
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2022-12

ZAC: Efficient Zero-Knowledge Dynamic

Universal Accumulator and Application

to Zero-Knowledge Elementary

Database

Dang, H-V

https://pearl.plymouth.ac.uk/handle/10026.1/20633

10.1109/tps-isa56441.2022.00038

2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems,

and Applications (TPS-ISA)

IEEE

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

ZAC: Efficient Zero-Knowledge Dynamic Universal
Accumulator and Application to Zero-Knowledge

Elementary Database
Hai-Van Dang

University of Plymouth
hai-van.dang@plymouth.ac.uk

Tran Viet Xuan Phuong
Old Dominion University

tphuong@odu.edu

Thuc D. Nguyen
University of Science, VNU-HCM

ndthuc@fit.hcmus.edu.vn

Thang Hoang
Virginia Tech

thanghoang@vt.edu

Abstract—Zero-knowledge universal accumulator generates
the succinct commitment to a set and produces the short (non)
membership proof (universal) without leaking information about
the set (zero-knowledge). In order to further support a generic
set and zero-knowledge, existing techniques generally combine
the zero-knowledge universal accumulator with other protocols,
such as digital signatures and hashes to primes, which incur
high overhead and may not be suitable for real-world use.
It is desirable to commit a set of membership concealing the
information with the optimal complexity. We devise ZAC, a
new zero-knowledge Dynamic Universal Accumulator by taking
the existing cryptographic primitives into account to produce
a new efficient accumulator. Our underlying building blocks are
Bloom Filter and vector commitment scheme in [19], utilizing the
binary expression and aggregation to achieve efficiency, generic
set support, zero-knowledge and universal properties. As a result,
our scheme is improved in terms of proof size and proof time,
also comparable to the RSA-based set accumulator in [8] in the
verifying complexity. With 128 bit security, our proof size is 48
bytes while theirs is 1310 bytes and the running time of elliptic
curve-based methods is faster than RSA-based counterpart.
ZAC is proved to be complete, ϵ-sound and zero-knowledge.
Extensively, based on ZAC as building block, we construct
a new Zero-Knowledge Elementary Database (ZKEDB), which
consumes 5 times less storage space, O(logN) less bandwidth,
and O(logN) more efficient in proving and verification than the
state-of-art work in [13] (where N is the domain space size).
ZKEDB is proved to be complete, ϵ-sound and zero-knowledge.
ZKEDB supports a new type of select top ℓ query, and can be
extended to non-elementary databases.

Index Terms—zero-knowledge universal dynamic accumulator,
zero-knowledge set (database), Bloom filter

I. INTRODUCTION

Cryptographic accumulator primitives introduced by Be-
naloh et al. [6] plays a crucial part to adapt into the wide
applications such as identity escrow and anonymous creden-
tials [11], which enable the efficient membership revocation in
the anonymous setting. Technically, a cryptographic accumula-
tor creates a compact commitment (i.e. accumulator) C to a set
S with membership proofs of its elements. The proofs can be
publicly verified against the commitment to prove an element
to have been accumulated in the commitment value (i.e.
prove x belong to S). By a constraint, the accumulators must
satisfy the set binding property [12] that an element cannot
be proved to belong to the set while it is not. Therefore, the

verification of an element x belonging to the accumulated set
S is the underlying mechanism to enable the membership/non-
membership proofs. Other desired property, an accumulator is
dynamic if the commitment and proofs can be updated with
constant cost when adding or removing an item from the set.
A dynamic accumulator is said to be universal [24] if it can
support both membership and non-membership proofs. In a
non-membership proof, one can prove that an element is not
accumulated in the commitment value.

In order to construct a universal dynamic accumulator,
Catalano et al. [12] presented a solution by using Vector
Commitment (VC), a very closely related primitive. VC is a
protocol of two stages, i.e. commit-then-prove, with involve-
ment of two main actors: Prover P and Verifier V . In the
committing stage, P commits to vector m = (m1, . . . ,mq)
in such a way that V cannot learn about m (hiding property).
In the proving state, P can generate a proof to prove that an
element is an item of the vector at a specific position (i.e.
prove x be value of mi). VCs must also satisfy the position
binding property, meaning that an element cannot be proved
to be an item at a specific position of the vector while it is not.
Later on, in [23], Lai et al. presented the notion of Subvector
Commitments (SVC). SVCs allow to commit to a vector
m, and then prove values of multiple items of the vector.
Recently, in [19], Gorbunov et al. proposed a new vector
commitment scheme with aggregation called Pointproofs. The
scheme allows to aggregate multiple proofs with respect to a
same commitment or different commitments into one proof.

Cryptograhic accumulators and vector commitments have
been incorporated widely. Among their various applications,
zero-knowledge set, first introduced in [28], has a paramount
of importance. Zero-knowledge sets (ZKS) allow to (i) commit
to a set S (ii) prove if x ∈ S or x /∈ S without revealing
anything about S and its cardinality |S|. ZKS can be consid-
ered as a special case of zero-knowledge elementary database
ZKEDB (elementary database D is a set of tuples (x, vx)
where x is the key and its corresponding value is D(x) = vx).
ZKEDB allows to (i) commit the database D (ii) then prove
that the query result for a key x is D(x) or ⊥. A ZKS S
is an instance of ZKEDB D where the set of keys is S and
the corresponding values are all 1. When successfully proving

TABLE I: Comparison of ZAC with prior works.

Scheme Properties Performance
Dyn. Gen. Univ. zk Proving time Verification time |π| (bytes)

[6] ✓ O(Nm) H O(m) H 34
[12] ✓ ✓ O(N logN · λ) mult O(N) mult 256
[8] (w/o hashing to prime) ✓ ✓ O(N logN) mult O(λ) mult+O(N logN) F 1310
[8] (w/ hashing to prime) ✓ ✓ ✓ O(N logN) mult+O(λ) primality checks O(λ) mult+O(N logN) F 1310
[32] ✓ ✓ ✓ O(m2) F+O(1) mult O(1) mult+ 2e; O(p) mult+ 3e∗ 56
Our ZAC scheme ✓ ✓ ✓ ✓ O(m) H+O(q) mult O(m) H+O(q) mult+ 2e 48

