing the DIR status flag each time.

K3 CPX @ 08
BEQ K1l
LDA CO0A3
AND @ 40
BNE K2
JMP FF2D

K2 LDA 3000,X
STA. CO0AO



INX
JMP K3
RTS

This subroutine reads the encrypted Initialization

Vector from the Data Security Device and exclusive-ores the

8th encrypted data byte with the plain data byte {the cipher

data byte) to produce the cipher data byte (the plain data

LDX @ 00
CPX @ 07
BEQ K4
LDA COA3
BPL K5
LDA COA2
INX

JMP K6
LDA COA2
EOR EC
STA EC
RTS

SHIFT 1, SHIFT 2 : These two subroutines are essentially

the same.

(Initialization Vector) sequentially as follows:

They shift the memory locations 3000 to 3007
3007T—> 3006,

3006 — 3005, - - =, 3001 — 3000 and (cipher data byte)
ILDX @ 01
LDA @ Q00
STA ED
LDA 3000,X
DEX
STA 3000,X
INX
INX
INC ED
LDA @ OF
CMP ED
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BNE K7

LDA EC
DEX

STA 3000,X
LDX @ 00
RTS

A- 51



Appendix 7

Results of some Statistical tests on DES OQutput Sequences

A 7Z.1.1 Input Samples

Input sample period in digits Input sample Abbreviation

(binary/hex)

1. 5-digits 01110 (binary) 1.1

10010 " 1.2

01011 " 1.3

00011 " 1.4

10111 " 1.5

2. 8-digits 00000001 (binary) 2.1

10101010 " 2.2

11111111 " 2.3

01000110 " 2.4

11000011 " 2.5

3, 10-digits 1011111111 (binary) 3.1

0100010000 " 3.2

0000011111 " 3.3

0110000111 " 3.4

1100111000 " 3.5

4. 20-digits FFFFC (hex) 4.1

O03FF " 4.2

E3C3F " 4.3

68D47 " 4.4

BBBOF " 4.5

5. 40-digits FFFFFFFFFC  (hex) 5.1

CE3C3EOFCO " 5.2

00Q0CFFFFF " © 5.3

999EEE1116 n 5.4

62B5445197 " 5.5

6. 64-digits FFFFFFFFFFFFFFFO  (hex) 6.1

00000000FFFFFFFF " 6.2

C4C4C433CCC4C4C4 " 6.3

B1B2B3B4B5B6B7B8 " 6.4

3141592654138547 " 6.5
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I. 1F1F1F1FOEOEQEOE - 'weak'

IT. 1FEO1FEQOEF10EF1 - 'semiweak’

IIT. 039649C539317965 - 'random'

Iv. 85CDCB1CY9BDO8514A - 'random'

V. 313131313%1313131 - 'non-random’

A 7.2 _Results of Frequency, Serial and Runs tests on

5% Significant levels : Frequency (P) test : 3.84

Serial (S) test : 5.99
Runs (R) test : 1.96
Key : 3131313131313131 (hex)
Input Sample Mode P S R
1.1 ECB 0.19 3,65 1.19
CFB 0.77 2.90 -0.29 .
CBC 0.66 2.61 -0.04
CBCP 2.25 4.17 -0.06
CFBV 0.39 7.36 (%%) ~2.24 (%*)
1.2 ECP 4.00 (%%)  7.69 (%) -1.26
CFB 0.25 3,71 -1.24
CBC 0.39 4.16 : 1.33
CBCP 2.06 4.98 0.94
CFBV 0.77 3,22 -0.73
1.3 ECB 20.81 (%) 23.09 (%) 1.37
CFB 0.004 2.52 -0.75
CBC 0.14 2.38 0.44
CBCP 0.32 2.40 0.20
CFBV 0.04 2.66 -0.81
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Input Sample

1.4

2.5

Mode

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB

CBC

CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB

CFB

CBC -

CBCP
CFBY

ECB

CFB
CBC
CBCP

CFBV

8.63 (*x)
0.47
0.25
0.06
0.02

4.25 ()
2.64
T.22 (**)
0.04
2.44
9.00 (%)
2.25
3.52 (*)
0.32
0.88

1.00
0.77
1.56
1.41
4.52 (%)
25.00 (**)
0.47
0.02
0.10
0.004
9.00 (**)
4.79 (**)
2.85
0.25
0.14

2.44
1.72
0.39
1.27

A-D4

15.22
3.37
2.89

2.33
2.72

6.18
4.87
9.69
4.79
4.35

10.83
4.35
5.63
5.75
5.48

3.06
5.45
4.00
4.68
6.61

30.62
5.61
2,72
2.09
2.95

14.96
7.27
4.83
5.717
2.33

18.27

6.33
8.03
2.45

3.50

(**)

(**)

(%)
(%)

(#%)

(*%)
(*)

(%x)
(*%)

(%)
(%)
(%%)

-1.87
0.95
0.76

-0.56
0.81

-0.12
0.40
-0.34
1.63
0.01

0.28
0.07

0.55
-1.87
-1.60

-0.03
0.78
0.74

-1.08

-0.36

-1.25
-1.80
-0.88
-0.12
-1.00

2.30
-0.67
0.34
-1.24
-0.43

4.00
1.46
2.12
-0.18

0.42

(%)

(%)

(%)
(*)

(%)

(%)
(**)




_ Input Sample

5.1

3.2

3.3

5.4

3.5

Mode

ECB

CFB
CBC

CBCP
CFBY

ECB

CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBY

ECB
CFB
CBC

CBCP
CFBV

ECB

CFB
CBC
CBCP
CFBV

ECB

CBC
CBCP
CFBV

0.19
3.06

1.27
2.25

2.64

0.47
4.00
0.02
0.32

1.72
0.004

0.004
0.035

2.07
0.02
3.29
0.77
1.89

4.52
0.66
2.44

0.88
0.04

0.004

1.89
0.56
1.153
0.66
0.04
0.02
0.04

0.53
0.004
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(%%)

()

5.18
7.50
5.10
3.28
4.16

5.88

2.65
T.33
2.52
4.33

4.58
2.52
3.22
3.99
2.48

19.25
2.17
5.34
2.79
3.82

6.82
2.93
5.17
6.95
2.96
2,62
7.45
2.68

3.71
2.88

10.14
2.10

2.27
7.92
2.13

(%)

(*)

(%)

(%)

(%)

(%)

(%)

(%%)

(%%)

1.70
-1.53
0.41
0.29
0.07

-1.11

0.45
1.19

0.69
1.39

(%)
(%)

0.99

0.69

0.53 -

1.38
-0.69

-3.88
-0.44
-0.34
-0.29
-0.07

0.7
0.46
-0.86
2.03
-1.00

0.75

1.94
-0.42
0.724
-0.42
2.81
0.25%
0.44
=-0.71
c.31

(%x)

(%%)

(%)




Input Sample

4.3

4.4

4.5

5.1

5.2

5.3

5.4

Mode

ECB
CY¥B
CBC
CBCP
CFBV

ECB

CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV
ECB
CFB
CBC
CBCP
CFBV

0.00
1.41
1.56
0.32
1.27

2.64

0.19
2.44
0.14
0.004

3.50 (%)
0.04
0.10
0.00
0.00

0.02
0.32
1.00
2,07
C.14

0.56
0.02
0.88
.02
0.47

0.39
0.19
0.04
0.25
1.72
2.64
1.12
0.14
0.85
0.04

4-56

2.01
5.50 ()
5.65 (%)
2.80
6.98 (%x)

5.06

2.38
5.37
2.28
2.94

5.43
3.09
2.47
2.00

2.94

2.03
2.63
4.26
4.15
3.92

5.69 (*)
2.00
4.80
3.65
2.63

3.07
2.24
2.76
3.28
4.16

25.3 (%)
3.21

2.33
5.40
2.31

0.06

1.48
-1.45
-0.74
-1.90 (*)

0.77

0.38
0.95
0.38
-1.00

0.24
-1.06
0.57
0.00
0.94

0.06
0.51
-1.10
=0.37
1.32

-1.80 (%)
~0.06
-1.41
1.25
0.528

0.825
0.131
-0.87
-1.06

0.74
-4.49 (%%)
-0.10
-0.43
-1.76 (%)
0.50



Input Sample

5.5

6.2

6.3

6-4

6.5

Mode

ECB
CFB
CBC
CBCP
CFBV

ECB
CFB
CBC
CBCP
CFBV

ECB

CFB

CBC
CBCP
CFBV

ECB
CFB

CBC
CBCP
CFBY

ECB
CFB
CBC

CBCP
CFBV

ECB
CFB

CBC
CBCP
CFBV

F

0.04
0.06
0.04
0.56
0.00

S

4.57
3.53
2.05
2.80
2.00

36.00 (**) 37.70

0.25 2.80
0.32 2.28
2.44 4.98
0.39 4.59
1.00 3.07
0.77 3.76
0.06 2.16
0.10 2.30
0.47 2.68
4.00 (**) 105.60 (%)
0.56 2.74
1.56 3.92
0.56 8.11
0.19 4.38
4.00 (*x) 9.76
2.44 4.63
4.52 (**) 8,00
0.04 3.09
0.02 3.36
36.00 (**) 53.46
1.56 3.85
2.25 5.17
0.39 2.48
4.25 (**) 7.00
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{#x)

(%%)
(%+)

(%)

(%x)

(**)

-1.63
-1.25
1.10
0.52
0.06

1.17
0.70
0.01
0.70
1.45

0.03
0.96
0.25
0.44
-0.42

10.11
0.46
0.68

-2.36

-1.50

-1.88

-0.49
-1.05
~-1.00
-1.19

-2.98
-0.08
-0.87

0.20
-0-68

(%)

(%%)

(**)
(%)
(*)

(**)




Let the number of sequences classified as non-random by
Frequency test be nF

Let the number of sequencés classified as non-random by
Serial test be nS

Let the number of sequences classified as non-random by
Runs test be nR

Mode nF nS nR
ECB 12 16 T
CFB 1 4 0
CBC 3 4 1
CBCP 0] 3 2
CFBYV 2 4 1

No. Mode Input Sample Tests which indicate
non-randomness

1 ECB 1.2 F, S

2 1.3 F, S

3 1.4 F, S

4 1.5 F, S

5 2.1 F, S

6 2.3 F, S

7 2.4 P, 5, R

8 2.5 S, R

9 3.4 S, R

10 3.5 F, S

11 4.2 S, R

12 5.4 S, R

13 6.1 P, S

14 6.3 F, S, R

15 6.4 F, S

16 6.5 F, S, R

17 CBC 1.5 F, S

18 2.5 5,-R
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No. Meode Input Sample
19 3.2
20 6.4
21 CBCP 3.5
22 6.3
23 CFBV 1.1
24 2.2
25 6.5
A 7.3 Results of Freguenc
Ciphertext sequences;
5% Significant levels
Sample No.
(i) (1.5)
(ii) (2.1)
(i11) (3.3)
(iv) (4.1)
(v) (5.2)
(vi) (6.5)
Input Mode Key
Sample No.
(i) ECB I
II
II1
Iv
v
(i) CFB I
1T
IIT
Iv
v

n wnn B 0O W w

Frequency (F) test

Serial (S) test

Runs

(R) test

Input Sample

10111
00000001
0000011111
FPFFC (hex)
CE3C3EOFCO (hex)
3141592654138547
F S
0.004 3.07
1.56 4.26
7.22 (#%)  12.03 (%%)
0.25 8.32 (¥x)
4.25 6.18 (%)
1.13 3.28
4.00 (%) 6.95 (**)
0.004 2.23
4.25 (*%) 6.56 (%)
2.64 4.87

Tests which indicate
non-randomne 8s

3.84

5.99
1.96

(hex)

1.00
-0.71
1.93

2.45
-0.12

0.29
-0582

0.44
-0.56

0.40

(%)



Input
Sample No.

(1)

(1)

(ii)

(ii)

(ii)

(ii)

Mode

CBC

CBCP

CFBV

ECB

CFB

CBC

CBCP

Key

IT
IIT

-

II
IIT
IV

II
ITX

Iv

I1

I1T
Iv

I1
III
Iv.

II
IIT
Iv

IT
III
Iv

A~ 60

2.25
0.06
1.89
2.25
7.22

0.06
1.13
0.56
1.27
0.04

0.77
0.88
1.72
0.47
2.44

25.00
1.00

4.00
2.07
9.00

1.27
1.27
0.66
0.10
2.25

1.27

1.00
0.56
0.47
3.52
4.00
1.13
1.41
0.19
0.32

5.10
3.53
4.10
4.35
(#*)  9.69

2.90
3.68
2.78
3.50
4.79

2.93

8.73
4.00

3.50
4.35

(%%) 4.30
39.35

(%%) 22.15
9.19

(#%) 10.83
4.54

3.91

4.05

2.24

4.35

5.28

5.41
5.36
4.41
(%) 5.63

(*%) 15.33
3.50
5.29
3.81
5.75

1.01
_ -1.25
-0.32
0.07
(*%)-0.34

-0-94
0.79
0.39

0.42°

1.63

0.46
(¥*)-2.41
0.62

- -1.05
0.01

=3.37
(**) 6.04
(%%)-3.96
(#%)-2.25
(%=) 0.28
-1.15
-0.84
-1.17
0.32
0.07

-0.27

1.53
~1.67
-1.42

((*) 0.55
(%x) 3.14
-0.65
1.36
1.26
(%) -1.87

(%)

(%)

%)
(#%)
(%)
(%%)

(*)
(%)

()




Input

Sample No.

(11)

(iii)

(iii)

(iii)

(iii)

(iii)

(iv)

Mode

CFBV

ECB

CFB

CBC

CBCP

CFBV

ECB

Key

IT
IT1
Iv

II

ITI
Iv

IT
IIT
Iv

I1
III
Iv

II
III
IV

I1
ITT
Iv

II
I1I

Iv

0.004
0.39
0.10
3.06
0.88

1.27

3.29
6.25
2.25
1.72

0.004
1.27
c.04
1.41
0.004

1.27
1.72
0.004
1.41
1.00

1.27
0.32
0.39
0.06
0.004

2.44
1.27
0.14
2.25
0.04

0.004
5.94
0.04

0.56
0.004

3

2.61

2.57

3.46

4.98

5.48

3.20

10.33

(¥x)  24.37
4.35

4.58

2.03
3.21
5.85
8.00
2.52

5.01
5.89
2.44
3,92
3,22

3.32
2.31
2.40
3.69
3.99

4.47
4.83
2.14
4.63
2.48

2.05
(#x) ~11.06
7.52
3.68
2.62

(%)
(**)

(%%)

(%)
'(**)

0.75
0.45
-1.19
0.22
-1.60

-0.02
-2.16
4.22
0.07
0.99

0.13
-0.09
1.31
-2.15
0.69

-1.34
0.30
-0.69
-0.65
0.53

-0.54
0.14
-0.24
-1.31
1.38

0.39
-1.21
-0.18
-0.49
-0.69

0.19
-1.57

2.32

1.02

0.75

(%)
(%x)

(%)

(%)
(%x)




Input
Sample No.

(iv)

(iv)

(iv)

(iv)

(v)

Mode

CFB

CBC

CBCP

CFBV

ECB

CFB

Eey

II
ITI
Iv

II
ITI
Iiv

II
ITI
Iv

11
I1T
Iv

1T
IIT

Iv

IT
I1I
IV

A~62

1.41
1.89
1.13
0.56
1.89

1.41
0.04
0.32
2.07
0.56

0.47
0.19
0.06
0.77
1.13

4.00
0.56
0.10
0.56
0.66

1.56
2.07
4.52
2.07
0.56

5.35
0.06
0.39
0.10
0.02

(%x)

()

(%)

4.10
6.94
3.14
2.61
7.45

4.83
4.59
3.07
4,26
2.68

2.44
2,22

2.90
4.02
3.71

5.89
2.68
2.14
3.95
2.88

4.43
4.87
6.91
9.19
5.69

9.02
2.90
3.37
3.57
2.00

(#%)

(%)

(%)
(%)
(%)

(%)

0.80
1.75
.29
-0.05
1.94

-1.21
-1.63
-0.87
-0.50
-0.42

0.08
0.006
-0.94
1.09
0.72

0.19
0.39
-0.18
1.14
-0.42

1.00
0.88
-0.61
-2.25
-1.80

1.49
0.88
0.95
-1.25
-0.06

(%)

(%)

(*%)
(%)



input
Sample No.