Dyn. means dynamic, Gen. means generic set, Univ. means universal, zk means zero-knowledge, |π|: proof size. λ : security parameter, N : size of the committed set;
m < N : size of the proved subset; q < N : length of Bloom Filter representation of the committed set; e denotes pairing cost. H,mult and F denote the hash function,
group multiplication operation and multiplication in field of size approximately 2λ, respectively; *: the cost is O(1) mult+2e in case of membership verification and
O(p) mult + 3e in case of non-membership where p is prime number and group size. Proof size |π| (in bytes) at 128-bit security for N = 1000 and 256-bit hash
([19], Section 5.3)

a query result for a key x to be equal to 1 (D(x) = 1), it
means x ∈ S. Otherwise, when proving the query result to
⊥, it means x /∈ S. ZKEDB can be constructed using vector
commitments and Merkle tree as in [15], [28]. However, most
of the constructions are expensive in terms of performance
overhead.
Motivation. We observe that the construction of Universal
Dynamic Accumulators from vector commitments in [12] does
not support a generic set and zero-knowledge property without
requiring the accompanying with the other protocols like
secure digital signature and standard commitment schemes.
Consequently, the extra schemes would be costly overhead.
Moreover, considering a set of N records of m bits, [12]
requires to calculate commitment of 2m values; therefore, we
propose a new model Universal Dynamic Accumulators from
vector commitments which reduces the expensive commitment
values as N which N ≪ 2m; .
Contributions. We present our contributions as two-folds.
Firstly, we propose a new efficient zero-knowledge Dynamic
Universal Accumulator. Secondly, we design a new efficient
Zero-Knowledge Elementary Database. Both protocols are
proved to be complete, ϵ-sound and zero-knowledge.
New Efficient Zero-Knowledge Dynamic Universal Accu-
mulator. Table I summarizes the properties and efficiency of
our proposed ZAC scheme, compared with the state-of-the-
art works. We design a new zero-knowledge accumulator by
mainly exploiting the Bloom Filter [17] and the aggregatable
vector commitment of [19]. As a result, our proposed scheme,
Zero-Knowledge Dynamic Universal Accumulator (ZAC),
generates a short commitment to a generic set and short mem-
bership/ non-membership proofs for any subset of a set without
leaking the remained elements, the set and subset size (zero-
knowledge). For the comparison, we selected the work [6]
because it is the state-of-art paper about the accumulator, [12]
having the same approach of using vector commitment to
construct the set accumulator, [8] using RSA-based approach
instead of bilinear map approach and supporting batching,
updates as well, [32] being a recent work.
ZAC achieves succinctness property in the following metrics:

• The (non)membership proving time is O(m) H+O(q) mult.
• The verifying time is O(m) H+O(q) mult+ 2 e.

The commitment size and the proof size equal to the size
of a group element given H,mult, e, group multiplication
operation, and pairing functions. The m, q are the size of

the proved subset Ŝ and the parameter of Bloom filter,
respectively. Moreover, from a practical point of view, our
scheme operates on a smaller group (e.g., ECC) compared with
[8] (which is based on RSA group), and thus the arithmetic
operations in our scheme is also faster [31].
Comparably, the commitment and membership proof size in
our scheme (48 bytes) is 27 times less than the work by Boneh
et al. [8] (1310 bytes) with respect to 128-bit security. Our
membership proof creating time is less while membership
proof verifying time is comparable with [8]. Our scheme
is universal in the sense that it supports both membership
and non-membership proof. In comparison with the mem-
bership proof, the overhead of generating and verifying non-
membership proof in ours is negligible (bitwise equality and
AND operations) while it is approximately doubled in [8]. Ad-
ditionally, our commitment and proof update cost are more ef-
ficient than [8] (O(N ′) H + O(q) mult < O(N ′ log(N ′)) mult
given N ′ as the number of update items). ZAC supports a
generic set (for e.g. a set of European Union countries) without
overhead complexity while the other works would consume
overhead complexity (i.e. hash-to-prime mapping like in [8])
or redundancy (like in [12]). Finally, ZAC does not leak any
extra information about the committed and the proved set, even
their size (zero-knowledge).

Regarding the zero-knowledge set (elementary database), the
approach of using Merkle tree data structure has proof size
and proof computation cost as O(log (λ)) [28], [15], O(λ ·
q/ log (q)) [13], O(λ/ log (q)) [26] where λ is the security
parameter in such a way that the database size upper bound
is 2λ and q is the branching factor of the tree [26]. The
mentioned works currently cannot be extended to support
non-elementary database efficiently. Hence, we also aim at
designing a zero-knowledge elementary database with proof
size and computation cost as O(1), and easily extending it
into a zero-knowledge non-elementary database.

New zero-knowledge (non)elementary database with short
proof and new type of query. We design a new zero-
knowledge elementary database using ZAC as a build-
ing block. Our construction, Zero-Knowledge Elementary
Database or ZKEDB, incurs less proving and verifying time
and has shorter proof size (O(1)) than the schemes based
on the Merkle tree (O(λ) [15], O(λ · q/ log (q)) [13],
O(λ/ log (q)) [26] where λ is the security parameter in such
a way that the database size upper bound is 2λ, q is the

Hai-Van Dang

branching factor of the Merkle tree). In addition, our design
supports a new type of query, select top ℓ where y = a,
with only one proof and verification compared to ℓ proofs
and verifications of the Merkle tree based schemes. Ours can
be extended to zero-knowledge non-elementary database with
short proof while the others cannot.

II. RELATED WORK

Although commitment and vector/ subvector commitment
are very closely related, the paper mainly focuses on set
accumulator schemes and its application to zero-knowledge
elementary database (ZKEDB). Accordingly, the related works
discuss about accumulators and ZKEDB instead of commit-
ment schemes.

Accumulators: The primitive accumulator was first in-
troduced in [6], eliminating the need for a trusted central
authority to accumulate values and being suitable to construct
space-efficient protocols for time stamping and membership
testing. The participants only need to store the accumulator
value (i.e. commitment) instead of the whole list of individual
values. Furthermore, the commitment size is independent from
the number of the accumulated values. However, the scheme
supports subsets of [1, n − 1] instead of an arbitrary set, and
does not support either non-membership proofs or updates.
In [11], Camenisch et al. extended the notion to dynamic
accumulator which allowed to dynamically add or delete an
item into/from the commitment with cost independent of the
set size, and update the proofs accordingly at unit cost without
any required trapdoor. Their proposal is dynamic, which
makes it attractive for the applications with granting/ revoking
functionalities like identity escrow or group signature. Besides
that, the scheme is provable with respect to the Pedersen
commitment scheme (i.e. it can prove a value in a Pedersen
commitment is contained in an accumulator), providing zero-
knowledge proof of membership with overhead computation
for the commitment scheme. However, it supports subsets of
[1, n − 1] instead of an arbitrary set, and does not support
non-membership proofs. In [12], Catalano et al. presented a
universal accumulator constructed based on a generic vector
commitment. The scheme does not support batching updates,
and only supports a subset of [n] straightforward. In order
to support a generic set, the authors suggested a combination
with a digital signature scheme, which incurred an additional
overhead complexity. If combined with a commitment scheme,
the proposal can conceal actual value of the accumulated ele-
ments (zero-knowledge) at the cost of computation overhead.
In [8], Boneh et al. presented a set of batching and aggre-
gation techniques for accumulators, eliminating the role of a
trusted accumulator manager, and supporting non-membership
proofs. However, the accumulated values are odd primes. A
mapping (i.e. hashing to primes) with additional cost would be
necessary if they want to support accumulating to a generic
set. In [22], Karantaidou et al. proposed a zero-knowledge
universal accumulator using bilinear pairing setting. In or-
der to enable non-membership proving, they convert non-
membership proof into membership-proof of the complement

set of the initial set. It is not efficient practically for a large
domain because it requires accumulating every item of the
domain. Recently, in [32], Vitto and Biryukov proposed a new
dynamic universal accumulator with batch update over bilinear
groups with the involvement of an accumulator manager. Their
scheme is efficient but only support accumulating for elements
of (Z/pZ)∗.