(v)

(v)

(vi)

(vi)

(vi)

(vi)

Mode

CBC

CBCP

CTFBV

ECB

CFB

CBC

CBCP

Key

II
IIT
Iv

II
I1T
Iv

II
ITT
Iv

IT

ITI
Iv

IiT
III
Iv

I1
IIT
Iv

II
III

Iv

A-63

1.15
2.64
0.77
1.00
0.88

4.25
4.52
0.66
1.89
0.02

2.64
0.04
0.88
0.14
0.47

9.00
1.00

16.00
64.00
36.00

0.14
0.06
0.10

0.47
1.56

5.94
1.89
1.89
1.00
2.25

30.25

0.77
3.16

0.04
0.39

(%)
(%)

(**)
()

()
(%%)

(%)

.3.25
6.73
3.07
3.14
4.80

6.74
6.66
2.66
5.18
3.65

4.76
2.07
6.58
2.45
2.63

14.96

7.07
53.94
65.63
53.46

2.33
2.3%6
2.14
2.71
5.85

11.28
4.26
3.47
2.96
5.17

81.45
6.70
2.36
3.39
2.48

(%)

(%)
(%)

(%x)

(%)
(%)
(%%)
(%)
(%x)

(%)

()
(%)

-0.22
1.46
0.59
0.28

-1.41

0.70
0.14
-0.23
1.12
1.25

0.52
0.19
-1.91
0.51
0.328
2,30
2.03
=-5.59
2.07
-2.98

-0.43
-0.56

0.13
-0.55
-0.08

1.95
0.56
-0.38
-0.16
-0.87

-6.31
-1.98
-0.3%0
-1.19

0.20

(%)

(#x)
(%)
(%x)
(%)
(%)

(%)
(%)



Input
Sample No

(vi)

4 7.3.1

Mode Key

CFBV I
II
ITI

0.77
0.04
0.14
0.04
4.25

2.74
2.03
2.28
5.83
(¥*)  7.00 (**)

0.15
0.06
0.32
-1.38
-0.68

Let the number of sequences classified as non-random by

Frequency test be nF

Let the number of sequences classified as non-random by
Serial tést be nS

Let the number of sequences classified as non-random by

Runs test be nR

Key

I
I1
ITT

I
~
o
1o

B

S DWW @

.ns

&
10
7
6
6

Key Input Sample Mode

1 (ii) ECB
(ii) CBCP
(v) CFB
(v) CBCP
(vi) ECB
(vi) CBC
(vi) CBCP

A-64

H W A %

Tests which indicate non-

randomness
F,R
F, S, R
F, S
P, S
F, S, R
¥, S
F, 5, R



Key Input Sample Mode Tests which indicate non-

randomness
II (1) CFB F, S
(ii) ECB S, R
(iidi) ECB S, R
(iv) ECB F, S
(v) CBCP F, S
(vi) . ECB S, R
(vi) CBCP S, R
III (1) ECB F, S
(ii) ECB F, S, R
(iii) ECB F, S, R
(iv) ECB S, R
(v) ECB F,
(vi) ECB F, S, R
Iv (1) ECB S, R
(1) CFB F, S
(ii) ECB S, R
(iii) CFB S, R
(v) ECB S, R
(vi) ECB F, S, R
v (i) CBC P, S
(ii) ECB F, S
(vi) ECB F, S, R
(vi) CFBV F, S

A 7.4  Autocorrelation graphé (See pages A-65a to A-65f)

A Z.g.l Autocorrelation test : a measure of randomness

Let M be equal to the number of points which lie beyond the
5% significance level calculated using normal approximation

(section 6.2.4) Total number of points = 400.

Rey Input Sample Mode /400

I _ (i) ECB 76/400
CFB 14/400
CBC 21/400
CBCP 18/400
CFBV 15/400

(Continued on page A-66)
A=65 -
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Key Input Sample Mode M/ 400

I (iii) ECB 65/400
CFB 17/400
CBC 13/400
CECP 10/400
CFBV 21/400
v (i) ECB 76/400
CFB 10/400
CBC 18/400
CBCP 37/400
CFBV 29/400
(iii) ECB 77/400
CFB 17/400
CBC 20/400
CBCP 22/400
CFBV 21/400
A 7.3 Results of Frequency, Serial and Runs tests on

5% Significant levels : Freguency (F) test

(a) Plaintext
Key

Round No.
1

2

3

4

p,

6

[

8

9

10

14.06
0.06
3.06
2.25
0.25
0.06
0.25
0.06
0.00
1.56

: 3.84
Serial (s) test : 5.99
Runs (R) test : 1.96
FFFFFFFFFFFFFFFF (hex)
1F1P1F1FOEOEOEQE (hex) - ('Weak')
S R
30.80 -2.91
2.40 0.51
6.01 0.94
4.72 0.29
2.40 0.03
2.40 0.51
2.15 -0.22
3.41 -1.25
2.78 -1.01
4.08 -0.31
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Round No.

11
12
13
14
15
16

Ciphertext
(v)

Round No.

W @ -~ O AW N

o e
N o H O

=t
N

14
15
16

Ciphertext

(c)

Round No.

Wi B W N

F

1.00
0.25
0.00
3.06
2.25
0.06

0.06

Plaintext

Key
F

18.06
0.00
1.56
2.25
1.00
0.25
0.56
0.56
0.25
0.06
0.25
0.06
0.06
0.25
0.25
0.00

0.25

Plaintext
Key

10.56
0.25
0.56
1.56
1.56

S

3,31
3.16
2.02
5.99
4.71
2.02

2.15

.79
.00
-0.39
=-0.75
0.01

R
0.13
0
0

0.01

FFFFFFFFFFFFFFFF  (hex)
85CDCB1C9BD0461A (hex)

A-67

S

46.26 . -

2.02
7.88
4.72
3.31
2.27
2.92
2.78
2.40
2.40
3.16
2.02
2.15
3.42
3.42
2.02

6.72

R

-4.23
=-0.25
2.27
1.08
0.1%
-0.47
~0.44
-0.18
0.03
0.51
0.79
0.01
0.01
1.04
1.04
0.00

2.06

FFFFFFFFFFFFFFFE (hex)
3131313131313131 (hex)

S

27.31
2.27
3.67
4.70

10.93

-3.25
-0.47
1.09
0.98
-2.64



Round No.

15
16

Ciphertext

(a) Plaintext
Key

Round No.

[}

ACe N ¢ B A BN (NN I R L

L
W N = O

14
15
16

Ciphertext

0.06 -

0.56
4.00
5.06
3.06
1.56
2.25
1.56
.00
1.56
2.25

2.25

e

1.56

0.25
0.25
2.25
1.00
1.00
0.56
0.06
0.56
2.25
0.25
3.06
0.25
0.25
0.00
1.56

1.56

S

4.69
3.17
5.63
7.95
4.74
4.07
5.98
5.21
6.59
6.61
4.72

4.34

016319E1C3C04780
31313131313131351

4.3%2

2.27
2.53
5.09
2.79
4.06
3.55
2.02
2.78
4.34
2.78
4.72
3.42
2.27
3.29
3.43

4.07

A-68

(hex)
(hex)

-1.76
0.83
0.54

-0.68
0.14
0.46

-1.01

-1.35
=2.27
-1.61

0.29

_9-49

-0.58

-0.47
0.54
-0.49
0.13
1.15
0.83
7.88
-0.18
-0.49
-0.73
0.41
-1.23
-0.47
1.01
-0.31

0.46




Appendix 8
File Security : Cipher Block Chaining Program §C§C)

Enter name of file to be

BEncrypted or Decrypted

J

Feteh file from diskette

D

<i_ Select Encryption (E) or Decryption (D;ﬁ:::>_9__2

B

Y

Enter secret key and check/’

Correct its parity

At 4

Determine whether File is .

Applesoft or Integer Basic

\ 4

Load corresponding End of

FPile pointer positions

A 4

Generate 8 pseudo random

characters to form the

Initialization Vector

Yes
< End of File'.} > 1

No

A-69




8

\J

Call SUBS

N

1

Call SUB6

)

Automatic Transfer
of BEncrypted File onto
diskette under the file

name provided by the

user

STOP
2

{

Determine whether the file
is Applesoft or Integer Basic
and load appropriate

Bnd of Pile pointer positions

Y

FPetch Initialization Vector from
end of file

_4(

End of PFile? ~ Yes, 3

No

WV

Call SUBT

N

Initialization Vector = Cipher Block

N

A-70




3

|

Modify the pointer locations
to allow for LIST command

A 4

Return to appropriate Basic
prompt signal

SUBS

J

COUNT1 0

N

( COUNTL

5

YTes .
8?> ;

No

N

Exclusive=-or Initialization
Vector byte with file data
byte

No Display
<<:— Check DIR Status flag ERROR Message

Yes
N

Input the Exclusive-ored
result into the Data
Security Device

Increment COUNT1 taking
into acecount of page
boundary crossing

A-71




5

L

Resst pointers to allow storage
of encrypted file on top of the
original plain file

——1-“3—( Check DOR

\

Read the output from the
Data Security Device and
store the putput back in
the same place in memory

Y

Increment COUNT2 taking into
account of page boundary
crossing .

SUB6

1

Generate 8 bytes of
pseudorandom characters

N

Fill the last block by
padding it with pseudorandom

characters

6 -

A-72



10

6
hd

Encrypt the padded block
and store it back in the
memory

Record the positions of

pointers
¥

Return

N/

> comr 3 = g7 2 Yes

\Wo

No . Display
<:TkCheck DIR Status ERROR MESSAGE

iee

Input a data byte
from Cipher File to
Data Security Device

Increment CQUNT3 taking
into account of page
boundary crossing

€

A
COUNT4 = O
e Yes
N COUNT4 = 87 5
fe
11

A-73

Return




!

"l

L <

Check DOR Status >

N/ Yes

Read the data bytes from

the Data Security Device

and Exclusive-or it with

the Initialization Vector to
produce the original plain
data

Store the decrypted data
bytes back in the same
memory locations as the
Cipher data

10

Y

Increment COUNT4 taking
into account of page boundary
crossing

A-74




wn
Q
o
o

L1l

L3

L4

L2

JSR FILESECR
LDA @ 00
STA 06
LDA @ 60
STA o7
JSR FILENAME
JSR LOAD
JSR ENCDEC
JSR DSD
LDA FC
CMP @ 00
BEQ 1Ll
JMP L2
LDA AAB6
BEQ L3
LDA 69
STA 1B
LDA 64
STA 1€
JMP L4
ILDA CA
STA 1B
LDA CB
STA 1C
JSR SUB5
JSR SUB6
JSR FILETRANSFER
LDA AAB6
BEQ L5
LDA OTFE
STA 1B

Comments

Displays 'File Security System'.

Locations 6000 to 6007 contain -

the Initiaglization Vector.

Displays 'Enter Filename Please'.
Loads file into system memory
Displays 'Encrypt (E) or Decrypt (D)'.
Initialiies the Data Security

Device and requests and stores the
secret key in the KEY Register

of the device.

Same subroutine as the one given

in Appendix 2.

Ll - BEncryption.
L2 - Decryption
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STA 69

LbaA O7FF
STA 1C
STA 6A
JMP L6
L5 LDA 9600
CMP FF
BNE L7
LDA 00
STA 1B
LDA 9601
TAX
INX
STX 1C
JMP L6
L7 TAX
INX
STX 1B
LDA 9601
STA iC
L6 JS8R SUBY

JSR PROMPT

A 8.2.2 Subroutines

Some of the subroutines used by this program are the
same as the ones used b& the Block Encryption Program in
Appendix 2. (for instance, subroutine DSD). Three
additional subroutines namely a merged version of subroutines
SUB5 and SUB7, SUB6 and FILETRANSFER are given in this section.

Merged SUBS5 and SUBT7 IDY @ 00

$22 LDX @ 00
86 LDA 1B
STA FC
LDA 19
CMP FC
ENE S1
LDA 1C

A-76




Sl

52

S3

5S4

S5

519

S10

STA

CMP
BNE
RTS

CPX
BEQ
LDA

BNE
JMP
LDA
CMP
BEQ

LDA
EGR

LDA
STA

STA
INX
JSR

JSR

LDA
BEQ
LDA
CMP
BEQ
INC
RTS

FC
la
FC
S1

@ 08

519
COoA3

@ 40

s2
FFr2D
o8

@ 00

3
sS4
(19),Y
6000,X
S5

(19),Y
6010,X

CoAOQ

S10
sSé

518
522

AAB6
57
19

@ FF

S8
19

A-77




58

57

89

518

514

513

516

515

LDA
STA
INC
RTS

LDA
CMP
BEQ
DEC
RTS

LDA
STA
DEC
RTS

CPX
BEQ
LDA
BEQ
LDA
CMP
BEQ
DEC
JMP

LDA
STA
DEC

LDA
CMP
BEQ
INC

LDA
STA
INC

DEX

19
1A

19

59
19

19
14

S12
AAB6
S13
19

514
19
S15

19
1A
515

19

516
19
515

19
1A

S18

A~78




SUB6

512

521

523

524

520

S26

825

LDX

CPX
BNE
RTS

LDA
BPL
LDa
CMP
BEQ
LDA
EOR
STA
LDA
STA

LpA
STA
STA

INX
JSR

LDA
STA
CPX
BEQ

CPX
BEQ
LDA
EOR
STA
LDA
BNE
INC

JSR
INX
DEC

@ 00

@ 08
823

COA3
523
08

524
coA2
6000, X
(19),Y
6010, X
6000, X

520

COA2
(19),Y
6000, X

510
521

@ 00

FC

@ 00

523

@ 08

s24
(ID),Y
6000,X
COAO
AAB6
s25
FC

510

1D
S26
A-79




524

523

527

529

530

528

FILETRANSFER

JBR

LDA
BEQ
LDA
STA
LDA
STA

LDA
CMP
BNE

STA
DEC

DEC

LDA
STA
LDA
STA
LDA
STA

RTS

JSR
JSR
CLD
LDA
STA
LDA
STA
LDA
STA
LDA
BEQ
LDA
STA
LpA

518

AABG
527
19
OTFE
1A
O7FF
528

19
529

19
1A
8530

19

FC
(19),Y
19
9600

1A
9601

FEI3
FE89

@ 30
AASF

03
AL64
8 09
AA65
AABG

S31
@ FE
AAT2
@ 07

A-80



532

531

STA
SEC
LDA
SBC
S5TA
LDA
SBC

STA
LDA
STA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
JSBR
JSR
JSR
JSR
JSR

LDA
STA
LDA
STA
SEC
LDA
SBC
STA
LDA
SBC

AATS

19
FE
®C
1a
@ 07

AA6D
FC
AA6C
FDBE
cé
FDFO
@ ¢9
FDFO
@ c¢
FDFO
@ C5
" FDFO
@ .IF
FDFO
FDEBE
FD6A
833
A331
FDBE
03D0

1A
AAT3
19
AAT2

19
70

1A
532

A- 81




833 LDY @ 00

TXA

STA 06

IDX @ Q0
534 LDA @ 00

CMP 06

BEQ L35

LbA 0200,Y

STA AA7H,X

INX

INY

DEC 06

JMP  S34
S35 - CPY @ 15

BEQ S36

LDA @ AOQ

STA AAT7S,Y

INY

JMP S35
S36 RTS
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Appendix 10

Chinese Remainder Theorem

[38 | :

Let my, Doy ee-m, denote r positive integers that are

The Chinese Remainder Theorem can be stated as follows

relatively prime in pairs and let a, 850 ay denote any r
integers. Then the congruences X = a; (mod mi_) i =1, 2,sresr,
have common solutions. Any two solutions are congruent modulo

]ﬁ. - m2 L m.r-
Let us now consider an algorithm to implement the Chinese

Remainder Theorem to compuie a (mod m) where m = m, -« g

Algorithm
1. For i = 1 to r compute Mi = m/mi
2. For i =1tor In::,ompu'i:e Mi_l (mod mj.)
-1
3. Compute a = E a; Mi Mi
1 i=1 )
M~ (mod my )’ 1 <i< T, can be calculated by T

applications of the Buclid's algorithm (Appendix 11). Thus
step 2 requires at most O (r log n) operations where m-—= n.

Computation of 'a' in step 3 requires at most O ( r ) operatioms.
As M, <n, the amount of storage required for M_ and M_-l,

- i i
1.<i<r, is at most 0 ( r log n ).
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Appendix 11

Fuclid's Algorithm

Buclid's algorithm is a rapid method of testing relative
primeness and it can be used to compute inverses modulo m.
In this thesis, the Euclid's algorithm has been frequently
assumed to have been used in determining inverses mcdulo m.
Here the basic algorithm is given. PFor more detailed
treatment refer to l:45-_]

Given positive integers a and b calculate the
greatest common divisor, gcd (a,b) =d and x and ¥y such
that ax 4+ by = 4.

This is carried out using the Division Theorem which

can be stated as

Given integers b=>o and a =>-0 , there exist unique
integers q== o and r, o<=r<P such that a =bdd + r

Now applying the Division Theorem succesgively, it is seen that

a = bag+ T (dividing b into a)
b o= T, % o+ Ty (dividing To dinto D)
T, = T,oqy T (dividing ry into r_ )
::--1 = 1, q, * r5. (ete.)

Tn-2 = Qpo1 * Tn-1 + Tn

1‘“n-l = Q, Tn + 0

where r —— T 4 <Tho ... <r < b

and n 1is the greatest common divisor of a and b. That
is, 4d = r = gcd (a,b)

A-35




The numbers x and y can be calculated as follows. To
begin with, let x = o, u =1 and v = o. Then at

each division step, form

8 &—— X
t & ¥
) x& u - q; 1 X
y<— v - Qo ¥
us<— s
véee t
When the repeated division algorithm ends, d4d = T, and
r, = ax + by.

Let us now sketch a more formal proof.

Theorem : If T is the last non-zero remainder in

Euclid's algorithm for a and b, then r  is the gecd (a,b)

-and T = ax + by for some x and Y.

Proof : If T, is the last non~zero ramainder in Euclid's

algorithm for a and b, then the number of steps in the

algorithm is nil. If n=o0, then b divides a and the

theorem is trivial. If n = 1, +then the Euclid's algorithm

for a and b has the form
a = bq1 + Ty

b + O

1 9
r, is the ged (2,b) and g = a.l + b. (-ql)

Using induction, assume that the theorem is true for N =n-l.
That is, the theorem is true for any two numbers whose Euclid's

algorithm takes n steps. Suppose the Buclid's algorithm

takes n + 1 steps for a and b. If a = bq1 + rl then

the rest of the algorithm for a and b is the Euclid's

algorithm for ry and b. So the Buclid's algorithm takes n

steps for r and b. 1If T, is the last non-zero remainder
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of Buclid's algorithm applied to a and b, it is the last
non-zero remainder for Buclid's algorithm applied to ry
and b. By induction r = is the gcd (v, rl) and T =
bu + v Now a = bg, + r; and hence r_, the ged (b,r)
is also the gecd (a, b). Substituting for r, in
the expression r, = bu + r v givesr = bu + v (a-bqy)
ie, T, = b (u- vql) + a v. Thus the theorem is true
by induction.
To compute inverse of an integer a (mod m) where ged (a,m) = 1,
let b = m. The repeated division algorithm can
then be used to find x and y such that ax +. oy = 4.
Hence ax = d (mod m). As d =1, x is the inverse of
a (mod m). Knuth [%5] shows that inverses (mod m) can be
computed in O (log m) operations. PFurthermore, note that the

factorization of m into primes is not required to determine

the relative primeness and calculate the inverse.
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Appendix 12

X X X X X X X X X X X X X X X X X X X X X
This program calculates the determinant of a given NxN matrix
over G F (2) by reducing the matrix to upper triangular form using
elementary -operations.

X ¥ X X ¥ X X X X X X X X X xXx X X X X X X

INTEGER B(127, 127), TEMP(127), XMl, XM,

+ X, XM2, XM3, XM4, XM5, SIGN
N = 127
READ (1, ) ((B(1,J), J.= 1,N), I =1, N)
L =1
SIGN = 1
K = 2
XML =1
Ll = L
M =3B (L,L)

XM = ABS (XM)

XM = MOD (XM,2)

IF (XM. EQ. 0) GO TO 215
D095 J =1, N

M2 = B (L, J)

ABS (XM2)

MOD (X2, 2)

XM2 /XM '
CONTINUE

DO 141 I =K, N

X=38 (1, L)

X = ABS (X)

X = MOD (X, 2)

IF (X. EQ. 0) GO TO 141
DO 140 J =L, N

xM3 =B (I, J)

M4 = B (L, J)

XM3 = ABS (X3)
XM4 = ABS (X014)
XM3 = MOD (XM3, 2)
XM4 = MOD (XM4, 2)
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B (I, J) = XM3 - XM4 ¥ X
1Fr (B(r,J). EQ. -1) B (1,J) =1

140 CONTINUE
141 CONTINUE
L=L+1
K=K+ 1

XML = XML * XM
1F (L - N) 70, 190, 190

190 XM5 = B (N,N)
XMS = ABS (XM5)
M5 = MOD (XM5, 2)

M = XM1 ¥ XM5
1 = XM1 * SIGN

211 WRITE (1, 210) xn
210 FORMAT (1X, 'DETERMINANT = ' , Ii0 )
STOP

215 Ll = L1 + 1
IF (Ll1. EQ. 128) GO TO 212
B (11, L)
ABS (XM)
MOD (XM, 2)
(XM.EQ.0) GO TO 215
DO 96 J = L, N
TEMP (J) = B(L,J)
B (L,J) = B(L1l, J)
B (11,J) = TEMP (J)
96 CONTINUE
SIGN = (-1) * SIGN
GO TO 214
212 XML = 0
WRITE (1,813)
813 FORMAT (1X, 'MATRIX IS SINGULAR')
GO TO 211

HEEY

END
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Appendix 13

¥ x ¥ X X X ¥ X X ¥ X ¥ X X X X X X X X X X
This program is used to encrypt and decrypt matrix messages
using the extended RSA matrix system. Exponentiation of the
matrix message is performed using the square and multiply
technique.

¥ X X xX¥ ¥ ¥ X X X X X X X ¥ ¥ X X X X 2% X X

INTEGER M(3,3), C(3,3), 2(3,3), U(3,3), ¥v(3,3), X(100), EXF
REAL Q

N=3

WRITE (1,1)

FORMAT (1 H, 'INPUT THE MESSAGE/CIPHER MATRIX PLEASE')
READ (1,%*) ((M(1,J), J =1, N), I =1, N)

WRITE (1,2)

FORMAT (1 H, 'ENTER THE ENCRYPTING/DECRYPTING
EXPONENT PLEASE')
READ (1,%*) EXP '

Initialize the C matrix to identity matrix

D03 I=1, N
D03 J=1, N
c (1,7) =0
c (1,I) =1

Convert EXP to a k-bit binary vector (K==100)
DO 4 L1 = 1, 100

Q = EXP/?2
IR = EXP - INT (Q) * 2
L2 = 101 - L1
X (L2) = IR
EXP = INT (Q)
CONTINUE
Raise the matrix M to the power EXP
II = 100

IF (X(II) .EQ.0) Go to 5
CALL MULT (M, C, Z)
D06I =1, N

DO6J =1, N
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c(1,J) = 2 (1,J)
IF (IT.EQ.1l) GO TO 7
CALL MULT (M, M, 2)
DO 8 I =1, N

DO 8 J =1, N

M (1,J) z (1,J)
II = II -1

GO TC 9

1]

WRITE (1, 10)

FORMAT (1H, 'THE CIPHER/MESSAGE MATRIX IS')
wrITE (1, 11) ((m(1,J), J =1, N), I =1, N)
FORMAT (1H, 3 (I6, 2X))

STOP

END

The subroutine MULT multiplies the matrix U by matrix V
Over Z/mZ where m is the modulus of the public key

system. In this case m = 299.

SUBROUTINE MULT (U, V, Z)
INTEGER U (3,3), V(3,3), Z(3,3)

DO 12 I1 =1, N
DO 12 J1 =1, N
z (11, J1) = ©

DO 12 X1 =1, N

IP = 2 (11,J1) + U (I1, K1) * v (K1, J1)
z (11, J1) = MOD (IP, 299)

CONTINUE

RETURN

END.

A-91



o0 060 0 0

Appendix 14

X X

This program is used to encrypt and decrypt polynomial

X X

X X X X X X X X X X X X X x

messages using the extended RSA polynomial system.

Exponentiation of the polynomial message is performed using

the square and multiply technigue.

X X

X X

X X X X X X X X X X X b9 X X

INTEGER M(4), V(4), 2(4), EXP, X(100)

REAL @

N =4

WRITE {(1,1)

FORMAT (1H, 'INPUT THE MESSAGE/CIPHER
POLYNOMIAL PLEASE')

READ (1,*) (M(J), J = 1, N)

WRITE (1,2)

FORMAT (1 H, 'ENTER THE ENCRYPTING/

' DECRYPTING EXPONENT PLEASE')

READ (1,%*) EXP

Initialize the V polynomial to identity vector.

D03 II =1, N
v (I1) = 0
v (1) =1

Convert EXP to a K-bit binary vector (K==100)

Raise

D0 4 Ll =1, 100
Q@ = EXp/2

IR = EXP - INT(Q) * 2

L2 =10l - L1

X(L2) = IR

EXP = INT(Q)

CONTINUE

the polynomial M to the power EXP
II = 100

IF (X (II). EQ.C) GO T0 5

CALL MULT (M, V, 2)

DO 6I=1, N
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10

11

N0 0 0Do0 000

12

vV (I} =2 (I)

1F (II.EQ.1l) GO T0 7
CALL MULT (M, M, 2Z)
70 8I =1, N

M{(I) =2 (1)

II = II -1

GO TO 9

WRITE (1, 10)

FORMAT (1 H, 'THE CIPHER/MESSAGE POLYNOMIAL 1S')
WRITE (1, 11) (M (J), J =1, N)

FORMAT (1H, 4 (16, 2X))

STOP

END

The subroutine multiplies the polynomial U by polynomial V

over Z/mZ where m is the modulus of the public key

system.

The product polynomial is reduced modulo an

irreducible polynomial. In this subroutine, the-irreducible

polynomial is f (x) = x* * 4 + x**%2 + 1 and

m is equal to 35

z(1)
z(2)
z(3)
z(4)

]

SUBROUTINE MULT (U, V, ) .

INTEGER U (4), V(4), z(4)
U(1) * v(1) - U(4) * v(2) - U(3) * V(3)-U(2)*v(4)+U0(4)*v(4)
U(2)*v(1)+0(0)*v(2)-U(4)*V(3) - U(3)*V(4)
U(3)*V(1)+0(2)*v(2)+T(1)*V(3)-0(4)*v(2)-0(3)*V(3)-0(2)*v(4)
T(4)*V(1)+U(3)*v(2)+U(2)*V(3)+U(1)*V(4)-0(4)*v(3) -U(3)*V(4)

DO 12 I =1, N

IP = Z(I)

z(1) = MoD (IP, 35)

CONTINUE '

STOP

END
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Appendix 15

17)

X X X ¥ X X X X X X X x X X X X x X X X

This program is used to calculate the cycle lengths in

GF (2**7) for a given secret exponent key when the system

base polynomial, evaluated as a binary vector, is wvaried
from 2 to 127 . The generator irreducible polynomial used in
the system is x * * 7 + x + 1.

X ¥ X X X X X X X X X X X X X X X X X X X

INTEGER M(7,7), S(7,7), U(T), V(7), 21(7), X(7),
TEMP(7)
REAL Q, QU

-

Read the multiplication matrix (M) and square matrix (S)
from the data file MITDATA
READ (5, *) ((s(1,J), J
READ (5, *) ((mM(1,J), J

1)7)' I
1,7), I

1,7)
1,7)

WRITE (1,1)
FORMAT (1H, 'INPUT THE BASE AND SECRET KEY PLEASE')
READ (1,%) BASE, KEY
BASE 1 = BASE
Convert BASE and KEY to 7-bit binary vectors.
DO 2 Ll =1, 7

Q = BASE/2
Ql = KEY/2
IR = BASE - INT (Q) * 2

IRl = KEY -~ INT (Ql) * 2
L2 =8 - L1

U (L2) = IR

X (L2) = IRl

BASE = INT (Q)

KEY = INT (Ql)

CONTINUE

Store the BASE in temporary vector TEMP
DO 3 I =1, 7
TEMP (I) = U (I)
CONTINUE

Il
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@ Initialize the V - vector to 1.
DO 4 I =1, 6

v (1) =
4 v(7) =1
¢ Compute the cycle length for a given base.
ICL =1
I=1717
9 1F (X (I).EQ.0) GO TO 5
cALL muLT (U, V, M)
D0 6 II =1, 7
U (II) = TEMP (II)
6 CONTINUE
5 1F (I.EQ.1) GO T0 7
CALL SQUARE (U, S)
DO 8 II =1, 7
TPEMP (II) = U (II)
8 CONTINUE
I=1-1
GO TO 9

DO 51 JJ =1, 7
CHECK (IC, JJ) = V(JJ)
51 CONTINUE |
ICL = ICL -1
1F (ICL .EQ. 0O) GO TO 56
DO 521 II =1, IC
DO 52 IJ =1, 7
1F (v(JJ) .EQ. CHECK (II, JJ))FLAG
1F (v(JJ) .NE. CHECK (II, JJ))FLAG
52 CONTINUE
1F (FLAG.EQ.1) GO TO 53
521 CONTINUE
56 DO 54 L =1, 7

It 1]
o -

X (L) = v(L)
U (L) = TEMP1 (L)
54 CONTINUE

ICL = ICL + 2
1F (ICL.EQ. 350) GO TO 55
GO TO 50
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53

400

25

402
502

204

503

ICCL = ICL + 1

WRITE (6,400) ICCL

FORMAT (1H, 'THE BASE IS =', 2 x, 7 (I4, 1X))
GO TO 502

ICL = ICL -1

WRITE (6,402) 1€, (U(L), L = 1,7)

FORMAT (1H, 'MAXIMUM CYCLE', I4, 2X, 7 (I4,1X))
BASE = BASEl + 1

BASEl = BASE

IF (BASE .EQ.128) GO TO 503

WRITE (6,504)

FORMAT (' % % % % % % % % % % % ¥ % % V)

GO TO 501 '

STOP

END

¢ The subroutine MULT multiplies the polynomial U by the

¢ polynomial V over GF (2 * * 7) using the irreducible

¢ trinomial x ¥ * 7 + x + 1

12

20

14
13

16

SUBROU’TINE‘ MoLT (U, v, M)
INTEGER P(7), P1{(7), U(7), P2(7), v(7), M(7,7)

D0 12 I = 1,7
P(I)=0

1J =7

IF (v(1J).EQ.0) GO TO 13
DO 14 I =1,7

P (1) = U(1) + P(I)

N = P(I)

N1 = MOD (N,2)

P (I) = M

CONTINUE

DO 15K = 1,7

DO 16 1 =1,7

P1 (I) = (1) * M (I,K)
CONTINUE

P2 (K) = 0O

D0 17 I =1,7

P2 (K) = P2(K) + P1 (I)
N = P2(K)

N1 = MOD (N,2)
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P2(K) = N1

17 CONTINUE
15 CONTINUE
DO 18 L = 1,7
18 (L) = P2(L)
1F (IJ.EQ.1) GO TO 19
IJ = 1IJ -1
GO TO 20
19 D0 21 L = 1,7
21 v (L) = P (L)
RETURN
END

e _The subroutine SQUARE squares the polynomial U over
¢ GF (2 * * 7) using the irreducible trinomial X * * 7 + X + 1.

SUBROUTINE SQUARE (U, S)
INTEGER Z(7), 21(7), U(7), s(7,7)

DO 22 J = 1,7
DO 23 I =1,7

1

z(1) = v(1) * s(1,J)
23 CONTINUE
z1(J) = 0

DO 24 I =1,7

z1 (J) = 21(J) + z(1)
NOM = Z1 (J)

NUML = MOD (NUM, 2)
zl (J) = NUM1

24 CONTINUE
22 CONTINUE
DO 25 I =1,7
25 U(1) = 21(1I)
RETURN
END
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Appendix 16

* * * * *  * * * * * * * * * ¥* *  ® * * * ¥*

This program carries out short cycling attack on the public
key distribution over GF (2%¥%7) with irreducible trinomial

x ¥% 7 + x + 1, The attack conasists of repeated encipherings
to determine the cycle length and the secret key. For a
fixed base polynomial, it calculates the average cycle length
when the secret keys vary over the range 1 to 127.

This procedure is repeated for the 127 possible DEC functions
of the form DEC (b * y) where b is any one of the 127
polynomials over GF (2 **7). Then, the expected cycle length
for the 127 DEC functions is determined.

This program can be run with different system base

polynomials,

The program utilizes the subroutines MULT and SQUARE
given in CYCLE.F77. (Appendix 15).
¥* * * * * * ¥* * ¥* * -* * * ¥ ¥* ¥* * ¥* * *

INTEGER M(7,7), S{7,7), 0(7), ¥(7), 21(7), X(7), IC
teMP1(7), CHECK(350,7),TEMP(7), FLAG, BASE,
rEMP2(7), KEBY, UL(7), V1(7), B(7), DEC, KEY1
DEC1, BASEL _

REAL Q, Q1, QK, SUM, AVR, EXPAVR, EXP

SUM = 0.0
EXP = 0.0
WRITE (1,1)

FORMAT (1H, 'INPUT THE BASE, SECRET KEY
+ AND DEC POLYNOMIAL B PLEASE')
READ (1,*) BASE, KEY, DEC
Convert BASE, KEY and DEC to 7-bit binary vectors.
D0 2 Ll = 1,7

Q = BASE/2

IR = BASE - INT (Q) * 2
L2 = 8 - L1

U (L2) = IR

BASE = INT (Q)
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2 CONTINUE

101 DEC1 = DEC

501 KEYl = KEY
DO 3 Ll =1, 7
QK = KEY/2
Ql = DEC/2

IRK = KEY - INT (QK) *2
IRl = DEC - INT (Q1) %2
L2 = 8 - L1

X(12) = IRK

B (L2) = IRl

KEY = INT (QK)

DEC = INT (Ql)

3 CONTINUE

€ Compute the cycle length ICC for a given KEY and DEC
Ic =1
DO 38 I = 1,7
TEMP1 (I) = U(I)
28 CONTINUE
DO 10 I
v (1)
v (7)
I=17
DO 40 I
TEMP (I)
40 CONTINUE
31 IF (X(I).EQ.0) GO TO 32
CALL MuLT (U, Vv, M)
DO 41 II = 1,7
U (I1) = TEMP (IIX)
41 CONTINUE
32 IF (I.EQ.1l) GO TO 33
CALL SQUARE (U,S)
DO 42 II = 1,7
TEMP (II) = U(II)
42 CONTINUE
I=1-1
GO TO 31

1,6

1l
= O

1,7

U (1)
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33 CALL MULT (B, V, M)
DO 82 I =1,7
B (I) = TEMP2(I)
82 CONTINUE
DO 51 JJ = 1,7
CHECK (IC, JJ) = V(JJ)
51 CONTINUE
IC = IC -1
IF (IC.EQ.0) GO TO 56
DO 521 II =1, IC
DO 52 JJ = 1,7
IF (v(JJ).EQ.CHECK (II,JJ)) FLAG
IF (v(JJ).NE.CHECK (II,JJ)) FLAG
IF (FLAG.EQ.O0) GO TO 56

Il

52 CONTINUE

IF (FLAG.EQ.1) GO TO 53
521 CONTINUE
56 DO 54 L = 1,7

X (L) = v(L)
7(L) = TEMP1(L)

54 CONTINUE
IC = IC + 2
IF (IC «EQ.350) GO TO 55
GO to 50

53 ICC = IC + 1

DO 499 III =1, 7

U (III) = TEMP1 (III)
499 CONTINUE

SUM = SUM + ICC -1

GO TO 502

SUM = SUM + IC -1

¢ Increment the KEY by 1 and repeat the process.
502 KEY = KEY1 + 1

KEY1l = KEY

IF (KEY.EQ.128) GO TO 503

GC TO 501
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¢ When all the 127 possible values for the KEY have been

o

compute the average cycle length for a given DEC

¢ and a given base polynomial.

503

477

504

AVR = SUM/127

WRITE (1,477) SUM, AVR

FORMAT (1X, 'SOM =', Fl12.5, 3X, 'AVR = ', F10.5)
WRITE (1,504)

FORMAT (' F OO X K K K KX K X X F ¥ *')

¢ Increment the DEC value by 1 and repeat the process of
¢ finding different cycle lengths when the KEY takes all the
€ 127 possible values

DEC = DEC1 + 1

DEC1 = DEC

KEY =1

KEYl = KEY

SUM = 0.0

EXP = EXP + AVR

IF (DEC.EQ.128) GO TO 102
GO T0O 101

¢ VWhen the 127 DEC values of the special form are tried,

c

compute the expected cycle length for the given base

¢ polynomial.