Zero-knowledge set (database): In 2003, Micali et al.[28]
introduced a first non-interactive zero-knowledge set (ZKS)
and immediately yielded zero-knowledge elementary database
(ZKEDB). Their construction relies on the usage of Ped-
ersen commitment [30] and Merkle tree. In 2005, Chase
et al.[14], [15] constructed zero-knowledge set (database)
using mercurial commitments and Merkle tree. They showed
that their construction was a generalization of the particular
instantiation in [28]. In short, mercurial commitments extends
the conventional commitments with four algorithms: hard-
commit (i.e. traditional commit) and prove, soft-commit and
tease. A soft commitment can never be proved; instead, it
can be teased to any value at Prover P’s choice. Meanwhile,
a hard commitment to a value x can be proved to x and
teased to x. A tease of a commitment to x ensures Verifier
V that if the commitment can be proved then it will be
proved to the same value. P cannot create a commitment that
can be teased to x and proved to x′ ̸= x. To construct a
ZKEDB D = (K,Y), Chase et al.[14], [15] built a Merkle
tree with nodes as hard or soft commitments. The leaf nodes
are numbered by keys ({x ∈ K}), and contain commitments
to their values ({D(x) ∈ Y}). The query verification com-
munication and computation cost are O(log (λ)) where λ is
the security parameter in such a way that the database size
upper bound is 2λ. By increasing the branching factor of
the Merkle tree from 2 to q and using a primitive called
trapdoor q-mercurial commitment (qTMC) (which allows to
commit to a vector of q messages at once, and later open at
specific vector positions without disclosing messages at the
other positions), Catalano et al. [13] improved the proof size
and computation cost to O(λ ·q/ log (q)). In [26], Libert et al.
introduced trapdoor q−mercurial commitments with constant
size proofs, and used it to construct a zero-knowledge set
(database) with shorter proof and more efficient computation
cost, O(λ/ log (q)). While there has been improvement in
proof size and computation cost in [28], [14], [15], [13], [26],
they only support verifying simple statements such as "x does
not belong in D" or "x is in D with value y = D(x)".
In [25], Libert et al. extended verification for range queries
over keys and values, which can be exploited to enable further
complex queries such as k-nearest neighbors and k smallest
or largest values within a given range. In other to support
queries over keys and values, the scheme in [25] uses two
Merkle trees to the same database, and adds checks to ensure
the consistency of the two Merkle trees. In other words,
it incurs storage and computation overhead to maintain and
compute over the two Merkle trees. Liskov [27] defined the
updatable zero-knowledge (elementary) database notion and
proposed a construction based on the scheme of Chase et

al. [14], [15]. Camenisch et al. [10] constructed an updatable
zero-knowledge (elementary) database scheme based on vector
commitments, which achieve less proving/ verifying cost than
Merkle tree based schemes. The construction in [10] considers
keys of the database as positions, and values of the database
as values of a committed vector. Therefore, it only supports
keys as numbers in [N] where N is the database size. Despite
many constructions for ZKEDB, in our knowledge, there is no
construction for zero-knowledge non-elementary database so
far.

III. DEFINITIONS

Notation. We denote the set {1, . . . , n} as [n], zero vector
of size n as 0n. We denote mi (or m[i]) as the i-th element
in vector m, m[S] := {mj : j ∈ S} and m[−i] := {mj}j ̸=i.
x

$← S means x is uniformly chosen at random from a set
S, |S| as the cardinality of set S. Let negl() be the negligible
function.
Zero-knowledge Dynamic Universal Accumulator.
We define zero-knowledge Dynamic Universal
Accumulator (zkDUA), which permits a prover P to commit
to an arbitrary set S, and then later proves that another set
Ŝ is the subset of S (i.e. Ŝ ⊆ S) or Ŝ is not a subset of S
(i.e. Ŝ ̸⊆ S), without revealing the items as well as the size
of S. A zkDUA scheme is a tuple of 9 algorithms zkDUA =
(Init,Com,UpdCom,ProveM,ProveN,UpdPrM,UpdPrN,
VerifyM,VerifyN) defined as follows.

• pp ← Init(1λ, N): Given the security parameter λ and the
bound of set size N as input, it outputs public parameters
pp.

• cm ← Com(S, r, pp): Given a set S and randomness r, it
outputs a commitment cm.

• cm′ ← UpdCom(cm,S,S ′, pp): Given two sets S,S ′ and
cm as the commitment of S, it outputs a commitment cm′

to S ′.
• π̂ ← ProveM(cm,S, Ŝ, r, pp): Given two sets S, Ŝ, a

commitment cm to S and randomness r, it outputs a proof
π̂ indicating that Ŝ ⊆ S.

• π̂ ← ProveN(cm,S, S̄, r, pp): Given two sets S, S̄, a
commitment cm to S and randomness r, it outputs a proof
π̂ indicating that S̄ ̸⊆ S.

• π̂′ ← UpdPrM(π̂, Ŝ,S,S ′, pp): Given three sets S, Ŝ,S ′
and a proof π̂ of Ŝ over S, it outputs a new proof π̂′ to
show that Ŝ ⊆ S ′.

• π̂′ ← UpdPrN(π̂, S̄,S,S ′, pp): Given three sets S, S̄,S ′
and a proof π̂ of S̄ over S, it outputs a new proof π̂′ to
show that S̄ ̸⊆ S ′.

• {0, 1} ← VerifyM(cm, Ŝ, π̂, pp): Given the commitment
cm, a set Ŝ and a proof π̂, it outputs 1 if π̂ is a valid
proof for which Ŝ ⊆ S , and 0 otherwise.

• {0, 1} ← VerifyN(cm, S̄, π̂, pp): Given the commitment cm,
a set S̄ and a proof π̂, it outputs 1 if π̂ is a valid proof for
which S̄ ̸⊆ S , and 0 otherwise.

A zkDUA scheme satisfies the following properties.

• Completeness. For any λ, q, r,S,S ′, Ŝ, S̄ such that
Ŝ ⊆ S ′, S̄ ̸⊆ S ′, pp ← Init(1λ, N), cm ← Com(S, r, pp),
cm′ ← UpdCom(cm,S,S ′, pp),
π̂ ← ProveM(cm,S, Ŝ, r, pp), π̄ ←
ProveN(cm,S, S̄, r, pp),
π̂′ ← UpdPrM(π̂, Ŝ,S,S ′, pp), π̄′ ←
UpdPrN(π̄, S̄,S,S ′, pp), it holds that

Pr
[
VerifyM(cm′, Ŝ, π̂′, pp) = 1

]
= 1 and

Pr
[
VerifyN(cm′, S̄, π̄′, pp) = 1

]
= 1

(1)

• ϵ-Soundness. For any PPT adversary A,
pp ← Init(1λ, N), (cm, cm′,S,S ′, Ŝ, π̂, r) ←
A(pp), (cm, cm′,S,S ′, S̄, π̄, r)← A(pp), it holds that

Pr

cm = Com(S, r, pp)
cm′ = UpdCom(cm,S,S ′, pp)
π̂′ = UpdPrM(π̂, Ŝ,S,S ′, pp)
VerifyM(cm′, Ŝ, π̂′, pp) = 1