102

103

EXPAVR = EXp/127

WRITE (1,103) EXPAVR

FORMAT (1X, 'THE EXPECTED CYCLE LENGTH IS' F10.5)
STOP

END
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Appendix 17

Results of Cycling in PKD System over GF ( 2 * » T)

A1l7.1 Cycle lengths in GF (2 * * 7) for eeveral values of Secret Key, x

Base a X = 2 x=4 x=15 x =32 x =64 x = 67 x =68 x=173 x=105 x =115
2 74 74 74 74 11 74 74 74 42 . 42
3 118 118 118 118 2 118 118 118 118 118
4 27 53 53 27 53 53 53 27 27 27
5 59 63 59 59 59 63 59 59 63 59
6 75 75 875 75 75 75 75 11 38
7 63 13 9 63 9 63 20 63 13 9
8 11 45 65 45 + 65 6 65 11 65 65
9 1 116 116 116 116 116 116 1 116 116
10 43 3 75 75 43 75 43 43 43 3
11 12 92 10 92 10 12 2 127' 12 92
12 53 12 34 4 34 24 4 . 53 12 12
13 101 8 101 101 13 101 101 101 1 101
14 113 113 113 113 113 113 113 113 113 12
15 47 54 54 47 14 47 54 47 47 54

16 68 9 68 14 9 33 33 68 68 33
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Bage =a
17
18
19
20

- 21

22 |

23

. 24

25
26
27
28

29 -

30

28

40
106
22
107
52
91
25

18

. 10

58
80

111

49

27

106

30
107
62
91
45
48
50
39
80
111
49
27

x =15
28
40

}Oé
15

107
11
91
45
51
36
58 -
80

111
16
58

7(=32

89
40

106

30
107
62
91
25

18

.20

39

43
111

16
27

x ; 64

28
14
106
50
107
62
91
25
51
26

56

43
111
49
17

x =67
28

16

106
17

107

61

45 .

51
26

58

43

111

46

X = 68

89
11

17
107
62
91
50
51
50
58
80
111
51
58

x =13
28
10

107
22

107
52
9 -
25
18
10
58
80

111
49
27

x = 105
89
40
106

107
52
a -
25
18
50 .
58
80

111

27

X = 115

89

. 14

106

22

62
91
50.
48
50

80
111

51




(0] -4

Base a
32
33
34
35

36
.31

38
39
40
41
42
43
44
45
46
47

T2
66
116
33
92
18
127
50
109
40
o7
30
20
42
87
61

X =4
19
24

116

92
18
127
50
109
69
57
79
44
42 .
87

12

X = 15

72

116
56
92
69

127
50

109
69
11
30
20
63
56

72
66
116
56
92
69
127

50

10

69
50
80
44
63
87

24

32

x = 64
I
66
116
56
92
33
127
37
109
40

57

26
63
36

24

X =

72

67

21

116

34

33
127
50
109
69
50
30
44
63
87

61

x = 68
72
21

p
56
21
69

127
50

109
69
51
19
29
63
87
61

x = 73
72
66

116
33
92
18
127
50

109
40
57
30
20
42
87
61

x = 105
72
5
116
56
92 -
69
127
50
109
69
50
30
44
63
87

12

X = 115
T2
66

116
34
92
33

127 -
14

109.
69
50
79
14
63
36
61




SOT-v

Base a x=2 x=4 x=15 x= 32 X =64 xe=6]7] xXx=268 x=T7T3 x=105 x =115

48 91 51 91 91 : 26' 91 911 91 26 26

49 78 3. 18 78 78 78 76 78 78 78

50 104‘ 18’ 18 4 104 18 104 104 104 104

51 72 72 18 48, 72 12 8 72 48 72
52 2 72 21 13, - 13 21 13- 2 72 72

53 82 15 82 18° az 18 | 82. 82 15 82

54 51 2 52 52 52 52 2 31 52 52
55 57 9 21 8 52 21

56 21 21 21 12 T2 72

57 40 0 49 49 4 19

58 14 49 63 14 49 63

59 21 2 31 38 38

60 17 17 13 26. 5 31

61 ' 12 47 22 37 41 87

62 5. 5 4 45 66 66

63 126 126 126 126 126 126
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Base a
64
65
66
67

68

69
70
T1
T2
73
74
75
76
71
78
79

X = 2

1
60

75
16
97
12
5
118
88
104
il?
103
120
84

28

e

33
54

16 -

87
97
108
79
114
88
104
117
103
120
84
28

28

x = 15

46
58
75
87
97

108
10

118
88

104

117
22

120
84
1

.28

X = 32

46

58 -

16

87

917.

108

118

88.

104
117
103
120
84
77
91

X = 64

33
58
75
16
15
104

19

24
104
117
103
120

84

16

91

X = 67
46 -

58
16
87
97
108

79
118

88
104
117
103
120

84

77

91

x = 68
7
60

15

6
27
108

79
118

68

104

x

T
60
15
16

97
12

13

5

118

88

104

x = 105
10
60
16
87
91

108

118
es

104

¥ = 115
12

60

97
108
79
118

88

104
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Base

80
81
82

83

‘84

85
86

87

88
89
90
91
92
23
94
95

X a 2

92
121

26
79

21

79
26

81

93
121
92
80
30
118

43

X a4

"8
121
40
33
79
46
81
93
121
92
80
79
118
47
14

X = 19

92
121
29
79
21
79
46
81

93,

121
92
13

47
47

X = 32

18

121

66

40
64

31
46

81
93
121

15

80

19
118

47.

47

x = 64

92
121
66
40
33
79

51

34
19
121
92
80

79

43
43

X = 67

9
121

26 ,

79

33
11

46

93
121
92
31
30
118
41
43

x=-68

92

121

79
64
11
51
54
93
121
92
31
30
118
14
14

x =13
92
121
26
79
21
19
26
81
93
121
92
80
30

118

43

X = 105
1
121
66
19
21

19

8l

93

121

92
80

118
14
47

x = 115
92
121
29
10
64
19
46
8l
93
121
92
31
19
118
43
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BOT—V

Base a
96

97

98

99

100

101

102

© 103

104
105
106
107
108
109
110

111

17
23
97
15
18
84
34
125
24
48
24
24
60
96
108

57

X = 4

71
23
26

111

90.

84
40
125
24
27
49

40

44

18
108

o7

x =15

11
27
97
11
90
35
25
125
24
46
49
63
44
96
108

61

21

23

97 .

111

90

25 .

125
24
48

49

63
60
96
108

o1

111
90
84
40
125
95
48

49
63

44
96
108
61

21
23
97
111
15
84

25

125
95
48
23
63
60
18

108

x = 68

7
66
26

111
15
84
25

125
95
48
54
40
44
96

108
61

x = 73

17
23
917
15
18
84
34
125
24
48
54
24
60
96
108
57

X = 105

21
66

4
111
186

84

125
95
48
49
40

96

o7

x = 115
71
66
97

111
90
395 -
40

125
24
48
23
63

96

61




601~V

Base &
112
113
114

115

116

117
118
119
120
121
122
123
124
125
126

127

123
96 -
27 .

104
66 .
13

115
35

126
52
82

15

110

41
90
123
96
25
104
66
97.
115

126

82
66
75

110

x = 15
41
90

123

18
104
66
13»
115
35
126
26
82
66

75
110

X = 32
22

3
123

96

27
2 '
15
13
115
19 .
126
52
82
66
75
110

x = 64
41
90 .
123

23,

66
97
115
22
126
15
82

13

110

x = 67
42
90
123
96
1
104

66 .

x = 68

41

28
123

96

27
104

66

x = 73

42

¥
123

96

27
104

66

x = 105
42
90
123
96
b
104

15

X = 115
16
28

124

25
104

08




A.17.2 Expected c¢ycle lengths for the System Base a = 38,
using DEC (b * y)
Polynomial b Expected
(evaluated as Cycle length

a binary vector)

WO 0 =3 0N BRWW N

W W WD N RN NRNERE P R R
N H O W D= oM WNHEOW®N oW W N O

127.00 (Refer to Section A 17.1,
38.87 a = 38 cycle length = 127)
54.48
66.39
94.67
43.80
35.87
22.75
47.87

121.11
44.50
87.55
27.17
29.77

113.61
39.87
43.36
64.50

103.19
49.77

109.85
66.54
53.09

127.00

109.95
68.83
76.54
35.76
52.15
51.93
47.80
99.28

A=110




33
>4
35
36
57
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
29
60
61
62
63
64
65
66
67
68
69
70

73.16
53.17
29.39
46.40
121.11
45.44
53.02
71.49
52.94
64.42
70.09
60.95
127.00
57.27
45.50
44.00
123.05
43.02
75.60
27.30
54.8T
29.71
35.60
38.28
64.00
35.71
67.99
48.39
46.89
54.40
T77.71
77.71
69.69
61.60
82.09
49.79
60.18
78.09
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T1
72
73
74
75
76
7
T8
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

62.91
59.52
108.20
115.38
36.04
85.96
63.08
65.25
119.19
54.83
44.69
111.77
53.17
81,11
37.35
43.36
52.97
52.26
42.43
51.00
65.90
67.20
33.47
54.69
77.88
98.20
34.20
38.67

56.65 .

26.26
43.66
60.75
68.02
37.00
60.56
48.98
49.60
106.53
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109 87.68

110 55.31
111 54.35
112 78.11
113 33.91
114 48.41
115 52,91
116 43.87
117 42.75
118 39.53
119 40.97
120 75.69
121 61.03
122 60.71
123 _ 41.87
124 70.98
125 32.64
126 32,24
127 69.25

A.17.3 Average Expected Cycle lengths for several wvglues -

of System Base

System Base Average Expected Cycle Length
8 67.65
15 - 65.44
28 63.28
38 61.16
42 65.59
53 64.16
64 66.41
79 61.91
83. 66.61
90 63.12
98 64.11
104 64.17
117 63.81
124 61.51
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Public Key Distribution Program Listing

A 18.1

Ll

L4

L3

12

Appendix 18

Main Program

LDA
STA
LDA
STA
LDA

BEQ
JMP
Lpa
STA
Lpa
STA
JSR
LDa
JSR

LDA

BNE

LDA
BPL
JSR
Lpa
STA
INX
LDY
CPX
BEQ
LDA
BPL
Lba
JSR
AND

Co51
COAS8

Fa
COAb6

Ll
NOLINK
@ 6E

COAD

COA4
BAUD
COAA
TRANS

COAb

L3

€000

L4
FD6A

COAD

@ 00
@ 00

L5
COAB

COAB
DELAY
@ 01

Comments

Displays NOLINK Error

Sets Baud Rate
Displays 'If wishing to Transmit

enter your user ID and the

receiver's user ID'.
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K2

K3

BEQ
LDA
STA
INY
DEX

LDA
AND
ASL
ASL
ASL
ASL
STA
LDA
STA
LDA
JSR

BEQ
LDA
cMP
BEQ
LDA
STA
JSR

JSR

JSR

JSR

JSR

JSR

K1l
0200,Y
coAC

L2
0202
@ OF

F9
@ 16
COAD
COAB
DELAY
@ 02
K2
COAA
0202
X3
K4
@ 33
COAD
SUB8

SUB10O

S5UB11

A=-115

Stores the public key of B, yB,
in 6100 to 610F

Displays 'Input Secret Key!'
Stores the secret key, in
6200 to 620F.

Forms Kyp =(Y5) ™A in GF(2%*127)
and clears 6200 to 620F. Kpp.
stored in 6000 to 600F.

Stores the common key K,p in the
KEY Register of the Data Security
Device.

Stores the session key, K, 6700
to 6707 in the DATA Register of

the Data Security Device.

IA,



L22

L23

L24

Rl

JSR

INC
JSR

JSR
LDY
LpA
STA
Lpa
JSR

BEQ
LDA
STA
INY
CPY
BEQ

CPY
BEQ

LDA
CMP

BNE
DEY

JSR
JSR
JSR

SUBl12

6700
SUB11

SUB13
@ 00
@ 16
COAD
COAB
DELAY
@ 02
L22
CoAA
6720,Y

@ 08
L23
L22

@ 00
L24

6720,Y

6710,Y
125

L23
SUB14
SUB10
SUB15

Forms Ey,, (Ry) and transmits it
to the receiver B.

Forms EKAB (kg +1) for
authentication purposes and stores
it in 6710 to 671F

Verify received Eg,p (Kg +1)

Load K, into KEY Register of
Data Security Device

Clear all temporary memory locations.

Jump to Block Encryption or

Stream cipher Peedback or

Cipher Block Chaining Program

for DES encrypted data communication.

LDA
STA
LDA
JSR
AND

@ 16
COAD
COAB
DELAY
@ 02
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T3

T2

T1

R2

BEQ
Lpa

ASL
ASL
ASL
ASL
STA
LDX
CPX
BEQ
LDA
JSR
AND
BEQ
LDA
STA
DEX

LDA
STA
JSR
JSR

LDA
BPL
LDA
JSR

BEQ
LpA
STA
JSR

JSR

LDA
STA
LDA

R1
COAA

@ oF

F9

Tl
COAB
DELAY
@ 02

T2
COAA

T3

33
COAD
INPUTKEY

SUB9

COAB
R2
COAB
DELAY
@ 01
R2
FD
CCAC
SUB8

@ 16
COAD
COAA

Stores the secret key of B, XB in
?
6200 to 620F.

Stores the public key of A, YA) in
6100 to 610F.
Forms K, =(yA)xB in GF (2 **127)

and stores it in 6000 to 600F.
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R6

R4

R5

R9

R8

LDY
CPY
BEQ
LDA
JSR
AND
BEQ
LDA
STA
INY
JMP
LDA
STA
JSR

JSH

JSR

LDY
CPrY
BEQ
LDA
EOR
STA
INY

LDA
STA
INC
LDA
STA
JSR
JSR
JSR
LDA
STA
JSR

@ 00
@ 08
R5
COAB
DELAY
@ 02
R4
COAA
6700,Y

R6

CoAl
SUB10O

SUB11

SUB13

@ 00
@ 08
RS
6710,Y
6008,Y
6700,Y

R9

COAD
6700

CoAl
SUB1l1
SUB12
-5UB14

CoAl
SUB10O

Stores the common key KAB in the
KEY Register of the Data Security Device.
Stores the received encrypted session -
key K5 in the DATA Register of the
Data Security Device.

Decrypted K, is stored in 6710

to 671F.

Encrypts Ky .+1 using K,p and
transmits the cipher to the sender A.
Load the session key Eé into the

KEY Register of the Data Security

Device.
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JSR SUBl5

Clear all temporary memory

locations

Jump to Block Encryption

or Cipher Peedback program

for encrypted data communication.

Listings of some important subroutines used by the

main program are given below.

SUB8

52

S1

sS4

S3

Sé

..

LDY
CPY
BEQ
Lpa
STA
STA
INY

RTS

LbY
CPY
BEQ
JSR
STA
JSR
LDA
STA
LDA
STA
STA
INY

LDA
STA
CPY
BEQ

@ 00
@ 10
s1
(F9),Y
6100,Y
6500, Y

52

@ 00
@ 10
53
FDOC
6200,Y
FDFO
4E
6700,Y
@ 00
6000,Y
6400,Y

S4
@ 01
600F
@ 00

S5
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Commentsa
Stores the public key in memory
locations 6100 to 610F and in
6500 to 650F

Stores the secret key in memory
locations 6200 to 620F



SUB10

SUBl1

S5

s7
S9

s10

58

S12

511

JSR
DEY

JSR
RTS

LDA
STA
LDA

BNE

LDY
CPY
BEQ
LDA
JSR
LDA
STA
LDA

BEQ
JMP
INY

RTS
LDY
CPY
BEQ
LDA

BNE
LDA
ECR

STA

RTS

FDFO

S6
FD8B

@ 06
COAl
COA3
@ 10
ST
FF2D
@ 00
@ 08
S8
6000,Y

Stores the common key KAB in

the KEY Register of the Data

Security Device.

PARITY CHECK

FB
COo4AO
COA3
@ 20

510
FFr2D

59

@ 00
@ 08
S11
COA3
@ 40
S12
FF2D
6700,Y
6008,Y
COAO
S13
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Encrypts KS +1 under the

key KAB using the DES

Block Encryption mode



SUBL1>

SUBl4

SUB15

SUBl12

S17

S16

S15

522

523

524

525

S18

519

LDY
CPY
BEQ
Lpa
BPL
LDA
STA
Ny

RTS

DEC
LDY
crY
BEQ

LDA
STA
INY

RTS

LDY
CPY
BEQ
LDA
STA
STA
STA
STA
STA
INY

RTS

LDY

CPY
BEQ

LDA

@ 00

@ 08
S15

COA3
516

COA2
6710,Y

S17

6700
@ 00
@ 08

S23

6700,Y
6000,Y

522

@ 00

@ 10
$25

@ 00

6200,Y

6700,Y

6710,Y

6720,Y

6000,Y

524

@ 00

@ 08
521

COAB

A-121

Stores the encrypted X; +1 under
the key KAB in memory locations
6710 to 671F.

Stores the session key in the
memory locations 6000 to 600F
which is then transferred to the
KEY Register of the Data Security

Device.

Clears all temporary memory
locations used in this PKD program.

Used to encrypt either Kg under
Kyp OF Eg+l under Kpp which

is then transmitted to the other

end.



BPL  S19
LDA COAB
JSR DELAY
AND @ 01
BEQ S19
$20 LDA COA3
~ BPL  S20
LDA COA2
STA COAC
INC
JMP  S18
521 RTS
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Appendix 19

(o] * * * * * * * * * * * * * * ¥* * * ¥* * * ¥*

¢ This program selects elements of the form v = x ¥ ¥ JLL + 1

¢ over GF (2 * * 127) where ILL varies from 1 to 126 and

¢ computes the conjugates v * * 2, v ¥ ¥ 4, ., , . , v ¥ ¥ (2 % %

¢ (127-1))over GF(2). All operations are done modulo

¢ the irreducible polynomial x * ¥ 127 + x + 1. Then it

¢ determines whether these 127 conjugates are linearly

¢ independent by calling the program DETMOD. F77 (Appendix 12).

¢ DETMOD. F77 finds the determinant of the 127 x 127 matrix

¢ formed by the 127 conjugates. If the determinant is not

¢ equal to zero, then the conjugates form a normal basis

¢ over GF (2 * * 127).

c * * * * * * * * * * * * * ¥* * * * * ¥* ¥* *
INTEGER TEMP(127), B(127, 127), v(127), C(127)-
ILL = 1

Choose an element over GF (2 * * 127) of the form
x * * ILL + 1 -

42 D0 1 I =1, 127

1 v(I) =0 ' |
v (TLL) = 1
v(1) =1

¢ Compute the 127 conjugates and form the matrix B
IJ =1
DO 6 IL =1, 127
B (1J, IL) = v(IL)

6 CONTINUE
IJ = IJ +1

100 I=1
¢ (1) = v(1)
D0 21I=1,63
J =64 +1
E=14+1
JI =2 %1

KK =2 I +1
¢ (33) = v(J) _
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L = V(K) + V(J)
¢ (§kx) = MOD (L,2)
2 CONTINUE
D0 3 IK =1, 127
v (IK) = c(IK)
B (1J, IK) = C(IK)
3 CONTINUE
IJ = 1J + 1
IF (IJ.EQ.128) GO TO 110
GO TO 100

¢ PFind the determinant of the matrix B using DETMOD. P77

CALL DETMOD (B, IDET)
WRITE (1,210) ILL, IDET
210 FORMAT (1X, 'DET = ', I10, 2X, 'ILL = ', I5)

¢ If the matrix B is singular over GF(2), increment ILL
¢ by one and repeat the procedure until ILL = 128. If the
¢ matrix B is non-singular stop.
'IF (IDET. EQ. 0) GO TO 810
STOP
810 ILL = ILL + 1
IF (ILL,EQe128) GO TO 221
GO TQ 42
221 STOP
END
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Appendix 21

»* x ¥ ¥ * ¥ * ¥ X X ¥ ¥ K * %* *7* *® ¥ X *x

This program calculates the M-matrix required for implementing

generated by the program FINDNORBAS. F77. Here N = 127.

c

¢

¢ multiplication over GF (2 * * N) using the normal basis

[+

C ¥ X K K X K X Ok K K F K K X K * % %X X % ¥

INTEGER B(127, 127), U(127), v(127), Z(127), X(127, 127),
s(s128, 127), INV(127, 127), X1(127, 127),
FLAG, TEMP(127), T1, T2, T3, T.

COMMON/B1/B
COMMON/B3/S
COMMON/B6/1NV
COMMON/B7/0/V/Z/TEMP
COMMON/B13/X
COMMON/B14/X1

N =127

Nl =N+1
N3 N-1
N2 8128

I

Read the matrix B which contains the 127 conjugates whidh
€ form the normal basis matrix
READ (5, *) ((B(1,J), J =1,N), T = 1,N)
¢ BRead the inverse of matrix B, 1NV.
READ (5, *) ((inv(1,J), J = 1,N), I = 1,N)

¢ Form the composite matrix by multiplying the 127 conjugates
¢ arranged in a column vector with those arranged in a row
¢ vector. Then reduce every element of this composite matrix
¢ modulo X * ¥ 127 + X + 1.

IT =1

IP =1

514 I=1IP
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DO 400 J =1, N
v (J) =3B (1,J)
TEMP(J) = B(I,J)
400 CONTINUE
I=I+1
DO 401 J = 1,N
s (11,J) = B (1,J)

401 CONTINUE

512 DO 402 J =1, N
v(J) = B (1,J)

402 CONTINUE
DO 202 IA = 1,N
z (IA) =0

202 CONTINUE

DO 220 IA = 1,N
IF (v(IA).EQ.0) GO TO 210
DO 204 IB =1, N
1z = Z (IB) + U(IB)
Zz (1B) = Mop (12,2)
204 CONTINUE
210 T = U(127)
T2 = U(1)
T3 = T1 + T2
T = MOD (T3,2)
DO 230 IC = 1, 125
ID = 128 - IC
IE=1IDp -1
U (ID) = U(IE)
230 CONTINUE
U(2) =T
(1) = T
220 CONTINUE
DO 221 JJ = 1,N
U(JJ) = TEMP(JJ)
221 CONTINUE
IT = II + 1
DO 403 J = 1,N
S(I1,J) = 2(J)
403 CONTINUE
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I=1I+1
IF (I.EQ.N1) GO TO 511
GO TO 512

511 CIP = IP + 1
IF (IP.EQ.N) GO TO 513
IT = IT + 1
GO TO 514

513 II = IT + 1
DO 404 J =1, N
s(11,J) = B(3,J)

404 CONTINUE

€ Convert every element of the composite matrix S from
€ canonical basis representation to normal basis

€ representation using . INV matrix,

DO 405 I = 1, N2

DO 406 J = 1,N

o(J) = s (1,J)
406 CONTINUE

DO 407 II = 1,N

IT = 0

DO 408 J = 1,N

IT = IT + U(J) * 1NV(J,II)
IT = MOD (IT,2)

408 CONTINUE
v(II) = IT

407 CONTINUE

DO 409 J = 1,N
S(I,J) = v(J)
409 CONTINUE
405 . CONTINUE

¢ Form the M-Matrix from the composite matrix by choosing

¢ the coefficient of the conjugate v.

I=1
J =1
IT =1

612 X(1,J) = s(11,1)
X1(1,J) = s(11,2)
I=1I+1
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ITI = 1T + 1
IF (I.EQ.N1) GO TO 611
GO TO 612
611 J=J+1
I=1J
IF (J.EQ.N1) GO TO 613
GO TO 612
613 DO 410 I = 1,N
DO 410 J = 1,N
X (1,J) = X(J,1I)
X1 (1,J) = x1 (J,1)
410 CONTINUE

WRITE (6,316)
316 FORMAT (1X, 'THE M-MATRIX IS')
DO 6 IKK = 1, N
WRITE (6,315) (X(IRX,JJJ), JJJ = 1,N

315 FORMAT (1X, 11 (I4, 2X))

6 CONTINUE

¢ Check whether the M-matrix is correct by rotating the

¢ rows one position downward and then shifting the rows

¢ one position right and then comparing this M-matrix with
€ the M-matrix formed by choosing the coefficient of

¢ conjugate v ¥ * 2,

DO 411 J =1, N
TEMP (J) = X(N,J)
411 CONTINUE
DO 412 I = 1, N3
Il = N1 -1
II1 = I1 -1
DO 412 J =1, N
x(11,J) = X(1I11,J)
412 CONTINUE
DO 413 J = 1,N
x(1,J) = TEMP(J)

413 CONTINUE
DO 414 I = 1,N
TEMP (I) = X(I,N)
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414 CONTINUE
DO 415 J = 1, N3
J1 = 128 -J
JJ1 = J1 - 1
DO 415 I =1, N
x(1,J1) = x(1,JJ1)
415 CONTINUE
DO 416 I =1, N
X (1,1) = TEMP (I)
416 CONTINUE
DO 417 I =1, N
DO 417 J =1, N
IP (X(1,J7).EQ.X1(I,J)) GO TO 614

GO TO 615

614 FLAG =1

417 CONTINUE
WRITE (6,310) FLAG

310 FORMAT (1X, 'MATCHING OK; M-MATRIX CORRECT', I5)
STOP -

615 WRITE (6,311) I,J

311 FORMAT (1X, 'NON MATCHING; M-MATRIX WRONG',
15,2X,15)
STOP
END
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Appendix 22

Multiplier Implementation using T-Matrix Approach QT-MATRIX._F77

- oms A am am we emT am am e wm ws em em g s = oam omr o wr A owm omm ewm - —m e s w

F oK K K K X X R R B X F OF K O X R K KK KR KK E R KK R K K.

This program calculates the number of EX-0OR gates required to
implement the T-matrix. It reads the M matrix as input and
forms the T-matrix. Then it determines the number of']'s in
each row of the T-matrix, the number of EX-0R gates required
for each row and the total number of EX-OR gates required for

the whole T-matrix.

D O 00 o 0 a O

¥ ¥ ¥ F ¥ ¥ X F ¥ X X ¥ ¥ X X X K X X X K X X X E X X X X X ¥

INTEGER B(127,127), COUNT, COUNT1l, TOTAL(127), stM(127),
+ NUM, RCOUNT, Z, REM, U(127,127)

REAL ANS

N = 127

¢ Read the M matrix
READ (5,*) ((B(I,J), J =1, N). I =1, N)

€ Form the U-matrix from the M-matrix

DO 10 II =
DO 10JJ =1, N
10 U (I1,JJ) = 0O

DO2I=1, N

IF (I.EQ.N) GO T0O 3
DO 4J=1I+1, N

v (1,J) =B (1,J)

4 CONTINUE
3 IP =1
2 CONTINUE

¢ Count the number of 'l's in each row and store it in
¢ TOTAL array.

DO 500 I =1, N
TOTAL (I) = O
DO 401 J =1, N
1P (0(1,J7).EQ.1) GO TO 402
GO TO 403
402 TOTAL (I) = TOTAL (I) + 1
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403
401
500

¢ Count the number of EX-OR gates required, NUM,

IP =1
CONTINUE
CONTINUE

¢ and store it in SUM array.

600

610

201

200

203

202
601
400

DO 400 I =1, N

NUM = O
RCOUNT = O
COUNT1 = TOTAL (I)

IF (COUNT1.EQ.1) GO TO 600
IF (COUNT1.EQ.O0) GO TO 610
GO TO 201

NUM = 1

GO TO 601

NUM = 0

GO TO 601

ANS = COUNT1/2.0

COUNT = ABS (ANS)

REM = COUNT1-COUNT *2.0
RCOUNT = RCOUNT + REM .
NUM = NUM + COUNT

IF (COUNT.EQ.1l) GO TO 200
COUNT1 = COUNT

GO TO 201

IF (RCOUNT.EQ.l) GO TO 202
IF (RCOUNT.EQ.Q0) GO TO 202
17 (RCOUNT. GT. 1) GO TO 203

STOP

COUNT1 = RCOUNT + 1
RCOUNT = O

GO TO 201

NUM = NUM + RCOUNT
SUM(I) = NUM

CONTINUE

€ Write the number of EX-OR gates required for each row

460

WRITE (6,460) (stM(JJ), JJ = 1, N)
FORMAT (1X, 9(I6, 2X)
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€ Calculate the total number of EX-OR gates for the whole

¢ M matrix and print the resulst.
2 =0

DO 450 II = 1, N
Z =2 + SUM (II)

450 CONTINUE
WRITE (6,461)Z
461 FORMAT (1X, Il0)
STOP
END
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Appendix 23

L S T L *  * * % * * * ¥ * * ¥ ¥

This program counts the number of EX-OR gates required to
implement the M matrix without any optimisation. It reads
the M matrix as input and outputs the total number of 'l's
in each row of the M matrix, the number of EX-OR gates

required for each row and the total number of EX-OR gates

for the whole M matrix.

0o 00600 0600

* * * * * *  * * * * * * * * * ¥* ¥* * * *

INTEGER B(127,127), COUNT, COUNT1l, TOTAL(127),
+ suM(127), NUM, RCOUNT, Z, REM
REAL ANS

N =127

€ Read the M matrix
READ (5, *) ((B(I,J), J =1, N), I =1, N)

¢ Count the number of '1's in each row and store it in TOTAL

¢ array.
DO 500 T =1, N
TOTAL (I) = 0
D0 401 J =1, N
IF (B(I,J).EQ.1) GO TO 402
GO TO 403
402 POTAL (I) = TOTAL (1) + 1
403 IP =1
401 CONTINUE -
500 CONTINUE

¢ Count the number of EX-OR gates required, NUM, for each

¢ row and store it in SUM array.

DO 400 I = 1, N
NUM = O '
RCOUNT = O

COUNT1 = TOTAL (I)
IF (COUNTi.EQ.1l) GO TO 600

GO TO 201
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600 NUM = 1
GO TO 601
201 ANS = COUNT1/2.0
COUNT = ABS (ANS)
REM = COUNT1-COUNT % 2.0
RCOUNT = RCOUNT + REM
NUM = NUM + COUNT
IF (COUNT.EQ.l) GO TO 200
COUNT1 = COUNT
GO TO 201
200 IF (RCOUNT.EQ.1l) GO TO 202
IF (RCOUNT.EQ.O) GO TO 202
IF (RCOUNT.GT.1l) GO TO 203

STOP

203 COUNT1 = RCOUNT + 1 -
RCOUNT = 0
GO TO 201

202 NUM = NUM + RCOUNT

601 SUM (I) = NUM

400 CONTINUE

¢ Write the number of EX-OR gates required for each row

WRITE (6,460) (stM(JJ), JJ = 1, N)
460 FORMAT (1X, 9 (16, 2X))

¢ Calculate the total number of EX-CR gates for the whole
€ M matrix and print the result.
2 =0

DO 450 II =1, N
Z =2 + SUM (II)

450 CONTINUE
WRITE (6,461) Z
461 FORMAT (1X, I10)
| STOP
END
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¢ This program calculates the inverse of a given NxN matrix

¢ over GF(2)

c * * * * * »* * * ¥* * 3* ¥* * ¥* ¥* * ¥* +* * ¥* *

INTEGER B(127,254), TEMP (254), XM, X, XM2, X3,
XM4, XMS, Y, XM6, XM7, XM8, NX, NY, LZ

N = 127
READ (1, *) ((B(I,J), J =1, N). I =1, N)

¢ Form the identity matrix in columns NX to NY and rows -
¢ 1 to N

DO 8L IK=1, N
DO 81 IJ = NX, NY
B (1K, 1J) = ©

81 CONTINUE
DO 80 J = NX, NY
B (1,J) =12
I=1I+1

80 CONTINUE

¢ Compute the inverse matrix by performing elementary row
¢ operations and store the inverse in columns NX to NY and
¢ rTows 1 to N

L=1
K =2

70 Ll = L
M = B(L,L)
XM = ABS (XM)
XM = MOD (XM,2)

IF (XM.EQ.0) GO TO 215
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214 DO 95 J = L, NY
XM2 = B(L,J)
ABS (xM2)
MOD (xM2,2)
XM2 = XM2/XM
95 CONTINUE
DO 141 I = K,N
X =38 (1,L)
X = ABS (X)
X = MOD (X,2)
IF (X.EQ.0) GO TO 141
DO 140 J = L, NY
XM3 = B(I,J)
M4 = B(L,J)
XM3 = ABS (XM3)
XM4 = ABS (XM4)
XM3 = MOD (XM3,2)
M4 = MOD (XM4,2)
- B{(I,J) = XM3 - XM4 * X
17 (B(1I,J).BEQ. -1) B(I,J) =1
140 CONTINUE
141 CONTINUE
’ L=L+1
K=K+ 1
IF (L-N) 70, 190, 190
M = B(L,L)
XM = ABS (XM)
XM = MOD (XM,2)
D0 195 J = L, NY
xmé = B(L,J)
XM6 = ABS (XM6)
XM6 = MOD (XM6,2)
M6 = XM6/XM
195 CONTINUE |
L =N
235 L1z =L -1
DO 291 K =1, LZ
I=L-K '
Y =38 (1I,L)
Y = ABS (Y)

3

It il

1
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Y = MoDp (Y,2)
IF (Y.EQ.0) GO TO 291
DO 290 J = L, NY

M7 = B(I,J)

XM7 = ABS (XM7)
XM7 = MOD (XM7,2)
XM8 = B(L,J)

XM8 = ABS (XM8,2)

B(I,J) = XM7 - XM8 »x Y
Ir (8(1,J).EQ.- 1) B(I,J) =1

290 CONTINUE
291 CONTINUE
L=L-1
iF (L-1) 320, 320, 235
320 WRITE (1,330)
330 FORMAT (1X, 'THE INVERSE MATRIX IS')
WRITE (1,331) (B(1I,J), J = NX, NY)
331 FORMAT (1X, 11 (IS5, 2X))
CONTINUE
STOP
215 Ll = 11 + 1
NlL =N+ 1
IF (11.EQ.N1) GO TO 212
XM = B(L1,L)
XM = ABS (XM)
XM = MOD (XM,2)

IF (XM.EQ.0) GO TO 215
DO 96 J = L, NY

TEMP (J) = B(L,J)
B(L,J) = B(L1,J)

B (11,J) = TEMP (J)

96 CONTINUE
GO TO 214

212 WRITE (1,813)

813 FORMAT (1X, 'THE MATRIX IS SINGULAR')
STOP
END
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B *  * * * * * * *  *x ¥ * * * % ¥ X * * * *

This program is used to dgaign a matrix based Public

key distribution system based on exponentiation over GF(p)
where p is a prime.

This program essentially consists of a number of calls to
different subroutines (programs) given in the previous

appendices and hence only the main sieps are given here.

OO0 o0 o600 o0

N T T T S S S R S S 'S

INTEGER B1(2,2), B2(3,3), X(5,5), XINV(5,5),
+ M(5,5), 4(5,5)

Pp=25

¢ Input the companion matrix Bl and check the order of Bl
¢ using MATEXP. F77. '

READ (1,%) ((B1(1,J), J =1,2), I =1,2)
CALL MATEXP. F77

¢ Input the companion matrix B2 and check the order of B2
¢ wusing MATEXP. P77

READ (1,%) ((B2(1,J), J =1,3), I =1,3)
CALL MATEXP. F77

€ Select an arbitary X matrix and find the determinant
€ of X to see if it is non-singular modulo p using DETMOD.F77

READ (1, =} ((x(I,J), J =1,5), I =1,5)
CALL DETMOD. F77

¢ Pind the inverse of X using INVMOD.F77
CALL INVMOD. F77

€ Multiply the X matrix with the composite Bl B2 matrix
and the XINV matrix using MULPKD. P77 which is given as
€ a subroutine in MATEXP. FT77T.