Ŝ ̸⊆ S ′

 ≤ ϵ and

Pr

cm = Com(S, r, pp)
cm′ = UpdCom(cm,S,S ′, pp)
π̄′ = UpdPrN(π̄, S̄,S,S ′, pp)
VerifyN(cm′, S̄, π̄′, pp) = 1
S̄ ⊆ S ′

 ≤ ϵ

where ϵ is called as soundness error.
• Zero-knowledge. Let D be a binary function defined

as: D(query, S, Si) = 1 iff Si ⊆ S,D(update, S, Si) =
1 iff update successfully. For set S, security parameter λ,
bound of set size N , a randomness r, PPT adversary A,
and simulator Sim = (Sim1, Sim2), consider the following
two experiments:
RealA(1λ):

1: pp← Init(1λ, N)
2: A chooses a set S0, |S0| ≤ N
3: cm0 ← Com(S0, r, pp)
4: Send cm0 to A
5: cm← cm0,S ← S0

Query:
6: for each i ∈ {1, . . . , ℓ} do
7: A outputs (op,Si) where op ∈
{query,update}

8: if op = query then
9: if Si ⊆ S then

10: πi ←
ProveM(cm,S,Si, r, pp)

11: else
12: πi ←

ProveN(cm,S,Si, r, pp)
13: Return πi to A
14: else
15: cmi ←

UpdCom(cm,S,Si, pp)
16: Return cmi to A
17: cm← cmi,S ← Si

Response:
18: A outputs a bit b

IdealA(1λ):

1: pp← Sim1(1λ, N)
2: A chooses a set S0, |S0| ≤ N
3: cm0 ← Sim1(pp)
4: Sends cm0 to A
5: cm← cm0

Query:
6: for each i ∈ {1, . . . , ℓ} do
7: A outputs (op,Si) where op ∈
{query,update}

8: if op = query then
9: πi ←

Sim2(cm,Si, D(op,S,Si))
10: Return πi to A
11: else
12: cmi ←

Sim2(cm,Si, D(update,S,Si))
13: Return cmi to A
14: cm← cmi,S ← Si

Response:
15: A outputs a bit b

For any PPT adversary A, there exists a simulator Sim such
that for any set S

|Pr[RealA(1λ) = 1]− Pr[IdealA(1
λ) = 1]| ≤ negl(λ)

Note that our completeness and zero-knowledge definitions
are slightly different from the notion in [18] in order to capture
both membership and non-membership proof scenarios. Sim-
ilarly, our soundness definition is different from the notion
in [21] to cover both membership/non-membership proof and
the effect of update function. The inclusion of the function
UpdCom covers the scenario where there is no update. Indeed,
when S ′ = S , UpdCom does nothing.
Zero-knowledge Elementary Database. An elementary
database D is defined as a partial function which maps a
set of keys into values. The database only supports querying
with a key x, which returns its associated value D(x) or
⊥ if x /∈ D [14]. A zero-knowledge elementary database
ZKEDB [28], [25] is a tuple of four algorithms ZKEDB =
(Init,CommitDB,ProveQ,VerifyQ) as follows.

• pp ← Init(1λ, N): Given a security parameter λ and the
bound of database size N , it outputs public parameters pp.

• cm ← CommitDB(D, r, pp): Given a database D and a
randomness r, it outputs a commitment cm to D.

• π ← ProveQ(cm, D, x, v, r, pp): Given a key x, a value
v and the randomness r, it creates a proof to show that
v = D(x).

• {0, 1} ← VerifyQ(cm, x, v, π, pp): Given a database com-
mitment cm of D, a key x, the query result v, and the
proof π. It outputs 1 if π is the valid proof for v = D(x);
otherwise it outputs 0.

A ZKEDB scheme satisfies the completeness, soundness
and zero-knowledge properties which are defined in [28], [13].

IV. OUR PROPOSED METHOD

In this section, we construct our proposed ZAC, an effi-
cient zero-knowledge dynamic accumulator scheme and then
show how to enable zero-knowledge elementary database from
ZAC afterward. We first present the building blocks that are
required to construct our schemes.

A. Building Blocks

Bloom Filter. Bloom Filter is a data structure that generates a
compressed presentation of a set and answers the membership
queries given the compressed presentation [17], [7], [29]. A
Bloom Filter BF for a set S is a tuple of four algorithms
BF = (Init,Gen,Update,Check) as follows.

• H ← Init(q, k): Given two integers q, k ∈ N where k < q,
it outputs k hash functions H := (h1, . . . , hk) where hi :
S → [q].

• m← Gen(S): Given a set S, it initializes a vector m← 0q .
It outputs m where ∀s ∈ S, i ∈ [k] : m[hi(s)] := 1 as the
compressed presentation of S.

• m′ ← Update(m,S,S ′): Given a compressed presenta-
tion m of a set S and an updated set S ′, it identifies
the difference between S and S ′ as D then outputs m′

where ∀s ∈ D, i ∈ [k] : m′[hi(s)] := 1 −m[hi(s)] as the
presentation of S ′.

• {0, 1} ← Check(m, s): Given a compressed presentation
m and an element s, it outputs a bit b ← ∧i∈[k]m[hi(s)],
in which b = 0 if s /∈ S, otherwise b = 1.

BF is used to approximately test the set membership. In
exchange for its efficiency, it may give false positive rate [9],
[16], [20] that can be determined by

Pr =

(
1−

(
1− 1

q

)kN
)k

, (2)

where N is size of the input set. The false positive rate is
bounded and it decreases when increasing q or k.
Vector Commitment with Aggregation. Vector commit-
ment allows the prover to commit to a vector m and later
proves that a specific position of m is equal to a particular
value [19]. A zero-knowledge vector commitment with aggre-
gation zkAVC allows to aggregate multiple proofs of the same
commitment into a single proof for succinctness, which is a
tuple of 6 PPT algorithms as:
• pp ← Init(1λ, q): Given a security parameter λ and the

bound q on the vector size, it outputs public parameters pp.
• cm ← Commit(m, r, pp): Given a vector m ∈ Mq−1, it

computes the commitment cm of m under randomness r
• cm′ ← UpdateCommit(cm,S,m[S],m′[S], pp): Given a

commitment cm and a list of positions S to update m to
m′, it outputs a commitment cm′ for m′.

• (π, y)← Prove(i,m, r, pp): Given an index i ∈ [q− 1] and
a vector m, it outputs y = m[i] and a proof π.

• π̂ ← Aggregate(cm,S,m[S], {πi}i∈S , pp): Given a com-
mitment cm, a set of indices S ⊆ [q − 1] with the
corresponding values m[S] = {mj : j ∈ S} and proofs
{πi : i ∈ S}, it outputs an aggregated proof π̂.

• {0, 1} ← Verify(cm,S,m[S], π̂, pp): Given a commitment
cm, a set of indices S ⊆ [q − 1] with the corresponding
values m[S] = {mj : j ∈ S}, and an aggregated proof π̂,
it outputs 1 if the values of vector in the commitment cm
at positions identified by S match m[S], and 0 otherwise.

An zkAVC scheme satisfies the standard properties of vector
commitment including correctness, binding, hiding and zero-
knowledge properties [19]. In our paper, we harness Point-
proofs [19] (denoted as PR) as an efficient zkAVC instantia-
tion. For curious readers, we present its detailed construction
in Appendix.