0

CALL MULPKD (X, Bl, B2, XINV, A)

€ The A matrix is therefore the base matrix in the public

0

key distribution system. The system is then implemented
¢ using MATEXP. FT77.
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*  * * ¥ X * X * * ¥ X X X * * ¥ * ¥ ¥ X *

This program evaluates the coefficients of Dickson
polynomials for GN{x) for given N over Z/mZ. The value of N
specified in this program is equal to the degree of
pPolynomial plus 1 and the modulus m is equal to the product
of two primes p and q. The program then evaluates the

function GN(x) for all x, 1 to m-1.
* X X KR X K X K X F K X X X X X X X X % %

o I o T « T« T o T o Y ¢ B ¢

INTEGER * 4 GO0(462), G1(462), G2(462), H(462)

N =6
¢ Use the recursive function to evaluate GN(x).

N2 =N + 1
Nl =N-1
N2 = N1 -1
IFLAG
Go(1)
Go(2)
G1(1)
Gl (2) =1
DO 1 II
GO (II)
Gl (1II)
G2 (11)
1 CONTINUE
D02 I =1, N2
D03 J=1, N
3 H(J) = 61 (J)
DO 4J =1, N1
K=0N3-7
L=K-1
Gl (K) = 61 (L)
4 CONTINUE
" Gl(1) =0
D0 5J =1, N

n
o O N O

3, N

| ]
o O ©
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RIS

12
13

€ Evaluate

121

17
112

111
16

G2(J) = 61(J) - co(J)

M = G2(J)

IF (IM.LT.0) IFLAG = 1
IN = ABS (IM)

IT = MOD (IN, 35)

IF (IFPLAG.EQ.1) GO TO 12
G2 (J) = IT

GO TO 13

G2(J)
IFLAG
G1(J) = G2(J)
Go{J) = H(J)
CONTINUE
CONTINUE

35 - IT
0

]

the function for IX equal to 1 to 34.

IX =1
IZ = 0 .

DO 16 IJ =1, N

JJ = G2 (I5)

IF (JJ.EQ.0) GO TO 111
IJ1 = IJ -1

Iy = 1

IF (IJ1.EQ.0) GO TO 112
DO 17 II =1, IJ1

IY = IX * TIY

IY = MOD (IY, 35)

CONTINUE

IY = IY x JJ

IY = MOD (IY, 35)
I1Z = IZ + IY

IZ = MOD (1Z, 35)
IKE = 1

CONTINUE
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WRITE (1, 18) IX, Iz
18 FORMAT (1X, 'IX =', I16, 2X, 'IZ = ', I16)
IX =IX + 1
IF (IX.EQ.35) GO TO 120
GO TO 121
120 STOP
END
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Secure communications
between microcomputer
systems

P W Sanders and V Varadharajan describe a security interface unit that uses the
DES to encrypt sensitive data

Adata security communications interface unit has been
developed to allow data transfer between Apple ter-
minals in either plain or encrypted format under user
control. The unit employs the Data Encryption Stan-
dard algorithm and has a degree of sophistication suffi-
cient to meet most user needs. The unit uses the 6502
microprocessor to control encryption, decryption and
communications. In addition to the transfer of encryp-
ted data, the interface also provides a facility for storing
encrypted program and data files locally in the Apple
disc system. Further, the encryption system has been
designed to allow storage and retrieval of completely
encrypted or partly encrypted frames of information on
the Prestel database. The interface has been tested
extensively using several DES modes of operation.

Keywords: data communications, security, encryption,
Data Encryption Standard, Prestel

Data security has never been more significant than it is
today, owing to the expanding role of distributed com-
putation, distributed databases and telecommunica-
tions applications such as electronic mail and
electronic funds transfer. Converging computer and
communications technologies have resulted in a
dramatic increase in the volume and speed of informa-
tion collection and distribution. Greater information
transferin turn implies a greater risk of exposure of sen-
sitive or confidential information to unauthorized
users, owing to the ready availability of inexpensive
miniature intercepting devices. These have resulted in

Plymouth Polytechnic, Drake Circus, Plymouth, Devon PL4 BAA, UK

an increased interest in computer data security, not
only in the military and political area but also in the
field of commerce. This has motivated research, par-
ticularly in the art of cryptography, which forms the
central technique of comrnunications security.

This article describes the design of an encryption
interface unit employing the Data Encryption Stin-
dard' adopted by the US National Bureau of Stan-
dards. 1t has been designed primarily for the Apple
microcomputer, which is commonly used as an
intelligent terminal in communications networks. The
purpose of this interface is threefold.

® |t allows secure data communications in a point-to-
point configuration.

® |t provides a local storage facility in the Apple disc
system for the encrypted program and datafiles.

® It allows storage and retrieval of encrypted or
partly encrypted information on the Prestel view-
data system.

SYSTEM DESIGN

The encryption system configuration for point-to-point
data communications is shown in Figure 1. The com-
munications link is half duplex, allowing transmission
in either direction, but not simultaneously, with
datarates ranging from 50—1 200 bit/s, suitable for
transmission over standard telephone lines. The
encryplion unit is incorporated as an in-built feature of
the terminal, this being superior to a stand-alone
arrangement for reasons of access control, since the
former technique greatly reduces the chances of

0140-3664/83/050245-08503.00 © 1983 Butterworth & Co. (Publishers) Ltd.
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igure 1. Point-to-point system conliguration

detection between the terminal and encryption unit,

here the text is in plain form. As shown in Figure 1, the
nlain text from the keyboard is encrypted by the inter-
face and the cipher is transmitted over the standard
telephone line via the modem.

A schematic diagram of the encryption interface
showing different functional blocks is shown in Figure
2. The unit is designed around the 6502 micro-
processor with associated random access memory
(RAM) and read only memory (ROM} of the Apple sys-
tem. Encryption and decryption of data is carried out
by a large-scale integration device using the DES
algorithm. Data communications is handled by a dual
enhanced communications controller element
(DEUCE). This controller contains two independent
asynchronous receiver/transmitter channels and two
independent generators providing possible transmis-
sion rates up to 19 200 bit/s. The encryption unit con-

tains the necessary EIA RS232-compatible circuits for
interfacing it to the modem, and a PROM is provided to
hold the necessary programs for the operation of
the system.

The interface can operate in three different formats;
plain, encrypted or a mixture of both. The users at both
ends of the communications link initially choose a
datarate from the range of 50-1 200 bit/s and then
select one of the three modes. in the case of the plain
mode, the data transfer between the users will be in
plain form. If either of the other two modes is chosen,
then the- secret DES key has to be entered. It is
assumed that the parties concerned have pre-
knowledge of the key, a necessity for proper com-
munication of the encrypted data. Any eight
alphanumerical characters of the keyboard can be
used to form the 64 bit key required for the DES
algorithm., It is essential that the key should be chosen
randomly {for example, by some form of random num-
ber generator), so that it may not be easily guessed by
any cryptanalyst. The key is displayed on the VDU to
verify the correctness of entry but the display is erased
immediately after the last character is input, to avoid
detection by others during the course of communica-
tion. Many users wouid probably use some easy-to-
remember phrase or number combination for
developing the key, and in such cases the phrase can
be converted to a form suitable for DES using a good

6302 ROMs RAMs
mMICrgprocessor
Aqaress bus
Dato bus
Encryption RS 232
PROM amvi 1/0 contreiler inter face ) Meaem
Timing y— Decoding
cireyit — coeut

Figure 2.
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‘hashing’ function. Further minor software changes can
be made to provide for multipie DES key encryption, to
achieve higher levels of security or to modify facilities.

When the terminals are set ready to accept data, the
user who presses a key first gains control of the line,
and thus will be able to transmit data. A maximum of
256 bytes of message can be input to the system from
the keyboard at one time. The message is encrypted
using one of the several DES modes mentioned below,
and then transmitted over the line. If the key is to be
altered forthe next message, the system must be reset.
Further, data stored in memory can be encrypted and
transmitted in a similar fashion.

In the case of a mixture of plain and encrypted infor-
mation, the input from the terminal will always be in a
plain form until a change to the encrypted mode is
initiated by typing a special character (CNTRL-A). The
unit is automatically returned to the plain format after
8 characters (64 bit). Alternatively, another special
Character (CNTRL-B) can be used to return to the plain
format, but then one must ensure that the CNTRL-B
character does not occur within the enciphered data to
ensure unambiguous decryption at the receiving end.
This can be achieved by using multiple CNTRL-B
characters to indicate the end of encrypted text. The
larger the number of such characters, the smaller the
probability that they occur in the enciphered data, and
the smaller the ambiguity in decryption, but this unfor-
tunately increases the numberof redundant characters
in the transmitted data.

One of the requirements of this mixture format is
thatin a multiuser network, the plain information must
only be deciphered correctly by the user with the right
key. There may be cases where the encryption algorithm
transforms a noncontrol character to a control charac-
ter and vice versa. As a control character is not dis-
played by the Apple, this results in a line of text with
parts of it encrypted at the transmitting end not pro-
ducing a line of text at the receiving end when using
the wrong key. As a certain amount of delay is required

Ptain taxt Cioner 1ext
(DY, 02...064) (€1, c2,...C64)
tnput diock Nput block
(N, r2,.__I64) w1 r2,...rea)
DES encryption DES decrypnmon
Cutput diocx Cutpous block
(01,02..064) {01,02...084)
Cipner text Plain text
101, C2,...064) (O1,02...064)

Figure 3. Electronic code-book mode

vol 6 no 5 october 1983

for special control characters such as CNTRL-G (Bell) or
CNTRL-] {line feed), this can cause an over-run error at
the receiving end, even in the reception of plain text
when using the wrong key. Software has been written
to overcome such situations.

Several modes of the Data Encryption Standard
have been investigated? using the developed encryp-
tion system, namely the electronic code book (ECB},
cipher block changing (CBC) and stream cipher feed-
back (CFB).

The ECB allowed a transformation of a 64 bit plain
text word into a cipher text word of the same length, as
shown in Figure 3. In this mode, the information is
encrypted in integral multiples of 64 bits. The last
block is padded with random bits prior to encryption to
build it up to 64 bits. During decryption, the padding is
taken into account so that the random bits are discar-
ded after decryption. A critical weakness of this mode
(Figure 4)* is that a given plain text always produces the
same cipher text under the same key. Thus, the com-
promise of the plain text underlying any cipher text
block results in the compraomise of all repetitions of
this same text for the remainder of the cryptographic
period. This problem is often referred to as the code-
book analysis problem.

in the CBC mode, a plain text block is exclusive-
ored with the previous cipher text block, prior to
encryption, as shown in Figure 5. In the first encryption
cycie, the plain text block is exclusive-ored with a
block of pseudorandom bits cailed the initialization
vector (IV). Mathematically, the scheme can be
expressed as follows: -

if the i*" plain text and cipher text blocks are x(i) and
y (i)
and the initialization and feedback vectors are U(1),
U@2)...Un-—1)
where U(1) =z = initialization vector
UG =yli - 1)

then the encipherment and decipherment become

yli) = filx() +y(i - 1)1 i=1
x() =67yl +yGi—1)] i=21

where x(0) =y(0) =2, { defines the cryptographic
function and the subscript designates the particular
key.

The security of this mode depends, amongst other
factors, upon the management of the initialization vec-
tor. CBC reproduces the same ciphertext wherever the
same plain text is encrypted under a fixed key and
initialization vector. In the ECB mode, the cipher text
repetition is found to occur at block level, whereas in
the CBC mode the cipher text repetition is at message
tevel. The CBC mode not only reduces the code-book
analysis problem but also provides a limited error
extension characteristic which is valuable in protecting

*The ASC!l character set has been extended using Hershey? charac-
ters to indicate all 256 possible codes produced by encipherment.
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Examples of encrypted text

Plaintext; b electronic code book: ¢ cipher block chaining: d cipher
f stream cipher feedback with plaintext leedback

against fradulent data aiteration. One or more errors in
asingle cipher text block affects the decryption of two
blocks, namely the block in which the error occurs and
the succeeding block, but they synchronize thereafter
(see Figure 6). This self-synchronizing scheme is par-
ticularly suitable when noise is present on the com-
munications lines.

To provide for error propagation throughout the
message, a slight variation of the CBC technique is
implemented. Here the input plain text is modified by
making it a function of both the previous plain text and
the cipher text blocks prior to encryption, as shown in
Figure 7. That is

yi) = (lx) + UM 21
x() =, yt) + UD] i =1
where
. 1=1
Um:lx (-D+yli—1 i>1
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block chaining with plaintext leedback; e stream cipher feedback;

This scheme represents a general block cipher, and if
any portion of the cipher becomes garbled, the decryp-
tion of all subsequent blocks until the end of the
message is garbled (Figure 6). This technique is used
for the purpose of message authentication,

While the CBC technique overcomes the code-
book analysis problem, the problem of padding of the
last block still remains. A stream cipher mode is
therefore implemented to cope with this problem.

- With this technique, the DES is used as arandom num-

ber generator. The output of the DES is exclusive-ored
with plain text to form the cipher text. The decryption
process operates the same way as encryption, with the
exact pseudorandom stream of encrypting bits being
generated. An 8 bit CFB implementation is shown in
Figure 8, although any number of the 64 bits can be
used. With this stream cipher technique. the plain text
is encrypted character by character and not in blocks.
An error inthe cipher text character affects notonly the
decryption of the garbled cipher text but also the eight
succeeding characters until the bit error.is shifted out

computer communications
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of the CFB input block (Figure 6). Again this is a self-
Cronea ] [Fonen | synchronizingpscheme. s °
ot To provide for error propagation, a slight variation of
nitighzaton . . . .
vcte (+) this technique has also been implemented by provid-
ing a feedback from the initializaticn vector, in addi-
| vout e 0| [ e | tion to the feedback from the cipher text as shown in
! ! Figure 9. This scheme represents a general stream
cipher and corruption of a single bit of cipher text will
OES encrypt DES encrye! cause each subsequent bit of recovered plain text to
T be in error (Figure 6).
The encryption system can also be used to provide
[ Cioner et (2) i storage of encrypted information locally in the Apple
! i disc system. In this case, instead of transmitting the
: H . encrypted information to another user over a com-
E 5 .munications line, it is stored in memory.
Gipher text (1) ] Cioher fext (ZJJ Theoretically, any of the DES modes discussed
above could be used, but when a file is encrypted,
- recovery from an error must be affected with cipher
DES deerypt DES decrypt text alone. If a ciphering procedure with error propaga-
- : tion is used for file security, subsequent inability to
! read a fraction of the cipher text because of damage
Output text (I} [ Output text {2} J either to the physical medium or to the recorded bits
may prevent all the following cipher text from being
tmitiotization deciphered. Therefore a self-synchronizing approach
vector ' is desirable for file encryption. This therefore leaves
| Piain text (1) | [ an en @ ‘ the two chaining modes CBC and CFB, either of which
could be emplovyed. tf cipher feedback on 8 bit charac-
ters is used, then the maximum speed wiil be one
Figure 5. Cipher block chaining mode eighth of the block mode speed, and hence, the
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Figure 6. Error characteristics
a Electronic code book: b cipher block chaining: ¢ cipher biock chaining with plaintext feedback; d siream cipher feedback: e stream
cipher feedback with plaintext feedback
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Figure 8. Cipher feedback mode

throughput is correspondingly lower. On the other
hand, with CBC, the problem of padding exists, since it
is a biock gipher.

The program performs encryption and decryption of
either an Applesoft BASIC file or Integer BASIC file, or
an input datafile from the keyboard. The encrypted file
is automatically stored on the disc under the file name
provided by the user. The encrypted file can be loaded
back from the disc at a later time and decrypted to give
the original file, provided the same key has been
used.

'SECURITY IN PRESTEL VIEWDATA SYSTEM

The encryption system has been incorporated into the
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Figure 9. Stream cipher with cipher text and plain
text feedback

Prestel network, allowing transfer of encrypted as well
as plain information between an Apple microcomputer
and a Prestei viewdata computer. This allows secure
storage and retrieval of sensitive information, such as
bank statements or legal documents.

The basic unit of information on Prestei is a frame
which consists of up to a maximum of 960 characters.
One ormore frames are linked together to form a page,
and these pages of information form the Prestel
database. A natural choice for encryption wouid
therefore be a complete frame, but there may be.
instances where the encipherment of a section of a
frame, or even a few characters is required. The header
information at the start of the frame can be used to
indicate that encipherment has been used on that
frame.

As in the case of file security, the two possibie
modes of DES suitable for this application are cipher
block chaining (CBC) and stream cipher feedback
(CFB). Sinceé it is required to encrypt parts of a frame
down to individual characters, only the cipher feed-
back mode, which allows character-by-character
encryption, can be used. Further, if the CBC mode is
used, when parts of a frame are encrypted, itis likely to
require padding for each encrypted part. This in turn
will result in cryptogram extension, and will pose a pro-
blem when storing the enciphered frame on the Prestel
database, since each frame is limited to a maximum of
960 characters.