B. Our zero-knowledge Dynamic Universal Accumulator

Main idea. Our observation is that BF permits checking
set membership of an arbitrary set by representing the set
with the fixed length vector. ZAC requires checking whether
a set is a subset of another set and it can be considered as
checking multiple set membership. On the other hand, zkAVC,
particularly PR [4], permits to check multiple elements in a
vector via a single proof without leaking other elements. At
the high level idea, to enable ZAC, we integrate BF with
PR, in which an arbitrary set S is represented as a fixed-
length vector v, and checking a subset Ŝ can be done in a
succinct manner by proving the opening of some elements

in v and aggregating all the proofs together. The important
properties of BF are one way due to hash functions, hiding
the actual size of the set, applicability to any set and support-
ing membership/non-membership checking, which permits to
achieve zero-knowledge, generic set and universal.

It is worth noting that although our construction relies on
the protocol PR [4], there is a core difference between our
contribution and theirs. The protocol PR is a vector commit-
ment while ours is a set accumulator. The novelty of our work
lies in the integration of Bloom Filter and PR, the extension to
support non-membership proof and the application to construct
zero-knowledge (non)elementary database.

Let S be the committed set and v be the BF vector
representation of S. To prove S ′ ⊆ S, the idea is to show that
all the elements in v at positions determined by the BF hashes
on all elements in S ′ are equal to 1, i.e., v[xi,j] = 1 where
xi,j = hi(sj) for all sj ∈ S ′ and i ∈ [1, k]. To prove S ′ ̸⊆ S,
the idea is to show there exists at least an element in v in one
of the positions determined by the BF hashes on all elements
in S ′ is equal to 0, i.e., ∃(i, sj) such that i ∈ [1, k], sj ∈ S ′
and v[xi,j] = 0 where xi,j = hi(sj).
Detailed Algorithm. We present the algorithm of our
ZAC scheme in details as below. Note that in our construction,
N is the bound of the set size, k, q, ϵ are chosen parameters and
the bound of false positive rate for Bloom Filter, h′ is a hash
function. The way to generate the parameters in ZAC.Init in
a trustworthy manner depends on the application.

pp← ZAC.Init(1λ, N):
1: q, k ← Compute from Equation 2 given N, ϵ
2: pp′ ← PR.Init(1λ, q)
3: H ← BF.Init(q − 1, k)
4: pp← (pp′, H, q, k) =0

cm← ZAC.Com(S, r, pp):
1: v := (v1, . . . , vq−1)← BF.Gen(S)
2: cm← PR.Commit(v, r) ▷ cm = g

Σi∈[q−1]viα
i+rαq

1

cm′ ← ZAC.UpdCom(cm,S,S ′, pp):
1: v← BF.Gen(S), u← BF.Gen(S ′)
2: I ← {i : i ∈ [q − 1], vi ̸= ui}
3: cm′ ← PR.UpdateCommit(cm, I,v[I],u[I]) ▷

cm′ = cm · gΣi∈I(ui−vi)α
i

1

π̂ ← ZAC.ProveM(cm,S, Ŝ, r, pp):
1: I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)}
2: v := (v1, . . . , vq−1)← BF.Gen(S)
3: for each i ∈ I do
4: πi ← PR.Prove(i,v, r) ▷

πi = g
Σℓ∈[q−1]−{i}vℓα

q+1−i+ℓ+rαq+1−i+q

1

5: π ← PR.Aggregate(cm, I,v[I], {πi : i ∈ I})
▷ PR.Aggregate(·) = Πi∈Iπ

ti
i where

ti = h′(i, cm, I,v[I])
6: π̂ ← (π, 0)

π̂′ ← ZAC.UpdPrM(π̂, Ŝ,S,S ′, pp): ▷ Ŝ ⊆ S ′

1: I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)}
2: v← BF.Gen(S),u← BF.Gen(S ′)
3: J ← {j : j ∈ [q − 1], vj ̸= uj}
4: ∆ ← g

Σi∈I[(Σj∈J\I(uj−vj)α
q+1−i+j)ti]

1 where ti =
h′(i, cm, I,v[S])

5: π ← Extract from π̂
6: π̂′ ← (π ·∆, 0)

b← ZAC.VerifyM(cm, Ŝ, π̂, pp):
1: I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)}
2: v := (v1, . . . , vq)← 0q. and set vi ← 1, ∀i ∈ I
3: π ← Extract from π̂
4: b← PR.Verify(cm, I,v[I], π) ▷

e
(
cm, g

Σi∈I(αq+1−iti)
2

)
?
= e(π̂, g2) · gα

q+1Σi∈Iviti
T

π̂ ← ZAC.ProveN(cm,S, Ŝ, r, pp):
1: π ← Extract from ZAC.ProveM(cm,S, Ŝ, r)
2: {x} ← I where v[x] = 0 ▷ I,v := BF.Gen(S)

calculated in ZAC.ProveM
3: π̂ ← (π, {x})

π̂′ ← ZAC.UpdPrN(π̂, Ŝ,S,S ′, pp): ▷ Ŝ ̸⊆ S,
1: I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)}
2: v← BF.Gen(S),u← BF.Gen(S ′)
3: J ← {j : j ∈ [q − 1], vj ̸= uj}
4: ∆ ← g

Σi∈I[(Σj∈J\I(uj−vj)α
q+1−i+j)ti]

1 where ti =
h′(i, cm, I,v[S])

5: (π, {x})← π̂
6: π̂′ ← (π ·∆, {x})

b← ZAC.VerifyN(cm, Ŝ, π̂, pp):
1: (π, {x})← π̂
2: I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)}
3: v := (v1, . . . , vq)← 0q. and set vi ← 1, ∀i ∈ I \ {x}
4: b← {x} ̸= ∅ ∧ PR.Verify(cm, I,v[I], π)

Theorem 1. ZAC constitutes a zero-knowledge dynamic uni-
versal accumulator with completeness, soundness for mem-
bership and ϵ-soundness for non-membership proof under the
correctness of Bloom Filter and vector commitment in [19].

Proof. (Proof of completeness) Assuming that there
exist λ, q, r,S,S ′, Ŝ, S̄ such that Ŝ ⊆ S ′, S̄ ̸⊆ S ′,
pp ← Init(1λ, N), cm ← Com(S, r, pp), π̂ ←
ProveM(cm,S, Ŝ, r, pp), π̄ ← ProveN(cm,S, S̄, r, pp),
cm′ ← UpdCom(cm,S,S ′, pp), π̂′ ←
UpdPrM(π̂, Ŝ,S,S ′, pp), π̄′ ← UpdPrN(π̄, S̄,S,S ′, pp).
Given I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)} (see line 1 in VerifyM),
v as in line 2 in VerifyM, we have Pr[PR.Verify
(cm, I,v[I], π) = 1](see line 4 in VerifyM) = 1 thanks
to the correctness of PR in [19] and BF. Because
Ŝ ⊆ S ′ and cm′ ← UpdCom(cm,S,S ′, pp), we deduce
Pr[VerifyM(cm′, Ŝ, π̂′, pp) = 1] = Pr[PR.Verify
(cm, I,v[I], π) = 1]. Hence, Pr[VerifyM(cm′, Ŝ, π̂′, pp) =
1] = 1. Similarly Pr[VerifyN(cm′, S̄, π̄′, pp) = 1] =
Pr[PR.Verify(cm, I,v[I], π) = 1](line 4 in VerifyN) = 1.

(Proof of soundness) Assuming there exists a PPT adversary
A(1λ) that breaks the soundness of ZAC with non-negligible
probability. We construct a PPT adversary A’(1λ) that emu-

lates the challenger as below.
Setup:

1: Runs pp← ZAC.Init(1λ, N)
2: A chooses a set S0,
|S0| ≤ N

3: cm0 ← ZAC.Com(S0, r, pp)
4: Sends cm0 to A

Update:
5: Runs L ← {(cm0,S0)}
6: (cm,S)← (cm0,S0)
7: for each i ∈ {1, . . . , ℓ}

do
8: A outputs Si
9: Runs cmi ←

ZAC.UpdCom(cm,S,Si, pp)
10: Sends cmi to A
11: (cm,S)← (cmi,Si)
12: Runs L ← L ∪
{(cmi,Si)}
Challenge:

13: A outputs an index j and a
pair (Ŝ, π̂)

Assuming Ŝ ⊆ Sj ∧ VerifyN(cmj , Ŝ, π̂, pp) = 1: Given
I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)} (see line 2 in VerifyN),{x}
← Extract from π̂ (see line 1), we have vx = 0 (see line 3).
Because Ŝ ⊆ Sj and thanks to the correctness of BF, {x} = ∅.
According to line 4 in VerifyN, VerifyN(cmj , Ŝ, π̂, pp) returns
0 which contradicts to the assumption. Therefore, ZAC is
sound for membership proof.

Assuming Ŝ ̸⊆ Sj ∧ VerifyM(cmj , Ŝ, π̂, pp) = 1: Given
v ← BF.Gen(Sj), I ← ∪ŝ∈Ŝ{h1(ŝ), . . . , hk(ŝ)} (line 1 in
VerifyM) and according to line 2, 4 in VerifyM, PR.Verify(
cmj , I,v[I], π) = 1 implies v[I] are all 1. This event (i.e.
v[I] are all 1 while Ŝ ̸⊆ Sj) corresponds to the false positive
event of BF which have probability ϵ. Therefore, ZAC is ϵ-
sound for non-membership proof.

(Proof of zero-knowledge) We define the simulator Sim =
(Sim1, Sim2) as follows.
IdealA(1

λ)

Setup:
1: Sim1(1

λ, N) runs ZAC.Init to generate public parameters
pp

2: A chooses a set S0, |S0| ≤ N

3: Sim1 runs r0
$← Zp, cm0 ← gr01

4: Sends cm0 to A
5: r ← r0, cm← cm0,S ← S0
6: Stores r0 and initiates C ← ∅

Query:
7: for each j ∈ {1, . . . , ℓ} do
8: A outputs (op,Sj) ▷ op ∈ {query,update}
9: if op = query then

10: if Sj /∈ C then
11: Sim2 runs πj ← Πi∈Ig

(rαq+1−i−viα
q+1)ti

1

12: if D(query,S,Sj) = 1 then
13: Returns (πj , 0) to A
14: Appends (πj , 0) to C
15: else
16: Returns (πj , {x}) to A ▷ x

$← Zq

17: Appends (πj , {x}) to C
18: else
19: Responds with the corresponding entries in C
20: else
21: Sim2 runs rj

$← Zp, cmj ← g
rj
1

22: Return cmj to A
23: r ← rj , cm← cmj ,S ← Sj

Response:
24: A outputs a bit b
Randomness is included in each case of initial set up (line
3), query (line 11) and update (line 21) in IdealA above. In
RealA (Definition III), randomness is used for commitment
(line 2), proofs (line 10,12) and implied for update. It follows
that the commitment values and proofs generated in RealA
are indistinguishable from the randomized values in IdealA.
Hence, ZAC is zero-knowledge.
Complexity. Let N be the carnality of the input set S and
λ be the security parameter. Given k be the number of used
hash functions in Bloom Filter, which is a small constant,
and q < N be the length of the compressed string of the
set created by Bloom Filter. Let H,mult,F and e be the hash
function, group multiplication, field multiplication and pairing
operations, respectively.

In ZAC, the proof size and the commitment size are O(1).
Specifically, their cost is a group element regardless of the
size of the set. Since BF vector is a binary vector, the commit
phase only incurs O(Nk) H + O(q) mult invocations. Our
scheme uses public parameters of size O(q). To prove a rela-
tionship of a set Ŝ over S, the (non)membership proof incurs
O(|Ŝ|) H + O(q) mult invocations. The (non)membership
verification incurs O(|Ŝ|) H + O(q) mult + 2e. Let S ′ be
the updated set, which differs from S at n′ elements. The cost
to update the commitment is O(n′) H + O(q) mult. The cost
to update the proof is O(q) mult.

C. Our Proposed Zero-Knowledge (Non)Elementary Database

Suppose that an elementary database D includes the keys
K and values V , where K ⊆ {0, 1}∗, and domain of V is [N].
We then present our proposed ZKEDB construction based on
ZAC as below. The idea is to group the records by values
to form different sets. For each set, ZAC.Com is called to
create its commitment, which is also created for the set of
keys. For values with non-existing records, commitments are
randomized. Upon a returned record, a membership proof is
created according to a commitment identified its value. If
returning ⊥, a non-membership proof is created according to
the commitment of the set of keys.

pp← ZKEDB.Init(1λ, N):

1: pp = (pp′, H, q, k)← ZAC.Init(1λ, N)

cm← ZKEDB.CommitDB(D, r, pp)

1: for i← 1 to N do
2: Si ← {x ∈ K : D(x) = i}
3: if Si ̸= ∅ then
4: Ci ← ZAC.Com(Si, r, pp)
5: else
6: Ci

$← G1 ▷ G1 is multiplicative group (see
Appendix VI)

7: CN+1 ← ZAC.Com(K, r, pp)
8: cm← {C1, . . . , CN , CN+1}

π̂ ← ZKEDB.ProveQ(cm, D, x, v, r, pp)

1: (Cv, CN+1)← Extract from cm
2: if v =⊥ then
3: π̂ ← ZAC.ProveN(CN+1,K, {x}, r, pp)
4: else
5: Sv ← {x′ ∈ K : D(x′) = v}
6: π̂ ← ZAC.ProveM(Cv,Sv, {x}, r, pp)

b← ZKEDB.VerifyQ(cm, x, v, π̂, pp)

1: (Cv, CN+1)← Extract from cm
2: if v =⊥ then
3: b← ZAC.VerifyN(CN+1, {x}, π̂, pp)
4: else
5: b← ZAC.VerifyM(Cv, {x}, π̂, pp)

Types of query support. Although ZKEDB.ProveQ and
ZKEDB.VerifyQ currently prove and verify a single item, they
can be extended to prove and verify a set of items easily.
Thanks to that, ZDB can also support the query select top ℓ
where y = v. Given v = D(xj),∀j ∈ [ℓ] and randomness r:

π̂ ← ZKEDB.ProveQM(cm, D, {xj}j∈[ℓ], v, r, pp) :

1: Cv ← Extract from cm
2: Sv ← {x′ ∈ K : D(x′) = v}
3: π̂ ← ZAC.ProveM(Cv,Sv, {xj}j∈[ℓ], r, pp)

b← ZKEDB.VerifyQM(cm, {xj}j∈[ℓ], v, π̂, pp):
1: b← ZAC.VerifyM(Cv, {xj}j∈[ℓ], π̂, pp)

Theorem 2. ZKEDB constitutes a complete, ϵ-sound and zero-
knowledge elementary database.