The encrypted information passes through the Pres-
tel control unit, which rejects any of the control charac-
ters present in the cipher text. There is therefore a
need to prevent the occurrence of these control
characters in the encrypted information. That is, the
data format is restricted to satisfy the Prestel computer
protocols. This can be achieved by using 6 bit cipher
feedback without altering the existing Prestel software.
The 64 character codes chosen for encipherment are
0-9, A-Z, a-z, space and period. All other codes are
transparent and hence bypass. encryption. This is, of
course, a weakness, but work is currently being carried
out to expand this to a full character and graphics set.
The output codes are reformed into the same range as
the input, thus preserving the one-to-one relationship
hetween transmission and reception. As we were
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mainly interested in enciphering alphanumerical
characters present in the frame, the above set of input
codes was found to be adequate for the purpose.

The system 1s connected to the public switched
telephone network via a modem in the usual manner,
The Prestel number is dialled, and when the Prestel
computer responds by sending a continuous data tone
of high frequency, the data switch is pressed for the
modem to take control of the line. The terminai
becomes ready for data transfer.

+ - HERE I3 A GAME THAT CAH BE PFROGRAMMED
FOR PLAY ON A DIGITAL COMPUTER . . .

A polyonmine is a figure formed by joini
Ag unit squares along their edges. Fentonm
inoes are 5 squars polyomincss and it i3
pesaible to construct 12 different pentozinoces.
A pontomino game is played by ar
ranging tho 12 peateminces into wvarious
size rectangular boxeas . . . 3 by 20 or 4 b
Y15 or 5 by 12 or 6 by 10. Computsrs hav
e boen used to gensrate many solutioms. A
coaputsr progras produced two solutions
for 3 by 20 comfiguraticn and 2339 for
the most popular aize 6 by 10 rectangula
r configuration. ’

figure 10. Prestel page in plain form

Scratedoad 6513140 op

rontinleRwGDZH Jx0 0 JgWWBCLS BVZ BdVDW BY
o' 7 v FPZQsNNaBK txvCp hV TRBSxUmJ*' X
D YovZISJ YWQEPtrT=o8CLMy okHXsbhi GXqq
'RZAv] erePmTIaxd kyYXmC Refl'P "JiNaXt
@niow¥s skTRLAODN IucCvSzLZvXiZh WNpYPS
X Y4TE230nPtm JDGtCAUVIC OAMP OgiYwdqRYA
sdPriZoue JTd QQy CoxkbuVgziKiokxbKtpd §
JuwCC 'G AR y¥IgOMvl dhae RHX'DbBQHO 'yP
xx2y 1z 3 UZg amqaVB'EfozyPjOIPPeQP TR
JkzPt?A AV3OoGpoilpliWewo wkBPJ JyiDHEz 2
uLrviy ORPgYzOLDIWMr © Rkqs £ YRAXZXSIV
PR CSZCIVUst DtPCYc.MTEYQEYIfALLp rql
G Ip papiyee BOITI Yxo abd TXIEGPWRILZ
TYUL=fZJvrOL2LSBwXal BYAX wPvg b bH Art
vouoraZif*xfvGixS HRztdspligihaDqQ Balyux/

? fipdicates start of encrypticn.
/ lisdicates end of ensryption.

EZX 3131313131313131
IV 0000000000000000

MODZ: 6-bit CPB

After entering the secret DES key in the normal
fashion, the user has the choice as to when to set the
interface into the decryption mode. This enables him
to decipher only those pages which have some
enciphered data and to read the other Prestel pages
in plain form. Only the user with the right key and cor-
rect initialization vector will be able to obtain the
original plain text. This software implementation
allows changes in the initialization vector during com-
munication, whereas to change the key, the system
needs to be reset and restarted. This allows every user
to have a single secret key, although he may use any
number of different initialization vectors.

In the editing mode, the user is able to enter,
amend, copy and delete encrypted as well as plain
frames in Prestel. From the user point of view, it is
essential that the encryption operations must be as
simple as possible. Start (?) and stop (/) markers are
used to indicate the beginning and end of enciphered
data. The CNTRL-A key is used to sét the interface unit
to the encryption state. All subsequent characters
input are encrypted under the CFB mode. The CNTRL-
B key automatically returns the interface to the plain
mode, and so allows encryption of even asingle byte of
data. Examples of completely encrypted and partly
encrypted frames are shown in Figures 10, 11 and
12.

A stand-alone unit working on the same principles
has also been developed for any computer connected
between the RS232 interface output and the corres-

Scratchpad 651314 @& op
+ + EERE IS A PJI/ THAT CAY SE PROGRAVMMED
FOR ? K4t/ OF A DIGITAL COMPUTER . . «

A 72VDY NEG/ i3 a figure formad by joind
ng unit squaros alozsg thair odgea. 71 Yhab
@aZ / are 5 square ?DTtNXLC kIP / and it is
posaible to construct 12 different ?jXgl Pa pOza/
A X3 MhiD/ game i3 played by ar
ranging the 12 7 SzwfY:l2e/ into various
siie rectangular boxes . . . 3 by 204 b
¥ 15 or 5 by 12 or 6 by 10. Computershav
e besaD usad to generate many solutions. A
cooputer program produced ? P/ solutions
for ?C Koigq/ configuration and ?BuYv/ for
the most popular size ?bScLS5to/ rectangulas
r coafiguration. *

? indicates start of oocryption.
/ indicates end of encryption.

KEY : 3131313131313131
IV : 00000000000000CO

MODE: 6-bit CPB

figure 11. Encrypted Prestel page
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Figure 12. Partly encrypted Prestel page
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ponding input of the modem. Figure 13 shows the
communications board designed for the Apple
microcomputer.
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PUBLIC KEY DISTRIBUTION IN MATRIX
RINGS

Indexing terms: Codes. Public key svstems

An-extension of the Diflie-Hellman public key distribution
system to matrix rings is described. Using rings of non-
singular matrices over Z/pZ and upper triangular matrices
with invertible elements along the diagonal over Z/pZ. it is
shown that the number of possible secret keys is much
greater for a given prime p compared to the original system.
An outline of a method to construct the base matrix used in
the system is given.

Introduction: Diffie and Hellman' first proposed the idea of
public key distribution in which two parties exchanging only
public information over an insecure channel could establish a
secret key for use in a conventional cryptosysiem such as the
data encryption standard.’ They proposed a system based on
the exponential function f: x — a* over GF{(p), where p is a
very large prime and a is a primitive element in GF(p). The
security of this system depends on the difficulty of computing
logarithms over GF(p). Pohlig and Hellman?® investigated an
algorithm for computing logarithms over GF(p) and proved it
1o be efficient when p — 1 consists of small prime factors only,
but computationally infeasible when p — | contains at least
one large prime factor.

Here we investigate an exiension of the exponentiation
syslem 10 matrix rings.

Exrended exponentiation system: The group [ormed by only
the nonsingular matrices of order n, M, is considered as the
ning of all n x n matrices over a finite field containing nilpo-
tent elements when n > 1.

To form a public key distribution system, it is required 10
choose an element A € M (Z/pZ), where p is a very large
prime such that

A"=1 (mod p)
where r is the order of 4. the base maltrix,

The base matrix A4, the prime p and the order r are 10 be
made public. Each user chooses a random number x; less than
r and generates a public matrix C,. where

C; =A% (mod p)
Two users can arrive at the same key in the same way as in
the DifTie-Hellman sysiem. For instance. if user 1 wishes 1o

386

initiate an interchange of secret information with user 2. he
first extracts the public matrix €, of user 2. Then he computes

C3' (mod p)
User 2 obtains the public key C, of user | and computes
Ci* (mod p)

Tt can be seen that this process yields the common key K ,,,
where

K,; = K;, = Ci¥mod p) = C3'(mod p)
= A""{mod p)

This can be used in the connection protocol of a DES based
system to establish the session key. With the Diflie-Hellman
system the maximum number of secrel keys possibie is limited
to p — 1, whereas with this extended svstem it depends on the
order of the base matrix: the larger the value of r. the greater
the number of users that the system can supporl. Again the
security of this system is dependent on the difficulty of com-
puting logarithms over GF(p).

Design of base marrix A: The system designer needs to con-
struct a matrix 4 in M (F) and determine the order r. One
method of construction of 4 with a given order is outlined
below.

Consider an irreducible polynomial f(x) of degree m for
which 4 isaroot{. e F):

Jid=as+a,x+a,x* +...+a__, x""! a;eF,

Regarding F_ as an m-dimensional vector space over F, with
basis {1, 4, 22 ... 2™~} let T represent the following linear
translormation on F:

T:x— sx
Under T,
l— i a— 2% ™= —a A" —do

Hence the matrix representation of the linear transformation
T relative to the basis {1. 4. ..., 2"~ '}’is given by the com-
panion matrix:

0 1 Q- ---- 0

0 0 1ovenns 0

B = 0 0 0 1---0
_a'm—l @y =y

Linear independence of {, T, T* ... T™" " implies that I, B, B?
... B! are linearly independent. Since f(x) = 0. we have
J{B) = 0. But f(x) and degree m and so the linear indepen-
dence implies that f(x) is the minimum function of 8.
Hence the order of the matrix B is equal to p™ — 1. and
B '=] (mod p)

Thus the system designer can choose irreducible polynomials
of degrees m,, m, ... m, over GF(p) and form the composite
matrix B as shown below:

B,
B= 'BZ

B

L]

where the order of B, is equal to p™ — | for | <i < m,. The
order of the matrix B is then given by the expression

lele™ = 1 p™ = 1), ... (p™ — 1)}

The matrix A4 to be used in the public kev distribution system
can then be obtained by conjugating B with an arbitrary
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matrix ¥ belonging to M, (F,):
A=YBY™!

The order of A is the same as that of B and they are of
dimension n, where r is given by

The outlined method has been implemented on the prime
computer systemn and an example is given.

On the other hand. il we choose the base matrix A from the
ring of upper triangular matrices over Z/pZ, where p is a
prime, then the maximum order of such a matrix is equal to
{p — 1)p. which can be obtained by having nonzero elements
along the main super diagonal. This can be shown as follows.

Partitioning 4 into a diagonal matrix D and an upper tri-
anguiar nilpotent matrix U, ie. 4 = U + D, then we see that
D . U. U . Dand U? are also upper triangular nilpotent. Then,
inductively, if

we have

ATV = (A + (D' + U)
=D'"'+ UD' + DU, + UU,

e et
nilpotent upper
triangular
= D“l + U,4.|
Hence A%# = 47! = I + U,, where ¢ is the Euler function,

and (I + U,)” = Ilor some 1.
If p is assumed to be gredter than n— 1, we have t = 1.
Thus the order of 4 is {p — 1)p.

Example: Let p = 5. Let f,(x) = x® + x + L. fy(x) is irreducible
over Z/5Z. The martrix B, is therefore given by

0 l 0 1
B=(_l _1)5(4 4) (mod 5)

s1-1
(0 1) =171 (mod 5)
4 4

" and

Let f3(x) = x* + 3x? + x + 2. f{x} is irreducible over Z/SZ.

Hence the mairix 8, is given by
0 t 0 010

8, = 0 0 1} =10 0 1 (mod 5)
-2 -1 =3 3 42

Now we need to choose ¥ and ¥~ ! such that

Bl 0 =1 _ K
[0 B:]! = A e M(F,)

Let x be an arbitary nonsingular matrix given below:

o o———
BNONW
[ I PRI
—_ b WO

1
1
4
3
1

(The determinant of YV is ¢ (mod 5) and hence x is non-
singular.) The inverse of ¥ is given by

0o 21 3 0
01 2 20
YV'=]3 3 { 4 3
2 2 4 2 4
301 42
and hence
0 2 0 4 3
1 1 3 1 3
A=]4 0 0 3 2
31 3 2 4 4
{ 2 4 11

The order of A is equal to
[af(52 = 1X5° = 1)} = 744
and |
A =1 (mod 9
Hence the key space is 2 £ x £ 743, where A* = C (mod 5).
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Extension of RSA Cryptosystem to Matrix Rings

Abstract

A generalization of the RSA cryptosystem in the ring of matrices

over Z/mZ is presented. It is shown that factorization of the modulus

m is needed to compute the exponent of the group formed by either non-
singular matrix messages or upper triangular matrices including

diagonal elements thus offering the same level of security as the RSA
system. The latter method employing the triangular matrices as messages
seems to be more practical than the use of arbitrary non-singular matrix
messages. The scheme is as suitable for privacy and authentication as

its predececessor,

1. Introduction

Assume R is a finite ring with unity which is associative but not
necessarily commutative. Suppose that members of the ring R are used
as messages and that reR is enciphered as r® where e is the published
encrypting exponent. The trapdoor property can be stated as follows:-

. . n+
There exists some integer n>0 such that r 1 r for all reR.

These rings are to be referred to as trapdoor rings. For inSCanEe, in
zZ/pZ, r? = r for all reR. More generally, if we let R = Fq = GF{(q), the
field of q elements where q is a prime power (p¥), then rd = r for all
r€R, Further if R and S are any two such trapdoor rings, then the
direct sum (or product) R® S comsisting of vectors (r,s) with reR and
s€S is another trapdoor ring say T. The number of elements in the ring
T is equal to the product of the number of elements in R and S. This
above procedure can be applied repeatedly taking vectors of arbitrarily
many components each taken from some finite field. Considering finite
fields Fqi for 1<ig¢j, where q;'s can be the same or different, the trap-
door ring R is formed by all vectors x = (xl, veny xj),‘where xiqui
for 1l€i<j. The ring R consists of 9192 --- aj elements and the
equality r®™1 = ¥ is obeyed for all reER, where n is equal to (ql-i)
(qz-l) ‘e (qj—l) or any multiple of it.

There are many finite rings which Are not trapdoor rings. Consider
for instance, R = zlpzz where p is a prime. Then p2 = p3 = ... =0 in the
ring R but p # O in the ring R. So the property that p"*l = p is not

satisfied for any n>0. More generally, for a ring R to be a trapdoor ring,




it is necessary that R have no nilpotent elements except zero. However,

if we take an integer m to be a square free positive integer say

m=p; ... pj where all pi's are distinct primes, then the ring

R = Z/mZ is a trapdoor ring. This ring can in fact be regarded as a

direct sum of F, ® Fp. ® ... ® F,. as described above. If j = 2,
1 2 J

then this becomes the standard trapdoor ring used by the RSA

cryptosystem[l]. This is a consequence of theorems of Wedderburn[?]on

finite semisimple rings and skew fields.

The original RSA scheme derived its message space from the ring
of integers modulo m, Z/mZ, where m is the product of two large distinct
primes p and q. Here we investigate other finite systems that might
serve as a basis for an extended RSA cryptosystem. Essential background

material in group and ring theory can be found in[Q].

2, Matrices over Z/mZ

If the ring of all n x n matrices over the ring Z/mZ is considered,
it is seen that the ring contains nilpotent elements when n>l. To
overcome this problem, initially only the group M, formed by the non-
singular matrices of order n, is selected to form the message space of
this extended system. But the use of such arbitrary non-singular
matrices as messages poses further problems as the sender has no control
over the matrix elements but must accept what the plaintext dictates.
That is, the sender cannot always ensure that his messages will form

non~-singular matrices over Z/mZ. However, to begin.with, the use of non-

singular matrices as-a possible message space is investigated in our
matrix based RSA system..
Let us first consider the finite group formed by matrices of order

n whose determinants are relatively prime to p and whose elements are
in Z/pZ (p prime). The order of the group formed by these elements
can easily be shown [4] to be equal to Np where

Ny = (™1 "p) ... ("p"hH (1)

If such non-singular matrices with elements over Z/pZ are used as
messages then one can form a conventional cryptographic system where the
secret key contains the modulus p itself. The encrypting (e) and
decrypting (d) exponents can then be determined using

ed = 1 (mod Np) @




The encrypting key is therefore (e, p, n) and the decrypting key is
(d,p,n). None of these keys can be made public and the encryption and
decryption procedures are as in the RSA system.

C = M8 (mod p)
and ' (3)

M = cd (mod p)

The above system can be modified to include the public key property
as follows: Suppose the modulus used in the system is a composite

number m whose factorization is given by
r:
m = [ | P ] (4)

Then, asing the Chinese Remainder Theorem, the order Nm ES—S] of
the multiplicative group formed by non-singular matrices of order n

over Z/mZ is given by

S -
N,
Ny = . | P] (5)
i=1
where
2
. (r;=1)n
r
.3 =5 a_ n__. n__n-1 6
NPJ Pj (PJ 1)(Pj PJ) N (PJ Pj ) (6)

Now as in the RSA cryptosystem if we take m to be the product of two
distinct primes p and q, then the expressions (5) and (6) simplify to
N o= N.Ng (7)
A}

= DG . ™" E™D) L (@

) (8)
Therefore for a message matrix MeMpy (Z/mZ)

MNm = I (mod m) (9)

and hence the coding exponents can be calculated using
ed = 1 (mod Np) (10)




The expression for the order N depends on the structure of m, that is,
on its prime factors. This can therefore be used to form a public key

cryptosystem whose security is the same as that of the RSA system.

Although the order Ny can be used in finding e and d usually the
order is a very large number. For instance, even for small primes such
as p = 13 and q = 23, the order is approximately 1.6 x 1022 for 3 x 3
non-singular matrices. Therefore, it is desirable to find the exponent

EXP of the group, i.e., the least integer greater than zero such that

MEXP = I (mod m) (11)
EXP is a divisor of the order N, of the group.

Let us first consider the exponent of the group formed by the non-

singular matrices over Z/pZ, M,(Z/pZ).

Let the exponent be £ such that

Az = I for all AeM,(Z/pZ) (12)

Assume that p >n. Al

I (mod p) implies that xz—l is divisible by
the minimum polynomial of A. As A ranges over the non-singular matrices
of order n over Z/pZ, xl—l must be divisible by every monic irreducible

polynomial p(x) (#x) of degreegn in Z/pZ. Every irreducible polynomial
pu-1 pu-1_

1

p(x) (#x) of degree u divides x -1. Thus xl-l must be divisible by x

But

xP-1 = 0 (mod x2-1) (13)
implies alb.