ZKEDB can be extended to be zero-knowledge non-
elementary database. Due to the limited number of pages, the
security proof and extension are not included.

V. EXPERIMENTAL EVALUATION

A. Implementation and Configurations

Implementation. We implemented the main functions of
ZAC in Rust using the open-source of Pointproofs [4] and
standard Bloom Filter [2], [3]: Com to compute a commitment,
ProveM to generate a proof of membership, VerifyM to verify
a proof of membership. The complexity of the proof of non-
membership ProveN and its verification VerifyN are equal to
ProveM and VerifyM respectively. The worst case complexity
of UpdCom, UpdPrM and UpdPrN are equal to the complexity
of Com, ProveM and ProveN respectively. Therefore, we
only need to run the experiments for the mentioned three
main functions. The implementation is mainly to provide a
proof of concept without considering about the programming
techniques and optimisation. Therefore, we do not compare
our experimented running time with the related works.
Hardware. We benchmarked the performance of our scheme
on a virtual machine with 2 AMD EPYC 7452 32-Core CPUs
at 2345.593 MHz, 8GB RAM, 128GB hard disk with SATA
AHCI controller, Ubuntu 20.04.1 LTS.
Parameter choices. We selected the parameter for Bloom
Filter with the expected false positive rate as ϵ = 0.01, the

bounded set size is N = 200. The optimal size of BF q and
number of hash function k are calculated by [3] based on
ϵ,N . We ran each experiment is run 30 times and reported
the average results.
Dataset and Measurement. We run the program and record
the elapsed time of Com, ProveM, VerifyM with the synthetic
data provided by Harvard Pilgrim Health Care [5] for the ex-
periments. More specifically, we use the DRUG_CLASS table
in the Sentinel Summary Tables [1][5] and generate unique pa-
tient IDs for all the records. After that, we filter the 200 records
with Analgesic Narcotic Agonists and Combinations drug class
and run the experiments using these records. More detailed,
we select randomly 25, 50, 75, 100, 125, 150, 175, 200 unique
patient IDs of the records to form the set S and generate the
commitment. In each case, we choose randomly 1, 5, 10, 15
unique patient IDs from the commit set S to form the proving
set Ŝ, and run the program to generate a proof and verify the
proof. The running time is measured in milliseconds. We also
measure the storage for public commitments, and overhead
communication for the witnesses.

B. Results

Computation. Figure 1a presents the commit time of our
scheme with different committed set sizes. The Com time is
composed of BF.Gen(S) and PR.Commit time where BF.Gen
is much less than PR.Commit. PR.Commit cost depends on
the number of non-zero values of BF (see ZAC.Com, line
2). Therefore, the running time are nearly equal among the
various size of the committed sets, with very small difference
(less than 50 ms).

The ProveM and VerifyM cost are mainly the cost of PR.
Prove and PR.Verify respectively which are linear to the size
of the proving membership sets (see line 1,4 in ZAC.ProveM,
line 1,4 in ZAC.VerifyM). Therefore, the running time is linear
to the number of proved items as shown in Figure1b, 1c.
Storage and Communication. In our scheme, the commit-
ment size and the proof size are constant and independent to
the sizes of the committed set and the proving set. Concretely,
our scheme incurs 49 bytes for the commitment size and proof
size.

VI. CONCLUSION

In this paper, we present an efficient zero-knowledge Dy-
namic Universal Accumulator scheme (ZAC) enabling to
prove subset membership and subset non-membership in zero-
knowledge manner. Our results show that the communication
complexity is comparable, which is 27 times less than [8].
One of the advantage of ZAC is the proof of non-membership
ProveN complexity does not incur any considerable complex-
ity in compared with the proof of membership ProveM. The
ZAC can aggregate cross-commitment witnesses into one wit-
ness efficiently, unlike /cite[boneh2019batching]. Afterward,
we deploy ZAC in the real setting as the scenario of zero-
knowledge elementary database, which achieve the better com-
munication and computation cost (i.e. ProveQ, VerifyQ) than
the Merkle tree-based approach like [13]. Finally, the proposed

0 50 100 150 200
1.8

1.83

1.86

1.89

1.92

|S|

Ti
m

e
(s

)

(a) ZAC commit phase

0 50 100 150 200

12

15

|S|

P
Ti

m
e

(s
)

Prove

0 50 100 150 200
0

2

4

·102

|S|

V
Tim

e
(m

s)

Verify

(b) |Ŝ| = 1

1 5 10 15 20
0

1

2

3
·102

|Ŝ |

P
Ti

m
e

(s
)

Prove

1 5 10 15 20
0

5

10

15
·102

V
tim

e
(m

s)

Verify

(c) Varied |Ŝ|

Fig. 1: Performance of our ZAC scheme.

protocol ZAC and ZKEDB are proved to be complete, ϵ-sound
and zero-knowledge.

ACKNOWLEDGMENT

Hai-Van Dang is funded by School of Engineering, Com-
puting and Mathematics, University of Plymouth. Thuc D.
Nguyen is funded by University of Science, VNU-HCM under
Grant No. CNTT2021-17. Thang Hoang is supported by an
unrestricted gift from Robert Bosch, and the Commonwealth
Cyber Initiative (CCI), an investment in the advancement of
cyber R&D, innovation, and workforce development. For more
information about CCI, visit www.cyberinitiative.org.

REFERENCES

[1] Data description. https://www.popmednet.org/resources-and-support/
sample-database (last accessed: Jan 2022)

[2] Plum bloom filter. https://docs.rs/plum/0.1.4/plum/struct.
StandardBloomFilter.html (last accessed: Jan 2022)

[3] Plum bloom filter code. https://github.com/distrentic/plum.git (last ac-
cessed: Jan 2022)

[4] Pointproofs code. https://github.com/algorand/pointproofs (last accessed:
Jan 2022)

[5] Synthetic medical data. https://popmednet.atlassian.net/wiki/spaces/
DOC/pages/99876870/Test+Databases?preview=%2F99876870%
2F99876869%2FTest+Summary+Table+Database.zip (last accessed:
Jan 2022)

[6] Benaloh, J., De Mare, M.: One-way accumulators: A decentralized
alternative to digital signatures. In: Workshop on the Theory and
Application of of Cryptographic Techniques. pp. 274–285. Springer
(1993)

[7] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM 13(7), 422–426 (1970)

[8] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators
with applications to iops and stateless blockchains. In: Annual Interna-
tional Cryptology Conference. pp. 561–586. Springer (2019)

[9] Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison,
J., Smid, M., Tang, Y.: On the false-positive rate of bloom filters.
Information Processing Letters 108(4), 210–213 (2008)