Hence,

2 = 0 (mod pu—l) for lgugn (14)
Therefore,

2 =0 (mod fem{p-1, ..., pn-l }) certainly (15)

Furthermore, the matrix A given by

o110 - --- 0
A=T14+ . .-.'- . (16)
Ot
(o] - o]
satisfies AP = 1 # A (p>n) (17)




That is, A has order p and hence plﬂ.

Hence the exponent of GL{(n,p),p>n, is given by

Now for any AtcMp(Z/pZ), using Jordan's Canonical form, there exists a

2 =p fem{p-1, p2—

1, ..., p™-1}

non-singular matrix E such that

E

-1

p—

By

AE =

Each block B. 1is of the

. A.I. + N.
i i i

B
= J : . (:)

-

form

for some upper triangular nilpotent matrix Nj.

(18)

(19)

(20)

where Ai's are non-zero in Fpri for some riSn.

If the order of D is k,

this gives

(E—lAE)k _ (E_IAE)(E-IAE) ) k times
- e la¥g
THus Ak = I (mod p)

Order of A = order of D

= k = fecm of orders of Bi'

.that is, D¥ = I (mod p), then as D

(21)

1f Ni = 0, then order of B, 1s a divisor of pri-l.

Hence the order of A divides %cm {p-1,

Otherwise,

A divides p %em {p-1,

. pn—l}

., p-1}.

BE = A?Ii will have such an order and hence the order of

E

-1

AE,



A multiple of p in the expression for the exponent £ is expected as

the order given by (1) contains multiples of p.

Similarly,
AS = 1 {mod q) for all A in Mn(z/qZ)
where s = q %m {q-1, q2—1, ceey -1} 22)

Therefore exponent EXP of the group GL(n,m) where m = p.q is given by

EXP = fZem (p Zem {p-1, ..., p™~1 }, q %em {q-1, ..., q™-1} ) (23)

Now let us extend this argument to non-square free modulus m. First
consider a matrix A in M, (2Z/§2). Let 8 be the natural homomorphism

from Z/pZZ onto Z/pZ (p prime). From the above argument

G(A)EXP

I in M,(2/p2) (24)

e(I)

Therefore
G(At-I) 32 0 (mod p) where t = EXP

This means that every entry in At-1 is some multiple of prime p and

hence

At-1 = p B for some matrix B

A" =1+ pB (25)



Using the binomial theorem,

tp

A 2,

1+ ®pB + (B p’B

m

I (mod p)
Therefore considering in general a matrix in M (Z/phZ)

Mo (z/p")  —> M (2/p2)

e: A —> 98(a)

If 8(A) has order t, then A has order t or pt or pzt .. OT P t.

If 5

]———[ s

i=1
then

EXP = fcm [vl, Vo ey vs}
. ri-1 (27)
where v, = p; (w.)
and w. = Lem(p.-1, p 2-1 p. 1)
i~ Pi PiT%s» Py Thy sees Py

(assuming P; is greater than n for all i.)

Again from (27), it is clearly seen that the exponent EXP depends

upon the prime factor composition of m.

From cryptography point of view, the use of such non-singular
matrices may be considered impractical as the sender has no control over
the elements in the message matrix. The sender is faced with the problem
of determining whether a plaintext message matrix is non-singular or not:
if it is singular, he cannot encrypt that particular message. This is
not acceptable for cryptographic application. However, the proportion
of non-singular matrices over Z/mZ, where for instance m = pq and p and

-

q are large district primes, is very much close to 1.



One common approach to obtain an arbitrafy non-singular matrix over
the reals is to have the diagonal entries of the matrix message much
bigger tham the corresponding entries in the row and the column. But
this diagonal dominance does not always ensure that the matrix will be
non-singular when working over finite rings. For instance, consider the
matrix A given below which is 'diagonally dominant'.

p-1 1

A= 1 p-1 {(mod p) (28)

Det A = p2 - 2p = 0 (mod p). Hence diagonal dominance is not applicable

over finite rings.

Alternatively, let us now consider the set of upper triangular
matrices as a possible choice of our message space. If the diagonal
entries are made unity, this ensures that the matrix is invertible as

the determinant is relatively prime to the modulus m.

Let M represent such an upper triangular message matrix. We can
partition the matrix M into I+N where N is a nilpotent matrix and I is
the identity matrix. If M is in Un(Z/pZ) then (I+N)p =Ias NP =0
assuming p 2n-1. The order of. the group formed by these upper triangular

matrices if pn(n-l)/2. The order becomes m™ " 1)/2

when considering
matrices Un over Z/mZ. Here we see that the order of the group depends
only on m and not on the factorization of -m. Hence this is not suitable

for a public key system.

On the other hand, if we alter the message space to contain upper
triangular matrices with diagonal entries prime to m, then such messages
are invertible modulo m. This is not a serious problem as in practice m
is a product of large primes and the diagonal elements can be chosen to
be relatively smaller integers. Now the order of the group formed by such

matrices 1s determined as follows:

Considering a nxn matrix, it is required that all the n diagonal
entries must be coprime to m. The number of integers less than m and

coprime to m is given by the Euler totient function @(m).

The réﬁaining in(n-1) superdiagonal entries of the matrix may take

n(n—l)/2¢(m)ﬁ

The vital difference between this and the one calculated above is that

any value modulo m. Therefore the order is equal to m

now the order of the group is dependent on the prime factors of m.

Hence the modulus m needs to be factorized before the decryption

| _



exponent d can be calculated using ed = 1 mod (order). As for the set
of non-singular matrices, one can determine the exponent of the group formed
by these upper triangular matrices with diagonal entries prime to m. The

exponent can be used instead of the order in finding e and d.

First consider a square free modulus m. Let

S -

m = l | Pj (29)

Let us first consider a message M in Z/pZ whose diagonal elements are
relatively prime to p.
dll ?
M= O "o, where (dii,p ) =1 (30)

for all i, 1gign

Partitioning M into a diagonal matrix D and an upper triangular nilpotent
matrix U, that is, M = D+U, then it is seen that D-U, U.D and U2 are also

upper triangular nilpotent. Then inductively,

if M° =D + U, (31)
we have Mr+1 = (D+U) (DT+U)
= ™1 4 u.DT + D.Ur + UL,
L 't
N
nilpotent upper triangular
M= ptH g (32)
Hence
NACD R Uy (mod p) (33)
and

(I + u¢)p =1+ Ug (mod p)

(L +1U

2 2
¢)p = I+ 0% (mod p)

".G

etc




Thus

t
P 9(p) = I (mod p) for some t (34)

If p2n-1, then t =1

Therefore, the exponent of the group formed by upper triangular matrices
(with invertible elements along the diagomal) over 2/pZ is equal to
#(p).p

Now if s

m = | | Pj (35)

i=1

then the exponent divides
Lem {@(p1)py, 2(Pylp2,s .- , ¢(Pj)Pj} (36)

(Note that if the diagonal entries are unity then the exponent is equal

tom or 2m, if m is even or odd respectively,)

Let us now consider a non-square free modulus m given by

m = TT p.'] (37)

First consider an nxn upper triangular non-singular matrix M over
Z/p* Z, (p>n). Again let M = D + U where D is a diagonal matrix and U
1s an upper triangular nilpotent matrix over Z/prZ. Following the
argument given above, it 1s seen that
r

MQ(p ) =TI+ U¢ (mod pr) (38)
where U¢ is some upper triangular nilpotent matrix.
Hence

(I + U )P

(]
[

s +p Ugl (mod pr)

(1 + pugl)p

I+ p2 UQQ (mod pt)

r
1 U P (+u,)P
( +p ar-l) @) .

1}
=
+
o
=]
o
n
—
~
g
(=]
a9
o
~
A




r. r
Therefore Mﬁ(p Jp = I (mod pr) (39)

Hence the exponent of the group formed by upper triangular non-singular

matrices over Z/mZ, where m is given by (37), divides

Lcm {ﬁﬁirl)plrl, ¢(p2r2)p2r2, cens ﬂ(psrs)psrs} (40)

3. System Design and Operation

The designer randomly chooses large primes P) to pg for some s 3.2
following the guidelines suggested in [iJ and forms their product m.
The primes need not be necessarily distinct. As in the case of the RSA
system, these primes are kept secret. As the upper triangular non-
singular matrix messages can be selected arbifrarily a public key
cryptosystem using such a message space has been implemented. The coding
exponents e and d are determined using

ed = 1 (mod EXP) (41)

where EXP can be equal to (40).
The public encryption key is given by (e,m,n) and the secret
decryption key is (d,m,n) where n denotes the dimension of matrix messages.
The message is divided into blocks of integers less than the modulus
m and 2 sequence of nxn upper triangular matrices is constructed by
arranging the integers in order as they occur, left to right and top to
bottom. The encryption procedure consists of raising each of these
upper triangular matrices to the power e. This has been implemented
using the well known square and multiply technique [9]. The ciphertext
produced consists of a sequence of nxn upper triangular matrices over
Z/mZ. Each of these matrices is transmitted to the receiver by sending
the n(n+l1)/2 ciphertext matrix elements (excluding the lower triangular
zeroes)} in order as they occur in the matrix, left to right, top to
bottom, with a space separating the elements. The receiver recovers the
original message by first reconstructing the sequence of nxn upper

triangular cipher matrices and then raising them to the power d modulo m.

Such an extended RSA matrix system using upper triangular message
matrices has been simulated on the Prime computer. An example showing

the various parameters is given in Figure 1.



4, " 'Discussion

One can see that the RSA system can be extended to matrix messages
provided the message space is restricted to avoid nilpotent elements. In
this paper, the group of non-singular matrices over Z/mZ and the group of
upper triangular matrices with diagonal elements coprime to m over Z/mZ
have been investigated. In both these cases, factorization of the modulus
m into primes is required to compute the exponent thus providing the same
level of security as the RSA system. But the first case, employing
arbitrary non-singular matrices as the message space does not seem to be
suitable for a practical cryptosystem as it is not possible to restrict
arbitrary plaintext matrices to be non-singular. On the other hand, in the
second case employing upper triangular non-singular matrices, it appears
that the messages can be selected arbitrarily in practice. The exponent of
the group formed by such upper triangular nxn matrices over Z/mZ divides
fem (G(plrl)plrl, cees 0(psrs)ps?5) where m = ] pjfj with p;>n for
all 1<j<s. 1=1

Further two points are worth mentioning regarding this extended
matrix system. Firstly, it is seen that non-square free modulus can be
used which 1s not possible with the RSA system. Secondly, the use of a
matrix as a message may allow large amounts of data to be processed
within one encryption/decruption cycle. Whether this is an advantage
depends upoﬂ the ease with which matrix manipulations can be carried
out. Computational savings can be achieved if transform techniques are
used to reduce the number of scalar multiplications involved in a matrix

multiplication.
Example

Let the modulus m = p.q = 41.29 = 1189

Exponent of the group formed by 3x3 upper triangular non-singular
matrices over Z/1189Z, divides
fcm {40.41, 28,29} = 332920

Choosing the encrypting exponent, e = 1317, the decrypting exponént d
can be calculated using Euclid's algorithm and is equal to 117293. That
is,

1317 . 117293 = 1 (mod 332920)




Let us assume that thé plaintext message to be encrypted is 232677205141.
In this example, the message is divided into 2-digit blocks of integers
less than m. Starting from right to left as

(23 26 77 20 51 41)

The upper triangular plaintext message matrices become

90 23 26 31 20 51
P1 = o 50 77 and P2 = 0 215 41
0 O 48 0 0 289

where the diagonal elements are arbitrarily chosen to be relatively prime
to 1189.

The ciphertext message matrices are then given by

1317 :
90 23 26 1105 458 1070
C1 = 50 77 = 0 50 251 (mod 1189)
0 O 48 0 0 831
1317
31 20 51 843 774 660
C2 = 0 215 41 E o} 592 41 (mod 1189)
0O 0 289 0 e} 405

These ciphertext matrices are transmitted to the receiver as

(1105 458 1070 50 251 831 843 774 660 592 41 405)

. . . d
The receiver reconstructs the matrices C1 and C2 and computes C1

(modm) and Czd (modm) to obtain P, and P, and hence the plaintext

1
message. That is,

117293
1105 458 1070 90 23 26

o = 0 50 251 0 50 77 (mod 1189) = P
0 0 831 0 0 48

1



117293

843 774 660 31 20 51
0 592 41 = 0 215 41 (mod 1189) = P,
0 0 405 0 0 289
Figure 1
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NICRYPTION

H the advent of electronic mail,
ctronic funds transfer and the
wributed office, an increasing amount of
fidential data is being stored on disc
i transmitted between terminals and
TpuUters.

The information may be financial.
ere a high degree of security is required,

it may consist of sensitive commercial
alings, personnel records, legal docu-
nts, etc.. which could cause difficulties

problems if they fell into the wrong
nds.

It is not too difficult to take a copy of a
;c, or listen in on telephone lines with
y'cheap. yet sophisticated communica-
n equipment presently available and
an examine the information at one's
s ure,

The relatively simple precautions, if
y. employed in many data systems
y ve 3 minor obstacle to the determined
ttack”. The following describes the
eration of a unit whereby the Apple ter-
inal user can reduce this possible
curity problem to a minimum.

Data encryption moved out of the
ilitary and political spheres in 1976
"en an IBM encryption algorithm was
cepted by the American National
ureau of Standards as the encryption
echanism for all federal non-military
plications. It is known as the Data
neryption Standard (DES) and is tikely to
» adopted as such in this country. The
yrd shown in the photograph opposite
ilises this standard.

The algorithm changes the plain data
to an unintelligible cipher form under the
sntrol of a key; the change being to such

extent that the transformation is

entirely different for each key value.

The algorithm, which has been made
public for almost 10 years now and has
not yet been cracked, uses muitiple
modulo 2 addition, permutations and sub-

Storage

Cipher

Storage

Cipher\

e — Freygen]
text -
1

text . - Plain
(o ] — £

Key Transmit Receive Key
Simplified principle
Plain 101110110 Medulo 2 0001 100 10Cipher
Key 101000100 &&— addition —>1 01 000 1 00 Key
Cipher0 001 10010 101110110 Plain

igure |

VAHANNRE emp SO

stitutions to ensure that the key or plain
tex1 cannot be discovered from the cipher
text.

The very simple modulo 2 examptle in
Figure | shows the difficuity of retrieving
the original information when the “carrys”
are lost uniess the correct key is available.

The standard uses a 56 bit key with 64
bit biacks of plain text to procuce, after 16
“rounds”, 64 bit cipher blocks of data
giving a “key space” of 2% — or 10'7
different key combinations. This is an
extremely large number, and ensures that
if each key combinaticn was tried in turn
by a fast computer it would take many
vears before all were covered.

The key can frequently be changed or
multiple encryption made with different
keys 1o maximise security. This alogrithm
has recently become available in large
scale integrated circuit form.

The encryption card can cperate in one
of three modes.
® Point 10 point communication between
Apple terminals notr containing 3 host
computer.
© Local storage of encrypteo programs
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] 8 bits = 1 character

Ptain (8}

64 bits 64 bits
F—A‘_ﬁ
l: ENC ] [ ENC
(8 e T
Key . Key
Plain (a)%® N Line (8) @

Figure Il

d data files on the Apple disc system.
1 Communication between an Apple ter-
inal and a host computer for storage and
trieval of encrypted information in its
emory bank. The operation of these
odes is controlled by programs stored in
JM on the card. the appropriate
ogram being selected by a CALL com-
and after the card has been activated
ith a POKE instruction.

In the secure storage mode Applesoft
- |nteger Basic data is passed through
e encryption chip after it has been in-
alised with the chosen key, consisting of
"y eight character combination, includ-
g control characters. from the keyboard.

The encrypted form is then stored on a
sc and can be catalogued in the normal
\anner.

If this cipher text is later downloaded
om the disc and listed complete rubbish
ill result. Often the listing continues 10
in because the end of lineffile pointers
re never reached, or it is maybe much
horter in length than the original because
e control characters in the encrypted
yrm are not displayed.

When cperating in the communication
odes, a suitable modem must be used 10
y nvert the digital codes from the card
1t0 equivalent speech signals for
-ansmission. The card incorporates a
ommunication controller that allows full
uplex, asynchronous transmission at the
CiTT standard rates to 9.6 k bit/sec: the
» quired rate being selected from the key-
oard.

Different rates for transmission and
 ception allow asymmetric duplex opera-
on. such. as is used on the Prestel data
ases and other viewdata systems.

The DES algorithm can be used in a
umber of ways to obtain the required
ecurity but the method chosen by the
ard is a stream cipher feedback arrange-
ent as shown in Figure il

In this case the DES is used as a
yseudo random number generator, its

By PW. SANDERS
and
V. VARADHARAJAN

output being continuously exclusive OR-
ed (modulo 2 addition) with the piain text.
The decryption process operates in the
same manner - an identical pseudo
random stream of bits being generated in
synchronism to retrieve the plain text after
another exclusive OR operation. This
method has a number of advantages
when used in the above applications:

O There is a chaining of the encryption —
the output cipher text character becomes
dependent upon the previous eight
characters of cipher and plain text. as well
as the key, which removes the problem of

straight forward substitution of characters
to alter the message without knowledge
of the key.

O The system has a self-synchronising
property when confronted with transmis-
sion errors. A error within a cipher text
character affects that characier and the
following eight characters only on decryp-
tion, after which the system automatically
becomes resynchronised.

O The arrangement is very flexible, allow-
ing a mixture of plain and encrypted
characters under keyboard control. With
block cipher. eight character blocks must
aiways be used, necessitating “padding” if
less than eight encrypted characters are
needed. With this “byte” feedback a
single character can be efficienty
encrypted.

A stand-alone unit has been developed
for any computer that has the same
facilities as the card, but being connected
between the RS 232 interface output of
the computer and the corresponding input
of the modem. &

The encryption card

Jyne 1983 WINDFALL 33