[10] Camenisch, J., Dubovitskaya, M., Rial, A.: Concise uc zero-knowledge
proofs for oblivious updatable databases. In: 2021 34th IEEE Computer
Security Foundations Symposium (2021)

[11] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application
to efficient revocation of anonymous credentials. In: Annual Interna-
tional Cryptology Conference. pp. 61–76. Springer (2002)

[12] Catalano, D., Fiore, D.: Vector commitments and their applications. In:
Int. Workshop on Public Key Cryptography. pp. 55–72. Springer (2013)

[13] Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short
proofs. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. pp. 433–450. Springer (2008)

[14] Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial
commitments with applications to zero-knowledge sets. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. pp. 422–439. Springer (2005)

[15] Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial
commitments with applications to zero-knowledge sets. Journal of
cryptology 26(2), 251–279 (2013)

[16] Christensen, K., Roginsky, A., Jimeno, M.: A new analysis of the false
positive rate of a bloom filter. Information Processing Letters 110(21),
944–949 (2010)

[17] Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption
and applications to efficient forward-secret 0-rtt key exchange. In:
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 425–455. Springer (2018)

[18] Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopou-
los, N.: Zero-knowledge accumulators and set algebra. In: International
Conference on the Theory and Application of Cryptology and Informa-
tion Security. pp. 67–100. Springer (2016)

[19] Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating
proofs for multiple vector commitments. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security.
pp. 2007–2023 (2020)

[20] Grandi, F.: On the analysis of bloom filters. Information Processing
Letters 129, 35–39 (2018)

[21] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. Journal of the ACM (JACM) 59(3), 1–35 (2012)

[22] Karantaidou, I., Baldimtsi, F.: Efficient constructions of pairing based
accumulators. In: 2021 IEEE 34th Computer Security Foundations
Symposium (CSF). pp. 1–16. IEEE (2021)

[23] Lai, R.W., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: Annual International Cryptology Conference. pp.
530–560. Springer (2019)

[24] Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmem-
bership proofs. In: International Conference on Applied Cryptography
and Network Security. pp. 253–269. Springer (2007)

[25] Libert, B., Nguyen, K., Tan, B.H.M., Wang, H.: Zero-knowledge ele-
mentary databases with more expressive queries. In: IACR International
Workshop on Public Key Cryptography. pp. 255–285. Springer (2019)

[26] Libert, B., Yung, M.: Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In: Theory of
Cryptography Conference. pp. 499–517. Springer (2010)

[27] Liskov, M.: Updatable zero-knowledge databases. In: International Con-
ference on the Theory and Application of Cryptology and Information
Security. pp. 174–198. Springer (2005)

[28] Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceed-
ings. pp. 80–91. IEEE (2003)

[29] Naor, M., Yogev, E.: Bloom filters in adversarial environments. In:
Annual Cryptology Conference. pp. 565–584. Springer (2015)

[30] Pedersen, T.P.: Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Annual international cryptology conference. pp.
129–140. Springer (1991)

www.cyberinitiative.org
https://www.popmednet.org/resources-and-support/sample-database
https://www.popmednet.org/resources-and-support/sample-database
https://docs.rs/plum/0.1.4/plum/struct.StandardBloomFilter.html
https://docs.rs/plum/0.1.4/plum/struct.StandardBloomFilter.html
https://github.com/distrentic/plum.git
https://github.com/algorand/pointproofs
https://popmednet.atlassian.net/wiki/spaces/DOC/pages/99876870/Test+Databases?preview=%2F99876870%2F99876869%2FTest+Summary+Table+Database.zip
https://popmednet.atlassian.net/wiki/spaces/DOC/pages/99876870/Test+Databases?preview=%2F99876870%2F99876869%2FTest+Summary+Table+Database.zip
https://popmednet.atlassian.net/wiki/spaces/DOC/pages/99876870/Test+Databases?preview=%2F99876870%2F99876869%2FTest+Summary+Table+Database.zip

[31] Tremel, E.: Real-world performance of cryptographic accumulators.
Undergraduate Honors Thesis, Brown University (2013)

[32] Vitto, G., Biryukov, A.: Dynamic universal accumulator with batch
update over bilinear groups. In: Cryptographers’ Track at the RSA
Conference. pp. 395–426. Springer (2022)

APPENDIX

Pointproofs Protocol
Let G1,G2,GT be multiplative groups of prime order p with a non-

degenerate bilinear pairing e : G1 × G2 → GT . g1, g2 are generators of
G1,G2 respectively and the message space is M = Zp. The Pointproofs
protocol [19] is presented in details as below.

• pp← PR.Init(1λ, q):

1: α
$← Zp

2: ga1 :=
(
gα1 , . . . , g

αq

1

)
, g

αqa[−1]
1 :=

(
gα

q+2

1 , . . . , gα
2q

1

)
,

ga2 :=
(
gα2 , . . . , g

αq

2

)
where a = (α, α2, . . . , αq)

3: pp← (ga1 , g
αqa[−1]
1 , ga2) ▷ P ← ga1 , g

αqa[−1]
1 and V

← ga2 , g
αq+1

T := e(gα1 , g
αq

2)

• C ← PR.Commit(m, r):

1: C ← ga·m1 grα
q

1 ▷ C = g
rαq+Σi∈[q−1]miα

i

1

• C′ ← PR.UpdateCommit(C,S,m[S],m′[S]):

1: C′ ← C · g(m
′[S]−m[S])·a[S]

1 ▷ C′ = C · gΣi∈S(m′
i−mi)α

i

1

• πi ← PR.Prove(i,m, r):
1: m′ ←m||r
2: πi ← g

αq+1−im′[−i]·a[−i]
1 ▷ πi = g

Σj∈[q]−{i}m
′
jα

q+1−i+j

1

• π̂ ← PR.Aggregate(C,S,m[S], {πi : i ∈ S}):
1: for each i ∈ S do
2: ti ← h′(i, C,S,m[S])
3: π̂ ← Πi∈Sπ

ti
i

• b← PR.Verify(C,S,m[S], π̂):
1: for i ∈ S do
2: ti ← h′(i, C,S,m[S])
3: b← e

(
C, g

Σi∈S(αq+1−iti)
2

)
?
= e(π̂, g2) · gα

q+1Σi∈Smiti
T

• π ← PR.AggregateAcross
(
{Cj ,Sj ,mj [Sj], π̂j}j∈[ℓ]

)
:

1: for j ∈ [ℓ] do
2: t′j ← h′′(i, {Cj ,Sj ,mj[Sj]}j∈[ℓ])

3: π ← Πℓ
j=1π̂

t′j
j

• b← PR.VerifyAcross
(
{Cj ,Sj ,mj [Sj]}j∈[ℓ], π

)
:

1: for j ∈ [ℓ] do
2: t′j ← h′′(i, {Cj ,Sj ,mj[Sj]}j∈[ℓ])
3: for i ∈ Sj do
4: tj,i ← h′(i, Cj ,Sj ,mj[Sj])

5: b ← Πℓ
j=1e

(
C, g

Σi∈Sj
(αq+1−itj,i)

2

)t′j
?
= e(π, g2) ·

g
αq+1Σj∈[ℓ],i∈Sj

mj,itj,i,t
′
j

T

